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This thesis focuses upon work advancing the methods by which scattering amplitudes in
string and field theory may be described. Through the pure spinor formalism, rapid devel-
opments have been made in this area and numerous new results have been found. Further,
when amplitudes are constructed so as to satisfy BCJ identities further simplifications be-
come apparent, and the double copy procedure relating amplitudes in super Yang-Mills
and supergravity may be applied. It is this context within which this thesis falls. The

work which follows can broadly be split into two categories.

The first relates to the construction of a BCJ gauge, within which amplitudes automati-
cally satisfy BCJ identities. Such has previously been described in a small subset of cases,
and we use these results to find general methods for its construction. This is done in terms
of a new combinatorial map, which we describe and rigorously prove identities satisfied
by it. As a consequence of this, we are then able to relate the BCJ gauge constructed
using these methods to arbitrary rank with the standard Lorenz gauge by a finite gauge

transformation.

The second set of work relates to the construction of amplitudes at one loop in field
theory. We describe a procedure by which one may extract from genus one string corre-
lators their corresponding results in field theory. The results are shown to satisfy BCJ
identities automatically. Subtleties related to the symmetries of these results are then
discussed, and an overview of why we are unable to then apply the double copy procedure
is detailed. This resolves an outstanding problem related to the construction of higher
point one loop amplitudes so as to satisfy BCJ identities, and raises new questions related

to the application of the double copy in loop amplitudes.
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CHAPTER 1

Introduction

1.1 Context

At its core, the goal of physics is to describe why things behave the way they do. For
three of the fundamental forces; electromagnetism and the strong and weak nuclear forces,
this is done through quantum theory. The fourth, gravity, is described through general
relativity. Unfortunately, gravity resists attempts to be quantised; when one attempts
to introduce a particle governing it to the standard model, a “graviton”, one encounters
unrenormalisable results [2]. As such, there must be some other theory with which we may
describe both consistently, and the most promising candidate we have for this is string
theory [3; 4].

In string theory, we replace point particles with one-dimensional objects called strings.
These come in two core varieties; open strings, which may be thought of a length of rope
and are so called due to their open ends, and closed strings, which resemble loops. In
its limits, string theory reproduces quantum theory and general relativity as required.
So for instance, by taking the string length to zero, that is looking at the low energy
limit, quantum theory is reproduced [5]. A potentially useful image thus arises, with
string theory corresponding with taking a point particle and “stretching” it out at higher
energies. For technical reasons, the length of a string is described in terms of its square

root o/ = \/I. There is the added complication that string theory exists in ten dimensions,
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but it is well established that four dimensional results may be recovered with appropriate

compactifications [4].

The properties of strings are determined by whether they are open or closed, and how they
vibrate. Vibrations may move in either direction along the string, and so are described as
left moving or right moving. There are then five different types of superstring theory, each
with its own restrictions on which strings they contain [4; 6]. In type I, both open and
closed strings exist. In type II, only closed strings exist, and this is split into type ITA and
type IIB based upon having symmetry and antisymmetry between left and right movers
respectively. Finally there are two classes of heterotic strings, in which there are only
closed strings, and the vibrations are split up such that the left movers describe bosonic
strings, while the right movers describe superstrings with symmetry group either SO(32)
or Eg x Eg. These theories may be related to each other by symmetries known as s-duality
and t-duality. Together with supergravity introduced shortly, they all represent different

limits of an overarching M-theory.

One may wonder how strings correlate with specific particles, and for the purposes of this
thesis we need only consider two pairs of simple cases. Gluons and gluinos correspond
with the low energy limit of open strings, and gravitons and gravitinos correspond with
the low energy limits of closed strings. There are of course more particles than this, in
both the standard model and its extensions. These arise from different vibrational modes
of these two classes of string, and in some cases interactions with D-branes. However, it
is these four particles which the results of this thesis are applied to, and so we focus on
them.

Gluons describe the strong nuclear force, and their motion is described with Yang-Mills
(YM) theory. So far as anything can be considered such in particle physics, they are well
understood; they were experimentally observed in the 1970’s, and while there are still
a great many calculations to be undertaken involving them, some of which will be done
in this thesis, they are in a much better place than the other particles. Gravitons are
the force carrying particles for gravity. As previously mentioned, the usual methods to

describe such a particle fail here, and so some creativity is required.

Supersymmetry [7] adds new particles to the standard model. These are the superpartners
of ordinary particles, with the superpartner of a boson being a fermion and vice versa.
Though it has yet to be observed, it is a widely used tool in physics and aids calculations
considerably. The superpartner of the gluon is the gluino, and of the graviton is the
gravitino. The supersymmetric model of the strong force is super Yang-Mills (SYM)
[8], and of gravity is supergravity [9]. Note that multiple forms of these theories exist,
depending on the dimension we work in, denoted D, and the number of supersymmetry

generators allowed, denoted . This thesis takes place in D = 10 space, and in such SYM



1.1. Context 3

necessarily has A/ = 1. With appropriate dimensional reduction any of the N' = 1,2,4

options available in D = 4 may be recovered [8].

As will be discussed, these two theories are related. The double copy states that, if things
are arranged appropriately, results in supergravity may be thought of as the “square” of
corresponding results in SYM [10; 11; 12]. We will focus upon the particle physics picture,
which has a useful description in string theory. A closed string may be thought of as
two open strings with their ends attached together, and so it follows from looking at the
field theory limit that a graviton may be thought of as being like two gluons. While the
full argument is more subtle than this, and will be detailed later, this serves as a useful
image to understand the results. Though we will not discuss it further, we note that such
relations follow through to larger scale problems, in what is known as the classical double
copy. This has been used to find alternative simpler descriptions of a range of problems

in classical relativity, and a review may be found in [12].

Theories in particle physics are tested through scattering amplitude experiments. In these,
particles are fired into each other at large energies and the results, how the particles
“scatter” off of each other, are measured. This is then compared with what would be
expected from the theory. Quantum calculations are by their nature probabilistic, and
so one cannot say with certainty that if say particles X and Y collide, a particle Z will
be produced. However, one can work out the probability of individual results, and then
perform the experiment repeatedly and compare the data set produced with what would
be expected. The probability of a particular event is proportional to the square of the

modulus of its scattering amplitude.

The calculation of scattering amplitudes is highly non-trivial [13]. The field has been
around for many decades, and while significant progress has been made it is far from
a solved problem. The traditional approach relies upon a decomposition into Feynman
diagrams; graphs describing the motion of particles in the scattering event, each of which
corresponds with a complex integral. Suppose we wish to find the probability of two
particles colliding, interacting in some way, and two particles emerging on the other side.
This would be referred to as a four point amplitude, with other point amplitudes defined
similarly. Suppose further that we know that this particular particle may only interact
with other particles in a specific way; either two of this particle may combine into one, or
one of it may split into two. Then the Feynman diagram decomposition of this interaction
would correspond with a sum over all graphs with four external vertices and all other
vertices of degree 3, equivalent to summing over all possible ways two particles can go in

and two come out.

There are clearly infinitely many such diagrams, and as such infinitely many calculations.

Fortunately though, not all are needed. The tree level Feynman diagrams are those which
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are trees in the graph theory sense. Then, all others are described as being loop level
diagrams. An n-loop diagram may be thought of as having n distinct circles within it;
this may be more formally defined through homology. When it comes to experiments,
the majority of the information needed to make predictions comes from the tree level
calculations, then the next most information comes from the one-loop diagrams, then the
two-loop diagrams, and so on. Similarly, the difficulty of calculation increases with loop
order, with tree level calculations simpler than one-loop calculations, which are easier
than two-loop calculations, and so on. As such we do not need to consider diagrams to
arbitrary loop order, with the first few such being more than sufficient. In fact, non-
perturbative effects mean that including diagrams beyond a certain loop order actually
makes calculations less accurate, and so cutting off calculations at a certain point makes
sense. Clearly though, even if we do not need to perform an infinite number of calculations,

a great many must be performed.

One approach to removing this problem lies in string theory, where the number of diagrams
is significantly lower. While the path of point particles describes a graph, strings are one-
dimensional objects and so their paths form surfaces. The sum over graphs with n external
vertices in field theory corresponds with the sum over topologically-distinct surfaces with
n points removed in string theory. The tree level part of an amplitude in field theory
corresponds with surfaces of Euler characteristic 2 in string theory, and similarly the sum
over m-loop diagrams in field theory corresponds with the sum over Euler characteristic
2—2m diagrams in string theory. There are significantly fewer such surfaces than there are
diagrams, and so this would suggest performing the calculation in string theory and then

looking at the field theory limit should be an efficient method for amplitude calculations.

Unfortunately, the complication is that each individual calculation in string theory is
harder than its equivalent in field theory. Fortunately though, recent breakthroughs have
significantly reduced this complexity. In particular, the pure spinor formalism allows
for the covariant quantisation of the superstring. That is, while in the Green-Schwartz
formalism [14] quantisation requires introducing light cone coordinates z* = 20 4 29
[15; 16], and in the RNS formalism if we attempt to work with the usual 2 coordinates
Lorenz invariance must be broken [17], in the pure spinor formalism no such issues arise.
We will detail this construction in the literature review. Using this approach, string
amplitudes at tree level to arbitrary points have been identified [18; 19], as well as one-
loop amplitudes to seven points [20; 21; 22], and results at two and three loops also
[23; 24; 25; 26].
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1.2 Outline

This thesis is split into three parts, the first of which is a review of literature relevant
to this research. This begins with a discussion of the double copy. We give an overview
of the general structure of amplitudes in (super) Yang-Mills, and one method by which
they have been traditionally computed. We then move on to a very brief discussion of
the difficulties associated with calculations in supergravity, and then detail how one may
use the double copy to circumvent having to perform these calculations. This concludes
with a reformulation of the relations needed for the double copy in terms of combinatorial

maps, which will be relevant to the work later in this thesis.

Calculations in this thesis are done in terms of the pure spinor formalism of string theory,
and in chapter 3 we detail this. This begins with an outline of a formulation of ten
dimensional SYM. We then briefly discuss the origin of the pure spinor formalism, general
structural properties of it, and how it may be used in general to perform calculations.
This is not intended to be a complete analysis of every detail of the formalism, but rather

just to describe the key features needed for this work.

Chapters 4 and 5 discuss the specifics of how these techniques have been applied to con-
struct amplitudes. In the former, we begin by describing how string amplitude calculations
may be simplified in terms of objects called multiparticle superfields, and then apply these
to construct amplitudes at tree level. In chapter 5, we then discuss several generalisations
of these techniques needed at loop level, and very briefly describe how one loop string

amplitudes have been constructed to seven points.

We then move on to part II, which begins the original research conducted in the course
of my PhD. This part has been published as [27]. We begin with chapter 6, which details
a new combinatorial map which will be used in numerous calculations. Various results
relating to this map are then proved mathematically, and we use it to generalise many

formulae previously found in the construction of scattering amplitudes.

In chapters 7 and 8, we generalise procedures by which multiparticle superfields can be
constructed such that the resulting amplitudes satisfy BCJ identities. As detailed in the
literature review, this was previously known only for a small subset of cases, and using
the methods we describe in these chapters this is now known in general. Further, we
prove the validity of the arguments presented by showing that they represent a gauge

transformation, and so do not affect the physics of the objects being described.

In chapter 9, we conclude the discussion of this paper. We describe potential directions for
future research on this subject, and in some cases outline how the calculations for these

would begin. We then have some closing remarks on the field more broadly.
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In part III we detail a scheme by which one loop correlators from string theory may be
taken, and corresponding amplitudes in field theory extracted. We begin with chapter 10,
in which we first describe a clear set of rules to perform such. These methods are then
illustrated with an example, and we verify a consistency relation needed to be satisfied
by these rules. Then, we apply these rules, and construct amplitudes up to seven points.
Expressions for these may be found at [28], as in some higher point instances they become

too complex to state here.

In chapter 11, these amplitudes are then shown to satisfy BCJ identities. That such holds
is the key improvement these results have over the previous results of [1], and as such
showing these is important. We consider several the relations most likely to fail at six
points and so them in detail, and outline how similar procedures are then performed at

seven points.

Then in chapter 12, we describe how one may attempt to apply the double copy to these
results in order to generate supergravity results. It is unfortunate, but as we detail in this
chapter such fails at six and higher points. This failure is a result in and of itself however,
and has implications for the criteria necessary for a successful application of the double

copy more broadly.

In chapter 13, we then summarise the results of this part and describe a pair of possible
directions for future work in the area. This concludes the discussion of one loop field
theory amplitudes. We note that the work of part III has been compiled into a paper,
[29].

Part IV concludes this thesis, summarising the results within and their implications. Then
finally part V contains various appendices; discussing aspects of the notation in this thesis
in more detail, providing several formulae which are too large for the main body, and

discussing several smaller and incomplete results which have been found.



Part 1

Literature Review






CHAPTER 2

The Double Copy

Super Yang-Mills (SYM) is the theory by which we describe the interactions of gluons,
the particles which carry the strong nuclear force, and their supersymmetric partners
gluinos. Supergravity on the other hand describes the force carrying particles for gravity,
gravitons and gravitinos. Calculations in the former theory are a great deal simpler than
the latter, but fortunately the two are inherently linked. Gravitational results may be
reformulated as the “square” of those of gauge theories like SYM, as was first identified in
specific circumstances by Kawai, Lewellen, and Tye [30], and then generalised considerably
by Bern, Carrasco, Johannson [10; 31]. This allows for supergravity amplitudes to be

computed far more efficiently.

In order for this link to become apparent, we must construct the amplitudes so as to satisfy
BCJ relations. This correspondence is known as the double copy, and it has been applied
to other gravitational phenomena also. Its origins lie in amplitudes though, and it is on
this that we shall focus.

This chapter will begin with a review of scattering amplitudes in SYM; the general form
amplitudes in this theory take, and some of the more prominent means by which they have
been calculated historically. I will then briefly discuss amplitudes in supergravity; not in
any great detail, but enough so as to illustrate the great difficulty in their calculation.
Then I will proceed to the double copy, where I will outline its historic origin, its modern

application. This is a large and growing field, and so I will focus only on the areas of it
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most relevant to this thesis. However, a more complete review can be found in [12].

2.1 Amplitudes in Super Yang-Mills

2.1.1 An Overview

In SYM, particles have a property known as colour, which in effect means that particles
should be considered to be Lie algebra valued. That is, they behave in a manner similar
to that of terms from a Lie algebra. In this case that link is made explicit, with particles
being represented by some fields multiplied by some function of the generators of a Lie

algebra. As such, we will begin with a brief overview of various aspects of Lie algebras.

2.1.1.1 Lie Algebras

We first introduce the concept of a Lie bracket [-, ], which is a function of two variables

satisfying anticommutativity and the Jacobi identity,

[avb] = _[ba a] ) (2.1.1)
[[a,b], c]+[[b, c], a] + [[c,a],b] = 0. (2.1.2)

It should be noted that the usual commutator,
[a,b] = ab— ba, (2.1.3)
satisfies both of these required relations, and serves as something of a trivial example.

A Lie monomial is then any function described by repeated application of the Lie bracket.

This is most easily understood with a few examples,
[L2,3, L0230, (L2045 (2.1.4)
For our purposes, an element of a Lie algebra is any linear combination of Lie monomials.

As with groups, it is common to describe these in terms of generators, and these are

denoted T, and satisfy the relation
[T, T% = febere, (2.1.5)

where the fo%¢ are the structure constants of the Lie algebra, some set of values which
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describe it. With appropriate choice of basis, the structure constants can be made anti-

symmetric in all of their indices [32]

fabc _ fbca _ fcab _ _facb _ _fbac — _fcba (216)

2.1.1.2 Momentum

We then introduce our notation for denoting momentum. The momentum of a particle
a will be denoted kI

", with m the vector index, and likewise the momentum of a set of

particles a;...a,, will be denoted

AT RNy (2.1.7)

al...an

In this thesis we only consider gluons, gravitons, and their supersymmetric partners, and

as all of these particles are massless their momenta will always square to zero
kK- k*=0 Ya. (2.1.8)

Products of momenta are most efficiently written in terms of Mandelstam variables. We

describe these with the notation

1 S
S12..p = 5(1<:12-~~p By =Nk (2.1.9)
1<j

2.1.1.3 Amplitude Structure

We are now ready to discuss the general structure of a term from an SYM amplitude [33].
The standard description of such is done in terms of a colour piece, a kinematics piece,
and a denominator. The colour piece corresponds with the Lie algebra terms; for every
vertex we assign a structure constant. The indices of this are assigned by moving clockwise
around the vertex, and noting the particle label for an external edge, or a dummy variable

to be summed over for an internal edge.

a

VN fabc

The kinematics piece contains the majority of the information about the amplitude; it is a

function of the particles momenta and polarisation vector we use to specify them. These
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2 0 — k123

{—k l— k1234

1 5) 1 6

Figure 2.1.1: A pair of examples of diagrams which may arise in the calculation of SYM
amplitudes.

two are combined into a single numerator, and the corresponding denominator is then a
product of the square of the momentum passing through each internal edge. Such terms
will often be referred to as the poles of the diagram. Note at tree level, this corresponds
with a mandelstam variable (2.1.9) for each internal edge, with its labels corresponding to
all of the external particles on one side of the edge. By momentum conservation it does
not matter which side we choose. At loop level we have the added complication of loop
momenta, describing the undetermined momentum of the virtual particles in the internal

loops of such diagrams. As these can take any value they are integrated over.
To illustrate all of this, consider the pair of examples of diagrams in an SYM amplitude
given in figure 2.1.1. Both of these will have the general form discussed. That is,

Kinematics x Colour
Poles

(2.1.10)

We first specify the colour factors. In the first case, we will have a factor f12¢ from the
leftmost vertex, with the 1 and 2 arising from the external particles, and the a from the
internal edge. Then working to the right, we have the factors f®° and f*3*. Combing

these, and doing likewise for the other example, we have colour factors
f12afab5fb34 ’ fflafabCfb23fc4dfdeff656 ] (2111)

In the tree level example, we have two internal edges, and so two poles sj2 = s345 and
S125 = S34. In the one loop example, there is a loop momentum to be integrated over, and
we must specify a direction and a specific value of this on one edge. Otherwise it is much
the same, and we have four pole terms containing the loop momentum, and two which do
not (sa23 = s1456 and s12314 = S56). Specifying the kinematics piece is a much more complex
task, and is the focus of much of the work in this thesis, and so we conclude with these

amplitude terms having the form

(Kinematics) x f12@ fabs fb34

2.1.12
512534 ( )
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/ dDE (Kinematics) % fflafabcfb23fc4dfdeffe56
59355602 (0 — k1)%(£ — k123)%(0 — K1234)*

One loop diagrams are often described in terms of the nature of their loop. So for example,
if the loop connects three vertices it would be called a triangle diagram, if it connects four
vertices like in figure 2.1.1 it would be called a box diagram, and if it connects n vertices

it would be an n-gon diagram.

2.1.1.4 Colour Decomposition

It is standard convention to discuss amplitudes in terms of their colour decomposition.
Including a colour factor in every term adds a significant complication to amplitude con-
struction. Instead, we expand colour factors in terms of their constituent Lie algebra

generators using
fobe = Tr([T*, T T°) (2.1.13)

We then group terms based upon traces. At tree level, this corresponds with reexpressing

the amplitude as

.A;ree _ Z Tr(TlTo(Q)mTU(n)) A;ree(lj 5(2)7 ey O'(TL)) . (2.1.14)
oc€Perm(2,3,...,n)

Cyclicity of the trace allows us to always have a leading 1. By Perm(2,3, ...,n) we denote
the set of permutations of 2,3, ...,n, and we use o(m) we denote an element of o in the
natural way. The objects A(1,0(2),...,0(n)) are then referred to as being either partial or
colour ordered amplitudes. They correspond with a sum over all planar diagrams in which
the external particles are ordered 10(2)...0(n) as we move clockwise around the diagram.
We refer to A(1,2,3,...,n) as the canonical ordering. A graph is called planar if no edges
pass underneath other edges, or, in mathematical language, if it may be embedded into

R2. This discussion follows similarly loop level also.

2.1.1.5 Reducing The Number of Calculations Needed

There are a number of results which may be used to simplify amplitudes, and here we
discuss just a few of particular importance. First we note that, while SYM can contain
both three and four point vertices, we need not consider the four point vertices. The colour
term associated with such vertices is a pair of structure constants [33], f2¢ % which may
be written as the product of the colour factors of a pair of three point vertices. Further,

four point vertices do not introduce any extra pole structure, and so by multiplication



14 Chapter 2. The Double Copy

by factors like s12/s12 we may write them as sums over three point vertex diagrams. As
such, four point diagrams can be ignored in our calculations by supposing that they form

a component of the three point diagrams instead.

Then we also have that, in maximal SYM, it has been proven that there are no triangle
diagrams at one loop [34; 35]. Additionally at higher loops, the diagrams with a triangle
sub-diagram vanish similarly. This significantly reduces the number of loop diagrams
needed to be considered, meaning that for instance the three point one-loop amplitude
is known to vanish without calculation, as the only diagram it would contain triangle
diagrams. Likewise, at four points and one-loop, this means we need only consider box
diagrams, despite the significant number of other diagrams we could construct involving
triangles. There is an analogous result to this in string theory also, which is that three
point amplitudes vanish at all loop orders [36; 37; 38; 39]. Consistency between string and

field theory would suggest likewise is true in field theory also.

Finally, the number of linearly independent partial amplitudes may be reduced at n points
by a factor of (n—1) using the Kleiss-Kuijf (KK) relations [40; 41]. These we express here
in the form [42]

A(X1Y,n) = (—=)XA( (X Wwy),n). (2.1.15)

There are a number of items of notation we need to explain here. We begin by introducing
the concept of a word, which is a sequence of letters. This is most easily understood with
an example, so, suppose we are given the letters a and . With these we can form five
words of length less than 2,

0,a,b,ab,ba. (2.1.16)

By ), we denote the empty word, consisting of no letters. Longer words we can form with
these words involve repeated letters, for instance aabbabbaba. Words are generally denoted
with capital letters, whereas letters are usually lower case. Given a word X, we use X to
denote the reversal of its ordering, and |X| to denote the number of letters it contains.

These are both defined in the natural way, with for example

X =285437619 = X =916734582,  |X|=09. (2.1.17)

The symbol LLI denotes the shuffle product. This takes two words X and Y, and returns
all possible words containing every letter of X and Y which also maintain the ordering
of each word. This may be thought of as, if X and Y were two sets of cards, then their
shuffle product would be the sum over all possible ways they could be combined in a single

shuffle. We define this recursively for a pair of words A = a;...aj4) and B = b;...bp| by
[43]

OLUA = ALD = A, AlLLIB = al(a2...a|A‘ |_|_|B) + bl(bg...b|B| |_|_|A), (2.1.18)
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However, it is again made much clearer through examples,

1111234 =1234 4 2134 + 2314 + 2341 (2.1.19)
12 L1134 =1234 + 1324 + 3124 + 1342 + 3142 + 3412 (2.1.20)
123 L4 =1234 + 1243 + 1423 + 4123 (2.1.21)

Putting all of this together, we may give one example of a KK relation. Setting X = 23,

Y =4, n =5, and using the cyclicity of partial amplitudes, we have

A(14523) = (—1)2A(1, (32 LLI4), 5) (2.1.22)

= (
= A(1,3,2,4,5) + A(1,3,4,2,5) + A(1,4,3,2,5)

These relations may be used show that there are at most (n — 2)! linearly independent
partial amplitudes. Though the KK relations will not be exploited in this thesis, from
a certain point of view the double copy is an extension of them, and so they are worth

including here.

2.1.2 Traditional Methods of Computation

The focus of a significant portion of this thesis will be upon new techniques for the calcu-
lation of amplitudes in SYM. However, some background information on what has come
before should be discussed, and here we briefly discuss the concept of Berends-Giele (BG)
currents [44]. These were introduced in the 1980’s as a recursive method by which tree
level amplitudes in (non-supersymmetric) Yang-Mills could be computed. They will serve

as the background theory upon which the work discussed in this thesis has generalised.

A Berends-Giele current is an object Jp', where P is a word denoting particle labels, and

m is a vector index. These are defined recursively by [42]

Jr=el, spdp = ) [Ux, T+ Y {dx Ty, Tz (2.1.23)
Xy=p XYZ=P

The notation e* denotes the polarisation vector of a particle ¢, and sp again describe

mandelstams variables (2.1.9). The brackets are defined as

1
[T, )™ i= (y - Tx) T+ Sk (x - y) = (X & Y) (2.1.24)

(Jx, Ty, Iz} = (Jx - J2) T — = (Jx - Jy)JZ — = (Jy - 7). (2.1.25)

1 1
2 2
Finally we must explain the summation notation. The concatenation of two words A and
B is the word formed by placing one word after the other. So for example, if A = 123

and B = 45, then their concatenation is the word AB = 12345. A deconcatenation is the



16 Chapter 2. The Double Copy

reversal of this process, wherein we split a word into two pieces. In (2.1.23) we are summing
over deconcatenations; that is, we are summing over all possible ways of deconcatenating
the word. So for example, > yvy-_ 95, means to sum over all possible words X and Y such
that the concatenation XY is the word 1234. These words may be empty, though often it
will be clear from context if deconcatenations containing empty words should be dropped.

This generalises to deconcatenations into multiple words X1..X,—A in the natural way.

Putting all of this together, gluon amplitudes are then a simple product of BG currents
[44]",

A};‘Je\g(l’ 2’ Dy D + 1) = 512...p<]1n%,,,p ;rj_l (2126)
This is proved by induction [44]. We also note that BG currents can be found to satisfy
the symmetry relations [45]

KRJE =0, Jlus=0, |Al£0#|B] (2.1.27)

These bear similarity with results which will be found for their generalisations going for-
ward. Note LLI denotes the shuffle product seen in (2.1.18).

To demonstrate these methods, consider the three point amplitude A%;Qg (1,2,3). We see

from (2.1.26) that this may be expressed in terms of BG currents as

AYM(1,2,3) = 51903 J5 . (2.1.28)

tree

Applying the definitions (2.1.23) this becomes

S
A§£(1,2,3):ﬁ< S U AT+ Y {JX,Jy,JZ}m>eg" (2.1.29)
512 X v "io XY Z=12
= [J1, Jo]™ e5". (2.1.30)

Note that Jp is only defined for P a non-empty word, and so we drop empty words from
the summation. This eliminates all terms involving the second class of bracket. Applying

the definitions, we then see that this amplitude is given by?

APM(1,2,3) = (ko - J1) 3" + %kT(Jl Jo) — (14> 2)) ef’ (2.1.31)
= (k2-e1)(ez-e3) + %(lﬂ ~e3)(e1 - e2) (2.1.32)

— (- ea)(er - es) — (k- eg)(er - e2)

'This formula is for the (p + 1)-particle amplitude with particle (p 4+ 1) off-shell. Its origin may be
understood as a sum over all possible diagrams with 3 and 4-point vertices, with the [-,-] and {-,-,-}
brackets in the current definition (2.1.23) corresponding with each.

2We note that this amplitude calculation has been detailed to demonstrate the methods of Berends-
Giele currents, not because of any particular significance of the three point amplitude itself. In fact, such
an amplitude vanishes in certain circumstances, as can be seen in for instance [46].
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There are of course other methods of computing amplitudes in Yang-Mills theory, upon
which considerable work has been performed. The approach of BCFW relations [47; 48]
for instance is a particularly prominent one, and is a field of significant research. This
however, is less relevant to the work of this thesis. The approach of Berends-Giele currents
is considerable in its own right, and it is upon this which we will focus, so other methods

will not be discussed here.

2.2 Supergravity Amplitudes

The intention of this brief discussion is not to provide a detailed analysis of supergravity
amplitudes, but rather a short comparison of them with SYM amplitudes to illustrate
the relative difficulty in their computation. The methods described here will not be used

elsewhere in this thesis, and are drawn heavily from the equivalent discussion in [12].

Let us compare amplitude calculations in SYM and supergravity, using a traditional Feyn-
man integral approach. In SYM, we have only three point vertices. In the Feynman gauge®

these correspond with terms [12]
Ve (k, ko, ks) = g f** | (ky — k2)omw + cyclic(1,2,3)] . (2.2.1)
where the k; are momenta, and g the coupling constant.

We now compare this with the equivalent supergravity vertex. In the de Donder gauge,
this is given by [12; 49; 50]

) 1 1
G3ppwror(P1,D2,P3) = ZSym[ - §P3(p1 “P2MupMuANor) — §P6(p1up1)\77up7707)
1

+ §P3(p1 PN NpANor) + Po(P1 - P20upvear)
+ 2P3(p1up1eMuptne) — P3(P1ap2unpnnor) (2.2.2)
+ P3(p1oD2rMuwpr) + Ps(P1oP1irMuwnpr)
+ 2Ps(P1up2r o) + 2P3(P1up2prerp)
— 2P3(p1 - p2nipe Mo rp) | 5

The Sym denotes the symmeterisation of y with p, v with A\, and ¢ with 7. The P,

are symmeterisations which generate ¢ terms. This is clearly by a wide margin more
complicated than the SYM vertex.

3 A gauge may be regarded as a fixing of some freedom in the relations specifying a system. For example,
if an object y was completely specified by the constraint g—g = 0, then there would be a freedom in selecting
the value of the constant we set y to. Choosing a specific gauge does not change the physical system we

are describing, only the mathematics involved.
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Then, there is the further complication arising from the number of diagrams in each
theory. In SYM, as discussed we may consider there to be only the 3 point vertices. In
supergravity there is no such constraint, with n-point vertices existing for all n > 3. These
higher point vertices are unsurprisingly no less complicated than the three point case, and
that they must be included in amplitude calculations increases the number of diagrams

considerably.

Given the significant complexity of supergravity amplitudes, it should comes as no surprise
that we would like to avoid computing them wherever possible. Fortunately by virtue of

the double copy, this is an option, and we now detail this.

2.3 The Double Copy

As has just been demonstrated, the calculation of supergravity amplitudes is no small feat.
The number of diagrams we have to compute are enormous, and each individual one is an
extremely complex calculation. Amplitudes in SYM however involve only a fraction of the
number of diagrams, and though their calculation is still far from trivial it is a great deal
simpler than the equivalent diagram in supergravity. In this section, I introduce the double
copy, which relates these two by expressing supergravity amplitudes as something like the
square of those in SYM. This then means that the particularly fearsome supergravity
amplitudes become much simpler, arising from friendlier results in SYM. Though we shall
in later sections that additional complications can arise which prevent such a link, it has

been used to enormous effect in a number of papers and is an extremely useful tool.

This section will begin with a discussion of the historic origin of the double copy, and how
it was first identified as a result in string theory. Its later generalisation to field theory

will then be discussed, along with some discussion of its current applications.

2.3.1 Origins in String Theory

The origin of the double copy can be found in the work of Kawai, Lewellen, and Tye
(KLT) [30]. They made the observation that tree level amplitudes for closed strings can
be formulated as products of two amplitudes of open strings. For a simple intuition of
why such a link may exist, one may observe that if given a pair of open strings, we may
attach their respective ends together into a single closed string. By then considering the
field theory counterparts of this result, relations between between tree level SYM and

supergravity amplitudes were identified. These became known as the KLT relations, and
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the first three of these are stated below?,

MITee(1,2,3) = iATee(1,2,3) AMree(1, 2, 3) (2.3.1)
MITee(1,2,3,4) = —is19AT(1,2,3,4)A"¢(1,2,4,3) (2.3.2)
MITee(1,2,3,4,5) = is19545A7(1,2,3,4,5)A°¢(1,3,5,4,2) 233
+isius05A¢¢(1,4,3,2,5)Ae¢(1,3, 5,2, 4) o
These relations have since been generalised to arbitrary points [51; 52; 53; 54],
Miree = —i Y Al*(1,0,m — 1,m)S[o|p| AL (1, p,m,m — 1) . (2.3.4)

o, p EPerm(2,...,m—2)

A new object has been introduced here, S[o|p]. This is known as the KLT matrix or KLT
kernel. There are numerous formulae for this, but here we will define it recursively in

terms of a generalisation [52; 55]

S[A|B] = S[A|B]y (2.3.5)
S[A,j’B,j,C]Z :2]%'3-/{?]‘ S[A‘B,C]Z, S[]‘]]z ZSij. (2.3.6)

To illustrate, consider the KLT kernel applied to permutations of 23. One instance of such
is S[23]32], given by

S[23(32] = S[23(32] (2.3.7)
= 2(k1 - k3)S[2(2]x

= 2812513
Likewise the others will be given by
S[23|23] = 2(k'2 - k®)s10, S[32[23] = 2510513, S[32[32] = 2(k'% - kP)s13.  (2.3.8)

These may be arranged into a matrix, which is the origin of the “KLT matrix” terminology.
We do not do so here though as such will not be used elsewhere this thesis, and because

complications arise in doing this when the input words have more than two letters®.

Later in the course of this literature review, and then in part III, the elements of the
inverse of this matrix will be discussed. These can be computed this directly, without the

need for the identification of the full matrix and then finding its inversion. This is done

4Note that where SYM amplitudes are denoted with the letter A, it is standard convention to denote
amplitudes in supergravity with the letter M in a similar way.

5 At this level, it seems reasonable to assign 23 inputs as relating to the first row/column of a matrix,
and 32 as the second row/column. However, if the input words had length 3 we would have input words
234, 243, 324, 342, 423 and 432, and it is far less clear to which row/column one would assign say 423.
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in terms of Berends-Giele double currents [56], denoted ¢4 5, and defined recursively by

PpiQ = - Y Y (dxpdvip - (X0 Y)), gy =05 (2.3.9)
5P Xy_p AB=Q

Elements of the inverse KLT matrix are then given by
S~'A|Bli = ¢iain (2.3.10)

Mirroring the previous example, we then see that the elements of the inverse KLT matrix

corresponding with permutations of 23 are given by

1 1 1
S—1[23[23] = + . STY23[32] = — :
5125123 5235123 5235123 (2 3 11)
1 1 1 =
S™1[32[23] = — . ST132]32] = - .
5235123 5135123 5235123

If one were to assemble these into a matrix, it would be seen that it is the inverse of the
KLT matrix up to an overall 1/2 factor, which has been omitted from this formulation for

simplicity.

The KLT relations were a significant result. They allowed a means of simplifying tree level
amplitudes in supergravity. Unfortunately though, they did not proceed much further
beyond this point, and it would be a number of years before loop level supergravity

amplitudes could be simplified similarly, and to do so would require a new approach.

2.3.2 The Lie Algebraic Structure of Diagrams in Super Yang-Mills

We have already seen that the colour factors of SYM diagrams are described in terms
of Lie algebras, but the graphical representation of the diagrams themselves may also be
similarly represented. In this section, we shall give some details of this, and introduce

some more notation and which will be of significant use in this thesis.

We begin by introducing the concept of a (planar) binary tree, which is a tree in which all
vertices are three point. These are drawn with a single “root” splitting into two branches,
with these either further splitting or ending in leaves. This is closely related with a similar

concept in computer science [57], with an example illustrated in figure 2.3.1.

All tree level diagrams in SYM are binary trees. We may always take an external edge,
usually particle n, and orient the diagram such that this is our root. Then as SYM
amplitudes contain only multiplicity three vertices, we will be able to organise the resulting
diagram to match with the form of a binary tree. Further, colour dressed n-point tree

level amplitudes may instead be represented as the sum over all possible binary trees with
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6
VANVAN
3 7 2 b5 6

Figure 2.3.1: An example of an (unsorted) binary tree used as a data structure in
computer science, and the Feynman diagram we would associate with the structure of this
tree.

(n — 1) leaves.

Every binary tree corresponds with a Lie monomial [58; 59]. We start from the root, and
then at every vertex insert the left hand side into the left hand side of a Lie bracket, and
the right hand side into the right hand side of the Lie bracket. This process we iterate
until all leaves have been reached. So for example, the tree in figure 2.3.1 corresponds
with

[[[1,2],[3,4]],5]. (2.3.12)

Hence combining results, we see that a tree level amplitude at n points may be regarded
equally as a sum over all Lie monomials with n — 1 entries. These can then be identified

algorithmically.

The binary tree map, otherwise known as the b-map, generates the sum of all possible
Lie brackets labelled by the letters of an input word. Further, it includes a division
by Mandelstams, to describe the poles of the corresponding Feynman diagrams. It is

recursively defined by [60]
bi)=1i,  bP)=— Y [b(X),b(Y)]. (2.3.13)

To give one example, we may generate the tree level four point Feynman diagrams and
their poles with b(123),

b(123) = 81123[5(12), b(3)] + 81123[6(1), b(23)]
= (), b(2)],b(3)] + —
S$125123 5235123
- 2.3+
5125123 5235123

[b(1),[6(2),b(3)]] (2.3.14)

[1,12,3]]

These Lie monomials may then be mapped to corresponding Feynman diagrams, as is

illustrated in figure 2.3.2. Note the poles generated differ by an overall 51313 factor, and
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1 2 3 1 2 3
1 1
5125123 \</ + 5235123 \\?/
4 4

Figure 2.3.2: The planar binary trees corresponding with 5(123), equal to 1/s123 times
the partial amplitude A(1,2,3,4)

for b(P) they will always differ by an 3131, but this will be accounted for in calculations.

We may use this description to identify the number of diagrams in tree level amplitudes.
Denoting the number of n-point diagrams by C,,, it follows from (2.3.13) that we have the

recursion relation

Co= Y CCj, Ci=1 (2.3.15)
i+j=n
i,7>0
It is a known result that this recursion describes the Catalan numbers, the next seven

terms of which are
Co=1, C3=2, Cy=5, Cs=14, Cs=42, Cr;=132, Cs=429. (2.3.16)

So to conclude, at n points, there are C),,_1 binary trees, and therefore C,_1 tree level

diagrams in each partial amplitude, where C,, is the n** Catalan Number [61].

One loop diagrams may also be identified through the b-map. Each one loop diagram is
based around some m-gon, with m < n, n the number of points. At each corner of this
m-gon, we have either an external particle, or a tree level diagram. As such, the corners
of the m-gons may be described through the b-map also. This will be discussed in more
detail later.

2.3.3 Approach of Bern, Carrasco, Johansson

The approach of KLT simplifies the calculation of tree level gravity amplitudes, but a
generalisation beyond this would be desirable. Such was identified by Bern, Carrasco, and
Johansson (BCJ), and we detail this here [10; 11].

First of all, we recall the form of amplitudes in SYM. Each diagram corresponds with a

structure . )
(Kinematics) x (Colour)

(Poles)

(2.3.17)

The colour terms are the structure constants of some Lie algebra, and as such will satisfy
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a b b a a b

Figure 2.3.3: The colour factors in the above diagrams will form a Jacobi identity and
cancel. The double copy rests on constructing the kinematic factors such that those of the
above diagrams cancel also.

Jacobi identities
fabCfcde + fbdc]ecae + fdaCfcbe -0. (2318)

This corresponds with the diagrams in figure 2.3.3. Further, as was discussed in the
previous subsection, the diagrams themselves may be described in terms of Lie monomials,
and generated through Lie algebraic maps. As such, one may wonder if there is a further

Lie algebraic description underlying SYM amplitudes.

There is considerable freedom in the kinematics component of amplitudes. As was pre-
viously discussed, diagrams in SYM contain implicit contributions those with four point
vertices, and we are always able to some degree to move these terms between certain dia-
grams. Then there is the usual gauge freedom, by changing the gauge we may change the
components of the kinematics components. The breakthrough of BCJ was to ask what
would happen if kinematics components were constructed so as to satisfy the same Jacobi
identities as their corresponding colour components. How they did this specifically will
not be relevant to this thesis, as more recent methods for doing so will be discussed here,

but [12] may be consulted for details.

These relations between kinematic factors will be referred to in this thesis as BCJ identities
or BCJ symmetries. Elsewhere they are occasionally referred to as kinematic Jacobi

identities also. We may use these to identify gravity amplitudes.

Suppose we have an amplitude in Yang-Mills

Ni X Cz
A = Z —5 (2.3.19)

(2
where we use IN; to denote the kinematic component of each term. Suppose further that
we have BCJ relations between these components. Then the kinematic component, and

replacing the colour component with a second copy of this, we find a corresponding gravity
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amplitude,

N; f
i (2.3.20)

X

Mm:

n ~
1=

v

1

This is known as the double copy.

The nature of the gravitational theory in which amplitudes are produced depends upon
the specific theory to which input amplitudes belong. The majority of this thesis uses
pure spinor methods, and so takes place in 10 dimensional N/ = 1 SYM. The double
copy of this amplitude then produces corresponding results for 10 dimensional N = 2
supergravity. That is, when we compute say a five point one loop N'=1 SYM amplitude
in this thesis and take its double copy, then the result is a five point one loop N = 2

supergravity amplitude.

This is far from the only choice of input theory though. For example, by choosing the
kinematic terms to be from (non-supersymmetric) Yang-Mills one can obtain amplitudes
in classical gravity with matter [10; 62; 31]. Alternatively, there is no reason why the two
sets of kinematic terms have to be from the same theory. If for instance, we choose the N
numerators to be the kinematic components of an amplitude in A" = 4 SYM, and the N
numerators to be the same components from the same diagrams, but drawn from any of
N =1,2,4 SYM instead, then the resulting amplitudes belong to N’ = 5, 6, 8 supergravity
accordingly [31]. These are but a few examples of how the double copy may be applied,

and a far more complete list may be found in tables 4, 5 and 6 of [12].

It is far from obvious why this procedure works. That is, there is not an intuitive reson
why SYM amplitudes constructed with this very specific structure should be related to
those of supergravity. That they are has been demonstrated through numerous examples
(see [12] for many such examples). Additionally the first step, arranging numerators such
that they satisfy BCJ relations, has been proven to be possible at tree level using string
theory methods [63; 64].

One further consequence of the work of BCJ is that new relations emerge between partial
amplitudes. We will not detail the derivation of these, but merely state that they are
given by

m—1

>k ckas i A2, 0,10+ 1, m) = 0. (2.3.21)

i=2
These are also referred to as BCJ relations, though it should be clear from the context
when we refer to BCJ relations as to whether we mean those between partial amplitudes or
those between numerators. They can be viewed as an extension of the KK relations, in that
where the KK relations reduced the number of linearly independent partial amplitudes to
(n — 2)!, the KK relations plus the BCJ relations reduce the number further to (n — 3)!.
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Figure 2.3.4: There may be thought of as being two classes of BCJ relations at loop
level; those involving edges of the loop as in the first diagram, and those within one of
the trees branching off as in the second. The former class of these will prove substantially
harder to enforce than the latter in what follows. Note that we take care to include the
loop momentum £ explicitly in the diagrams.

It is believed this is the maximum reduction which can be made in the number of linearly

independent partial amplitudes.

2.3.4 Loop Level

Unlike with the KLT relations, the approach of BCJ generalises to loop level. This gener-
alisation is usually justified as a consequence of unitarity cuts [65; 35; 66; 67; 68; 69; 70].
In this approach to loop amplitudes, one effectively “cuts” diagrams along certain edges
repeatedly, to reduce loop diagrams to functions of tree level diagrams. Then as a result,
since BCJ holds for tree level diagrams, it follows that it should also hold for the loop

diagrams. Showing this rigorously though remains an open problem.

Enforcing the BCJ relations at loop level is similar to doing so at tree level, in that we
must ensure that the kinematic numerators satisfy the same Jacobi identities as their
colour partners. An extra complication which should be considered is that there is in
effect two classes of BCJ relations at loop level; those which involve the loop and those

which do not. An example of each is provided in figure 2.3.4.

Another difficulty, which is closely related to difficulties we will encounter in the course
of this thesis, is the labelling problem. As has been discussed, one loop amplitudes are
integrated over the undetermined loop momentum, ffooo dP¢. At the level of diagrams,

extra care must therefore be taken to ensure that the numerators of BCJ relations share
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a loop momentum structure. That is, alike in figure 2.3.4, we must make sure we look
at diagrams constructed with ¢ in the same place on them. Otherwise a substitution
¢ = ¢+ k in certain terms may have to be performed, or in some instances something

more complicated as will be detailed later.

Using the double copy approach, numerous loop level results in supergravity have been
found. The four dimensional MHV amplitude® at one loop has been has been constructed,
first to seven points [72], and then for arbitrary such [73]. Using an alternative repre-
sentation of the denominators of the amplitude, the double copy was also applied at one
loop in [74]. Then when the number of points is limited, results up to four loop were
identified in various theories [75; 76; 77; 78; 79], and this was extended to five loops in
N = 8 supergravity [80; 81].

2.4 Testing For Lie Algebraic Structure

Let us denote the kinematic component of a tree level diagram described by the Lie

monomial A by
Ny. (2.4.1)

So for instance, the kinematic component of the four point diagrams illustrated in figure
2.3.2 would be denoted by

Nipaas Npjes)- (2.4.2)

This will be generalised to loop level in later sections. The Lie brackets in this notation
then correspond exactly with the symmetries of the factors corresponding colour term.
Hence, enforcement of BCJ identities is equivalent to ensuring that these kinematic terms
have the symmetries the Lie brackets notation would suggest. So in the first case for

instance, this means verifying

Ni213 = = V2,113
= ~Napa) (2.4.3)
= +N3,[1,2]

= —Ni23,1 — Ns,.2] -

SAn MHV amplitude is a maximum helicity violating amplitude. That is, one in which two external
particles share one helicity, and all others share the other. These are particularly well understood, with
for example the Parke-Taylor expression for their tree level amplitudes known since the 80’s [71]
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That is, we must have antisymmetry in both of the brackets and the Jacobi identity.
Then, if these relations are satisfied, the kinematic numerator Ny g3 can be said to
satisfy BCJ identities. Clearly the number of relations we must check is going to grow
rapidly. Fortunately, we may reduce this number significantly. Partially, this will is
achieved implicitly by building numerators with common algorithms; if we know that
N[1,2),3) satisfies BCJ relations, and that Njq 1) 3 say is defined in precisely the same way
save for 1 and 2 being swapped, then this must also satisfy BCJ relations. The number
of identities required to be verified will remain large however. In this section, we describe

methods by which they may be standardised and this process made more algorithmic.

2.4.1 Generalised Jacobi Identities

We begin with a single class of kinematic numerators, those represented with (left-to-right)
Dynkin brackets. These are denoted ¢(P), for P a word, and are defined recursively by
[43]

L(Pi) = [L(P),1], i) =r()=1. (2.4.4)
However, they may be represented more clearly in the form

lajaz...apn) = |[...[a1, a2], as], ..., an] (2.4.5)
For completeness, we note that we may also define right-to-left Dynkin brackets similarly

r(iP) = [i,r(P)], r(i) =1, (2.4.6)

r(ayag...an) = [a1, [a2, [as, [-.-, [an—1, an]]--] (2.4.7)

However, these will play a significantly lesser role than their counterparts, and as such

unless specified otherwise a Dynkin bracket should always be assumed to be left-to-right.

These will be so present in fact, that often we will omit Lie brackets entirely to denote
them and simplify notation. Unless stated otherwise, when a word is used in a context
in which one would expect a Lie bracket, it should be interpreted as being the Dynkin

bracketing of that word. So, to give one example,

Ni123,45),6789) = NV[[e(123),6(45)],6(6789)] (2.4.8)

= Ni11,2),3),14,5).116,7,8],9]) -

Suppose now that we have a kinematic numerator with an apparent Dynkin bracket struc-
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ture,
Nig.n (= Nyaz..m)) - (2.4.9)

Testing for BCJ relations in this case then corresponds with verifying that this numerator
satisfies the symmetries the Lie bracket would suggest. This is described in terms of
generalised Jacobi identities (GJIs) [82].

An object Kz, is said to satisfy GJIs if
KA((B)C + KBZ(A)C =0, VABC =12..p, A,B#1) (2.4.10)

To understand the meaning of this, consider it case by case. When C' = 34...p, the above

relation reduces to the constraint
Ki934...p + K2134..p = 0. (2.4.11)

That is, antisymmetry in the first two indices, which would be expected if this K has
the structure of £(12...p). Likewise C' = 45...p corresponds with the Jacobi identity in the
first three indices. The following cases then follow from repeated application of Jacobi
identities to increasingly outer brackets. For instance, setting A = 12, B = 34, C' = 56...p,

this becomes

Ki9345..p — K2435, p + K34125..p — K34215..p , (2.4.12)

and one may verify that Jacobi identities imply
H[l? 2}7 3]7 4] - [[[17 2]74]7 3] + [[[37 4]7 1]7 2] - [[[37 4]7 2]7 1] =0. (2'4'13)

In general, that the GJIs are equivalent to having that Kis , has the structure of the
left-to-right Dynkin bracket £(12...p) can be seen by taking C = ci...¢/¢|,

UAUB)C) = [ [[E(A), 6B c1l, s ] = ~[L-[IE(B), (A, el .. ey

(2.4.14)
— U(BI(A)C)

Hence, if Ki2., has a left-to-right Dynkin bracket structure for its indices, then the above
relation and therefor GJIs will be satisfied. Note the steps in the above which are not

detailed are easily proved by induction.

It will prove to be sufficient to only check one identity for each length of C' in (2.4.10),

simplifying our discussion significantly. In accordance with [83], we define an operator L,
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and use this to generate the identities we verify

Lont10 Ki2..m = K12, nt1r(nr2.2011) 2n42..m — Kont1ont2r(nt1..1) 2n42...m> (2.4.15)

Lon o Ki2..m = K12 nr(nt1..2n)2n41..m + Kon nt1r(n..1) 204 1..m>

Consistency between requiring the vanishing of the above and requiring (2.4.10) may be

seen by noting that

r(ayag...an) = [a1, [, [@n_2, [@n_1,an)]]...] = (=) [...[[an, @n-1], an_2],...], a1]

= (=1)" "(ap...aza1) (2.4.16)

In the case of Lo, we may then set A = 12..n, B = 2n(2n — 1)...(n + 1), and A and B
their reversals, to see the link with (2.4.10)

Lon o Kap = Kavp) + Kpr(a)

(2.4.17)
= (—D)" " (Kaup) + Kpea))

The other case of Loy, +1 will follow similarly.

To conclude, an object K2, will have the symmetries of the left-to-right Dynkin bracket
0(12...p) if it satisfies generalised Jacobi identities, defined by

ﬁn @) Klgmp =0 Vn S P (2.4.18)

It follows that, given a kinematic numerator Nia._ ,, this is satisfies BCJ relations if we

have the analogous relations

LnoNp. ,=0 Vn<p (2.4.19)

2.4.2 General Lie Bracket Structures

Though Dynkin brackets serve as something of a base case for calculations in this thesis,
they are by no means the only Lie bracket structures which exist, and we must discuss how
BCJ relations for these are standardised. Fortunately though, this is a relatively simple
process. Any Lie bracket structure may be transformed into a collection of left-to-right

Dynkin brackets with repeated use of Bakers identity [43]

[L(P), Q)] = £(PL(Q)) - (2.4.20)

It is a simple induction to prove this. So, to give one more complex example

[[£(12), £(34)], [5, £(67)]] = [£(12€(34)), £(56(67))] (2.4.21)
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= ((12340(567)) — £(12430(567)) — £(1234£(576)) + £(1243((576))
= ((1234567) — £(1234657) — £(1234756) + £(1234765)

— £(1243567) + £(1243657) + £(1243756) — £(1234765)

— £(1234576) + £(1234756) + £(1234657) — £(1234675)

+ £(1243576) — £(1243756) — £(1243657) + £(1243675)

For clarity all Dynkin bracketing functions have been made explicit in the above, and we
remind the reader that for instance ¢(1234567) = [[[[[[1, 2], 3], 4], 5], 6], 7].

This will be the primary method by which BCJ relations are verified. The methods of the
previous subsection verify BCJ relations for Dynkin brackets, and then we may use the
above trick to relate the remaining numerators to those. If all such relations hold, then
we may be satisfied that all BCJ relations hold



CHAPTER 3

The Pure Spinor Formalism

Calculations in string theory are notoriously difficult. In the original Green-Schwartz
formalism [84], one must work in the light-cone gauge in order to quantise, and this leads
to difficulties due to the lack of manifest Lorentz covariance. In the RNS formalism there
are other difficulties, arising from the lack of target-space supersymmetry. Fortunately
there is a third approach, the pure spinor formalism, with which considerable success has
been found in amplitude construction. In this section we introduce this approach. We
begin with a discussion of the description of SYM which will be used in the formalism.
We then outline the key points in the origin of this formalism, and outline how amplitudes
are constructed within it. The calculations needed to find tree and one-loop amplitudes

will then be discussed in more detail in the following two chapters.

3.1 Super Yang-Mills in Ten Dimensions

Superstring theory is necessarily a ten-dimensional theory, and as such the amplitudes we
will construct will be in terms of ten-dimensional N =1 SYM. This is described through
a formulation due to Witten, in which particle properties are contained within objects
called superfields [85; 86]. These are functions of worldsheet vectors and spinors 2™ and

0, respectively, describing the position and polarisation of particles. There are four such

31
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superfields, denoted by
Ay(z,0), Ap(z,0), WYx,0), F""(z,0). (3.1.1)

The latter pair of these correspond with the field strengths of the former pair, and the
indices take the usual range of values m,n = 0,...,9, a = 1,...,16. The terms these are
functions of, the ™ and 6“, are 10 and 16 dimensional worldsheet variables. These will
frequently be dropped for simplicity, and particle labels will often be added to denote

which particle the superfield relates to. So, for instance,
Alw? (3.1.2)

would refer to the product of the superfield A,(z1,6;) and W (x2,02), where z; and
0; describe particle ¢. The superfields with Roman indices are bosonic, meaning they
commute with each other, while those with Greek indices are fermionic, and so they
commute with bosonic superfields and anticommute with each other. Similar properties

hold for the constituent ™ and 6% terms.

In order to describe the equations of motion of these superfields, we introduce the super-

covariant derivatives [86; 85],
Va=Ds— Ay, Vi = 0m — Ay, (3.1.3)

wherein we have introduced the superspace derivative,

o 1.,

Note ’yo% denotes the gamma matrices, defined as being the 16 x 16 matrices which satisfy
Y™ B = gy (3.1.5)

It will frequently be necessary to deal with products of these, and so a v with n indices

will denote the n-form constructed out of these,

mi..Mn _ ,y[m1 mo

Ayl (3.1.6)

v g

The field strength F,,,, and a similar object W% ., may be defined in terms of the super-

m?

covariant derivatives

Fron = —[Vin, V], W = [V, WO (3.1.7)
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These derivatives satisfy a number of relations, with the superspace derivative obeying
{Da, Dg} = 1550m - (3.1.8)
Again we have introduced notation; the bracket {-,-} denotes the anticommutator
{A,B} = AB+ BA. (3.1.9)
Further, the supercovariant derivatives satisfy a constraint,
{Va,Vs} =7a5Vm, (3.1.10)

arising from dimensional considerations [86; 87]. These relations, plus the Bianchi identity,

give the equations of motion of the superfields

{v(av AB)} = ’YZ,LBAm ) [vou Am] = [8’1’)’“ Aa] =+ (’me)a )

1 (3.1.11)
{va’wﬁ} = Z(’ymn)aﬁany [vaaan] - (W[m,yn})a7

It is important to note here the self contained nature of the above; as we take more deriva-

tives, we cycle through only these four superfields, and no further objects are introduced.
These equations are invariant under the gauge transformations
00l = [Va, 9], ol = [V, 9], (3.1.12)

where Q = Q(x,60) is some (Lie algebra valued) gauge parameter. The corresponding

gauge transformations for the field strengths are then
doWe = [Q, W], IaFmn = [, Frnl doWo = [Q, WX ]. (3.1.13)
It is common to impose the Lorenz gauge, defined by the constraint!
[Om,A™] =0. (3.1.14)

In this gauge choice, the equations of motion can be found to be equivalent to a set of

1We note that, while this fully defines the gauge, there is still a residual gauge freedom by the addition
of terms which vanish under the d’Alembertian operator (3.1.16). Components of other superfields are
constrained by this gauge definition by their relation with A™.
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non-linear wave equations [88],

DAq = [Am, [0™, Aa]] + [(V"W)a, Al

DAy = [Ap, [0F,A™]] + [F™, Ap] + %%{Wa7w,b’}7
1 (3.1.15)
DW= [Am, [07, W]+ [A™, Wil + 5 [Frn, (77 W),

OF™ = [Ap, [0, F™]] + [Ay, [VE,F™]] + 2[Fpp, F'] + 4{(W[m7n])a7 WeE.

We have introduced two new items of notation here. First of all, the d’Alembertian
operator [, defined by
OK = [0™, [Om, K]], (3.1.16)

for K € {A,, A", W F™"}. Then there is a piece of notation which will become ubiquitous
in this thesis. When we have a sum over Roman indices, we denote this as a dot product
between the two objects and omit the index. Likewise when we have a sum over Greek
indices, we omit the index, and rely upon context to denote which indices are summed

over. This is best illustrated with examples,

(A-A)=A"Any,  (WA) =Wy, (W™ Py )* = WogPyZe . (3.1.17)

3.1.1 Linearisation

In practice, the full non-linear formulation of 10D SYM is too complex to be practical,
and one uses its linearisation instead. As such, the vast majority of calculations in this
thesis will invoke linearised SYM only [86]. In this, we will denote the superfields with

standard capital Roman letters,
Ao(z,0), A™(x,0), W¥z,0), Fnn(x,0) (3.1.18)
Dropping non-linear terms, the equations of motion (3.1.11) reduce to
2D(oAg) = YapAm Do Ap, = (vmW)a + kmAa,

1 (3.1.19)

Do Frn = 28[m(7n}W)a ) DWP = Z(,Ymn)aﬁan .

Likewise, the Lorenz gauge condition may be restated as
k™A, =0, (3.1.20)

It follows from this the complimentary relations

km ('YmW)oz :0,

(3.1.21)
k™ Frpn = 0,
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the first arising from the equation of motion for A,,, and the second from the linearisation
of the definition of F,,,, (3.1.7),

Fron = kmAp — knAm (3.1.22)

The form the expansions of the four superfields in terms of their components has not yet
been discussed. Though the details of these are not needed for this thesis, a knowledge of
their general structure is necessary to understand the calculations performed. These are
expressed as series’ in €, with the forms of the series identified through manipulations of
the equations of motion (3.1.19). The reference [89] should be consulted for details, and

to illustrate we give just one example,
1 1
An(2,0) = a + O9X) + 7 (01290) 0,0 + — (610 (07,0pX) + ... (3.1.23)

As will be outlined later, the nature of amplitude construction in the pure spinor formalism
means that only the first few terms from these expansions will ever be needed. The ap,

and x® correspond with the # = 0 components of A,, and W respectively.

3.2 The Pure Spinor Formalism

We now begin the discussion of string theory, by introducing the pure spinor formalism.
This is done in terms of the superfields detailed in the previous subsection, and will serve
as the primary scheme by which amplitudes are computed in this thesis, both in string
and in field theory.

3.2.1 Origin

The pure spinor formalism had its origin in consideration of the Green-Schwarz superstring.
The left-moving piece of the covariant Green-Schwarz action for the heterotic string in the

conformal gauge is given by [14]
2 - 1 a.m 3B 1= a.m 9nB
Shet = d z 51_[ Hm + ang ’yaﬁaﬂ — ZHmG 'yaﬁﬁe . (321)

The 2™ and 6% are as in the previous section, and the I and IT denote supersymmetric
momenta ) )
nm = oz + 590‘7%89[3 , o™ = ox™ + 590‘7(%505 . (3.2.2)
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These can be checked to be invariant under the supersymmetry transformation
e (e m 1 m
50 = €, " = 5(97 €). (3.2.3)

Finally, v;; refers to the gamma matrices of (3.1.5). From this action the canonical

momentum p, corresponding with 8% may be defined,

L (Hm _ 197m810> (470). (3.2.4)

Pa = 58000 ~ 2

This then leads naturally to the Dirac constraints,

1 1
do = Pa — 5 <Hm - 407m619> (,Yme)a (325)

The pure spinor formalism uses similar objects to those in above, and introduces some

new ones also. It has its origin in the 1986 proposition by Siegel, of the action [90]
2 1 m 9 [aYale}
S=[d=z 58;10 Oxm, + pa06” | . (3.2.6)

The p, is now regarded as an independent object, and correspondingly d, no longer
required to vanish. This approach was used to quantise the super-particle [91], but did
not meet with the same success in quantising the superstring. This required the addition
of ghost fields to the action, which will be discussed in the following section. It does serve
as a basis upon which the pure spinor formalism may be built though, and as such we

may use (3.2.6) to identify the operator product expansions related to the physical fields.

The operator product expansion (OPE) of a pair of operators A(x) and B(y), is a repre-

sentation of their product as a sum of operators [3; 92; 93]

A(@)B(y) = > _ci(z —y)'Cily) (3.2.7)
i
For the purposes of calculations in string and quantum theory, we usually neglect the
non-negative powers in this expansion, as only at poles will such products contribute to
physical phenomena. In the case of the action (3.2.6), the OPEs of the operators therein
may be identified as

of 5B
2" (z21)x" (22) — —Eﬁmn log |21 — 22|?, Pa(21)0° (22) & —2

(3.2.8)

21*22.

Explaining these expansions uses techniques discussed in a number of sources, and so we

direct the reader elsewhere for details [3; 92; 93]. The d, and II"™ operators are functions
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of these operators, and their OPEs may be identified similarly

1 Vapm 1 (y™00) 4
de(z1)d —= do(2)IT™ — ,
(21)dp(z2) — So—— (20" (22) = 5 PO
m B
) T B LS VT N
Zij Zi
58 ’ . (3.2.9)
do(2)00%(2)) — 22| ™ (2) T (2)) = — L |
zi; zi;
YapHm
da(zi)ds(2)) = ===
Zij
Note we have introduced new notation here, z;;, defined as the difference
Zl'j = Z; — Zj . (3.2.10)

This will be used many times throughout this thesis.

Finally, if we then consider a superfield K = K(x, ), OPEs between them and the d,, and

II"™ operators may be identified also

do(2i) K (25) — D“K, ™ (2) K (25) — —ka. (3.2.11)

Zij Zij

Operator product expansions, and simplifying calculations involving them, is one of the
greatest difficulty in the calculation of amplitudes in the pure spinor formalism. As such,
they will be discussed a great deal in this thesis, and from a certain point of view this will

be the task we will be working on throughout part II.

3.2.2 Pure Spinors Ghosts

An object M is called a pure spinor if it satisfies the relation
(AM™A) =0, (3.2.12)

for 4™ the usual gamma matrix. They were originally studied by Cartan [94]. Prior to
the work of Berkovits, they had been used to describe SYM and supergravity [95; 96], but
not applied to string theory. The superparticle may also be parameterised using methods
similar to those discussed here [97; 98; 99], but we will not discuss this here and instead

focus upon the superstring.
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The pure spinor formalism is described by the action (3.2.6), plus a ghost action

Sy = / d*z <atas - ;vabauab> : (3.2.13)

where the v, and u,, are antisymmetric in their indices. It can be shown [100; 101] that
these parameters combine to parameterise pure spinors A*. The Lorentz current of this
action is denoted N™" (that is, a conserved current associated with Lorentz symmetry)
and for details of its construction [100; 99; 102] should be consulted. These ghost fields
then have OPEs

s 5]
t(z1)s(z2) — log(z1 — 22), Uab(21)ucd(22) — . dz , (3.2.14)
1— 22
and a series of calculations detailed in [102] gives
mn o ()\,ymn)a mn men 6 n sm
N (ZZ)A (Z]) — —577 N (Z’i)Npq(Zj) N[[p5q]] 22] [pY] (3215)

3.2.3 Construction of Physical Objects

Physical states in the pure spinor formalism are identified as follows. We begin by intro-
ducing the (pure spinor) BRST operator, also known as the BRST charge, and denoted
by Q. This is defined by?

Q- 7{ iz 2\ (2)da(2) | (3.2.16)
though it will frequently be abbreviated to the form
Q=\D,. (3.2.17)
This simplification arises as the effect of the d, on superfields is to take their derivative
and introduce a pole as in (3.2.11). That is,

(3.2.18)

By then performing this integral (3.2.17) follows. We note that, as such an interal has
been performed, (3.2.17) represents the integral rather than the integrand, and thus is a

2A few notes on this operator. This charge is not defined through gauge fixing, but rather is built up
by identifying a sequence of operators with cohomology equivalent to each other. For details of this, see
[99]. As such, the operator is in effect already gauge-fixed. A form of @ in which such is not the case may
be beneficial for connecting with the RNS formalism, and for such [103] should be consulted.
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charge.

The BRST charge is nilpotent,
Q*=0, (3.2.19)

which follows as a simple consequence of the pure spinor constraint (3.2.12). Physical
states are then defined as being those which are in the cohomology of this operator.
That is, a physical state in the pure spinor formalism is defined as being those which
are annihilated by the BRST operator, but are not themselves given by the action of the

BRST operator on some other state,

Qphys) =0,  (phys) # Q(...). (3.2.20)

The action of the BRST charge upon a physical state will be referred to as the variation
of that state.

Vertex operators are naturally defined using this charge?. The integrated vertex operator
is the most general expression one can construct out of the worldsheet functions, with the

ghost contribution constrained by the Lorenz invariance of @) [104]
V = A\ Ag(z,0), (3.2.21)

with Aq(z,0) for now some general function of z™ and #*. The unintegrated vertex

operator is then identified through its relation with the above [105]
QU = oV . (3.2.22)
The form of U is
U=00A, +11"A,, + d WV + %Nqupq , (3.2.23)

with A, as in (3.2.21), and A, (2™, 60%), W (2™, 0), and Fpe(z™, 0%) again some general

expressions in £ and #¢. The variation of this is then found,
QU = 9(\*Aq) + A*00°(—DoAg — DgAa + 715 Am) (3.2.24)
1
+ XTI (DoAm — OmAa — YmasW?) + Xdg(—D WP + 1(y"m)aﬂFm)
+ %X)‘NmnDaFm" .

Comparing this with the constraint (3.2.22), we see that (3.2.21) and (3.2.23) define a

system of integrated and unintegrated vertex operators if A,, A, Wy, and F,, satisfy a

3A vertex operator may be regarded as an operator inserted into calculations to describe a physical
state of the string.
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number of relations. These coincide exactly with the equations of motion of the superfields
describing ten dimensional SYM, (3.1.19), and so the origin of this particular choice of
notation becomes clear. Vertex operators in the pure spinor formalism are given in terms

of the superfield description of ten dimensional SYM.

Note that we have intentionally suppressed the plane wave factors from the vertex oper-
ators. Such an operator for a particle m should be considered to contain an additional

overall factor
ethma(zm) (3.2.25)

It is standard convention to not include these terms in calculations; their contribution to

an n-point amplitude may be summarised with the formula [106; 107; 108]

n

7, = <jf[16kj-w(zy')> — H ’Zij’2a’5ij 7 (3.2.26)

1<j

This is known as the Koba-Nielsen factor. It arises from the product of the plane wave

factors as the result of a standard OPE calculation.

3.2.4 Tree Level Amplitude Formulation

Tree level amplitudes follow the standard formula, consisting of the product of N — 3

unintegrated and 3 integrated vertex operators

N

A—/dz4.../dzN<V1(z1)V2(zg)V3(Z3)HUr(zr» (3.2.27)

r=4

Note we do not specify z1, zo and z3 purely for notational convenience. These are usually
set to 0, 1, co. It will be convenient to be able to refer to the z coordinate of particle i as

z; however, and so we leave them unspecified.

The angle brackets in (3.2.27) refer to the integration scheme for the ghost fields, which
we have not yet specified. This was identified through the requirement that scattering
amplitudes be supersymmetry and gauge invariant [97; 99], and corresponds with select-
ing the 6° components of the vertex operators with particular structures. That is, we
take (3.2.27), and perform the computations therein until we have an expression in the

worldsheet functions, particle properties, and pure spinors,

A= /dZ4.../dzNWAﬁMfam(zr,kr,nr,e». (3.2.28)

The function f,g, is a series expansion in 6%, and the integration over the ghost fields
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corresponds with selecting the terms proportional to

(v"0)a(v"0)5(¥70) (0¥mnp0) , (3.2.29)

and setting all others to zero. Other terms of order 5 in § may be related to this structure
through gamma matrix identities, with some such relations given in [109]. Informally, all

of this is to say that the integrand of (3.2.28) is given by
(oo + MY (NY"O) (M) (Ovimmp0) F (20, ki) + o) = F(2p, Ky ) (3.2.30)

This then satisfies the necessary consistency conditions; supersymmetry and gauge invari-
ance as discussed [99], and also agreement with known results from other formalisms, as

seen in for instance [110].

When an object produces a non-zero value under the action of the pure spinor bracket it is
said to be in the pure spinor superspace [111]. For convenience, we will frequently omit the
pure spinor brackets (...) from calculations. It should always be clear from context when
they are implicit in calculations. In such instances, one then uses the procedure outlined
to select the terms in the cohomology of the pure spinor BRST operator [104; 99], using

identities from [109] where necessary.

3.2.5 Loop Amplitude Formulation

As in field theory, when one moves to looking at loop amplitudes the complexity of calcula-
tions increases significantly. Some progress has been made on their identification though,
and in the course of this thesis we will discuss one loop amplitudes in particular in some
detail.

We begin with the description of one loop open string amplitudes in string theory. The
diagrams of these are punctured tori, with an n-point amplitude corresponding with n
punctures. Note that though there are other diagrams of the same genus, the cylinder and
the Mobius strip, these may be related to the torus and so will not be discussed separately
[3; 112]. We parameterise the torus based upon its fundamental group; the two distinct
S circles within it define what are known as the A-cycle and B-cycle. In terms of our
coordinate z, one of these cycles is considered wholly real and adds 1 to z as we complete
a circuit of it, and the other is complex and adds 7 similarly. It is then clear that for

consistency, any function f on the torus must satisfy

f)=fz+1)=f(z+71). (3.2.31)

Figure 3.2.1 should be consulted for further explanation of this discussion.
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Im(z) 7 T+1

0 1 Re(z)

Figure 3.2.1: The torus has fundamental group 71(T?) = Z ® Z. That is, there are two
distinct closed loops on its surface which cannot be continuously deformed into each other
or a point. These are referred to as the A and B-cycles of the torus, with the former in red
and the latter in blue in the above. They serve as the basis upon which we parameterise
the surface, the A-cycle corresponding with the real axis and the B-cycle an axis in some
complex direction 7. This 7 is often called the Teichmuller parameter. This is scaled such
that the addition of 1 and 7 to z correspond with a single circuit of the A and B cycles
respectively.

In the pure spinor formalism, a general n-point g-loop scattering amplitude has the form
[39; 20]

39—3 n
Agleor — /dTl...dngg <Z ( 11 (Ma,bBa))Vl(Zl)<H/deUb(Zb)>>- (3.2.32)
a=1 b=2

This largely corresponds with the ingredients in the equivalent formula in other formalisms
[3]. The V and U are the vertex operators previously discussed, and the integration

variables 7; are the g-loop Teichmuller parameters. The (u,b) bracket is defined by

(MaabBa) = /duaﬂa(ua)bBa (Uaaza) (3233)

The objects here are not present at tree level, but are in agreement with those found in
other formalisms. The u, are the Beltrami differential, a function of the metric of the
surface we are working on. Meanwhile the bp, denote the b-ghosts. These appear as a

consequence of BRST quantisation of the string, and are usually defined by the relation

{Q,b(w)} =T(u), (3.2.34)

where T'(u) is the stress-energy tensor of the string. Unfortunately by considering the
distribution of ghost fields within this relation, it can be found that no such b can exist
in the pure spinor formalism. Instead picture changing operators must be introduced;
functions Zp containing a ghost field A with which the (pure spinor) b-ghost may be
defined,

{Q,bp(u,2)} =T(u)Zp(z). (3.2.35)

The final element of (3.2.32) not yet discussed, the Z, is another function of these picture
changing operators, inserted to absorb zero modes when we integrate. The full depth of
all of these terms is not important for this thesis, and so not discussed any further. For
more details, [39; 3; 4] should be consulted.
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We now limit ourselves to the one loop case once again. In this situation, the amplitude

formula reduces to

A, = /dT/sz.../dzn«u, D)ZVA (22)Us(22) . Un(2)) - (3.2.36)
A skeletal expression for the form of the b-ghost is [39]

b= (Ild+ N00 + J09)d6(N) + (wOX + JON + NOJ + NON)o(N)
+ (NTI + JII + 911 + d?)(TI6(N) + d*§'(N))
+ (Nd + Jd)(805(N) + dII8'(N) + d*8”(N))
+ (N2 + JN + J?)(d068' (N) 4 T1%5'(N) + T1d*6" (N) + d*§"(N))..

(3.2.37)

We have not yet defined the meaning of the pure spinor bracket (...) at one loop level. The
role of these brackets is to ensure we have the right number of zero modes of operators
in the amplitude?. At tree level, this effectively meant deleting all terms not of the form
A365. At genus one, this changes to become the requirement that the b-ghost and vertex
operators only contain terms A30°d°6(N). However, we do not discuss this in detail as the

specifics of this will not be used in this thesis. We direct the reader to [39] for such.

4A zero mode here means a point at which the operator is zero. Precisely the right number of these
must be contained in amplitude integrals in order for them not to vanish, as is discussed in section 5.3 of
[3] and in [107]. In particular, on a genus 1 surface we must make sure there are 16 d, zero modes, which
follows from the Riemann-Roch theorem [107; 39]. There are 11 such in the picture changing operators,
and so a further five are needed from the b-ghost and vertex operators. A similar reasoning is why 5 6%
terms are needed, and likewise with the 3 pure spinors and 0 Ny, terms [39].
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CHAPTER 4

Tree Level Amplitudes From String Theory

One of the great successes of the pure spinor formalism is the improvements in the cal-
culation of scattering amplitudes it has brought about. One in particular has been the
formulation of arbitrary point tree level amplitudes in field [113; 114] and string [18; 19]
theory. In this chapter we discuss how these may be constructed in terms of multiparticle
superfields. We will then give an overview of some properties of these amplitudes, and

how the double copy might be applied to them.

4.1 Lorenz Gauge Construction of Multiparticle Superfields

To begin, recall the formula for tree level amplitudes in the pure spinor formalism (3.2.27),

n—2
/0 <V1(21) (H Ui(zi)) an(znl)Vn(Zn)> , (4.1.1)
<z2<2z3<...<zp—2 i

within which one makes the identifications z; = 0, z,_1 = 1, z, = 0o. Recall further the
form of the vertex operators (3.2.21), (3.2.23),

V =\"A,, (4.1.2)

1
U=00"Ay + 11" Ay, + d W + 5N’”’””Lan . (4.1.3)

45
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In order to compute amplitudes using (4.1.1), we must find the product of a great many
of these vertex operators. This means a considerable number of calculations of operator
product expansions, and as such requires a great deal of work. Fortunately though, this

process can be made algorithmic, and this is the focus of this section.

The process by which we will identify the general form of the OPEs of various vertex
operators will be as follows. We begin by discussing the OPE of a pair of unintegrated
vertex operators. This result we will then be able to extrapolate from, and use to find
the product of an arbitrary number of unintegrated vertex operators. We then consider
their OPEs of these with the integrated vertex operators, and thereby have a scheme to

considerably simplify amplitude calculations.

4.1.0.1 Product of Two Unintegrated Vertex Operators

We begin by considering the product of two unintegrated vertex operators, Ui(z1) and

Us(z2). The calculation is lengthy, but uses nothing more complicated than the formulae

of (3.2.9) (3.2.11). The conclusion of this is [115; 83]

U (21)U%(29) =2t F1 (aaa[(kl A AL — (K- AN A2 + Do AZW — D, ALWY)
HI™[(K' - Ag) AL, — (K2 - Ay A2, + K2, (AsWh) — Ky (AyWa) — (Wi Wa)]

1 1
+do[(K' - Ag)W — (B - AW + Z(anwl)aF%n - E(Vm"WﬂaF%n]
F N Ag) Py — (K - An) by, — SR (Wi W) — 23, FS )
F(L A K B2 (A W) + (AgW) — (A - Ay)] (4.1.4)

Note we have reintroduced the Koba-Nielsen factors (3.2.26), as they will play a role here.
Namely, they allow for the poles of the second order terms to be rewritten as a partial

derivative,
(14 k' k)2 2 = oz . (4.1.5)
We may then integrate by parts these terms within (4.1.4), and use the relation

OK = 00°Do K + 1™k K . (4.1.6)
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This results in a new expression for the U;Us; OPE [83],

1
U (2)U(22) = — 213 ¥ 71007 AL + 1M AL + da W 5 + 5J\ﬂfmﬂgﬁ)

PO TS (A Ag) — () (4.1.7)

+ 32(Zf2k1'k2_1[%(f11 - Az) — (A2 W)]).

The notation above has been chosen carefully to correspond with the form of (4.1.3); where
1

o, we now define the terms with coeflicient

(1,2]

at single particle level we had a term 060%A
00, as being the two particle version of the superfield Ag’™. This is the first example
of multiparticle superfields we have encountered; multiparticle versions of the superfields
describing 10D SYM, identified through the calculation of OPEs between vertex operators.

The two particle superfields are defined by [83]

AR = JLALGR A%) 4+ ARG )0 — (16 )], (4.1.8)
1

AU = L[ALFS, — AL (K A7)+ (W) = (16 2)], (4.1.9)
1

Wiy = (") Fhy + WE (2 AY) = (1 45.2), (41.10)

P P2 (2 AY) + F2PEY, + HE Wiy W) — (16 2)
4.1.11
AR KA () (A A — L) o

with k.2 defined as in (2.1.7). The second expression for F'2 is in terms of other mul-
tiparticle superfields and so arises less naturally, but it has been included because of its
similarity to the single particle definition F,, = knA, — knAp. Note here we do not

]

include the Dynkin bracket explicitly in FE;LZ to simplify notation, and similar will occur

on many occasions going forward.

As we will eventually integrate (4.1.7) when calculating amplitudes, we may drop the total
derivative terms therein. We will revisit these terms later, but until then their contribution
may be ignored. Therefore, using two particle superfields the two particle unintegrated

vertex operator is the natural generalisation of the one particle case,

Ut =90 AL 4+ Im AL + d W o + %Nm"FJ,},f‘] (4.1.12)

It is then natural to ask what properties these two particle superfields share with their
single particle equivalents. Their equations of motion, it can be found, generalise the single
particle case (3.1.19) also [83],

2D (A =vasAn + (k' k) (ALAS + ARAY), (4.1.13)
Do Ay} =(rmW'2)a + ki A + (k' - k%) (Ag A7, — AZAL), (4.1.14)
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1
DaWiy = (") Fgfy + (k1 - k) (AGWY — AZW), (4.1.15)

Do Fyl, =212 (v W) + (' - K*)(ALF, — ALF,

[m at'mn at'mn

+ 2A] (’Ym]WQ)a - 2A[2n(’7m]W1)a) :

[n

(4.1.16)

We may ask about the gauge conditions (3.1.20), (3.1.21) also. These generalise to two
particles as [83]

15457 =0,
ER2(ym12), =(k - K2)(AL (7" W) — (1 45 2)), (4.1.17)

T3 Fm =(k' - K)(A4,7 + 4, — (1 4 2)).

The only differences arising between the properties of two particle and single particle su-
perfields are correction terms proportional to mandelstams s12. Such is the case in general
with multiparticle superfields; they share properties with their single particle equivalents,

up to some correction terms proportional to mandelstam terms.

4.1.0.2 Product of Three Unintegrated Vertex Operators

We may now use these techniques to identify arbitrary products of unintegrated vertex
operators. Due to the similarity between the single particle and two particle vertex oper-
ators, (4.1.3) and (4.1.12), we may assume that the calculation of the OPE between Up; o
and Us repeats exactly that already discussed. That is, in the previous discussion, we
found that

1
U\Uy = Upyg =00 AL 4 TIm AR 4 do Wi o) + 5N’"”FE;L2] . (4.1.18)

This is identical to the expression for Uy, except for the replacement of 1 by the Lie bracket
[1,2]. As this replacement does not alter the coefficients of the superfields, which are the
source of poles in OPE calculations, we may assume that the OPE of this with a third Us
follows an identical procedure, up to similar replacements in the result. That is, we would
expect [83]

1

Un2)Us = U g, =06" AL 4 1 AR d Wi, g + iNm”F,%QW ., (4.1.19)

where the three particle superfields are defined using similar rules to those involving two

particles. So for instance, where before we had

(67

N —%[A;(kl A% 4+ AL (M), — (1 2)], (4.1.20)
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we now have

AlL23E — 2 A2 (120 43y 1 A2 3y — (1, 2] 5 3)] (4.1.21)

1
2
Analogous relations would be expected for the other superfields. However, minor modi-
fications must be made to the W and F superfields in order to preserve the structure of
the equations of motion. That is, following (4.1.13) the equation of motion of the Ao[él’z]’?’]

superfield would be expected to have the form

D(QA%’Q]’?’} = W%AEZI’Q]’S] + (Mandelstams) x (Correction Terms) . (4.1.22)
We then use this to define AL[@l ’2]’3}, and repeat to similarly define the remaining superfields

through further equations of motion. So, to detail this example further, one may find that
[83]

1
DALY =y TLARAFS, A (112 4%) 4 (W, W9) — (1,2] 65 3)]

8) o |
+ (KL B [ALATY + Al 3043 - (1 6 2)]
F(k2. k3)[A[C}72]A% —([1,2] «+ 3)]. (4.1.23)

We may then read the definition of Aﬂ} 23] directly from this,

ALY = SRR, — AL (2 4%+ (W, 09 — (12 03) (41.24)

This, we then note, is very similar to the definition of Aq[}f] (4.1.9). Similarly, by repeatedly
taking derivatives we may find the other three particle superfields [83],

« (8 1 s (07
WE g3 = (—(E? - AWS 5 + e W3 FILA — ([1,2] + 3))

) (4.1.25)

+ 5(14:1 . k:2)(V[/'2“(A1 . A3) — (14 2))
FM28 = (% AR ES, + B ES o+ 2k 2 (WP W) - ([1,2] 5 3)) s
4.1.26

[m

() (G FR (AT~ 4%) 4 241, (Wi W) — (1 5 2))

Unlike with two particles, there is another class of superfields at three points. We have a

triplet of vertex operators,
Ul(Zl)UQ(ZQ)US(Zg) y (4.1.27)

and are looking at terms corresponding with the poles where 21, 22, and 23 coincide. In
the previous discussion, we took it that first we approach the z; = 2z, pole first, and
then bring z3 to this same value. We are limited by the integration domain of (4.1.1)

21 < 23 < z3, but this does allow for a second way of approaching this pole. Namely, we
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may take z9 = z3 first, and then set z; equal to these. Hence, we may define another class
of three particle superfields by [88]
Ul (U?U?) — utulsl (4.1.28)
— U[17[273” f— 800514[17[273“ + HmA[].,[2,3” + d W[Of [2,3]] + lenF[lv[QvSH
« m « .12, 2 mn ’

The resulting superfields are then defined similarly to the previous discussion, with the

first case being
ALR3I = —%[A}X(k:l CARSH AL (ymrw3h, — (1 [2,3])]. (4.1.29)

To introduce some terminology, we say there are two different topologies of multiparticle
superfields at multiplicity three, or equivalently of rank three. A topology in this instance
refers to a Lie monomial associated with a superfield, and the multiplicity or rank refers

to the number of particles associated with that superfield.

4.1.0.3 Product of Arbitrarily Many Unintegrated Vertex Operators

This procedure may now be applied indefinitely, to find arbitrarily complicated products
of unintegrated vertex operators. Doing so leads one to conjecture the following general

expressions for arbitrary multiparticle superfields [88]

AlPQ) = —E[APUcP Q) + AR (W), — (P > Q)], (4.1.30)
P, P P (1P P
AlPQl — [Ap ES, — AL (K" - A9) + WPy, W9) — (P + Q)] (4.1.31)
1 1
Wibq) = —5Wekp - Ag) + WEAG + 5 (1 Wp)*FG’ — (P < Q)], (4.1.32)
Fih = ki AXY — 2 AN+ 3™ (k- k)AL )Af}js) — (X 7)), (4.1.33)
XjY=A
Y=RLLIS

where P and ) denote any Lie monomial. Note the definition of F™" given above is
limited to left-to-right Dynkin brackets only. A general expression for arbitrary bracket-
ing structures is presented for it later (see (6.3.7)), but for now we are only discussing
background material and such was not known at the start of this work. Further, we note
that we have introduced the multiparticle linearisation of field strength seen in (3.1.7),
W, which is defined [88]

Wiy =kpWipy + Y (B (WixpAlls) — (X < 5)). (4.1.34)
XjY=P
Y=RLLS
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Again, this was only defined in specific cases at the start of this work, and a general form
is identified later (see (6.3.8)).

4.1.0.4 Products of Integrated and Unintegrated Vertex Operators

The discussion of integrated vertex operators here will be considerably more brief. Poles
do not arise as a result of these objects interacting with each other; we need only consider
their OPEs with unintegrated vertex operators. That is, we need to find some multiparticle
V4 such that

VaUp — Via B (4.1.35)

for A and B some general Lie bracket structures. This turns out to be relatively simple;
given that the multiparticle version of the unintegrated vertex operator is just the single
particle case with the superfields replaced by their multiparticle equivalents, it may not

be surprising that we do the same here,
Vi=XAL = Vpg = APl (4.1.36)

This may seem arbitrary but it is consistent, as is discussed in more detail in [83]. We

note here the form of the variations of these vertex operators, which can be found to be
[83]

QVury= Y. (K )VuxrVis) (4.1.37)
XjY—=P
RILS—Y
QUyp) = 0Vypy+ > (5B (VixrUsys) — (X < 5)) (4.1.38)
XjY—=P
RILS—Y

Note this may be expanded to other Lie bracket structures using methods which will be

discussed in chapter 6

4.1.1 Berends-Giele Currents

Amplitude expressions are dominated by their unintegrated vertex operator component,

/ le...dZn U1 (Zl)UQ(ZQ)...Un(Zn) . (4139)
21<22<...<2p

By the methods outlined above, we may take objects of this form and write them as sums
over multiparticle superfields with an associated pole structure. That is, if we wish to
perform the above integral using the OPE methods above, we must sum over all possi-

ble ways such OPEs may be performed in order to perform the integral properly. This
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corresponds with summing over all possible topologies of U with rank n, each divided by
mandelstams arising from their particular integrations. Such are known as (pure spinor)

Berends-Giele currents (BG currents), and are best understood through examples.

At rank two, the BG current of a superfield K is given by [83]

K
Ko = 24 (4.1.40)
512

This corresponds with the integral of U;Us. There is only one pole to consider the integral
over, and so only one term in the above. The s15 factor arises from the the integral over

this 21_2812_1 pole.

At rank three, the BG current now has two terms, [83]

_ By Kppsy
5125123 5235123

K123 (4.1.41)

These arise from the two distinct poles in the integration domain, with the former term

coming from integrating the zi5 pole first and the latter from the 293 pole instead.

This generalises to arbitrary points, and there are two approaches to describe this. The
first was through the inverse KLT matrix [83; 116],

Ki23..p = Z S_l[23"'p|p]1Klp(23...p) (4.1.42)
pPESp-1

where S}, is the symmetric group, the set of permutations of p elements. This is not the

form we will express them in though. Instead, we use the b-map (2.3.13) [60],
’C12.,.p - Kb(12...p) . (4143)

The examples (4.1.40), (4.1.41) then follow from the b-map expressions

b(12) = LQ] b(123) = [[1,2],3] + (1, [2,3]]
s12 5125123 $935193

(4.1.44)

Berends-Giele currents are non-local objects, while their constituent superfields are local.
As a corollary, this b-map definition implies that at multiplicity n there are C, unique
topologies of superfields, with C, the n'* Catalan number (2.3.15). The BG current
corresponding with a particular superfield is usually denoted with the calligraphic form of
that superfield, with the exception being the V' vertex operators which have BG currents
denoted M. The etymology of BG currents lies in that they form amplitudes and that

their components are defined recursively, alike their namesakes.
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One particular result of importance is that it may be found that
kEAR =0, (4.1.45)

for P a word of any length. This satisfies the definition (3.1.14), and so we talk about

multiparticle superfields constructed in this way as being in the Lorenz gauge.

4.2 The BCJ Gauge

The notation used in the previous subsection should be reminiscent of that of section 2.4;
in that we are using a Lie monomial notation to denote something, but we have yet to
justify that notation through the verification of Jacobi identities. This is an important
step; as will be seen shortly, the presence of BCJ relations relies upon the multiparticle

superfields we construct them out of satisfying Jacobi identities.

As presently defined, the superfields of rank greater than 2 do not satisfy this require-
ment, but this may be brought through a gauge transformation. There are two known
approaches to find the BCJ gauge. The former, which we discuss now, involves an in-
termediate hybrid gauge. This is better understood, and the recommended approach for
performing calculations. The latter, which will be in the following section, makes the
gauge transformation structure of this methodology much more apparent, but is less well

understood.

4.2.1 Hybrid Gauge Construction

We begin now with the enforcement of BCJ relations at rank 3, and build up towards a
general method. We limit ourselves to what was known at the start of this research, and so
we will almost exclusively focus upon left-to-right Dynkin brackets. Finally we introduce
notation to denote the gauge of an arbitrary superfield K; a plain K is in the BCJ gauge,
the addition of a check K denotes the hybrid gauge, and the addition of a hat K denotes

the Lorenz gauge. Note the methods of this subsection are drawn from [83] entirely.

4.2.1.1 Finding the BCJ Gauge at Rank Three

Following the discussion of 2.4 we see there are two generalised Jacobi identities to verify

at rank three,

Lg0 K193 =0 A K123 + Kji2,1),3) = 0 (4.2.1)



54 Chapter 4. Tree Level Amplitudes From String Theory

L0 K103 =0 < K913 + Kjp2,31,1) + Kz 10,29 = 0 (4.2.2)

The L, relation is already satisfied. Further, two superfields, Wi; and F, 123 “satisfy the L3

mn

relation also. We then exploit this to enforce the L3 relation for the remaining superfields

using their equations of motion. That of A1?3 is

Dafl%’%?’} _ k;fBALEL?L?’] + (,}/mW[[l,2},3])a
+ (kY- E2)[ALARS 4 AlLSIA2 (1 & 2)] (4.2.3)
+ (K7 E[ARAAT, - ([1,2] © 3)].

If we act on both sides of this equation with the L3 operator, the terms proportional to
mandelstams can be seen to cancel, and as stated £3 0 W23 = 0 also. Hence, we are left
with

Do(L30 ATS) = k12 (L3 0 AL, (4.2.4)
From this, one can deduce that £3 o fl}fg should contain an overall k12 factor. That is,
L30 ATy = 3k, Hyos, (4.2.5)

where His3 is some combination of superfields defined by the above, and the factor of 3 is

included for convenience. Further, it follows from (4.2.4) that
£3 o A}!23 == 3DaH123 5 (426)

where this Hjes is the same as defined by (4.2.5). Finally, we note that a symmetry of
H193 can be identified,
Eg ¢} H123 = 3H123. (427)

Putting all of this together, we infer that by making the redefinitions

AL 128 1232 (4.2.8)
A2 A128 _ p i (4.2.9)

BCJ relations may be enforced on the complete set of superfields. It remains to find the

explicit form of Hjo3, and a simple but lengthy calculation reveals it to have the form
1 1
Hio3 = —ZATASF:?m + i(Wl’}/mWQ)Agn + CyCliC(1,2,3) (4.2.10)
It is worth noting that this satisfies the relation

EQ o H123 == 0, (4211)
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and so we do not sabotage the one BCJ relation while enforcing the other. A similar
situation will arise at higher ranks, and verifying relations like (4.2.11) serves as something

of a consistency check in calculations.

4.2.1.2 Finding the BCJ Gauge at Rank Four

We then consider the case of the rank four superfields. We take advantage of the fact
that we know how to construct lower rank BCJ gauge superfields, and define hybrid gauge

superfields using a modification of the superfield equations (4.1.30) - (4.1.32),

X 1
A = = STAP (R AT) + AZE (W) — (123 4 4)) (4.2.12)
X 1
At =S = AP (127 AT) 4 (W5 W) — (123 4 4)] (4.2.13)
5 1
Wika = (0" WA FE 4+ W (R A1) - (125 6 4)
1 | |
) > (YR (WgR(AS - AY) — (X < ). (4.2.14)
Xjy=123
Y=RLLIS

The F,,, superfield in the BCJ gauge will be defined separately, using a modification of
(4.1.33),

Fr15234 :ki234A;234 _ k;234Ai234 . Z (kX /{J)QA[T AJ]S (4 9 15)
XjY=1234 o
Y=RLUS

These hybrid gauge superfields will satisfy the L2 and L3 symmetries trivially, since their
constituent parts satisfy them. It remains to enforce one final symmetry, £4. To do so,
we again turn to the equation of motion of A,, for guidance. This is again of the same

structure, and will be in general,
Do Ay = k23 A2 4 (3, W), + (terms). (4.2.16)

The difference now though is that the W123* term does not immediately vanish under the
L4 operation. Additionally the extra terms unspecified above also do not vanish under

such an operation. These problems must be corrected for.
We begin with enforcing the £y relation on W24, This has equation of motion

. 1
DaWihs = {0™SER + 30 (R ATMW — (X )

XjY=123
Y=RLLIS

(4.2.17)
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The difficulties in enforcing the £4 relation can be fixed by making the redefinition

Wihaq = Wibgy + Z (KX - K)(WEgHjsa — (X ¢ j)) (4.2.18)
XjY=123
Y=RLLIS
We then must deal with the absence of GJIs in the correction terms in (4.2.16). These
corrections have a similar structure to those of (4.2.17), and so a similar redefinition,

Kiogs = Kigaa+ Y (KX W) (EYpHjsa — (X ¢ ), K e{A™ Ay} (4.2.19)

XjY=123
Y=RLLS

corrects for this error.

We now have the same situation as we had at rank three, and so we again apply £4 to the

equation of motion of A{%s,. Almost all terms now cancel, and we are left with
Do(Ly 0 Ala)) = k1234 (L4 0 A1234) (4.2.20)

Again, we deduce that there is some combination of superfields, which we shall call His34,

which satisfies
Lo 0 Hio3q4 = L3 0 Hyg34 =0, Ly0 Hiozy = 4H1934 . (4.2.21)

Hence, we again perform a final set of redefinitions,

A1234 _ 41234 _ 1123 pr1234 (4.2.22)
12 . 12 7 2.
AL _ An234 123t (4.2.23)

The resulting expressions for A,, and A, then satisfy all generalised Jacobi identities. The
specific form of the Hjo34 is more complex than at rank three, but may be conveniently

represented as
1
Hioza = 7 (Hizga+ Hinga) (4.2.24)

where the H' superfields are defined by,
1 .
Hxlﬁl,B,C = HA,B,C + i(H[AvB] (KAB . Ac) + Cychc(A, B, C)) , (4.2.25)
and H4 p ¢ is the natural generalisation of Hi23

1 1
Hapc = —ZAE”A%Fgm + i(WAVmWB)A"C? + cyclic(A,B,C). (4.2.26)
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4.2.1.3 Finding the BCJ Gauge at General Rank

Using the machinery of rank four, we may outline the general method of enforcing GJIs
upon multiparticle superfields to arbitrary order. We begin by defining a rank n hybrid
gauge superfield in terms of rank (n — 1) BCJ gauge superfields,

1
AlZen — 5[/1}3"'”’1(191 CAT) 4 ALZenmlmpyny (12,0 — 1 4 n) (4.2.27)

«

1
A12...n zi[A;2nlepnm . Aig..‘nfl(kl . An) + (W12...n71,ymwn)

(4.2.28)
— (12..n > n)]
5 1
W1a2n == §[W1062...n71(k12---n—1 ) An) + WlnganflAZL
1 (4.2.29)
+ 5 (s Wia 1) Fy" = (120 = 1 > m)].

Again the F,,, superfields will be defined differently, as functions of superfields in the BCJ

gauge,

F)? _2<k[17? A= YT (YR ARRA )

]
XjY=12..n
Y=RLLIS

(4.2.30)

We then correct for the absence of lower rank GJIs in the correction terms of the equation
of motion for A2+ and similar for W, . These two issues can be corrected for with a

single redefinition formula,

Ky po=Kiap,— Y. () (HxrKs — (X <)), (4.2.31)
XjY=12..p—1
Y=RLLIS

where K € {A;,, Aq, W}, and H; = H;; = 0. The superfield Wi , then satisfies all

required relations, and so we set
S =W .. (4.2.32)
Taking £,, of the equation of motion for A!2+" gives
Do(Ln o A2 ™) = k2 ™(Lno AZ ™). (4.2.33)
We therefore deduce that there exists some combination of superfields His. ., arising from

Ly o ANZ™ = nk,? " Hig p, (4.2.34)
£n © A;l?...n = nDaH12...n7 (4235)
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which satisfies
0, p<n,
ﬁp (¢] H12...n = . (4236)
Hl?...rm p=n
A general formula for these H terms was not known prior to the start of this work, but
will be presented in chapter 7. The five point case was previously known though, and is

given by

1
Hij9345) = 3(H{23,4,5 - Hé43,2,1 + H12,3,45) (4.2.37)

where the H' are defined as in (4.2.25). We therefore conclude by defining AL2-" and
A}f"'n,

Al2-m _ pN2.m_ p12.n pri2.n (4.2.38)
12 A 12 , 2.
A(IXQ...TL — A/al2---n _ DaHIQNn7 (4239)

Following this algorithm, general arbitrary rank superfields satisfying all required gen-
eralised Jacobi identities may be identified. There are of course a range of areas for
generalisation within these definitions; to name two we have limited ourselves to left-to-
right Dynkin brackets, and we have no general formula for the H terms. Save for some
partial generalisations in the following section though, this was the state of the art at the

beginning of my work.

4.2.2 Direct Transition from the Lorenz Gauge

Though the previous method will allow one to identify BCJ gauge superfields, it is far from
obvious as to why the gauge description is valid. In this subsection we describe up to rank
five how one may move directly from Lorenz to BCJ gauge superfields, without the need
for the intermediate hybrid gauge. This description is understood for other topologies,
but less so, and as such we begin again with left-to-right Dynkin brackets. Superfields in
the Lorenz gauge are defined as in (4.1.30)-(4.1.33),

o 1 - o o ~
Al = = SLAR T AT) 4 AR g — (1200 = L), (4.240)
A n 1.4 n—1gm A12..n— An 1712..n— in
Aqlg 25[‘4]1)2 1Fpm_A%r% 1(k1 A )+(W12 l,YmW )
— (12..n < n)), (4.2.41)
Tra Lo « A Trma Am
Wip. n=— §[W12...n71(k12---n—1 “Ap) + WS, A
(4.2.42)

1 A ~
+ 5(’}/TSW12'“”_1)O[F£S — (12n -1+ n)],
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112..n 12..n 412...n X i\ AXR 3JS

Ers —2<k[r Afem— Y (WA As]>' (4.2.43)
XjY=12..n
Y=RLLIS

It has then been found that the following formula takes these superfields and outputs the
BCJ gauge equivalent [88]. For K = {4, Am, W},

K. p = f(12...p— Z (kX-kj)(ﬁXRst—(XHj))
XjY=12..p
Y=RLLIS
DoHyy.,  HK=A, (4244)
— KB Hi., ifK =A™ .

0 it K =W«
The superfields H are then defined recursively in terms of the H superfields [88],

~ 1 A ~
Hiy = Hia. p— §H12...n71(K12...n71 - Ap) (4.2.45)

The origin of this formula is much more mysterious than that of the hybrid gauge approach.
One may carefully examine the superfields in both and see that the two are equivalent,

but why the above should arise remains unknown.

4.2.2.1 General Topologies

Formulae to move to the BCJ gauge for superfields of arbitrary topology up to rank five
using this direct approach were identified in [88], and may be found in appendix C.1.

These involve a generalisation of the H formula (4.2.45),

A~

1. - N
Hiap) = Hap — §[HA(KA -Ap) — (A< B)], (4.2.46)

where A and B are Lie monomials. It is clear that when A is a Dynkin bracket, and B a
letter, this reduces to (4.2.45). The full set of H superfields needed to rank five are given
by

Hpog = %H1,2,37
Hijo3.4) = i(Hi2,3,4 + Hiy i),
Hyp.34) = i(_2H{2,3,4 +2Hz3, 1 5), (4.2.47)
Hi12345 = %(Hi23,4,5 — Hsy301 + His345)
Hi123,45 = %( 3Hipg45 — 2Hgu301 +2H13.45)
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Where the H), p - and Hy p ¢ are defined as in (4.2.25), (4.2.26)

1 .
HA,B,C = HA,B,C + §<H[A,B](kAB . Ac) + CyChC(A, B, C)) (4.2.48)
1 1
HA,B,C = —ZAZLA%Fgm + §(WA’7mWB)Ag + CyCliC(A, B, C) (4.2.49)

4.2.3 Berends-Giele Currents in the BCJ Gauge

In this subsection, we present a pair of results on BG currents which will be of use in
later sections. The first is that, assuming its constituent superfields are in the BCJ gauge,
we may invert their definitions and find expressions for superfields in terms of their BG

currents. To see this, we begin with the rank two case, which is trivial,

K
IC12 = ?122 = K = ’C12812 . (4.2.50)

At rank three though, BCJ relations are required. The BG current is given by

K13 = Kpos | Kppay

(4.2.51)
5125123 5235123

We then combine this with another labelling,

K K K K
53K 125 — $1KCa1s — (323 (.23 [1,[2,311) _ (513 (213 [2,[1,3]]) (4.2.52)
5125123 5123 5125123 5123
1 1
= sz K —s13K + —(K - K
sz 228 ~ SRy e) + T (K pa) — Kpp))

The BCJ relations may then be used to write this exclusively in terms of the Viag vertex

operator,

1
5125123
BCJ BCJ
= V123 = s12(s23Mi53° — s13Ma137)

1
523K 123 — 513K213 = (s23 K123 + s13K123) + TK123
123

(4.2.53)

The second result is that Berends—Giele currents are annihilated by proper shuffles. That

is,

Kaup=0, VA B#0 (4.2.54)
where we use the notation
Kaws= Y. Ko, (4.2.55)
oc€cALLIB

and LI denotes the shuffle product, defined in (2.1.18). This arises as a property of the
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b-map, which is itself always annihilated by proper shuffles.
b(ALLIB) =0 (4.2.56)
To give one example,

= 512 [[1,2],3] + 555 [1, [2,3]] + 533 [[1,3], 2] + 555 [1,[3,2]]
+ SI31[[37 ”v 2] + SI21 [37 [1’ 2]]
=0,

(4.2.57)

with the final equality following from antisymmetry. This result arises as a consequence
of a standard result in free Lie algebras, that all Lie polynomials are orthogonal to proper
shuffles! [43].

4.2.4 Justification for the Gauge Transformation Description

In order to justify that these methods represent a gauge transformation, consider the non-
linear gauge transformation (3.1.12). For simplicity, we limit ourselves to A, superfields,
but given the close link the transformation of these and the A, superfields, the methods
will hold there also. Expanding the V,,, this tells us that gauge transforms of A,, have
the form

Al = Ay + 00Am = A+ [0, Q) — [An, Q] (4.2.58)

Into this, we substitute H for 2. We then use the approach of Selivanov to expand this,

wherein one expands the superfields as a series in the Lie algebra generators [117; 118],

K=Y KpT", TP =TPTP...TPPI. (4.2.59)
P

Extracting terms with the same Lie generator coefficients, this reduces (4.2.58) to

AP = AR — kP Hp + > (A Hy — AP Hy). (4.2.60)

XY=P
We take H to be the Berends-Giele current corresponding with the H superfields. The
BCJ and L have been inserted to denote which superfields are in the BCJ and Lorenz

gauges respectively. This is the general form we expect gauge transformations to have,
and it can be seen that this fits to rank 5.

'For the purposes of this thesis, a Lie polynomial is a linear combination of Lie monomials
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To demonstrate, we consider the simplest non-trivial case, that of rank three superfields,

Am,BCJ Am,BCJ

123 5125123 5235123
m,L m m,L m
_ A[[1,2],3] — ki3sHip 2 n A[l,[z,gﬂ — ki33H 1 2.3,
5125123 5935123 (4.2.61)

m,L m,L
Az |, Akl <Hn1,21,31 N Hmzsn)
123
5125123 5235123 5128123 5235123

—_ m7L m
= Ajgs’ — k33 H123

This matches (4.2.58). There are no summation terms, as any H in them will have at
most two indices, and so will by definition be zero. Similar calculations at four and five

points fit this same pattern [88].

4.3 Amplitudes in Field Theory

Recall the form of tree level amplitudes,

dZQ...dZn_Q <‘/1(O)UQ(ZQ)...Un_Q(Zn_Q)Vn_l(1>Vn(OO)> (4.3.1)

0<29<23<...<zp—2<1

Using the techniques of multiparticle superfields, this may now be calculated. We begin

at four points, where this reduces to
| @ ionEmviee). (132)
0<2z<1

There are two OPE calculations we may perform here; taking the Us(z) into either of the
V1(0) or V3(1). We sum over both, giving

(Mi12(0)V3(1)Va(o0)) + (Vi(0)Ma3(1)Vy(c0)) , (4.3.3)

where M is the Berends-Giele current corresponding with the vertex operator V. Taking
advantage of the fact that single particle BG currents and their corresponding superfields

are identical, My = Vi, we may rewrite this as a single summation

> (Mx(0)My (1)My(0)) . (4.3.4)

XY=123
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At five points, the discussion is similar. The amplitude function we are now considering is
| (AU V(o) (435)
0<z2<23<1

There are now three pole structures we must consider; when 2z and z3 both approach 0,
when zo approaches 0 and z3 approaches 1, and when they both approach 1. This then

results in a triplet of products of BG currents,

(Mi23(0) My (1) M5(00)) + (M12(0) M34(1) M5(00)) + (M1(0) Mazs(1)M;5(00))
= > (Mx(0)My(1)Ms(c0)) . (4.3.6)

XY=1234

The general point expression for tree level amplitudes follows from similar arguments. We

have the expression for arbitrary point amplitudes

/ dZQ...dZn,Q <V1(0)UQ(ZQ)...Un72(Zn72)Vn71 (l)Vn(zn» (437)

0<z<z3<...<zn_2<1

We split this into n — 1 pole structures, wherein z9, ..., z; approach 0 and z;y1...2p—2

approach 1 for i = 1,...,n — 1. Each of these then corresponds with a BG current triplet,
(Mi M1 1 Ma). (4.3.8)
We then sum over these, and the result is an expression for the n-point tree level amplitude,

ATC(1,2, ) = Y (Mx(0)My (1) Mg (0)) . (4.3.9)

XY=12..n—1

4.3.1 BRST Invariance

In order to verify the validity of the above expression, we must confirm that it lies within

the cohomology of the BRST operator. That is, given

An= > (MxMyM,), (4.3.10)
XY=12..n—1
we require that
QA, =0, A, # Q(something else) . (4.3.11)

In order to show this, we require the form of the BRST variation of the BG currents M.
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The variation of their constituent vertex operators V' is as in (4.1.37),

QVipy = Y, (K- K)Vixr)Vigs) (4.3.12)
XjY=P
Y=RLLS
The sum in this relation here is over the deshuffle product of Y, as is described in the

appendix A.1.3. From this, we find the variation of the BG currents

QMp= Y MxMy. (4.3.13)
XY=P

A corollary of a result shown in this thesis will be the rigorous proof of this result. For
now though, we can demonstrate one example of this, and assure the reader that similar

explicit calculations at other ranks hold similarly

Vi Vi
QMi93 =Q< [[1,2],3] n [[3,2],1})

5128123  S$235123
_s12(VisVa + ViVas) 4 (k12 - k3) Vi Vs

5125123
s23(Va1Va + VaVar) + (K - k1) V3 1y
+
5235123 (4.3.14)
ViVas n (k2 k312 V3 n V12 V3 + (k% - kM) V1 Vag
5123 5125123 5123 5235123
~ s123V1 Va3 n s123V12V3

5235123 5125123
= MqMoss + Mo Ms .

It then follows that the amplitudes have vanishing variation,

QY MxMyM,= Y <Z MAMB>MyMn

XY=12..n—1 XY=12..n—1 AB=X
= > mx( Y MaMg),
XY=12..n—1 AB=Y (4.3.15)

= Z Mx My My M, — Mx My MyM,,
XYZ=12..n—1

=0

Note the minus sign arises from the anticommuting of the BRST charge @ and the vertex

operator Vx. There is no third term in the variation in the above as QM,, = 0.

We then must show that the amplitude formula (4.3.10) is not itself the variation of some
other object. To do this, we consider M1a._,,—1M,,. By (4.3.13), this has variation

QM. 1M, = Z Mx My M,, . (4.3.16)
XY=12..n—1
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This then would suggest that the amplitude formula (4.3.10) is the variation of My, ,—1 M,.
However, Mis. ,,—1 contains an overall 1/s12. ,—1 factor. By momentum conservation we

then have

1 1 1 1
- = =5 4.3.1

Hence, the object with variation (4.3.10) is ill defined at n-points. As such, we can be
assured that this amplitude formula is in the cohomology of the BRST operator, and is
therefore correct [113; 119].

4.3.2 Deriving BCJ relations Between Amplitudes

As was discussed in section 2, BCJ discovered a set of relations between partial amplitudes
(2.3.21). We may identify these relations using this formalism, by exploiting properties
of the BCJ gauge. Namely, by writing vertex operators in this gauge as functions of BG

currents, relations between amplitudes may be identified. So, to give one example,

0= (e(5om))

= (Q(s23M BV — s15MRS7 V)

s Y MECMEMY — sy Y (MECMEC M)
XY =123 XY =213

= 593 A°YM(1,2,3,4) — 51345YM(2,1,3,4)

(4.3.18)

Hence, we have the four point BCJ relation.

Increasing the rank we can find comparable relations. The four point vertex operator may
be written as a function of BG currents as

BCJ BCJ BCJ BCJ

Vigsa = 512 (823834M1234 — 513834 M5 34 + S14523M3o7; — s13824 M 3154

BC.J BC.J BCJ BCJ (4.3.19)

+s23824(Migzq + Misgs ) — s13s1a(Majzi + Majgs ))

By adding together combinations of this, BCJ identities may be found. For instance, we

have
V1234 V3214
BC.J BC.J BC.J BC.J
+ =s34Mi33i + s12Mas7i — saa(Mizzi + M3jsi) (4.3.20)
5128123  $235123
Vi34 — Vigas BC
J BC.J BCJ BC.J
I — 22323A4i234 —‘513A4§134 - 324A4i243 + 514A4§143; (4~3-21)

512534
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and from these one may extract the relations

s34 ASYM(1,2.3,4,5) + 51445V M(3,2,1,4,5)
— 504 (ASYM(1,3,2,4,5) + ASYM(3,1,2,4,5)) =0,

(4.3.22)
523ASYM(L 2a 35 47 5) - 513ASYM(27 17 37 4’ 5)
— 594 ASYM(1.2,4.3,5) 4+ 5144V M (2,1,4,3,5) = 0.
In general, this approach may be used to find [83; 42]
|A] |B]
0=> "3 (=1)"sqp, (4.3.23)
=1 j=1

ASYM((al...ai_l I_LJCL|A‘...CLZ'+1), a;i, bj, (bj_l...bl U_lbj_,_l...b‘B‘),n) ,

which match BCJ relations in a particular representation [10; 63; 64; 120]. If one sets
A =1, this matches (2.3.21) exactly [42]

512ASYM(2, 1,3, ..., n) + (812 + Slg)ASYM(Q, 3,1,4, ..., ’I’L)

Sy s (4.3.24)
+.. .+ (si2+si3+... +s5101)A (2,3,...,n—1,1,n)=0.

The above are known as the fundamental BCJ relations [121].

4.4 Amplitudes in String Theory

We will not detail the calculation of amplitudes in string theory using these techniques,
only highlight the key results. For the full details, [18; 19] should be consulted.

The general n-point disk amplitude is given by

n—2
An = H/deH\zij‘S“

i L
— (4.4.1)
xS < 2..pVntn2,.pt1 Vo + Perm(2,3, .., — 2)> .
=1 (212223 2p—1,p) (Zn—1,n—2--Zp+2,p+1) U

Using the properties of the BCJ gauge, this may be reexpressed as a function of amplitudes
in SYM,

n—2 k—1
An = / H’zm| 51]|:H ZSﬂAsYM ,2,...,n) + Perm(2,3,....,n —2)| . (44.2)
1<y fm2 m—1 Tk

2i<2Zi+1
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Factors of o have been set to %, and the references should be consulted for formulae with

them included.

4.4.1 BCJ Satisfying Numerators From String Theory

While the formula (4.3.10) does produce amplitudes correctly, they do not necessarily
satisfy BCJ relations explicitly in this form. There is a generalisation of BCJ relations
in [122; 123] which they can be shown to satisfy [119], but such will not be used for this
thesis. Instead, we use the string amplitudes to generate alternative field theory amplitude

representations for non-canonical orderings which satisfy BCJ relations explicitly [114].

To begin, the results of [116] allow for the string amplitude integrands to be reformulated

in terms of functions

Py
Zs(1,2,...,n) = / dz1dzy...dz, Li [ . (4.4.3)
b)) 212%423-+-Zn—1,n<nl
Using such, partial amplitudes are given by [56]
AR = > (MxVenyyVa)Zs(1,X,n,Y,n - 1)(-1)X (4.4.4)
XY=23..n—2
+ Perm(2,3,....,n —2).
In [124], the field theory limit of (4.4.3) was identified as
lim Zp(Q) = (-D)PIm(P|Q), (4.4.5)
ol —
with the m function defined in terms of the BG double currents (2.3.9)
m(P,n|Q,n) = 3P¢P\Q . (4.4.6)
The arguments of the m should be regarded as cyclic in order to eliminate the n.
SYM amplitudes satisfying BCJ relations are thus by
A = > (MxV nypVa) ()M ()1, X 0, Yon - 1) (4.4.7)

XY=23..n—2
+ Perm(2,3,...,n —2).

We may then use this to generate examples. First of all we note the canonical ordering is
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) 5 5

Figure 4.4.1: We may verify this BCJ relation using (4.4.13)

reproduced [56], as when ¥ = 12...n the m function separates as

m(12..n[1, X,n,Y,n — 1) = s12. n-1012..n— 1|y (n—1)1X (4.4.8)

= 512..n—1P1X[1X PY (n—1)[Y (n—1)

The formula (4.3.10) then follows by

Mia= Z¢1A|1BV137 (4.4.9)
B

which is the definition of Berends-Giele currents in terms of the inverse momentum kernel

(4.1.42), reformulated in terms of BG double currents as in (2.3.10).

We may then wish to look at another ordering, and in order to coincide with results

discussed in [56] we consider A(1,2,4,3,5). Applying the formula, this is

A(12435) = 3" (VixVip Va)(—1)°m(12435/1X5Y 4) (4.4.10)
XY=23,32
= > (VixVigVa)(—1)’s1231é10a3y41.x (4.4.11)
XY=23,32
= —S1234 [(‘/1‘5132V5>¢1243|2341 + (V12VazVs) 124313412
+ (Vi23VaVs) b12434123 + (V1 Va23V5) P1243)3241 (4.4.12)

+ (V13Via2Vs) 12432413 + <V132V4V5>¢1243|4132}

Applying the definition (2.3.9) to each ¢4 in turn, one finds

ViaeVasVs 4+ Viag V4 Vs ViViaos Vs + VigViao Vs VioVaa Ve
A(1,2,4,3,5) =28 5+ VissVaVs  ViViosVs + VisVioVs | ViaVasVs
5128124 5948124 512534 (4 4 13)
. ‘/1‘/432‘/5 . V1V423‘/5
5345234 82458934

To demonstrate that this is a BCJ representation, the identity in figure 4.4.1 may be

checked. The first and second numerators come from the amplitude in the canonical
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ordering,
ViVi,3),4V5 5 ViVig i34 Vs - (4.4.14)
The third is the numerator associated with the sg45243 denominator in (4.4.13),
ViVia,21,3 Vs (4.4.15)

The identity then follows as a result of the BCJ gauge construction of the multiparticle
v,

ViVig,a4Vs — ViVig,3agVs — (=ViVju,2,3V5) = (4.4.16)
ViVi,3,4 Vs + ViV 4,2V + ViVa,21,3 V5 »

which vanishes as it is a statement of the Jacobi identity. Note that while this was
a relatively simple example and could have been shown with the naive relabelling of
A(1,2,3,4,5), (4.4.13) contains more complex numerators for the sj24 poles, and identities
involving these terms will not hold for such a naive approach. Another example of these

methods is provided in section 10.1.
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CHAPTER D

One Loop Amplitudes From String Theory

In addition to the previous tree level results, the pure spinor formalism has also been
successfully used to find amplitudes at loop level. Part III of this thesis will focus upon

one loop amplitudes in such, and as such we introduce the relevant material here.

5.1 Multiparticle Superfield structures at One Loop

For the calculation of scattering amplitudes at one loop we may borrow some techniques
from tree level, but new methods are required also. The piece of the amplitude formula

we are now interested in is
n

Vi(z1) [ Uilz1)) - (5.1.1)

i=2
While we have formulae for the interactions between the V and U vertex operators, there
is now the b ghost also which may interact with the U terms also. This has an extremely

complex form, as given in (3.2.37),

b= (TId + NOO + J90) d5(N) + (wdX + JON + NOJ + NON)3(N)
+ (NTI + JII + 911 + d?)(TI§(N) + d*§'(N))
+ (Nd + Jd)(905(N) + dII§'(N) + d*6"(N))
+ (N2 + JN + J*)(d068'(N) 4 T126'(N) + I1d*6" (N) 4 d*§"(N)),

(5.1.2)

71
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This presents a significant complication. Fortunately though, for lower point amplitudes
the situation is far simpler than it appears. As discussed previously, the pure spinor
bracket (...) at loop level effectively selects only terms containing six d, and zero N,
zero modes. We will be able to use this to simplify the problem considerably. Note in this
section we assuming that all multiparticle superfields are constructed in the BCJ gauge

using the techniques of the previous section.

5.1.1 Construction of Building Blocks from the b-ghost

To identify the new superfields describing one loop kinematics, we begin with the simplest
case as at tree level and then generalise. As three point amplitudes are known to vanish
in string [36; 37; 38] and field [34] theory, this is four point box

(VU UsUy) - (5.1.3)

Within this, we need only consider terms which contain six d, zero modes. The integrated
vertex operator V does not contain any of these. The unintegrated vertex operators U can
each provide one only, and so we may find at most three d, terms here. Hence, we need

at least three d, terms from the b ghost. This reduces the relevant terms in the b-ghost to
d*'(N) + (Nd + Jd)d*§"(N) + (N? + JN + J*)d*§"(N). (5.1.4)

We then consider the restriction to no N,,, zero modes. Note an nt" order derivative
of 0(N) effectively contributes —n zero modes of Ny, as it must be partially integrated

against n such terms.

When the b ghost provides three d,, zero modes, we rely upon the vertex operators for the
remaining three, and so these cannot also provide a N, to counteract any derivatives
of 6(N) terms. Similarly, when the b ghost provides four d,, terms, the vertex operators
can provide at most one N,,, term, and so the ghost cannot contain a higher derivative
than ¢'(N). This then leave us with three possible contributions from the b-ghost at four
points[125],

d*'(N),  Nd*"(N),  NZ2%d*%"(N). (5.1.5)

After partial integration, these combine into a single term. This relies upon a contribution

of two d,, terms and a N,,, from the unintegrated vertex operators. Hence the four point
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amplitude calculation simplifies to a triplet of terms,
1
BVIUU3Uy) ~ <V1(daW2°‘)(dﬁW3B) <2Nman”">
1
+ Vi(da WS <2NmnF3m”> (dgW?) (5.1.6)
1 mn o 8
+W §NmnF2 (daW35')(dsW) )>

The above was only intended as a sketch of this procedure, to give an idea of where the
results come from. When the calculation is more carefully performed, these terms have
the form [125; 20]

bViUUsUy Vl()\"ymWQ)(/\’)/mW;;)an + cyc(2, 3, 4) (5.1.7)

Hence, we define a (one loop) building block which captures the terms in the four point
amplitude [1]
Tapc = MmWa)( M WB)FE™ + cyc(A, B, C) (5.1.8)

This has been defined with multiparticle labels, as at higher points it will arise also. For

instance, the eight particle amplitude is a function of
<bV1U2U3U4U5U6U7U8> . (5.1.9)

Alongside contributions arising from more complex terms within the b-ghost, this will
also contain terms arising from OPE calculations between the V' and U superfields. For

example, this will contain a contribution
Vi) U.41.5UsUtr g (5.1.10)

This then has the same structure in terms of d, and N,,, zero modes as the four point

amplitude, and so the calculation proceeds analogously, giving a contribution
ViLa Ts.45)6.7.8 (5.1.11)
Hence the need for multiparticle indices in the T' superfield.

We now note some properties of the T terms. The first is that, by construction, it is

symmetric under permutations of its blocks of indices [1],

Tapc =Tace=Tpca=Tpac=Tcas=TcnaA- (5.1.12)

The second is the form of its variation, which can be found for Dynkin brackets to conve-
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niently factorise as

QTymumucy = Y. ) VixrTugs) s uc) — (X < 5)) (5.1.13)
XjY=A
RLLIS=Y
+(A+ B,C).

This will be generalised to general Lie brackets later. The sum in this relation here is

again over the deshuffle product, as defined in appendix A.1.3.

5.1.1.1 Vectorial Generalisation

To find the first generalisation of this, we look to the five point amplitude. There are two
further classes of terms which now contribute. The first comes from selecting the same
b-ghost term as at four points, and the same values for three of the U terms, and then
selecting from the fourth the 11" A,, term. This is the only term in U without a 6, d,, or
Ny, and as such will not affect the counting of the previous discussion. This produces
terms of the form

ATgop. (5.1.14)

The second new class of terms arise from a new element of the b-ghost, namely [125]
IId*5(N) . (5.1.15)

This requires four d, modes from the U vertex operators, which is now possible at five
points and above. More careful manipulation of the terms involved is believed to give the
contribution [126; 20]

1
Wis.cn = 15MmWa)(XpWp)(Wery™Wp) + (4, B|A, B,C, D) (5.1.16)
Note the new summation notation introduced here is detailed in appendix A.1.

We combine (5.1.14) and (5.1.16) to create a new class of superfields, the vectorial gener-

alisation of T4 p.c [1],
TIT,JB,C,D — (AZLTB,C,D + (A <~ B, C, D)) + W;{I;B,C,D . (5117)

The coeflicients of the terms in the above were determined by requiring a convenient form

of the variation,

QTyla) 0By 00y 0py = FAVaTscp + Z (K% - &) (Vi ry T8y ey a0y — (X < 5))
XY =A
Y=RLLS
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+ (A« B,C,D). (5.1.18)

Note the TXscp has been defined for general Lie monomial indices, as it will generalise

to higher points by the same mechanism as T4 p ¢ did.

5.1.1.2 Tensorial Generalisation

At higher points, we may select more and more vertex operators to contribute a II"™A,,
term. This produces the tensorial generalisation of the building blocks constructed thus
far [1],

Tgtéé’yTTBr+3 = <TBLBZvB3AngAgZQ'“A(BZ?::3 + (Bl, Bs, Bg’Bl, Bo, ..., Br+3)> (5119)

(Wi, A AG A"+ (By, By, By, Bal By, B, o Brys) )

) B'r+3

These have variation,

(mlmzym3~~~mr) (5120)

QTTI’LL..?’TLT
Bi1,B3,...,Bri3 B1,B3,...,Bri3

yDr4-3

=0
+ (kf(BnIIVBng;,fffng) + (B1 <—>Bz,-~,Br+3))
+(

(k- k) (VXRTIE50S, gy — (X 0 )+ (B1 & B2y Brig))
XjY=B;
Y=RLLIS

Here we have introduced an anomaly term. Such terms are known to arise at six points
and higher [127; 128; 129; 109]. The superfield above is defined by [1]

1
Yaene = 5" Wa) A" We)APWe) (WD Y W) - (5.1.21)
This then generalises to a tensorial structure by a similar procedure to that of T4 5 ¢,

. _ ( r)
VBB By = YBuBs Ay Al AL+ (Biy oo Bs| By, Bros) (5.1.22)
= AnglYg;?B;jLTVBTJFS + (Bl <~ BQ) B37 ceey BT+5) )

These have variation

QYR 5 = kglvBlyg;_;;g;>+5 +(B1 < Ba,..., Brys) (5.1.23)
+ Z (kx - kj) {VXRY]@};TT,BT% — (X < j)| +(B1 < By, ..., Brys) .
XjY=B;

Y=RLLIS
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5.1.2 Refined Building Blocks

Starting at six points, further objects begin to appear. These were identified based upon
the form their variations take, rather than via the b-ghost explicitly. They are known as
refined building blocks, as they contain a separate refined class of indices separated by a

vertical bar from the rest. The lowest rank case is [130; 1]

1
J12345 = AT TS5 45 — 3 (A1~ A9)T345 + (2 ¢ 3,4,5)]

1 (5.1.24)
= §AT(T2”,I3,4,5 + W3 a5)s
in which the 1 is the refined index. This has variation
Q12345 = k'V1T5%5 45+ [ViaThas + (24> 3,4,5) + Y1345 (5.1.25)

This then can be generalised to allow for Lie bracket indices in the usual way, though it
does also require a correction to enforce the BCJ gauge correct structure in the variation
[130; 1],

Japenpe=ALTEcop e — (Hag + %(AA -Ap))Tep e+ (B« C,D,E)]. (51.26)
The variation of these is then given by

QJaB.cp.e=kAVaTg cpp+ VapTope+ (B« C,D,E)+YapcopE (5.1.27)
Without the H corrections in (5.1.26), the V' in the above would not be in the BCJ gauge.

As with the other objects discussed thus far we may generalise these to a tensorial
structure[1; 130; 20],

1
mi...My — AP PMI. My - . MM ooy My
JAlBl7""B’I'+4 - AATBl""vBV‘+4 ((H[A’Bl] . Q(AA ABI))TBZ7"‘7B7‘+4 (5.1.28)
+ (Bl + B, ...,BT+4)) .
These then have BRST variation
..Rm, 1D pmi..my ms...mpr) My
QI = RRVATEM i 4 glmmey ety (5.1.29)
+ Vs TR g+ RS Vi Iy ™ 4+ (By ¢ By, oo Braa)
+ > (kx k)VrTTGE™ 5 — (X )]
A=XjY
Y=RLLS
+ Y (kx - k) VxR 41j8,Ba, Byos — (X 4 )] + (Br <> Ba, oo, Byya)
B1=XjY

Y=RLLIS
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In addition to generalising through the addition of tensor indices, we may also generalise
through adding further degrees of refinement. This is defined through repeated application
of the formula refining 7" into J, (5.1.28), with the simplest such extension being [130; 20]

m 1
J1213.4,56,7 = A%n‘]2|3,4,5,6,7 - 5[(/11 - As) o567+ (3¢ 4,5,6,7)]. (5.1.30)

The extension of maximum generality is defined similarly,

Jml‘..mr — 1 P [ pPMmy... My + m1~~~mr|P ]
A17"'7Ad‘Blv"'7Bd+T‘+3 - 2 Ay A27"'7Ad‘B17"'7Bd+T‘+3 A27"'7A(i‘Bly“'7Bd+T‘+3 (5 1 31)
mi...My
a H[Al’Bl]JA21~--1Ad‘BQ1---,Bd+r+3 + (Bl © By, ..oy Bd+r+3) ’
The refined W superfields likewise follow from the formula (5.1.28),
mi.my_1|my _ 1 P pmy..Mp_1|my (5 1 32)
Aty Ad| By Bayrss — 97 AL Ao, Ag| Bl Bagrts T

mi..my_1|my,
— [Hiar,80W A, AL By, Barris T (BL € Bay oo Bigrgs)]

We regard the T superfields as being of degree if refinement 0, and the J superfields with
n blocks of refined indices as being of degree n. The variation of these objects is then

given as follows. To begin, we consider the simplest case of the doubly refined J,

QJ1opase7 =K' Vidisas67+ ks Vodl5a567+ Yi2aas67+ Yonsaser  (5.1.33)
+ Visdouse7 + (3 4,5,6,7)] 4 [VasJija 567 + (3 <+ 4,5,6,7)].

Then extending this to the maximum generality, we have

mi.. My _ (mlmg m3mr)
QJAI7~-~’Ad‘Bl’~~-»Bd+r+3 =9 YAl,...,Ad|Bl,...,Bd+T+3 (5.1.34)
(ma ma...My)
+ kBl VBl JAl?"'7Ad|B27"'7Bd+’I‘+3 + (Bl d BQ, ceey Bd+r+3)

_1_‘/[141731](]2121. " +(A1 <_>A27A37"'7Ad; Bl <_>B27"'7Bd+7“+3)

.My
7"'7Ad‘B27"'7Bd+T‘+3

mi..my D P .. Ty
- YA2:-~~7Ad|Al7Bl,~~~,Bd+r+3 + kAl VAl JAQ,...,Ad|Bl,...,Bd+T+3 + (Al A A27 ) Ad)

+ Y (kx k)RR 4imy gy, — (X 2 D]+ (A& Az Ag)

A=XjY
Y=RLS
+ Y (kx k)R p " gy e, — (X 9 )]+ (Bu & By, Birrs)
Bi=XjY
Y=RLLIS

We note that J superfields with more than seven particle labels in their indices will never be
used in this report. We state their maximum generalities here for purely for completeness,

and to illustrate the covariant nature of their variation.

In the above, we have included also the refined form of the anomaly building blocks. These
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are defined in a similar way,

le My

1 e T
e = ARV — [ VI, + (BL & Bayo Bry)] - (5.1.35)

and have variation
mi..mr P pmy...my
QYA\él,...,BHG = kAVz‘\YBl,.l..,BT+6 (5.1.36)
+ Viam Vi Tm kS Ve YA ")+ (By 4 B, .., Brye)

+ > (kxR [VxrYallapr g o — (X & )] + (Bi ¢ Ba, .., Bryo)

XjY=B;
Y=RLLS

+ D (kx k) [VRRY 5 5 — (X & )]
XjY=A
Y=RLLIS

A further refinement of the anomaly superfields will be needed also, denoted A, and defined
by

Avj93,4,5,67 = V2134567 T k2 Vs34567+ [32337123,4,576,7 + (3 4,5,6, 7)] , (5.1.37)

where ) denotes the Berends—Giele currents corresponding to the anomaly superfields Y
defined in the usual way [20]

n—m—6 n—m—6
Y At Ao BrreosBr = Yb(A1) e b( A B(B1)..onb(Bn) (5.1.38)

The variation of this A object has the form
QA 34567 = VikS'Yss 7 —ViaVau 7+ [ViYosuser + (3 4,..,7)]  (5.1.39)

Further generalisations of A will not be used in this thesis, and so we do not extend its

indices to general Lie monomials.

5.2 Amplitudes in Field Theory

We now discuss how these objects are used to construct amplitudes in field theory. Prior
to the work discussed in this thesis, such was known up to six points, and the six point
case was not in a BCJ representation. As such we limit ourselves to these cases here, and
will extend these results considerably later. The notation discussed in appendix A.2 will
be used going forward. These results will be linked with those in string theory in section

5.4, and then in a more general class of circumstances in part III.
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W §

1 4

Figure 5.2.1: There is only one diagram at four points one loop

5.2.0.1 Four Points

In the canonical ordering, the only diagram is that shown in figure 5.2.1. We can read off

from this diagram the form the denominator of this term must have,

1
I = '
PRS0 — )2 (€ — Ki2)2(C — Krzs)?

(5.2.1)

This uses the notation discussed in appendix A.2. There are no mandelstam terms due to
the absence of tree-like structures in the diagram. As for the numerator, only one term

has been identified which can arise at four points,
ViTo34. (5.2.2)

This is indeed the numerator and so we have the four point one loop amplitude [1],

ViTr 34

Al—loop 1.2 4) = ’
23 4) = BT k)20 — )2

(5.2.3)

The validity of this can be verified as it lies in the BRST cohomology. That is, its variation
vanishes, as can be seen in that QV; = 0 and Q7534 = 0. As for showing that it is not

the variation of another object, we note that [130]

1

Tl k234Q(krlann,2,3,4 + [Ti234 + (2 ¢ 3,4)]) = ViTo34. (5.2.4)

By momentum conservation, k! - k%% = k' . k' = 0. Thus, alike at tree level, the four
point amplitude is the variation of something which is not valid at four points, and so it is
in the cohomology. Note at higher points this part of the discussion will not be repeated,
but for details one should consult [130; 1].
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5.2.0.2 Five Points

There are six diagrams at five points; five boxes and a pentagon. The amplitude may be

expressed as

A(1,2,3,4,5) = Mipgas(f) + > NE1A|B,C,D(€)I£2B,C,D
ABCDE=2345 (5.2.5)

= AP(1,2,3,4,5) + A**(1,2,3,4,5)

where we use the Berends-Giele current notation detailed in appendix A.2.

The five point boxes are a generalisation of the four point case, namely [1]
Nyag,c,p(f) = VaTpc.p (5.2.6)

for A, B, C, and D Lie monomials. We then move onto the pentagon. There are two
possible classes of terms their numerators may be composed of; V4T ¢,p and VAT]B”@ D.E
The variation of the pentagon must be such that it cancels the variation of the boxes
exactly, and so we use this to fix the precise combination of these terms needed. This

occurs when we take the pentagon numerator to be [1]

1
Nijgza5(0) = V1155 45 + §(V12T3,4,5 +(2 ¢+ 3,4,5))

1
+ §(V1T2374,5 + (2, 3‘2, 3,4, 5)) . (5.2.7)
This has variation [1]
1
QN 5.45(0) = SViVaTsas((€ = ki) = (= k1)?)

1
+ §V1V3T2,4,5((f — k123)? — (€ — k12)?)

2 , (5.2.8)
+ §V1V4TZ,3,5((€ — k1234)” — (£ — k123)%)

1 2 P
+ 2V1V5T2,3,4(€ (€ — k1234))

wherein we have reexpressed any (¢ - k;) functions in terms of the propagators using

1 1 ) )
(Z . kz) = —5(5 — klz...i)Q + 5(5 — k’lg_ui_l)Q -+ (k12"'171 . k‘z) . (5.2.9)
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These then cancel with the I 2 34 5 denominator of the pentagon, giving [1]

1
QAP*™(1,2,3,4,5) = SViVaTsas(If3)s,45 — 1) 2345)

1 4
+ §W%T2,4,5(I£72)374,5 - 15,2),34,5)

1

+ 5‘/1‘/21T2,3,5(I{f12),34,5 - I§?2)73745> (5.2.10)
1

+ 5‘/1V5T2,3,4(I{f12),3,45 - 1{3,3,@

= _QAboz(la 2a 3a 45 5)

Hence, the variation of the five point amplitude defined using these numerators vanishes.

5.2.0.3 Six Points

The number of diagrams grows rapidly as we increase the number of points. There are now
a hexagon diagram, six pentagons, and twenty-one boxes. We again express the amplitude

using the notation of Berends Giele currents,

A(1,2,3,4,5,6) = M2 3456(0) 123456 + Z Npias,c,p,6()14,B,c,D,E
ABCDEF=23456

+ Z Ne1ais,c,p(€)IE14,B,0,D (5.2.11)
ABCDE=23456

= A"°T(1,2,3,4,5,6) + AP"(1,2,3,4,5,6) + A*7(1,2,3,4,5,6).

The boxes are again defined by (10.3.10). The pentagons are largely defined through a
generalisation of (5.2.7) [1],

m 1
Napo,p,el) =tnVaATE cp g+ i(V[A,B]TC,D,E + (B« C,D,E))

1
+ i(VAT[B,CLD,E + (B7C‘B707DaE)> . (5212)

The exception to this is Ngjj2345(¢), which is given by [1]

1
Ne12,3.45(0) = (b + kS ) Ver T's 4.5 + 5(‘/[61,2]T3,4,5 +(2 ¢ 3,4,5))

1
—ViJej2,345 + §(V61T[2,3],4,5 +1(2,3[2,3,4,5)) (5.2.13)

The reason for this exception the associated Is1 2345 denominator. This does not contain
a (2 alike the other pentagons, and so the V.J term is included to correct for complications
which arise writing the variation as a function of propagators. An alternative formulation
of this numerator, and a more complete reasoning for why it differs from the rest, will be

discussed later.



82 Chapter 5. One Loop Amplitudes From String Theory

The exceptional term then has variation of a similar structure to all other pentagons [1],

1
QNG(TRQ,37475(€) = V6N1(|52)73,475(€) + §V1(V62T3,4,5+V63T2,4,5+%4T2,3,5+‘/65T2,3,4) (5.2.14)

1
+ MigMyMs45[(€ — k1)* — (€ — k12)?] + M16M3M2,4,5§ [(€ = k12)* — (€ — k123)?]

1 1
+ M16M4M2,3,5§ (£ — k123)* — (€ — k1234)?] + M16M5M2,3,4§ [(£ — k1234)” — (€ — K12345)°]

+ViYosus6,

The only significant difference is the presence of the anomaly Y term. This will be dis-

cussed more later.

The variation of the pentagons defined above cancels that of the boxes as required, and
leaves some terms for the hexagon to cancel. As such, the hexagon should be defined such
that [1]

QA"®®(1,2,3,4,5,6) = —QAP"(1,2,3,4,5,6) — QA™(1,2,3,4,5,6) (5.2.15)
+ 2‘/15/2,3,4,5,6-7@73,475 +2VaNyj3,45.6(f) (1123456 — 112,3,4,5,6]
+2V3N112,456(0) [11,2,3456 — 11,23.4,56] +2ValN12,3,56(0) [11,2.3456 — 11,2,34,56)
+2V5N1j2,3.46(0) [11,2,3456 — T1,2.3456] + 2VeN1j2,3,45(0) [11,2,345 — 11,2,3,4,56)
+ ViVasTys6 (1123456 — 11,2,3456) + ViVaaTos6[11,23456 — 11,2,345.6)
+ ViVasTos6 (1123456 — T1,2.3456) + ViVaeT3.4[ 1123456 — 11,2,34,5]
+ViVaaTs 561123456 — 1123456 + 1123456 — 11,2,3.45,6]

+ ViVasTs a6 1123456 — 1123456 + 11,2.3.456 — 11,2,3,4,56)

+ ViVasTou6([11,23.456 — 1123056 + 11,2.3.456 — 11,2,3,4,56)

[

[

[

+ ViVagTsa5[T123456 — 1123456 + 1123456 — 11,2,345]

[

+ ViVsgTou5 (1123456 — 1123056 + 11,23.456 — 11,2,34,5]
[

+ ViViagTo 351123156 — T1,2,3456 + 1123456 — 11,23.45] -
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This is solved by assigning the hexagon numerator the value [1]

Nij23456) = Slnln V1155 56

+ =l [Vie T8 5.6 + (2 ¢ 3,4,5,6)]

+ (Vi [ng,%ﬁ +(2,3]2,3,4,5,6)]

+ [V1T23,45,6 + (273|475‘273a475a6)}

+ [‘/12T34,5,6 + (2|374|27374a5a6)]

(5.2.16)

DR IRERIRPNI RN~ -

+ ~[(ViTasa56 + ViTus256) + (2,3,4(2,3,4,5,6)]

[(kp,— k2 ) Vio T3 56 + (2 ¢ 3,4,5,6)]

(ViosTus6 + VanTuse) + (2,3(2,3,4,5,6)]

_|_
-gl-2l gl

[(kgn_kg’b)vlTZTgA,S,G + (27 3‘27 37 47 57 6)]

— ﬁngjg%,G [kh KL+ (14> 2,3,4,5,6)] .

Note that the terms containing loop momentum factors are essentially £™ multiplied by the
definition of Ny g ¢ p p(f) with an extra tensor index added to all terms. The same was

true of Ny c,p,p(f) compared with Ny g ¢ p(f), and would be expected to be likewise
for Nyjo.3.4,5,67(£)-

This is such that the variation of the overall amplitude is [1; 131]
1
QA(1,2,3,4,5,6) = §V1Y2,3,4,5,6(Il,2,3,4,5 —PIi93456) (5.2.17)

which would appear to cancel, but there are complications which arise as a result of

dimensional regularisation. Further analysis reveals [1; 132]

5

Q/dDe A(1,2,3,4,5,6) = —%OV1Y273747516 (5.2.18)

This anomalous term remaining corresponds with the known results [109; 133]. Hence,

the variation of the six point one loop amplitude has the required form.

5.2.1 BCJ Relations

The above satisfy BCJ relations at four and five points, but at six points they fail. To see
this, we begin at four points. These are trivial to check; given the vanishing of triangle

diagrams, this is just a matter of checking relations of the form seen in figure 5.2.2. As
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1 4 1 4

Figure 5.2.2: The vanishing of the triangle diagrams means that the four point BCJ
relations essentially just verify that we have symmetry in the legs of the diagrams

3 2

Figure 5.2.3: A BCJ relation at five points one loop

all four point boxes are given by V4T, ., for abc some permutation of 234, and T is
symmetric in its blocks of indices, this identity follows trivially. Hence, at four points the

BCJ relations are satisfied.

At five points, we have non-trivial BCJ relations between pentagons and boxes. One
example of such is given in figure 5.2.3. These need more work to verify, but follow

without too much work. In this example, we are trying to show the identity

Nijp3a,5() — Niyz245() — N30 =0 (5.2.19)
Taking the definitions of these numerators and plugging them in, this is
m 1 1
(ﬁmV1T2,3,4,5 + 5(‘/[1,2]T3,4,5 + (2 ¢ 3,4,5)) + §(V1T[2,3],4,5 +(2,32,3,4, 5)))

1 1
_ (em‘/lT%,4,5 + 5(‘/[173],17274,5 + (3 e 2, 4, 5)) + §(V1ﬂ372]7475 + (3’ 2|37 2’ 47 5))) (5220)

—ViTo345 =0.

This then vanishes by symmetry in the blocks of indices the T" building blocks [1].

At six points, complications can arise. We consider the pair of BCJ identities given in

figure 5.2.4. The first of these works as required [1];
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3 4 3 4
2 3
2 5 _ 2 6 _ 4
= 0
5
1 6 1 ) 1 6
2 3 2 3 4
3 5
€,
1 4 _ 6 1 _ 2
=0
L «
N
14
6 5) ) 4 1 6

Figure 5.2.4: A pair of BCJ relations at 6 points

Nij2,34,56(€) — Nij2.34,6,5(£) — N1j23,.a,56(£) =

1
+ (V1T + 5 (Vi Toass + (2 < 34,5,6))

1
+ 5(‘/1T[2,34],5,6 +(2,34]2, 34,5, 6))>

1
- (ngsz%4,6,5 + 5(‘/[172}T34,6,5 + (2 < 34,6,5)) (5.2.21)
1
+ §(V1T[2,34],6,5 + (2, 34/2, 34,6, 5)))
— VT3 34,56
=0

The second identity fails however. We have thus far been lax with the positioning of the
loop momentum factors in diagrams, but now we must be precise. We must make sure
that, in all diagrams in a BCJ relation, the momentum around the loop away from the
branches affected by the relation are the same. This is related to the discussion of the
labelling problem in section 2.3.4. The significance for this relation is that, rather than

considering Nyj4 56 23(¢), we must instead look to Nyj45623(¢ — ka3),

Nij23.4,56(0) — Nijas6,23(0 — ka23) — N 23jjas,6(£) = 0. (5.2.22)
Plugging in the numerator values, this is [1]
m 1 1
<£mVIT2374,576 + §(V[1,23]T4,5,6 + (23 ¢+ 4,5,6)) + §(VIT[23,4],5,6 + (23, 4(23, 4,5, 6)))

1 1
- <(£m — ks WATHS 605 + 5 (ViaTs623 + (4 ¢ 5,6,23)) + 5 (ViTja 56,25 + (4,5]4, 5,6, 23)))

— ViTi2,3),4,5.6
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= kBVITS 456 + VesiTuse + (ViTasase + (4 ¢ 5,6)) (5.2.23)
£0.

The above is not BRST trivial, as can be seen in its non-vanishing variation

Q(kzr?VlTﬁgA,g),e + Vas1Tu 56 + (ViThsase + (4 <+ 5,6)))
= (K- k%) ViVaT3ly 5 6k55 + VisVaTus.6 (5.2.24)
+ (ViVaTaas6 + ViVasTose + (4 43 5,6)) — (24 3)] #£0

Hence the identity fails. This result concluded the work of [1]. However, we since developed

new methods which rectify this problem, and extend the results considerably.

5.3 Amplitudes in String Theory

This section provides only a brief summary of the computations by which one-loop string
amplitudes are identified in the pure spinor formalism. For a more complete description,
we refer the reader to [20; 21; 22], and the citations therein. These should be regarded as

sources for the entirety of this section.

To begin, recall the string amplitude formula

A, = / / d22d2’3...d2n</u b Z Vi(z1) H Uj(zj)> , (5.3.1)
0 0<Im z; e

i <Im z; 1 <7

Through the field theory amplitude discussion, we know the form the OPEs of the vertex
operator and b-ghost take. What remains are the features unique to string theory, namely
the worldsheet factors describing the toroidal surface the amplitude is integrated over. In
this section, we introduce the functions this is described in terms of, and then identify the

one loop string amplitudes.

5.3.1 Kronecker-Eisenstein Series

The worldsheet functions of string amplitudes are a function of terms from the Kronecker-
Eisenstein series (KE series) [134; 135; 136; 137]. This is defined by the ratio

01(0,7)01(z + o, 7) 1
F n— (n)
(z,a,7) 01 (00, 7901 (. 7) E « (2,7), (5.3.2)
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where the 6; is one of the Jacobi theta functions, defined by (for ¢ = €*77)

o
01(z,7) = 2¢"/8sin(nz) H (1—¢")(1—g"e*™) (1 —q"e ?™*). (5.3.3)

It is the coefficients of terms from the KE series which will appear most frequently in this

section. The first two instances of these are
1
g(l)(z77_) - 810g91(277—) ’ 9(2)(Z7T) = 5 (810g61(z77—)>2 - @(Z, T) ’ (534)

where p(z,7) = —0%log 11 (2,7) — Go(7) is the Weierstrass function, and G5 is defined in

terms of Eisenstein Series

Gor(T) = > % = —¢®(0,7). (5.3.5)

k
(m,n)eZxZ\{(0,0)} (mT + n)

The poles of these functions will be critical in future calculations. The first KE term
g (z,7) has poles at z = 0. All other terms ¢(*)(z,7) have poles only when the greater
constraint of z = m7 +n, m,n € Z, m # 0, is satisfied. Going forward, we will use the
notation

gf;)

9% (zi — 2,7) (5.3.6)

to simplify the discussion.
Terms from the KE series satisfy Fay identities [138]. This identity is
F(zl, al,T)F(ZQ, 062,7') = F(zl,al -+ OZQ,T)F(ZQ — 21, (9, 7') + (1 <~ 2) R (5.3.7)

which upon expanding in terms of components gives [135]

m m+n) = (fm—1+7 n—j) (m+j
9(2)953 )= _953 B Z(_l)] < j >g§3 ])géza )
=0

- n=1435\ m=j) (n+s
3 (" el uls
J=0

(5.3.8)
j

Only the lowest order cases of this will be needed for this thesis, and so we state the first

six cases

912985 + 915 +eye(1,2,3) =0, (5.3.9)

1) (2 1) (2 1) (2 1) (2 3 3 3
9%2)953) = 953)953) + 9%2)953) - 953)98 + 9%2) - 9%3) - 2953) ;

2) (2 2) (2 2) (2 1 e 4 4 4
9%2)953) = 952)9&5) + 9%3)953) - 29&3)952) - 2953)953) + 3952) - 9%3) + 3953) ;

1 2 1 3 1 4 4 4
9%2)953) = 9§2)g§3) + 953)9&) + 9§2)9( )+ 953)953) ggz) - 9%3) - 3953) ;

2) (3 5 2 1 2 1) (4
917955 = —913 + 6953 — 491 + 913955 — 3913595 + 91391 — 2013 91 + 391591
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1 @) _ (5

(5 (2)
912 923 = —913

5 5 2
(5) (2) g

— 498 + ¢ (1) (‘:1)))

1 (4)
+ 913 92 3

+qt (1) (i:’;’)

1 3
g — gt (2) (2)

2 4
+4g'24! (1) (2)‘

1
— 91391

The coefficients of the Kronecker-Eisenstein series have all properties required to describe
one-loop string amplitudes. We will not go into any great detail on this point, but to give

a flavor of these results, it follows from a known result of Jacobi theta functions [136],
O(z+1,7)=—-0(z,71), (5.3.10)
that the KE series is invariant under A-cycles,
Fz+1,a,7) = F(z,,7). (5.3.11)

A more complex result holds for B-cycles, but we will not detail this here as it is not used

in this work. Further, it can be seen that
D 1)z + O(z;4 3.12
9ij" ~ / %ij (zi5) , (5.3.12)

which serves as something of a generalisation of the 1/z;; terms associated with tree level

string amplitudes.

5.3.2 One Loop String Correlators

We describe one loop amplitudes in string theory in terms of string correlators, which when
integrated on an appropriate domain give amplitudes. These are split into two sectors;
the anomalous sector, containing only anomalous contributions and denoted Y (¢), and
the Lie polynomial sector, containing the rest of the information and denoted by KL*(¢).
The name of the latter of these two will be explained shortly. The correlator is the sum
of the two sectors [22],

Kn(0) = KLy + KY (0). (5.3.13)
Explicit formulae for these are known to seven points. These are given in terms of world-

sheet functions, Z4. The anomaly sector is vanishing up to six points, and so the only

non-vanishing value it takes is

Ky () = =AippaserZiosases + (24 3,4,5,6,7). (5.3.14)
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The Lie polynomial sector is in general non-vanishing, and is given by the sum

L272)
Khe(y= > (-1 (), (5.3.15)
d=0

where the ICSZd) (¢) refer to the part of the Lie polynomial sector composed of building
blocks with degree of refinement d, defined by

n—4—2d
KDy = Y %((VAIJW""”" Z7 (5.3.16)

Az, AggalAdgas o Arsarod T Az, Aar 1| A1, Ay 2, Arpatad
r—=

+ (Ag, oy Agya|Ag, oo Apyagaa)) + [12..0] 44, --~7A7"+4+2d]) :

Note the second sum is over Stirling cycles, as is defined in appendix A.1. So, for instance,
K© is a function of VT terms, K a function of VJaB,c,.. terms, K@ a function of
VJaB|c,D,... terms, and so on. Bringing this all together, we find expressions for the

correlators, stated here in their entirety [22]

Ka(l) =ViTo 3421234, (5.3.17)
KS(@ = V1T277,1:),,4,5Zﬁ2,3,4,5 (5 3 18)
+ VaTR e pZape,p + 123454, B, C, D], o
1
Ke(£) = §V1T2m,37,14,5,62{?27?3,4,5,6
+ VaTE c.p. 2R p.cp.r + [123456|A, B, C, D, E| (5.3.19)
+ VATB,C,DZA,B,C,D + [123456’14, B.C, D] ,
1
Kr(¢) = E‘GTQTSE,B,GJZT;?A,&G,?
1
+ 5VATEI;2’,D7E,FZX%7C,D7E,F + [1234567‘14, B, C, D, E’ F]
+ VATEC,D,EZZL,B,C7D,E + [123456|A, B, C, D, E] (5320)

+ VaTs.cpZa,8,c,p + [123456|A, B, C, D]

- (VlJ5?3,4,5,6,7Z£?1,3,4,5,6,7 +(2+4+3,4,5,6,7))

— (VaJBie,p.p.r2Bac,per + (B < C.D,E,F)) +[1234567|A, B,C, D, E, F|
— Aqj23,4,5,6,721203,4,5,6,7 T (2 ¢ 3,4,5,6,7).

We have not yet stated the form of the Z functions. These are symmetric in their blocks



90 Chapter 5. One Loop Amplitudes From String Theory

of indices, and all cases up to six points are given by [21]

Z1p34 =1, 219345 =1", 219345 = gg)
1) (1 2 2 2
2123456 = 952)953) + 9%2) + 953) - 9%3) )
1) (1 2 2 2 2
Ziaa156 = 015950 + 95 + 951 — 917 — 955+

m m (1) m my (2) my (2) (2) (5.3.21)
253456 =915 + (K5 — E)gry + (K5 (915 — g3 ) + (3 <> 4,5,6)],

ZT£374,5,6 =" + [(k{nkg + kqllkgn)gg) + (1’ 2’17 27 37 4) 5) 6)} )

Z91,34,5,6 = 0.

The rank seven cases can be found in [21].

5.3.2.1 Lie Polynomial Sector

Here, we briefly state two properties of Lie polynomials, and justify the name of the Lie
polynomial sector. As previously alluded to, for the purposes of this thesis a collection of
words P is a Lie polynomial if it is a linear combination of words which can be expressed
as a linear combination of nested commutators. So for example, P = 123 —213—312+321
would be a Lie polynomial, since it can be written as P = [[1, 2], 3]. However, no similar

such relation exists for say P = 123, and so this would not be a Lie polynomial.

It is often not immediately obvious whether a collection of words is a Lie polynomial. For

example, it is far from obvious that

1324 + 1423 — 1432 — 2134 + 2341 — 3124 + 3214 — 3241

(5.3.22)
— 4123 + 4213 — 4231 + 4312 = [[[1,2],3],4] + [[[2. 3], 4], 1] .

As such, we need a theorem by Dynkin-Specht-Wever [139; 43|, which states that a sum
of words P is a Lie polynomial if and only if ¢(P) = |P|P. So, one simple example would
be that

0(123 — 213 — 312 4 321) = (123 — 213 — 312 + 321) — (213 — 123 — 321 + 312)
— (312 — 132 — 231 4 213) + (321 — 231 — 132 4 123)
=3 (123 — 213 — 312+ 321). (5.3.23)

Hence, it follows that 123 — 213 — 312 4 321 is a Lie polynomial (it is [[1, 2], 3]).

A theorem by Ree [140] states that if an object M4 satisfies shuffle symmetries,

Mag=0 VAB#0, (5.3.24)
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and if t% are the letters describing our Lie algebra (1, 2, and 3 in (5.3.23)), t* =
te1¢92 ¢4l then the sum
P=>) Mt" (5.3.25)
A
is a Lie polynomial. This result is not used any further in this thesis, so we will not cover
it in any further detail. However, one should note the shuffle symmetric object times lie
symmetric object structure of the above, as this is shared by the Lie polynomial sector of

the string correlator. This shared structure is the origin of the sector name.

5.4 Relating Amplitudes in String and Field Theory

In this section, we briefly review previous work relating one loop field theory and string

theory amplitudes at four and five points. This largely follows the appendix of [1].

The integral structures of string and field theory amplitudes are considerably different in
appearance. Fortunately though, they may be related in the field theory limit [34; 141;
142; 143; 144; 145; 146]. At four points, the relation is

< d
/dD£ 1172,374 = 7T4/ TT4_D/2/ d22d23d24€_7rTQ4[kl’kQ’]%’k‘d s (5.4.1)
0 0

T <z;<zi41<1

where the ) denotes the field theory limit of the Koba-Nielsen factor,

n

Qulkay, kay, o ka,) =D (ka, - kay) (25— |2i5) (5.4.2)

i<j

In this case, equality between the string and field theory amplitudes is immediate. We
take the string correlator integrated in the relevant terms as it should be, and by the above

the field theory amplitude follows immediately,

*dr

_ — 4

7T4/ 77-4 D/Q/ d22d23d24€ WTQ4[k1’k2’k3’k4}V1T273,4 = /de I£2)73’4V1T2’3,4 .
o T 0<z;<z;41<1

(5.4.3)

Hence at four points, we have equivalence between the string and field theory amplitudes.

At five points, the relation (5.4.1) generalises in the natural way,

< d
/de 11’2,374,5 = 71'5/ TT5_D/2/ dZ2d23dZ4dZ5€_7rTQ5[kl’k2’k3’k4’k5] . (5.4.4)
0 0

T <z <zi+1<1
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In fact, under certain constraints on the words A; such is the case in general,!

> d
/ AP0 Ia, ay.a, = 7" / & pn=D/2 / dzodzs...dzpe ™ @nlkar kag, wkanl (5 4 5)
0 0

T <z;<z;+1<1

We do have a significant further complication at five points and higher however; terms
from the Kronecker-Eisenstein series with unclear limits. Consider the five point string

amplitude,

*d
™ / £ 75D/ / dzgdz3d24dz5(V1T2m’374y5€m+(V12T3”;1759g)+(2H3,4, 5)) (5.4.6)
0 0

T <z;<z;11<1

+ (V1T2"§,4,59§§) +(2,3]2,3,4, 5))6—7”625[kl,kz,ka,kz;,ks])
(1
ij
and k; in the Koba-Nielsen factor coincide. So, for example

As previously referenced, g ) has the behaviour of zigl as z; — zj. At such a pole, the k;

Qslk1, k2, k3, ka, k5] P Qslk12, k3, ka, k5] . (5.4.7)

As such, poles in the string integral correspond with lower order n-gons in the field theory
amplitude. Only a select few terms in the five point string amplitude have poles in the
integration domain, namely

912955 951 985 915 (5.4.8)

The poles of the first term then corresponds with the 12-box, the second the 23-box, etc.
(1)
]
the field theory amplitude?. That is, we take for instance

By taking the g;.” functions to have value % at and away from their poles, we then recover

 dr

_ 1 _ )

7r5/ 5 D/2/ dzgdz3d24d25g§5) Via T3 se 7TQs[k1,k2,k3,ka, k5]
o T 0<2;<z;41<1

1 (5.4.9)
— /dDE V12T3,4,5§I1,2,3,4,5

*d
7r5/ TT5—D/2/ dzgdzzdzydzs gg) Vio To, 56—W7Q5[k17k2,k37k4,k5]
0 T 0<2;<2z;41<1 Y (5 4 10)

1 1
— /dDe V12T3,4,5(§f172,3,4,5 + 5112,3,4,5)

Performing this procedure for all terms in the string amplitude gives that of field theory.

! Additional complications arise when the integrand contains a loop momentum ¢ term in the numerator.
We do not detail this here, for such the reader should consult the appendix of [1].

2These values can be formally derived, see [1] appendix A.2 for details. Additionally, details of the sign
associated with the limits have been ignored, and will be introduced later.
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This part focuses on the construction of multiparticle superfields, and in particular the
construction of those in the BCJ gauge. Currently, we have a scheme with which most
Lorenz gauge superfields can be constructed with arbitrary topology to arbitrary multiplic-
ity. Furthermore, we have a pair of approaches with which we can produce multiparticle
superfields with a Dynkin bracket structure in the BCJ gauge. One of these is based
upon an intermediate hybrid gauge and has a clear origin, and the other represents a
direct transition from the Lorenz gauge and is more mysterious. That this represents a
gauge transformation has been shown to rank five. Finally, up to rank five, more complex

topology superfields in the BCJ gauge have been constructed also.

There are a number of areas in which this situation can be improved. Some Lorenz
gauge superfields are currently undescribed for topologies beyond Dynkin brackets. Then
those in the BCJ gauge are restricted even more so to this bracket structure. We would
like to extend the current results to arbitrary topologies, rather than just this heavily
constrained subset. Another issue is the absence of a general formula for the redefinition
H terms; we know the explicit form of these to rank five, but these were only found and
simplified through long calculations and a general structure for these is not yet known.
The calculations needed each time to find these grows exponentially with multiplicity, and

finding the general form of these terms would save a great deal of work in computations.

In this part, we will make considerable steps towards such generalisations. This will take
significant advantage of a new map, the so called “contact term map”, introduced shortly.
With this, several results will be extended, and in many cases general results will be found.
We will then conclude with some avenues for future development. A large amount of the

research which led to this part has been published in [27].
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CHAPTER 6

The Contact Term Map

6.1 Definition and Examples

We begin with the introduction of the contact term map, which we denote C. This acts

on Lie monomials recursively, and is defined by

Coi=0,
(6.1.1)
Co[P,Q]=(CoP)AQ+PA(CoQ)+ (kT kHP2Q-Q®P),
for i a letter, P and ) Lie monomials, and the wedge A defined by
PRQ)AR=[PR®Q+P®I[Q,R
(PeQAR=[P.R@Q+PQR 612

PAQ®R) =[P,QI®R+Q®[P,R],

On occasion, we may act upon a sum of Lie monomials. The contact term map should be

taken to be linear in such situations; that is,

n

Cod a[P,Qi =) aiCol[P,Qi, (6.1.3)

m=1 m=1

for a; some constants and P; and (Q; Lie monomials.

This will be made much clearer through examples. First of all, we consider a simple case,

97
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C o [1,2]. Applying (6.1.1) once, we see we have
Col[l,2] =(Col)A2+1A(Co2)+ (K- EH1®2-2®1). (6.1.4)
The result then follows as a consequence of the vanishing of C'o1 and C o 2,
Co[l,2] = (k' - K)(1®2-2®1). (6.1.5)

For this example, the iterative nature of the definition (6.1.1) was not needed, and the
definition of the (6.1.2) was not used either. As such, we consider the more complex
example of C o [1,[[2,3],4]]. Repeatedly applying (6.1.1) until all appearances of the

contact term map vanish as a result of C' o¢ = 0, this is

Col1,[12,3,4]] = (Co1)A[[2,3],4 +1A(Co[[2,3],4])
+ (K- EPYH(1 ®[[2,3],4] - [[2,3],4] @ 1)
=1A((Co[2,3]) Ad)+1A([2,3] A(C o4))
+ (BB EM1A([2,3] @ 4)
+ (' EBH (1 ®[[2,3],4] - [[2,3],4] @ 1)
=1A(((Co2)A3)A4) +1A((2A(Co3))A4) (6.1.6)
+ (K EHIA (223 -3®2)A4)
+ (B2 EH1A([2,3) @ 4)
+ (k- EBY (1 ®[[2,3],4] - [[2,3],4] @ 1)
=k ENA(203-322)A4)+ (KB - kH1A([2,3]@4)
+ (K EBHY(1 @([2,3),4] - [[2,3,4 @ 1)

4
4

Then the definition of the wedge operation (6.1.2) must be applied repeatedly, until all

have been removed

Coll,[[2,3,4]] = (K EHIA (203 -322)A4)+ (K2 - EN1A([2,3] ®@4)
+ (K- EPH(1 @ [[2,3],4] - [[2,3],4] @ 1)
=k ENIA(2,4®@3+2®[3,4])
+ (B2 kN1, 2,3 @4+ [2,3] @ [1,4])
+ (B kYH(1 ®[[2,3],4] - [[2,3],4] @ 1) (6.1.7)
= (k- EH)([1,[2,4)) @3+ [2,4 @ [1,3] + [1,2] ® [3,4]
+2®[1,[3,4]])
+ (BB EN([1,]2,3] @4+ [2,3] ® [1,4])
+ (k# HQ ®[2,3],4 - [[2,3],4 @ 1).

A significant number of further examples of this map are given in appendix E.
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One detail which we should make a point to acknowledge is that the A operations should be
removed in the reverse order to that which they are introduced. Without such a criterion,
ambiguities can arise with objects of the form A A (B ® C) A D;

(PAQ®R)AS=(P.Ql® R)AS+(Q® [P,R) A S (6.1.8)
:HP,Q],S]®R—|—[P,Q]®[R,S]+[Q,S]@[P,R]—i—@@[[P,R],S],

PA(Q®R)NS)=PA([Q,S]®R)+PA(Q®[R,S]) (6.1.9)
:[P,[Q,S]]@R—F[Q,S]@[P,R]+[P,Q]®[R,S]+Q®[P,[R,S]]
#(PA(Q®R))ANS.

Mistaking these two functions as being equal can lead to significant errors.

6.1.1 Related Maps

Further maps related to the contact term map (6.1.1) will be used in this thesis. The most
important of these is denoted C, and referred to as the modified contact term map. It is
defined by

Coi=0, Co[P,Q=(CoP)AQ+ PA(C2Q). (6.1.10)

Note the standard contact term C' map (6.1.1) on the right-hand side. The modified wedge

A is a restricted form of A,

(PR QAR=[P,Rl®Q, PAQ®R)=[P,Q®R. (6.1.11)

Again, we give examples. The first case found for the C' map now vanishes,
Coll,2] = (Co1)A2+1A(C02) =0. (6.1.12)
As such, the trivial case we now consider is C o [[1,2],3]. Taking advantage of (6.1.5), this

is given by

Col[1,2],3] = (Co[1,2))A3 + [1,2]A(C 0 3)
=k EH(1®2-201)A3
=" E)([1,3®2-[2,3]®1). (6.1.13)

The more complex example of the previous discussion, that of applying the map to
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[1,[[2, 3],4]], is given by

Col1,[[2,3],4] = (C o 1)A[[2,3],4] + 1A(C o [[2,3],4])
=1A((C 0 [2,3)) Ad+[2,3] A (Co4)
+ (k% kN (2,3) @4 -4 ® [2,3]))
IA(((Co2)A3) A4+ (2ACo3) A4
+ (K k223 -322) A4
+ (k% EH([2,3) ®4 -4 ® [2,3]))
= IA((K* - E*)([2,4 @3 +2® [3,4] — (2 ¢ 3))
+ (k% kH([2,3) @4 — 4 ® [2,3]))
= (* - k*)([1,[2,4] ® 3+ [1,2] ® [3,4] — (2 > 3))
+ (K% EkH([1,]2,3] @4 — [1,4 ® [2,3)])

(6.1.14)

This we note bears more resemblance to the application of the C' map to the bracket
[[2,3],4] than [1,[[2, 3],4]]. Such similarities will be generalised later. For further examples
of the C' map, appendix E should be consulted.

One final related algorithm C' was presented in the paper [27]. It is not strictly necessary,
as it only appears in one instance and represents only a small modification of the C' map,
and so results concerning it can be alternatively described using the C map. However, we

will be following the results of [27], and so we present it here. This is defined by
. ~ ~ 1
Cloi=0, C'o[P.Ql=Co[P.Ql- (K" - k)(P®Q-Q®P).  (6.115)

Alike with the C' map, we should note that this is defined in terms of another map on its
right hand side, in this case C. Examples of this follow naturally from those previously

discussed, with the one such being

C'o[[1,2],3] =Col[1,2],3] — %(1&2 K (1,2 ®3 -3®1,2]) (6.1.16)

= (k' k) ([1,3]®2-[2,3]®1) — %(1&2 B ([1,2]®@3-3®1(1,2]).

Due to the close relationship between this map and C, we will not detail any further

examples.

6.2 Various Relations Satisfied by the Map

The contact term map has certain key properties which we may prove rigorously. These

will then be important in describing multiparticle superfields in the BCJ gauge. In this



6.2. Various Relations Satisfied by the Map 101

section, we will state and prove these identities.

6.2.1 Proposition Regarding Application to the b-map

A key result regarding the contact term map is the following.

Proposition: The C' map satisfies

Cob(P)= > (b(X)®@b(Y)— (X +Y)). (6.2.1)
XY=P
Proof: We may prove this using induction. First the base case; when the word P has

length two the statement is

Cob(12) = > (b(X)®b(Y)— (X < Y)) (6.2.2)

- b(1;® b(2) — b(2) @ b(1).

Verifying that this is satisfied is not terribly complex,

Cob(12) = Sico 1,2)
12

= i((col)A2+1A(Co2)+312(1®2—2®1))
512 (6.2.3)

1
= 7512(1@2-2@1)
512

— (1) @ b(2) — b(2) @ b(1) .

Now we assume that the relation (6.2.1) is satisfied for any word of length less than n,
and let @ be a length n word. Applying the iterative definition of the b-map once and

then taking the contact term map within the resulting sum, this becomes

sQCob(Q)=Co Z [b(X),b(Y)]

XY=Q
= [(COb(X)) AD(Y) +b(X) A (Cob(Y)) (6.2.4)
XY=Q

+ (KB B(X) @b(Y) — b(Y) ® b(X))}

We separate this into the three possible cases; both of |X| and |Y| being greater than 1,
|X| =1, and |Y| = 1. We then use that C o b(i) = 0 for i a letter, and that the induction
hypothesis (6.2.1) holds for all C' o b(P) such that |P| < |Q|, to remove every explicit
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application of the map C from this equation. We are left with

s0Cob(Q) = 3 (K- k) (b(X) @b(Y) - b(Y)® b(X)) (6.2.5)
XY=Q

Y D (A @b(B) ~b(B) @ b(A)) Ab(Y)
SIS

+ >0 DT (W(C) @ b(D) - b(D) @ b(C)) Ab(Y)
?%i?CD:X

+ > X)AD D (B(C) @ b(D) - b(D) @ b(C))
xisipsr 0T

+ D WX)A D (b(A) @ b(B) — b(B) ® b(A))
{éi? AB=Y

Absorbing the |X| = 1 and |Y| = 1 summations into the |X| > 1, |Y| > 1 cases, this
reduces to

sCob(@) = D (K- k) (b(X) @ b(Y) — b(Y) @ b(X))
XY=Q

£33 (A @ b(B) — b(B) @ b(A)) AK(Y)

XY=QAB=X (6.2.6)
| X|>1

£33 0 A (4O) @ (D) — (D) 0 b(C))
?ﬁi?CD:Y

The two double sums may be reduces to a single sum using relations of the form

> dYoo= ) . (6.2.7)

XY=Q,|X|>1 AB=X  ABY=Q

Applying this to the double sums of (6.2.6), these become

3 (b(A) @ b(B) — b(B) ® b(A)) AB(Y) (6.2.8)

ABY =Q

+ 3 b A (b(C) ® b(D) — b(D) ® b(C))
XCD=Q

b(Y)] @ b(B) +b(A) @ [b(B),b(Y)] — [b(B), b(Y)] ® b(A) — b(B) ® [b(A),b(Y)])

B

([b(A),
Y=@Q
([6(X),0(C)] @ b(D) +b(C) @ [b(X),b(D)] = [b(X),b(D)] © b(C) — b(D) @ [b(X), b(C)])
CD=Q

L

Where we have used the definition (6.1.2) to remove the wedges A. We now group this
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into two sets of four terms in a convenient way

=< > (b(a). (V)] @ b(B) - b(B) @ [b(A4), b(Y)]) (6.2.9)

ABY =Q

+ >0 (M) @ B(x),b(D)) - [b(X), b(D)] & b<c>)>

XCD=Q

+< > (o) @ b(B).b(Y)] - [b(B),b(Y)] @ b(A))

ABY=Q

+ ) ( )] @ b(D) — b(D)®[b(X),b(0)])>.

XCD=Q

The first set of terms is identically zero, which follows from relabelling the second sum

> ([b(A), b(Y)] @ b(B) = b(B) @ [b(A),b(Y)]
ABY=Q (6.2.10)
+b(B) @ [b(A),b(Y)] ~ [b(4), b(Y)] & b(B)) .

The second set of terms in (6.2.9) can be simplified by using the definition of the b-map
(2.3.13),

S (b(A) © b(BY )spy — spyb(BY) @ b(A)) (6.2.11)
ABY=Q

+ 3 (sxeb(XC) @ b(D) — (D) © H(XC)sxc)
XCD=Q

Then, as the words B and Y only appear consecutively in the first sum, we can condense
them into a single word, and likewise for X and C' in the second sum. This reduces the

above to

3 sy (b(X) @ b(Y) = b(Y)® b(X)) (6.2.12)

XY=Q

+ ) sy (b(X) @ b(Y) = b(Y)® b(X)) .

XY=Q

We now return to (6.2.4). Using the methods discussed, the double sum terms reduce to
(6.2.12). Hence this becomes

Cob@=— Y [sX+5y+(kX-kY))(b(X)®b(Y)—b(Y)®b(X))} (6.2.13)
&QXY Q

> (b(X) ®b(Y) = b(Y) ® b(X )) :

XY=Q
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with the second line following by the relation
sx +sy + (k% k) =sxy. (6.2.14)

Hence the result is proved.

A similar result holds for the C' map,

~ 1
CoP=— > sxb(X)@b(Y)—syb(Y)®b(X). (6.2.15)
sp
Xy=pP
The proof of this follows similar lines to the above. This result is not applied in this thesis

however, and so we note it only for completeness.

We conclude this discussion by noting that an alternative proof of this result has since
been identified in [147], as well as several further results regarding the contact term map.
The methods therein are not relevant to our discussion here however, and so we will not
detail them further.

6.2.2 General Form when Applied to Dynkin Brackets

The general form of the contact term map C and its modification C' when applied to
Dynkin brackets are known, and here we state and prove them as lemmata. These will
prove to be useful for showing consistency between formulae produced here and those

given in the literature review.

Lemma: The application of the contact term map to any left-to-right Dynkin bracket
P = [["'[p17p2]7p3]7 "']7p|P|] is given by

CoP= Z(kX-kj)[XR®jS—(X<—>j)]. (6.2.16)
XjY=P
Y=RLLIS

where the deshuffle product is as defined in appendix A.1.3.
Proof: This again follows from induction. First we show the base case, which is a simple

application of (6.1.1),
Co[l,2] = (k' - E)(1®2-2®1). (6.2.17)
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We then suppose that the relation (6.2.16) is satisfied for the Dynkin bracket ¢(P), and
consider C o [P, q], for ¢ a letter,

Co[P,gl=(CoP)Aq+PA(Coq)+ (K k) (P®q—q® P) (6.2.18)

= > (KX K)(XR®jS— (X < j) Aq+ (k" k) (Poq—q® P)

XjY=P
Y=RLLS

= Y (K -K)(XRg®jS+XR®jSq— (X < j)) + (k" k) (P& q—q@ P)

XjY=P
Y=RLLS

= Y () (XR®jS— (X &) + (k" - k) (P®q—q& P)

XjY=P
Yq=RLLIS

= > (W) (XR®jS— (X ).
XjY=Pq
Y=RLUS

Hence by induction the result (6.2.16) is proved.

O

Moving onto the modified contact term map C, the general form of this applied to a pair

of Dynkin brackets is given by the following lemma.

Lemma: For P and @ left-to-right Dynkin brackets, the modified contact term map
C satisfies

CoP,Ql= > (K K)(XR QI®jS— (X« j))—(P+Q), (6.2.19)

XjY=P
5(Y)=R®S

Proof: This follows as a corollary of the identity (6.2.16),

C'o[P,Q] = (C o P)AQ + PA(C 0 Q) (6.2.20)
= Y (W) (XR®jS - (X ¢ j))AQ
XjY=P
5(Y)=R®S
+PA S (KK W) (XR® S — (X & )
X5Y=Q
5(Y)=R®S
= Y W) (XR.Q® S — (X ¢ )
XjY=P
5(Y)=R®S
+ 3 (KX K (P,XR ®jS — (X + j),

XjY=Q
5(Y)=R®S
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where the second equality follows from the definition of the modified wedge (6.1.11). The
result follows after using the antisymmetry [P, X R] = —[X R, P] in the final line.

0

Though we will not use such, for the sake of completeness we note that the results of this

subsection may be generalised to right-to-left Dynkin brackets using the relation
((P) = (=1)/PH1p(P), (6.2.21)

with P the reversal of the word P.

6.3 Constructing Superfields With Arbitrary Indices

One of the most immediate consequences of the identification of the contact term map,
is that it allows us to generalise previous formulae for Dynkin brackets to arbitrary Lie
monomials. In essence, this amounts to making a series of substitutions. Where before we
had a left-to-right Dynkin bracket P and a sum

>, (6.3.1)

XjY=P
RUIS=Y

we may generalise this to an arbitrary Lie monomial @ using the contact map or its
modification, with consistency following from the results of subsection 6.2.2. We now

detail this on a case by case basis.

We begin by introducing some notation. Given some (kX - kY)A ® B arising as a result of
the contact term map, we assign the Lie monomials A and B as the indices of superfields
K and S by acting on them with the double bracket [K, S]. That is,

[K,S]o (kX -E¥)A® B = (kX - kY)K4Sp. (6.3.2)

We then generalise this to all terms arising from applying the contact term map to a Lie

monomial [P, Q)] using
C[K,S] o [P,Q] =[K,S] o (Co[PQ)]) (6.3.3)

This notation generalises to the C' map in the natural way.
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To illustrate, let us give some examples. The contact term map applied to [1,2] is
Coll,2] =K' F)(1®2-2®1). (6.3.4)
We then denote the sum over superfields V and A™ with this sum as its indices by

CIV, A" o [1,2] =[V,A™] o (C o [1,2]) (6.3.5)
— (W) (VAT — ToAT).

If we encounter an object with several slots of indices, we use a - to denote the slot to

show where these maps should insert indices. For example,

[V,T.34]0[1,2] = (k" - k*)(ViTo34 — VaT134) - (6.3.6)

6.3.1 Lorenz Gauge Superfields

In relations (4.1.30) - (4.1.34), the multiparticle superfields in the Lorenz gauge A, and
A,, were defined for arbitrary Lie monomial indices. However, the multiparticle W and
Fpn were only defined in specific circumstances; the former for indices [P, Q] and the latter
for indices P, where P and @) denote left-to-right Dynkin brackets. We may generalise
this, by virtue of the contact term algorithm. The full set of Lorenz gauge multiparticle

superfields are defined with the recursion

APQ = (ARG A%) + AL (W) — (P o Q)] (6.3.7)
ARG = (AP (P - A9) 4 ALES, — (WPyu#9) — (P Q)]

Wik = (FLGEWR) — (6 AQWE — LWEeAg —(P o Q)

Findl = —% [Fpn(kp - Ag) + FH™AQ + 2P ER , + MWW, — (P 5 Q)]

where the higher weight superfields are defined using the contact term map,

Wipey = kEoWih g — CIA™, W] o [P, Q)] (6.3.8)

Epil = kpoEfq — CIA™ F*] o [P,Q).

_ q

[P.Q] PQ]
The two definitions of the F},, have differing appearances, and in different circumstances
one will prove more useful than the other, but they are believed to be identical. Note the
formulae for superfields in the hybrid gauge may be generalised using the contact term

map also, with the result being analogous with the above.



108 Chapter 6. The Contact Term Map

To give examples of these formulae, the Lorenz gauge superfield Afﬁ,zma 4],5] is given by

Aﬁll,2],[[3,4],5}] = —% [1‘17[71{2]%12 D R (6.3.9)

- (W[LZ]’YTTLW[[?)ALS]) - ([17 2] A [[374]7 5]) .
The superfield Fﬁg]y[& 4] May now be expressed as

F[?[%],[:’)A]] = kg34f‘iﬁ1,2},[3,4]] - k?2341‘iﬁ11,2],[3,4]]
— (k" K% (A} (5.4 A5 + AT AR (g 4 — (1 2))
— (k3 . k4)( A[Tﬁ,2]’3]AAZ + AE”A[[LQ]A} — (3 > 4))

~

— (K2 K (Af ARy — AF g Al ) -

(6.3.10)

This uses the contact term map applied to [[1, 2], [3,4]], which is given in appendix E.

6.3.2 Equations of Motion of Local Superfields

Previously, equations of motion were defined only for left-to-right Dynkin brackets, and
we may now use this technology to generalise these to arbitrary Lie monomials. This is
(L)

done in terms of an object V4, the local counterpart of V, = Dy — A4, defined in terms

of the contact term map
V&L) = -Doc - CIIAOU . ]] ) O[[AOH . ]]K[P,Q} = CIIAOH K]] o [P, Q] . (6311)

With this, the equations of motion take the form

(L) 41PQI _ m jm

v(a Aﬂ) = ’Ya,BA[P,Q]’

V& Al g1 = (" Wipg)a + ko Aaipa (6.3.12)
L)1i/8 _ 1 mn [P, -

Vi Wipg = 70"a" B

Amn _ (1irlm n
V((XL)F[P,Q] = (W[P,Qﬂ D

In essence, these relations say that a multiparticle superfield K has the same equation
of motion as its single particle equivalent, plus some correction terms flf Kg with their

indices generated by the contact term map.

To illustrate, consider the equation of motion of fl?f 5] This is given by

«

V(L)Aff,z] = (’me[m})a + kDA, [1,2] - (6.3.13)
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We may then expand the V) function,

VAR ) = Do ARy 5 — C[Aa, A™ 0 [1,2] (6.3.14)
= Do Al g — (k1 - ko) (AL AS — AZAT (6.3.15)

and so we arrive at the more familiar form of the equation of motion

DoAfl 5 = (V" Wirg))a + 3 Aa g + (k1 - ko) (ALAS — AZAT). (6.3.16)

Similar also holds for the T' "™  superfields arising at one loop, and for their refine-
A1, Amts

ments also. These generalise from their Dynkin bracket expressions in the natural way.

So, for instance, take the equation of motion (5.1.18)

QTi ) wmyucyupy = KaVaTsop + Y, (- K)VixmTugs)us)uc)up) — (X < )

XjY=A
Y=RLLS

+(A+ B,C, D), (6.3.17)

For simplicity we will not use the V(&) operator. This generalises to arbitrary Dynkin

brackets by replacing the sum with an application of the contact term map,
QTY'pcp= EXVaTpcp+ClV,T.gcp]loA+ (A« B,C,D). (6.3.18)
So, to give just one example,

QT 3.a51,6,7 = k12V1.21T(3, 145,67 + K345 V3 14.5) T 1.,2).6.7
+ kg VeT(1,21,3,4,50,7 T k7 VaT[1,2,3,14,5.6
+ (k' B (ViTo 3 450,67 — VT, 3,4,5),6,7)
+ (kY )Y (VaTh g a67 + VisaTaser — Vo paner — VissTh2,467)
+ (K- k) (Vs 9y, 45,67 — Vias)T1,2),3,6.7) (6.3.19)

Likewise will hold for higher weight T" superfields, with the variation of arbitrary tensorial
T (5.1.20) becoming

QL5 51 ry = O™ ™55 (6:320)

+ k(BT?IVBlT;n;:“mT) + (B1 < By, ...,BT+3))

) "7B7‘+3

+ <C[[V, T, By Brusl © BL+ (Br ¢ Ba, ..., Br+3)) .
For completeness, we also give the general form of the variation of the refined J superfields

Qjml'”mT _ 5(m1m2 ms...my)
A1,...,Aq|B1,....Batry3 A1,..,Aq|B1,...,Bgyri3



110 Chapter 6. The Contact Term Map

R Vi T s T (B Bay oo Bairys) (6.3.21)

mi...my
+ V[AlvBl]JA2,~~~7Ad|Bzy-~,Bd+r+3

+ (A1 <> Ao, A3,..., Ag; B1 < Ba, ..., Bayry3)
mi...my p pmi... My
+ YAZ?---vAdlALBIa---7Bri+r+3 + kAlvAl JA27---7Ad‘Bl,---7Bd+r+3 + (A1 & As, o, Ag)
mi...Mmpr
+ C[[V, J-,1412,...,Ad|Bl,...,Bd+7.+3]] oA+ (Al — Ao, ..., Ad)

+C[V, lellv::zﬂtil'7B2:~~~7Bd+r+3]] °©Bi+(B1 ¢ By, ..., Bitrss)
and of the anomalous Y superfields,

QYETB‘QT.T.,BT% = k(Bm1 VB, Yg;?fg;i-s + <B1 < Ba, ..., BT+5) (6.3'22>

1

+ C[[VY, Y%127T’7%T+5]] o B + (Bl ~ Bo, ..., Br+5) .

6.3.3 Deconcatenation of Berends-Giele Currents

We may combine these results with those of section 6.2.1, in order to find that the variation
of Berends-Giele currents have a very specific and useful form; namely the terms generated
by the contact term map combine into a deconcatenation. To illustrate, let us consider the
simple case of the Berends-Giele current A7%. This is described by a single local superfield,

A7[711,2]’ which has equation of motion
Do A = (V" Wia)a + K3 Aapo) + (k- ko) (AL AT — AZAT). (6.3.23)
Dividing by s12, we may convert all superfields to BG currents,

Do Ay = (" Wis)a + EBAZ + > (AXAY — (X V). (6.3.24)
XY=12

That is, the equation of motion of the rank two BG current is the rank one equation of
motion, plus a sum over a deconcatenation. This result, and that it appears true for higher
ranks also, had been observed prior. Now though, we may prove it rigorously using the

contact term map.
We first note that, for P some Lie monomial of rank p, the superfield /l’]} has variation
DoA™ = (y"Wp)o + KR AL + C[A,, A™] o P. (6.3.25)

We now consider the variation of the BG current Ay . Generating it using the b-map,

this has variation
Do A = (V" Wp)o + kP AL + C[An, A™] 0 b(P). (6.3.26)

We then apply the relation (6.2.1) to simplify the application of the contact term map on
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the b-map,

DodAR = (V" Wp)a + KEAL + Y [Aas A 0 (0(X) @ b(Y) = b(Y) ® b(X))
XY=12...p

= (Y"Wp)a +EBAL+ > (AXAY — AL AR). (6.3.27)
XY=12...p

That is, the variation of the BG current is the same as the single particle superfield, plus

a deconcatenation. Analogous procedures show similar results for the other superfields.

One particular case of note is that of the vertex operator Vp, as its variation has previously

been found to have an exclusively contact term map-like structure. Namely,

QVp = Y (kx - k;) VxrVis. (6.3.28)

P=XjY
Y=RlLIS

This generalises to arbitrary Lie monomials in the usual way,
1
QVipq = 50[[‘/, V]o[P,Q]. (6.3.29)
The variation of the BG current is therefore a sum over deconcatenations,

QMp= Y MxMy. (6.3.30)
XY=P

This approach proves a relation which was crucial in a number of places, but particularly

in demonstrating the validity of the tree level amplitude formulae.
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CHAPTER [

Redefinitions Using the Hybrid Gauge

In order to move superfields to the BCJ gauge, we have two approaches. One based
upon a construction with an intermediate hybrid gauge, and the other based upon taking
superfields in the Lorenz gauge and moving directly to the BCJ gauge. The former of
these is much easier to develop formulae for and much better understood, and we detail
this here. We begin by generalising the results up to rank five. We then proceed to higher
ranks, first by detailing problems at rank six and solving them, and then moving onto
higher and then general ranks. We note here that we will limit ourselves to the case of
superfields with topology [P, Q], for P and @ left-to-right Dynkin brackets. Other BCJ
gauge superfields may be then found by using BCJ relations to express them in terms of
these.

7.1 Further Topologies Up To Rank Five

In previous discussions, superfields in the BCJ gauge using the hybrid gauge approach
were only constructed for left-to-right Dynkin bracket topologies. Using direct gauge

transformations however, this mapping was found exactly, with one example being

All23,45) :Af’f23745] — ks H [123,45) (7.1.1)

— (k' k) (Hpiz 45 A5 + Hys ATy — (1 4+ 2))

113
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— (K2 B) (Hy2,05 A5 + Higs 5 ATS)
_ (k’123 . k45)f{[1273]AZé
— (k‘4 . k5)(ﬁ[12374]14g1 - ﬁ[123,5}AT) .

Appendix C.1 should be consulted for further examples. We would expect to be able to take
these results, and rearrange the right hand side in terms of hybrid gauge A™ superfields
and unhatted H redefinition terms, as these are the only objects which appear in the usual
hybrid gauge redefinition formula (4.2.31). To do so, we begin by first removing the hats

from H terms

m Am m 1
floga5) =Aftas 45 — k3345 (Hias 5) — 5 Hpno,gy (k1% - Ass)) (7.1.2)

2
— (k' k) (Hp1345) A5 + Hys 9 AT5 — (1 45 2))
— (k" ks)(H[mAs}A? + Higs 3)A73)
— (k' k") Hjy9 5 AL

1 1

— (K" k) (Hpaz a) — iH[12’3](k123 - Ayg)) A5t — (Hpos s — §H[12,3](k123 - As))ATY)

Rank one and two A™ superfields are identical in the Lorenz, hybrid, and BCJ gauges, so

we may leave these as they are. The difficulty comes with the AHZQ& 15) superfield, which we

m

must expand and manipulate in order to find its relation with the hybrid gauge /1[123 45]>

DAl 1 = ALBEIS _ A2 (12 j) | o115, 1)
— APEN 4 A (k- A1) (7.1.3)
= (A7 + kP Hpyg ) Fpmy — (An® + kP Hpyg ) (K12 - A) 4 2(W 2, W)
~ABEIZ A (415 1B )
= 24003 45 + ki Hpuo g Fpm, — ke Hing g (K72 - A%) + AR Hypg g (K% - K1%%)
= 248y, 45 — Ky Hppg g (K12 - A®) + 2457 Hpyo 5 (K - £'%)

m

— kP Hppg (k" - k) (AR AD, — A} AD).

We should be reassured by the appearance of the negative of the more complex terms in
(7.1.2). Substituting this in, we have

A7[7f23,45] :A?f23,45] — k13345 H[123 45) (7.1.4)
— (k' - k) (Hpza5) A5 + Hys AT — (1 ¢ 2))
— (k' - k) (Hp2,45 A5 + Hys 3AT)
— (k* - k) (Hp23 ) A — Hp23 5 A1) -
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By studying this, and the similar formula which can be found for Aﬁlz 34 W arrive at a

proposed generalisation of (4.2.31),

KPRl — gPQl _ Z (kx - k) [HixpgKis — (X ¢ j)] (7.1.5)

P=X;jY
Y=R'LS

DocH[P,Q] K = Aa
+ Z (k‘X . kj)[H[XR,p]Kj — (X H])] - k}’}QH[p’Q] K =Am )
Q=XjY
Y=RLIS 0 K =W
for P and @ left-to-right Dynkin brackets, and p and ¢ the letterifications of P and @,

which is to say p is the word P treated as a letter, and likewise for q.

This form of the redefinitions was the primary tool used to find BCJ gauge superfields
using the hybrid gauge in the course of the work in [27]. However, towards the end of this
project we realized that it may be generalised to arbitrary bracketing structures using the

contact term map, and as such we present it in this form here

DQH[RQ} K = Aa
KPO = RIPQL— CO[H, K] o [P,Q) = S ko Hipg < K = A™ . (7.1.6)
0 K==W«

Consistency between the formulae follows from the lemma (6.2.19). We will now see that

these formulae allow us to find higher rank redefinitions also.

7.2 Redefinitions at Rank Six

Having identified the general redefinition formulae, our goals now will be to verify these,
and to find formulae for the thus far undefined H superfields which arise higher ranks.
The verification will be implicit, in that all calculations will proceed as expected and so
we do not need an extra step confirming this. Our goal therefore, will be finding formulae
for the H superfields. We begin this task by gathering more data, and start with the
three topologies at rank six, [12345, 6], [1234, 56], and [123,456]. These calculations were
performed with the aid of FORM [148; 149; 150].
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7.2.0.1 The [12345,6] topology

The redefinition of the superfield A123456 follows from either (7.1.5) or (7.1.6),

Altasas6) = Altasas )~ Fissase H12345.6)
— (k' - k*)(H13a56 A5" + Hi346 A% + Hi3s6 Ay + H1a56Ab%
+ Hi36 A1 + Hia6A%s5 + His6 Agsy — (1 4> 2))
— (k" k) (Hi2456 A" + Hi2a6 A% + Hi256 A% + HiseAfys  (7.2.1)
— H3456 ATy — H3a6A755 — H3s6A754)
— (k' - k) (H12356 AT + Hi236 AT% — Huse AThs)
— (k'3 kD) Hyg346 AT

To identify H[1345 ), we proceed as in [83] and act on the above with L. This then sends
the left hand side to zero by assumption, and by taking! Lg o Hi19345.6) = 6H|[123456] We
can rearrange to find Hijo345 6. While it is possible to some degree to express this purely
in terms of the H' defined in (4.2.25) as at lower ranks, this is not completely the case.

Instead, one finds

1

Hi193456) 6 (Hi23,4,56 + Higzs 56+ Hesaz01 + Hezaz o1 (7.2.2)
— (k' - k?)(H134Hes2 — HissHeao + HizeHsgo — Hias Hezo + HisgHsso — HiseHyso)
— (k' k%) (Hy24Hos3 — Hi25Heas + Hio6Hsa3)
— (k® - k°)(HgasH195 — HeaoH135 + Hea1 Hoss — HezoHias + Hez1 Hous — Heoy Hays)
— (K% - k%) (Hgs3H124 — HesoHyzq + Hes1Hosy) .

At lower ranks, terms of second order in Hp g could not appear as each H must have at
least three particle labels to be non-vanishing. We now look to other rank six topologies

to see if similar terms appear there, and if a pattern in such may be identified.

Tt is interesting to note here that, if one does not take Lg o H{12345,6) = 6H[12345,6), then we can
miss the solution by terms in the kernel of L¢. The value given here is equivalent, up to terms in this
kernel, to H{12345,6) = %(H{23,45,6 + His3456). This seems far more appetising than the correct value but,
unfortunately, it is wrong. This does not satisfy lower order Jacobi identities, as can be seen in for instance
the relation L5 o (Hi2345,6 + Hi234,56) # 0
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7.2.0.2 The [1234,56] topology

We would now like to see the form of H[j93456), and see if this also has H 2 terms within

it also. Again using (7.1.5) or (7.1.6) we generate the redefinition formula

AlI28a.50] — A[2s4S6]_ (1 kQ)(H[1,56]A7[72L3’4] + H[13,56]AL2{4] + H[14,56}A[Ti’3]
+ Hysy 56 A7, — (14 2))
— (k" &) (H[12,56}A7[73q,’4} + Hpoa 5643, — (12 > 3))
— (k"% - k") (Hp2s 561 Ay, — (123 4> 4))
+(k* - k°) (His 1230 A5, — (5 4 6))

123456
=k """ Hi1234 56 -

(7.2.3)

We identify the form of H[j934 56) through the relation of this superfield with known Dynkin

bracket structures,
AL}L234,56} _ A71334£(56) _ A71733456 _ A7133465_ (7.2.4)

Enforcing this leads to the form of Hjg34 56),

H1234,56] Zé (Hiz3,4,56 — 2H}93456 + Hesa 01 + Hisaz o1
+ (k' - k*)(2H145Ha36 + 2H135 Ha46 + Hi34Hase
— 2H146Ha35 — 2H136 H2a5 — H156H234)
+ (k' - k%) (2H125 H346 + Hi24Hzs6 — 2H126 H345) (7.2.5)
+ (K - k%) (Hua6Hass + HiosHzas + HizsHoas
— HyysHaze — Hi3s Haae — Hi26H345)
+ (k* - k5O)(Hy56 Haa — HizaHose + H124H356))

We note the similarities with Hyj9345¢); this is again four H " terms plus a collection of H?
terms. This provides some clue towards a general structure. That is for example, based
upon what has been seen thus far it seems reasonable to assume that a term Hp g will
contain (|P|+ |Q| — 2) H’' terms, and several H? terms potentially linked to the H’. An
explicit general formula for Hip g will be identified in (7.3.4).
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7.2.0.3 The [123,456] topology

The redefinition for A7[71L23 456] Can be found with the usual formulae, and is given by

Al23456) _ 4123456 _pizassopp
—(k" - k) (Hps as6) A5 + Hi1 ase) Am — (14 2))
— (k' - k%) (Hp2,456 A5, — (12 45 3)) (7.2.6)
(k" - k%) (Hag,108 A + Hia 23 Avy — (4 4 5))
(K% - k%) (Hs,123 A5, — (45 ¢ 6))

+

+

We again relate this to known superfields,

AL}L23,456] _ A}ﬁ?’e(%ﬁ) — AL23650 4123645 4123516 | 4123456 (7.2.7)

By enforcing this we determine the value of H[j3 456

1
Hi123 456) = (- 3H193.456 — 3H1936,5.4 + 3H19 3 456 + 3H4563.2.1

(=}

+ (Kt kQ)(H[1,45]H[23,6] + Hp13,5/H26,4) + Hi16,5H 23 4]
— Hy13.6/H2.45) — Hji3.4Hos 51 — Hiie.41H[23,5))
+ (k" k) (Hpo,5 Hize 4] — Hiz a51Hp2,6) — Hpz,aHize 1)) (7.2.8)
— (k* - k°)(H412)Hs6,3) + Hio,20His3,1) + Hpas 2 Hise, 1)
— Hyye 31 His,12) — Hyae,1)H[53,2) — Hiaz,11H[56,2))
— (K* - k) (Hys 21 Hies,1) — Hie 121 Hias,3) — Hias, 1 Higs 1))

7.2.1 Simplifying the Redefinition Terms

We now identify a pattern within the H? contributions to the rank six H, (p,q] terms in
order to simplify them. The method that was used was to create a new H A,B,Cc object
to be used in the definition of H terms, such that it contains the corresponding H’, and

several H? terms. That is,
f{A,B,C = Hf4737c + some of the H?s. (7.2.9)

There are a number of methods by which the pattern within the H? terms could then
be identified and, on reflection, the most obvious would have been to begin with (7.2.5).
In this equation, there is one H’ with a coefficient of 2, and so we might expect all H?
terms with the same coefficient to be associated with this H’. We could then identify the

relation between the two sets of terms, and validate it by looking at the other H' terms.
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The result is that one identifies the definition of H A,B,C»

Hapc=Hypeo— [ Z (K~ - kj)<H[XR,B]H[jS,C} — (B« 0))
v 2Rs (7.2.10)

+ cyclic(A, B, C)} .

With this, the rank six H definitions are reduced to a sum of four terms each,

1/~ . . .

Hi12345.6) =5 (H123,4,56 + Hi234.5,6 + Hes4,3,21 + H6543,2,1) ; (7.2.11)
1/~ . . .

Hi1234 56) =3 <H123,4,56 — 2H12345.6 + Hes4,3,21 + H6543,2,1> ; (7.2.12)
1 ~ ~ 5 5

H123 456] =3 (_H123,45,6 — Hi936,5,4 + Hi2,3.456 + H4563,2,1> : (7.2.13)

Further, the formula (7.2.10) is such that up to rank 5 it reduces to Ha o = H) g o
Hence, we may replace all H' terms in (4.2.47) with their corresponding H, and the
definitions will be unchanged. Thus we will make the H the primary tool with which the

H terms are defined.
To give one example of (7.2.10), we consider H 1234,5,6.- Lhis is given by

Hisz456 = Higsa 56— (k- k%) (Hpza s Hpp) + His ) Hppa o) + Hiuas Hizs o)
+ Hpy 51 Hipsa,6) — (5 > 6))
— (k' k) (Hp2a 5 Hps 6) + Hpa g1 Higag) — (5 ¢ 6))
(k123 k4)(H[12375]H[4,6] — (54 6)) (7.2.14)

Note the cyclic sum plays no role in this example, as in these cases we sum over XjY =5
or 6, and both X and j are required to be non-empty. Using the vanishing of H; = H;; = 0,
this simplifies further to

Higsss6 = Higgus6 — (k' - k) (Hps 5 Hpag) + Huas Hpse) — (54> 6))
— (k’12 : ]{33)(H[1275]H[3476] — (5 <~ 6)) . (7215)

This it can then be seen links the terms with coefficient 2 in (7.2.12) and (7.2.5), as

required.

It should be noted that (7.2.10) is not the only form H could have taken; for example we

could replace the H? terms summed by

9HYy ppHjsc — (B + C), (7.2.16)
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or even with something much uglier, say

X H.
H&,R,B(Hj75,0)%¢ — (B« C), (7.2.17)

and this would still give the same factorisation at rank six, but something much different
at higher ranks. (7.2.10) is the correct formula though, as is proved by its working at
higher ranks. We just note that at this point it was far from clear that this was the form

it must take.

The H A,B,c preserve the symmetries of H',  ~; they are symmetric in their blocks of
indices and they satisfy generalised Jacobi identities in each of A, B, and C' individually.

More discussion of the symmetries of the H terms can be found in appendix D.

7.3 Higher Ranks

We may express the rank seven H superfields using the technology found at rank six.
Once we have these, we will have enough data to identify the arbitrary rank case. In this
section we do just this [148; 149; 150], and then perform a strong check on the formula we
find.

7.3.1 Rank Seven

The rank seven redefinitions follow from the usual formulae. We then identify the H
superfields as at six points; starting by finding H|1234567,5), and then using this and the
associated A™ superfield to fix the remaining H terms. These calculations all proceed as
required, and the H formulae of the previous section continue to capture all of the H?2

terms involved. The redefinition terms are found to be

1 - . . . .
H123456,7] =7 (Hi2345,6,7 — H12345,76 — Hrgs43,2,1 + Hresa,3,12 — Hres,4,123) (7.3.1)
1 - . . . .
Hi19345,67) 27( — 5H19345,6,7 — 2H1234,5,76 — 2H76543,2,1 + 2H7654,3,12 — 2H765.4,123)
1 - . - . -
Hi1934,567) 25( — 4H19347,65 — 4H12347,6 5 + 3H123,4,567 — 3Hs6743,2,1 — 3Hs674,3,21) -

These have similar aspects to those previously found, and these similarities will be ex-
ploited to find a general formula. For completeness we state all redefinition terms found
so far, presented with their indices in a particularly useful form

1

5 (H123) (7.3.2)

Hpo 3 =
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Hi1o34) = i(ﬁ 12,34 — Hi2,43)
Hi1p34) = 3(2 12,34 — 2H3,412)
Hi12345 = %(ff 12345 — Hi2,350 + Hi2513)
Hipi03.45) = %(2 12,345 — 2H1 2,455 — 3Hy5.123)
Hi12345,6) = é(ﬁ 123456 — Hios.a,65 + Hi2,3,654 — Hi2,6543)
Hi134,56) = é(2H123 456 — 2H12,3 561 + 2H1 25643 — 4H5.6,1234)
Hi193 456) = é(3 12.3.456 — 3H1 24563 — 3Hus6,123 + 3ﬁ4,5,1236)
Hi193456,7) = %(ﬁ 12345,6,7 — H12sa5,76 + Hi2s.4,765 — Hi2,37651 + H12,76543)
Hi19345.671 = %(2H1234 5,67 — 2H123 4,675 + 2H12,3,6754 — 2H1 2,67543 — 5Hg 7 12345)
H1934,567) = %(3H123 4567 — 3H12,3 5674 + 3H1 256743 — 4Hs6,7,1234 + 4H5,6,12347)

These must be studied carefully in order to identify an underlying pattern. However,
certain aspects of this are clear already; for instance that the rank n H is associated with
an overall 1/n factor and n — 2 H terms. Further, for a term Hipgy, |P| — 1 of these are
multiplied by |@|, and |@Q| — 1 are multiplied by |P|. By making observations of this sort

we may begin to find the underlying structure.

7.3.2 Arbitrary Rank

The general rank n redefinition superfield H{4 g, for A and B Dynkin brackets, is proposed
to be given by

1 . -
Hm = g (A 2 COM =181 3 (O ) (783)
XjY=a(B) X5Y =b(A)

where a and b are the letterifications of A and B respectively. We note that letterifications
contribute only 1 of the length of a word involving such, so for instance if X=123(456),
where the 456 has been letterified, then | X| = 4.

This we may reexpress as

1 )

_ O WIHBIE 3.

Hian = (475 <|A|x-y§ B( DYHBIAL (7.3.4)
jY=a

1B Y (~)MHAE ),

XjY=bA
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which follows from |X| 4+ |Y|+ 1 = |B|+ 1 in the first sum, |X|+|Y|+1 = |A| + 1 in
the second. In this representation, all powers of —1 correspond with words we take the
transpose of. This can make more sense if there is some implicit Lie algebraic structure,

as one may apply relations of the form
0(X) = (-1)X+p(X). (7.3.5)
We will explore this further in subsection 9.2.2.

As an example, consider H[ip34 567)- Applying the above formula, we see that this is given
by

1 N -
Hi1934,567) Zm 4 Z (‘D'YHBHY/,J',X -3 Z (_1)‘Y‘+4Hf/,j,X

XY =(1234)765 XjY=(567)4321
:% (4(_1)4ﬁ(5),6,12347 + 4(_1)515[(65),7,1234 (7.3.6)
N 3(_1>51€"(i),2,56743 - 3(_1)6.&(21)’3’5674 — 3(—1)7ﬁ(3§1)’47567>
:% (416]5’6’12347 — 4H567,1234 + 3H1 256743 — 3H12,3 5674 + 3ﬁ123,4,567)
1

= ( — 4H 1934765 — 4H1234765 + 3H123,4,567 — 3H56743.2,1 — 3H5674,3,21>

where in the last line we used the symmetries of the H terms to present it as was given
in (7.3.1). Note I have used the convention (P) to denote the letterification of a word P,
and I have bracketed words which are to be reversed. This will not be standard notation

in this thesis.

As it is only a conjecture that (7.3.4) is the form of the general redefinition terms H{p ),
we should test this. As such these were used to generate the next most complex H,
H{1234567,8], and check it. The formula suggests this should be

Hi1934567,8] 3 <H123456,7,8 — Hi2345,6,87 + H1234,5,876 — H123,4,8765

+ Hi23 87654 — ﬁ1,2,876543> : (7.3.7)

Following the usual procedure of defining a the superfield A!2345678 ysing (7.1.5), wherein
we now define Hijo34567,8) as being the above, we calculate Lg o AL2345678 - We are then
reassured to find that the answer is zero, meaning that we (7.3.4) has correctly predicted

the value of H[j934567,8)- This is a good sign for the validity of our formulas.
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7.3.2.1 Rank Nine Test

The formula (7.3.4) was tested to rank nine. As there was a possibility of as yet unidentified
terms of third order in Hp g at such a rank, we felt that this was a strong test. Equation

(7.3.4) would suggest that Hjja345678,9] is given by,

1/~ . .
H19345678,9) = 9 <H1234567,8,9 — H193456,7,98 + H12345 6,987
B B . 3 (7.3.8)
— Hi934 5 9876 + H123 4,98765 — H12,3,987654 + H1,2,9876543 | -
This passes the test as required; that is, defining the corresponding A123456789 syperfield
using this, the corresponding generalised Jacobi identity is satisfied [148; 149; 150],
Lg o AL23456789 _ (7.3.9)

This is strong evidence that the formula (7.3.4) is likely correct in general. Note that
in testing this, we have implicitly verified the formula gives the correct values of for all
unchecked rank eight topologies, as these are components of the above. For example,
Hi12345678,9) contains a term H1234567,80, which contains a term H{93456.7 89> Which then

k‘12345689 . A7)

contains a term %H [123456,89] ( . Similar is true for all other rank eight topolo-

gies.

It should be noted that implicitly, (7.3.4) does actually contain some H?® terms, as each
H is defined containing H? terms, and one of these may itself contain another H2. For
example, H[19345678,09) should contain a term Hi234567.89. From (7.2.10) this then contains
a term (k' - k?)Hy33 Haas679, which contains a term (k! - k2)H138E[24567779, and then finally
this contains a term (k' - k?)(k? - k*)Hi33 Ho57Hygo. It would have been bold to assume
that these terms were going to be all of the H? terms at rank nine though, and so the test

was necessary.
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CHAPTER 8

Gauge Transformation Construction

In the literature review we detailed how, up to five points, the construction discussed thus
far may be formulated as a gauge transformation. This required finding relations between
local superfields in the Lorenz and BCJ gauges, and showing that they combined in the
non-local scheme into the form of a non-linear gauge transformation. In this section, we
generalise this discussion. We begin by exploring extra complications which arise at six
points, and detail how these may be remedied. We then use these methods to describe
relations between local superfields in the two gauges which we expect to hold to arbitrary
rank. Finally we show that, when the BCJ gauge is described as such, it represents a finite

gauge transformation from the Lorenz gauge.

8.1 Initial Attempts at Generalisation

8.1.1 Generalising the Redefinition Formula

To rank five, we have a general local gauge transformation formula for Dynkin bracket
structures, (4.2.44). Further, we have explicit formula for other topologies, as detailed in

appendix C.1. By studying these, we discover we may extend the Dynkin bracket formula

125
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to all superfields KIP)-4@)] ysing

K = RIPQ — S™ (ky - ky)[AxpKjs — (X ¢ )] (8.1.1)

Pg=XjY
Y=RLLIS

+ Y (kx - k)[HxrKjs — (X < )] = S kpoHpg < K =A™

=X35Y
PPl 0 LK = we

Note that when a letterification p is inserted into a Dynkin bracket as £(Qp), it should be
regarded as a single letter in the Dynkin bracketing, and then reexpanded as a Dynkin
bracket itself. That is,

((Qp) = [U(Q),p] = [((Q), L(P)]. (8.1.2)
So for example,

£(123(456)) = [[[1,2], 3], [[4, 5], 6]], (8.1.3)
where we use (456) to denote the letterification of 456.

It should not come as a surprise that (8.1.1) may be generalised to arbitrary bracket

structures using the contact term map,

DaI:I[P,Q] K = Aa
KB = KIPQI— C[H, K] o [P,Q] - { kpoHipg : K =A™ . (8.1.4)
0 K =W«

8.1.2 Difficulties at Rank Six

This works for superfields up to rank 5, but when we attempted to use it at rank six it failed
in all cases. Fortunately though, the hybrid gauge approach allows for the construction
of the BCJ gauge superfields we are struggling to construct here. Hence, we may fix this
problem by comparing the explicit terms in the two objects, and seeing how they differ.
Then, we can try and spot the pattern in these terms and find some way to add them to

our redefinition formula (8.1.4)

As expected, the two methods do produce different definitions for the rank six superfields

in the BCJ gauge. Lengthy calculations revealed that the A™ superfields differ by the
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following terms for each rank six topology,

(12345, 6] : — (k- kz)(k}34H134H256 + ky2® Higs Hoae + ki Hias Hase — (1 4 2))
— (K2 k%) (k},?4H124H356 + k2 Higs Haug — k%5H345H126>
- (k123 . k4)k‘}33H123H456 , (8.1.5)
(1234, 56] : + (k' - k?) (k2 HyzaHose — ko Hosa Hisg)
+ (k' - k%)) Hiag Has + (K12 - k*)kp?® Higs Hyse (8.1.6)
1
[123,456] =+ S (k" K9 (R — k) Huzs Hase (8.1.7)
[[12, 34], 56] : + (k" - k) (Hy56 Hasa k', — Hoss Hizaki,)
+ (K - Y (Hyo3 Hysek' sy — HiqHssek's,) (8.1.8)
[[123,45],6] : + (k' - k*)(H145 Hask s — Hoas Hisk3ss)
+ (k' - k%) (— Hy26 H3a5k%5)
+ (k'3 k%) (— Hyo3 HasekThs) (8.1.9)
[[[12, 34],5],6] : + (k' - k%) (—Huse Hazaks + Hiza Hasok'3,)
+ (K - k) (Hs6 Hu12k Yty — H1oHasek(hs)
+ (k12 : k34)(H126H345k§}15 - H346H125k71755) : (8'1'10)

We need to find an algorithm by which we may add such terms to the redefinition formula

(8.1.4), and this is detailed in the following section.

8.2 Local Gauge Transformations to Arbitrary Order

The above extensions to the redefinitions may be combined with (8.1.4) in the recursive

formula
KPRl = 1, o KIPQL (8.2.1)
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where the operator L; is defined by
Do Hpg K =Aq
. N 1 A A .
Lo KIPQl = POl _ EC’[[H, Liji1yo K]o[P,Q] - 7\ Foflipg K =AT (8.2.2)
0 K =W«

Note that L; o KPQ gives rise to the operator L;1) o K48l on the right-hand side, with
|A| + |B| < |P| 4+ |Q|. Therefore this iteration over the index j will eventually stop.

The following are some examples of redefinitions computed using this method, keeping all

the nested Lie brackets explicit

Aty = Aty (8.2.3)
Am,2],3] = Aﬁnl,z},s] - kﬁsﬁ[[m];ﬂ )
Af oy s = Aoy — Gk - ko) (g 45— Hppap A7)
o+ (ks - ko) (B A3 — Hipoy g A7) = Mg Bz sy,
2131 = Afiti 2,30 — (k1 - k2) (ﬁ[[1,31,4]f‘i§n - ﬁ[[2,3],4}AT>
— (k12 - k3)(f{[[1,2],4]/1§n) — (k123 - ka) (ﬁ[[l’ng]AT) — ks Hyn o34 »
Aftna.3.45 = Alfp2.a.5 — (K1 k2) (H 11,3,4 415 5 + Hipr 3,51 A8 4 + Hipa 1Al 5
+ Hjp 34,545 — (1 2))
bz k) (A 0 A + Finay g A + Hin 0948 — (1,2]  3))
bazs ) (B2 Aty + Fin 2y A
— (k1234 - k5) (ﬁ[[[l,z],s]A}A?) - ﬁ[[[[l,Z},S],4],5] k13345 »
Ay, = Az — B k) (B Ay + Aipaua) A5 — (16 2))
— (k12 - k3) (ﬁ[[l,z],[4,5]]14§” - I:I[S,[4,5]]Aﬁl72})
— (ks - kas) (B 2y Afl )

+ (K - ks) (ﬁ[[[1,2],3],5}/12” - ﬁ[[[1,2},3],4]A?) — M3au5Hp1 21,31 fa.5) -

—(
—(

These are identical to those described previously, since the redefinition formula (8.2.1)

reduces to (8.1.4) for superfields of rank five and below.

To illustrate (8.2.1) when there is more than one iteration, consider the redefinition of the

superfield AL[} 234156] 5 the BQJ gauge. It starts as

All234.56 _ 1o All12,3456] (8.2.4)
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= AIZ3SE] _ 128056 0 oy 56) — CLH, Ly 0 A™] 0 [[12,34],56]  (8.2.5)

m

Using the definition of the contact term map leads to

All23456] _ 412:341,56] _ k%f3456ﬁ[[12,34],56} (8.2.6)
— (k' k?) ((Lz o Azn)ﬁ[[1734]756] + (L20 21[%34})1?[156}
+ (L2 ° A%E’m)ﬁ[l,m] - (1« 2))
BRI ((L2 o A¥) Hpjg 56 — (12 <> 34))
— (14 ) (Ly o A56)IA{[12734}
— (k3 -k )((Lg o Ay,) Hirs 56 + (Lo o 4%2,4])];{[3756]
+ (Lg o Al456] )H[12 31— (3¢ 4))
—

K )((L2 o AS )H[[12,34],5] - (5« 6)) .
Note that on most of the terms the iteration stops since Lo oflin = fl";n and Lo o/l% = A%

The only remaining non-trivial action Lo oflfjl are on terms are of multiplicity three. From
(8.2.1) we obtain,

. . (I . . U
Lyo Al23 = AR>S — §k123H[12,3] ; Ly o AL = A2 — §k123H[1,23]~ (82.7)
Plugging all of this into (8.2.6) yields

A[T[n12,34],56] _ A7[7[112,34},56} _ k717123456g“12,34}’56} (8.2.8)
— (k' K?) (Azmﬁ[[l,34],56] + A[Ti’34]ff[1,56] + A%%]ﬁ[lm]
1 - . 1 . .
- §k334H[2,34]H[1,56} - EkggﬁH[Q,SG]H[I,M] - (1« 2))
— (klz : ]C34) (A?éﬂquG] — (].2 <~ 34))
— (R ) A
— (K- kY (Aﬁzﬁ[uz,scﬂ + 4%2’4}1[}[3,56} + A%’%}Hv[lzs]
1 - . 1 . .
- §k717124H[12,4]H[3,56] - ikﬁfﬁﬂm,%]ﬂ[lz,z} -3« 4))
— (k°- kﬁ)(AgLﬁ[[12,34},5] — (5« 6)) .
Higher-rank examples can be similarly generated from the recursion (8.2.2). However, as
they grow rapidly in complexity we shall not detail them here. We tested this redefinition
formula in instances up to rank eight, and it worked in all tested cases. It was compu-

tational limitations rather than doubts over the formula which impeded our testing of

further ranks.
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8.2.1 Form of the ﬁ[P,Q] Redefinition Terms at Higher Orders

Unfortunately, a significant difficulty with this method was in finding a general expression
for the H (p,q) terms. These become much more complicated as we move past the five parti-
cle case. Defining them through the enforcement of Jacobi identities on the corresponding
superfields, it has been found that up to multiplicity eight that these can be simplified as
[148; 149; 150]

. A 1~ ~ &
H[A,B} = H[,A,B] - 50[[Ha H]] © [Av B] ) (829)

& 1 2 m 1 A A rm T rm 1
H[,[Al,AQ],[B17B2” = H[[A17A2]7[B1132” - 5 (H[/A17A2}kA1A2 + i(k L k: 2)(HA1HA2 - HAQHAl)

— LA™, A o [Ar, A AP — (4 & B)),
o = H. 1=0,

i 6,5

where the Hy p) are defined as they were previously, and fIZ‘ =kW'H

To demonstrate, we now provide several examples. First of all note that the C maps in
(8.2.9) are associated with pairs of H superfields. As each of these requires three indices,
these terms will vanish identically when |A| 4+ |B| < 6. Thus at lower multiplicities these
relations reduce to (4.2.46), as the C terms only start contributing at multiplicity 6+. An

example of the relations in this case is as follows:

Hj,21,8,14,50 = Hijp 21,31, 14,5) (8.2.10)
1 m 7 4,5

= Hip 3050 — 5k 2540
1

= Hiu 3 5) — 5 Hin 29 (ks - A7)

We will now outline an example of (8.2.9) for the multiplicity six redefinition term H ([[[1,2],3],[4,5]],6]

which should demonstrate the formulae more clearly.

~

. 1-
Hip2.30 45060 = Hij,2)3,14.50.6) ~ 50[[H H] o [[[[1,2],3],[4,5]],6]. (8.2.11)

The expansion of the C' term above is given as the example (E.2.2) in appendix E, and

from it we see that

ClH, H] o [[[[1,2],3], [4,5]],6] = (k" - k)(H[13}6]H[2[45n Hipa,3,6 11 5) (8.2.12)
+ (k2 B (Hip 21,6 His o)) + (B2 69) (Hip 516 Hip 2 3)
= (k' - &%) (Hip .6 Hiz a5 — Hi,30.6/Hp1,0,5))

+ (k' - k%) (Hip g 6 His faa) + (87 k%) (Hyp g 6 Hip 21,3)
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As for the H[[[[l 2],3],4,5),6) term, this piece is given by

. 1 P ‘
H[/[[[172L3M4,5]],6] = Hif1,21,3),4,501.6] — 5 [(H[[[l 2],3],4, 5]]k12345 C'[H, H] o [[[1,2],3], 4, 5]])1421]
1
= Hip,213, 0506 — 5 H23,0450 (Fzaas - A°) (8.2.13)

1
+ o Hin gy (ks - AP) (K120 49,

where we have used (8.2.10) and that the action of C'[H, H] on any Lie polynomial with

less than six letters is zero. Putting this all together we thus have that

Hiim,21,3),14,51.6] = Hi[1,21,3],[4,5]].6] (8.2.14)

1 - 1
= 5 Hi2 300,50 (Raaas - A°) + 3 Hip oy gy (ko - AT) (K159 - A%)

1
= 5 (k- o) (Hips) 6 Hpo a5y = Hipz,31.6H0n 4,5])

1 1
— 5 (kra - ks) (Hip 2.6 His ) — 5 (Ri2s - kas) (Ha 5.6 Hip.2)3)) -

Unfortunately to see an example where the separation of [A, B] into [[A1, A2], [B1, B2]] in
the definition of H’ comes into affect requires going to multiplicity seven, which consid-
erably increases the number of terms involved and makes any such example less easy to
follow. Such terms are no different from the one just outlined though, so we will not detail
them.

It might raise some concerns that various equations seen here are in some places defined in
terms of BCJ gauge superfields, and so this might not represent a true gauge transforma-
tion. This is however not an issue, as a purely Lorenz gauge version of (8.2.9) can be found
by just replacing the BCJ superfields with their Lorenz gauge expansions (8.2.1). Some
difficulty may arise doing this for H4 p ¢ due to the presence of F5'" terms. However, we
do the same thing, and plug the Lorenz gauge expansions into the definition of F' in the

BCJ gauge to get
Fipty = k@ (Ly o AIPQY) — kDQ(Ly 0 AIR9l) — C[(Ly 0 Ap), (L1 o Ap)] 0 [P, Q). (8.2.15)

The notation of (8.2.9) has just been chosen for its compactness and clarity.

8.3 Non-Local Transformation

We would now like to use the form of the local redefinitions (8.2.1) to show that at the non-
local level the mapping we are performing is a gauge transformation. There are additional

complications compared to lower ranks in the form of products of H terms, and as we
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shall see these shall combine to make an overall finite gauge transformation [151],
ABCT — ALyt —oUuU !, U=e¢t. (8.3.1)
To begin though, we recall the form of gauge transformations up to five points (4.2.60),

AR = APY — kP Hp + Y (AP Hy — AP H) (8:3.2)
XY=P

This will serve as a starting point for our calculations.

8.3.1 Six Points

At six points, we now have some H? terms which do not fit into the formula above, and
some experimentation is needed to see how these affect the gauge transformation. The six
point Berends-Giele current expansion in terms of local superfields given by,

Kiii11,2),31,41,5),61 N K11, 12,311,41,5),61 n Kii11,21,3,411,51,61
$128123512345123455123456 $1238512345123455123456S523 $12812345123455123456S534
Ki111,2),3),14,501,61 n Ki111,2),31,41,15.,60) n K111, 112,31,471,51,6)

K123456 =

81251235123455123456545 5128123512345123456556 $123451234551234565235234
K11, 12,13,4111,5),6) n K1, 12,31, 14,5061 n K11, 12,311,41,5,61
§123451234551234565234534 §1235123455123456523545 5123512345123456523556
Kii11,2,113,41,511.61 n Kii11,21,13,[4,5001,6) n Kii1,21,13,411,[5,61]

81251234551234565345345 51281234551234565345545 §12512345123456534556
Kii11,21,3),14.5),6]) N Ki11,21,3),14,[5,61)] n K, [112,3,41.501,6]

§12512351234565455456 §12512351234565456556 §1234551234565235234 52345
K, [12,[3,4]].5)6] n K1, (12,3, [4.5)11.6] n K, [12.3),4]).[5.6]]

(8.3.3)
§123455123456 523452345534 $123455123456 52352345545 5123451234565235234556

Kip,12,113,41,5011,6) n Kip,12,03,14,5011,6) n K1, 12,1347, 15,60
§123455123456523455345345 §123455123456523455345545 $123451234565234534556
K, 12,31,114.5), 6] n K, 12,31, 14, 15,601 n Ki11,21,113,41,50, 60

51235123456 5235455456 51235123456 5235456556 $1285123456534534553456
Kip1,21,113,14,511,6] n Kip1,21,11,41,5,6)) n Kip1,2),3,114,5),61)
§125123456534553456545 §128512345653453456556 51285123456534565455456
Ki11,21,1,14,[5.60) n K, (1112,31,41,5), 611 n K, (112,13,411.5), 61
512512345653456 5456556 $123456523523452345523456 $123456523452345523456534
K1, 1112,31, 14,501, 60 n K1, 1112,31,41, 15,601 n K1, 112,(13,41,501, 60
$12345652352345523456545 §1234565235234523456556 5123456523455234565345345
K1, (12,13,14,50,61) n K, (12,3,411, 15,611 n K, (12,31,104.5),601)
5123456 52345523456 5345545 51234565234 523456534556 51234565235234565455456
K1, 112,31, 14,[5,60) n K1, 12,(113,41,5),60) n K1, 12,(13,14,50,60)]
$1234565235234565456556 5123456523456534534553456 5123456523456534553456545
K1, 2,13,41, 15,600 n K1, 12,18,104,5,61) n K1, 12,3, 14,15.60) '
8123456523456 53453456 556 8123456523456 53456 5455456 5123456523456 53456 5456 S56

Setting K = A", we equate this in the BCJ gauge with each superfields expansion in
terms of the Lorenz gauge and redefinition terms generated by (8.2.1). We then rearrange
the output of this, forming Berends-Giele currents with the resulting superfields. This is

no small task due to the volume of terms involved in the calculation, but eventually one
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finds that it can be simplified as [148; 149; 150]

m,BCJ __ ,m,L m
Alosas = A13a56 — k193456 H123456

+ A" Hazase + ATy Hzas6 + Al53Hase
— AgnH12345 — A%H1234 - A%6H123
+ ki Hao3Hase — Ky HiosHase -

(8.3.4)

This calculation can be performed much more elegantly with the use of relations found
for the contact term map. We take the general form of the gauge transformation (8.2.1),

and consider its application to Berends-Giele currents defined through the b-map,
ATEBCT — [A™] 0 b(123456) — C[H, Ly 0 A™] 0 b(123456) — [H™] o b(123456) . (8.3.5)
Applying the proposition (6.2.1), the middle b-map deconcatenates

Alysiss = Alsiise — ke " Hgguse — [H, Lyo A" 0> (b(X ) @b(Y) —b(Y) ®b(X )>
XY=12..6
= Al5is6 — k2 H 193156 (8.3.6)

=3 (MxlLa0 Ao b(Y) = Hy[La o A™] 0b(X))
XY=12...6

Completing another round of the same sort of calculation on the [Lg o Am]] terms yields!

m,BCJ m,L 123456 m,L m,L
Aigsase = Avgsase — b~ 123456 — Z (’Hx.AY —Hy Ay ) (8.3.7)
XY=12...6

+ % 3 (HXHyk?} - HyHXW) N
XY=12...6

This is then (8.3.4), produced without the need for complex rearrangements of superfields

into BG currents.

We now transition to the non-linear picture using the methods of section 4.2.4, and see

that this six point gauge transformation above follows from the perturbiner expansion of?

AZCY = AL, — (0 H] + (AL, H] — [0, HI H] (8.3.8)

Which suggests a non-linear gauge transformation [88]. We will now show that this, and

all higher point superfields generated using (8.2.1), amount to an infinite series of non-

!'Note there are no Lz terms in the below. These have been omitted intentionally as any such terms
would be of the form nyz:m.ue Hx Hy Az, and since each H requires at least three indices to be non-zero
all terms of this form will be zero.

2That is, if one takes (8.3.8) and expands the superfields as series expansions in Lie algebra generators
as in (4.2.59), and equates the terms with coefficient TPt TP2TP3TP4TP5TP6  then one finds (8.3.7).
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linear corrections to the gauge transformation at five points. This gives an overall finite

gauge transformation [151].

8.3.2 General Points

We may reformulate (8.2.1) as a perturbiner series using

1 1

LjoAp = Ap — ;[&n,H] - 3[IHI, Ljt10Am], (8.3.9)

This allows us to state the form of the gauge transformation as
ABCT — L, 0 AL | (8.3.10)

which upon repeated application of the I map gives

ABCT _ AL | H, 6] — [F, AL] — L [, 00]) + 188, [, AL])
21 2 (8.3.11)
o (L B [HL, ][] +

We may simplify this in terms of the supercovariant derivative (3.1.3) in the Lorenz gauge,

VE =0, — AL The transformation thus becomes

ABCT = AL 4 [, VE] - %[H, [H, V5] + %[H, [EL, [, V7))l + . (8.3.12)

This is then the series expansion of a finite gauge transformation [151],
ABCT — AL —guU !, U=eH, (8.3.13)

Alternatively, this can be rewritten as VB¢ = e=ds (VL) where ady(X) = [H, X]. We
thus have that, to arbitrary multiplicity, the transformations defined in this section are
gauge transformations, and thus performing them does not affect results. As doing so gives
BCJ symmetries and introduces no extra complications, we therefore for the remainder of

this thesis always construct superfields in the BCJ gauge.



CHAPTER 9

Summary and Outlook

9.1 Summary of Results

Using the methods described in this part of this thesis, the speed at which multiparticle
superfields (and therefore amplitudes) in the BCJ gauge may be computed has improved
significantly. To summarise this effectively, we will now outline how a tree level amplitude
in D = 10 SYM satisfying BCJ relations may be efficiently computed, and will clearly
state when results developed in the course of this research are used. In the following

section, we will then discuss some potential directions for future research in this area.

Suppose one wishes to compute the amplitude A"¢¢(1,2,...,n). By (4.3.10), this is given
by

An= > (MxMyM,). (9.1.1)
XY=12..n—1

A result which was speculated to hold in general previously, but in this research has been

proved, is that the BG currents M 4 have variation

QMa= > MxMy. (9.1.2)
XY=A

As detailed in the literature review, that the amplitude (9.1.1) is in the cohomology of the
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BRST operator follows from this result.
We then expand (9.1.1), and this is done using the b-map (2.3.13)
Ma = Vyay = X“ARA. (9.1.3)

That is, we expand it as a series of fractions, with numerator AaAg for C' some Lie
monomial, and the denominator some combination of mandelstams. Using the hybrid
gauge approach for simplicity, this superfield Ag is defined by recursion. First one expands

it in terms of hybrid gauge and redefinition superfields using,
DoHpg :K=Aa
KPP — KPRl _ C[H, K] o [P,Q] — KpoHipg K =A™ . (9.1.4)
0 c K=We

This general Lie monomial formula was a new result of this research. Then one expands

the hybrid gauge superfields in terms of those of lower rank in the BCJ gauge,

AP = _LAZP  49) 4 AL~ (P o Q)] 9.1
AR = L r a9+ APRg, - (W) - (P o Q).

. 1 1 1

W = ZFTIZ(')/”SWQ)W _ i(kp A WS — 3 PYAY — (P < Q),

FIDON = kpo Al o) — kpgAlp o) — CIA™, A" 0 [P,Q] .,
with the higher weight superfields defined by

By = kboWibg — CIA™, W] o [P, Q)] (9.1.6)
mlpg _
F[P,Q] = kl@QF[qu,Q] — C[A™, FP] o [P,Q)].
The first three of these formulae were known prior to this research, but the latter three
were only known for the case of left-to-right Dynkin brackets. Then one also needs to
expand the H superfields. For a general H|pq this is done by using Jacobi identities
within the P and @ to relate it to some Hg g), for R and S Dynkin brackets. Then one

applies the following sequence of relations

1 -
_ _N\WYI+IBlg. 1.
iY=a
—1Bl Y ()M L),
XjY=bA
Hapc=Hypeo— [ Z (KX kj)(H[XR,B]H[jS,C’} —(B+ C)) (9.1.8)
XY =A

Y=RLLIS
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+ cyclic(A, B,C) |,

1 .
HIILX,B,C =Hypce+ i(H[A,B}(kAB - Ac) + cyclic(4, B, (), (9.1.9)
1 1
Hypc = —EAZLA%Fgm + §(WA’ymWB)A7£ + cyclic(A, B,C). (9.1.10)

The first two of these were key new results of this research. By repeated use of these

relations, one finds an expression for the amplitude in terms of single particle superfields!,
An = (f(XY, AL, AT, W) (9.1.11)

These are then expanded using the results of [89], and the #° components are selected as

required by the pure spinor bracket [104].

9.2 Future Research

There are numerous directions for possible future research in this area, which have been
explored to varying degrees. In this section we discuss a few of these, and what progress
may have been made upon them. We should also draw the readers attention to [147] which
generalised upon the contact term map in particular; by reformulating it and by relating
it to the S-map of [60].

9.2.1 Simplifying Amplitudes In Terms Of Redefinition Terms

In the course of this work, an interesting feature of the redefinition terms was noticed.
Namely, that SYM amplitudes could be expressed in terms of the objects H directly,

skipping several steps of calculation. Where we have the amplitude expression

AYMQ 2 p) = Y (MxMyM,), (9.2.1)
XY=12..p—1

and we would ordinarily expand the BG currents using the procedure outlined in the
previous section in terms of single particle superfields, and then expand these in terms of

their components and select the relevant terms within the pure spinor bracket, we may

Note this is not the most efficient way to perform this step, we merely chose to describe it in this way
here in order to avoid introducing more material which will not be used elsewhere in this thesis. In brief,
while one does need the above formulae for the H terms as a function of the standard {AY, AB, Wg, FL.}
multiparticle superfields, these do not then need to be expanded down to single particle superfields. Instead,
one may take advantage of the Harnad-Shnider gauge [152], defined by the constraint %A, = 0. A
multiparticle version of this was developed in [88], and this was combined with the BCJ gauge therein also.
In this gauge theta expansions for multiparticle superfields are then known [88], reducing the number of
calculations needed considerably.
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alternatively make the identification

(VxWVz) = Hxyz| (9.2.2)
6=0

That is, rather than expanding the V4Vp Ve, we instead identify their pure spinor bracket
with the & = 0 component of the ]:IA,B,C- These components are

AL, = e, Wi = X, Frn = frun: (9:2.3)
This then skips a significant amount of calculations which would otherwise be needed.

To give one example, we consider the three point amplitude,
A(1,2,3) = (M1 M2 M3) = (ViVaVs) . (9.2.4)
We identify this with the § = 0 component of
Hios = H)pc=Hapc (9.2.5)
_ —EATASF:;”” + %(lemWQ)Agl + eyclie(1,2,3).

Making the identifications (9.2.3) thus yields the three point amplitude

1 1 .
71671”63 3"+ §(X17mX2)€§1 + cyclic(1,2,3) . (9.2.6)

By traditional methods however, we would have to expand the V; = A*A!, in terms of its

components,

1 1
NN (S (07 aeh, + 5(67™)a(O7mx") (9.2.7)

+ %(e)ym)awwqe)k;e;) (%(Q’yn)gei ) (%(w“)ae% )

and then select the #° components of this. Clearly this is significantly more complicated,

and so this trick is worthy of further exploration.

It should be noted that in previous papers, similar connections to this have been made

[42]. Therein, the analogous result with the replacement
(MxMyMz) = Hxyz (9.2.8)

0=0

was identified implicitly. That these two possible replacement rules agree with each other
(once momentum conservation is used) is an interesting result in and of itself, and would

be interesting to study.
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9.2.1.1 Origin Of This Simplification

This result comes seemingly out of the ether, and here we discuss possible routes by
which it may be explained. Recall the construction of multiparticle superfields in the
literature review, and in particular equation (4.1.7). When we were defining the two

particle superfields we had a relation of the form
U'U? — U' + (total derivatives), (9.2.9)

and as we knew we would integrate this we dropped the total derivative terms. Higher
rank superfields are constructed by the same method, and so similar terms will have been
implicitly dropped. However, is may be the case that simplification is flawed. The total
derivatives come from 1/z3, terms in the OPE, and it may be the case that at rank three
and higher some non-trivial relation between such terms occurs and results in extra terms

which contribute to the amplitude.

In recent work [153], the n-point tree level amplitude was reformulated as

A= <2’122232’31U1(Zl)UQ(Zz)U3(23)/dZ4U4.../dZnUn>, (9.2.10)

with this bracket defined by (1) = 1. That is, in this formulation the pure spinor bracket
effectively selects the # = 0 component of its constituents. This aligns with that we select
the # = 0 component of the H A,B,C, and so seems like a promising line of inquiry. However,
why the amplitude constructed in this way should correlate with the redefinition terms

only remains a mystery, and requires further study.

9.2.2 H Superfields With General Structure

The H{pg) of the previous discussion were defined only for P and @ Dynkin brackets,
and containing elements bearing some similarity with the contact term map applied to
such. This might lead one to wonder if the redefinition terms can be extended to arbitrary
Lie bracket structures. To do so, the definitions of H4 pc and H 1’47 B.C would generalise
naturally. The H A,B,c superfields meanwhile may be reformulated in terms of the contact

term map

Hapeo=H)ype— (C[[H[,,B}H[,C]]] o A+ eyclic(A, B, C)) . (9.2.11)
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The difficulty lies in finding a general expression for H{p g though. However, some clues

to this may be found by reformulating the current expression. To begin, we have

1 -
Higayu) = A 1B |A| Z (*1)‘Y‘+|B|H£(Y),j,z(x) —(A+ B) | . (9.2.12)

XjY=aB

We may remove the (—1)Y| and the reversal of the word Y using

0(A) = (~)A-1r(A). (9.2.13)
Doing so yields
1 -
Hewamn = 5y | 14 Yo WP H iy (A B (92.14)
XjY=aB

Then, doing likewise for the ¢(B) on the left hand side gives

1 -
Higayr(my) = A+ |B| Al X];::aB Hyx)jr(v)y— (A< B) |, (9.2.15)

where we use the symmetry of H under permutations also.

It is not difficult to imagine that a map should exist which generates this. However, time
constraints and commitments to other projects have led to this not been explored as fully
as would be liked. Some progress was made, and this is discussed in appendix F. However
for reasons described therein these results should be treated with considerable caution,

and are likely incorrect.

9.2.3 Further Unexplored Research Directions

While the previous two subsections detailed areas where some work has began, there are
many other directions where work could be performed. One such is finding higher point
H (4,p] superfields. While we have found an expression for these which holds in the cases
we checked, it was not a particularly appealing one in the same way that that of H p
was. This suggests the possibility of irregularities in the formula, which would present
themselves at higher points. This we have not checked for though, due to computational
limitations. Alternatively, it may be that the formula we have is correct and just not
presented in its best form. This would also be worthy of investigation. We should note
that though we have doubts about the specific form of H (A,B], those do not extend in
the same way to the local gauge transformation rules they apply to, and so that the BCJ
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gauge is achieved by a gauge transformation from the Lorenz gauge is not in doubt.

One further possible direction would be to attempt to find a defining equation of the BCJ
gauge. That is, the Lorenz gauge is defined by the relation k3.A% = 0. Similar holds for
other gauges, with for instance the Harnad-Shnider gauge defined by %A% = 0 [88; 152].
However, no such relation is known for the BCJ gauge, and we instead use an indirect
method based around local superfields satisfying numerous relations to find it. It would

be interesting to see if a simple relation alike these could be found for the BCJ gauge also.

By looking at the lower energy regime of (open bosonic) string theory, that is if one takes
o’ to be small but not simply zero, one finds a SYM theory with deformations proportional
to o’ F3 and o/ F* [3]. A Berends-Giele approach to amplitudes in such was discussed in
[154], and this involved the identification of o’ corrections to the Hip gy fields. No general
expression was found for these, though descriptions for such were found in terms of o’'-
corrected Hy p ¢ fields. As such, it may be possible to take the results discussed here,

and use them to find a general expression for such.

Efforts have been made to describe a kinematic algebra. That is, to describe the specific
structure of the Lie algebra which describes the kinematic numerators in accordance with
the BCJ relations [155; 156]. It may be possible to gain some insights into this through

work in this part.

Finally, the Berends-Giele recursions of Yang-Mills theory have been derived in terms of
L-algebras [157]. As such, it may be possible to use some similar approach in order to

derive the H4 pj superfields.
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Part 111

One Loop Field Theory
Amplitudes From String Theory
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As detailed in the literature review, amplitudes in 10D SYM have been identified to six
points, and have been shown to satisfy BCJ relations up to five points [1]. However,
amplitudes in string theory have more recently been identified up to seven points, and
there has been some work progress towards higher point extensions of this [20; 21; 22].
Clearly, as field theory should follow as a limit of sting theory [5], there is something of a
disconnect here. We should be able to extend the results of field theory using the results

developed in string theory, and in this section we do just this.

This begins with the following chapter, wherein we detail a procedure to efficiently take
field theory limits of results in string theory. This begins with a justification for the
methods used based upon comparable results at tree level, and the underlying symmetry
between the two different loop levels in such calculations. We then state the rules we have
developed, whereby one takes a term from the one-loop string correlator and outputs a con-
tribution to the corresponding field theory amplitude based upon the Kronecker-Eisenstein
coefficient associated with it. The amplitudes produced we will see unfortunately depend
in part upon the choice of loop momentum parameterisation of the amplitude, and so
a necessary consistency condition of the field theory limits will be needed and will be
proven. We then construct amplitudes up to seven points, and discuss how we expect

these methods to generalise to higher points.

This is then followed by a chapter discussing BCJ relations. A key motivation behind this
work was the absence of BCJ relations in the work of [1], and using the scheme described
in this part we will see that such relations are restored. We will give several examples
of such at six points, and discuss aspects of the equivalent seven point calculations. The
expressions for seven point numerators are so complex as for it to be unfeasible to discuss
them in any detail in this part, but we are able to assure the reader of the truth of any
properties described, and refer the reader to the full amplitude expressions at [28] if they

wish to check them for themselves.

Given an SYM amplitude satisfying BCJ relations, it is natural to ask if we may then use
this to generate supergravity amplitudes. In the next chapter we discuss this, detailing
the success in doing so at five points and the unfortunate failure of the calculation at six
points. Significant work has been performed in an attempt to rectify this problem, and
we detail this, but unfortunately the correct solution has not yet been found. We then
conclude with a brief discussion of the results of this part, and some potential directions

for further investigation.

The work discussed in this part largely follows the paper [29].
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cHAPTER 10

SYM Integrands From String Correlators

In this chapter, we detail the rules which have been identified in order to find the field the-
ory limits of string correlators. The most obvious approach to identifying these would be
an extremely complex mathematical analysis; expanding the Kronecker-FEisenstein coeffi-
cient functions g(”)(z, 7), turning the strings into point particles by looking at the o/ — 0
limit, and sending Im(7) — oo to turn the genus-one surfaces into point particle diagrams
[5]. Approaches to doing this may be found in [158] or in the string-based formalism
[146; 144; 143; 142; 141; 34]. However, this would be no small feat, given the complexity
of the KE terms particularly when n > 2.

Instead, an approach taking better advantage of the methods of the pure spinor formalism
was used. We know that in such, amplitudes are in the cohomology of the BRST operator,
and this may be used to more efficiently construct them. By using our knowledge of where
their poles of KE coefficients should lie, we are able to identify which terms from the
string correlators may contribute to which amplitudes in the field theory limit. By then
enforcing the vanishing of the resulting amplitude expression, we are able to fix the specific
coefficients which arise in the limit. This approach, as well as some understanding arising
from tree level amplitude calculations, led to the identification of the rules which follow

shortly.
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) 5 5

Figure 10.1.1: We wish to verify this BCJ relation and we must use (4.4.8) in order to
find the third numerator, as the naive relabelling of the equivalent term from A(1,2,3,4,5)
will fail.

10.1 Insights From Tree Level Considerations

One of the key steps which we make in order to rectify the problems of previous work
is to no longer assume that numerators in different colour orderings follow from a simple
substitution of one set of particle labels by another. This is similar to the discussion of
subsection 4.4.1, in which partial amplitudes in non-canonical orderings were identified at
tree level, and it was found that in order for them to satisfy BCJ relations they could not
be a simple relabelling of the canonical ordering. To illustrate this further, we will discuss

one more tree level example, which was also detailed in [29].

Suppose we wish to check the BCJ identity in figure 10.1.1. The tree level five-point SYM

amplitude in the canonical colour ordering is given by (4.3.9),

ASM(1,2,3,4,5) = Y (MxMyMs)

XY—=1234
_ Vii2,3VaVs N V1,23 VaVs n Vit Vs Vs (10.1.1)
5125123 5238123 512534
N ViVias Vs N ViViasqVs _
5235234 5345234

From this two of the numerators may be identified, but the third may not. If we sup-
pose that the missing [[1, [4, 3]],2] numerator follows from taking the numerator of the
[[1, 2, 3]],4] diagram, and swapping each 2 for a 4 and vice versa, then the BCJ relation

would be
Vi VisaVs = ViVio, 3.4 Vs + Vi1 2,3 VaVs # 0. (10.1.2)
Using (4.4.8) however, yields the BCJ representation of the noncanonical ordering,

A(1,4,3,2,5) = > VixV,yVem(14325]1, X,5,Y,4)(—1)F 1+ (10.1.3)
XY =23,32
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1
= (V1 Viaze 4+ ViaVag + VizVag + Vi Va) Vs

514525
+ V1ViazoVs — (ViVia,23) + V1,23 Va) Vs (10.1.4)
815534 523514
1
+ (ViViazg + ViaVaz) Vs — ViViga3 Vs -
525534 515523

We may then read off the relevant numerator from this, (V1Vy32 + V12Vy3)Vs, and using
such the BCJ relation is satisfied by the symmetries of V4 in the BCJ gauge,

V[1,2]V[3,4}V5 - VIV[Q,[3,4”V5 + (ViViage + ViaVis) Vs = 0. (10.1.5)

At one loop, as we have discussed, different field theory diagrams correspond with different
poles in the string correlator. These occur at small distances, as z; — z; on the Riemann
surface, and as such the behavior of the terms involved becomes independent of the genus
of the surface. Therefore, one would expect properties of the one loop field theory am-
plitudes to be similar to those of tree level. This includes having different orderings not
necessarily related by relabelling to each other, and also being able to describe amplitude
pole structures in terms of the Berends-Giele double currents ¢pjo as in (2.3.9). Extra
complications arise, with for instance the addition Feynman loop momentum integrands
now defined using the notation of (A.2.16), but these guiding principals from tree level

aid our understanding of how to proceed.

10.2 Field-theory limit of Kronecker-Eisenstein coefficients

The nature of the limit we take will depend upon how the loop momentum is chosen to

be represented in the field theory amplitude. As such, we introduce the notation
AL, 2, .. ,nl+atky + - + anky) , (10.2.1)

meaning the amplitude with colour ordering 1, 2, ..., n, constructed such that the momen-
tum going from the n'* leg to the 1%¢ leg is ¢ + a1ki + ... + ank,. For example, the
field-theory limit of the five-point correlator with insertion points ordered according to
21 < 23 < z5 < 29 < z4 and loop momentum ¢ running between legs 4 and 1 is represented
by the SYM integrand! A(1,3,5,2,4;¢). A more complex example is illustrated in figure
10.2.1

At one loop, as at tree level, the colour ordering of the resulting SYM integrand from

the field-theory limit of the string correlator corresponds with the relative ordering of the

LFor simplicity we will consider only the planar topology.
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03 04 4 1

02

£+ 6ky — bks
o1 Og 3 2

Figure 10.2.1: The first hexagon above is left as general as possible, and this would
belong to the amplitude A(oy,...,06;¢ + >, a;k;). The second is a specific case, and is
the hexagon of the amplitude A(3,5,4,1,6,2;¢ + 6k; — 5k3). Note this latter case could
equally be represented in five other ways, for instance A(4,1,6,2,3,5; ¢+ 6ky — 6ks — k5).
However, when an internal edge has its momentum made explicit, we choose choose to
write the amplitude correspondingly.

z; variables on the boundary of the surface in the string amplitude. For example, the
ordering z; < z3 < z5 < z4 < 23 yields an integrand with colour ordering ¢ = 13542. The
ordering of such z; determines which poles are present in an amplitude, and we encode
such in terms of a map Ord 4(B). This acts on two words A and B, and gives the maximum
cropping of the word A which maintains every letter it shares with B. That is, we take
the word B and return the smallest sequence of consecutive letters in the cyclic-symmetric

object A containing every letter in B. This is most clearly understood through examples,

Ord123456(32) = 23, Ord123456(13) = 123, Ord123456(15) = 561,

(10.2.2)
Ord24856317(58) =85, Ord24856317(465) = 4856, Ord24856317(78) = T7248.
This map may be defined algebraically by
AiAi+1--'Aj—1Aj :ifAZ',Aj € B, BQAZAJ, j—1< ‘iél,
|A]

OrdA<B) = AjAj+1...A|A|A1A2...AZ‘ s if AZ‘,AJ‘ €B, BC AZA], j—1i> 5

0 : else.
(10.2.3)
This will be used in conjunction with BG double currents to generate kinematic poles for

each ordering o. This will be more conveniently summarised with the notation

A(0]A) = $ora, (4)4 (10.2.4)

for an amplitude with colour ordering o.

We are now ready to give the limits. The field theory limits of terms from the Kronecker-

Eisenstein series are



10.2. Field-theory limit of Kronecker-Fisenstein coefficients 151

gD g = PO P+ b® D P(kl) + 0B P(if) + <P el Pij kL), (10.2.6)

1]

(p1) (p2) (p3) b(pl)b(Pz)b(Ps)P+b(m)b(Pz) (PS)P

9iij1 gzzjzgzws 1171 Vizg2 Visjs i1j1 Yinga Cizjs (i373)

b(pl) (p2 )b(fns)P( )+C(p1)b(P2)b(p3)

i1j1 Cing Yizjs i171 Vi2j2 Vi3j3 P(irj1)

P Py iy o) + (PR P Py i)

P i)+ ) P i)

(10.2.7)

These are all of the limits necessary to calculate amplitudes using the known string cor-
(p)
ij o
over the possible ways to assign these to either a b® or a ¢P) (to be defined below), and

relators. They always have the same form; we take the subscripts of the ¢ and sum

whenever we assign them to a ¢(P) they are also entered into the P function. In turn these

are defined by

P=1 (10.2.8)
P(ij) = ¢(olij) L (10.2.9)
b(olijl)y; if j =k
P(ij, kl) = i L ’ (10.2.10)
b(olij)e (a|kl)[ij,kl if all 4 unique
B(alijin) Lijin ifj=k l=m
o(oifl)p(a|mn) L1, mn it j =k, myn¢{ijkl}
P(ij, kl,mn) = § ¢(colijn)d(o|kl) Lijn 1 if j =m, k1¢{ijmmn} (10.2.11)
d(olig)d(o|kin)Tij, kin itl=m, i,j¢{ki,mn)
b(oli)d(o|kl)d (a|mn)Iw klmn  if all ¢ unique

where we used the notation (10.2.4).

Finally, the coefficients b® and ¢P) depend upon the loop momentum structure of the

amplitude we aim to produce. For an amplitude A(o; ¢+ Y1 | a;k;), they are given by

p _
m Bm(aj —a;)P™™
bl = 7 (sgngy)" Tt (10.2.12)
J = J m!(p —m)!
(r) _ 1 —1
Cij = m((a a;) + sgnfdist] (i, 5))" (10.2.13)

where B,, denotes the n” Bernoulli number. Only the first three values of this are required
to produce amplitudes up to seven points, and these are By =1, By = l , By = l , B3 =0.
The sgng; in the above is the sign of ¢ and j with respect to the ordermg o, and is defined
by[159]
sgng _ +1 :iisleft of jin B (10.2.14)
—1 :iisright of jin B
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Finally, the function dist2 (i, j) measures the distance between i and j in the word B, and

returns +1 if it is larger than a and 0 otherwise,

. Bre +1 :if 4 is a or more letters to the left or right of j in B
disty (i,7) = (10.2.15)
0 . if ¢ is fewer than a letters to the left or right of j in B

Note that when a; = 0 Vi, we must take 0° = 1 in this. We may justify this in terms of

continuity. To give a few brief examples of these two maps,

disti?4557 (4, 6)sgnl 234567 = | disti?34567 (1 6)sgnl 24567 — 1 |
distE?34557 (7, 1)sgni34567 = 1 | dist33021(4, 6)sgniao?tt = 1, (10.2.16)
disti?34576 (1 6)sgnl23576 = 1 | distII8364527 (9 3) 5918364527 _ _q

Using these tools, amplitudes have been constructed up to seven points which have been
verified to vanish under the action of the BRST operator. These rules are expected to
generalise naturally at higher points, and speculations about such will be discussed shortly.

We now illustrate these methods with an example of a limit at seven points.

10.2.1 A Seven-Point Example

Here we detail how one takes the field-theory limit of the term g%)gé? g%)VlT%m’gA in

the seven-point string correlator (5.3.20), in order to find the SYM integrand with colour
ordering A(1,2,3,4,5,6,7; ¢+ 4k4 — 6k5). We first apply (10.2.7),

o055 UL P+ gl
Ul PG + D P2
+ 00D P(57,76) + Vb ) P(25, 76)
+ e P25, 57) + Yl ) P(25,57,76) .

(10.2.17)

Many of these terms vanish. For example using (10.2.8) the factor P(57) is proportional

to ¢(1234567|57) = ¢57|Ord1234567(57) = ¢57|567 =0. Slmllarly, we find
P(25) = P(25,76) = P(25,57) = P(25,57,76) = 0. (10.2.18)

The non-zero terms are then given by?

P=1=I%% 56 (10.2.19)
n 1 a4,a
P(76) = §(1234567|76) Frg = érsio7Tr = — - —T15545,10 (10.2.20)

2The I notation below is detailed in appendix A.2
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. 1

P(57, 76) = ¢(1234567|576)I576 = ¢576‘567Il,2,374,576 = — If‘,427,?’f4,576 (10221)

5675567
Note we include the a4 and ag labels only as these are the only non-zero shifts in this
particular amplitude, with a4y = 4 and a5 = —6.

To find the various bgjl-) and ¢ terms we apply (10.2.12) and (10.2.13). If we first look at

ij
(1)

the case of gy5', setting as = 4, a5 = —6 we see that these are given by
1 0
(1) _ Bo(=6)"  Bi(-6)" 1 11
b = o wor - 0t =3 (102.22)
1y (a5 —ag + sgn 234567 Qigt [234567 (2, 5))171 (—6+(—1)%x 0)0 1
Co5 = = =—. (10.2.23)
2(1-1)! 2 2

The other b and ¢ terms may be found similarly, and are given by

B o 1 o 1 o 1 (10.2.24)

57 T 90 BT T 50 Y6 T T oo C76_2'

Putting everything together, we see that the limit is given by

(1) (1) (1) 143 143 1 4, a5 11 1 asas

a4,as5
925" 957 976 8 I1,2,3,4,5,6,7+78 sar 1234567 §7867856711,2,3,4,567 (10.2.25)

Doing this analysis for the full seven point correlator leads to a BRST closed expression
up to anomalous terms. The explicit expression for this is available to download from [28].
We discuss this example further in appendix H, with the BRST variation of a numerator
in this amplitude described in full and shown to have the desired property of canceling

propagators.

10.2.2 Consistency Between Amplitude Representations

Our representations of amplitudes should be cyclic symmetric. That is, it should be
possible to describe any amplitude A(1,2,...,n;¢+ >, a;k;) with any other particle label
leading and make appropriate shifts in the loop momentum, and get the same result.

Hence, our field theory limit rules should be invariant under relations of the form
AL, 2, ..., n;l+arky+...+ank,) = A(2,3,...,n, 1; 0+ (a1 — 1) k1 +agks...+anky),. (10.2.26)

In this subsection we prove that they are, and it therefore follows naturally that we can

always choose to fix the colour ordering of the SYM integrand to start with a leading 1.

It is only the b and ¢ terms which may differ between these two representations. We refer to
those relating to A(1,2,...,n; ¢+ X;a;k;) with a (I), and those relating to A(2,3,...,n,1;{—
k1 + ¥ia;k;) with a (II). To begin, we compare their bg’ ) terms. Note we restrict this
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discussion to the limit of a single Kronecker-Eisenstein coefficient function gg ), as the
limits of products of such are the natural generalization of this and will follow accordingly.

Referring to (10.2.12), and using the notation aj; := a; — a;, we see that they differ by

0 10 _ N 1o mym  BmaGi "
by b = (((smnlp ) llp )l
m=0
B (aji + 6,1 — 0;1)P™™
23..n1\™M Em\“j1 7 7
— (sguz") e p—— ) (10.2.27)
; B, 12..n\™M p—m 23..n1\™M p—m
- Z m( (sgnif") " af ™ — (sgni; ™)™ (azi — 61 + din) )
m=0 p :

Clearly in all cases where neither of ¢ or j is 1 this vanishes. If we suppose ¢ = 1, the first

sgn function is 1, and the second is —1. Hence this difference becomes

p
I(p) _GI1(p) _ B p—m m (g —m
m=0

This can be verified to vanish on a case by case basis with relative ease. Taking for instance

the p = 3 case, we have

B B
b = bl @ = 20 (@ — (<) (o + %) + S (a2~ (<) (a0 + 1))

ij ij 6 2
Byy , 1 Bs/ , . (10.2.29)
+ 7(%‘1 —(=1)" (a1 + 1) ) + F(%l —(=1)"(aj1 +1) )
1 1
= 6(@?1 - a?l - 3a§1 —3aj1 — 1) + 1 (a?l + a?1 + 2a;1 + 1)
] (10.2.30)
—{—E<a]’1 — aj1 —1) +0=

This was then verified to vanish with the aid of FORM [148; 149] in at least the first 700
cases. We now may prove it in general. Taking (10.2.28), and expanding the internal

bracket one finds

p p—m
I(p)  II(p) _ B (pm  m p—m\ ,
=3 S (L))
R - o (10231)
-3y ¥ —(V"™Bn o 3 B (1 — (=1)™)ab]
m=0 n=0 mlnl(p —m —n)! a s m!(p —m)! ’

—
j1
When m is even (1 —(—1)") vanishes, and when m is odd and not 1, By, vanishes. Hence,

where we have separated out the a?; " terms in the second line. Consider these terms.

all terms in this sum vanish but one,

Sl L (10.2.32)
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where that By = 3 has been used. As for the double summation in (10.2.31), we reorder

these sums to give

p p—mn—1
Bm .
Sy m'n' ST (10.2.33)

n=0 m=0

It is a known result that Bernoulli numbers satisfy the relation [160]3

i ( ) DfBy=0, n>1 (10.2.34)

and from this it follows that

p—n—1

> (V"B _ __Op-n-10 (10.2.35)
= ml(p—n—m) (p—n—1)"" -
Plugging this into (10.2.36) gives
P n aPt
—a; Op—n—1 _ Tay
> TR TR (10.2.36)

n=0

This then perfectly cancels (10.2.32), and so (10.2.31) vanishes. Hence the difference
(p)

between the two representations of the by, terms (10.2.28) vanishes in general. Similar

will hold if we instead take j = 1, and hence the b part of the field theory limits matches

in both representations.

Then, we move onto the ¢ piece. This difference is given by

b 11 1 n n p—1
ey ey P = W((aﬂ + sgn,; " disty > (i, 7))

—(aji — 651 + 01 + sgn23 M dist3> "4, 5))”

(10.2.37)
—1

Again, we need only consider the cases where one of ¢ and j is 1. If we take i = 1 we get
—1

. i 1 . .93.m }
y ) AT () (ajl + dlst}f“' (1,]))p - (ajl +1-— dlstﬁ3 1(1,]))p
A 2(p— 1)

(10.2.38)

We now consider the two pieces of the numerator, and see that these are given by

p—1 :
a; <4
(aj1 + disti(1, 7))t = 7! =7 (10.2.39)
(aj1 +1)P71 j>4
p—1 ;
a.; <n-—2
(aj1 + 1 — distZ>1(1, )=t = { = . (10.2.40)

(aj1+1)p_1 j>n—2

3Note in this reference the relation differs in appearance, as they use an alternative representation of

the Bernoulli numbers which differs only in that By = f% instead of the +% we use.
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(1)
ij
that setting p = 1 in the above gives equivalence. When n = 6, these coincide in that

When n = 4,5, the only Kronecker-Eisenstein functions in amplitudes is g..”, and we see

n—2=4. Whenn = 7 and p > 1, they differ when j = 5. However, this disagreement will

not matter. At 7 points a term g%ﬂ l(?)

we need at least two KE terms in order to make the corresponding P function non-zero.

is multiplied by at most one other ¢.:’ function, but

That is, for example,

2) (1
955)9&5) = P(15,56) = ¢156)5671 1156 = 0, (10.2.41)
2) (1) (1
91295 9 = P(15,56,67) = P156715671 L5671 # 0 . (10.2.42)
At 8 points, this will of course become an issue. However, the description of the dist
function was chosen purely for simplicity. If we instead think of this function as asking

whether the pole being approached crosses the boundary between particles n and 1, then

consistency should be maintained to higher points.

10.3 One Loop SYM Field Theory Integrands

We now construct one loop amplitudes in field theory using these rules and the string

correlators. We represent an n-point one loop field theory amplitude by
n
i1 P Iy — a1,a2;...,an a1,a2,...,an
Alinig .. in; 0 +a kj) - Z Z NA;D+17;1A1‘A27---7AP (€) Ii1A17A2,---7Ap (10.3.1)
p=4 Ay...Apy1=ig...in

where /\/’Zilxcﬁp (¢) denotes the kinematic Berends-Giele numerator of a p-gon. Note for
such, and in this part of this thesis, it will be convenient to redefine the b-map (2.3.13)

with an additional % factor. That is,
b(i)=i,  b(P)=5— > [b(X),b(Y)]. (10.3.2)

So to give a few examples of this notation,

1

Nij2,345() = Nippga5(€), Nigza5(0) = EN[1,2}|3,4,5(£)7
1
N H=—— N 0, 10.3.3
12]34,56,7,8,0(£) Y — [1,2)113,41,[5,6],7.8,9 (£) ( )
1
Ni2sjas6,7(€) = mN[[l,Q]B]|4,[5,6],7,8,9(Z) + WN[L[QB]]|4,[5,6],7,8,9(g) :

The Iill’jf;:’_?gp in (10.3.1) represents the p-gon integrand, as described in the appendix
A.2.1. We now discuss amplitudes generated using the field theory limit rules we have

outlined.
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10.3.1 Four Points

At four points, there are no terms for which the field theory limit rules are needed [39].

There is only the Koba-Nielsen factor, which gives us the I1 2 34 factor in the limit,

A(O‘l, 09,03, O‘4|£ + alko'l 4+ ...+ a4kg4) = V1T2,37411’2,374 . (10.3.4)

10.3.2 Five Points

The five-point genus-one superstring correlator is given by [22]

Ks(0) = VT3 4 5275 345 + [ViaTs45 212345 + (2 ¢ 3,4,5)]

(10.3.5)
+ [ViTos 5223145 + (2,3]2,3,4,5)]
with the worldsheet functions [21]
ZT2737475 == fm 5 2127374?5 == g§§) . (1036)

This correlator contains five terms with non-vanishing poles in the canonical colour order-

(1 1) (1) (1) (1)

ing, namely ¢,5, 953"+ G34'» 945 » and 951 . These have limits of the form

1 1 1
9%2) — 511,2,3,4,5 +5hi2345, (10.3.7)

while the other KE terms will only contribute to the pentagon due to their lack of poles

in the integration domain, with say
(1 1
914 — 5—71,2,3,4,5. (10.3.8)
We represent the overall integrand of A(1,2,3,4,5;¢ + a'k;) with

A(1,2,3,4,5: 0+ a'k;) = Nipza5(01 5542 (0)

1 1
+ TN12|37475 (E)Iig:&i?; (E) + @NI|2374,5 (E)Iig&ﬁi?; (E)

2s
1 S 1 ar....as (10.3.9)
+ Nipo3a5(O 1157375 (0) + 5—Nij2,3.45(0) 11 57375 (£)
2534 2545
1
Ry N5/>1|2,3,4(€)Ii12’,§,f5 (0).
51

Note the 51-box numerator is denoted Nél\Q 5 4(£), different to the other pentagons. The
reason for this is not clear at five points, but at higher points we shall see that terms of
this form receive extra contributions when the field theory limits are taken and so it will

be convenient to notate them differently.
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Applying the field-theory limit rules (10.2.5) to the correlator and comparing the outcome
with (10.3.9), we can read off the box numerators. They are independent of the loop

momentum and are uniformly described by
Nap,cp =Valscp- (10.3.10)

So for example,
{|23,4,5 =ViTh34p5, Né1|2,3,4 = Vsila34. (10.3.11)

This result agrees with the work in [1].
The pentagon I7%'37'3(¢) arising from the limit rules (10.2.5) is

1
Nﬁé’,};@ﬁ(@ =VTy5 450" + [V12T3,4,5 (a2 — a1 + 5) + (2 + 3,4, 5)}

) (10.3.12)
+ [VlT23,4,5 (ag —as + 5) + (2,32, 3,4, 5)].

Note that in the a; = 0 Vi case this reduces to the results of [1] also. A straightforward
but tedious calculation shows that [148; 149; 150]

Qa1,e..,Q 1
QN1‘1213774,§(€) = 5‘/1‘/21—‘3,475((6 + fal...a5 - k12)2 - (f + fa1...a5 - k1)2)

1
+ §V1V3T2,475((€ + faronas — k123)2 — (€ + fay..a5 — K12)?)
(10.3.13)

1
+ §V1V4T2,3,5((5 + faras — k1234)% — (€ + fay.as — k123)%)

1
+ §V1V5T2,3,4((5 + faroas — K12345)% — (0 + fay.as — F1234)%)

with the fu, 4, defined as in (A.2.13). It is then not hard to check that the above

cancels the BRST variation of the box terms. For example, the terms proportional to

(€ + fay..a5 — k123)? are given by
1 1
—(ViVsTou5 — ViViToss) = —=—QViTo 345 (10.3.14)
2 2834
and cancel the BRST variation of the 34-box in (10.3.9) since
(C+ fareas — k123) 153703 (0) = [Ty 335 (0) - (10.3.15)

Similar calculations show that QN{TNZE (E)Ii“mfg = —QApox(1,2,3,4,5) and therefore

the five-point SYM integrand (10.3.9) is BRST invariant.

A result which will prove important later is that if we take the five point pentagon and
shift the loop momentum, the result is equivalent within pure spinor superspace to the

pentagon found using the field theory limits with that loop momentum assignment. That
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is,

(Nippa.a5(0 + a'ks)) = (N}5515(0)) (10.3.16)

where Nyjg3.45(¢) is given by (10.3.12) and I7%37%(¢) = I12,345(¢ + a'k;). Showing such
relies upon the BRST cohomology identities [130]

(Vikp, T3 4 5) = (—VioTs45 + (2 4> 3,4,5)) (10.3.17)
(Vik2, T3 4 5) = (VieTs a5+ [ — ViTasas + (3 <> 4,5)]) (10.3.18)

A file containing explicit formulae for all colour ordered permutations of the five-point

SYM integrand is available to download from [28].

10.3.3 Six points

The six-point genus-one superstring correlator is given by [22]

1
Ke(l) = §VA1 e AgZAT 4+ [123456|A1, ..., Ag)

F VAT A ZR 4+ [123456|A1, . .., As] (10.3.19)
+Va,Ta,,...A 24,4, + [123456|A1, e 7A4] .

The worldsheet functions have grown in complexity slightly, and are now given by [21],

Z123,45,6 = gg)gé? + gg) + gé? - gg) ) (10.3.20)
Z12,.345,6 = gg)gé? + g%) + géi) - gﬁ) - gé? ) (10.3.21)
2056 =0l + (K — kMgl + [k (a3 — 055) + (34 4,5,6)],  (10.3.22)
75 156 = OO + [(RKS + k2K ') + (1,2]1,2,3,4,5,6)] . (10.3.23)

A fully general expression for the amplitude at six points is significantly more complex
than that at five points. As such, here we detail the construction of a single amplitude
instead, A(2,3,4,5,6,1;¢) = A(1,2,3,4,5,6;¢ 4+ k1). We then reserve the fully general
amplitude for the appendix G*.

The field theory limit rules we require are (10.2.5) and (10.2.6). Applied to find this

amplitude, they become

n 1 1
gi(j) - §Sgn12j34561]234561 + §¢ij|0rd234561(ij) %34561 ) (10.3.24)
1 1
gZ@) L, 234561 | (—01i09j + 61,025) 1231961 | (10.3.25)
J 12 2512

*Note the expression for this is also available from [28].
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1 (1 L 934561, 2345617234561 |, 1 __ 234561 234561
gz(J)g](gl) 4Sgnij S8y I + 4Sgnkl ¢m0rd234561(1])[
| . (10.3.26)
+ 4Sgn23456 Ort|Ordagaser (k) Lii 0 + el (ig, kL),
where the double pole function is given by
¢ijl|01”d234561(ijl)If?ﬁ%m ifj==k
_¢ijk|07”d234561(ijk)Iz%?;;l%l iftj=1
P(if, k1) = § =jit10rdasase (ij) Ly -0 ifi =k (10.3.27)
234561 e
¢kl]‘OTd234561(k2])IkU lfll/ - l
234561
¢ij|OTd234561 (i5) ¢k‘l|0rd234561 (K1) I’ij,kl clse
So for instance, the term V{17 ng(l) would have field theory limit
24,3,5,6¢ 924
1 1
V1T272,3,5,6€m9§4) — VITﬁ,3,5,6£m§(Sgngi4561I 234561 1 ¢24|ord234561(24) 1339%0)
1
= VITﬂ73,5,6€m§((‘1'1)1234561 + §¢z4|234122§4 ) (10.3.28)

1
_ m m 7234561
= §V1T24,3,5,6£ I )

with the last line following due to the vanishing of ¢y3j234. Another more complex example
would be V1T243,5769$3 gfé), which contains many terms including double poles. The field
theory limit here would be given by

ViToss 56 9511) gz(é) — ViTous 5.6 (isgngi%msgnig%m 7234561 %Sgnig%f}l ¢24‘Ord234561(24) 1234561
+ isgn%i4561¢43|ord234561(43)I234561 + iP(24, 43)) (10.3.29)
= iV1T243,5,6< — 34561 _ 3%4\234[2234561 + ¢43|34I§24561 + ¢243|ord234561(243)122§§561>
= i‘/lT243,5,6< _ [234561 _ ;13224561 _ 334;%[22??2561> .

Performing similar calculations for all terms in the correlator, and then extracting the
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terms proportional to 1234561 = I>3456,1, we find the hexagon numerator

1 mn m on 1
Nz a56,1(£) = §V1T2, Yse (0T — E[k}nk}z + (14 2,3,4,5,6)])
1 1 1
+ *(V1T£g7475’6(£m — gkén + 6[9?) + (2, 3‘2, 3, 4, 5, 6))

DN

1 1
6 6
“Vi(Tij2,314156 + Ti2, 341,56 + (2,3,4/2,3,4,5,6)) (10.3.30)

— (V2T 5 6 (0" + kT — —k5") + (2 ¢ 3,4,5,6))

— N

—

+ (‘/1T23,45,6 + (273’475|2a3a47576))

4
1
Z(%2T34,5,6 + (2’37 4|2a 37 47 57 6))

—_

— 6((‘/123 —2Vise)Tu 56 + (2,3]2,3,4,5,6)) .

So for example, the V1155 46 3 term has coefficient i as this is in the correlator associated

with a term

Zosa6.13 = 0or 06 + 950 + 952 — g5) — g&2) (10.3.31)

and these each contribute 23451 terms as
-t =4 == - = = —. (10.3.32)

Similarly the V17154356 terms® have coefficient —%. This arises as a result of the 1234561

terms arising from
1) (1 2 2 2
Zot3156 = 950955 + 950 + 955 — 955 - (10.3.33)

which are given by

I -1 1 1 1 1
2 2+12+12 12 6 (10.3.34)

Doing likewise for all terms in the correlator will reveal the hexagon numerator.

We then identify the pentagon numerators. In all but one case these are given by a

generalization of the formula from [1] ,

1
Nas,cp,e1 = VerTh's opl™ + 5(‘/[A,E1]TB,C,D + (A < B,C, D))

X (10.3.35)
+ §(VE1T[A,B],C,D + (4, B|A, B,C, D))

5Note this term is not explicit in the numerator, as we chose instead to combine it with the ViTs34,5,6
term to simplify the appearance.
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So for instance, the 34-pentagon is given by
o 1 1
Nozas61 = Vil 560" + 5‘/[2,1}T34,5,6 + §V[34,1}T2,5,6 + §V[5,1]T2,34,6
1 1 1 1
+5VienTesas + 5ViTsgse + 5Vilpsisns + 5ViTpe s (10.3.36)

1 1 1
+ §V1T[34,5],2,6 + §V1T[34,6},2,5 + §V1T[5,6],23,4

The exception to the above rule is the 12-pentagon, which differs as it has a contribution
from the ¢ terms due to the colour ordering 234561. So for example, the worldsheet

function Z7'%'s , 5 ¢ is given by
ZS 56 = OO+ (KRS + kPR gt + (1,2]1,2,3,4,5,6)] . (10.3.37)

@
ij
ishing pole contributions in all instances where ¢ and j are not 1 and 2. Hence, only the

This can only contain pentagon terms through the g.:” terms. These however have van-

12-pentagon contains a V1155’ 5 ¢ term.

Collating all terms with coefficient 1/ 23121”;7{;117576 we find the 12-pentagon,

51\3,4,5,6(5) == VIT%%E),G@%?
- (ViT55 456" + (3 <> 4,5,6))
+ V1o T3y 5.6 (07 + KT — k2)
— (Vi3T5 5 6k3" + (3 <> 4,5,6)) (10.3.38)
+ %(VlgT34,5,6 +(3,4]3,4,5,6))
— (VisThas,6 + (3[4]3,4,5,6))
+ 5 (2Vis — Vios)Tuss + (345 4,5,6))

The box numerators have the standard form, with the word containing the label 1 assigned
to the V superfield, and the other blocks of indices assigned to the T

NaB,c,p1ie = Vp1TA B C NgiaB,c,p = VE1aTB oD - (10.3.39)

A long calculation shows that the BRST variation of the above integrand is purely anoma-
lous and given by [148; 149; 150]

_ 1
QAMTY(1,2,3,4,5,6) = SViYaga56(l2s456 — *T234561) (10.3.40)

This is then of a similar form to the a1 = ... = ag = 0 result found in [1], and by an

6See the discussion of [132], and its summary in section 4.5 of [1], to understand why (10.3.40) this does
not trivially vanish due to the cancellation of propagators in the integrand.
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analogous argument to the one presented there one finds the same result for the integrated

anomaly
5

/leEQA“11(1,2,3,4,5,6) — —27;—01/11/2,374,576. (10.3.41)

It is a known result that type I superstring theory with gauge group SO(32) does not
contain gauge anomalies [128; 133]. This property does not survive the field-theory limit
of its planar sector however, and the six-point one-loop SYM amplitude in ten dimensions
is anomalous [161; 162]. The result (10.3.41), written in terms of the anomalous building
block Y3 3456 [130], is the pure spinor superspace encoding of the field-theory anomaly
[109; 131].

10.3.4 Seven Points

At seven points, the majority of the numerators become far too complex to state here.
One example can be found in the appendix H. However, we may demonstrate the methods
in specific instances, and here discuss how the box terms in the canonical amplitude
A(1,2,3,4,5,6,7;¢) proportional to I1234 are found.

Following similar results at lower points, we would expect these to be given by the Berends-
Giele current
Mi934T3 4511934, (10.3.42)

that is,

( Vinzag . Vioesig | Vi)
8512512351234 8523512351234 851253451234 (10.3.43)
VL2341 VI 2,341 >
+ Ty 5611234
8523523451234 8534523451234

These boxes will be the terms proportional to %11234 in the field theory limit of the

correlator. Such a propagator structure arises only in the terms
V1234T5767721234,57677 + Perm(2, 3, 4) . (10.3.44)

There is only one term in each of these worldsheet functions which can contain triple

poles, g15 g5 g5

field theory limits of these are

and its permutations in 2,3,4. By (10.2.7), the relevant piece of the

0512)0%)6&)13(12, 23,34) = —$(1234567|1234) [1934

(10.3.45)
$1234/1234 11234

QO = o =

and its permutations in 2, 3,4 in the right hand side of the ¢ and qAS functions. Note we
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applied (10.2.13), (10.2.11), and (10.2.4) in the above. The relevant ¢ 4 5 functions may
then be found using (2.3.9), and are given by

1 1 1 1 1
$123491234/1234 = + + + + ;
5125123 5235123 5235234 5345234 512534

1 1 1

5123401234/1243 = — - : 5123401234/1342 = — ,  (10.3.46)
5345234 512534 5345234

1 1 1

$123401234/1324 = — - $123401234|1423 = —

Y )
5235123 5235234 5235234

1 1
+

$123401234|1432 = :
5235234  S345234

We then collate the terms with the same poles. For instance, those with an s34523451234

pole term
VigsaTs 67 — VigasTs 6.7 — VizazTs 6.7 + Viase D567 = Vi 23,411 15.6.7 » (10.3.47)

Doing similar for the other pole structures in (10.3.46) thus reveals the expected form of

these box terms, equation (10.3.43).

There is one additional complication with higher order n-gon diagrams at seven points,
regarding the refined superfields and worldsheet functions. As was discussed in [22] and

in the review, the refined worldsheet functions are given by
2 1 (2 3
212|3,475,6,7 = 89%2) + 8129%2)952) - 381298 . (10.3.48)

The derivative and the double pole are then removed by using partial integration with the
Koba-Nielsen factor, Z7(¢) as defined in (3.2.26)

(019537 (0) = 81 (913 T (0)) + 933 0uT(0)
(1)

= 0195 Tr(0) + 93 (0 ko) + smgl) + sasgly) + . + 52095 ) T (0).

(10.3.49)

Note the subscript on the partial derivative changes to account for the missing minus sign.

This we then insert into (10.3.48), and identify its alternative formulation

3)

312|374’5’677 = —381291?2’ + gg) (5 - ko + Sgggé? + 82495}1) + ...+ 827g§l)) . (10.3.50)

This is the form of the refined worldsheet function we use to take field theory limits and
extract numerators. The resulting expressions have been verified to have vanishing BRST
variation, and so we can be assured of the validity of this method. However, additional
complications arise as a result of this regarding BCJ relations, which will be detailed in

the following chapter.
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10.3.5 Higher Points

(

We anticipate that the field theory limit rules for an arbitrary product of gi]@ functions

should generalize in the natural way,

ng(f;a Z <( H Za]u.)( H Cif;,}) (1B, 7B ---,iB|BjBB)>> ,  (10.3.51)
)

AeP(12..n acA be Ac

where P(12...n) denotes the power set of 12..n, A is an element of this, and A° its

complement. We stress that the indices of the ¢P) and those in the P function are identical.

The general P functions will be as in (10.2.8) , with P(i1j1,...,inJn) chaining together
imJm pairs as much as possible, and then using these as indices for ¢ and I functions. So

for instance, for an amplitude A(1,2,...,n) we would expect

P(12,23,34,45,56,67) <> ¢(c|1234567) 1234567 , (10.3.52)
P(15,32,56,24) <> ¢(c|156)d(c|324) 156,304 - (10.3.53)

As for the limits of b® and ¢® at higher points, we expect these will generalise from
(10.2.5) in the natural way.

We may provide strong evidence in favour of this with the use of Fay identities [138],
discussed in section 5.3.1. One such relation is

g2 a5y = g™ 4 g gly) — nglt £ 3 (—1) gl gl (10.3.54)

We begin by looking at b(™, and restrict ourselves to the case a; = 0 V 4. In these
circumstances we know that bl(jl-) = sgn12 " and we would expect that for any n, bg?)
should be a function only of the relative ordering of ¢ and j with respect to the colour

ordering. Hence, we substitute into (10.3.54) the values

1 n "
9%)79%) — 97 g&z)vggy,),gég) — . (10.3.55)

We then rearrange, and arrive at the recursion relation

n

pnt1) _ _n—i—l—l(—l)” SO (1) (10.3.56)
j=1

This vanishes for n even, n > 0, due to the symmetry in the gg terms and the antisymmetry
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of the (—1)7. For n odd, it simplifies to

2n—1 n—1

1 ) N 1 . .

(2n) _ _ _1)ip2n=0)p) — _ (2n—25) p(27)
b T jEZl (—=1)7b b o 1 jEZl b b\, (10.3.57)

where the second equality follows from the vanishing of the b with odd indices. It may

then be proved by induction that this is solved by

By
—
n.

b = (10.3.58)

where B,, is the n*"* Bernoulli number. Showing this requires an identity due to Euler
[163],

n—1
2
> (QZ) BopBon_op = —(2n4+1)Ba,, n>2. (10.3.59)
k=1

Hence, we speculate that when a; = 0 Vi, the field theory limit of a general term from the

Kronecker-Eisenstein series away from poles is given by (10.3.58). The first few (non-zero)

values are
1 -l o1 eo__1 e__1_
®___ 1 ao__ L ey 6L
1209600 ’ 47900160’ 1307674368000 °

We can then extend this to the general a; case, though with less elegance. If we substitute
the general a; expressions for the b™M terms into (10.3.54), rather than the simplified values
in (10.3.55), we find the relation

1 n n 1 n n
<2 + a3 — az) ng) = —bggﬂ) + (2 +a3 — al) b§2) - ”bgzﬂ)

1 n - i1 (n—7). (145
+ (2 +a3 — az) b(13) + Z:l(—l)]bgg J)bgg 2
j:

(10.3.61)

This cannot be as easily rearranged into a recursion relation unfortunately. However, we

(n)
ij
use the above to identify these unknowns. This then reveals the value of b

may assume that b;;” is an order n polynomial in a; — a; with unknown coefficients, and

“4)
ij
be expected from (10.2.5) is the unique solution. We have then also verified that, if we
(n)
]

as would

assume (10.2.5) is the general value of b;;’, the relation (10.3.61) is satisfied in many

further instances.

We can perform a similar exercise for the cl(-?) pole terms. Rather than using (10.3.54), we

consider an alternative Fay identity in order to have non-zero dist functions. Supposing
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the amplitude we are looking at is A(1,2,...,m) for convenience, consider
n+1 1 +1 i (n 1+
gg'm)g( 2m 1) = _gi(m )1) + g%(in 1)9§m - nglm )+ Z 91 m])l Sn(ni)—l) - (10.3.62)

We need not restrict ourselves to the a; = 0 Vi case here, as the computation is simpler.

(n)

1, factors, and find

We look to the s, single poles in this relation and their associated c

the relation

n 1 1 n n
A (2 +amo1 — am> = <2 Famo1 — a1> ) D) (10.3.63)
n 1 n
= = ncgni(l + am —a1) (10.3.64)

This has the form of a geometric progression, and thus as we know CS,)I = % we find the

general expression

1 -
R

=T (10.3.65)

This agrees with the known values of 6527) and cﬁ). We can repeat this calculation for poles

(n)

of g;5" to find what happens when the dist function is zero, and find the similar relation

(n) 1 n—1

Clo —m (az —aq) (10.3.66)

Hence the definition (10.2.13) of cgl) appears to generalise naturally at higher points.
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cHAPTER 11

BCJ Identities at One Loop

In this section we demonstrate that the numerators obtained by the procedure outlined
in the previous chapter satisfy BCJ relations. This resolves an open problem from [1],
regarding why the numerators from such did not appear to satisfy BCJ relations at six and
higher points. Our solution is to follow a similar logic to that of tree level, and not suppose
that amplitudes with different color orderings have precisely the same representation. This
is what results from the field theory limit procedure we have outlined, and we detail this

here.

Note that for the four and five point amplitudes identified using the field theory limit
procedure, the BCJ relations are trivial. At four points, due to the vanishing of triangle
diagrams all such relations reduce to four-point boxes being equal to each other. However
all box numerators are the same at four points; they are given by V17534 due to the

symmetry of T in its indices. Hence the BCJ relations follow immediately.

At five points, there are more complex BCJ relations between pentagons and boxes. A
pair of these are illustrated in figure 11.0.1, in which we keep the loop momentum as

general as possible. Applying the formula (10.3.12) for the pentagons and the usual box

169
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formula gives that these relations are satisfied. In the first case, this is

at,...,a a1,...,a a1,...,Q .
N1|12,3,4,g(€)_N1\§,2,4,g(€) B N1|123,4,§ (E) -

1
+(V1T2m73’475£m + VieT345(a2 — a1 + 5) + (2 3,4,5)]
1
+ [ViTasas(as — an + 5) + (2.312,3,4, 5)])

. (11.0.1)
- (VIT:?,EA,E)W + V13T 5(a3 — a1 + 5) + (3 < 2,4,5)]
1
+ Vil (a2 — a3+ 5) + (3,213,2,4, 5)])

—ViT5345 =10

The vanishing of the above relies only upon the symmetry of T in its blocks of indices,

and the usual Jacobi identities satisfied by indices when we work in the BCJ gauge.

The second example in figure 11.0.1 requires a little more work to show, as one must be
careful to track the loop momentum and ensure that in the edges not involved in the BCJ
relation, the momentum along them is identical across diagrams. In effect, this means that
the second diagram comes from an amplitude with a different loop momentum structure.

That is, while two of the diagrams in this relation come from the amplitude

A(1,2,3,4,5:0+ > a;k'), (11.0.2)

the second does not come from the naive relabelling A(1,5,2,3,4; ¢+ >, a;k"), but rather

A(1,5,2,3, 4,0+ K0 + ) k). (11.0.3)

The BCJ relation we wish to verify is thus

NN 0 = N0 = 1104
+(V1T£?o,,4,5€m + V123 45(a2 — a1 + %) + (2 ¢ 3,4,5)]
+ ViTasa5(as — az + %) +(2,3]2,3,4, 5)})
_ (Vngjg,gAem + VisToga(as +1—ag + %)
+ [VieTs 4 5(ag — a1 + %) +(2 4 3,4)]
+ [ViTs2,34(a2 — (a5 +1) + é) + (2 » 3,4)]

1
+ ViTog45(as — az + 5) +(2,3|2, 3,4)])

V511234 =0.
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3 2 3
4
2
2 4 3 4
_ _ ) =0
1 +a 5 1 +a 5 5
3 2
2 3
2 4 5 3
_ _ ) =0
) 1 ‘,i
JUt ik L C+ak
o —i—aikl 5

Figure 11.0.1: A pair of BCJ relations at five points. Note that one must ensure that
the loop momentum is the same on all parts of the diagrams not involved in the BCJ
relation. It is simple to show that these identities are satisfied, using either the methods
of this part or those of [1].

Again, this follows by the symmetries of the VT superfields, and does not require any
identities to show. We again note that having a BCJ representation at five points is not
a new result, as one had been found previously using similar machinery in [1]. However,
the property of not requiring cohomology identities to verify the BCJ relations is new to

these methods, and we include the above for completeness.

11.1 Six points

We now demonstrate that the BCJ relations at six points are satisfied, when the relevant
amplitudes are constructed using the procedures of the previous chapter. Note we inten-
tionally focus on only those relations which are likely to fail. That is, BCJ relations within
external trees in the Feynman diagrams will be satisfied already, by properties of the BCJ
gauge [88; 27]. Additionally, relations in which the loop momentum is unchanged between
diagrams (that is, relations of the form of the first line in 11.0.1) were already satisfied
by the representation found in [1], and by similar methods it is not complex to show they
are satisfied here. As such, we focus only upon those relations in which the BCJ relation
relates two m-gons to an (n — 1)-gon, and in which the loop momentum structure changes

between diagrams (that is, relations of the form of the second line in 11.0.1).
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N

1 6 2 2

Figure 11.1.1: This was the BCJ identity which could not be satisfied using the repre-
sentation identified in [1]. As a demonstration of the usefulness of the methods developed
in the previous chapter, we show that this relation is now satisfied.

11.1.1 Relation Between Two Pentagons and a Box

We begin by showing that the numerators constructed using the methods outlined satisfy
the BCJ relation in figure 11.1.1. This example was chosen as it is the non-satisfying of
this which was identified in [1]. That the numerators described here satisfy this therefore
represents an improvement on the previous situation. Two graphs in this relation are
drawn from amplitudes in the canonical colour ordering A(1,2,3,4,5,6;¢). The middle
graph must be constructed so that the momentum along its edges not involved in the
BCJ relation have equal momentum to the other diagrams in the relation. Therefore the
middle graph must have momentum ¢ going from leg 6 to the 23 branch. This diagram is

therefore the 23-pentagon Nj3j; 4 56(¢) drawn from the amplitude
A(2,3,1,4,5,6:0) . (11.1.1)

Note we choose this representation, rather than the 1-leading equivalent A(1,4,5,6,2,3;(—
k%3), as this simplifies the notation. However, by the results of section 10.2.2 we could

have equally chosen this instead.

This step was not used in the discussion in the review of the methods of [1], and instead it
was assumed that this pentagon could be obtained instead by shifting the momentum of
a relabelling of the canonical ordering, Ny|45623(¢ — k23). Though this makes an intuitive
sense, it leads to the BCJ relation being violated [1]

Nij23,a5,6(0) — Nijas6,23(0 — k23) — Nj123)ja,5,6(0) =

(11.1.2)
ki ViTSs 456+ VasiTuse + [ViTasase + (4 < 5,6)] .

The variation of this is non-vanishing, and so it is not in the cohomology of the BRST

operator and is therefore non-vanishing.

Using the field-theory limit rules of the previous chapter however, the BCJ relation is
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satisfied. The relation is now,

Nij23.4,5,6() — Nogj1,4,5,6(€) — Ni123)j4,56(f) = 0. (11.1.3)

To show this, we begin with the box numerator N 23)14,5,6(¢), the coefficient of m1123747576

in the integrand A(1,2,3,4,5,6;¢). Following the rules (10.2.6) and (10.2.8), there are only

two functions in the string correlator which can generate such;

9159y and  giygly), (11.1.4)

owing to their constituent factors of

P(12,23) =

1123 + 1123 and P(13,23) = —
5128123 5235123 5235123

a3 (11.1.5)

respectively. There are only two terms featuring these functions in the six-point string
correlator (5.3.19),

V123T4,5769g)9%) + V132T4,5,6g%)g:(),? - (11.1.6)

Taking the field-theory limit we therefore find

1 1
Vi2aT5,6P(12,23) + L Vigo T 5.6P(13,32) (11.1.7)
1 1 1 1 1
= —Via3Tu56 ( + > Liog + —Vi3aTu 56 <— > Lgs .
4 5128123 $235123 4 5235123
The box numerator N[ 23]14,5,6(¢) is given by the coefficient of %mhgg,
N 23jjas6 = VizsTuse — ViseTuse = ViiogTuse (11.1.8)

We then find the other numerator drawn from the canonical ordering, the pentagon
Nyja34.56(¢). This is given by the coefficient of ﬁ[gg in the field theory limit of the
canonically-ordered correlator Kg(¢). These factors will arise from any appearance of g%)

in (5.3.19), of which there are many

V1T2”§,4,5,6€m9§§) + | VizsTu 5601 958 + (2 ¢ 3)} + [V1T234,5,69§§)9§i) + (4 <> 5, 6)}
o+ [ViaTos 50000 08 + (4.6 5,6)] + [ViTos, 5,008 0l8) + (4,514,5,6)] (11.1.9)

We take the limits of these, and collect terms proportional to ﬁlgg. We thus arrive at

the numerator

1
Nijazas6(l) = Vi35 4560™ + ) (Vi3 Tas,6 4 (23 > 4,5,6)]

1
t3 [ViT(23,4)56 + (23,4]23,4,5,6)] .

(11.1.10)



174 Chapter 11. BCJ Identities at One Loop

We note that the expressions (11.1.8) and (11.1.10) agree with the numerators obtained

in [1], it is only the numerators with other loop momentum structures which will differ.

The middle pentagon in figure 11.1.1 is the 23-pentagon in the integrand of A(2,3,1,4,5,6;¢),

as the internal edge between leg 6 and 2 has momentum ¢. The calculation proceeds sim-

(1) 1

ilarly to the above. The relevant terms are again those containing gQé , which are now

VAT 6250 5% + [‘/123T4,5769$)9§? + (2« 3)}
+ [WT423,5,691(1§)9%) + V1T432,5,691(é)9;(),§) + (45, 6)] (11.1.12)
1
+ [V14T5,6,23g$1)9%) + (4 <5, 6)] + 3 [V1T45,6,2394(1é)g%) +(4,5[4,5,6)].

1
25237

Taking the field theory limits and extracting terms proportional to we see that the

numerator is given by

1 1
Nogj1,456(0) = ViTs6030™ — 3 (1,23 1056 + 5(‘/[1,4]T5,6,23 + (4 ¢ 5,6))

) (11.1.13)
+ §(V1T[23,4},5,6 +(23,423,4,5,6))
This differs considerably from the parameterisation of this graph used in [1],
1
Nijas6,23(¢ — kas) = ViTy5 6936 — ki3) + 5(‘/[1,4}T5,6,23 + (4 < 5,6,23))
(11.1.14)

1
+ 5(‘/1T[4,5],6,23 +(4,54,5,6,23)) .

The new representation derived here can then be seen to obey the colour-kinematics dual-
ity. To see this we plug the superfield expressions of the new field-theory representations
of the box (11.1.8) and pentagons (11.1.10), (11.1.13) into the kinematic Jacobi relation
(11.1.3), and obtain

Nij23,4,56(€) — Nozj1,456(C) — Npagjjase(f) =0. (11.1.15)

Verifying this is similar to that of five points, in that no BRST cohomology identities are
needed to show it. This trivial vanishing for the BCJ triplet at one loop parallels the

vanishing of BCJ triplets of tree-level numerators found from the field-theory of the string

!Note in order to find amplitudes which are not in the canonical ordering when represented in their
1-leading form, we exploit the total symmetry of the six-point correlator (5.3.19) in 2,3,4,5,6. That is, in
order to derive an amplitude which in its 1-leading form is A(1,0;¢ + aiki), we start with the alternative
expression for (5.3.19),

1
Ke(l) = §VATgL,Té,D,E,FZX%,C,D,E,F +[10]A,B,C,D, E, F]

+VaTg c,p,.624.8,0,0,5 + [10|A, B,C, D, E] (11.1.11)
+VaTs.c,pZa,B,c,0 + [10|A,B,C,D].

Likewise is true for lower and higher points, when computing similar orderings.
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5 6
§) 1 6
Figure 11.1.2: In this subsection, we verify this BCJ relation. Note the 61 pentagon in

the above is the exceptional pentagon in the amplitude; the equivalent of (10.3.38) in the
example of the previous chapter.

correlators, as described in section 4.4.1.

11.1.2 Relation Between Two Hexagons and a Pentagon

In a given colour ordering, all of the pentagons have a similar structure apart from the
ij-pentagon whose labels are cyclically split at the extremities A(i,...,7;¢). In this sub-
section we will demonstrate the validity of these expressions by verifying a BCJ relation
involving such a numerator; that illustrated in figure 11.1.2. In our numerator notation,
this corresponds with

Nij23456(¢) — Nﬁ%?gA,g;(f) — Ne1j2,34,5() = 0. (11.1.16)

To find the hexagon numerators, we look at the piece of the field theory limits proportional

to P = 1. In the first case, this means making the substitution

1 1 1) (1 1 2 1
Qi(j) — isgn}f?’%ﬁl, gi(j)g,il) — ngn}f3456sgn,1§%34561, gZ(j) — EI' (11.1.17)

This then gives the value of the first hexagon numerator as

Nipsas6(l) =+ é((v[[m],:ﬂ + Vi) Tase + (2,312, 3,4,5,6))
+ évl(T[[Q,g],41,5,6 + Tig,3.4) 56 + (2,3,4(2,3,4,5,6))
+ %V{LQ]TBA]@G +(2/3,4]2,3,4,5,6))
+ %vlf[’m,]w,6 +(2,314,52,3,4,5,6)) (11.1.18)
SV Tss (0 — ST+ SH) + (26 3,4,5,6))
+ (VAT 056007 — S + 2K+ (2,3(2,3,4,5,6))
S VATE 5070 — SRR — KBRS — - — KRG
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For the second hexagon, we consider the field-theory limit of the correlator with the colour
ordering A(1,6,2,3,4,5;¢ + k1). The limits needed now have the form

1 1
95;') - 5sen le62345 + 856 — Oig

1
gl(Jl)g’(d) (2ng162345 + 656 — 516)( Sgnllclﬁ2345 + 616 — 51<;6) , (11.1.19)

gg) — E + di60j1 + 0j60i1 -

Using these, the numerator is identified as

a 1 mn m pn m1.n 1
Nijs2 21345(5) =+ §V1T2,3,4,5,6(€ 0" + 2k kg — E(k}?lk}L + kkn 4k k)

1 m m 1 m 1 m
+ 5(‘/1T[2,3},4,5,6(£ - 6k2 + ng ) + (27 3’27 3,4,5, 6))

— (VT3 3,45k + (242 3,4,5)) (11.1.20)

1 L
5 (Vi THhse (™ = Gk + gkén £ + (26 3,4,5))
+ V[1,61T2,3,4,5(§5 — k! )

( [[2,3], 4}75,6"‘T[2 [34}]56+(2 3 4|2 3,4,5 6))

+
S

+ (V213 + Ve Tase + (2,3[2,3,4,5))
— 2 (Ve + Vinen)Tuse + (2 ¢ 3,4,5))
(ViTj2,3), 4,56 + (2,3]4,5[2,3,4,5,6))

+ ~ (Vg Tisa,56 + (213,4(2,3,4,5))

— = (V2 Ti3.645 + (2312, 3,4,5))

oo,p\oo.b\.—u%\.awmacm»—ncn —

+ = (Ve Ti2,30,45 + (2,3[2,3,4,5)) .

,4;

For example, the factor associated with V1675’5 4 5 in the above follows as the worldsheet

function is

1 2 2 2
2162345 = gt + (K — KMoty + + [k3' (915 — 963) + (2 > 3,4, 5)] . (11.1.21)
Within the square brackets none of the g(® terms are g%) or gg), and so by (11.1.19)

these all contrlbute . Hence this bracket vanishes,

1 1
k(g2 — g2y + (2 & 3,4,5)) — [k (= —

S )t e 345)=0 (11.1.22)



11.1. Six points 177

(2)

As for the g%) and g4, these have limits

1 3

g — 28g 16247 + 066 — 016 = 3 » (11.1.23)
13

g5 — 1 + 016061 + 066011 = 75 - (11.1.24)

Plugging these values into (11.1.21) reproduces the coefficient of the Vi35 4 5 term of
(11.1.20).

Finally we have the pentagon term of the BCJ relation to find. This is the coefficient of
Is1 2345 in the integrand A(1,2,3,4,5,6;¢). This can be found to be

2816

é1|2,3,4,5(£) =+ %[(‘/[[1,2],6} + Vi 6 T3.4,5 + (2 < 3,4, 5)]
+ Vg Tis 6,45 + (213]2,3,4,5)]
_ %[1/[1’6]]’[2,3]74’5 +(2,3]2,3,4,5)]
Vo T 5 gkl + (2 5 3,4,5)] (11.1.25)
+ [V1T§6],3,4,5kT + (24 3,4,5)]
— Ve To3.45(" + ke' — kT")
— VT35 5 k1" ke
The identity (11.1.16) may then be verified by plugging in these numerator values. Again,
no BRST cohomology identities are needed for this.

11.1.3 Antisymmetry of the ij-Pentagon From A(i, P, j;{) in i and j

As mentioned above, the BCJ relations within external tree diagrams are satisfied due to
the properties of superfields in the BCJ gauge. For example, all the boxes and all but one
of the pentagons for an amplitude A(P;¢) can be described by

Nygeo,p() =VaTpep(t) + (A<« B,C, D) (11.1.26)
Nag,c.p,e(l) = [VaATE c.p.plm + (A< B,C,D,E)]|
1

+ 5 [VaTip.cy.p.e + (A|B.C|A, B,C, D, B)] (11.1.27)

bo\ — ba\

+ > [ViamTe,p,s + (A, B|A, B,C, D, E)]

with the additional constraint that 7 ,;5 = 0 (i.e., setting to zero all terms in which

the label 1 is not assigned to a multiparticle vertex Vp). For example, using (11.1.27) we
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+
I
o

6 6
6—(L+k0% 1+ kY
1 6

Figure 11.1.3: The relation we need to be satisfied in order to demonstrate the anti-
symmetry of the 61-pentagon in A(1,2,3,4,5,6;¢). The momentum running into the 61
external tree in the right hand graph is ¢ + kg, as in the amplitude A(1,2,3,4,5,6;¢) all
diagrams are constructed as such. The left hand graph should have the same momen-
tum assignment to the edges shared with the right hand graph, and so has momentum
¢ 4 k% running into the fork also. Hence, the pentagon on the left belongs to the ampli-
tude A(1,6,2,3,4,5;¢ + kg), following the convention (10.2.1). Therefore to extract this
pentagon, we must use the general field-theory rules in this ordering, and set ag = 1.

recover the 23-pentagon (11.1.13)

m m 1 1
Nogj1,456(¢) = ViTis6030™ — §V[1,23]T4,5,6 + 5(‘/[1,4]T576,23 + (4 ¢ 5,6))
X (11.1.28)
+ 5 (AThs a5 + (23,4]23,4,5,6))

Likewise, the 46-pentagon in the amplitude A(5,1,2,4,6,3;¢) say may be identified as

1
Nsj12463 = V1155 465 + 3 [(ViTl5.9),46,3 + (5, 2[5, 2,46, 3)] (11.1.29)

1 1
+§V51TQ,46,3 t3 [Vi2T5 46,3 + (2 <> 46,3)] .

Since in the BCJ gauge [88; 27] the blocks of indices in (11.1.26) and (11.1.27) satisfy
generalized Jacobi identities, the external tree BCJ relations are manifest. That is, in the

above example, we have antisymmetry in 4 and 6 in
Vi1 6] » T. 46, T jia6),... > (11.1.30)

and so as one of these is present in every part of the numerator, the overall numerator is

antisymmetric in 4 and 6,
N5\L2,46,3 = —N5|1,2,64,3- (11.1.31)

Hence the antisymmetry in the external tree is a direct consequence of the BCJ gauge.

There is however, one notable exception, for the ij-pentagon in an amplitude A(j, ...,7). So
for instance, the 61-pentagon in A(1,2,3,4,5,6;¢) or the 12-pentagon in A(2,3,4,5,6,1;/)

do not follow the general formula (11.1.27), as can be seen for example in (10.3.38). These
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will require more work to show they satisfy antisymmetry, as with the former example say
one needs to compare it to the 16-pentagon from A(1,6,2,3,4,5;¢ + k). See the figure
11.1.3 for further details.

We thus construct the 61-pentagon from the amplitude A(1,6,2,3,4,5;¢ + k°), using the
field-theory rules section 10.2 with ag = 1, and a; = 0 for all other i. The resulting

numerator is

—_

Nisosas®) = =5 [(Vinae + ViLpen) Tsas + (2 ¢ 3,4,5)]

\)

— V2 Tiz.6145 + (2312, 3,4,5)]

1
+ 5 Vg Tlzaas + (2,3[2,3,4,5)]
+ Vi T8 s 6k6" — ViTlagsaski + (2 ¢ 3,4,5)]
+ Vg 123,507 + k' — K1)

mn mi.n
+ V115750 5.6k K -

(11.1.32)

We then compare the two numerators, (11.1.32) and (11.1.25), and the colour-kinematics
identity depicted in 11.1.3 follows immediately,

Nfg‘;g,&g)(@ + Noij2,3,4,5(¢) = 0. (11.1.33)

Before we conclude this example, we should note that the field-theory limit rules yield a
very different expression for the 16-pentagon in the same colour ordering without a shift
in the loop momentum. That is, the 16-pentagon of A(1,6,2,3,4,5;¢) is

1
Nigj2,3,4,5(0) = V16155 4 5lm + 5 [VigThs.45 + (2,3]2,3,4,5)]
(11.1.34)

1
+ §V162T3,4,5 + (24 3,4,5)] .

The above with a shift £ — ¢ + kg applied to is not BRST equivalent to the 16-pentagon
from the shifted amplitude A(1,6,2,3,4,5; ¢+ kg). They differ as

Q(Nf§|§,§74,5(5) — Nigj2.345(¢ + ko)) = Q(s16ViJsj2,3.45) - (11.1.35)

This shows that the field-theory rules we have described capture the shifts in the loop
momentum parameterisation in a non trivial way, as the limit of A(1,6,2,3,4,5;¢ + k¢)
does not follow from simply shifting ¢ — ¢+ kg in A(1,6,2,3,4,5; ).
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11.1.4 Remaining BCJ triplets

The above is intended as a representative set of examples of the sorts of calculations
one can perform to verify BCJ relations using these field theory methods. There are of
course several further BCJ relations between pentagons and boxes left to show in order
to confirm for certain that we have a BCJ representation of the amplitude. These we
illustrate in figure 11.1.4. For each of these in turn we act completely analogously to
the cases discussed; following the rules (10.2.5) to extract the two canonical ordering
numerators, and the non-canonical ordered amplitudes needed for the third numerators

are given below, along with the relevant assignments of values for the a;

A(1,2,6,3,4,5;0 + kg), ar=as=az3=as=a5=0, ag =1 (11.1.36)
A(1,6,5,2,3,4; 0 + ksg), a1 =as=a3=a4=0, as =ag =1 (11.1.37)
A(1,3,4,5,2,6;0 — ko), a1 =a3=a4s=as=ag =0, ag = —1 (11.1.38)
A(1,5,2,3,4,6;0 + ks), a1 =as=az3=as=ag=0, as =1 (11.1.39)

We have verified that each of the amplitudes in the above is BRST invariant?, and gives
numerators which satisfy the BCJ relations in the figure. We will not detail their con-

struction any further, as they can be obtained by analogous methods as discussed above.

As all of these relations are satisfied, as well as those we have not detailed which are easier
to show, we conclude that we have a BCJ representation of the six point one-loop ten

dimensional SYM amplitude.

11.1.5 Other Parameterisations of Graphs

The choice of loop momentum assignment to the graphs plays an important role, with
the nature of the numerators produced differing significantly between different representa-
tions. The BCJ identities considered in the previous discussion are those which maximize
the chances of failure, but we should note that if different choices of loop momentum as-
signments are made they are simple. For example, the first BCJ relation in figure 11.1.4
would have been simple to show if we parameterised such that the momentum between
legs 3 and 4 was ¢. This is depicted in figure 11.1.5. In this parameterisation, the BCJ

relation is
Nyjs6,12,3(€) — Najs12,6,3(€) — Nyjs.6,12),3(¢) = 0. (11.1.40)

2We have verified that the general a; six point amplitude discussed in appendix G has vanishing BRST
variation in fact [148; 149; 150]. That these amplitudes have vanishing variation is a consequence of this
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Figure 11.1.4: The other special cases at six points, for which amplitudes with shifted
loop momentum have to be computed to extract BCJ numerators.
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2 6 6 1 6
1 2 1

Figure 11.1.5: We may parameterise our graphs in any number of ways, there is no
reason why the momentum going into the 1 leg has to be £. By choosing a different pa-
rameterisation, more complex BCJ relations may be made simple. The above for instance
is the same BCJ identity as the first example in figure 11.1.4, but if the loop momentum
were assigned as it is here showing the BCJ relation becomes significantly easier. As this
is showing something different, the previous discussion is still needed however.

which follows immediately by using the formulae for pentagons and boxes of this form,
equations (11.1.27) and (11.1.26)

Nyjs6,12,3(€) — Najs,12,6,3(6) — Nyjs(6,12],3(4) =
1 1 1 1 1
(V12T9T47576£m — §Vl2T34,5,6 - §V12T35,4,6 - §V12T36,4,5 + §V12T45,3,6 + §V12T46,3,5

1 1 1 1 1
+ §V12T56,3,4 + §Vl23T4,5,6 - §V124T3,5,6 - §V125T3,4,6 - §V126T3,4,5)
(11.1.41)

1 1 1 1 1
- <V12T§7f4,5,6€m - §V12T34,5,6 - §V12T35,4,6 - §V12T36,4,5 + §V12T45,3,6 + §V12T46,3,5
1 1 1 1 1
+ 5V12T56,3,4 + 5V123T4,5,6 - §V124T3,5,6 - §V125T3,4,6 + §V126T3,4,5)

—Vie,12/T345 =0.

The vanishing can be seen by the Vg 19 = —Vi26 property of the BCJ gauge.

11.2 Seven points

At seven points, BCJ relations are analogously satisfied. Given their significantly more
complex structure, we will not give examples of these in the same detail. For more complex
checks, full expressions for numerators of the amplitude A(1,2,3,4,5,6,7;¢) may be found
in appendix I, and for A(1,2,3,4,5,6,7;¢ + >_.a;k") at [28]. We here only verify that

individual terms in numerators satisfy relations.
We may take for example the BCJ identity

Nijp3,4567(0) — Nij2,a356,7(¢) — Nij23456,7(6) =0, (11.2.1)



11.2. Seven points 183

and consider the V12T£’56’7 terms within this. The first and third numerators are from
the canonically ordered amplitude, with their terms of this form corresponding with the

worldsheet function [21]

Zin31567 = 915 954 956 + 91 (95 — 950 — 952 + 9ig)
+ 95 (912 — gie — 952 + 988 + 96 (913 — oiF — 958 + 951) (11.2.2)
+ 98 (915 — 917 — 952 + 982 + 936 (917 — 913 — 95 + 95e) B
+ 055 (953 — 053 — oS8 + 982) + 96 (058 — 05 — a5 + 9S8

The heptagon term arises from the terms proportional to I, which in effect means setting

Sgnzlj234567 ) p _ 1
(p) (Sgnzlj234567)po —J1 i |
9 = o =15 p=2. (11.2.3)
0 cp=3

Plugging these values into (11.2.2), all of the quartets of g(*) terms vanish and we are left
with a term

1
§V12T34,56,7 (11.2.4)

in the numerator Nyj23.456,7(¢)-

The hexagon Ny 345,6,7(¢) corresponds with the terms proportional to ﬁ[gzl in the field

(1)

theory limit of (11.2.2). Such poles only arise in this in the glé terms, and so we effectively

set
(1) 1

912 — —2812112 ; (11.2.5)

and take the limits (11.2.3) again for all other terms. Again, all of the quartets of g(?

terms vanish and we are left with a contribution to the hexagon of

1
ZV12T34,56,7 . (11.2.6)

Finally, we must find the middle term of (11.2.1). In this instance, the inherent symmetry
of the string correlator in 234567 is used to construct it based upon Stirling sums in
1243567 (See the discussion around (11.1.11) for more on this). As such, the correlator

contains a term

V12143 56,7 212,43,56,7 = —V12134,56,7212,43,56,7 (11.2.7)

This worldsheet function is (11.2.2) with 3 and 4 swapped, and the rules needed to find
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the heptagon are the modification of (11.2.3),

sgn1243567
(sgn]243367)p B 3 cp=1
sgn;
g — 22 p P=d1 L p=2 (11.2.8)
0 tp=3
This thus produces the heptagon term
1
_§V12T34,56,7 : (11.2.9)
We then see that the relation (11.2.1) is satisfied by these terms,
1 1 1
§V12T34,56,7 - ( - §V12T34,56,7) - 1‘/12T34,56,7 =0. (11.2.10)

As briefly discussed previously, at seven points there is an extra complication in the
presence of refined superfields which must be dealt with. To find the field theory limits
of these refined terms, we have to partially integrate the worldsheet functions against the
Koba-Nielsen factor. As a consequence of this less direct method, when we wish to verify
BCJ relations we must rearrange the refined terms to counteract this manipulation. For
relations in which the loop momentum structure is unchanged between terms (that is,
BCJ relations in which there is always momentum ¢ going into leg 1), this amounts to

canceling all (¢ - k) terms against propagators. So for example, consider the relation

Nij2,3.45,6,7(0) — Nij2.435,67(6) — Nij234567(() =0, (11.2.11)

within which we focus upon the refined terms ViJ3y9567. For the two terms from the

canonical amplitude, this is associated with the worldsheet function
z = —3s3495) + g (0 -k M4 (1625,6,7 11.2.12
34/1,2,5,6,7 531934 + 934 (- ka + (41947 + (1 > 2,5,6,7)). (11.2.12)

If we naively plug in the field theory limit values, we would expect the heptagon numerator

Nij2,34,5,6,7(f) to contain the terms
1 a4 Loao oa 1ia 567
——V1J34|2567(€-k: R R ) (11.2.13)
12 o 2 2
Likewise, the other numerators we would expect to contain the terms

1 1 1
Nipasserl) —Evlj43|275,6,7(£ K= KRk k567) (11.2.14)

Nijgsase7(l) < 0. (11.2.15)

The relation (11.2.11) is clearly not satisfied with these values.
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Instead, we should cancel the ¢ - k terms against the propagators in the denominators. So

for example, we may reformulate (11.2.13) as

1 Vi J. 1 12342 1 12342 123 1.4 1 12 44 1 4 1.567
1 1 1 1
= — SVidsapser (50— K = S (0 - K22+ 2k k).

(11.2.16)
We then cancel the (¢ — k)? terms with the corresponding piece of the Feynman loop
integrand associated with this term,

1
h234567(0) = (0= KV)2(0 — k12)2..(¢ — ;12345672 °

(11.2.17)

Thus, these terms contribute to hexagons instead. Hence there is only one term of this

form associated with the heptagon,

1
Nij23.4,56,7(0) < —ﬂ534V1 J3412,5.6,7 - (11.2.18)

A similar calculation should be performed on the other heptagon (11.2.14). This is reex-

pressed as

1 1 124y2 1L 12432 , 1.3 4
EWJ34‘275,677<§(€—I<: )= (= k4 Dk ) (11.2.19)
Again, we cancel against the Feynman loop integrand, which in this instance is I1 2 43 5.6,7(£),

and are left with a single contribution to the heptagon

1
Nijpa,356,7(0) < ﬂ834V1 J342,5,6,7 - (11.2.20)

The hexagons then inherit extra terms from the canceled portion of the heptagons. The
34-hexagon we are interested in inherits a term from the cancellation (11.2.16), and so we
now have

1
Nijo3456,7(0) < —5534‘/1 J3412,5.6,7 - (11.2.21)

Note this differs from what may be naively expected from (11.2.16) due to the hexagon
containing an extra 2ss4 in its denominator compared with the heptagon. Now plugging
(11.2.18) , (11.2.20) , (11.2.21) into the relation (11.2.11) we see it is now satisfied

1 1 1
— o 53Vidaqe 61 — 5 834Vidsaa 567 — ( - 5534‘/1J34\2,5,6,7) =0. (11.2.22)

Similar manipulations hold for other BCJ relations of this sort. We do have additional
complications however when the BCJ relation we wish to verify involves terms of different
loop momentum structure. We have yet to identify a general algorithm for such cases.

However, by explicitly rearranging amplitudes term by term, we have been able to arrange
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them such that they satisfy every BCJ relation we have tested. In particular, we have

been able to simultaneously satisfy the following

Nijg3a567(0) — Nﬁ?g{g 1560 = Nz 3456() =0,
Nij234576(f) — Nﬁ%,;g 1570 = Npg)2,3,457(0) =0,
Nizajpsa56(0) — N 1_”1672,374,5(5) Nig, 71712345 =0

Nis 7ap)2.3458) = N ins.2.54(0) = Nis o rajzsalf) =0,
Ny’ @12 34570 + Nig1y23457 =0,

=1
N[771H2v374v576(€) Nﬁ7]|2,3,4,5,6 0.

11.2.23
11.2.24

11.2.26

( )
( )
(11.2.25)
( )
(11.2.27)
( )

11.2.28

Though this is not an exhaustive test, we hope that it is sufficient to serve as a proof of

concept that it should always be possible to rearrange the refined terms to satisfy BCJ

identities.



CHAPTER 12

One-Loop Supergravity Amplitudes

Given that we have found a BCJ representation of one loop amplitudes, it natural to ask
if we may then use these results to find corresponding amplitudes in supergravity with the
double-copy construction [12]. For five points, this has previously been carried out in four
dimensions in [164], while in ten dimensions it was computed using pure spinor superspace
in [1]. Unfortunately as we shall see, the methods described here are not sufficient to
expand these results to six points, owing to the absence of dihedral symmetries between

numerators’.

In pure spinor superspace, we can test whether results obtained by the double copy are
correct based upon if they are BRST invariant [104; 99]. We now repeat the five point
supergravity construction of [1], to highlight that it is BRST invariant in part because
the numerators satisfy dihedral symmetries. While at five points our numerators satisfy
these symmetries in addition to the Jacobi identities, the corresponding symmetries at six
points fail with our BCJ-satisfying six-point numerators. This will prevent the double-

copy construction of a BRST-closed supergravity integrand. We are therefore forced to

!The dihedral group D, associated with an n-gon is the group of size 2n consisting of symmetries
associated with that n-gon. For example, for a pentagon this consists of an identity, four rotations,
and five reflections along lines between corners and midpoints of edges. Likewise for a hexagon there
is an identity, five rotations, three reflections along lines between corners, and three reflections along
lines between midpoints of edges. One would naively expect that a numerator associated with an n-
gon should be invariant under the action of all elements of this group upon it. So for example, that
N1|2,3,4,5,6(‘€) = N2\3,4,5,6,1(‘€7k1)a and that N1\2,3,4,5,6(‘€) = N6\5,4,3,2,1(7‘€)~ See [164] for further discussion
of these symmetries in an amplitudes context.

187
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leave applying the double-copy procedure at six points to future work.

12.1 Five Points

At five points, the calculation proceeds as one would hope. We begin by constructing the
colour dressed amplitude (that is, the SYM amplitude with its colour factors included,
corresponding with a sum over diagrams in all possible orderings, each multiplied by
a colour factor), and verifying it has vanishing variation. The colour factors are then
replaced by the corresponding kinematic factors, and the variation of this is once again
confirmed to vanish. Both of these results depend in part upon the dihedral symmetries

of the graphs being present, which they are in this case.

12.1.1 The five-point colour-dressed integrand

We express the five-point colour-dressed one-loop integrand as

1 1
M;5(¢) = (51\/1\2,3,4511,2,3,4531,2,3,45 + 51\/1\2,34,511,2,34,531,2,34,5 (12.1.1)
1 1
+ §N1|23,4,511,23,4,531,23,4,5 + 5/\/'12|3,4,5112,3,4,5312,3,4,5
1
+ 5/\/51|2,3,4I51,2,3,4B51,2,3,4 + M2,345(0)112345P1 2345+ perm(2,3,4, 5))

where N denotes the usual Berends-Giele counterpart of the n-gon numerator, and the
B and P are the colour factors of the box and pentagon diagrams respectively, defined in

the usual way
B12 345 = fa12feabfb3Cfc4dfd5e Pl 9545 = falbbeCfCSdfd46f65a ) (1212>

The factor of % in (12.1.1) compensates the overcounting of graphs due to symmetries (for
example, the 23-box diagram with ordering A(1,2,3,4,5) appears in both the Njs3 4 5 and

./\/'1|327475 terms). Note that the box numerators do not depend on the loop momentum.

We may see that this expression for the colour-dressed integrand (12.1.1) is BRST closed.
To begin, we expand the box colour factors in terms of their pentagon constituents using
the Jacobi identity [41],

Bi2gas = Pi2345 — P21345 (12.1.3)

and restrict ourselves to the terms proportional to Pi2345. Those with other colour
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factors will follow an analogous argument. These are

1
M;5(0) = Mi23450) 12345+ 3 (N12|3,4,5112,3,4,5 — Noysaslizas (12.1.4)

P12345

+ [Mi2sas — Mis2as] 11,2345 + [M2sas — Mijgass) 112,345
+ [Mi23.45 — M sa| 11,2345 + Nspsali2za — N15|2,3741_15,2,3,4> .

It is simple to see using the definition (10.3.10) that the boxes are antisymmetric in their
pairs of indices,

N.

ijlkdm = —Njilkim s Nijjkam = —Nijkjim s (12.1.5)

and so we may simplify the appearance of (12.1.4) to

Ms5(¢) = N1|2,3,4,5(£)Il,2,3,4,5 + /\/1|23,4,511,23,4,5 + N1|2,34,511,2734,5

P12345

1 1
+M2,34511,2,3.45 + 5/\/12\3,4,5[12,3,4,5 — §N21\3,4,511,3,4,5 (12.1.6)

1 1
+ §N51|2,3,4I1,2,3,4 - 5/\/'15\2,3,4[15,2,3,4) .

We may then make a substitution ¢ = ¢ — ks in I; 345, and ¢ = ¢ + ks in I15234. The
result is thus the integrand of the canonically ordered amplitude A(1,2,3,4,5;¢) (10.3.9),

M;(¢) = Mi23450) 12345 + Nijpsasliesas + Nijgsasli2zas
Pi123.45 (12.1.7)

+ M2sa5l12345 + Nigjzasl12345 + Noizasli2za-

We may then reintroduce the colour factor and other orderings, and the colour-dressed

integrand (12.1.1) becomes
M5(€) = A(l, 2,3,4,5; f) P172’374’5 + perm(2, 3,4, 5) . (1218)

This is therefore BRST closed by the arguments related discussed for partial amplitudes.
We note that reformulating the amplitude in this way agrees with the general result of
[41] (see e.g. equation (3.4) of [165]).

12.1.2 The five-point supergravity integrand

We now construct the five-point supergravity integrand using the double-copy, and high-
light the subtle requirement that the dihedral symmetries are necessary in order to have a
consistent application of the double-copy. As it happens, the five point numerators have
these symmetries, but the same is not true at higher points and making the observation

in this simpler case will clarify future discussion.
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We begin with the colour-dressed integrand (12.1.1), and as is usual with the double copy

we replace the colour factors by an extra copy of the kinematic factors. This gives the

expression
M;5(¢) = (%Nl\2,3,45N1|2,3,4511,2,3,45 + %J\G|2,34,5N1|2,34,511,2,34,5 (12.1.9)
+ %/\G\2374,5]\71\23,4,511,23,4,5 + %Nm3,475N12\3,4,5112,3,4,5
+ %NE)I|2,3,4N51|2,3,4151,2,3,4 + N1|2,3,4,5(5)N1|2,3,4,5(5)11,2,3,4,5 + perm(2, 3, 4, 5))

Note that the kinematic numerators on the left are in terms of Berends-Giele numerators
N, while those on the right are the local numerators N. This difference is purely for
simplicity of notation; by extracting the Mandelstam from a N term the symmetry in the

two numerators is made clear.

This vanishes, but only as a result of the application of cohomology identities, and not
at the level of superfields. To see this, we suppose the BRST operator acts upon the left
moving terms?, with the right moving terms following analogously. The variation of the

canonically ordered pentagon simplifies as

. 1 .
(QN1\2,3,4,5(€))N1\2,3,4,5 L2345 = §V1V2T3,4,5N1\273,475 [-71,23,475 - 112,3,4,5]

1 .
+ §V1V3T2,4,5N1\2,3,4,5 [11,2,34,5 - 1—17237475]

1 N
+ §V1V4Tz,3,5N1\273,475 (112,345 — T12,345)

1 s
+ §V1V5T2,3,4N1\2,3,4,5 11,234 — 112345)

(12.1.10)

where we have cancelled terms from the variation against the loop momentum integrand.
Almost all of these terms are well behaved, and are cancelled by the variation of corre-
sponding boxes accordingly. For instance, within the variation of (12.1.9) we also have

the terms

1

3 1 .
——(@QN1j23,45) N1js.a 5112345 + —— (QN132,45) Nij2,4511,32.4,5
4593 4s23 (12.1.11)

1 ~ -
= —§(V1VzTg,4,5 —ViVaTou5) (Nij2,3,45(6) — Nig2as) 2345

The terms proportional to N1‘273,475(€) then can be seen to cancel a pair of terms in
(12.1.10). However, additional complications arise with the term proportional to I; 2.3.4.

A similar approach to the above reveals that the BRST variation of (12.1.9) contains

2Recall in the double copy construction, the numerators with a tilde are referred to as right moving,
and those without one are left moving
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[148; 149; 150]

1 s s s
St §V1V5T2,3,4 [11234N12345(0) + Is1234(Nisj2,34 — Nijs 2,3.4(0))] (12.1.12)

We must then perform a substitution £ — ¢ 4 k5 on the pentagon term above to put all

terms over a common denominator, giving us
1 - - -
SViVaTo3.4 I51234 [ Nisp s + Nz sas(f = ks) = Nijsa54(0)]- (12.1.13)

Therefore, if the dihedral symmetry N1‘27374,5(£ —ks) = N5‘1727374(€) was satisfied, the
terms inside the bracket would vanish without the need of cohomology relations by the
BCJ identity

Nij1234(0) — Nijs2.3.4(€) + Nigjaz4 = 0. (12.1.14)

However at the superfield level it is not true that N1|273’475(€ —ks) = ]\~f5|1,273’4(£). Using
the field-theory limit of the string correlator to generate these numerators, we find their

difference to be

Nijo3a5(0 —ks) — Nsjo34(0) = VAT 4 sk — V1 To 3.4

- . (12.1.15)
— [ViTs234 + (2 ¢ 3,4,5)] .
One must work within the pure spinor bracket in order for this to vanish,
(Nij23.45(¢ = ks)) = (N5j1.234(6)) 4 (12.1.16)

by the identity (10.3.18).

To summarize, the five-point supergravity integrand is BRST invariant, but showing this
relies upon the numerators satisfying dihedral symmetries as well as those of the colour-
kinematics duality. At five points, this is the case in pure spinor superspace. However, as

we shall see this will not be the case at higher points.

12.2 Six Points

At six points, the numerators developed in this thesis fail to give consistent colour dressed
SYM or supergravity integrands; both such amplitudes have non-vanishing variation.
While we may change our approach to create a valid expression for the former, it is
not currently known how to describe the latter. This is all because the numerators, in
spite of satisfying BCJ identities, fail to satisfy the dihedral symmetries of their associated
graphs.
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12.2.1 The six-point colour-dressed integrand

The colour dressed integrand at six points will be written tentatively as [41]

Me(l) = ( f\%l,3,4,5,6(€) 1123456

1 1
+3 > NEta,ep.e(0) hiapon.e (12.2.1)
ABCDEF=23456 B
1

ABCDE=23456

where the Berends-Giele currents N also contain the corresponding colour factors in the
natural way. For example, a box term would be

1 1

Nf§§|4,5,6 = N123|4,5,63123|4,5,6 —+ N[1723]|4,5,6B[1,23]|4,576 . (12.2.2)

5123512 5235123

Wherein the B4 g c,p denotes a six point box colour factor in the natural way, and similar
Pac,p,r and Ha pc p,gr notation will be used for six point pentagon and hexagon

colour factors. The fractions are again present to deal with overcounting?.

We again use Jacobi identities to expand the colour factors in terms of those of hexagons.
Focusing upon those proportional to Hj23456, there is a single hexagon numerator?
Nijg3456(0) 1123456 As the boxes are independent of the loop momentum, they will
simplify analogously to at five points and become ZABC’DE:23456NElAIB,C,D11A|B,C,D~
Hence the hexagon and box components of the partial amplitude A(1,2,3,4,5,6;¢) are

obtained.

The pentagon component fails due to the absence of dihedral symmetries. The pentagons

from (12.2.1) proportional to Hi 23456 are

) F9y

1
3 ( Nigsas6(0) 12,3456 +Nij2sase(@) 123456 + Nijgsase()1,23456

FNipaass(Oh 28050 + Mipsase(Ohasass + NipaasOhsts o0 o
- 2’1‘3747576 (6)1—1)374)576 - N1‘32747576 <£)Il’32’4’5’6 o N1|2’43’576 (£>Il’274375’6
(0)

—NMis516() 1123546 — Nij2,3465) 12,3465 — N16|2,3,4,5(5)116,2,3,4,5) :

We would like to rewrite these terms using the numerators from A(1,2,3,4,5,6;¢). In most

cases, this can be done immediately using relations of the form —N1|32’475’6 (01132456 =

The 3 is needed to deal with the equivalence of say N1|23,4,5,6(¢) and Nyj32,4,5,6. The I is needed to deal
with the equivalence of say Ni|(2,3],4],5.6> IV1|[3,2],4],5,6> IV1|[4,[2,3]),5,6 and Ni|[4,[3,2)],5,6- The relative minus
signs which these may appear to differ by are cancelled out by likewise appearing in the corresponding
colour factors.

“There is second occurring when the relation Hi 654,32 = Hi23.4,5,6 is used. However the equivalent
of this was not needed at five points, and we shall discuss this more shortly.
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Nij23.4,5.6(€)11,23,4,56- The exception are the terms

1
—3 (N21|3,4,5,6(£)11,3,4,5,6 + N16\2,3,4,5(4)116,2,374,5)

1 — __
=3 (Nf22|37ié76(£)11,3,4,5,6 + Ngf"2737}1’5(5)116,2,3,4,5> (12.2.4)

1 =11 =—1
=3 (Nf22|3,i5,6(f — ko) 23456 + Ngfigz45(0 + 7%)-71,2,3,4,5)

where in the second line we used the antisymmetry of the pentagons discussed in sec-

tion 11.1.3. If these numerators obeyed dihedral symmetries, the above would yield

1

5 (N12|3,4,5,6(5)112,3,4,5,6 + N61|2,3,4,5(£)11,2,3,4,5) (12.2.5)

and the terms (12.2.3) would reduce to the pentagon component of A(1,2,3,4,5,6;7).

Unfortunately this is not the case, and we have instead®

Majzas6() — 1“5@136(5 — ko) ~ _%Vlj2|3,4,5,6 (12.2.6)
Norjz3.a5(0) = Nitogas(0 + ko) ~ —%%J6|2,374,5 (12.2.7)
Hence the colour-dressed integrand (12.2.1) becomes
Me(0) = (A(1,2,3,4,5,6;0) + Cr2345,6) H1,23456 + perm(2,3,4,5,6), (12.2.8)
where
C123456 = i(V1J2\3,4,5,6112,3,4,5,6 + Vidgi2,3,4,5016.2,34,5) - (12.2.9)

This suggests that, in order to have vanishing BRST variation, we should reformulate the

colour-dressed integrand as

M(0) = Mg(¢) — [Cr2,3456H1,2,3456 + perm(2,3,4,5,6)]

(12.2.10)
= A(l, 2,3,4,5,6; €)H17273’47576 + perm(2, 3,4,5, 6) .

It then follows from the partial amplitudes having this property that this is BRST invariant
QMY(t) = 0.

12.2.2 The Six-Point Supergravity Integrand

The six point supergravity integrand constructed using the double copy procedure with

these numerators has non-vanishing variation, and therefore is invalid. To begin, we note

5We describe this difference using the refined building block J2)3,4,5,6 only to simplify notation. The
true difference is a much larger expression, depending only upon non-refined building blocks. However,
this longer expression is BRST equivalent to (12.2.6) by using the identities from [20].
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that the expression (12.2.10) may not be used to generate the supergravity amplitude. If
such were used, and the hexagon colour factors were replaces by corresponding hexagon
kinematic factors, then the resulting expression would not be symmetric in its left and
right moving modes by the discussion of the previous subsection. As such, we must return

to equation (12.2.1), and therein perform the double copy procedure.

To see that this then has non-vanishing variation, as at five points we focus upon a subset
of terms in the left-moving BRST variation QM;g(¢),

ViVseTs 45 (11,2,4,5N1|2,4,5,36(f) — 1136,2,4,5N1136,2,4,5(£) — 1136,2,4,5N361|2,4,5>

) ’ ’ (12.2.11)
= ViV3612,4,51136,2,4,5 <N1|2,4,5,36(€ — k36) — Nz 2,.4,5(6) — N361\2,4,5> :

The missing labels in I7 2 4 5 again arise from loop-momentum cancellations in QN1‘274,5736 (0)11,2,4,5,36-
This is compensated by the shift £ — £— k3, which in performing we must also apply to the
right-moving pentagon in the second line. If the numerators satisfied dihedral symmetries,

that is if the condition
N1\2,4,5,36(£ — ksg) = N36|1,2,4,5(€) (12.2.12)

were satisfied, then (12.2.11) would vanish identically by the BCJ relation

Nagj1.2,450) — Nijzs2.45(0) — Nagrjpus =0, (12.2.13)

Unfortunately such is not the case, and unlike at five points this is not true even in the

cohomology,

<Nl|2,4,5,36(€ — k36)) # <N36|1,2,4,5(£)> . (12.2.14)

This is not a simple problem to fix, as these shifts in the loop momentum will always
need to be performed when the variation of numerators described in this thesis are found.
As such, a new approach is needed, and some idea of such are described in the following

section.
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Summary and Outlook

In this part, we described a set of rules by which the field-theory limits of the Kronecker-
Eisenstein coefficient functions in the genus-one superstring correlators derived in [20; 21;
22] may be taken. Using these, we found expressions for numerators in ten-dimensional
SYM at one loop for five, six and seven points which satisfy BCJ identities. We therefore

resolved the difficulties present in showing BCJ relations in an earlier work [1].

These field-theory limits necessarily take into account the parameterisation of the loop
momentum integrands, shuffling terms between the various numerators accordingly in
order to preserve BCJ identities. While BRST invariance of the overall SYM one-loop
integrands is maintained in this action, the BRST properties of individual numerators
changes in a non-trivial way (See the discussion around (11.1.35)). This leads to the
numerators violating the dihedral symmetries one would naively expect to be present.

However, without this shuffling of terms BCJ relations would be violated.

As a direct consequence of this, we learned when we attempted to apply the double
copy procedure that in order for such to be successful, the numerators must satisfy both
kinematic Jacobi identities, and the dihedral symmetries of the corresponding graph. Un-
fortunately our six-point numerators do not satisfy these symmetries and the double-copy
construction initiated here remains incomplete. As such, applying the double copy proce-
dure must be left for future work, and we outline in the following outlook section how one

may go about it.

195
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We should note here the state of the field more broadly. Supergravity integrands have been
constructed using BCJ numerators in four dimensions for up to seven points in [72], and to
arbitrary multiplicity in [73] using spinor helicity methods. Supergravity amplitudes were
also constructed in [74], but using a partial-fraction representation of the loop momentum
integrands. They have not been constructed in ten dimensions using traditional Feynman

loop momentum integrands, and so if such were found it would be a new result.

We do not provide a summary of the methods described in this part here as in the previous
summary, as to do so would be to repeat the discussion from the start of section 10.2 to
the start of subsection 10.2.1. We refer the reader to such for a summary of the formulae

developed in this part.

13.1 Outlook

There are numerous directions in which further work on this project may be performed.
Here we discuss just two of them; enforcing the double copy at six points, and computing
SYM amplitudes at higher points. We discuss some of the difficulties in each, and outline

a potential strategy to go about each of them.

13.1.1 Supergravity Amplitudes at Six and Higher Points

The most immediately obvious next step for this work would be to find means by which
the problems related to the double copy may be fixed. Once an approach to such has
been found at six points, it is likely that the same method will hold at seven points, and
for any higher point amplitudes which may be found also using these methods. Several
approaches to this have been attempted, and here we discuss a few and why they have

failed, as well as one route which remains unexplored.

The majority of our attention has been focused upon restoring the vanishing of the BRST
variation of the colour dressed amplitude as represented in (12.2.1). One such consideration
was to sum over amplitudes with different orderings. That is, rather than only considering
diagrams with a single shared loop momentum structure, allow for many. Unfortunately
this does not appear to work; if one replaces the numerators in (12.2.1) with their general
a; equivalents then the same error terms are found. One may wonder about assigning
different a; values to different numerators, however this is believed to be forced into the
previous situation via the constraint of vanishing BRST variation. This last point should

not be considered fully explored however.
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One partial simplification of the results lies in the relations between diagrams and their
reversal. That is, by expanding the colour factors in terms of structure constants, it may
be found that

Hig5432=H123456- (13.1.1)

Similarly, one may make substitutions in the loop momentum to invert the ordering of
the diagram they correspond with. For example, at six points one may perform the

substitution ¢ = —¢ + k12 in [1265.4,3,

/d1051126543=/ ant
e (0 — Kk12)% (0 — E126)% (€ — k1265)2 (¢ — k12654) (¢ — k126543)°

- / dloﬁl
) (=20 — kg)2(—0 — kes)2(—1' — kesa)2(—0' — kes43)2 (13.1.2)

doy
B / (0)2(€ — k12345)% (€ — k1234)%(€ — k123)2 (£ — K12)?
= /dloﬁ 23456 -

Note any minus signs incurred from swapping the order of integration and in the d'/ are
raised to the tenth power, and so vanish. Similar is true in general, with a substitution
U = —0 + ka, taking any Ia, a,.. A, t0 T4, A, A, 1...Ay, if the words Ay, ..., 4,, contain
every particle label exactly once. This result does not cancel the error terms in the colour
dressed amplitude however, it merely reduces the number of propagator structures which

have to be summed over.

When expanded in terms of components, the failure of the dihedral symmetries is found
to be proportional to Mandelstam variables. For instance, the difference between different
representations of the 23-pentagon in (12.2.14) is proportional to so3 after it is expanded

in components and evaluated in the pure spinor bracket;

<]\723\1,4,5,6(€> - N1\4,5,6,23 (0 —koz)) = (k3sViT53 456 + VosiTus6 + [ViTosas6 + 4 ¢ 5,6])
N823(...). (1313)

This difference is the same as the terms by which the BCJ identity fails in equation (6.12)
of [1].

Solving the problems related to the double copy at one loop appears to require a different
approach in the pure spinor superspace context, and as the failures discussed above are
purely contact terms we are drawn to the generalized double-copy prescription of [80]. In
this reference, a similar situation was encountered and the double copy was successfully
applied in spite of it, and as such this seems like a strong candidate for a solution. It

does not seem unreasonable to speculate that the problems in constructing double copy
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amplitudes encountered in this part may be more widespread, and if so the generalised
double copy approach may become the standard method for generating gravity integrands
from gauge-theory. Discussion of similar problems and approaches through the generalised
double copy to solving them may also be found in [166; 167; 168; 169; 170].

13.1.2 Higher point amplitudes

One alternative direction for future work on this project would be to attempt to generate
higher point amplitudes. Following the approach set out in this work may lead to some
success, and some preliminary work has been carried out to find a candidate for an oc-
togan numerator at eight points based upon the candidate correlator set out in [22] and
worldsheet functions at [171]. However, this approach is restrained by difficulties relating
to the refined worldsheet functions. Alike at seven points, these contain double poles and

partial derivatives. Here though it is not yet clear how to remove them.

To demonstrate, consider 29345678 The partial derivative terms within this function

are

(2)

1 2 1 2 1 2 1 2 1 2 2 1
—g§2) 0953 + g%z) 3954) + 953) 3952) — 954) 3952) + 9§4) 3952) - 952) 39§3)

(13.1.4)
+ gg) 395? + gg) 395? — gﬁ) 395? - 395? + 895’3 :

We may modify the relation (10.3.49) for eight points, and use this to simplify several

terms. Likewise, several more terms may be simplified using relations of the form

0 (93095 To(0) =~ o R 0Ts(0) + 0 (41393 Tu(0) ) (13.1.5)

However, these two results will not simplify the function entirely. After applying them,

we may reduce the list of derivative terms (13.1.4) to

1 2 1 2 1 2 2 1 2 1
- 9%2)6953) + 9%2)8954) + 9:5,4)89%2) + 9%3)8953) - 9§4)69§4) . (13.1.6)
It is then unknown how to either rewrite these terms as those for which we know how to

take field theory limits, or how to take the limits of these terms directly.

An alternative approach however, could lie in identifying patterns within the lower point
amplitudes. Various patterns may be identified in the lower point amplitudes; and it
may be possible to use these to generate higher point amplitudes. For example, limiting
ourselves to amplitudes of the form A(1,2,...,n;¢), it seems reasonable to assume box

numerators will always have the form

Nap.cp =Valscp, (13.1.7)
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and that at least with the VT terms, the diagrams in which the n and 1 legs are not part
of a shared external tree follow a standard pattern. So for instance, one might expect that
the 8 point [1, [[2, 3],4]] pentagon has the form

o1
Noajagsers = VipalaTserst™ + 5 (VinpaiasTors + (5 ¢ 6,7.8))
1
+ 5 (Vi p2ganToors + (5,615,6,7,8))  (13:18)

+ Possible refined terms.

Similar arguments may fix the VT in all such diagrams, and it may be that a similar
structure holds across the diagrams with n and 1 in an external tree also. Then the n-gon
may also be partially identified by studying the form of m-gons at m points, for m < n.
For example, the VATE ¢ i terms in the six point hexagon have a similar structure to
the V4Tg ¢ p terms in the five point pentagon, and similar relations hold for other terms

in n and (n — 1)-gons.

Using results of this sort, it should be possible to fix most VT terms in the eight point
amplitude. The constraint of vanishing BRST variation may then be used to fix the
coefficients of other possible remaining terms in the amplitude. Further, this could be
done term by term in order to simplify the computation. That is, one should be able to
begin with the eight point octogan, and use the patterns we anticipate being present and

the constraint that the variation should be proportional to terms of the form
(€ — ki2-m)2 me{l1,2,..,8}, (13.1.9)

in order to fix most unknown terms. Then, the suspected patterns within numerators, the
requirement that seven of the heptagon diagrams are likely given by a standard formula,
and the constraint that their variation must be the negative of the relevant terms from
the octogan plus terms proportional to the above, may be used to fix most terms in the

eight point heptagons.

Using an approach like this, it may be possible to find the eight point one loop amplitude
by brute force, without becoming computationally unfeasible. Once such is found, we
would have a large data set of amplitudes, including two which include refined terms. At
such a point, speculations about general formulae may become reasonable, and a nine
point amplitude may be identified by patterns in numerators alone. Further, if such a
general formula were known, it may be possible to prove rigorously that amplitudes it
produces are always in the BRST cohomology. Finally, if one could identify an eight point
amplitude, this could potentially be used to fix some of the uncertainty surrounding the
eight point correlator in [22]. We stress that these speculations are just that however, and

it would take considerable work to see if these approaches would work as required.
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Part 1V

Conclusion
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In this thesis, we have described procedures by which scattering amplitudes at tree level
and one loop may be constructed so as to satisfy BCJ identities. We will now conclude
with a brief summary of these results, as well as an outline of the future directions research

could take in this area.

We began in part I with a review of the literature relevant to this thesis. We outlined
super Yang-Mills, supergravity, and how the two are linked through the double copy when
BCJ identities are satisfied. We introduced the pure spinor formalism of string theory,
and described how amplitudes are constructed within it. This construction was then
simplified with the aid of multiparticle superfields, and a BCJ gauge wherein these satisfied
generalised Jacobi identities was described in a number of cases. Using such, formulae for
tree level and one loop amplitudes in both string and field theory were detailed, with
these satisfying BCJ identities when their constituent superfields where in the eponymous

gauge.

In part II, we discussed the work in [27] to generalise the concept of the BCJ gauge
to higher orders. The construction of this gauge, and various other formulae related to
multiparticle superfields, were reformulated in terms of the contact term map. An explicit
form for the H{p g superfields was found and conjectured to hold in general, and with
this all steps of the hybrid gauge construction of the BCJ gauge were defined in general.
Similarly, the procedure to move directly from the Lorenz to the BCJ gauge was described
to higher orders than was previously known. It was then proven that the BCJ gauge
terminology was not a misnomer; that it is indeed a gauge transformation away from the

Lorenz gauge by the formulae of this part.

In part III, we detailed the work of [29], describing how the string correlators identified
in [20; 21; 22] may be used to generate amplitudes in field theory. Amplitudes to seven
points were then identified, and these were shown to satisfy BCJ identities. However,
a complication arose when we attempted to apply the double copy to these results to
find amplitudes in supergravity. In order to avoid the labelling problem, extra attention
had been paid to the loop momentum structure of amplitudes we constructed. While
this meant we were able to then find the amplitudes and show that they satisfied BCJ
identities, another unfortunate result became apparent also. Namely, the numerators we
had found did not satisfy dihedral symmetries. As a result, attempts to show the vanishing
of the colour dressed amplitude failed at six and higher points, and while these could be
corrected for by modifying the proposed form of the amplitude, such was not also the case
for the corresponding supergravity amplitudes. We were forced to conclude that, if one
wishes to apply the standard double copy construction, dihedral symmetries are required
in addition to the BCJ identities.

There are numerous directions the work in this thesis could be taken further. We have
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described some of these in varying levels of detail, and we summarise these now. Beginning
with the BCJ gauge construction, it appears that the H A,B,c terms constructed in order to
describe the redefinition H|p g terms may be used to more efficiently describe amplitudes.
That is, the § = 0 component of these appears to correspond exactly with the pure
spinor bracket of three multiparticle integrated vertex operators. The reasoning for this is
mysterious, and as it presents an opportunity to significantly increase the speed at which

amplitudes are calculated it is worthy of investigation.

Then also, formulae exist for the redefinition Hp g terms only when P and @ a single
class of Lie monomials. While all others may be related to these by Jacobi identities, it
would be interesting to find a truly general expression for these terms. Doing so would
potentially reveal further details about the BCJ gauge and its origin. Some work has been
done on this problem in the past, and though the results it produced are likely false they

are presented in the appendix F as a starting point for any future work in this area.

There are then other areas which have been explored in less detail. Higher rank verifi-
cations of various formulae are needed, and in some cases we would like to simplify the
appearance of formulae also. Further, it would be interesting to attempt to prove further
relations related to the BCJ gauge construction; one initial attempt at such is provided in
appendix B, and there are many other formulae which it could be beneficial to rigorously
prove. It would be interesting to find a defining equation of the BCJ gauge; that is, to
find a means of defining the BCJ gauge similar to how the orthogonality of superfields
and momentum defines the Lorenz gauge. The construction of multiparticle superfields
has been extended to the small o/ regime, and it may be possible to extend or formula for
Hip g to this regime also. Then finally there may be opportunities to use the formulae de-
veloped to make connections with the kinematic algebra and the Ly.-algebra construction

of Berends-Giele currents.

Moving onto the construction of one loop amplitudes using pure spinor methods, this is an
area with a clear and immediate next project to be worked upon; finding a method by which
supergravity amplitudes can be constructed correctly. Though we have attempted multiple
approaches to rectify the problems there, it remains an open problem in need of solving.
The current best candidate we have for a method by which the problem may be solved
lies in the generalised double copy construction of [80]. Therein, problems comparable to
those encountered in this work were found, and a method was described by which they
were rectified. Performing an analogous procedure seems like a strong candidate for a

method by which higher point supergravity amplitudes can be constructed.

Then there is the question of whether we may move to finding higher point one-loop
amplitudes in super Yang-Mills. While the results in this thesis were derived from the

string correlator, there are additional difficulties in such an approach at higher points and
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so it becomes less feasible. Instead, a combination of identifying patterns in numerators
at lower points and brute force is thought to be the best approach to this problem. While
this would be inelegant at first, once the eight point amplitude were found the underlying
structure of the amplitudes should be becoming clearer. As such, the nine point amplitude
should require significantly less brute force than the eight point case, and similar for higher

points.

More broadly, there are other areas of research related to the problems worked on in this
thesis which remain to be investigated. Some work has been performed to at higher loops,
with the two loop five point amplitude being identified in [23; 172]. These results could be
extended to higher points. At three and higher loops subtleties arise when one works in
the pure spinor formalism, and a more complex scheme has to be used [173]. Nevertheless,
there is always the possibility that work could be performed in that direction also. Then
finally, there are a range of other aspects of the double copy worthy of investigation, and

many open questions in this area [12].
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APPENDIX A

Additional Discussion of Notation

Here we summarise various aspects of notation used in the course of this thesis, and provide

examples of such.

A.1 Summation Notations

A.1.1 Permutation Sums

When we have a sum which is denoted
(some function of 1,2,....,n) + (1,2,...,m|1,2,...,n), (A.1.1)

this means we sum over the possible ways to select a set of m letters from 1,2,...,n,
maintaining their order, and substitute them in for 1,2,...,m. The unselected terms are
then use the remainder to fill in any missing spots. This is much easier to explain with an

example, so suppose we have
ViTjp3456 + (2,3,4]2,3,4,5,6) (A.1.2)

The above sum sums over all ways of selecting three numbers from 2, 3,4, 5,6, and substi-

tuting them into the a, b, ¢ slots of T}4 4] (] 4, While maintaining their order. The unselected
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terms are then substituted in for d and e. This is thus

ViTi2,3)4),5.6 + V11i[2,315,4,6 T ViT[12,3),6),45 + V11][2,4,5,3.6 T V11[[2,4),6),3,5

(A.1.3)
+ViTi2 56,34 + ViT(3.4),5),2,6 + V11[3,4,61,25 T V11[13,5),6),2,4 + V11][4,5],6],2,3 -

This notation may be generalised to have two or more blocks of indices being summed

over. For example the summation
ViTla3) 14,56 + (2,3/4,5[2,3,4,5,6). (A.1.4)

This sums over all ways of selecting two distinct pairs of numbers from 2,3,4,5,6, and
substituting one into the 2 and 3 slots of the T', and the other into the 4 and 5 slots. Note
the relative ordering of the 2 and 3, and the 4 and 5 should be maintained, but not that
of the pairs’. One should be careful in these sums not to duplicate terms. That is, thanks
to the symmetry of T4 p ¢ in A, B and C, setting the first block to [2, 3] and the second
to [4, 5] say should not be considered distinct from setting the first to [4, 5] and the second
to [2,3]. They are the same term, and we need to be careful about including them in the

above sum else we accidentally overcount terms. The expansion of (A.1.4) is

ViTls) a6 + V1T e s + V1iTls) 5614 T Vil a6 + V1Tl24 36,5
VT 56,3 T ViThs sae + ViTis sea T ViThs mes + ViThe) 545 (A.1.5)
Vil e+ ViTle uss + Vil 56,2 + ViTs) e2 T Vile) us),e

A.1.2 Stirling Cycles

Permutations of sequences of numbers can be represented with Stirling cycles. If we were
looking at for instance the permutations of the sequence 123456, then two examples of
Stirling cycle representations of permutations would be (1435)(2)(6) and (1)(25)(3)(46).
A bracket (...7j...) takes whatever element is in position ¢ and moves it to position j. So
the first example sends 1 to the position of 4, 4 to that of 3, 3 to 5, 5 to 1, and it leaves
alone 2 and 6. So the result of acting with the first example on the sequence is 524136.
Likewise the second example only acts by swapping 2 with 5 and 4 with 6, and so gives
153624.

We note now the structure of Stirling cycles. There is some number of brackets in each
permutation. Each bracket is cyclic in its elements (so for instance, (1435) = (4351) =

(3514) = (5143)), but by convention we always lead each bracket with its lowest element.

vvvv

xxxxxx

ViT(k 5),6),12,3),7,s though, as the overall ordering of the sets of numbers we select is irrelevant

)
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Likewise, the ordering of the brackets is irrelevant (so (1435)(2)(6) = (6)(2)(1435) =
(2)(1435)(6) = ...), but by convention we always write them in order of their lowest
element. With these standardisations we may construct a sum over Stirling cycles, which

will appear as
(some function of Ay, ..., Ap) + [A1, ..., Am|12...1], (A.1.6)

This means that we take the sequence 12...n, and from it construct all possible Stirling
cycles with n brackets. We then substitute in the first bracket for A, the second for As,

and so on. So, for example

Va,Tay a5,4, + [A1, Az, A3, Ay|12345] = + V121345 + Vi3To a5 + ViaTo 35 + VisTa 34
+ ViToz 45 + ViToa 35 + ViTos 34 (A.1.7)
+ViTo3a5 + ViTo354 + Vilo 345

To illustrate the meaning of a sum over Stirling Cycles, we give the full expansion of the
six point one loop string correlator. Recall this in terms of Stirling cycle sums, equation
(5.3.19) [22]

1
’CG(@ = §WT277,137,14,5,6Z{?£3,4,5,6
+ VATE e p 528 p.op.p + [123456|4, B, C, D, E] (A.1.8)
+ VATB,C,DZA,B,C,D + [123456’14, B, C, D] .

The first line needs no expansion, and so we begin with the second. Note we drop the Z

worldsheet functions below for simplicity, but they follow naturally.

VATJTB”,C,D,E + [123456|A, B,C, D, E] = + V12T§77;1’576 + V13T2n;1’576 + V14T2"7§’576
+ V1513346 + VicTo545 T V1103456
+ViToh 356+ ViToss46+ ViTogs45 (AL9)
+ViT5 056+ V1135246 + ViTs62.45
+ViTy5 056+ ViTig o35+ ViTs6234

The third line has expansion

VaTg.c,p + [123456|A, B,C, D] =+ Vi23Ty 56 + VizoTu 56 + Vi2aT356 + ViaaT356
+ ViasT3.4.6 + VisaT346 + VizeT3,4,5 + Vie2T3,4,5
+ VisaTos6 + ViasTos6 + VissToae + VissToae
+ ViseT245 + ViesToa5 + ViasTo 36 + Visalo 36
+ VigeTo 35 + Viealo 35 + Visel2,34 + ViesI2,3,4
+ ViTo3a56 + ViToa3 5.6 + ViToss a6 + ViTs534.6
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+ ViTa3645 + V1126345 + V1124536 + V115436
+ ViTo46,35 + V1126435 + V1125634 + V1126534
+ ViT34526 + V1135426 + ViT54625 + V1136425
+ ViT356,2,4 + V1136524 + ViTus6,2,3 + ViTues,2,3
+ V1213456 + V12135 4.6 + V12136 4,5 + V1214536
+ V121635 + Vi2T56 3,4 + VisToas6 + VisTos 46
+ Vi3To6,4,5 + Vi3T5 2.6 + Vi3Tus 2,5 + VisT56,2,4
+ ViaTo3 56 + ViaTos5 3.6 + ViaT6 35 + Via13526
+ VidT36,2,5 + ViaTs6,2,3 + VisTr34.6 + VisTha 36
+ VisTs6,3.4 + VisT3a2.6 + VisT36,2,4 + VisTae,2,3
+ VigTo345 + VieToa,35 + VieTo5,34 + VieT34.25
+ VieT35,2.4 + VieTus 23 + ViTo3 456 + V1123 46,5
+ ViTog 564 + ViToa 356 + ViT2a 365 + ViT24563
+ V1155346 + V1125364 + V1125463 + V1126 34,5
+ ViT56,354 + V1126453 + V1154562 + V11535 46,2
+ V1136 45,2 (A.1.10)

A.1.3 Deshuffle Products

Frequently we encounter sums over deshuffle products, denoted R LIS =Y, for instance

in the variation of the multiparticle vertex operators with Dynkin bracket structures

QVipy = Y (K K)Vixr)Vigs) (A.1.11)
Xjy =P

RILIS=Y
To explain this notation, first we recall the definition of the shuffie product (2.1.18). The
deshuflle product is then the sum over all words R and S such that their shuffle product
R LIS contains the word Y. This is inherently symmetric in R and S, and is most easily
demonstrated with an example. Suppose Y = 345, Then for R and S we must sum over

the values
RSe{l®345, 3245, 4®35, 5®34, 34®5, 35®4, 45®3, 34520} . (A.1.12)

This may alternatively be thought of as the sum over the power set of the word Y. A
power set of a word A is the set of all words B, such that B is composed exclusively of

letters in A and in the same order as in A. This is denoted P(A), with the example above
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being
P(345) = {0,3,4,5,34,35,45,345} . (A.1.13)

The sum over deshuffles then corresponds over the sum of terms in the power set paired

with their complements.

So, an example of a variation using (A.1.11) would be

QVigaas = (k' - k*)(ViVasas + VigVaus + ViaVags + VisVoss
+Vi34Vas + VigsVas + ViasVaz + VizasV2)
(K" E?) (VigVaas + VigaVas + ViasVaa + ViaasV3) (A.1.14)
(K" k) (VigsVis + Viass Vi)
(k' B Vigza Vs

A.2 One Loop Amplitude Notation

We now detail the various forms of notation used to simplify the appearance of one-loop
amplitudes. This is primarily based upon the notation of [1]. We begin with an object I

to describe propagators,

1

114y, Ay, A, = —Tia P — a2l — Frnms )2 (A.2.1)
So, for instance, the simplest four point denominator is given by
hasa= (0 —k1)2(¢ — k12)2(51— k123)? (€ — k1234)*
1 (A.2.2)

(€ — F1)2(€ — k12)2(€ — F123)% (£ — k1234)2

where the equality follows from momentum conservation. A more complicated example of

this notation would be,

T = A.23
1,2,3,456,78 (0 — k1)2(€ — k12)2(€ — K123)%(€ — K123456)% (£ — K12345678)° ( )

1
(€ — k1)?(€ — k12)2(€ — F123)2(£ — F123456)2

where we assume we are working at eight points for the equality.

As for the numerators, we will describe an n-gon with an object N with n Lie monomial
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5 6
3 4 4 5
9 3
2 4 7
< <
) 5 ) 3 )
1 6 1 6 8

(a) (b) (c)

) I

Figure A.2.1: Three examples of one loop diagrams

indices,

NyijAg,.. A, (€) - (A.2.4)

The A; represent the i*” corner as we move clockwise about the diagram, with the mono-
mial A; mapping to a tree at that corner in the usual way. This is made much clearer with
examples. First of all, the four point amplitude consists of a single box, and is expressed

in this notation by
AlT1oor(1,2,3,4) = Ny 3 4(0) 1234 (A.2.5)

Then for more complex examples, we give three one-loop diagrams in figure A.2.1. In this

notation, these are represented with

1
(a) < Nyjj2,3),4,5,6) (€)I1,23,4,56 (A.2.6)
523556
1
(b) AR Nyji12,3),41,5,6(€) I1,234.5.6 (A.2.7)
5235234
1
c <> — N, O I A28
(c) sorsransn Ny l5.0.75(0 1123.4.5678 (A.2.8)

When we come to calculate amplitudes, we sum over all possible trees at each corner of
the n-gon, and so we introduce one-loop Berends-Giele currents where we apply the b-map

to each block of indices,

Nay|Ag,...a, (€) = Ny p(As),....b(An) (£) - (A.2.9)

So, to illustrate, one simple and one more complex example of this notation would be

Mi2,34(0) = Nyjg34(0)

Nij2,3141,5,06,71.8(6)  Nijij2,31,4],5,6,7,8 (£)
N1|234,5,67,8(€): 1|[[2,3],4],5,16,7],8 + 1/[[2,3],4],5,16,7],8 ' (A.2.10)

5235234867 53452343567
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A.2.1 More Complex Loop Momentum Integrands

Frequently we will need the Feynman loop momentum integrands (A.2.16) with a general

shift in the loop momentum ¢ — ¢ + a’k;. This will be indicated by superscripts

a1,a2,...,am

Ly o s, a, (O = 1A, 1140, 4,4, (C+ a1ky + agky + -+ - + ambkip) (A.2.11)

Explicitly we have

1

a1,a2,...,am — s A.2.12
A"+11A1’A27”.7An (E + fa/l---a'm - kAl)Q(g + fal---anL - kAlAQAn)2 ( )

where we defined for convenience
fal,...,am = a1k1 + agks + ... + amkm, . (A.2.13)

In the event of an a; being zero, we will omit it from the notation. Note that the words

characterizing the integrands (A.2.12) are totally symmetric e.g. 1 34256 = 11,234,5,6-

We will sometimes simplify the notation for the loop momentum integrands by dropping
all indices which are single letters, and dropping the shifts in the loop momentum. When
this is done it should always be clear the colour ordering of the amplitude. For example,

in the canonical ordering A(1,2,...,n;¢) we have

— T — J791,---,an _ 7G1,..,0n
I(Z) =1I= [172,,_,771 ’ 1234 - 11,234,5,6,...,71 5 <A214)
— 7415-.-,4n _ 7G1,...,0n
1-23’56 - I17237475677=87---7n7 In1’34 - In172734,5767.--77’b—1 °

In a few instances, we may wish to use this notation when it is not immediately clear what
the underlying colour ordering is. In these circumstances we will include it as a superscript

in the I. So, for example

1235416

235416 _ 7235416 235416
I =1 =Issane, 153 0 =IDgsane, Igia = lhezssa.  (A2.15)

In the one-loop case however, in addition to the tree-level kinematic poles in Mandelstam
invariants the field-theory limit of the genus-one string correlators also yield Feynman loop

momentum integrands

1
¢ — kAl)Q(e - kAlAz)z T (E - kAlAg...An)Q

L4111, 45,04, (6) = ( (A.2.16)
to be integrated over a D-dimensional loop momentum ¢ with [ dP?. Note the special role
played by the label 1 in the above definition; this handling fixes the freedom to shift the
loop momentum and is useful in obtaining BRST-closed SYM integrands [1].
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APPENDIX B

Proof of a Relation Satisfied by Redefinition Terms

In this appendix we will show that
£n o En oHig pn= nﬁn o H12...n, (BOl)

Consider £, 0 L, 0 K}, . where K|,  denotes K, minus all of the redefinition terms
apart from the Hya_, term, as in (4.2.31). From (2.4.15) it follows that this can be written

as
Lo <K12Z(34...n) + Ké4.‘.n€(12)> (B.0.2)
= ((KiQZ(Z(PAU.n)) + K2(34...n)z(12)> + <K§4..Ane(4(12)) + K2(12)€(344..n)>>
Baker’s identity [43] tells us that
((P)) = |Ple(P), (B.0.3)

This can be generalised to
L(L(P)Q) = |PL(PQ), (B.0.4)

the proof of which follows from induction on the length of the word @, and use of (B.0.3).

Note the object K, , will satisfy all of the rank n — 1 generalised Jacobi identities.

Though we use notation to avoid writing it explicitly, there is an implicit ¢ symmetry
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structure on the indices of a superfield satisfying such identities. Thus the object K 2( A)Be

may be thought of as behaving like K 2(@( A)B)e- It therefore follows from (B.0.4) that
Kyayupy = AIK 4y (B.0.5)
Two applications of (B.0.3) and two of (B.0.5) in (B.0.2) then gives us that
Ly0LyoKly , =nLlyo Kbn (B.0.6)
One then substitutes in K’ = A/ | and uses that £, o A2+" = 0, to get that
LnoLly,oH n=nLlyoH p (B.0.7)

Clearly L,, 0 Hi2.., = nHis. ., is a solution to the above. Showing it is the unique solution

is an open problem.



APPENDIX C

Expanded Redefinition Formulae

In this appendix we will state the non-trivial redefinitions of superfields up to rank five,
and all of them at rank six, with all possible bracketing structures. This list is not wholly
exhaustive, we do not include those superfields related by antisymmetry to those listed

for simplicity.

C.1 Rank Four and Five

The redefinitions for topologies which are not Dynkin brackets at ranks four and five are

given by

Af’f2,34] :Aﬁz,m] - k{’;34[§f [12,34]
— (k' k) (Hyg3 9 AT — Hpyz A5 (C.1.1)
— (K k) (Hppa, g AT — Hpo 4 AY)
Afts 45 =Altos a5) — 3345 Hp123.15)
— (k' k2)(f:’[13 15] AT+ Hygs 9 ATS — (1 45 2))
— (k" - k) (19,45 AT + Hygs 3 ATS) (C.1.2)
— (k"% k%) Hpyp 5 Al
— (K* - k) (H}193 ) AT — Hiyoz 5 AT"),

219



220 Appendixz C. FEzpanded Redefinition Formulae

Aﬁ112,34},5] :Am2,34],5] - k$345]:1[[12,34],5}
— (k' E*)( A[l 34) A5 + I:I[[l 34,5 45" — (1 < 2))

+ (K- kY (H 312]A45+H[[3 1215147 — (3 <> 4)) (C.1.3)
(kl? K (Hpo,5) A% — (12 > 34))
— (K" k%) (H 230 A5 )

Note we have not defined Hj[1334) 5. This is given through its relation by Jacobi identities
with Dynkin brackets,

Hi12,345) = Hpi23a,5) — H12435) - (C.1.4)

In general, if H|p ) is such that at least one of P and @ is not a Dynkin bracket, we define
it through its relation with H terms where they are. This is justified as, by construction,

H|p q) should satisfy Jacobi identities in P and ) separately.
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C.2 Rank Six

The redefinitions at rank six are given by

All2345.6) = Av[qf2345,6] — k%456 H{12345.6)
— (k' k%) (ﬁ1345612151 + Hizas Ay + Hiza6 ASL + Hizse AL,
+ Hius6ADy + Hi3a A + Hiss ATy + Hise ATy
+ Hias ASs + Hiag Ay + Hise Ay,
= %ﬁ134ﬁ256k%6 = %ﬁ135ﬁ246k5?16 = %ﬁ136ﬁ245k§?15
- %ﬁ1451:1236k§§6 - %ﬁ146ﬁ235k5§§5 - %ﬁ156ﬁz34k3§4
(1o 2))
— (k' K?) <ﬁ12456121§n + Hioa5 Ay + Hiza6 A5 + Hio56 AT,
+ Hipq A + Hios Ay + Hizs Al (C.2.1)
- %H124ﬁ356k%6 - %ﬁms)ﬁuﬁkfﬁe - %ﬁ126ﬁ345kgﬁ5
— Haus6 ATy — Hyas ATy — HsagAThs — HasgATh,
+ %1%4516[126743717%6 + %ﬁ346ﬁ125k‘?§5 + %ﬁ356ﬁ124k7f§4>
— (k" k") (ﬁ123561212" + Hyoas Ay + Hygse AT
+ Hiz3 A%k — Huse ATy
- %ﬁlzﬂﬂsﬁkﬁg + %ﬁ456ﬁ123k71%3>
— (k'3 k) <ﬁ12346A? + ﬁ1234Ag%>

_ (k12345 . k6)]§[123451[1g1
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m _ Am m 2
Afla3456) = Aftazas6) — F123456H[1234,56]

— (k' K?) (ﬁ[1,56}f‘13§4 + ﬁ[13,56]fi§71 + ﬁ[14,56]/i§%

+ Hisa 5645 + H 134/1@,56}

1 - . 1 4 N
- §H134H[2,56}/€§n56 - §H[1,56}H234k§r§4 -1+ 2))

— (K2 k%) (E[[u,%}flgﬁ + f{[124,56]‘4§n + ﬁl%ﬁgﬁﬁ}

— His 56 ATsy — Hiza 561 AT (C.2.2)
TS VUL
- §H124H[3,56} k356 + QH[3,56}H124]€124>

- (k123 : k4) (FI[123,56] AT + ﬁl?BAﬁ,sm - ﬁ[4,56] A%s

1. N 1. A
— §H123H[4,56} kise + §H[4,56}H123k7?§3)

(k123 k56)(ﬁ12341[1g%>
+ (K° - k6)<ﬁ[5,1234]1‘1gl GRS 6))
HLQSASG] = AHL23,45,6} - k?ﬁ3456ﬁ [123,456]
— (k' k2)<ﬂ[1,456]f4727§ + Hpz 450 A5 — (1 > 2)>
— (K- k%) (&12,456]/1%” - I:I[3,456]A%)

— (K% k™) (ff1231212%6 — Hys6AThs (C.2.3)

1. A 1~ A
— §H123H456k2%6 + §H456H123k3?§3>

+ (k* - k) <FI[4,123]A75% + Hygg,125 A8 — (4 4> 5))
+ (k% - k9 (ﬁ[45,123]1‘ig1 - ﬁ[6,123]/12%)

Affi2,341 56) = Am2,34],56] — k753456 H{[12,341,56]

A~

— (k" k2)<ﬁ[1,34}14g756] + IA{[I,BG}AEM] + Hipy 34 56) A5

1
2

) & m 1 ) m
Hiy 34 H 2 56 k256 — §H[1756]H[2,34]k234 - (1« 2))

+ (K- kY (ﬁ[3,12}147£,56] + IA{[3,56]A7[112] + ﬁ[[3,12],56}AT

L. (C.2.4)
- iH[3,12} Hiy 561k )56 — iH[3,56]H[4,12]k124 -3« 4))

— (K" ) (fff[u,s)e]figi - I:I[34,56]A%)
— (K" k%) (ﬁ[12,34}/1g%)

+ (k° - k%) <ﬁ[[12,34],6]‘42n - ﬁ[[12,34}75l‘4g1>
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Affios 4516 = Alfra,a5),6) — Fi33a56 {123,456

(k' - k2) (ﬁ[l,%] Ays + Hiss ATy 41 + Hi 451,61 A%
+ ﬁ[13,45] Ay + f{[[13,45},6]12172n
- %ﬁ[1,45]ﬁ236k%6 - éﬁ136ﬁ[2,45]k75}15 -1« 2))

(K2 . k) (ﬁuﬁx‘ig’%] + ﬁ[12,45]f‘i§% + ﬁ[[12,45},6} Ay
- ﬁ[3,45]14717§6 - ﬁ[[3,45],6]121% (C.2.5)
- %ﬁ126ﬁ[3,45} k5as + %ﬁ[3,45]ﬁ126k717%6>

(K*- k) (ﬁ[4,123]1‘i§% + Hijg 1050 A8 — (4 > 5))

(k' k%) (ff1236fiffé + Hip3 Al — Hise ATy
- %ﬁ123ﬁ456k2156 + %ff456ﬁ123k‘$3)

(K234 - k) (ﬁ[123,45}1‘1?>

Afthaaa51.6) = Alfhz,a4,5,6) — F3saseH[112,311.516)

(k' - k2) (ﬁ156Afg34] + Hyy 3 AB%6 + Hip 3476 A%
+ Hypy 34,5 A5 + Hijp 341,51, A5
- %ﬁ1561{][2,34}k%4 - éﬁ[1,34]ﬁ256k7%6 -1« 2))

(k- k%) <ﬁ3561217£,12] + ﬁ[3,12}1‘LT56 + ﬁ[[3,12],6]AZ§
+ His12)5 A% + Hijs12)5.6 AT (C.2.6)

1 A 1 N
- §H356H[4,12}k71754 - §H[3,12]H456k£%6 -3« 4))

(612 - 134) (Frioso AT, + Fios Ay + Fias ATig
1. - L A
_ §H126H345k?ﬁ5 — §H125H346kg}16 - (12 A 34))
(k1234 . k5) (_H[12’34]Agé + -H[[12,34],6]Agn)

(k12345 . £5) (IA{[[12,34}751AE’1)
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APPENDIX D

Symmetry Properties of fIA,B,C

The H A,B,c terms have a large number of symmetries, and I shall briefly outline them

here.
They are antisymmetric in A, B, and C, i.e.

FIA,B,C = —E’B,A,C = FIB,C,A = —ﬁC,B,A = ﬁC,A,B = —ErAC,B (D.0.1)

Each of the three sets of indices satisfies generalised Jacobi identities within it, so for

example

Higs g+ Huspo =0, (D.0.2)
f{123,B,C + f{231,B,C + 1:1312,3,0 =0. (D.0.3)

There are then also a number of other more complex relations between some Hs. These
have a very non-obvious origin, and had to be found by brute force initially. Now that
(7.3.3) is known though, these can be identified from the condition that Hj4 p) satisfies
generalised Jacobi identities in each of A and B. For example, we must have that L3 o

Hi1234) =0, L30 H13345 = 0, and L4 0 H[19345) = 0, and so expanding these Hs in terms

225
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of Hs we see that we must have

L30 (Hizga+ Hzi12) =0, (D.0.4)
L3 o (FI123,4,5 - ﬁ543,2,1 + ff54,3,12) =0, (D.0.5)
Lyo (Hizsas — Hsazz1 + Hsa12) =0. (D.0.6)

These identities can be described in general by considering the formula for H4 p) found in
this report, (7.3.4). Consider L, o H|4 g, with n < |A]. One half of (7.3.4) will disappear

under the action of the L, as

Ly o Z (—1)‘Y|ffYT,j,X =Lno Z (_1)|Y|ﬁYT,j,aX =0, (D.0.7)
XjY=aBT XjY=BT

where in the second sum X is not constrained to be non-empty. The final equality then
just comes from the fact that H A,B,c 1s constructed so as to satisfy generalised Jacobi
identities in each of A, B, and C. Using this and (7.3.4) it then just follows that, if
Ly, 0 Hiy p) =0 for n < |A], then

XjY=bAT

for any word A and letterification b.



APPENDIX E

Example applications of the C' and C' maps

In this appendix we display some example applications of the C' and C maps acting over

some simple Lie polynomials.

These examples help to elucidate how the algorithms are

used, and can be used to verify that the redefinition formulas arising from the general

formulas match the formulas for the simplest cases that were previously known.

E.1 Examples of the C map

To demonstrate the contact term algorithm (6.1.1), the first few expansions generated

from it are

Co

Col=0
Col,2] = (k1 -k2)(1®2—-2®1)
Col[1,2],3] = (k1 - k2)([1,3] ®2+1®[2,3] - [2,3]® 1 —2®[1, 3])
+ (k12 - k3) ([1,2) ® 3 -3 ® [1,2])
Coll,[2,3]] = (ka-k3)([1,2] ®3+2®[1,3] - [1,3] ®2 - 3®[1,2])
+ (k1 kos)(1®[2,3] — [2,3] ® 1
[[[1,2], 3], 4]

®
= (k1 - k2)([[1,3],4] ® 2+ [1,3] ®
®

_[[273]74]®1_[273] [ )
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2,4] + [1,4] ®[2,3] +1®]]
1

(E.1.1)
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+ (k12 - k3) ([[1,2],4] ® 3+ [1,2] ® [3,4] — [3,4] ® [1,2] — 3 ® [[1,2],4])
+ (k123 - ka) ([[1,2],3] ® 4 — 4 ® [[1,2],3])
Col[1,[2,3]],4] = (k2 - k3)([[1,2],4] ® 3+ [1,2] @ [3,4] + [2,4] ® [1, 3] + 2 ® [[1, 3], 4]
— (L3 4®2-[13]®[2,4 - [3,4]®[1,2] -3 [[1,2],4])
+ (k- ko3) ([L,4] @ 2,3 + 1@ [[2,3],4] - [[2,3],4] @ 1 - [2,3] ® [L,4])
kmgk4ﬂ 2,3 ®4 —4®][1,[2,3]]
Co[[1,2],[3,4]] = (k1 - ko) ([1,[3, 4] ® 2+ 1®[2,[3,4]] — [2,[3,4]] ® 1 —2® [1,[3,4]))
U] ] 3

4
4

9

mgk@q ]®4+3®HL2AL{HJLM®3—4®HLﬂ,D
+ (k12 - k3a) ([1,2 4 - (3,4 ©1,2))
ColL,[2,[3,4]]] = (ks - MMHB3H®4+[ 3@ [1,4] +[1,3] ® [2, ]+3®[[2m
—[L[2,4]®3-[2,4]®[1,3] - [1,4] ® [2,3] -4 ®[1,[2,3]])
(b ksa)([1,2] ® [ ] ®[[ 4] -1, B4H®2—B4hﬂlﬂ)

Col1,[[2,3],4]] = W2k@ﬂ 2, ]®3+W1ﬂ®[ ] 2,4]® [1,3] +2® 1, [3,4]
—[LB4le2- (L3124 - 3412 -3®[1,[2,4])
(MSk@G P H®4+P3][ 4 -[L4e(23 -42(1,(23])
~koga) (1@ —[12,3,4@1).

1 kesa) (1@ [2 —[2,3,4]] ®1)
3,

4
4

One application at multiplicity five is given by

C o [[[1,2), 3], [4, 5] = (k1 - ka) (1 ® [(2,3], [4,5]) + [1,3] & [2, [4, 5] (E.1.2)
+ [1,14,5] @ [2,3) + [[1,8], 4,5]] @2 = (1 4 2))
]

+ (k2 - ks) ([1,2] @ 3, [4,5]] + [[1, 2], [4,5]] @ 3 — ([1,2] ¢ 3))
+ (kr2s - kas) ([[1, 2], 3] @ [4,5] = ([[1,2], 3] > [4,5]))
+ (ka - ks) (4@ [[[1,2],3],5] + [[[1,2], 3], 4] @ 5 — (4 > 5)) ,

E.2 Examples of the C' map

As an illustration of the C' map, we get

Col=0 (E.2.1)
Col1,2]=0
Col[1,2],3] = (k1 - k2)([1,3] ®2 — [2,3] ® 1)
Coll,2,3] = (k2 k3)([1,2] ®3 — [1,3] ® 2)
Coll[1,2],3],4] = (k1 - k2)([[1,3], 4] ® 2+ [1,4] ® [2,3] — [[2,3].4] ® 1 — [2,4] ® [1, 3])
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+ (ki - k3)([[1,2],4] © 3 — [3,4] @ [1,2])
Col[1,[2,3]],4] = (k2 - k3)([[1,2],4] ® 3+ [2,4] ® [1,3] — [[1,3],4]] ® 2 — [3,4] ® [1,2])

+ (k- ko3) ([1,4] @ 2,3] = [[2,3],4] ® 1)

Co[[1,2],3,4]] = (k )GL[AH®2—PJ&]M®U
+ (k3 - k) ([[1,2],3] @4 — [[1,2],4] ® 3)

Coll,[2,[3,4]]) = (k3 - k4)([1,[2,3]]®4+[1,3]®[2,4] [1,[2,4)] ®3 — [1,4] ® [2,3])
+ (k- k3a) ([1,2] @ [3,4] = [1,[3,4]] @ 2)

ColL,[[2,3],4]] = @ak@ﬂ,BAH®3+U2M9&] 1,34l @2~ [1,3] ® [2,4])
+ (kos - ka) ([1,[2, 3] @ 4 — [1,4] @ [2,3])

One application at multiplicity six is given by

Co[[[[1,2],3],[4,5]), 6] = (k1 - k2) ([[[1,3], [4,5]), 6] ® 2 + [[1, 3], 6] @ [2, [4, 5]] (E.2.2)
+[[L 4, ]]] [2,3] + [1,6] @ [[2,3], [4,5]) — (1 ¢ 2))

+ (krz - ks) ([[[1,2], [4,5]], 6] ® 3+ [[1, 2], 6] @ [3, [4,5]] - ([1,2] ¢+ 3))
+ (a - ks) ([[[[1, 2], ]]]®5+H6][H 2],3],5] - (4 ¢+ 5))

J,
+ (k123 - kas) ([[[1, 2], ® [4,5] = ([[1,2], 3] < [4,5])) -
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APPENDIX F

Further Generalisation of Hip

In the discussion of potential directions for future research at the end of part II, some

speculations were made about the possibility of a further generalisation of the formula for

Hpg) to P and @ arbitrary Lie monomials. Some work was performed on this, and the
following formulae were found with the aid of FORM [148; 149; 150] for all more complex

topologies of H{pg) to rank seven:

Hi12,34) 5
Hip19 341 56]
Hi123 45) 6]

Hi12,34,5),6]
Hi(1234,56],7]
Hi(123,456],7]
Hij123,45),67]
Hij12,341 567]

Hi([123 45) 6],7]

Hii2,341,5),67)

(H12 345 — Higs 34 + H§45,1,2) (F.0.1)

(4H[12 34165~ 2H12 56134 T 2H[34 56,12 + 2H{2,34,56)

(Hi23456 + Hi23.456 — Hi236,45 — Hises,1.2)

(H 123156 + Hlio 3156 = Hhio 56,34 T Hf34,56],1,2)

(Hia567 — Hizsa75.6 + Hier123.4 — Hieran2,3 + Higraz1,2)
—Hia3.7.456 + Hi2s7.6.45 — Hio376,54 — Hiser3.12 + Hisers2.1)

5H[123 45),76 T 2H1ys A5,67 2H[123 6745 T 2H[45 67],12,3 — 2H[[45 67, 3],1,2)

Hj 123,45,67 T H[123 45),6,7 H[/123,67},4,5 + Hf45,67},12,3 - H[/[45,67},3},172)

\UH\HH\l\)—‘\l\P—‘\IH—‘\I\HOA\HOAM—‘CDM—‘CHU—‘

(4H[12 341756 — {19,301 m.6,5 + 3H12,34567 — 3H[125673.4 + 3H[34, 567],1,2)

231

SH, 12 345,76 1 2H12 34,05,67) T 2H[lz 34],5,67 2H[12 [5,67)],3.4 T 2H[/34,[5,67]},1,2>
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1
Hjj12,341,56),7] = 7 (H{2,34,567 + Hf12,34},56,7 - H[I[12,34],7],5,6 - H[/12,567],3,4 + Hf34,567},1,2)

1
Hip230,56,7 = = (~Hiaan6m — Hhosuyors + Hussusyor + Hhosrsysa — Hhsagrs)z)
Unfortunately, these are now believed to be wrong. To see why, take for instance the
simplest case of Hjig34) 5. This should be antisymmetric in 1 and 2. However, the form

above would suggest it is not;

5H|j12,34),5) + 5H21,34)5) = Hio3a5 — Hios 34+ Hags 12+ Hayz05 — Hors .4 + Hags01

= 2H§45,1,2 #0.
(F.0.2)

Such a significant error does not bode well for the validity of these expressions. We state
them here merely as a starting point, from which a more correct set of values may be

found.

Further, a set of maps to describe (F.0.1) were found. These were then shown to reproduce
(7.3.4) in the case of Dynkin brackets. We outline these results here, and again stress that
these maps likely produce something incorrect and should serve only as a starting point

for developing a more correct algorithm.

We define a pair of maps on Dynkin brackets, H; and H,

Hlo[P,Q]:iP\/(HoQ)—i-L

1Pl +1Q| 1P|+ Q)

Hol[P,Q=PV(HoQ)+ (HoP)VQ+Do[PQ],
Hoi=Holi,jl=0.

|P| (HoP)VQ+Do[P,Q] (F.0.3)

(F.0.4)

Note that H7 is a function of H and not Hy. Further, H; is identical to H up to some
weighting. The function D in the above was then defined by

1

= m“ﬂ [P, P ®Q1® Q2 — Q| P ® P ® [Q1,Q2])

(F.0.5)

D([[P1, P, [Q1,Q2]])

Note we implicitly assume |P;| < |Pa|, Q1] < |Q2|, and |Pi| + |P2| < |@Q1] + |Q2| in the
above. This map violates the required antisymmetry in a number of places. The Hp g

superfields were then believed to be given by applying the H; map to [P, Q]

H[P:Q] = Hl[[H/H o[P,Q] = Z H1I4737C (F.0.6)
A®B@CEH;0[P,Q)]

The V map was then defined recursively, working from the out-most such inwards. When
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2 or more such maps were present, this was defined by

AV (BVP)=[AB]VP,
AV (PVB)=PVI[AB],

(F.0.7)
(BVP)VA=[BAVP,
(PVB)VA=PVI[B,A.
Then the final instance of this was defined by
A BCVD=A®B®I|[C,D]
(F.0.8)
DVA®B®C=A® B®[D,(C]
So, to give a single example,
(1®2®3Vv4)V5E)VI6,T7)V8=(1®2®3V4)V5) VI[6,T7],8]
=(1®2®3Vv4)VI[5]6,7],8
( )V [5.16.7)8] F00)

=1®2®3V[4,[5,([6,7],8]]]
=1®2®3,[4,[5,[[6,7],8]]]]

It may be verified that Hp g defined as such is antisymmetric in P and @Q,

HolQ,P]=(HoQ)VP+QV(HoP)+(DoQ)&P—(DoP)&Q
— _PV(HoQ)—(HoP)VQ—(DoP)@Q+(DoQ @P  (F.0.10)
=—Ho[P,Q].

We may also show that the results of part II of this thesis is reproduced. To show such,

we begin with the identity

n—1

Hol(ay...ap) = Zﬁ(al...ai_l) ®a; ® air1V aiya V... Vay (F.0.11)
i=2

=—(-0" > HYly)ejieHx) (F.0.12)

XjY=an...a1

where the ¢ = n — 1 case in the first sum above is understood to denote ¢(aj...an—2) ®

Up—1 X Ap.

The first line follows as the H and D maps applied to a letter vanish. The second line

requires the intermediate result, that for A, B, C, and D; Lie monomials,
ARB®CVDIVDyV..VD,=(-1)"1"A@ B®CV {(dydp_1...d1) (F.0.13)

for d; the letterifications of the brackets D; within the ¢, defined so that for example if
we have £(12d6), where d is the letterification of [[3,4], 5], then this is the Lie bracket
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0(12d6) = [[[1,2],d],6] = [[[1,2],[[3,4],5]],6]. This follows from an inductive argument.
From this, (F.0.12) follows

Ho E(al...am) = Z é(al...ai_l) ®a; @ ai+1Vai4a2V...Van—1Van
1=2

= Z (—1)m_i_2€(a1...ai_1) ® a; @ ajy1 VL(amam—1...a;12)
=2

(F.0.14)
m—1
= Z(—l)m_i_lﬁ(al...ai_l) X a; @ E(amam_l...aiﬂ)
i=2
=—-n™ Y. )i eiex)
XjY=am...a1
As a consequence of this it follows that
_ 19 \PIHIY | )37 o
Hyio[l(P),¢ = - — Ly 1404 F.0.
JY=¢P
__IPl DRV @ i @ o(X
Pl L NI e o)

XjY=pQ

where p denotes the letterification P. This would then suggest consistency with the results
of part II, and would be a strong piece of evidence in favour of these methods, were it not

for the fact that their likely invalidity is already known.



APPENDIX G

The Six Point Amplitude With Arbitrary Loop Momentum Structure

In this appendix we give formulae for numerators of the six point amplitude with arbitrary
loop momentum structure [148; 149; 150]. We assume that we are looking at the amplitude
with colour ordering A(1,2,3,4,5,6), and the loop momentum structure is such that the
momentum going from leg 6 to leg 1 in the hexagon is £ + a1k1 + asko + asks + asks +
asks + agkg. Also, we will not give formulae for the box numerators, as these do not
depend upon the loop momentum. Instead, to find them one may just extract them from

this amplitude with a more standard loop momentum structure.

We begin with the pentagon terms. The majority of these have structures similar to the
following. We stress that in what follows, with any terms of the form (... + combinations),

the sum over combinations applies only within the brackets.

235
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(5) General
Nij35.456

(0)

=+ V155" 5 655 ks (a3 — az)

+ (a3 — ag)(ViT53 456 + (3 <> 4,5,6)) k3"
+ (a3 — a2) VTSR 4 5 k5" + (a3 — a2) (il 56 + (4 > 5, 6)) k"
+ Vio T3y 5 6(£™ — k1" (az — a1))

+ V121357 5 63" (a2 — a3) + Vi3T5 5 6k5' (a2 — a3)

1
+ (ViTj23,4),5 6(5 —ag + ag) + (23, 4(23,4,5,6)) (G.0.1)
+ (ag — a2)(ViToa 35,6 + (4,5/4,5,6))
+ (CLQ ag)(Vng437576 + (4 b, 6))
+ (a2 — a3)((VigT3456 + (4 <> 5,6)) + (2 + 3))
1

+ (V14T23 5 6(26 —ai + a4) + (4 b, 6))

1 1
+ V123T4,5,6(§5 — a1 +a3) — V132T4,5,6(§€ —ay + az)

Two terms have a slightly different structure to the above, with one of them being is

N(5) General (f) =+ WT%,?47576]€?]{:3(&2 . al)

12[3,4,5,6

+ (a2 —a1)(ViT534 5 6k1" + (3 <> 4,5,6))
+ VioT3ly 5. 6((" — k1" (a2 — a1))

+ k3" (a2 — a1)(Vi2T5y 5.6 + (2 < 3,4,5,6))
+ (VT — a3 +as) + (3,413,4,5,6)) (G02)
+ (a2 — a1)(VisTaa 5,6 + (3[4]3,4,5,6))

+ (V123T4,5,6(%

+ (VigoTups6(a1 —a2) + (3 < 4,5,6))

+asz—a1)+ (34 4,5,6))

These terms both reduce to a common formula in the a; = 0 V ¢ case though, and it may

be possible to find such a formula here. Then, the term which doesn’t fit this pattern in
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the simpler case is again an exception here, and is given by

5) G !
Né1|)2,3zl,§m (0) =+ V1T§f§7f47576k{”k’2"‘(—1 + a1 — ag)

+ (14 a6 — a1)(ViTsg 5 45k + (2 ¢ 3,4,5))

+ kS, (ViaT3% 5 6(—1 — ag + a1) + (2 4> 3,4,5))

+ VigTys 4 5(—™ — kfn(l —ag+ay)+ k,ln(l —ag+ay))

+ (1 — a1 + ag)(ViaTae.us + (21312, 3, 4,5)) (G.0.3)

1
+ (VigT23,4 5(—5 +as —az) + (2,3]2,3,4,5)
+ (1 — a1+ ag)(VizeT34,5 + (2 <+ 3,4,5))
+(

(—* +a; — ag)V162T345 + (2 ~ 3,4, 5))

Then, finally, the six point hexagon in this general case is given by

(a2 — al)(ag — a1 + 1)

enera mn 1 m gn mi.n
NG Senerel ) = 4 TE 5. (507 0+ (PR (5 + )+ (1,2/1,2,3,4,5,6)))

1/2,3,4,5,6 5 .
m ml 1 as —az)(az —az +1
+ (V1T23,4,5,6(f (5 — a2+ as) + (k5" — k' )(12+( 3 2)(23 2 ))
ai)(az —a; +1) _ (ag —a1)(az —a; +1)

+ (lﬁ“((a2 )+ (14 4,5,6)))

2 2
+(2,3(2,3, 4,5, 6))
+ (ViaT3l 5 6(07(5 — a1 + a2) + 75 (k" = k") + K" (ax (a2 — )
+ (kgn(GQ - al)a2 + (2 < 3)4-7 9, 6))) + (2 A 374’ 5’6)>

+ V12T£14,576(k{”a1 + kY'ag + ... + kglaz) (G.0.4)
+ VisTyy 5 6(K1"a1 + ky'az + k5'az + ... + kg'as)
+ ...+ WGTZ@l,5,6(kTQ1 + k3'as + k5'as + ... + kglag)

(5 — 50+ 509)ViTasass + (2,3,412,3,4,5,6))

(= + a2 — 509)ViThgss + (2,3,412,3,4,5,6))

+ ((i + %(ag) —as+ a3 —a2))ViTazas6 + (2,3(4,5(2,3,4,5,6))
+ ((% — %al - %GS)V123T4,5,6 +(2,3[2,3,4,5,6))

+ (—(é + %cu — %a2)vl32T4,5,6 +(2,32,3,4,5,6))

+ ((i + %(a4 —az+az —a1))ViaT3456 + (2[3,4(2,3,4,5,6))

Given the significant increase in complexity in these objects when we move to this general
case, it should be clear why we chose to present the BRST variation of a specific case in

more detail. We should also note at this point, that by choosing the appropriate values
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for a; we can reduce the above to the previously discussed cases.

We will not discuss in detail the finding of the BRST variation of this object, but the
relevant calculation has been completed with the aid of FORM [148; 149; 150]. The

resulting variation is then purely anomalous,

5
QA% (1,2,3,4,5,6) =V1Ya 3456 <-71234,5,6( - *f2 (Zaz (k1 - ko.. z))

=

(ZZ 1))

(G.0.5)

1 1
+ 511,2,3,4,5(1 +ag—ar) + 51'1,2,3,4,56(615 — agp)

—I123456(az — as)

+ —I123456(as —as) + 5

2

1 1
+ 5-’1,23,4,5,6(@ —ag) + 5112,3,4,5,6(611 — az))

This looks much more complicated than what was previously discussed in simpler cases,

but it is completely analogous. It can be shown that

5 LR
—%EQ—(Zai(kl'kZl) (Z Z a;a;( ]gZ kﬂ)>
— Pt (G.0.6)
(a1 = a)(C =y + Rk o) = = (a5 = a)(¢ = hizas + hlJr, o )2

— (1 +as —a1) (£ + h(ki, ... k6))* .

Hence, the leftover terms in the variation (G.0.5) would appear to cancel. A similar

discussion to that of the anomaly mentioned earlier should then follow.
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Construction and Variation of a Seven Point Numerator

In this appendix we identify the full expression for the [5, [6, 7]]-pentagon in the amplitude
A(1,2,3,4,5,6,7; 0 + 4kq — 6k5), and confirm that its variation has the desired form. We
begin by finding the coefficient of one term contributing to the numerator in detail, namely

ViTo576,3,4. Within the string correlator this is associated with the worldsheet function

Z1.9576,34 =055 957 96 + 959 + 952 + g% — 28 + 955 (957

057 (0 + %) — 682y + oW (652 + g8 — g8y .

2 2
+ 9§6) - 9((52)) (H.0.1)

Only two of these terms contain the sg7sse7 pole structure, gé},) gél7) g%) and g%) gg). The
contribution of the former was identified in (10.2.25), and the latter follows from (10.2.6),

1) (2 1 6 3

Summing these together, the V17257634 contribution to the [5, [6, 7]]-pentagon is

11 3 R
<_ + ) WT2576,3,4¢(1234567‘576)[567 = —8 ‘/1T2576,3,4IL2,3,4,567 (H03)

8 2 8675567

Similar calculations for all other terms in the correlator yield the numerator expression
[148; 149; 150]

—4,a5=—6
Nip a5 6.m () = OVIT5 55,6745 ker + ViTok 4 5 67 (€7 — k5" + Gkgy)
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— 6 (ViT58 3.4 67k67 + (2 <> 3,4)) 4+ VisTos 4 6rkey + (5 > [6,7]))

ViaTs 45,67 + (2 > 3,4,[5,67]))

+
S O N RN @

/\/'\/'\

(
(ViTos 45,67 + (2,3[2,3,4,[5,67])) (H.0.4)
ViTos 3.6m,4 1 (2,3]2,3,4)) + (2 < 3))

VisTia67),34 + (2 ¢ 3,4)) + (5 < [6,7]))

6 (ViToers,34 + (2 4> 3,4)) — (6 <> 7))

+6 (ViersTo34 — (6 <> 7)) +4 (ViTos 3 567 + (2 ¢ 3))

+ VT 35671 — 4ViTo3 4567 T 6V1T50546,7(k6" — k7')

+ 6567 (Vidsporsa6 + (2 ¢ 3,4,6)) + VirJspsase — (6 < 7)) .

+ o+ o+

(
(

The V' J terms above are those which arise naively by looking to the sg7s567 poles in the
correlator. As discussed previously it may be that they require some rearrangement to be
in a BCJ representation, but for illustrating the field theory limit methods we give the
numerator in the above form. A lengthy calculation yields the variation [148; 149; 150]

a. as=— 1
QNH‘; ) o Sn (0) = 5ViVaTsa.m ((€ — k12 + 4kq — 6k5)* — (£ — k1 + 4k — 6ks5)?)

+ §V1V3TQ,4,[5,67] (€ — k123 + 4ky — 6ks)? — (€ — k1o + 4ky — 6k5)2)

1
+ §V1V4TQ,3,[5,67] (€ — ki34 + 4kg — 6k5)* — (¢ — k1og + dkg — 6k5)2)

1
+ §V1V[5,67]T2,3,4 ((€ = k1234567 + 4ka — 6ks)* — (£ — k123q + 4kq — 614?5)2)
(K - KT <(6V1V26T3@1,577kg1 +(2 ¢ 3,4,5)) + ViVar Ty 0.6 (07 + 6K

+ 6‘/1‘/7 2 3 4 5 Gkglkg7 + 6kgn(V1‘/6T2n%374,5 + (2 <~ 3, 4, 5)) (H05)
+ (gm + 6k67) V1V7T2’rj§74756 + 6(‘/1‘/6 277;,3,4,7k767?7 + (2 — 3, 4))
+ 6‘/15‘/6T2T737477kg}7 + 6‘/17‘/6T2T7:))7475kgl
+6ViVET5'S 6 7ks by + VieVsT5's 4 k5"
- (OViVasTY . K+ (2 3,4)) + (OVI VAT a k0 + (2 3,4,7))
1
+ 5 (ViVasrTaas + (2 3,4))
1 1
— §(V1V26T3,4,57 + (24 3,4)) — §(VIVE>6T23,4,7 +(2,3(2,3,4,7))
1 1
*(V1V7T[2,3},4,56 +(2,3/2,3,4,56)) + §(V12V57T3,4,6 +(2 ¢ 3,4))

(V12V7T3 1,56 + (2 <> 3,4,56)) — %‘/17V56TZ73,4 + %V175V6T2,3,4
((V1V27T[3 5146+ (34 4,6)) + (2 3,4)) +6(ViViTpps 534 + (2 <> 3,4))
+6(ViVeTos 36,4 + ViViTae 354 + (2,3(2,3,4)) + 6(VisVarTs 46 + (2 < 3,4))
+6(VisViTas 34+ (2 <> 3,4)) + 6(VigViTos 34 + (2 <> 3,4))
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6((ViVasTsr4.6 + (3 > 4,6)) 4+ VirVasTs46 + (2 <> 3,4))
+ 6Vigs Vil 3.4 + 6(Vi(Vasy + Vars)T3.46 + (2 <3 3)) +6V1Vsr6To 3.4
+4(V1VsrToa36 + (2 < 3,6)) + 4V1uVarTo 36 + 4(ViViT2a 356 + (2 < 3,56))
+4V14 V715 3 56 + 4V1VaeTo 357 + 2V1Vas7To 36 + 20V1 VyrsTo 36
+6V1Y5'5 456707 +6(ViYagsa57 + (24> 3,4,5,7)) +6VieYa3457

— (6<—>7))

1
+(k5 - K°7) (((‘/1‘/[2,67}T3,4,5 + ViaVerTs545 + (2 <> 3,4)) + 4ViVsTo 3 67 + 4V1i4VerTo 3 5

1
*(‘/1‘/(571"234 5+ (2 3|2 3 4 5)) + 4(VlVG7TQ4,3,5 + (2 <~ 3, 5)) — (5 — 67))

— N

- §(V15VG7TZ,3,4 + (54 6,7)) +6((ViVabTs 467 — (25 <+ 67)) + (2 <+ 3,4))

— 6Vi5VerTa34 — 6V1Y2,3,4,5,67>
+6(k® - k7) (K - ’fﬁ)Vl%(Jm,:aA,ﬁ + Joj2.3.47) — 6(k° - K (KC - k) ViVsJz233.46
This has intentionally been expressed with factors (¢- k) reformulated in terms of propaga-

tors. For an n-point amplitude in the canonical ordering with arbitrary loop momentum

structure, this is done with
1 n
(f k; i(i+1).. ] -5 E + Z A kim — k12....j)2 + 5(6 + Z ambkm — k12...‘(i—1))2

zz+1) g <Zam m T 5 zz+1) ]) :

We may then be reassured of the validity of this numerator expression, as those terms in

(H.0.6)

the variation proportional to propagators cancel terms from other box numerators. For

example, one such set of terms is
ViVBTy 5,67 (£ — kras + 4ka — 6ks)* — (€ — k1o + 4ky — Oks)?) 114 31714?5677 ‘ (H.0.7)
1=4,a5= —4,a5=— o
= ViV5T5 4 567 (I1 Sad567 - — I3 4567 6)
This then cancels one term in the variation of the [3,4],[5, [6, 7]]-box, and one from the
[2,3],[5,[6,7]] box. Similar holds true for all other terms in the variation, and the re-

maining terms in (H.0.5) are canceled themselves by analogous results in the variation of

hexagons.
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APPENDIX |

Discussion of the amplitude A(1,2,3,4,5,6,7;¢)

In this appendix we present in detail the ingredients in the canonically ordered amplitude
with the standard loop momentum assignment, A(1,2,3,4,5,6,7;¢). All of these were
found using the field theory limit rules detailed in part III. While every effort has been
made to avoid typos, in expressions of this scale such are inevitable, and expressions
generated using FORM [148; 149; 150] which are less compact but free of typos are available
from [28].

Note, there is inherent choice in which numerators to assign the refined VJ terms, as is
discussed in section 11.2. Here, we choose to present them with their loop momentum can-
celled against the propagators as discussed there. In such a representation, all numerators
should satisfy BCJ relations, apart from the 71-hexagon and [[6,7], 1], [6,[7,1]], [[7, 1], 2],

and [7,[1, 2]]-pentagons, which require further manipulation as discussed in that section.

We begin with the heptagon numerator. This is given by!

1
Nijg3456,70) = — ﬂ(312A1\2|3,4,5,6,7 + (24 3,4,5,6,7)) (L0.1)

1
+ 55 Vi3l a56.7K8 (ki + (3 4,5,6,7)) — ki

1
+ 54 Vid3a56.7K5 [k + (40 5,6,7)) = (ky ke + (14 2))]

!Note this, and all numerators in this appendix, are not necessarily in their optimal representation. It
may be possible to find a general algorithm to describe these without the need for such lengthy expressions.
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1

+ 57 Vidib356.780 [(k2.kD 4+ (545 6,7)) — (kp oy, + (1 5 2,3))]
1

+ ﬁvljgvz,s,,zl,(s,?kg[(k?ﬁnkg +(6 7)) = (knkp + (1 ¢ 2,3,4))]

1
+ ﬂvljalz,y,,zx,s,,?kg (K, — (ke + (14 2,3,4,5))]

1
*VIJ% 3456 517K + (1 ¢ 2,3,4,5,6)]

1Joj34,5,6,7(523 — s24) + (3,4]3,4,5,6,7)]

Pl
2%[%%42 45,6,7(s34 — 535) + (4,54,5,6,7)]

i [V1J3|24 5.6.7(523 + 534) + (44 5,6,7)]

i (Viduja.356,7(s45 — s46) + (56 <+ 23,57,67)]

i[VIJ4|25567 (s24 + 545) + (5 4 6,7)] + (2 ¢ 3)]

i (ViJsj23,4,6,7(525 — $35) + (23 > 24,34,67)]

i[ [ViJ5126,4,6,7 (525 + 856) + (2 ¢ 3,4)] + (6 > 7)]

i[VlJ6|23457 (s36 — 526) + (2,32, 3,4,5)]

i [V1J6|27 3.45(526 + s67) + (2 <> 3,4,5)]

i[V1J7|23456 (s37 — s27) + (2, 3(2,3,4,5,6)]

i[SQSWJ23\4567+ (2,3]2,3,4,5,6,7)]

i[V12J3|4567 (s23 — s13) + (2,3(2,3,4,5,6,7)]

i [VizJojas6,7(s12 + s23) + (2,3]2,3,4,5,6,7)]

b o AT, 6 (AP — (™ (RTRE + KBRS + .+ RERD)]

%[ 231 5.6, (1200 — A0 Ky 4+ A0k — 2ky Ky — KT'kT — ky'ky —

+(2,3(2,3,4,5,6,7)]

+ — [Vio T35 6.7 (120707 — A0™k] + 407 kY + 2k kG — k'kY — k'K —

B
OOI—‘

+ (24 3,4,5,6,7)]
(Vi34 5.67(40™ — k5 + ki) 4+ (2,3,4]2,3,4,5,6,7)]
(ViT5hs 5.6.7(207 + k') +(2,3,4]2,3,4,5,6,7)]
[(VigsTis 6.7(40™ — k" + k5') + (2,3,4]2,3,4,5,6,7)]
[

VisoTy% 6.7 (20™ + k3') + (2,3(2,3,4,5,6,7)]

— — — —
M‘HM‘HM‘“M"“

— k7'k7)

— k7'k7)
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1

+ 57 [VAT33 45.6.7(66™ — K33 + K5) + (2,3]4,5(2,3,4,5,6,7)]
1

t 51 [Vi2T545,67(60™ — ki3 + k3}) + (213,412, 3,4,5,6,7)]

1
+ ﬁvl [3T2345.6,7 — Tass4,6,7 — Toass,6,7 — Toas3,6,7 — Tossae7 + Tosas 6,7

+(2,3,4,5[2,3,4,5,6,7)]

1
+ 2 [(3Vi234 — Vi2az — Visaa — Visaz — Viaos + Vias2) 56,7

+(2,3,4[2,3,4,5,6,7)]

1
+ 6 [‘/1T234,56,7 + (25 37 4|57 6’2> 3) 47 57 67 7)}
1
T [(ViTas,56,7 + (2,3,4/5,6(2,3,4,5,6,7)]

1
g [‘/IT23,45767 + (27 3‘4) 5’67 7|27 37 47 57 67 7)]

1
+ = [‘/123,1_‘4576,7 + (27 3‘47 5’27 37 47 57 67 7)]

+

+ —[VieTsa5.67 + (2]3,4,5(2,3,4,5,6,7)]

s

— [VisoTus 6,7 + (2,3/4,5]2,3,4,5,6,7)]

1\3"_‘5

[V12T354,6,7 + (2|3a 45 5|27 37 4a 5a 6’ 7)}

| = =

+ = [‘/leT34,56,7 + (2‘3)4|57 6|25 374a 57 67 7)] .

The variation of this may be reexpressed entirely, up to anomaly terms, as superfields

multiplied by Feynman loop propagators,

QNijo3a567(0) == 5ViYsh 45670 (1.0.2)

1
2
1
15 [(ViYasas6,7 + (2,3(2,3,4,5,6,7)]
15,
iﬁ [(ViaYa 4567+ (2 4> 3,4,5,6,7)]
+(€ - k1)? ( + ﬂleQ%A,aﬁj(k;n —ki")

1
+ ﬂvl [Yasus67+ (34> 4,5,6,7)]

1
~ 54 [2V12Y3456,7 + (VisYause7 + (34> 4,5,6,7))]

1
+ ‘GVQT:?’ZC%’&'?[ - *Emgn kmkn + + kmk7 )}

48(

+ViVa T3 5 67(—5 0™ +t3 (k3 ki) + (3,413,4,5,6,7)]

1

4

1

+W [V23T&,6,7( 4£m 4(k§n - kgn)) + (3 A 47 5? 67 7)]
1 1

+ [Vi3‘/éT&,6,7( 4£ ﬂ(kﬂlﬂ - kgn)) + (3 A 47 5767 7)}
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+ %%Vg [T354,6,7 — 2T345,6,7 + (3,4,5(3,4,5,6,7)]
- %V1V2 [T34,56,7 + (3,4]5,6(3,4,5,6,7)]

— Vi [VasTisr + (34,503,4,5,6,7)

+ %Vl [(Vaag — 2Va34)Ts 6.7 + (3,43,4,5,6,7)]

- é (VisVaTus 6.7 + (3]4,5/3,4,5,6,7)]

- é [VisVaaTs 6.7 + (3[413,4,5,6,7)]
+ % [(Viaz — 2Vi34)VaTs 6.7 + (3,4]3,4,5,6, 7)])
+(0 — k12)? ( + iV1Y27§74,576,7k§1 + iVmYBAﬁﬁi
+ ivl [Ya345,6,7 + (4 2,5,6,7)]
+ mVQT%m(lemen _ i(k‘mk{‘ bt RPRD))
+W [‘@ng@w( o +51 (k4 k3")) + (3,4]3,4,5,6,7)]
+W [V24T§75,6,7( o (k4 ky')) + (4 ¢ 5,6,7)]
+ [V13V2ng,677( o +57 (k3 k7)) + (3 4> 4,5,6,7)]
+ %Vl [Va(2Ts45,6,7 — T354,677) +(3,4,5(3,4,5,6,7)]

1
+ gvl [‘/2T34,56,7 + (37 4|57 6|37 47 57 65 7)]

1

+ §V1 [(VauTs56,7 + (3,5(3,5,6,7)) + (4 4+ 5,6,7)]
1

+ E‘/l [(2‘/245 - ‘/254)T5,6,7 + (47 5‘47 5) 6) 7)j|

1
-3 [V12‘/3T45,6,7 + (2’47 5|27 47 57 67 7)]

8
1

~3 [(ViaVauTs 67 + (4 43 5,6,7)) + (ViaVasTo 67 + (4]5/4,5,6,7)]
1

+ 15 [(Viee = 2Vio)VaTs 6.7 + (2,412, 4,5,6, 7))

-2+ 3))
2 1 m m 1
+(€ — k123) ( + - ViYo3 4567k + 5 VisYe 56,7
24 39y %E,9,0, 24
1
+ ﬁ‘ﬁ [Yio3567+ (24 3,5,6,7)]
1 1
+ %I/E;Tﬂ%’w(zémfn - 4—8(14:{”/6{‘ + ...+ k7'kT))
1 1
+ V[V T31 56,7 (30" + o (R — K5") +(2,412,4,5,6,7)]

1 1
+W [1/23T4’?5,677(1£m + ﬂ(k? — k3")) + (23 +» 35,36, 37)]
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1 1
1
+ ﬁvl [Va(2To45,6,7 — Tasas,7) + (2,4,5(2,4,5,6,7)]

1
+ §V1 [VaTha 56,7 + (2,4[5,6(2,4,5,6,7)]

1
- g‘/l [VCan(24)T35,6,7 + (2|3a 5|27 3,5,6, 7)]
1
+ EVI [(2V0an(235) - VCan(QS)(253))T5,6,7 + (2a 5‘2’ 2,0, 7)]

1
-3 [‘/IQVZLT35,6,7 + (2|37 5|27 47 57 67 7)]

8
1
~3 [Vi3VaaTs 6,7 + (24 > 45,46,47)) + (Vi2Vean(s) Ta6.7 + (2[5]2,5,6,7))]
1
+t 15 [(Vise — 2Vig3)VaTs 6.7 + (2,3(2,3,5,6,7)]
-3¢ 4))

+(€ — k1234)2(...)
+(€ — k12345)%(-.)
+(€ — k123456)°(-..)

1
+(€ — K1a3as67)  + ﬂV1Y2%,4,5,6,7(kT —k7")

1
+ ﬂ‘ﬁ [Yor 3456+ (24 3,4,5,6)]

1
+ —[2VirYazu5,6 + (Vi2Yaus67 + (24> 3,4,5,6,7))]

24
1 1
+VViT55 56 [ + mefn — Zg(k‘ink? + .+ k;nk?)}
1 1
+ViVz [T2T§A,5,6(Z€m - ﬂ(k'gn —k5")) +(2,3(2,3,4,5,6)]

1 1

+ Vi [Ver T3l s,6( 30" + 5 (7 = K3") + (2 ¢ 3,4,5,6)]
1 1

+ [mngﬂysﬁ(Zem + ﬂ(kz;“ — k) + (24 3,4,5,6)]

1
+ EV1V7 [2To34,6,7 — Toase,7 + (2,3,4/2,3,4,5,6)]

1
+ §V1V7 [Ta3,45,6 + (2,3]4,5(2,3,4,5,6)]

1
+ §V1 [VarTsa56 + (2]3,4]2,3,4,5,6)]
1
+ ﬁvl [(2‘/237 - ‘/273)T4,5,6 + (2) 3|27 37 47 57 6)j|

1
+3 [Vi2ViT3a56 + (213,412,3,4,5,6)]

1
+ é [V12V37T4,5,6 + <2|3‘27 37 47 57 6)]

1
+ 15 [(2Vios = Vigo)ViTus6 + (2,312, 3,4,5, 6)]) :
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Note we have introduced the notation Can(A) denotes the word A written in the canonical
ordering, and Can,(A) denotes the canonical ordering of A with permutation o applied
to the resulting expression. This is done as a means of simplifying expressions, and some

examples of these maps would be

Can(123) =123,  Can(132) =123,  Can(2436) = 2346,

(L.0.3)
Can(19)(123) =213, Cangy)(132) = 132, Cangazy (2436) = 2634.

The terms proportional to (£ —ki234), (£ —ki12345), and (£ — k123456) in (1.0.2) have not been
included, as they follow a similar pattern to those proportional to (¢ — k12) and (¢ — k123),

and so do not represent any new information.

We then cancel these propagator terms against the I1 9234567 denominator, and then
each set of terms in the above cancels against those from the hexagon term with the same

denominator. So for instance, by using the relation
(0 =Kk haosaser =T12,34567 (1.0.4)

we see that the terms proportional to (£ —k!)? in (1.0.2) should cancel against terms from

the 12-hexagon. This hexagon is found to be given by?

1
Nigi3a5,6,7(6) = — 5812‘/1:]273,475,677/6{” (1.0.5)

1
— 3512 (VisJojus67 + (3 4+ 4,5,6,7)]

1
— —s19AA
19 112/3,4,5,6,7

1
g Vi 6.7 (12070 + 2Kk — 'R — k3RS — .. — KP'R7)

1
+ D [V12T31 5.6.7(60™ — kY + k") + (3,4]3,4,5,6,7)]

1
1

1
2VioT345.6,7 — VizTssa.6.7 + (3,4,5(3,4,5,6,7)]

[Vias Ty 7 (60™ — K3 + k") + (3 <> 4,5,6,7)]
+
+
+ = [2Vi234T5 6.7 — Vi2asTs 6,7 + (3,413,4,5,6,7)]

2
[
[ViaTaa 567 + (3,4]5,6/3,4,5,6,7)]
[

+ 71

6
1
4
1
6
1
1 VigsTus.6,7 + (3]4,5(3,4,5,6,7)]

This then has variation

1
QNiaj3.45,6,7(€) =[(€ — k123)* = (€ — k12)?] <§‘/12V3Tﬂ,,6775m (1.0.6)

2Note the VT terms in this expression have the form suggested by equation (7.2) in [1], up to a single

term 15 Vi T3’ 6,7k 7" k3 .
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+812<

+ = [ViaVsTus 6.7 + (4,5/4,5,6,7)]

AM'—*HM'—‘

+ = [(ViaVay + VigaV3)T5 67 + (4 <> 5,6 7)])

+

0 — k1234)* — (€ — k23)?] (5‘/12‘/471?:15,6,7€m
[‘/12‘/4T35 6,7 + ( ) 5|3a 5a 65 7)}

+ — [(Vi2Vean(za) + VizsVa) Ts6.7 + (3 <+ 5,6, 7)})

— »b\»ﬂ»h\»—‘

_|_
[

— k12345)% — (€ — k1234)°] (5‘/12‘/5T3ﬁ,6,75m
+ — [Vi2VsTsa 67 + (3,413,4,6,7)]

[(V12V0an(35) + V123V5)T4 6,7 T (3 4.6 7)})

— »h\v—wb\'—‘

+

+ = [VieVsTsa5,7 + (3,4/3,4,5,7)]

+ — [(Vi2Vean(se) + VizsVe) Tus7 + (3 <+ 4,5, 7)})

_|_
— %\H%M—‘

[W2V7T3456 + (3 4‘3 4,5 6)}

»Jk\)—‘rh\'—‘

+ — [(Vi2Vioansry + VizsVar) Tuse + (3 <+ 4,5 G)D
— 55 Vi2Y3456,7

1 m
V1Y2 54567k — k")

- Evl (Yosa567 + (3 ¢ 4,5,6,7)]

1
+ 15 [2V12Ys4567 + (VisYause7 + (3 4> 4,5,6,7))]

mn ]' m )n 1 mipn mip.n
- V1V2T3,4,5,6,7|: - *e e + ﬁ(k:l kl + + ]{:7 k'? )]

m 1 m m m
— ViVa[T3} 5.6.7(— 25 2(k3 — k") + (3,4/3,4,5,6,7)]
1
= Vi[VasTis 6,7 (— 5" + Q(k;" — k") + (34 4,5,6,7)]
1
— VisVaTi567(—5¢" + Q(kin —k5")) + (3¢ 4,5,6,7)]
1

- 6V1V2 [T354,6,7 — 2T345,6,7 + (3,4,5(3,4,5,6,7)]

1
+ Z‘/lVQ [T3456,7 + (3,45,6(3,4,5,6,7)]

1
+ ZVI [V23T45,6,7 + (3‘47 5’37 47 57 67 7)]

1
- 8V1 [(Vaaz — 2Vasa) T 6.7 + (3,4(3,4,5,6,7)]

€ — k123456)> — (¢ — k12345)°] <§V12V23T§f27577€m

(£ — K1234567) — (€ — k123456)°] (5‘/12V7T£Z,5765m
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1
+ 1 [WB‘/QT45,6,7 + (3|47 5‘37 4? 57 67 7)]
+ - [‘/13V24T5,6,7 + (3‘4‘37 47 57 67 7)]

[(Vias — 2Vi34)VaTs6.7 + (3,43,4,5,6, 7)]) :

SN

Up to anomaly terms, the part of the above not proportional to Feynman loop propagators

is then the negative of the relevant terms from (I1.0.2)? and so cancels them exactly.

Similar holds with the other hexagon terms. The 23-hexagon is given by*

1 m m 1
Nz a567(0) =+ 1552 Vidysa567k5 — (24 3)] — 15523V123145.67 (L.0.7)

1

+ ESQB[(V1J2\34,5,6,7 + (44 5,6,7) + VizJau 567 — (2 ¢ 3)]
1

o AT 567 (120767 — 2KKY — KPR — KPS — . — RIRE)
1

+ E [Vlz—‘[%A],B,GJ(GEm - k£n3 + k.;ln) + (237 4|237 47 57 6a 7)]

+ = [Vias T 6.7 (60™ — KT + k53) + (23 ¢ 4,5,6,7)]

=

— o o — N

+ —[2ViT s 415167 — ViTis 54167 + (23,4,5]23,4,5,6,7)]

_l’_

ViTio3.41,15,6),7 + (23,4/5,6(23,4,5,6,7)]

_l’_

2Vip 231,41 T5.6,7 — Vipag,23) Ts.6.7 + (23,4]23,4,5,6,7)]

+
B = O = = O =

Vir2s T 567 + (2314,5(23,4,5,6,7)] .
This then has variation

1 m m
QN1|23,4,5,6,7(£) :[(f - k123)2 — (- k1)2] <§V1V23T4,5,6,7f (L.0.8)

1

+ [‘/1 ‘/23T45,6,7 + (47 5’47 57 6) 7)j|

_l’_

TSN

[(ViVasa + VigVas)Ts 67 + (4 ¢ 5,6, 7)])
+[(£ = k1234)® — (€ — k123)?] (%VﬂQTﬂg),@;gm
+ % [(ViViTios.56,7 + (23,5[23,5,6,7)]
+ i[(‘/lVCan(Q?A) + Vit,23 Vi) Ts.6.7 4 (23 < 5,6, 7)])

1
+[(f — ]{212345)2 - (f - k1234)2] <§V1V5T§§,4,6,7£m

3There is a relative factor of ﬁ between these two sets of terms. This however is not a concern, as
such a factor appears in the denominator of the hexagon terms relative to the heptagon terms and so they
cancel

4Note the VT terms in this expression have the form suggested by equation (7.2) in [1], up to a single
term 5\/1T§g‘f21,5,6,7k;"k§.
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[V1V5 23,4567 + (23,4]23,4,6,7)]

h&\r—wb

+ 5 1(ViVoan(ass) + Vir,23Vs) Tae7 + (23 < 4,6 7)])
+[(£ = kr23a56)” — (€ — k12345)°] (§V1V6T2’§,47577€m

+ < [ViVeTios,0 5,7 + (23,4]23,4,5,7)]

.JMHAMH

+ 5 {(ViVeoan(ass) + Viv,2sVe) Tus7 + (23 < 4,5, 7)])

+[(€ = k1234567)° — (£ — K123456)°] <§V1V7T27§L,4,576fm

[y

[(ViViTios 4156 + (23,4]23,4,5,6)]

+ 2 [(ViVean(esry + Vinag Vo) Tuse + (23 <5 4,5 6)])

_”-b\r—wb\

323( - EV1Y27?§74,5,6,7]€§1 - EV12Y3,4,5,6,7
1
- Evl [Y2,34,5,6,7 + (4 A 27 57 67 7)]
1 1
- VlVQT:’,m,41?5,677(*Emgn — *(k‘mk? + ...+ k7kT))
- ‘/1 [‘/QT:;Z,5,6,7( o + (k4 kgn)) + (37 4|37 47 57 67 7)]

-W [‘/'24T§75,6,7(*5m + *(kT —k3") + (44 5,6,7)]

—

V13V2T4567( e + (ks k) + (3 <+ 4,5,6,7)]

Vi |[Va(2T345 6,7 —T35467) (3,4,5[3,4,5,6,7)]

~

VaTsa 56,7 + (3,4]5,6]3,4,5,6,7)]

i V24T3567+ 3, 5‘3 5,06, 7)) (4 — 5,6,7)]

[
[
I
I

V1| (2Vags — Vasa)T567 + (4, 5]4, 5,6, 7)]

.-MHC»M—*AMHAMH@\H

[Vi2VaTus 6.7 + (214, 5(2,4,5,6,7)]

(ViaVauTs 67 + (4 43 5,6,7)) + (ViaVasTo 67 + (4]5/4,5,6,7)]

@\H»M}—‘

[(Viaz — 2Vi24)V3Ts 67 + (2,412,4,5,6,7)]
2 3))

1
—§€2V1Y23,4,5,6,7

Again, up to anomaly terms this cancels the relevant terms from (I1.0.2), in this case those

proportional to (£ — ky2)?.

All remaining hexagons will have a form similar to the above, and cancel terms from the
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heptagon variation accordingly. The exception to this is the 71-hexagon, which has a

differing form

11
N71j2,3,4,5,6(€) = ( e+ ﬂsn) Aqj712,3,4,5,6 (1.0.9)
o m - 1m 2
V1J7|2,3,4,5,6 (4k1 ¢ 24 k1 517)
11
— [ViaJrisass + (2 ¢ 3,4,5,6)] (152 ﬂsn)

1 1

AT s 6 (= SRR + SRR - Zk}”k?k?)
1

— 7kmk" (ViT53% 567 + (2,312,3,4,5,6)]

+7 [V1T27345 620K} — fkmk” + kmk7) (24 3,4,5,6,7)]
L1
+1l

1 1 1 )
+ Vit Ty s.6( — 100+ SR = SR — ﬂ(kfnki + k3 k3 4 kb ki 4 kS kS + kS k)

VigT3's 6.7(—20" k7 + KT'kY — k'k7) 4 (2 4 3,4,5,6)]

ﬂ(ké ksuse + k' kise + ki'kge + k5'kg) + Zkl k7)]

_l’_

ViT537 45,6k + (2,3]2,3,4,5,6)]

+

VIT33 47 5.6k + (2,3]4]2,3,4,5,6)]

+

ViaT37 4.5.6(20" — k7" + kF') + (2[32,3,4,5,6)]

—+

Vigr T3y 5 6(20™ — KT+ k) 4+ (2 45 3,4,5,6)]

+
.&\H»&\H»&\H%M—*»&M—*%M—l

[
[
[
[ViaTgh 5.6.7K7 + (213,413,4,5,6)]
[
It

(Visz — Vias)Ti% 6 7k7" + (2,3]2,3,4,5,6)]

_l’_

—

V17T23456< (K" = 0™ = k7") + ﬂ(kén —k3")) + (2,3]2,3,4,5,6)]

214( —k5")) + (2 4+ 3,4,5,6)]

Viosr — Visor)Tus6 + (2,3(2,3,4,5,6)]

1 m
+ |[Vire 3456( (k7" =0M) +

—

+

—+

VieTaa7,56 + (2]3,4]2,3,4,5,6)]

—+

_l’_

[(

[

[ViaTsa57,6 + (2]34]5(2,3,4,5,6)]

[(Vigs — Visa)Tur 56 + (2,3[4/2,3,4,5,6)]
It

+
- ,_oo\HMHNH»MHMH
[\V]

2Viar — Viro)Taa5.6 + (213,4(2,3,4,5,6)]

+ — [Vir(—2Tas4 56 + Toaz56) + (2,3,4/2,3,4,5,6)]

1
-3 [VirThs 56 + (2,3[4,5(2,3,4,5,6)]
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1
+ ' [(—2Vi7as + Vizse) Tus6 + (2,3[2,3,4,5,6)] .

This may then be found to have a variation with similar properties however, namely

1
QNrja.45.6(0) = s17( = S5 Vi¥35 45,07k — KF') (1.0.10)
1
- 5‘71 [Yar3456 + (24 3,4,5,6)]

+ViYsl345670"

+ Vi[Yas 67+ (2,3]2,3,4,5,6,7)]

+ % (Vi2Y34567 + (2 3,4,5,6,7)] — %V17Y2,3,4,5,6
~VIVITR sl 500 — o RTRD 4t KPR)]

- Vs [T§’§,47576(%€m - i(k;" ) +(2,312,3,4,5,6)]
-V [V27T§’,1,576( o+ (k7 k) + (2 <+ 3,4,5,6)]
- [V12V7T371,576(§em + ﬁ(kg@ — k") + (24 3,4,5,6)]
— éVM [2T534,6,7 — Toas6,7 + (2,3,4]2,3,4,5,6)]

— %V1V7 [Th3,45,6 + (2,34,5(2,3,4,5,6)]

_ ivl [VarTsa56 + (2]3,4/2,3,4,5,6)]

- éV1 [(2Vas7 — Vars)Tus6 + (2,32,3,4,5,6))

— i[V12V7T34,5,6 +(213,4]2,3,4,5,6)]

— —[ViaVarTy 56 + (2/312,3,4,5,6)]
1

>~ =

— < [(2Vizs = Vi) Vi + (2.312,3,4,5,6)] )
(- k1)2< %VlY{gA,&ij;” + %Vl [ViYarsas6+ (2 4 3,4,5,6,7)] + %V17Y273747576
;V1V2T3 4,5,6, 7kmk7

; [ViVRT3; 456K + (3 ¢ 4,5,6)] — %V1V27T§f2,576k’f“

%[Vlgvm berki + (34 4,5,6,7)] + éVnVZTg’zM(W — kM)

— —[VisVaTuz 56 + (3[4]3,4,5,6)]

[(Vi3Var — *V17V23)T45 6+ (34> 4,5,6)]

Vi7Va [T3456 + (3 4‘3 4,5 6)]

AA\}—‘.J;M—W\:)M—![\D —

[(Vizs — 2Visr)Tus6 + (3 <+ 4,5 6)])
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+ (E — k12)2(...) + (6 — k123)2(...) + (6 — k1234)2(...) + <£ — ]{712345)2(...) + (6 — k123456)2(...) .

The terms not proportional to loop propagators in this expression then cancel those pro-
portional to (£ — kia34567)%> = ¢? in the heptagon variation as required, up to anomaly
terms. We have not included all of the propagator terms in the above, but the case

provided should demonstrate the broad structure such terms have.

We must then cancel the propagator terms in these hexagon variations, and this is done
using the variation of pentagon terms similarly. The majority of the pentagons have the

standard form first identified in [1]. For example the [[1, 2], 3] pentagon is given by

1
N[[172]73”475»677(€) = V123T4T57677£m + B [‘/123T4576,7 + (4, 5‘4, 9,6, 7)] (1.0.11)

1
+3 [VigsaTs 67 + (4 5,6,7)],

and likewise the [1,[2, 3]] pentagon is given by

m m 1
N j2,3)14,5,6,7(0) = Vg Tis 67l + 3 (Vi1 2.3 Tas,6,7 + (4,5[4,5,6,7)] (L0.12)

1
T3 Vi 2.4 567 + (4 ¢ 5,6,7)] .

These then have variation

QN[1,2),3]4,5,6,7(£) = +% [(£ — k1234)® — (€ — K123)?] Va2 VaTs 6.7 (1.0.13)
-lé (£ — K12345) — (£ — K1234)%| ViosVsTu 6 7
-lé [(£ — K123456)* — (€ — k12345)*] ViosVeTu 5.7
%[(f — k123a567)° — (£ — k123456)2} Vi2sViTy 56

i
+ (k- k2 (V1V23T4ff5,6,75m + %[‘/1‘/23T45,6,7 +(4,54,5,6,7)]
+ %[Vlvggm—)m + (44 5,6,7)] + %[VMV%TS,G,? +(445,67)] -1+ 2))
+(k" - K?) (V12V3T1f,15,6,7£m + %[V12%T45:6ﬂ7 +(4,514,5,6,7)]

1 1
+ 5 [VisVauThor + (4 5,6,7)] + 5 [ViaaVaTs.07 + (4. 5,6,7)] )

QN[1,[2,3)/4,5,6,7(£) (£ — k1234)® — (€ — k123)*| V1 251 VaT5 6.7 (1.0.14)

|
+

NP RN RN -
— — —  —

(£ — k12345)” — (€ — k1234)*] Vi1 23 V5T 6,7

+

(£ — K123456)% — (€ — k12345)°] Vi1 23 Ve Tu 5,7

_|_

(£ — K1234567)° — (£ — k123456)%] V1,23 ViT 56
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1
(k- 1) (Vi Vo 707 + 5 [Vi2VaTis 67 + (4,5(4,5,6,7)]

1 1
+ 5 VisVaaT o + (4 5,6,1)] + 5 [ViaaVaTs.07 + (46 5,6,7)] = (2 ¢ 3))

1
(K2 k) (ViVas T 66" + 5 [ViVasTasr + (4,5/4,5,6,7)]

1 1
5 [ViVas T + (44 5,6,7)] + 5 [ViaVasT 07 + (4 5,6,7)] )

The parts of the pentagon variations not proportional to loop propagators then combine
and cancel corresponding terms from the variation of hexagons. For example, bringing in

the mandelstam terms associated with each numerator, these terms in the above sum to
1
87 (V12V3Tzfj57677£m + = [V12V3T45,677 + (4, 5’4, 9,06, 7)] (1.0.15)
12

+ = [(Vi2Vaq + Vi2aV3) T 67 + (4 <> 5,6 7)})

HL\D\H[\') —

1
+3723 (V1V23T4T,n5,6,7€m + 5 [ViVasTus 6,7 + (4,5(4,5,6,7)]

[(ViVasa + V1aVa3)Ts 67 + (4 + 5,6 7)])

l\:)\r—tl\:

These then cancel the (£ — ki2)? and (¢ —k1)? terms of QNygj3.456.7(¢) and QNyj3 4.56.7(¢)

respectively, as can be seen in the form of these variations (1.0.6) and (1.0.8).

The exceptions to this structure are those numerators corresponding with diagrams in
which the 7 and 1 external particles are on a shared external tree. Three examples of such

are the 17, 23-pentagon®

Nr1j23,4,5,6(£) = [(V[[l 2317 + Vi 2a.7) Tas6 + (23 4> 4,5,6)] (1.0.16)

*3
+ [Vir2s T 7,34 + (23]4]23,4,5,6)]
1

— 5 Viun Tizs.a 56 + (23,4123,4,5,6)]
- 1,23 1056 7k7 + (23 <> 4,5, 6)]
+ [ViT (35 7,456k + (23 <> 4,5,6)]
—VanTosas6" + k7 — k)

— VT35 5.6,7k1 7
the [[7,1],2] pentagon,

Nizay213,4,5,6(0™) =+ s17817)2.34,5.6 (1.0.17)

m m
- S17V1Jz|3,4,5,6,7k7

+ (k2 KDV 5 4 5.6k

5 Note this matches the formula for the six point pentagon Neg1)2,3,4,5(£), equation (11.1.25), once the
natural replacement of particle labels is made.
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+ s17[Vidozran6 + (3 ¢+ 4,5,6)]
+ s17ViJar3.4,5,6
+ (K2 k) [VigJrza6 + (2 <+ 3,4,5,6)]
+ s17Vi7J23.4,56
- VlT?,:s?Za&%?@"f?
— [ViT53l 567 + (2 <> 3,4,5,6)| k"7
+ KPRy [ViTor 5.6 + (2 <+ 3,4,5,6)]
— k3'kF [Vi2 T35 67 + (2 4 3,4,5,6)]
+ VirT350 5,651 ks
+ [ViTosur56k7" + (2,3]4/2,3,4,5,6)]
+ kS [Via T3 4 5.6 + (21312, 3,4,5,6)]
+ [ViTesr 4561 + (3 <+ 4,5,6)]
+ k7 [(Vise — Vias)Tis 6.7 + (3 <+ 4,5,6)]
+ k5 [Vir T3 5.6 + (2 > 3,4,5,6)]
— K [VisTaaser + (314]3,4,5,6)]
+ [VirTs3 45 6k1" + (3 ¢+ 4,5,6)]
— VinaT3l 56 (£ + km)
Viasr — Visar — *V1723)T4 56+ (3¢ 4,5,6)]

+ [(
+ [(Vizs — Vise)Tur 56 + (3]4]2,3,4,5,6)]
+ [VisToa 57,6 + (3[4/5]3,4,5,6)]

+ [VisThar 56 + (3]4]3,4,5,6)]

+ [VisrToas,6 + (3]4]3,4,5,6)]

1
- 5 [‘/172T34,5,6 + (37 4‘37 47 57 6)] )
and the [7,[1, 2]] pentagon®,

Nz 23a56(™) =+ 512V1J7) 5 45 6(k3" — kT") (1.0.18)
+ 512 [Vidrps a6 + (3 <> 4,5,6)]
— 2s19Via 73456512 — [$12Vi3 72,456 + (3 <> 4,5,6)]

1
t3 [(Vinz,a,7) + Viz,m) Tass + (3 < 4,5,6)]

+ Vo Tla.56 + (31413,4,5,6)]
1

3 [Vio 1 Tis 4156 + (3,4]3,4,5,6)]

SNote the VT terms of this expression match with the six point pentagon Ne1)2,3,4,5(£), equation
(11.1.25), once the natural replacement of particle labels is made.
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— [Viog Tk 6.7k5 + (3 <> 4,5,6)]
+ [VieT 456K + (3 ¢ 4,5,6)]
= Vi T3l 56(0" + k7' — KTY)

mn mi.n
- V12T3,4,5,6,7k12k7 )

However these again have variation of the correct form, cancelling terms from hexagon
diagrams and leaving only those proportional to loop propagators. These loop propagator
terms from the pentagons then cancel against the variation of the boxes, which all follow

the structure found in [1],
Nap,cp=Valscp- (1.0.19)

These will then combine in their variation and cancel the loop propagator terms from the

variation of the pentagons.
Thus the variation of the amplitude cancels up to anomaly terms,
1
QA(17 27 37 47 57 67 7, é) = (11,273,475’6 - 11727374’576’7)£2 (5‘/1}/27%74757677€m (1020)
1
+ Z [‘/1}/23,4,5,6,7 + (27 3|25 37 47 57 67 7)j|
1
+3 [(ViaY3456,7 + (2 <+ 3,4,5,6, 7)])

1
2
+ —V12Y34567(l2,3456 — £ 112,3456,7)

4819
+ —WY; I .
1Y23.4,5,6,7(11,23,4,5,6 1,23,4,5,6,7
4823
1 2
+ —V1Ya34567(l1,23056 — £ 11,23456,7)
4534
1 2
+ ?‘/1}/2,3,45,6,7(11,2,3,45,6 —Ch234567)
45

1

2

+ ViYa3.456,7(11,2,3.4,56 — °11,2,3,4,56,7)
56

1
2
+ ?‘/11/13,475,67 (h2345 — C11234567)
67

These would naively appear to vanish, but subtleties relating to dimensional regularisation
will arise and a more careful analysis is needed, similar to the six point anomaly discussion

of section 4.5 of [1]. This we leave to future work.
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I.1 Details of a Seven Point BCJ identity

Now that we have stated these complete seven point formulae, we may use them to ver-
ify BCJ relations.

heptagons and a hexagon,

In this appendix we will discuss specifically a relation between two

Nij2,3.4,5,6,7(f) — — Nija3a5,6,7(¢) =0. (L1.1)

Niz2,456,7(¢)

The first of these numerators is given by (1.0.1), the third by (1.0.7). The second we have
not yet stated, but this follows similarly from the field theory limit rules and is given by

Nijz04567(0) = 214 (5128119134567 + (2 ¢ 3,4,5,6,7)) (1.1.2)
- ﬂvljg‘gmmk (kb + (445 5,6,7)) — (krkL + (1 3))]
+ ivljg";élm?k [(kZ,k2 + (2 4> 4,5,6,7)) — kK]
+ ivl,]fﬁz?)ﬁﬁjk (k2. k5 + (545 6,7)) — (kpky + (1 5 2,3))]
- iV1J§T2,3,4,6,7’“ (S kS + (6 <> 7)) — (kpky + (1 4+ 2,3,4))]
+ 2141/1 bls45.7k6 [kinks — (kyky + (14 2,3,4,5))]

ivlj%guﬁ[snw + (14 2,3,4,5,6)]
1Joj3,45,6,7 (524 — $25) + (4,5]4,5,6,7)]
Vidojsa5.6,7(s23 + s24) + (4 43 5,6,7)]
Vidsja4567(523 — s34) +(2,4]2,4,5,6,7)]
ViJijas56.7(545 — 546) + (56 <> 32,57, 67)]
Vidyss5.6,7(534 + sa5) + (5 ¢ 6,7)] + (2 < 3)]

=~

J5)32,4,6,7(535 — S25) +

V1J5i36,4,6,7(535 + s56) +

<
N

6/32,4,5,7(526 — 536) +

<

Jo|37,2,4,5(536 + S67) +

ViJ7132,4,5,6(527 — s37) +

SV
[
[
[
I
[
I
[
[
[
[
[

ﬁ\Hﬁ\Hﬁwﬁ\~§\~§\~§\~ﬁ\~ﬁ\~ﬁ\~§\~§\

VisJojas,6,7(523 — 812) +

(32 > 34,24,67)]
(34+2,4)]+ (6 7)]
(3,2]3,2,4,5)]

(34 2,4,5)]

(3,2]3,2,4,5, 6)]

s23ViJaoja 56,7 + (3,2(3,2,4,5,6,7)]

(3,23,2,4,5,6,7)]



1.1. Details of a Seven Point BCJ identity 259

1
24

]' mn m pn m n n n
+7|:V1T23£567< g g gp—g (klkf‘i_kzkg‘i_‘i‘k?kg)]

[V12J3|4’576,7(813 + s93) + (3,2]3,2,4,5,6, 7)]

[V1 5ol 567 (120707 — 40T KY + 40Ky — 2k kS — kKD — k3'RY — ... — K'KD)
+(3,2(3,2,4,5,6,7)]
+ % (VAT (12670 — 407K + A0 KE + 2KFKE — KPRY — kKD — .. — KIAD)
+(3452,4,5,6,7)]
ViT3s 567(40" — K5' + k') + (3,2,43,2,4,5,6,7)]

ViT3hy 567(20™ + ki) + (3,2,4[3,2,4,5,6,7)]

V123T4567 2€m +k2 ) ( 72|37274757677)]

[

[

(VisoT{s 6.7(40™ — K" + k5") + (3,2[3,2,4,5,6,7)]

[

[VIT35 45.6.7(60™ — kX3 + k53) + (3,2[4,53,2,4,5,6,7)]
[

VisToh 567(60™ — kis + k33) + (3[2,4[3,2,4,5,6,7)]

»—tﬁ‘»—tﬁ‘»—ts‘v—ls‘»—\s‘ws‘»—t

+ EVl [3T3245,6,7 — Ts254,6,7 — T3425,6,7 — Tha52,6,7 — Ths24,6,7 + T3542,6,7
+(3,2,4,5(3,2,4,5,6,7)]

1
t 13 [(3Vis24 — Visaz — Vizsa — Vizuz — Viasz + Viaes) 56,7

+(3,2,43,2,4,5,6,7)]

1
+ 6 [‘/vlT324,56,7 + (35 25 4|57 6’37 2) 4) 5) 67 7)}

1
- E [V1T342 56,7 + ( 727 4|57 6‘37 27 47 57 67 7)]

1
+ é [‘/1T32,45,67 + (37 2‘47 5’67 7|37 27 47 57 67 7)]

+ =~ [VisoTus 6,7 + (3,2/4,53,2,4,5,6,7)]

1
6
1
6

[
+ = [VisTous6,7 + (3]2,4,5[3,2,4,5,6,7)]

1
72 [V123T45 6,7 T ( a2|4a 5|37 2,4,5,6, 7)}
1

[

[V13T25467+ (3|2 4, 5|3 2,4,5,0, 7)}

2
+ = [VisToaser + (32, 4/5,6(3,2,4,5,6,7)] .

Oo\l—ll—l

If we begin with the anomalous A terms, these exist in the first and second numerators
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only, and contribute to (I.1.1) as

(5128119134567 + (2 ¢ 3,4,5,6,7)) (1.1.3)

-] -

+ — (513013124567 + (3¢ 2,4,5,6,7)) = 0.

We may then move onto the refined terms in each numerator. Looking in particular at

those with a vector index, these contribute to (I.1.1) as

1
(ﬂVM;TgA,wkS [(kp ks + (3 4,5,6,7)) — Ky oy (I.1.4)

1
+ 57 Vi T3 45,6753 w446 5,6,7) = (kpky + (14 2))]

1
+ *Vljg?z 34,67k |(

(ke
i m 5 ol
+ 24V1J4|2,3’57677k T (k2 KD + (545 6,7)) — (kpkp + (1 2,3))]
(kS kS + (6 <> 7)) — (kpkpy + (1 45 2,3,4))]

+3 v1 bls45.7K6 [kinks, — (ks + (14 2,3,4,5))]
2
ST Vi s [Tk + (16 2,3,4,5, 6)])
1
~(57V3 5567k (W22 + (2  4,5,6,7)) = k)

1
+ 55 Vi3 456745 n+ (44 5,6,7) — (kpky + (1< 3))]

1
+ *Vljg?g 24,675 |(

(ke
i m 5 4 ARt
+ 24V1J4|3,2’57677k P (k2 KS + (545 6,7)) — (kpky, + (1 2 3,2))]
[k:6 kS + (6 < 7)) — (kpky + (1 45 3,2,4))]

0
ﬂvqug,mm [s17k? + (1 > 3,2,4,5, 6)])

1

— 13523 [WJ§?3,4,5,6,71€§” - (2« 3)] —0.

The vanishing of the above is immediate as a result of the symmetry of J;ﬁ BODEF I
B,C,D, E, F. Similar results hold for the refined terms without a vector index.

Looking then at the VT terms, those with two vector indices in the BCJ relation (I.1.1)

are

(48 [(VIT35% 5 6.7(12070" — ALKy + 407Ky — 2k5° kS — KP'KY — k5'kS — ... — k'Y
+(2,3|2,3,4,5,6,7)] (I.1.5)
1
+ 5 (V1o T3 6 7(12070" — ALTKY + ALKy + 2K kS — KTEY — KS'kS — ... — kPEY)

+(2<—>3,4,5,6,7)])
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- (4% [ViT530h 5,67 (120707 — ALTkG + 40" ky — 2k5'ky — KUKy — k5'kg — ... — k7'k7)
+(3,2(3,2,4,5,6,7)]
+ le [VisT5ils 6,7 (120" — ACTKY + 407Ky + 2K kG — k{'kY — kg'ky — ... — k7'kT)
+ (3o 2,4,5,6,7)])
- 2714‘/171%,516,7(12”% — 2kIKD — KD — KPRD — . — KED
=0.
This requires a property of the BCJ gauge to show, namely Tg’é‘ﬁﬁﬁj = _T2T§ZL5,6,7'

One final example would be the terms in which the V' vertex operator contains particle
labels 1,2,3, and 4. These terms in (I.1.1) are

1
(E(3V1234 — V1243 — Vizoq — Viza2 — Vigos + V1432)T5,6,7)
1
- (E(?’VBM — Vizaa — Viggs — Vi2az — Vigza + Vl423)T5,6,7>
1
—6(2‘/[[1,23],4]T5,6,7 — V4,23 T567) = 0. (I1.1.6)

By expanding the hexagon contributions as

Wii1,231,4) = Vizsa — Visaa (1.1.7)
Vi,41,23) = Viazs — Viasz (1.1.8)

the vanishing of these terms becomes clear.
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