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by Federico Capone

A crucial role in the problem of four-dimensional asymptotically flat spacetime holography
is long believed to be played by the Bondi-Metzner-(van der Burg)-Sachs (BMS) asymp-
totic symmetry group. The discovery of deep relationships between such symmetries and
gravitational infrared effects - pertrubative soft theorems and gravitational wave memo-
ries - has sparkled new interest in the problem. In this context, superrotations extend
the standard general relativistic definition of BMS group. While there has been some
debate on the extension of BMS to higher dimensions (d > 4), very little has been said
about superrotations. In this thesis we initiate a systematic study of such structures. We
provide evidence that consistency of superrotation Killing fields with a fully non-linear
d > 4 gravitational configuration space requires different boundary conditions than those
considered in literature. The first such evidence comes from cosmic (d− 3)-branes, which
are conjectured to be related to superrotations in d > 4 as a natural generalization of
the relationship between cosmic strings in d = 4 and d = 4 superrotations. The general
boundary conditions may be taken to define asymptotically locally Minkowski spacetimes.

The first part of the thesis recaps fundamentals of AdS/CFT - the most well known exam-
ple of holographic duality - and the second moves to asymptotically flat spacetimes. The
review material marks the conceptual and technical differences between AdS holography
and the attempts at flat holography. A recurring theme is that of variational principles
and asymptotic charges. Their mutual consistency is pivotal in dynamically realising
AdS/CFT. We take this requirement as the basis of asymptotically flat holography and
the analysis of the configuration space is fundamental to the construction of well-defined
variational principles and the phase space.
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Introduction

Gravity and the quantum

A famous quote circulating among physicists is the sentence spoken by Lord Kelvin at the turn
of the XIX century about the two clouds affecting the brightness of the dynamical theory of heat
and light. According to the most popular interpretation, Kelvin wished to stress that physics was
basically complete and that those two problems - as clouds dissolving with time - would have
been settled in the current framework. Perhaps instead, he foresaw that those two clouds would
have generated two of the biggest storms of the history of physics. They indeed resulted in the
introduction of two new universal constants, in addition to Newton’s G: c - the velocity of light in
vacuum - the greatest possible attainable velocity, and h - the Planck constant - the fundamental
quantum of action.

The past century witnessed great advances in the understanding of the physical laws at the scales
set by h and c. The introduction of the limiting velocity c required a modification of the Galilean
relativity principle and brought to Einstein’s relativity. Its first outcome was the modification of
Newton’s second law of dynamics, and - when considered together with the Equivalence Principle
and the Mach principle - the change (after some ten years) of Newton’s gravitational force law in
favour of the theory of general relativity. Einstein provided a theory where space and time are
themselves gravity and whose equations consistently contain c and G. At the time of the facts,
instead, h entered the scene to account for a disordered set of experimental facts about atoms
and radiation. The situation begged for more fundamental formulations. They started to be fully
presented a decade after the formulation of general relativity, and triumphed in encompassing all
of atomic and molecular physics, in the quantization of Maxwell’s theory and in giving birth to
quantum field theory, where h and c play together, and whose most notable product is the standard
model of particle physics.

On the other hand, very dense clouds hide a foreseen full-fledged theory working consistently at
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2 Introduction

the scale where G, c and h are relevant at the same time, the Planck scale. This is usually referred
to as the problem of the marriage of the rules of quantum theories and those of gravity, where
gravity is usually taken as a synonym of general relativity.

The problem of a quantum theory of gravity is so puzzling that over the years several direct
or indirect approaches have been pursued. From a quantum field theory perspective, the first
manifestation of the issue is the fact that general relativity is not perturbatively renormalizable.
On the one hand, this does not preclude that general relativity can be consistently quantized
non-perturbatively at the non-linear level, and thus retain a fundamental nature. On the other
hand, the aforementioned impossibility may suggest that general relativity is not to be taken as
a fundamental theory, but rather only as an effective one. While the first view is undertaken in
approaches like loop quantum gravity [3], causal dynamical triangulations [4] or asymptotic safety
[5], the second is pursued in string theory [6, 7] or emergent gravity scenarios [8, 9].

The various attempts at a further fundamental understanding of gravity seem to suggest that the
notions of space and time and the principles on which current physics is based need to be critically
rethought. In addition to model-dependent results, the strongest evidence supporting such kind
of expectations stem, from generic features of quantum mechanics and general relativity. In this
respect, black holes play a central role.

Black holes are amongst the most fascinating objects in nature because the spacetime singularities
they hide behind the horizon, whose shadow we directly pictured very recently [10], are at the
same time a fundamental prediction of general relativity and the place where the theory itself
breaks down. Solving this breakdown is one of the main goals of any proposed theory of quantum
gravity. However, we shall now step back from the problems of quantum gravity and move towards
a semiclassical regime. This regime is where black holes pave the way toward a new understanding
of gravitational interactions.

Classically, black hole horizons satisfy four laws that have a close analogy to thermodynamical
laws [11]. According to this analogy, black holes have a - so-called - Bekenstein-Hawking entropy
[12]

SBH = kB

ld−2
P

A

4

remarkably proportional to their area, rather than the volume. In the above lP = (~G(d)/c3)
1
d−2 is

the Planck length in d dimensions, where also the Newton constant must be noted with G(d) as it
differs according to the dimension of spacetime, and kB is the Boltzmann constant. Using quantized
fields in the classical black hole background, namely the semiclassical approximation, S.W. Hawking
showed that the laws of black hole mechanics are not only analogous to thermodynamical laws,
but they indeed are thermodynamical laws. In fact, Hawking discovered [13] that the entropy is
associated with a temperature

TH = ~κ
2πkBc

κ is the surface gravity. For example, the temperature of a d = 4 Schwarzschild black hole is
TH = ~c3/(8πGM). This result is hard to overestimate. Black holes emit radiation at temperature
TH with a spectrum which is thermal, according to Hawking’s semiclassical calculation.
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To exemplify the power and limitations of semiclassical analysis of certain systems, we can consider
the absorption/emission of electromagnetic radiation from atoms. When quantum theory was just
a set of unjustified rules engineered to fit experimental evidence, some of the observed spectral lines
of the elements were explained by Bohr via an ad hoc law according to which the frequency of a line
is given by the energy jump between two levels in h units. As the quantum formalism developed,
this rule was derived as a consequence of perturbation theory applied to a semiclassical system
where the atom is quantized but the electromagnetic potential is not. In such a situation, the
classical field behaves as a background field. This approximation correctly captures the induced
absorption/emission probability amplitude due to the electromagnetic field, but miserably fails
in describing spontaneous emission happening in absence of external electromagnetic stimulation.
This fact is a limit of the semiclassical treatment of the electromagnetic interaction and a hint
toward the necessity of quantizing the field. The semiclassical approximation correctly captures
the influence of the external field on the atom (induced absorption and emission), but not the
influence of the atom on the external field (spontaneous emission).

Similarly, semiclassical black hole radiation is an effect of the strong classical gravitational field
on the quantum fields. The vacuum outside the horizon is populated by the pair production and
annihilation of virtual particles. Heuristically we can say that due to the presence of the horizon
there is a non-zero probability that one member of a given pair disappears in the hole while the
other escapes from it and become real. These particles constitute Hawking radiation. While the
formula for SBH is only a first-order approximation, it is sound because subleading corrections
scale as the logarithm of SBH (see for example [14]). Any fundamental theory of gravity must
reproduce this result.

Hawking radiation, due to its thermality, immediately leads to the famous information paradox
[15]. The pair production picture outlined above implies that part of the information about the
state of the hole is lost in the hole. Quantum mechanically this means that the breakdown of
unitarity, namely reversibility, is unequivocal because any initial pure state will evolve in a mixed
state. One of the aims of any model of a fundamental gravitational theory (or at least a new
understanding of current models) is to resolve this paradox.

This thesis is not focussed on the black hole information paradox itself, but is framed within the
vast literature revolving around one of the first fundamental new ideas stemming from the debate
around the black hole information problem: the Holographic Principle.

Hawking’s proposal of a breakdown of quantum mechanics was not easy to accept and indeed it
was not accepted by many. Notably G. ’t Hooft, willing to preserve unitarity, was brought to the
first formulation of what later became known - thanks to L. Susskind - as the Holographic Principle
[16, 17].

The Holographic Principle is usually taken as the statement that a holographic duality exists
according to which a gravitational theory in a d-dimensional spacetime is equivalent to a non-
gravitational theory in a (d − 1)-dimensional spacetime. Its original statement only involves
a bound on the number of fundamental degrees of freedom associated with spacetime regions,
whereas the strong statement here is the consequence of what is considered the best understood
example of holographic duality: the Anti de Sitter/Conformal field theory correspondence (or du-
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Figure 1: Penrose diagram of AdS spacetime. I is the timelike boundary and the discon-
tinuous line is the symmetry axis of the diagram.

ality), AdS/CFT for short, discovered within string/M-theory independently of ’t Hooft-Susskind
holographic proposal.

The role of timelike asymptotics: AdS/CFT

As the label suggests, AdS/CFT is a correspondence between some gravity theory in AdS spacetime
with some (relativistic) conformal field theory.

The first examples provided by J.M. Maldacena [18] are of this form, but the statement needs to
be sharpened to be precise. The gravity theory is defined in spacetimes which are only asymp-
totically (locally) AdS. The AdS spacetime is the vacuum solution of Einstein’s equations with a
negative cosmological constant Λ and constant curvature. Asymptotically locally AdS spacetimes
are solutions of Einstein’s equations with a negative Λ that approach, broadly speaking, the AdS
form at their boundary. The notion of boundary of a spacetime is well known in general relativity
and formally represents the concept of “infinitely far away from the bulk of the spacetime”. The
CFT is naturally interpreted to be “defined on” (in the sense of associated with) the conformal
boundary of AdS [19], which is a timelike hypersurface. The conformal symmetry of the field
theory is reflected in the symmetries of the AdS boundary geometrical structures. The latter are
called asymptotic symmetries.

The correspondence is dynamically realized as the equality of the partition functions of the two
theories

Zgrav = ZCFT .

Which of the two sides is more fundamental is a philosophical matter (see for example [20, 21])
which we do not address. Very interestingly, Maldacena’s first example1 - the Old Number One,

1Various examples were made in [18]. The first in the paper is the one to which we refer as first.
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which we use to exemplify the matter - relates two (roughly speaking) known theories and does
so in a strong/weak fashion: when the gravity side is weakly coupled the field theory is strongly
coupled, and vice versa.

To be a bit more specific, the Old Number One, relates a maximally supersymmetric CFT, whose
action is completely known, to the so-called Type IIB superstring theory in an AdS background,
which is only known perturbatively. Thanks to the strong/weak property, the duality is seen as
a fully non-perturbative definition of such string theory in the AdS spacetime. In fact, speaking
of AdS as a background is a misnomer and the duality can be argued to be giving a background
independent definition of Type IIB superstring theory on the spacetimes whose boundaries are of
AdS form. The “choice” of the boundary only selects a sector of the gravity theory, which is for
the rest free to be in any state and each of its states will correspond to a state in the field theory
side. The reader interested in a quick account of the problem of background dependence and other
conceptual points of AdS/CFT, including the relationship with the idea of emergence, is referred
to [21].

Soon after Maldacena’s paper, the possibility to construct other examples of strong/weak AdS/CFT
dualities were realised. Indeed, the Old Number One is seen to be fundamentally based on some
rules - involving the matching of symmetries of the dual pair - which can be adapted to build other
holographic dualities. We can hope to appropriately lower the degree of super and conformal sym-
metry of the field theory and construct the bulk gravity theory with the appropriate symmetries.
In this way we have a tool to analyze strongly coupled field theories of phenomenological interest to
the standard model of particles or condensed matter physics. The latter further requires the field
theory to be non-relativistic. We enter the domain of what is usually called “applied holography”
[22, 23]. Some of these models are realized within string theory (top-down construction), some
others are not (bottom-up construction) but may be. Many others, which can be found in the
early review [24], do not bear any particular relevance to applied scenarios.

The upshot, twenty-three years after Maldacena’s paper, is that a broad landscape of holographic
dualities has been uncovered, spanning non-conformal and non-relativistic quantum field theories.
They are called gauge/gravity dualities, a nomenclature coined to capture the generality of the
correspondence. Almost all examples for which a detailed holographic dictionary has been con-
structed are strong/weak dualities and share a common feature: the quantum field theories are
associated with timelike conformal boundaries of the bulk spacetimes, AdS being the simplest of
such spacetimes.

Holography for spacetimes without timelike boundaries

As an artefact of our presentation, the last paragraph relegated the gravity side in AdS/CFT to
the role of a tool. Shifting attention to gravity, as an example of holography and possibly of
a complete definition of quantum gravity with AdS boundaries, AdS/CFT naturally inspires the
questions: how is holography realized in de Sitter (dS) and Minkowski spacetimes? Can we explore
the answers to this question to define quantum gravity in such spacetimes?
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Figure 2: Penrose diagram of dS spacetime. The discontinuous lines are the north and
south poles, I + and I + are future and past spacelike infinity.

In other words, as put by T. Banks in [25], are the boundaries of de Sitter or asymptotically flat
spacetimes appropriate for a formulation in terms of degrees of freedom associated with such
boundaries?

Such spacetimes are physically relevant. Due to the Equivalence Principle, any spacetime is locally
Minkowski; the universe around us is approximately Minkowskian because the curvature radius of
the observed universe is of order 1060 in Plank units and all fundamental non-gravitational physics
is framed within Minkowski space, which is also arguably a solution of any quantum gravity theory.
On the cosmological scale, instead, we know the cosmological constant is slightly positive and dS is
the simplest solution of Einstein’s equations with such a value and, despite not exactly describing
the Universe as we know it today, several observations hint that the early and late history of
the Universe are well approximated by dS [26, 27]. The role of dS is even more relevant in the
inflationary epoch [28] as dS is exponentially expanding.

Insisting that the Holographic Principle is a principle of Nature, it is thus imperative to search
for realizations of the Holographic Principle in such spacetimes. Because of the somewhat twofold
nature of the Holographic Principle, this means both finding descriptions of known phenomena
in terms of holographic degrees of freedom, but also finding appropriate complete definitions of
quantum gravity in the sectors specified respectively by flat and dS boundary conditions.

As a matter of fact, string theory has not provided many (or any) clues towards these two questions
up to now.

While Minkowski space is a natural background for string theory, and in fact, the first on which
the theory was perturbatively defined, the only holographic model of flat gravity comes from the
largely unknown M-theory2. Indeed, several months before Maldacena’s paper, T. Banks, W.

2Also Little String Theory is to be mentioned in this context [29, 30]. In Section 2.1 we briefly recap
the string-theoretical origin of AdS/CFT and for that purpose we need to consider D-branes and their
decoupling limits. Little String Theory arises - roughly speaking - in a very similar way to what we
see in Section 2.1, but D-branes must be replaced by the so-called NS5-branes. In AdS/CFT the AdS
spacetime arises in the decoupling limit of D-branes; similarly, partial Minkowskian geometry arises from
the decoupling limit of NS5-branes. See [30] for some more comments on this point.
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Figure 3: Penrose diagram of Minkowski spacetime. The discontinuous line is the symme-
try axis of the diagram.

Fischler, S.H. Shenker and L. Susskind proposed [31] - interestingly motivated by the Holographic
Principle - that M-theory in eleven-dimensional flat space can be holographically realized in terms
of a quantum mechanical matrix model, now called BFSS model.

The situation with dS is subtler because there is evidence against the existence of (quasi)-dS
solutions in string theory [32, 33]. Such shreds of evidence are, however, not conclusive (cfr. [34])
and dS can be obtained in appropriate supergravity and M-theory constructions [35, 36, 37].

When we look at the dS and asymptotically flat holography problem from the perspective of
bottom-up extensions of AdS/CFT the situation is somewhat reversed3. Missing top-down guid-
ance, the strategy is to follow the road of the asymptotic symmetries of the spacetimes under
considerations. In this context, dS is conceptually less difficult to handle than asymptotically
Minkowski spacetimes. Indeed, the boundaries of dS are spacelike while those of Minkowski are
null.

A de Sitter/CFT (dS/CFT) correspondence was suggested by A. Strominger [39] and its relevance
to standard cosmology was shown in [40]. A program of holographic cosmology for the inflationary
era has been proposed in [41] and reviewed in [28]. Thanks to the peculiar causal structure of
the dS boundary, some features of the AdS/CFT dictionary can be transferred under particular
analytic continuations [42]. The dynamical statement of dS/CFT translates to

Ψ = ZCFT ,

where the left-hand side is the wavefunction of the universe and the CFT on the right hand side is
necessarily Euclidean. A possible concrete realization of dS holography is that in term of higher
spin gauge theories.

The formulation of holography for flat spacetimes is a much subtler problem because of the causal
nature of the boundary, as said. Theories associated to null manifolds (see Chapter 4) are largely

3Although the BFSS model realizes holography, exploring other realizations is not pointless because - as
observed by Witten [19, 38] - the matrix model is not covariant and is far less understood that AdS/CFT.
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unknown and uncommon - if not irrelevant - in everyday physics. The expectation is that such
theories are dual to flat spacetime physics if they output the flat space S-matrix

???→ gravitational S-matrix.

Over the past twenty years, several attempts have been done toward enlightening the left-hand-side
of this relationship, but only in the past six years we have witnessed a constant steady increase
in the research production on flat holography and, although still far from the end, we have some
tantalizing results in four spacetime dimensions.

Asymptotically flat spacetimes. Results and organization of
the material

The increased interest in such problem coincides with the discovery of a set of equivalences in the
infrared physics of both asymptotically flat perturbative gravity [43], and gauge theories (an early
pedagogical review is [44] and see chapter 4 for other references). For the vast majority, such chains
of equivalences are triangular and relate the asymptotic symmetries of a theory with quantum soft
theorems and classical memory effects. They are concisely known as infrared triangles, a name
coined by A. Strominger, the first to realize such connections.

The research presented in this dissertation deals with aspects of such triangular relationships for
asymptotically flat gravity in dimensions higher than four. In particular, we explore the necessary
boundary conditions of gravity that allow for the extension of the infrared triangular equivalence
to any asymptotically flat d > 4 spacetime.

An asymptotically flat spacetime is for us a d-dimensional spacetime with the same Penrose diagram
of Minkowski space: the boundary consists of a future null infinity I + and a past null infinity
I −. The joint i0 is spacelike infinity, which is a singular point in the Penrose diagram and not
part of the boundary (cfr. Appendix A). Two further points i+ and i− represents future and past
timelike infinity, which play no role in this dissertation.

In four spacetime dimensions, asymptotic flatness is taken as a synonym of spacetimes with com-
plete null infinity, topologically equivalent to R × S2, and exactly Minkowski asymptotic metric.
Such spacetimes can be called asymptotically Minkowski and spacetimes with a different boundary
topology or a different boundary metric may be called asymptotically locally Minkowski, bor-
rowing the AdS/CFT jargon. The term asymptotically locally flat is also used. By extension
asymptotically flat spacetimes in d > 4 are taken to be spacetimes with null infinity topologically
equivalent to R× Sd−2, but the notion of a conformal infinity is not straightforward in d > 4 (cfr.
Appendix A).

In pursuing our goal, we will often speak of either asymptotically Minkowski or asymptotically
locally Minkowski boundary condition in generic number of dimensions. We will, however, use the
terms flat or Minkowski and the context will clarify the meaning. We use a mostly minus signature
in the thesis.
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The interest in higher dimensions is mainly motivated by a theoretical conundrum. It is by now
well-known that tree-level4 scattering processes, in any theory of gravity with d ≥ 4 flat non-
compact dimensions, where one or more external gravitons become soft (vanishing energy) satisfy
factorizations of the soft contribution from the finite energy (hard) particles contributions. Such
factorizations occur at leading, subleading and sub-subleading order in a Taylor expansion of the
amplitude in terms of the soft momentum (or momenta). The leading universal term in d = 4
constitutes Weinberg soft theorem [47, 48], the sub and sub-subleading universal terms were proved
with explicit model-dependent computations by Cachazo and Strominger [49] in d = 4, whereas
higher-dimensional generalisations can be found in [50], and general proof are given in [51, 52, 53].

As mentioned above, such perturbative theorems of quantum field theory have been related in d = 4
to the asymptotic symmetries of asymptotically flat gravity satisfying particular conditions. The
leading and subleading soft theorems arise as Ward identities of the gravitational S-matrix under
the so-called supertranslations and superrotations, respectively5 (see chapter 4 and chapter 6).

Supertranslations (ST ) are long known to be asymptotic symmetries of d = 4 asymptotically
Minkowski gravity at null infinity (cfr. [55, 56]). They are an infinite-dimensional enhancement
of the translational Abelian subgroup of the Poincaré group. The semidirect product of the or-
thochronous Lorentz group and supertanslations constitute the so-called BMS group (standing for
Bondi, Metzner, (van der Burg) [57] and Sachs [58, 59])

BMSglob = L↑+ n ST,

which is the asymptotic symmetry group at null infinity of radiative asymptotically flat four-
dimensional spacetimes.

We can heuristically motivate the appearance of this structure with an argument by R. Geroch
[55]. The Killing vectors of Minkowski spacetime have the form ξµ = ωµνx

ν + αµ, where α and
ωµν are constant and the latter is antisymmetric, xν is a position vector with respect to some
origin. While ωµν does not depend on the origin, αµ does (just shift x′µ = xµ + yµ to check).
This is the reason for Poincaré being a semidirect product of Lorentz and translations. At large
xµ we have ξµ ∼ ωµνx

ν . A naive guess for the asymptotic Killing vector ξµasympt is thus that it is
at least asymptotically linear in xµ: ξµasympt = ωµνx

ν + αµ(x). We cannot further demand that αµ

is constant because there is no unique way to separate the constant part of ξmasympt. In fact the
notion of “linear in position” only makes sense in flat space and then in the limit to flat. However
asymptotically, if α is constant, it is dominated by the linear part of ξµasympt resulting in a reduction
of the number of generators. The only way out is to conclude that in general we cannot give a
meaning to a constant α. This is the origin of supertranslations.

Flat holography and the infrared triangle require the non-abelian factor of BMS to be enhanced to
an infinite-dimensional group of transformations. These are named superrotations. Two variants
have been proposed: BT-superrotations [60, 61, 62, 63] (BT standing for Barnich-Troessaert) and
CL-superrotations [64, 65] (CL standing for Campiglia-Laddha). BT-superrotations form the Witt

4Results at loop order exists also, but results are less sharp (see the discussion in [45] and [46] as well
as the references listed in the main text).

5Notice that at present, the sub-subleading soft theorem is not accounted for by these symmetries and
we are not concerned with that here. The reader is referred to [54] for preliminary considerations.
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algebra of local conformal transformations on S2, CL-superrotations form the algebra of volume-
preserving diffeomorphisms of S2, SDiff(S2).

It is important to stress that such symmetry structures preserve some set of boundary conditions
which specify the class of spacetimes under consideration. Supertranslations are essentially related
to gravitational radiation and define the class of asymptotically flat (Minkowski) spacetimes in
d = 4. Superrotations are essentially related to subleading soft theorems and require a relaxation
of asymptotically flat boundary conditions. This introduces the concept of asymptotically locally
flat spacetimes in our discussion.

The aforementioned higher dimensional conundrum stems from the definition of radiative asymp-
totically flat spacetimes [66, 67, 68, 69, 70]. Radiation-consistent boundary conditions imply a
reduction of supertranslations down to translations. This automatically eliminates the infrared
triangle of Weinberg’s soft theorem.

In the past five years, this occurrence has been largely discussed also in relation to gravitational
memory effects mostly in even spacetime dimensions [71, 72, 73, 74, 75, 76, 77] ([78] discusses
memories in odd dimensions). None of such papers consider superrotations.

The paper [1] presented in chapter 7 is the first attempt to treat superrotations and supertransla-
tions in five spacetime dimensions. The analysis of chapter 8 clarifies, completes and extends the
preceding analysis to any number of dimensions.

When discussing superrotations in d > 4 we must decide whether to seek for higher-dimensional
realizations of BT or CL. The choice is trivial from an algebraic viewpoint since no BT-algebra
exists in d− 2 > 2.

However, the action of BT-superrotations in d = 4 is marked by interesting phenomenological signa-
tures consisting of impulsive gravity waves processes accompanying the transition from Minkowski
to asymptotically Minkowski spacetime. This stimulated us to conjecture that similar processes
may mark higher dimensional “BT”-superrotations. We thus constructed candidate asymptoti-
cally locally Minkowski spacetimes and we built boundary conditions which are generic enough
to include them in the configuration space (chapter 7). This approach is different from that usu-
ally pursued in literature. We do not engineer boundary conditions to recover a pre-determined
asymptotic symmetry group.

In chapter 8 we keep on working with the asymptotically locally Minkowski conditions and we find
the set of necessary conditions to obtain a configuration space which is consistent with the action
of higher dimensional CL-superrotations. In this respect, we not only complete and extend the
analysis initiated in chapter 7, but we also clarify some fundamental flaws that were met in [79],
another recent analysis of CL-superrotations in even d > 4 (see also [80]). The reader interested
now in knowing more about the outputs is invited to read Section 7.1 and Section 8.1.

We note, to conclude, that we have spoken about configuration spaces rather than phase spaces.
Broadly speaking, the first is the set of all solutions of a theory satisfying prescribed boundary
conditions. The second is the subset of physically relevant solutions, namely those characterised
by finite energy and momentum or - in general - symmetry charges. As we will discuss in the
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course of the thesis, providing a well-defined phase space is the central goal, but it rests on the a-
priori definition of the configuration space. There is a fundamental interplay between well-defined
boundary conditions and phase spaces. We will comment in due course (see chapter 6) that even
in four-dimensional spacetimes the situation concerning superrotation-compatible phase space is
still not clear. There is ongoing work with my colleagues to explore the phase space associated to
the configuration space discussed in chapter 8.

Organization of the material

To make the thesis self contained, we begin by reviewing material from both the basics of AdS/CFT
and the recent advances on the flat spacetime holography problem. The review comprises Part I
(on AdS/CFT), chapters 4, 5 and 6 of Part II (on flat holography) and it aims at introducing the
background ideas relevant to the research explorations of the later chapters 7 and 8. The level
of the review is that of introductory notes, rather than a complete rigorous account tailored to
experts.

Chapters 7 and 8 are devoted respectively to [1] and some unpublished material which supposedly
comprise the basis of two extended papers. Chapters 4, 5 and 6 are based on the proceeding paper
[2]. Efforts have been made to organize the text in a logical and coherent flow, so the chapters
corresponding to the published articles do not completely line up with the published version. Many
of the relevant points just mentioned in this discussion are presented with some more detail in the
main body. The order of this introductory narration is reflected in the chapters. All the ingredients
needed to discuss the flat spacetime holography problem - boundaries, asymptotic symmetries,
charges, among others - will be introduced in due time starting from the discussion of (mostly) the
gravitational aspects of AdS/CFT in Part I. Part II can however be read independently from Part
I.

In Part I, we first present the basic argument of the Holographic Principle (chapter 1) and then
move to AdS/CFT (chapter 2). We motivate AdS/CFT using what we called the Old Number
One (Section 2.1) and then we summarise the symmetry matching argument which is fundamental
in any tentative holographic duality (Section 2.2). We then complete the dictionary of AdS/CFT
with the GPKW rule (Section 2.3) and the example of holographic renormalization of the metric
tensor in Fefferman-Graham gauge, with the following examples on Weyl anomalies (Section 2.3.1).

The asymptotic analysis of Einstein’s equations in Fefferman-Graham gauge is to be compared and
contrasted with the Bondi-Sachs analysis which we employ in asymptotically flat spacetimes.

The discussion of the holographic stress-energy tensor naturally brings us to the problem of grav-
itational charges (Section 3.1 and Section 3.2) and to the discussion of the covariant phase space
method (Section 3.3), which is extensively used in flat holography. Along this path, the fundamen-
tal role of the variational principle in holographic renormalization and AdS/CFT is pointed out, as
well as the generality of the method of holographic renormalization, so that we are able to mention
the difficulties in extending the basic AdS/CFT dictionary to flat spacetimes (Section 3.1.1).

Part II is opened by a brief excursus of the various paths toward flat spacetime holography that have
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been undertaken over the years chapter 4. It provides more discussion on supertranslations and
superrotations from a historical perspective and states in which sense the developments regarding
scattering amplitudes and soft theorems points toward flat holography.

Chapter 5 lay down the basic results of the Bondi-Sachs analysis of asymptotically flat spacetimes
in d = 4 and derives supertranslations and superrotations, motivating why the latter implies a
change of boundary conditions. The orthodox analysis in d > 4 is also considered in parallel so to
show that BMS disappear in such a case. Chapter 6 gives a brief account of supertranslation and
superrotation charges in d = 4 and points out the issues affecting the latter. Then, the simplest and
most well-posed instance of a gravitational triangle - that of supertranslations - is briefly discussed.

Chapters 7 and 8 comprise the research material, but the reader can find the proof of many results
summarised in chapter 5 in chapter 8. Appendices supplement the main body.



Part I

The holographic principle and
AdS/CFT





CHAPTER 1

The Holographic Principle

The Holographic Principle stated in the Introduction is based on the following argument by ’t
Hooft [16] and Susskind [17]. Given some quantum theory, the dimension of the Hilbert space N is
related to the thermodynamic entropy S by

N = eS (1.0.1)

In any local theory where the possible energies of the system are bounded, a reasonable expectation
is that the entropy S is related to the volume of space V enclosing the system

S ∼ V. (1.0.2)

This is the well known extensive property of entropy as derived from statistical mechanics. It can
be simply argued for in the following way. If we take a d-dimensional lattice with spacing lp where
each site hosts m orthogonal states, the dimension of the Hilbert space of the lattice in a volume
V is

N(V ) = mn, (1.0.3)

where n is the number of lattice sites in V : n = V/ldp. Hence the entropy is

S = n logm = V

ldp
logm. (1.0.4)

A very simple example is a spin system with m = 2. For continuous systems the counting is more
delicate but doable. One needs an entropy density, function of the energy density which should be
bounded in order not to have a diverging number of states.

15
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We can also define the total number of degrees of freedom Gdf of the quantum system as

Gdf = log N (1.0.5)

and the number of degrees of freedom gdf per lattice site as

gdf = logm (1.0.6)

If quantum gravity behaves as a discrete local lattice theory, as may be suggested assuming that a
fundamental minimal cutoff exists, then the above estimate should be valid with, say, lp the Planck
length. However, (1.0.2) is in stark contrast with an entropy bound that can be derived from black
hole thermodynamics and the assumption of unitary evolution.

In a black hole spacetime the violation of the second law of thermodynamics δS ≥ 0 led J. Beken-
stein to suggest, before Hawking famous computation1, that SBH is a truly thermodynamic entropy
and that the sum of SBH with the entropy S of the outer fields satisfies a generalised second law
of thermodynamics

δStot = δ(SBH + S) ≥ 0. (1.0.7)

We can now imagine that our spin-like system above evolves in such a way that gravitational
collapse happens and a black hole is formed, imagining that this can be done via an adiabatic
process. We can for example add energy to the system, whose initial mass is below the mass of a
black hole with the same surface area. The generalised second law is not violated if and only if2

S ≤ SBH = A

4G. (1.0.8)

This claim implies, under some assumptions3, that a black hole is the most entropic object that
can be accommodated in a volume V with area A. We started with a system whose Hilbert space
has dimension ∼ eV and we end up with a much smaller Hilbert space with dimension eA/4G.
The two Hilbert spaces cannot be isomorphic and so unitarity is violated. Insisting on unitary
evolution, we arrive at the dramatic conclusion that the Hilbert space dimensionality was eA/4G

to start with. This is the statement of ’t Hooft-Susskind Holographic Principle: any fundamental
theory of gravity (and matter) is such that this bound on the dimensionality of the Hilbert space
in any space volume is manifest. In other words, the total number of degrees of freedom Gdf in a
volume bounded by an area A is

Gdf = A

4G. (1.0.9)

The argument we presented gives the so-called spherical entropy bound and rests, apart from
unitarity, on several other assumptions we have glossed over. When taking them into account, it is
not difficult to find situations where the bound is violated. However, there exists a more refined and
fundamental version of the Holographic Principle which involves Bousso’s covariant entropy bound
[82] and is based on null surfaces. It is independent of the requirement of unitarity of quantum

1Which fixed the 1/4 factor in front of A in SBH . Notice we here use units where ~ = c = κB = 1 to
make expressions more transparent.

2This bound is weaker than the so-called Bekenstein-Hawking bound which is instead found assuming
that a black hole already exists and that matter is swallowed behind the horizon (see [81]).

3See the papers cited at the end of this paragraph for precise statements and counterexamples.
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mechanics and has been proved to hold in great generality. However, it cannot be derived from
known fundamental principles. The early review [81] contains in-depth discussions and a complete
list of references. Counterexamples of the covariant entropy bound have been found more recently
[83].

These entropy bounds suggest that the fundamental degrees of freedom inside a volume V can
be described by a quantum mechanical theory associated with its boundary [16]. This is now
considered the Holographic Principle, but it should be noted that more philosophically oriented
accounts of the concept of emergent gravity separate holographic duality from the Holographic
Principle, which is restricted to the entropy bounds. We will not enter the discussion of emergence
here and we will simply take that the holographic bounds suggest that gravity may arise as a
manifestation of a fundamentally different theory.
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CHAPTER 2

Holography in AdS

After a cursory review of the arguments leading to the first example of Maldacena’s conjecture,
we draw the generic lessons which form the basis of any top-down or bottom-up extension of such
example. After this, we complete the discussion with the GPKW rule and a short discussion of
holographic renormalization along with some of the early checks of the duality.

2.1 The Old Number One

’t Hooft-Susskind holographic principle has been first explicitly and quantitatively realised within
string theory and M-theory in the so-called AdS/CFT duality put forward by J. Maldacena in 1997
[18]. A series of inspiring developments in supergravity, D-brane physics and some hints stemming
from large-N gauge theories accumulated from roughly the ’80s (see for example [84] for some
references) led to the conjecture that the Hilbert space of various large-N field theories derived
from string/M theory contains “excitations describing supergravity on various spacetimes” [18].

In his famous paper [18], Maldacena presented various incarnations of the correspondence. The
“simplest” and most discussed in any introductory account is:

Ten dimensional Type IIB string theory on AdS5 × S5 with N units of five-form flux is
dual to N = 4 Super Yang-Mills (superconformal) theory in four spacetime dimensions

with gauge group SU(N).

19
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As claimed at the beginning, we now rapidly justify it without aiming at completeness. We
rather opt for a narrative exposition spiced up with some technicalities, to remind that the above
statement is based on very sound arguments. The material here presented can be found in any
modern book on string theory or any lecture notes on AdS/CFT.

Several names and labels, within two very different theories - a superstring theory and a non-
gravitational field theory - appear in the conjecture. We depart from them to explain it.

N : the number of multiplets F of fermionic generators to be added to the bosonic generators
B = {Pµ,Mµν} of the Poincaré algebra, such that the corresponding new algebraic structure
closes under (anti-) commutators to form super-Poincaré algebras labelled by N .

IIB: is one of the two types (the other being IIA) of N = 2 super Poincaré algebras that can
be considered in d = 10 spacetime dimensions.

AdS5 × S5: the space obtained in the near-horizon limit of a type IIB superstring D3-
brane/type IIB supergravity 3-brane, which are charged extended objects.

We did not include N in this dictionary because it is somewhat derived from the ingredients
introduced in the third item. The above is a checklist, given by a superior entity (i.e. any modern
string theory book [6, 7]) whose elements will now be blended to produce the conjecture.

Type IIB string theory is a N = 2 supersymmetric theory of closed strings in d = 10 spacetime
dimensions. Having N = 2 means that the theory has two fermionic multiplets of generators.
As any fermion, they transform according to spinorial representations of the Lorentz algebra (see
[6] for more details). Their dimension thus depends on the spacetime dimension. The Lorentz
algebra so(1, d − 1) in d = 10 possesses two 16-dimensional irreducible spinor representations
called Weyl representations. They can be further shown to be real and are called Majorana-Weyl
representations. Such representations are usually denoted as 16 and 16′. When we have two
distinct fermionic multiplets (as in N = 2) we can choose each of them in either of the two
representations. If they are both in the 16 or both in the 16′ we say that the super Poincaré
algebra is type IIB, otherwise we say that it is type IIA. Type IIB string theory is thus the string
theory whose spectrum is organised according to the representations of type IIB super Poincaré
algebra. This representation theory simply boils down to the representation of the algebra of the
fermionic generators F on the finite dimensional vector space V where the stabilizer subalgebra of
so(1, d− 1) (Poincaré)1 is represented.

Any string theory is characterised by an energy scale set by the tension Ts of the string, which
is in turn related to the characteristic string length ls scale. It is conventional to express Ts and
ls in terms of a parameter called α′: l2s ∼ α′ ∼ T−1

s (different conventions on the proportionality
factors exist).

Interactions among strings are controlled by only one coupling gs and string theory is endowed with
sound rules to compute string scattering amplitudes at least perturbatively in gs using worldsheet

1The representation theory of the stabilizer subalgebra is split in massive and massless states, hence
also the representation theory of the supersymmetry algebra splits in massive and massless representations.
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methods. In a closed string scattering each order of the perturbation series is weighted by [6]

g−2+2g
s (2.1.1)

where g ≥ 0 denotes the loop contributions (genus of the Riemann surface).

Missing a complete formulation of string theory and leaving aside the possibility of using string
dualities, predictions about scattering processes can be made in the weak coupling perturbative
limit gs � 1 and, on top of that, either at low energy E � l−1

s or high (eikonal approximation for
example [85, 86]). For the present purposes we need to consider the low energy limit with the weak
coupling limit. The fact that string theory contains Dp-branes implies that we have to consider
such a pair of limits twice. Indeed in this narration, we use the first pair to discover Dp-branes,
the second to describe them and finally, we combine the two

A. Low energy limit: Take 1. When E � l−1
s all the massive states in the string spec-

trum cannot be excited and the scattering should be equivalently described by an effective theory
including only the massless modes. The finite-dimensional massless representations of so(1, 9) are
the representations of so(8) ⊂ so(1, 9). so(8) possesses three inequivalent 8-dimensional represen-
tations: a vector representation 8V and two inequivalent spinor representations 8S and 8C .

The aforementioned 16 and 16′ decompose with respect to the action of so(8) as 16 = 8V ⊕8S and
16′ = 8V ⊕8C . In the massless case, it turns out that half of the F, F anticommutators are trivial.
Thus the Weyl-Majorana representations can be assigned the 8’s. Those with trivial commutators
are vectors and are assigned to 8V (hence the subscript) and are taken to act trivially on V . The
other sixteen can be organised in two sets of eight creation and annihilation operators which are
then assigned either to the 8S or 8C .

Acting with the creation operators on appropriate so(8) ground states we construct V and hence
get all the massless states of the theory. The bosonic states are two scalars Φ and C0 (1 compo-
nent each), two 2-forms B2 and C2 (antisymmetric tensor fields with 28 components each), the
symmetric and traceless graviton g (35 components), a self-dual four-form field C4. Φ is called
dilaton, B is called Kalb-Ramond (KR) field. The other forms do not have a proper name2. In
addition to these, we have the fermionic states comprised of two dilatini and two gravitini, which
we do not need for the later discussion.

When this spectrum is derived from the string quantization, the story is not so simple but at the
end of the day, the results coincide. The important thing to notice is that the bosonic states are
naturally split into two sectors (the fermionic in other two)3. One is called NSNS (NS stands for
Neveu-Schwarz) and the other called RR (R stands for Ramond). The first contains the graviton,
the KR field and the dilaton. RR contains the other forms with no name.

2Those with a name already appear in the spectrum of closed bosonic strings.
3The splitting in sectors is due to the string being closed (having thus left/right moving modes) and

the boundary conditions the fermionic modes satisfy on the left/right modes.
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B. Low energy, perturbative limit: Take 1. The effective low energy action of type IIB
string theory, built from these modes, corresponds to the type IIB supergravity (Sugra) action. The
action is basically a higher dimensional generalization of Einstein-Maxwell theory as it contains a
number of form potentials. This is just an example of the well-known fact that closed string theory
contains gravitons and, at the lowest orders, (higher dimensional) Einstein gravity if we turn off
all the other massless fields. Schematically

SIIBSugra = 1
2κ2

10

∫
ddx
√
−gL[g,Φ, B2, Cp+1], (2.1.2)

where we only list the bosonic fields, which enter the Lagrangian with their respective kinetic
terms. For later purposes, we only need to recall how Newton’s constant appears in the action.

In fact, to check the firmness of this result we should derive it from low-energy scattering amplitudes
of string theory. In this way, we check that Sugra is really a low-energy tree-level action compared to
string theory. This also implies that we assume gs � 1 because loops are suppressed by additional
powers of gs compared to the tree-level amplitude. Indeed, from (2.1.1), the coupling constant of
(2.1.2) corresponds to the tree-level coupling since κ2

10 = 8πG10 ∼ g2
s l

8
s ∼ g2

sα
′4 (the factors of

string length are to fix dimension). Thus schematically

IIBString → SIIBSugra +O(gs, α′) (2.1.3)

The Sugra theory contains several interesting extended object solutions which couple to either of
the form fields. Those in which we are interested are p-branes (see [87] for more details). They are
solutions of the supergravity action that couple to Cp+1 when the fermionic modes, the KR field and
all the Cp′+1 with p′ 6= p are zero. They are soliton-like objects extended in p spatial dimensions,
which preserve Poincaré invariance in their (p + 1)-dimensional worldvolume and isotropy in the
other directions so that their metric is typically of the form

ds2 = e2A(r)ηµνdx
µdxν + e2B(r)(dr2 + r2dΩ2

8−p) (2.1.4)

where r is a radial coordinate distance from the brane and Greek indices run on the (p + 1)-
dimensional worldvolume of the brane. The functions A and B are determined by Einstein’s
equations via a harmonic function H(r) behaving as

H(r) = 1 + α

r7−p , α =: l7−p, p < 7 (2.1.5)

where l is a characteristic length parameter related to the energy of the brane. The metric reads
as

ds2 = H(r)aηµνdxµdxν +H(r)b(dr2 + r2dΩ2
8−p) (2.1.6)

where the powers a and b are numbers depending on the “the frame” in which the action is written4.

Notice from (2.1.5) that despite describing an extended object, the solution resembles that of a
4The frame is defined by how the graviton and the dilaton are included in the action. When the Ricci

scalar is not multiplied by dilaton-dependent factors we say we are in Einstein frame. Otherwise it is the
string frame. For the brane under consideration, a = − 1

2 and b = 1
2 in the string frame, a = p−7

8 and
b = p+1

8 in the Einstein frame.
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point particle (0-brane) in d = 4 rather than that of a cosmic string (a 1-brane) which we meet in
chapter 7) or a domain wall (a 2-brane) in the same number of dimensions. There is no surprise
as we are in a higher dimensional theory.

The field strength Fp+2 associated with Cp+1 gives the flux across a surrounding sphere as∫
S8−p

∗Fp+2 := N, Fp+2 = dCp+1. (2.1.7)

The flux is proportional to the charge by factors of α′. By the Dirac quantization condition, N is an
integer. These p-branes can be extremal or not, namely have the p+ 1 charge density proportional
- or equal in appropriate units - to the tension (i.e. the mass density) or not. Extremal p-branes
preserve half of the supersymmetries of the theory (16 out of 32) and the property that the energy
density is proportional to the charge means that a stack of N parallel p-branes of unit charge
at an arbitrary distance among themselves is a stable system. In fact there exists a supergravity
solution, called multi-centered solution, which describe this setting and is such that the single brane
of charge ∝ N is recovered in the limit in which the N branes are placed at the same position.
Sometimes the analogy is made with Reissner-Nordstrom black holes, but the analogy is not so
thight since for some values of p there is no horizon. In particular, the 3-brane to which we need
to focus is perfectly regular. Indeed, setting for definitness the string frame (see footnote 4), we
see that the metric behaves as

ds2
AdS5×S5

r�l←−− ds2 r�l−−→ ds2
Mink (2.1.8)

where
ds2
AdS5×S5 = r2

l2
ηµνdx

µdxν + l2

r2 dr
2 + l2dΩ2

S5 (2.1.9)

is the metric in the near-brane (near-horizon) limit and describes an AdS5 × S5 geometry, as can
be seen more readly defining z := l2

r so that

ds2
AdS5×S5 = l2

z2 (dz2 + ηµνdx
µdxν) + l2dΩ2

S5 (2.1.10)

we recognise the typical AdS metric in Poincaré coordinates.

If Type IIB Sugra is a consistent low energy limit of Type IIB string theory, then all the Sugra
solution must be present somehow in the complete theory.

Heuristically the reason is the following. Suppose you place a supergravity p-brane in a type IIB
string background. It is a charged under the massless fields of string theory, so it must interact
with the background. Tuning the parameter space so that strings are perturbative, the interaction
is mediated by the exchange of closed strings. However, the process can be dually described via
infalling closed strings on the brane which produce an excitation of the brane which later decay in
a closed string. The excitation is described by open strings with the end attached to the brane.
The brane is thus an object in string theory.

C. Perturbative limit: Take 2. In fact, this expectation is confirmed by the consistency
of string dualities [88] which leads to the existence of heavy extended objects, called Dp-branes
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[89], within string theory. Being heavy, Dp-branes are not part of the perturbative spectrum of
string theory. However, at the perturbative level gs � 1 they are described as the loci where open
strings end5, and open strings describe their excitations.

D. Perturbative, low energy limit: Take 2. Each end of the open string carries a
multidimensional label (Chan-Paton factor) indicating on which Dp-brane the string end [6]. If
there are N Dp-branes in the background, the label is an N × N matrix. Together with an
appropriate counting of supersymmetries, analogous to the one above, this is one of the ingredients
to check that the massless excitations of open strings ending on a stack of N D3-branes are
described by a N = 4 SU(N) super Yang-Mills theory on the four-dimensional worldvolume of the
branes6. The bosonic sector of the theory consists of a gauge vector and six scalars7.

This theory is characterised by a dimensionless coupling constant gYM such that the action
SN=4SYM goes as SN=4SYM ∼ g−2

YM . This coupling does not run under the renormalization
group flow, so the theory is conformal at the quantum level. So, the spacetime symmetry of the
theory is a superconformal symmetry generating the supergroup PSU(2, 2|4). Its maximal bosonic
subgroup is SU(2, 2) × SU(4)R ∼ SO(4, 2) × SO(6)R, where R denotes the R-symmetry under
which the scalars transform in the adjoint and the gauge field as a singlet. SO(4, 2) is the conformal
group in four spacetime dimensions and the R-symmetry group is basically the rotation group in
the transverse space of the branes as can be seen from our discussion in B.

The coupling constant gYM can be related to the string coupling gs in several ways. We can write
down a low-energy action for the string modes ending on the brane8 which is called Dirac-Born-
Infield (DBI) (plus another term) and check that at lowest order we get the action for a gauge
vector scaling as g−1

s [7]. We thus obtain g2
YM ∼ gs.

For our purposes, it is sufficient to be comfortable with the cartoon idea that if two open strings
are glued to form a closed string, the interaction can be described in terms of a single closed string
coupling or twice the open string coupling.

E. Two descriptions for two regimes. We said that the open string picture of a Dp-
brane excitation is valid when gs � 1. Thus, in order for the N Dp-branes not to backreact on
the geometry we need to assume gsN � 1.

However, when we consider the stack of N branes in the sugra description we need to assume that
gsN � 1. To see this we need to explicitly compute α in (2.1.5) using (2.1.7). For the D3 brane

5This is the reason for the Dp name: D stands for Dirichlet, the kind of boundary conditions describing
this situation and p is the same p as for the Sugra object.

6The starting point is the massless spectrum of open strings without branes: d = 10, N = 1 Yang-
Mills supermultiplet. As we did not enter the details of string theory and we did not discuss boundary
conditions, we cannot and we do not want to be more detailed. Any introductory book on string theory
will do.

7The scalars can be seen as the collective coordinates describing the dynamics of the transverse dimen-
sions of the branes.

8In fact, this is known for a single brane.
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case the result is [90]
α = 4πgsNα′2 ∼ 4πgsNl4s . (2.1.11)

Hence gsN ∝ α/(4πl4s) and in order to apply the supergravity description we need large α to
ensure weak curvature. Clearly we can define l := α1/4 to be the characteristic length of the brane
solution.

F. Decoupling limits. Consider the N D3-brane picture within perturbative (gsN � 1)
string theory. As we described above, the theory describe processes mediated by closed strings
propagating in the spacetime, open strings attached to the branes and the mutual interactions. In
general it is not possible to decouple these processes, but schematically we can write

S = Sbulk + Sbrane + Sint, (2.1.12)

and we know that we can make sense of the first two terms in the low energy limit α′ → 0:
Sbulk ≈ SSugra, Sbrane ≈ SN=4SYM . The only term we did not meet in the previous discussion is
Sint. The coupling between closed and open strings is gravitational and hence it is governed by
κ10 ∼ gsα′2. Thus at α′ → 0 with gs fixed this term can be neglected.

In taking this limit we must, however, ensure that the branes do not separate to keep the field
theory parameters fixed9. If r is the separation between the branes we are thus interested in the
limit: α′ → 0, U = r/α′ fixed. The conformal point (all masses zero) corresponds to r → 0.

In this limit we thus get two decoupled systems: i) free type IIB Supergravity in ten-dimensional
Minkowski space and ii) four-dimensional SYM on the flat worldvolume of the D3-branes.

When gsN � 1 the supergravity description of the N D3 branes must be considered. There is no
gauge theory dynamics in this picture. How do we recover it?

Let us notice that Sint in (2.1.12) is a statement of the heuristic picture drawn at the end of
paragraph B. Namely, a closed string mode hits a D-brane and is absorbed so that the brane is
excited. The absorption cross-section can be computed [84].

In a Sugra picture the brane provides, at low energy E � l−1, a potential barrier separating the re-
gion r � l and r � l in (2.1.8). The cross-section is computed via a tunnelling probability between
the two asymptotic regions [84]. The result is shown to coincide with the string computation.

Moreover, due to this potential barrier, there is a precise decoupling between low energy modes in
the r � l and r � l regions.

According to the observer at infinity r → ∞ in (2.1.6), with proper time t, the energy Er∗ of a
9The separation between two branes corresponds to giving mass to the scalars.
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mode in position r∗ is redshifted by10

Er→∞ =
(
gtt(r∗)
gtt(∞)

)1/2
Er∗ =

(
gtt(r∗)
−1

)1/2
Er∗ (2.1.13)

and if we take the excitation to be near the brane r � l we have

Er→∞ = r∗

l
Er∗ . (2.1.14)

So from this perspective we have i) free Type IIB Sugra in ten-dimensionl Minkowski space and
ii) Type IIB Sugra on AdS5 × S5. Such a limit must be taken so that it corresponds to the limit
α′ → 0 with U fixed (see (2.1.11)). In particular for a string excitation of energy

√
α′
−1 this

correspond to (2.1.14) fixed.

Since the two pairs of decoupled systems arose from two descriptions of the same object in different
regimes, we reach the conclusion

Type IIB Sugra on AdS5 × S5 ≡ d = 4 N = 4 SU(N) SYM on Minkowski space.

In the Sugra picture, the gauge theory lives in the original background. Hence, with respect to the
near-brane r → 0 metric (2.1.9), the field theory is related to the region r → ∞ (or z → 0 in the
Poincaré patch).

The conformal symmetry of the field theory corresponds to the isometry of AdS5, the field theory
R-symmetry corresponds to the isometries of S5 and, in addition to this, AdS5×S5 it can be shown
to be a maximally supersymmetric space invariant under PS(2, 2|4) and hence the two sides have
the same number of supersymmetries.

G. Parameters. To recap the parameters in the duality are related in this way:

g2
YM ∼ gs,

(
l

ls

)4
= 4πgsN, g2

YMN =: λt (2.1.15)

where we also defined the ’t Hooft coupling λt which naturally arises in large-N field theories, a
limit which was suggestive of the connection between gauge theories and closed string amplitudes
well before Maldacena’s conjecture.

So the Supergravity approximation is valid when the gauge theory is non-perturbative and strongly
coupled and vice versa. We have a strong/weak duality.

H. Field-operator map. As the global symmetries on both sides match, a map between CFT
gauge-invariant operators transforming in certain irreducible representations of the superconformal
algebra (or its bosonic subalgebra) and supergravity fields transforming in the same representation
must be expected.

10To show that a low energy mode in the asymptotic region cannot penetrate the barrier we need to
know the dependence of the cross section on the energy: σ ∝ E3.
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Since the Sugra spacetime is a product space, such fields ϕ are functions of the coordinates {x}
on AdS5 and {y} on S5. They can be Kaluza-Klein decomposed over S5, namely expanded in
spherical harmonics on S5. Each resulting field φ(x) acquires a mass m which is given by the rank
of the spherical harmonics, which in turn corresponds to the conformal dimension of CFT gauge
invariant primary operators in the same representation of SO(6).

The result of this involved analysis is tabulated in more thorough AdS/CFT references (see for
example [91]). We only note that the energy-momentum tensor of the CFT (∆ = d in d dimensions)
is mapped to the AdS metric fluctuations (whose mass is m = 0)

Tab ←→ hab. (2.1.16)

Indeed, the rule for massive spin-2 fields and scalars is m2l2 = ∆(∆− d) (hence the massless case
is included) [19]. We also remark that the R-symmetry current Ja is related to gauge fields Aa in
the Sugra theory, but we do not need more than this observation in the following

Ja ←→ Aa. (2.1.17)

The association between fields and operators is confirmed and put to work by the so called GPKW
rule and the required procedure of holographic renormalization to be discussed from Section 2.3
onwards. Schematically we will simply write

O(∆) ←→ φ(m) (2.1.18)

with O(∆) the field theory operator and φ(m) the field in the gravity side, suppressing all other
specifiers.

Wrap up. We have discussed the basic ideas behind the first example of Maldacena’s conjecture.
The strong form presented at the beginning is the extrapolation of the weak form to which we had
to revert to make progress. The correspondence is strongly motivated by the symmetry arguments.
We then look at such arguments again to move beyond this example.

2.2 Symmetry matching, extending the correspondence

Of all the discussion above, symmetry considerations remain. We saw that the superconformal
symmetry of the field theory matches the superconformal symmetry of the gravity background
solution. We take as a rule that both sides must share the same symmetries. All the other top-
down realizations of AdS/CFT share this characteristic and it can, in fact, be generalised to the
status of a rule to be followed when building bottom-up holographic dualities.

Looking closer at the previous example we can state that

1) The field theory conformal symmetry is realised as the isometry group of AdS,

2) The field theory R-symmetry is realised as the isometry group of the compact space.
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We have written 2) mentioning a generic compact space rather than the sphere we got in the
previous discussion. Indeed, there are many known examples of top-down dualities now where
the sphere S5 is substituted by a different sphere of appropriate dimensionality (i.e. as in the
other examples discussed in [18]) or by a different compact space. Changing the compact space
corresponds to changing the amount of supersymmetry. We can, for example, consider the so-
called Sasaki-Einstein manifolds X5 rather than the spheres S5, or we can have other constructions
involving quotients of the compact space (see for example [24] for more).

Indeed we can also extend further and formulate rule 2) without any reference to the other factor
of the geometry:

2’) Global symmetries of the field theory side are realised as gauge symmetries on the gravity
theory inAdS, namely to each Noether current in the field theory there exists a corresponding
gauge field in the AdS gravity theory.

Namely, if we are given a gravitational theory in AdS with some gauge fields and we know this
rule we may guess the dual theory even if we don’t know how these gauge fields appear on the
gravity side. This is the spirit of bottom-up AdS/CFT. A posteriori, we may be lucky and find an
appropriate description of the geometrical origin of the gauge fields. For example in our discussion
above we understand (roughly speaking) the SO(6) gauge fields as the metric modes of a 10-
dimensional AdS5 × S5 spacetime with an index on S5.

However, what we need to appreciate for the rest of this thesis, is that rule 1), as stated, is
misleading. Referring to the example of the previous section, the gravitational theory in AdS5×S5

is dynamical and the correspondence posits the identification of the Hilbert spaces on the two sides
of the duality. Once conjectured the second, the first must follow. In our example, the first is
evident from the construction. In particular, this implies that the gravitational system must only
be asymptotically AdS. If it were not so we would miss the most interesting states in a gravity
theory: black holes. As a consequence, we change rule 1) to

1’) The field theory conformal symmetry is realised as the asymptotic symmetry group of asymp-
totically AdS spacetime.

This fact is important not only for spacetimes which evidently deviate from the AdS vacuum, such
as AdS black holes but also for the vacuum itself. A pivotal example is the symmetry argument for
AdS3/CFT2. As first discovered by Brown and Henneaux [92], the asymptotic symmetry algebra
of AdS3 is enhanced from the finite-dimensional isometry algebra so(2, 2) to (two copies of) the
infinite-dimensional Virasorso algebra vir × vir. The latter is the conformal symmetry algebra in
two dimensions, responsible for all the nice features of CFT2 theories. The symmetries on the two
sides thus match because of the symmetry enhancement phenomenon occurring in the bulk. It is
called “enhancement” because the so(2, 2) isometries of the vacuum AdS3 are not lost, but appear
as the sl(2,R) × sl(2,R) subalgebra of the Virasoro algebra (in fact so(2, 2) split as stated). We
will have more to say on asymptotic symmetries and their role in Section 2.3.1, in chapter 3 and
they will be the focus of all of Part II.

Notice that 1′) is a statement about the theory, not the state. Indeed, AdS/CFT provides the
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striking picture of black holes as thermal CFT states [93]. The scale set by the temperature breaks
conformal invariance, but this is a statement about the state, not the theory. Hence, 1′) implies
that a non-conformal theory cannot be dual to asymptotically AdS gravity.

For example, if we consider other Dp-branes constructions (p 6= 3) we land in the domain of the so-
called generalised conformal structure, a term defined in [94, 95, 96]. The near-horizon geometry of
such branes breaks the conformal symmetry because the solutions do not admit a constant dilaton
[97, 98]. The dual theories possess a generalised conformal structure where the coupling in front of
the action is dimensionful (rather than dimensionless). Precision holography for such configuration
is studied in [99].

From now on when we speak of a gravity theory in AdS we always mean “asymptotically (locally)
AdS”.

The matching so far does not include gauge symmetries of the field theory. Except for the pa-
rameter N in the string side of the above top-down construction, there is no other gravitational
manifestation that the field theory is an SU(N) gauge theory. The only sensible requirement we
can make is that

3) Only field theory gauge-invariant operators are associated with fields on the gravity side.

Ideally, in this journey leading to 1’), 2’), 3) we got rid of any reference to the string theory model
from which we started and we are ready to state the general AdS/CFT statement considered true

Any (UV complete) quantum gravity theory in asymptotically locally AdSd+1 spacetimes
is dual to an ordinary CFTd without gravity

There are indeed a couple of beautiful arguments motivating AdS/CFT independently from string
theory. None of them could have been suggested without knowing how the explicit string theory
realization works and indeed, from the perspective of the previous section, they are rooted in the
large N and large ’t Hooft coupling limits.

One of the two arguments is more conceptual and the other more practical. The first is due to
Polchinski and Horowitz [100] and involves avoiding the Weinberg-Witten theorem11 by going to
a dimension higher and using the renormalization group flow to identify the additional dimension
with the energy scale of the field theory. The second [102, 103] proceeds first by quantizing
fields in a fixed AdS background and then studying perturbative metric fluctuations around this
background. Matter and gauge fields in AdS lead to the construction of boundary operators which
transform conformally under the isometries of AdS. The boundary operators thus satisfy operator
product expansions typical of conformal field theories. The metric fluctuations around AdS lead
to a boundary stress tensor which completes the boundary CFT data.

By construction, the second approach is tied to Einstein’s general relativity (large N and large ’t
11In [100] the theorem is considered in its implication that the graviton cannot be a composite object in

a Poincaré covariant theory. The theorem is proved in [101].
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Hooft limit on the field theory side). As such, it helps in listing the properties a CFT must have
to be dual to a quantum gravity theory with Einstein’s general relativity as its semiclassical limit.
It helps in motivating, but is not sufficient to prove, the following conjecture12

Any strongly coupled large N CFT where all single-trace operators, except the stress
tensor, have parametrically large ∆, has the stress tensor correlation functions 〈T . . . T 〉

predicted by pure general relativity in AdS.

We have not met correlators in our brief account, we will move to them in the next section. For
the moment let us explain this claim from our example. Recall that ∆ of the operator O is related
to the mass of the dual field φ by m ≈ (∆− d)/l and for the stress tensor ∆ = d. In our example,
λ1/4 ∼ l/ls but the mass m of a string state is proportional to l−1

s , so we get λ1/4
t ∼ lm. Thus

correctly, at strong coupling λt >> 1, the field theory operators with small scaling dimensions are
dual to massless string states, which are the supergravity fields. In the large N and large ’t Hooft
limit, the stress-energy momentum sector is that of general relativity in AdS.

2.3 AdS/CFT at work

To move beyond the kinematical matching we need a rule relating the dynamics on both sides: a
master rule. Such was proposed independently - roughly at the same time - by E. Witten [19] and
S.S. Gubser, I.R. Klebanov, A.M. Polyakov [104], and for this known as GPKW rule.

This rule posits the equality of partition functions and hence is a statement of the dynamical
equivalence of the two sides. Stated in this way, however, it provides a precise computational
dictionary between the two sides. Before discussing the motivations for this ansatz, we note
that usually, we work with Euclideanized versions of path integrals to avoid well-known issues in
Lorentzian time. Here, following the historical path we do the same. Real-time formulations of
the GPKW rule and all that follows has been given in [105].

The dynamics of a CFT is described by the behaviour of connected correlation functions of opera-
tors. Given an operator O, the connected correlation function 〈O(x1) . . .O(xn)〉c is computed by
functional differentiating the generating functional W [φ0]

W [φ0]cft := logZ[φ0]cft := log 〈e−
∫
ddxφ0(x)O(x)〉 (2.3.1)

n times with respect to the arbitrary source φ0 to which O couple.

The proposal in [104, 19] consists of computing the connected correlation functions of the CFT in
the large-N and large-λ limit using the extremum of the classical on-shell action of the supposedly
dual supergravity theory. The classical field equations are second-order and thus the classical
solution φ∗ must satisfy some boundary conditions.

12This is taken from the lectures [102] and we refer the reader there for more discussions and references.
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We naturally have a boundary in our problem because in the z → 0 limit the metric (2.1.10),
whose AdS factor we repeat here,

ds2
AdS5

= l2

z2 (dz2 + ηµνdx
µdxν) (2.3.2)

is singular and cannot be continued past.

In fact, the well-known conformal compactification method of Penrose allows treating this limit
(see Appendix A). We can just perform a conformal rescaling of the metric by z2/l2

ds2
new = z2

l2
ds2 (2.3.3)

and the new line element defines a metric on a compact manifold with a boundary at z = 0. The
metric at z = 0 is well defined and Minkowski. However, the choice above is not unique. We only
need a function Ω so that

ds2
new = Ω2ds2 (2.3.4)

define a metric on a compact manifold. Hence, we take Ω to be positive in the compact manifold
and with a first-order zero on the boundary. It is clear that any Ω′ related to Ω by

Ω′ = eσΩ, (2.3.5)

with σ smooth but otherwise arbitrary, is an equivalently good compactification. Thus, the bulk
metric induces a well-defined conformal class of metrics the boundary, within which a metric is
picked by a choice of Ω. This is the basis of the definition of Asymptotically locally AdS spacetimes
(AlAdS) (Appendix A).

This construction gives a precise meaning to the idea that the field theory is associated with the
boundary of the spacetime [19]. Having a conformal class rather than a metric induced on the
boundary is crucial for the boundary theory to be conformal.

According to this picture the source φ(0) of the CFT operator O must be set equal to the boundary
condition of the bulk classical field φ∗ dual to O. We thus have

Ssugra(φ∗) = −W [φ0] provided that φ∗|∂AdS = φ(0). (2.3.6)

This is valid for any field in the correspondence, including the metric on which we mainly focus
next. Thus these formulas must be understood more generally with φ a collection of fields indexed
such that any of them correspond to a boundary operator.

The master formula (2.3.6) is the expression of Maldacena’s weak conjecture but it can be soon
generalised to the general form of the conjecture by simply posing

Zqg[φ] =
∫
φ|∂AdS=φ(0)

Dφe−Sqg(φ) = Zcft[φ(0)] (2.3.7)

where we consider the full quantum gravitational (qg) theory. This statement is only formal as
Zqg is not known, even in the case in which qg = string, corresponding for example to the strong
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form of Maldacena’s conjecture. In this case for example, (2.3.6) can be seen as the leading order
in the large-N , large-λ expansion (indeed EH action scales as N2) and the subleading corrections
are captured by perturbative expansions of Zstring.

The holographic bound and the IR/UV connection. Are we dealing with a corre-
spondence that manifestly satisfies the holographic bound (1.0.9)?

Witten and Susskind [106] answered positively this question using for the AdS5×S5/N = 4SYM
a simple counting as in chapter 1 which can be easily extended to any other example of AdS/CFT.
The only obstruction to the counting is that the number of degrees of freedom in a CFT is infinite
as there is no ultraviolet (UV) cutoff scale. The area of the boundary of AdS is infinite as well, an
infrared (IR) divergence. The two divergences are, as suggested in [106], in an exact correspondence
so that a regularization procedure can be performed on both sides at the same time and the end
result of the counting is a perfect agreement with the holographic bound.

The suggested UV/IR connection is the ingredient we use next to give a computational meaning
to the GPKW rule and, in turn, a proper understanding of such connection.

2.3.1 Holographic renormalization

The GPKW rule is only a formal statement because both sides of the equality are infinite (so in
this respect it is also trivial!). As said, the field theory side is infinite because of ultraviolet (UV)
divergences. The gravity side is divergent because the rule prescribes to evaluate Lgrav on-shell
and to integrate against the infinite spacetime volume. It is an infrared (IR) divergence.

The gravity action contains all fields of the theory. In the following, we only focus on the pure
gravity sector

L = 1
2κ2 (R[g]− 2Λ) + . . . , (2.3.8)

where we used dots to stress that the gravity sector may not be described only by Einstein-Hilbert
theory (the only term shown above).

Holographic renormalization is a method to renormalize the divergences on the gravitational side,
in a way which is consistent with the field theory renormalization. The method thus endows the
GPKW rule with a computational meaning. It was developed in [107, 108] and reviewed in [42].

The method is inspired by the field theory renormalization, namely by adding local counterterms
to the action that cancel the divergence. On the bulk side we have to

1. Find a convenient coordinate system to perform the asymptotic/boundary analysis, in par-
ticular, we will have a coordinate z labelling timelike hypersurfaces such that the boundary
is selected by a particular z∗ and there is a clear definition of boundary metric;

2. Solve asymptotically the equations of motion for any field in the theory;
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3. Evaluate the on-shell action regulated on a finite volume enclosed by one of the above
hypersurfaces, we denote the regulated action as Sreg;

4. Isolate the diverging pieces in the radial coordinate: Sreg = Sdiv + Sfin, where Sdiv is the
diverging piece when z → z∗;

5. Rewrite the diverging pieces covariantly in terms of the induced metric on the regulated
boundary: Sdiv[h(0)]→ Sdiv[γ] ;

6. Subtract these terms from the regulated action by adding a covariant counterterm action
Sct appropriately built from the diverging pieces. The regulator is then removed in the limit
in which z → z∗ and the renormalized action is defined as

Sren = lim
z→z∗

(Sreg + Sct) = lim
z→z∗

Sfin. (2.3.9)

Notice that in the last step Sreg is written as it was first obtained, not expanded as Sdiv + Sfin.
Notice also that the choice of subtracting exactly the divergent pieces corresponds to the minimal
subtraction scheme in field theory. Other finite, covariant counterterms can be added, however.

The stated is the Lagrangian approach to holographic renormalization. It is conceptually straight-
forward, but technically challenging and tedious because of step 4. Equivalent Hamiltonian and
Hamilton-Jacobi approaches have been defined that smoothen the above procedure. The reader is
referred to [109, 110].

Whatever way is chosen to renormalize, one of the two independent solutions of the field equations13

in the asymptotic expansion is associated with the source of the dual field operator and the other
is associated with the exact one-point function of such operator. If φ(0) represents the boundary
value of (any) field φ sourcing the dual operator O, the exact one-point function is computed as

〈O(x)〉φ(0)
= 1√

h(0)

δSren
δφ(0)(x) ∼ other independent solution at order p φ(p)(x) (2.3.10)

where p changes according to the type of field under consideration and we have introduced the
notation h(0) to denote the boundary metric (plus sign because of signature). We need the factor
of
√
h(0)

−1 whenever we have a non-trivial background geometry for the field theory. In particular,
when we are interested in correlation functions of the energy momentum tensor, φ(0) is the boundary
metric.

When d is even, the asymptotic expansion contains a logarithmic term at order d which is associated
with the field theory conformal anomaly. We exemplify these comments using pure gravity in the
following section.

Notice that in (2.3.10) we do not turn off the source after computing the correlator (we can always
do so) - hence the subscript in 〈.〉 - because we can now define the n-point correlator

〈O(x1) . . .O(xn)〉φ(0)
(2.3.11)

by taking n− 1 functional derivatives of the right hand side of (2.3.10).
13We have in mind the field equations for scalars or Maxwell fields in a background geometry or the

Einstein field equations. For actions with higher derivative terms, the equations are of higher order.
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2.3.1.1 Pure gravity asymptotics

With the Einstein-Hilbert action LEH , we have another problem unrelated to divergences. It does
not give a well-defined variational principle for g even within a finite region of spacetime because
R contains second derivatives of the field and hence any boundary term contains both variations
of g and ∂g. To have a well-defined variational problem we cannot, in general, fix both the field
and its derivatives on the boundary (see [111]), and we need to obtain an action with only first
derivatives of g so that the variational problem will be defined with Dirichlet boundary conditions,
i.e. the variation of the field vanishing at the boundary.

For a timelike boundary ∂V of a bounded region V , the correct boundary term to be added to the
Einstein-Hilbert action is the well-known Gibbons-Hawking-York (GHY) term14, so that we are
led to consider

2κ2S =
∫
V

ddx
√
−gLEH +

∫
∂V

dd−1x
√
γ 2K, (2.3.12)

where K is the trace of the extrinsic curvature Kµν = hρµ∇ρnν of the boundary, whose induced
metric is γij .

Asymptotic solutions of the Einstein’s equations with Λ can be conveniently expressed in the so
called Fefferman-Graham gauge [112], where the metric near the boundary defined by z = 0 takes
the form

ds2 = l2

z2 (dz2 + hij(z, x)dxidxj), i, j = 0, . . . d (2.3.13)

with hij(z, x) admitting an expansion in non-negative powers of z at least to some order

hij(z, x) = h(0)ij(x) + zh(1)ij + . . . (2.3.14)

since it must be extended to z = 0 by definition. Notice that the choice of z corresponds to
the choice of conformal frame. The coefficients of the expansion are found by solving Einstein’s
equations. In general the following asymptotic forms hold15. Form ∈ N, when the space dimension
d is odd

hij(r, x) = h(0)ij(x) +
<d/2∑
m=1

z2mh(2m)ij [h(0)] + zdh(d)ij(x) + . . . . (2.3.15)

For even space dimension d, the expansion is polyhomogeneous from zd onwards

hij(r, x) = h(0)ij(x) +
<d/2∑
m=1

z2mh(2m)ij [h(0)] + zd
(
h(d)ij(x) + log z2h(d)ij [h(0)]

)
+ . . . . (2.3.16)

In both cases we have singled out the data h(0)ij and h(d)ij in terms of which all the others are
determined. Orders greater than d depend on both, orders less than d depend only on the first.
Ellipses denote higer order terms which are irrelevant for practically all purposes.

The leading order h(0)ij is totally free, while

in odd d: h(d)ij is constrained to be traceless and covariantly conserved with respect to the
14The opposite sign if the boundary is spacelike, but we are not interested in that case.
15For AdS3 the expansion is known exactly and terminates at order z4 without logarithmic terms.
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derivative compatible with h(0);

in even d: the trace part of h(d)ij is determined by h(0)ij , the tracefree part is undetermined;
h(d)ij is determined by h(0)ij and is constrained to be traceless and covariantly conserved
with respect to the derivative compatible with h(0).

As it is instructive and useful also to compare with the Bondi-Sachs analysis of asymptotically flat
spacetimes, in Appendix A.1.2 we briefly review the iterative differentiation procedure from which
the above expansion is derived.

With this analysis we have performed steps 1. and 2. for the metric field. Step 3. requires evaluating
(2.3.12) where ∂V is selected by z = ε. We have

2κ2

ld−1Sreg = −
∫
z≥ε

ddx dz
√
h(2d)z−(d+1) −

∫
ddx

[
2z−d(z∂z − d)

√
h
]∣∣∣
z=ε

(2.3.17)

because on-shell we have
R− 2Λ = −2d

l2
(2.3.18)

and we have used16 γij = (l/ε)2hij .

Done this, and moving to step 4. we isolate from Sfin = O(ε) the divergent part in (2.3.17) splitting
between d even (e) and odd (o)

2κ2

ld−1S
e
div = −

∫
ddx

√
h(0)

[
ε−da(0) + ε−d+2a(2) + · · ·+ ε−2a(d−2) − a(d) log ε

]
, (2.3.19)

2κ2

ld−1S
o
div = −

∫
ddx

√
h(0)

[
ε−da(0) + ε−d+2a(2) + · · ·+ ε−1a(d−1)

]
. (2.3.20)

We should now invert the metric expansion to write Se/odiv in such a way that covariance with respect
to the boundary is manifest. Detailed expressions are found in [108]. The resulting counterterm
Lagrangian (for space reasons) up to d = 6 reads

√
γLct = −√γ

[
2(1− d)

l2
+ R[γ]
d− 2 −

1
(d− 4)(d− 2)2

(
R[γ]ijR[γ]ij − dR[γ]2

4(d− 1)

)
− log εa(d)

]
(2.3.21)

where the formula is understood as containing only divergent counterterms in each dimension. So,
for even d = 2n only the first n are included plus the logarithmic term, while for odd d = 2n + 1
the first n+ 1 are included.

2.3.1.2 The CFT stress-tensor and the Weyl anomaly

Notice that the data at order d have all the properties a CFT energy momentum tensor should
have. This confirms the general outcome stated in (2.3.10). Indeed let us summarise the steps to

16The signs are compatible with an Euclidean hij , but it is not so important for highlighting the general
procedure.
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this identification. We have

〈Tij〉 = 2√
h(0)

δSren

δhij(0)
= lim
ε→0

(
2√
h(ε, x)

δSfin
δhij(ε, x)

)
. (2.3.22)

We need to write everything in terms of the regulated boundary quantities, so we have

〈Tij〉 = lim
ε→0

(
ld−2

εd−2Tij [γ]
)

(2.3.23)

where
Tij [γ] = 2

√
g

δSfin
δγij

= T regij [γ] + T ctij [γ]. (2.3.24)

In the above we have split the part coming from the variation of the regulated action and that
coming from the counterterms.

An explicit computation, whose details are found in [108], gives

〈Tij〉 = dld−1

2κ2 h(d)ij +Xij [h(0)ij ], Xij ≡ 0 if d odd. (2.3.25)

The tensor Xij is locally constructed from the leading coefficients compared with h(d)ij ang hence
it ultimately depends only on h(0)ij . From the comments made in the previous section, we see that
(2.3.25) is manifestly covariantly conserved with respect to g(0)ij , as due. Indeed, this property
is self-evident from construction and we will start our discussion in the next chapter from this
observation.

The energy momentum tensor of a classical CFT is traceless, but upon quantization the conformal
invariance can be broken. This is reflected in the non vanishing vev of the trace T = T ij of the
energy momentum tensor. General theorems state that in such a case

〈TCFT 〉 = 1
(4π)d/2

(∑
ι

cιIιd + (−1) d2 adEd

)
(2.3.26)

where Ed is the Euler density in d dimensions and Iιd are Weyl invariants, whose number depend
on the dimension d and ad, cιd are theory dependent coefficients for which there exist perturbative
formulas in terms of the number of each type of field in the theory.

For example in d = 2 there are no conformal invariants of the right dimensions and the only
possibility is E2 so that

〈TCFT 〉 = − c

12R. (2.3.27)

In d = 4 we have only one Weyl invariant (the square of the Weyl tensor)

I4 = RµνρσRµνρσ − 2RµνRµν + 1
3R

2 (2.3.28)

and E4 is17

E4 = RµνρσRµνρσ − 4RµνRµν +R2. (2.3.29)
17We are only considering the effect of the geometry. If the theory is coupled to gauge fields for example

we also get terms depending on the gauge curvature.
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We have only listed a couple of famous cases relevant for theories dual to AdS3 and AdS5, but in
fact, the expression (2.3.26) is only valid for d even because there are no invariants constructed
from the Riemann tensor and its derivatives in d odd18. We can see this from our holographic
expression of the energy-momentum tensor. If we take the trace of (2.3.25) we get

d odd : 〈T 〉 = 0 (2.3.30)

d even : 〈T 〉 = dld−1

2κ2 h(d) +X. (2.3.31)

The first result is immediately obtained as a consequence of our asymptotic analysis. We have
thus another partial check that the holographic stress-energy tensor is the stress tensor of the dual
CFT. To conclude the proof we need to check that (2.3.31) is non-vanishing and that it exactly
reproduces the result (2.3.26). Reproducing (2.3.26) means that the bulk computation must give
the same universal structure, and if the gravity theory is supposed to be dual to a known CFT (as
in the first example treated in this chapter), the coefficients ad and cιd computed gravitationally
must exactly match those of the CFT. As a byproduct, the robustness of the holographic dictionary
we have partially discussed in the chapter implies that given a bulk gravitational theory we can
perform this computation and establish the properties of the unknown dual CFT.

To check that (2.3.31) is non vanishing we need to revert to the explicit expressions given in [108].
There is however a very easy argument relating 〈T 〉 with the coefficient a(d) (not to be confused
with ad) in (2.3.19) which we now present. The outcome is

〈T 〉 = − l
d−1

κ2 a(d), d even. (2.3.32)

The vev of T appears into the variation of the action under a Weyl transformation. If h(0)ij is the
metric on the d-dimensional spacetime on which the CFT is defined and δσh(0)ij = 2σ(x)h(0)ij is
a Weyl transformation, we have

δσWCFT = 1
2

∫ √
h(0) 〈T ijCFT 〉 δσh(0)ij =

∫ √
h(0) 〈TCFT 〉σ (2.3.33)

showing that the trace of the stress-energy tensor is related to the anomaly.

From the holographic dictionary, we know that the above is related to the variation of the super-
gravity action, indeed the above is roughly speaking just (2.3.22) written from the field theory
point of you. However, from the bulk perspective we explicitly need a variation under a bulk
diffeomorphism which reduces to a Weyl transformation on the boundary.

Since we are working in a particular gauge it is also sensible to require that the gauge is not broken
by such a diffeomorphism. Observing (2.3.13) we see that this corresponds to requiring

Lξgzz = 0 = Lξgzi (2.3.34)
18Strictly speaking we are considering field theories without boundaries, otherwise the boundary induce

anomalies also in odd dimensions (see for example [113]).
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where Lξ is the Lie derivative along ξ. The solution of these equations is

ξz(x, z) = 2zσ(x), (2.3.35)

ξi(z, x) = yi(x)− 1
2σ(x)

∫ z

0
dz′z′hij(x, z′). (2.3.36)

Under these transformations, the remaining components of the metric transform as

δgij = l2

z2 δhij ⇒ δhij = 2σh(0)ij + Lyh(0)ij +O(z2). (2.3.37)

At the leading order, the vector field y generates diffeomorphisms of h(0) and σ a Weyl rescaling. As
desired, we have found the bulk diffeomorphisms which preserve the gauge and correctly transform
conformally the boundary metric. These diffeomorphisms are called PBH, after Penrose, Brown
and Henneaux. They constitute the first example of asymptotic symmetry group we meet in this
dissertation.

We are now in position to check how Sreg = Sdiv + Sfin varies under a PBH transformation.
Following the argument of [107], we can first consider a PBH with a constant σ, under which Sreg
is invariant. So the variations of Sdiv and Sfin must compensate. Due to the structure of the
counterterm Sct = −Sdiv it is not so difficult to convince oneself that in odd d we have Sct = 0.
Indeed each term is covariant by construction. However, for even d, Sct contains the logarithmically
divergent piece which transforms by a shift. Thus we have

δSfin = ld−1

2κ2

∫
ddx

√
h(0)δσ2A, (2.3.38)

with
A = 0 d odd, A = −a(d) d even. (2.3.39)

and A evidently corresponds to 〈T 〉 as we wanted to check.

The explicit computation indeed shows that the holographic anomaly can be cast in the general
form (2.3.26) according to the number of dimensions and the coefficients can be read off. In the
gravitational computation, they will depend upon the (d + 1)-dimensional Newton constant and
the length scale as

ad ∼
ld−1

G(d+1) (2.3.40)

and similarly for cd. Upon replacing N , α′ and mapping back to the field theory parameter, we
can read off the field theory coefficients.

The analysis for d = 4 thus provides a dynamical check of the example of AdS/CFT we have
discussed because the gravitational computation gives

a4 = N2

4 (2.3.41)

which agree with the field theory computation

a4 = N2 − 1
4 (2.3.42)
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in the large-N limit. Actually, this result is more than a check. Indeed, the anomaly coefficients
in field theory are usually computed at weak coupling. The strong/weak nature of the duality
suggests that this gravitational computation provides the right result at strong coupling. So this
is also an example of how we can use the gravity dual to learn about properties of the field theory.
For example, if we consider a higher-derivative type of gravitational action, we would generically
get a4 6= c4, so that we learn that the dual theory cannot be N = 4 SYM, but some other
superconformal theory. Another example consists of those gravitational theories with compact
spaces X 6= S5. Since the mapping of the anomalies on both sides requires passing from Gd+1

to the Newton’s constant of the theory compactified on X, by dividing its volume, the anomaly
coefficients will differ from those obtained here, but still they will be equal each other.

In the next section, we complete this discussion emphasising the consequences of this analysis
for the well-posedness of the bulk variational principle and provide an example (according to this
narration) of how the field theory teaches us something about the physical properties of the gravity
dual.
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CHAPTER 3

Beyond AdS/CFT: asymptotics, Killings and charges

We complete our brief discussion of the fundamentals of AdS/CFT by discussing the role of holo-
graphic renormalization in the problem of gravitational charges and we introduce the covariant
phase space formalism. In this way, we bridge the previous chapter to the next part.

3.1 A different look at holographic renormalization: varia-
tional principle

As we have seen in the previous chapter, the holographic computation of the expectation value of
the field theory energy-momentum tensor involves a functional differentiation of the renormalized
action with respect to h(0) which boils down to the sum of T reg and T ct, both written with respect
to the induced metric γij on the regulator surface.

In gravitational literature T regij [γ], given explicitly by

T regij = 1
κ2 (Kij −Kγij), (3.1.1)

is known as the Brown-York tensor, after J.D. Brown and J. W. York [114]. It gives a definition of
energy-momentum of a gravitational field in a spatially bounded region and was derived adapting
the Hamilton-Jacobi equation for the energy of a mechanical system,

H = −∂tS, p = ∂qS, (3.1.2)

41
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where S is the Hamilton’s principal function.

Let us recall that the Hamilton-Jacobi formalism is based on the idea that we can solve the
dynamics for a canonical pair (q(t), p(t)) by performing a canonical transformation in which the
new canonical variables (Q,P ) are time independent. This process is accomplished by S. A
solution of Hamilton-Jacobi equations is provided by the classical action giving rise to a well-
defined Dirichlet variational problem [115]. Or in other words, the difference between S and S is a
constant provided that S is the appropriate one for the variational problem. Indeed, if we perform
a variation of the action S where we vary both the endpoint time tf as well as q at this extreme
of the domain, we get

∆S = ∂tS∆t+ ∂qS(q̇∆t+ δq) = (∂tS + q̇∂qS)∆t+ ∂qSδq (3.1.3)

where ∆ := δ/dλ|λ=0 denotes the derivative with respect to the parameter of the curve joining tf
with tf + δt evaluated at λ = 0 and δ is a standard variation where tf is kept fixed. We also have

∆
∫ tf

ti

dtL =
∫ tf

ti

dt(Eδq) + (pδq)|tf + L∆t, p = ∂q̇L (3.1.4)

with E denoting the equations of motion and the boundary terms different from zero only at tf
(i.e. setting to zero the variations at ti). So, onshell we get by comparison of (8.4.90) and (8.4.91)
that S satisfies the Hamilton-Jacobi equations because H = pq̇ − L.

The idea of Brown and York was to notice that the Einstein-Hilbert action with the GHY term
(2.3.12) provides the Hamiltonian principal function for the gravitational system in a cylindrical
box (say) with boundary Σi∪Σf∪Σif , the role of the endpoints of q is played by the induced metric
on the past Σi and future Σf boundary, while the metric γij induced on Σif not only encodes the
proper time interval between Σi and Σf , but all the metrical information about Σif . Thus, as long
as we use the GHY boundary term,

T regij = 2
√
γ

δSreg
δγij

(3.1.5)

is the stress-energy tensor for the gravitational system in such a finite volume.

We have already claimed that this tensor is covariantly conserved and we can show it by considering
a variation of Sreg under a boundary diffeomorphism

δS = −
∫
∂V

ddx√γξjDiT
ij
reg ⇒ DiT

ij
reg = 0, (3.1.6)

where here D denotes the covariant derivative with respect to γ. We have assumed that the
diffeomorphism has compact support on the boundary to discard boundary terms1.

The tensor is thus a conserved current and gives rise to a conserved charge on the boundary for
any boundary Killing vector ξ. If we pick a spacelike surface ∂Σ in ∂V and a unit future pointing

1This is a simplified version of Brown-York arguments. This equation is a consequence of gravitational
constraints and, in general, a matter stress-tensor contribution projected onto the surface is to be included.



3.1. A different look at holographic renormalization: variational principle 43

normal to ∂Σ we have
QBYξ :=

∫
∂Σ

ddx√qT regij tiξj (3.1.7)

where q is the determinant of the metric on2 ∂Σ. For example, if ξ is a time translation the above
expression gives the gravitational mass in V .

From the discussion in the previous chapter, we see that via holographic renormalization we can
give a meaning to the Brown-York charges for the whole spacetime, namely when the boundary
surface is pushed to infinity. As first realised in [116], the expectation value of the dual CFT stress
tensor is also the stress tensor for AlAdS spacetimes.

We can thus compute physical quantities characterising AlAdS via holographic renormalization.
Remarkably this produces answers which sometimes disagree with those produced by other methods
and are at first sight surprising3. For example, the mass of AdS5 with an R× S3 boundary is not
vanishing [116]. The reason is almost obvious from the CFT picture: the CFT lives on this higher
dimensional cylinder and thus there is a characteristic Casimir energy, which is related to the
conformal anomaly and the central charge.

This result, directly stemming from the discussion in Section 2.3.1.2, is at odds with what one
would expect in a general relativistic treatment of the energy of the spacetime. Indeed, AdS would
be considered the natural zero-point energy of gravity with negative cosmological constant.

In the latter statement, the underlying idea is that - to avoid infinities and ambiguities - the
properties of a spacetime can be fixed in comparison to the properties of another spacetime. This
approach is fundamentally different from holographic renormalization, where no mention of a
reference spacetime is made.

To appreciate the difference let us consider the Brown-York charge (3.1.7). It is not unambiguously
defined because arbitrary functionals S0[γ] can be subtracted from Sreg, as usual in mechanics, as
long as they preserve the validity of the variational problem. So we have

T reg,subij = T reg − 2
√
γ

δS(0)

δγij
, (3.1.8)

This ambiguity was usually interpreted as a choice of zero energy and comes to help when the
boundary ∂V is pushed to infinity, where the charges are bound to diverge. In this case, the choice
of S0 is made so that Sreg − S0 leads to zero energy for an appropriate background spacetime.
For example, in asymptotically flat spacetimes the zero-point energy is chosen to be Minkowski
spacetime4 and in spacetimes with Λ < 0, as we said, AdS is the natural choice. The rough idea
is that if the infinities arising from the region “spacetime-V ” are the same as those in the region
“reference spacetime-V ”, then they can be cancelled.

By comparison with the GHY term, we know that - in order to preserve the variational problem -
2The relationship between the metric on ∂V and that on its spacelike slice is given as usual by an ADM

splitting which introduces qab, a lapse and a shift.
3An in-depth analysis of the differences and the conditions under which all the prescriptions agree is

discussed in [117].
4This is indeed the case considered by Brown-York.
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S(0) must have the form

S(0) = 1
κ2

∫
∂V

√
γK0 (3.1.9)

and K0 is the trace of the extrinsic curvature of ∂V when this surface is isometrically embedded
in the reference spacetime. The problem with this background subtraction method is that it is not
unambiguously defined and it requires the boundary geometries of the two spacetimes to match
exactly. Many examples of spacetimes are known where these issues are manifest [118, 119].

Holographic renormalization avoids these issues because the counterterms needed to renormalize
the action are intrinsic to the boundary of the given AlAdS spacetime. The aforementioned
example of the clash between the “general relativistic” expectation and that provided by holography
is rooted in what we have just discussed.

As mentioned in the previous chapter, there is another formulation of holographic renormalization
via Hamiltonian methods which simplify the computational task. Indeed, more than this, it high-
lights the fundamental root of the consistency of the method. Despite not addressing the details,
we can now appreciate the point.

The counterterm action Sct has a twofold purpose. Not only it eliminates the divergences in Sreg
when ∂V is sent to infinity, but it also provides the conditions under which the variational problem
is well-defined [120].

The mechanical analogy again helps [121, 122]. The situation we encounter when ∂V → ∞ is
similar as tf → ∞. In such a limit, ∆tf = 0 is meaningless because infinity is preserved by the
addition of any arbitrary finite δt. Furthermore, as tf → ∞ we cannot fix q(tf ) to some finite
value because it would over-restrict the configuration space5. By the same argument, imposing
δq|tf = 0 is not sensible. On any regulated surface we can impose that δq is such that it remains
finite in the asymptotic limit, so to preserve qf →∞. We see that

δS =
∫

dtEδq + (pδq)|tf (3.1.10)

does not vanish onshell for all variations δq that satisfy the boundary condition. We thus need to
add a boundary term (on a regulated boundary defined by t = tr) to the action

L→ L+ dk

dt
, (3.1.11)

such that on-shell the new action is stationary under the new general boundary conditions when
evaluated asymptotically. Thus we need to solve the Hamilton-Jacobi equations.

The remark is made in [121] that whenever we can impose limtr→tf δq(treg) = 0 then we can find
k as k = k(q(t)). On the other hand, if the standard Dirichlet condition cannot be imposed, k will
depend explicitly on time if we insist on locality in boundary derivatives6.

This translates to the fundamental explanation of the anomaly computation summarised in Sec-
tion 2.3.1.2. To make the statements precise we should recast holographic renormalization in an

5In [122] this is exemplified by a particle in the potential V (q) = q−2.
6In [121] we find an explicit example only of the first case. See next footnote.
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ADM form where the role of time is played by the coordinate z emanating from the boundary. But
for our purposes we just need to think of z as t. PBH asymptotic transformations, which are of
the form δq(treg) 6= 0, are broken by the regularized boundary ∂V at z = ε. In Fefferman-Graham
gauge we needed to pick a representative of the conformal class of the (asymptotic) conformal
boundary, but the variational problem as ∂V → ∞ must be defined in terms of the more general
variations (PBH). This gives rise to a well-defined stationarity principle for odd boundary dimen-
sions, where the anomaly vanishes and we can take the conformal class as a boundary condition.
In even boundary dimensions the local counterterm (2.3.21) explicitly depends on ε (the time t
in the mechanical model). As suggested in [121] we can probably eliminate the ε dependence but
the price to pay is to break locality and this feature is unwanted from the holographic viewpoint7.
Thus, the variational principle can be defined only if we pick a representative of the boundary
metric and take that fixed8.

3.1.1 Looking ahead: variational principles and holographic dualities

The problem of gravitational charges entered very late in our presentation. In the top-down
example of chapter 2 we managed not to worry about it until the Weyl anomaly computation was
summarised. However, this is only an artefact. Indeed, we could have stopped to discuss how
such symmetries are formally realised in the bulk spacetime when we claimed that symmetries on
both sides have to match (Section 2.2). This would have automatically lead to the consideration of
charges and their algebras, exactly as we do in non-gravitational theories. In fact, we also needed
to introduce very early the notions of (AdS) spacetime asymptotics and their asymptotic Killing
vectors. As we further motivate in the next section, these are the essential building blocks to define
the notions of energy and momentum in a generally covariant gravity theory and to give it the
status of a physical theory.

In searching for holography beyond AdS, we do not usually have top-down realizations that some-
how guarantee (due to the internal consistency of the top theory) that the two sides work con-
sistently. It is thus imperative to check that the supposedly dual gravitational theory - with the
given boundary conditions - makes sense, i.e. if sufficiently unambiguous notions of (finite) energy
are supported.

The discussion of the previous section served the scope of highlighting the relevance of holographic
renormalization in this direction. A natural question arises then. How general is holographic
renormalization?

The procedure of adding appropriate terms to the action with the twofold aim of cancelling diver-
gences and providing a well-defined variational problem can be motivated on general grounds, but
the requirement that counterterms be local and covariant is entirely inspired by field theory: as we
said repeatedly, the way IR divergences are cancelled in the asymptotically locally AdS spacetime
reflects the general procedures used to cancel field theoretical UV divergences. In AdS/CFT the

7In any case, physics should not change. For example, the potential V (q) = q−2 is well-known in
quantum mechanics to be anomalous. In [122] a counterterm is given which manifestly depends on t. I am
not aware of any treatment of quantum mechanical anomalies from this point of view.

8There are other cases to be taken into account [120].
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match between field theory divergences and divergences in the gravitational action is given by the
UV/IR connection.

Several arguments show that locality of the counterterms is hard to extend beyond AlAdS. To
be precise, variants of the methods we have spelt can be found (amid technical difficulties) for
gravitational theories with timelike boundaries even when they are not AlAdS and, as we have
mentioned in the Introduction, for the spacelike boundary relevant for dS holography. Among
the non-AlAdS holographic dualities with timelike boundary, we shall cite the non-relativistic
Schrödinger [123, 124] and Lifshitz [125, 126] holography, where the boundary field theory is a
non-relativistic version of CFT based on either the Schrödinger or the Lifshitz symmetry. The
bulk spacetime can be realised either as a relativistic spacetime solution of Einstein’s equations
with Λ < 0 (or Einstein-Maxwell [126]) or as a non-relativistic space described by a Newton-
Cartan structure [127, 128]. In both cases the boundary cannot be the same as AlAdS because the
boundary space and time must scale differently xi → λxi, t → λzt, with z a dynamical exponent
parametrizing the different scaling. In some cases, these holographies have been obtained in top-
down realizations (see [126]).

Various problems instead arise in extending holographic renormalization to asymptotically flat
spacetimes. First of all, the Fefferman-Graham gauge loses its meaning in the l → ∞ limit, an
occurrence which is also signalled at the level of the counterterm action. In addition to this,
solution of vacuum Einstein’s equations in Gaussian normal coordinates shows that the iterative
asymptotic equations are differential rather than algebraic and hence each order of the metric
expansion is determined non-locally by the previous orders [42]. However, see [129] for a proposal
circumventing the latter problem.

Notice that by construction, these comments apply to holographic renormalizations of spacelike
infinity. However, from a dynamical point of view, the interest is focussed on null infinity, to which
we dedicate all of Part II. Similar issues are found.

We have by now realised the truly fundamental role of gravitational charges in any realization of
holography. We now turn to a more specific of gravitational charges, independently of holography.
We will complete the definition of asymptotic Killing fields and the related definition of asymp-
totic symmetries (Section 3.2) and then discuss another formalism to define charges (Section 3.3):
the covariant phase space (CPS) method. This method, as the Hamiltonian or Hamilton-Jacobi
method, can be applied to any theory, not only gravity. The advantage with respect to the other
two is that it is covariant, as the name suggests, and hence particularly suited to gravity.

The CPS method is extensively used, but to conclude the brief list of other holographic proposals,
we can mention the so-called Kerr/CFT correspondence as an example of proposed holographic
duality where, missing a precise knowledge of the CFT, the main results toward the holographic
interpretation are obtained from the gravitational charges, especially in the CPS formalism [130].
The Kerr/CFT correspondence [131, 132] posits a holographic duality between the near horizon
limit of extremal Kerr black holes - whose geometry is similar to AdS in some sectors - and some
sort of conformal field theories. It is an attempt inspired by the famous Strominger-Vafa (extremal,
supersymmetric) black hole microstate counting [133] and to extend it to more general classes of
black holes.
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There are several papers in which the various approaches to defining charges are compared and con-
trasted; see [117] for a discussion emphasising CPS and holographic renormalization. Holographic
renormalization of AlAdS spacetimes was discussed within the CPS formalism in [120]. We will
notice that many of the formulas of the previous sections will be recast differently in Section 3.3.

3.2 The problem of gravitational charges: general notions

When we speak of charges in a dynamical (and background-independent) gravity theory we refer
both to the charges associated with the matter content and those intrinsic to the gravitational
field.

The Noetherian procedure to associate a charge to a matter energy-momentum tensor Tmµν , which
is covariantly conserved as a consequence of Bianchi identities, provides conserved charges only
along the isometries ξ of the spacetime. Given Tmµν , the charge Q

(m)
ξ is formally the same as (3.1.7)

except that it is expressed in terms of quantities on a slice Σ in the spacetime. Conservation means
that the charge does not depend on the slice on which it is defined. No isometries are present in
generic spacetimes. In this case, the quantity Q(m)

ξ depends both on the slice and ξ and is thus
ambiguous and not conserved. As put by Wald [56], the reason is that we miss the local information
about the purely gravitational contributions.

Such information however cannot be obtained9. By the equivalence principle, we can always
remove gravity effects locally. The Noetherian procedure is not applicable because there is no local
gravitational energy-momentum tensor.

The Brown-York tensor resembles a Noetherian definition of conserved charge for the gravitational
field, but it is not a local definition. TBY is known as a quasi-local energy-momentum tensor. That
it is quite different from Tmµν is evident from (3.1.5). The metric involved in (3.1.5) is the boundary
metric at the boundary of a finite volume, which is kept fixed on classical solutions. Tmµν is defined
from variations of the full spacetime metric instead.

Giving quasilocal definitions of gravitational charges is the best we can do. Their definition is
however somewhat more involved than the global ones. Indeed several quasi-local quantities are
built from global definitions10. In either cases, the relevant physical parameters associated with any
given extended region of spacetime should be determined in order to proceed with the development
of a definition.

A fundamental notion in the definition of global charges is that of isolated systems (see [55]). For
spacetimes with Λ = 0, appropriate definitions of isolated systems were given in the Sixties in
various steps. First Arnowitt, Deser and Misner (ADM) defined asymptotic conditions in spacelike
directions [137]. Then Bondi, Metzner, van der Burgh [138, 57] (based on previous explorations
by Trautman mainly [139]) and Sachs [58, 59] gave an appropriate metric based definition of

9At least, up to now there is no local notion and hopes are really low.
10The reader interested in quasilocal charges is referred to the review [134] and to [135, 136] for further

original works.
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isolated radiative spacetime, and then Penrose [140] - followed by many others, i.e. [55, 141] -
cast their analysis in an entirely gauge independent geometrical way on the basis of conformal
compactification methods. These approaches have been extended to the other values of Λ, and
in particular, subsumed in the conformal and metrical definition of AlAdS spacetimes. In the
main text we will only consider the metrical approach, a summary of the conformal approach is in
Appendix A.

The situation before the 1960s was somewhat similar to that of a student in her first course
on general relativity. Take for example the static, spherically symmetric, Schwarzschild metric.
The vacuum Einstein equations are solved up to an integration constant appearing at order 1/r
of an appropriate coordinate system. This constant is given the meaning of the mass of the
spacetime only by reverting to a Newtonian approximation. Another example is the linear analysis
of gravitational waves around Minkowski spacetimes. There were no ways to give a meaning to
mass and energy within the full-fledged general relativity until the works of ADM and BMS.

It is well known that in his life Einstein himself doubted that gravity waves could exist at the full
non-linear level. Indeed, the works of Bondi and collaborators moved from this problem: to give
a nonlinear characterization of gravity waves and disperse any doubt on their existence. This was
an energetic problem: do gravity waves carry energy? Paraphrasing Bondi, can you boil your
cup of tea with that energy?

Once generic criteria were found so that spacetimes were classified according to their asymptotic
properties, one of the most active research periods in general relativity started, during which the
mathematical definition of a black hole horizon and the Penrose-Hawking singularity theorems
were produced (see [56, 142]).

3.2.1 The metric based approach

In principle for any kind of spacetime, the general strategy behind the metric-based approach
to its asymptote is to find an appropriate coordinate system with one of the coordinates, say
r, parametrising the distance from the bulk of the spacetime. For example, Bondi-Sachs wished
to describe the radiation emanated by a bounded source, so they adapted a coordinate system
supposing that, as in exactly Minkowski space, the null waves travelled in null directions and r

represented the distance from the centre.

Then the metric tensor admits an expansion of the form

gµν(x, r) = g̃µν(x, r) +O((r)−mµν ) , (3.2.1)

as long as r is pushed far away from the bulk: infinity or the boundary. Here g̃µν is the asymptotic
metric. The coefficientsmµν are numbers that play a central role in defining the class of spacetimes
which are asymptotically g̃; they determine their dynamics11 (and are determined by the dynamical
equations!) and the asymptotic symmetry group. We can naturally cast this discussion as a
problem of defining a phase space F for solutions of the theory with given boundary conditions

11For example, the peeling property of asymptotically flat spacetimes depends on such coefficients [143].
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(g̃,mµν). For example, we wish to include Schwarzschild spacetime among the spacetimes which
tend asymptotically to Minkowski, because a naive limit on its metric suggests so.

Usually, the above statement is followed by the following requirements, which guarantee a well-
defined phase space:

1) the fall-off conditions must be not so strong that they exclude the existence of phenomena
that could otherwise occur in the deep interior of the spacetime;

2) the fall-off conditions should be sufficiently strong that useful notions that characterize the
system, such as total mass and radiated energy flux, are well defined.

While the first is undoubtedly desirable, the second is not so easy to defend. In fact, the AlAdS
case exemplifies the opposite. We first solved the asymptotic equations and after that, we were con-
cerned with divergences. After appropriately renormalizing, we get meaningful charges. However,
2) cannot be dismissed so easily also. Indeed, for flat spacetimes at null infinity (see comments in
Section 3.1.1), the situation is drastically different from AlAdS and holographic renormalization
in the way we described in the previous chapter is missing. This does not exclude that variants
could exist. We thus take 2) to be a fundamental requirement, but to be considered a posteriori.

To conclude the section, we draw a last comparison with AlAdS. The Fefferman-Graham expansion
is clearly of the form (3.2.1), where the boundary is taken at z = 0. However, in our discussion
of the conformal boundary of AlAdS, we noticed that we do not have to fix the boundary metric.
This can be argued to be the case of any conformal boundary (see Appendix A). So (3.2.1) should
be taken cum grano salis: the boundary conditions should be ideally dictated by the variational
problem so that they are mutually consistent (an arduous task for null infinity12).

Let us notice that despite having in mind the asymptotics of a spacetime, the notion of asymptotic
expansion and asymptotic symmetries are also used to move towards regions of spacetimes which
are not the true asymptote, such as black hole horizons [146].

3.2.2 The asymptotic symmetry group

As said, for a general spacetime there are no isometries, namely no Killing vectors. However, when
a metric asymptotically tends to another metric which enjoys some symmetries, we are led to the
definition of asymptotic Killing vector fields as the vector fields ξ that satisfy

Lξgµν = O((r)−mµν ) , (3.2.2)

namely the diffeomorphisms which preserve the asymptotic form of the metric up to the same non
trivial order of the metric expansion. PBH transformations discussed in the context of AlAdS
spacetimes provide an example.

Such diffeomorphisms are called allowed diffeomorphisms. The asymptotic symmetry algebra,
12Only variational problems with finite (not asymptotic) null boundaries have been discussed in literature

(see [144, 145]) but they present conceptual issues have not been cleared up completely.
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whose exponentiation gives a group (ASG), is the quotient of allowed diffeomorphisms with trivial
diffeomorphisms:

ASG = allowed symmetries
trivial symmetries . (3.2.3)

Elements of the group are the non-trivial asymptotic transformations that move a point g in the
phase space to another point of the phase space.

Symmetries are characterised by their associated charges. Any charge, to be defined so, must
generate the corresponding symmetry transformation on the phase space. This is captured by the
brackets13

{g,Qξ} = δξg , (3.2.4)

where δξg is used interchangeably with Lξg. The trivial diffeomorphisms are those with zero
associated charge, hence the name.

For example, the PBH transformations are all part of the asymptotic symmetry group because
they are the residual transformations of the Fefferman-Graham gauge. As a counter-example we
can take the original analysis of the asymptotics of AdS3 performed by Brown and Henneaux [92].
They generically stated the falloff conditions on the metric written in global coordinates t, r, φ as

gtt = −r
2

l2
+O(r0), gtr = O(r−3) = grφ, gtφ = O(r0)

grr = l2

r2 +O(r−4), gφφ = r2 +O(r0) (3.2.5)

where r → ∞. Not all the asymptotic Killing vectors of this metric have non-zero charge be-
cause some generate trivial changes of coordinates. They are those that reduce the metric to the
Fefferman-Graham form, where the metric is block diagonal with the radial coordinate forming a
separate block at any order of the expansion (so we can expect the trivial diffeomorphisms to be
related to subleading orders of the AKV of the Brown-Henneaux metric).

A general lesson of these two subsections is that the dimensionality of the asymptotic symmetry
group depends on the strength of falloff conditions. Given the same leading terms in the expansion,
slower falloff conditions usually imply a larger group of allowed diffeomorphisms than faster falloffs.
Hence, in the first case, the ASG may be larger unless it collapses (due to phase space consistency
requirements) to the one corresponding to the stronger fallofs. This will be apparent in the next
few chapters for the case of the asymptotic symmetry group of null infinity14.

We conclude this section with three comments. Asymptotic symmetries may generically form
algebroid and groupoid structures, rather than algebras and groups, because the generators may

13In a canonical approach they are Dirac brackets because gravity (as any other gauge theory) is a
constrained system. In the covariant formalism we can instead use the less-known Pierls brackets [147].

14We can here exemplify the situation implied by the standard definitions of asymptotic flatness at
null I and spacelike infinity i0 in d = 4. At i0, the principles 1) and 2) are satisfied by a large class
of asymptotic conditions so that one would end up with different ASGs, according to which condition
is chosen. For sufficiently strong falloff conditions at spatial infinity i0, compatible with 1) and 2), the
ASG is the Poincaré group, whereas for weaker choices one can get enlargements of the Poincaré group.
As stressed in [73], there are sufficiently good reasons to impose at i0 the strong asymptotic conditions
leading to the Poincaré group. However, at null infinity this freedom is missing and the only sensible
boundary conditions allowing for gravity waves in the bulk of the spacetime are so weak that the ASG is
the infinite-dimensional BMS.
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depend on the field themselves. This is the case for the extensions of BMS considered in [60]. While
the discussion of this section was shaped in terms of gravity, it is easily modified to accommodate
any gauge theory [44]. Furthermore, the notion of asymptotic symmetries and charges can be
adapted to any situation in which there is a boundary to be approached from a bulk, for example,
a horizon (see for example [146, 148]).

3.3 The Covariant Phase Space method

Any Lagrangian field theory on a d-dimensional15 manifold M can be analysed via the covariant
phase space formalism. It is extremely useful in relativistic, generally covariant, theories because
it manifestly preserves covariance within a canonical approach: CPS is a covariant canonical (or
covariant symplectic) formalism16.

In the covariant canonical formalism, one can build Hamiltonians and use all the powerful tools of
symplectic mechanics without having to choose a time foliation. The symplectic form is built out of
the boundary terms in the variations of the action in the Lagrangian formalism. The core idea on
which the covariant canonical formalism is based is to consistently identify the Hamiltonian phase
space with the space of on-shell classical field configurations. This implies a conceptual change in
perspective17. While each point in the Hamiltonian phase space is a set of initial conditions (here
is where the covariance is broken), each point in the covariant phase space is a solution of the
theory. In the Hamiltonian phase space, the Hamiltonian flow provides the time evolution of the
initial conditions. In the CPS, the Hamiltonian flow maps a solution at time t to another solution
at time t′ whose degrees of freedom take the same values of those of the solution at time t.

The CPS formalism, as well as other fully Hamiltonian methods - such as the well known ADM
formalism - is in certain sense a much powerful tool than the Hamilton-Jacobi method at the basis
of the Brwon-York approach. In fact, it gives full information about the structure of the phase
space of the gravitational theory, whereas the Brown-York approach can only define “the energy
function” and study its properties but does not give any clue about the underlying phase space
(see the review [134]).

Probably, the most iconic result of such an approach applied to Einstein-Hilbert gravity is the
derivation of the first law of thermodynamics for a stationary black hole and, correspondingly, the
entropy formula [151] known as Wald entropy. This was followed by the proposal that such general
entropy expression, automatically consistent with the first law, should apply to any stationary
black hole18 in any local theory of gravity, including low energy actions of string theory [152, 14].

We will use φ to note all possible fields in the theory, including the metric. In a generally covariant
15Please be aware that from here and for the rest of the thesis we will use d to denote the bulk spacetime

dimension, as opposed to the previous parts.
16In this section we will mostly use the notation of [149], where the issues of charges at null infinity were

considered within the covariant phase space approach. See, however, [150] for a clear, early account of the
method in generic settings and references therein for original literature.

17The following explanation is taken almost verbatim from [150].
18The case of non-stationary black holes and the consistency of Wald entropy with the second law is still

an open problem.
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theory, the integrand L in an action functional is a scalar density of weight +1 which need to be
integrated against a volume form ε to give a scalar. The form

L = Lε (3.3.1)

is a top form (d-dimensional) over the manifold M . L is just the Hodge dual of L: L = ?L.

For example in Einstein-Hilbert gravity we have L = R/(2κ2). The variation of the action gives

2κ2δ(Rε) = ε(Gµνδgµν +Dµθ
µ) (3.3.2)

where Gµν is the Einstein tensor and

θµ = gνρδΓµνρ − gµνδΓρρν . (3.3.3)

As this example shows, in the dual picture we avoid cluttering of both spacetime and field indices.
We will call L the Lagrangian. Its generic variation is given by

δL(φ) = E(φ)δφ+ dθ(φ, δφ) , (3.3.4)

where we suppress any field summation index appearing in the first term. The field equations are
given by E = 0 (for any field). The symbol “d” is an exterior derivative on M . Comparison of this
expression with the above example makes clear the mapping of notation.

3.3.1 Building the phase space

Each of the above quantity is also a form of appropriate rank in the space F of field configurations.
The space of field configuration F is given by the set of all fields of the theory which satisfy appro-
priate boundary conditions at the boundaries of M . The subspace of F formed by configurations
satisfying the field equations is noted with F and constitutes the covariant phase space19. The
operator “δ” can be thought of as an exterior derivative on F . The identification goes as follows.
An abstract field φ is a point in F . An abstract small variation δφ of φ is then a vector in the
tangent space TφF of F to φ. The symbols φ(x) and δφ(x) are used to denote the numerical values
of the abstract fields and the value of the displacement of such fields at the point x ∈M . A 1-form
over F is a linear functional from TφF to a number field: hence it is a transformation from δφ to
the number δφ(x), where x ∈ M . With abuse of notation we say that δφ(x) is a 1-form over F .
Hence, δ acts on a zero form to give a 1-form over F . Then, δ is an exterior derivative on F if i)
δ2 = 0, ii) satisfies the Leibnitz rule, and iii) if acting on a k-form gives a k + 1-form. All these
properties can be verified in a more precise treatement, but we refrain from doing so and refer the
reader to [150] for the details. We will use the following convention for the mapping between δ

seen as an exterior derivative in F and δ seen as a variation over M

δf(φ, δφ) := δ1f(φ, δ2φ)− δ2f(φ, δ1φ) (3.3.5)
19Or “pre-phase space” to take into account the possibility of degeneracies of the symplectic structure.

See later.
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where δ1φ and δ2φ are two different first variations (perturbations) of the fields, not to be inter-
preted as differential operators on F (in particular δ2

i 6= 0 in general).

Introducing the notation that a (m, f)-form is an m-form over M and an f -form over F we have
the ranks summarised in the following table (where we assume that each field φa of the collection
can be a pa-form over M .)

Form (m, f) Form (m, f)
φ (pa, 0) δφ (pa, 1)
E (d− pa, 0) Eδφ (d, 1)
θ (d− 1, 1) dθ (d, 1)
L (d, 0) δL (d, 1)

From the 1-form θ on F we can build a 2-form ω = δθ, which is automatically closed. This is
the typical relation between a symplectic form and the symplectic potential in mechanics. In field
theory the form θ is called the symplectic potential current density and the form ω is instead called
presymplectic current. In the spacetime picture ω is a (d− 1)-form given by

ω(φ, δ1φ, δ2φ) = δ1θ(φ, δ2φ)− δ2θ(φ, δ1φ) (3.3.6)

The integral of ω on a (d− 1)-dimensional slice of M is a (0, 2) form

ΩΣ(φ, δ1φ, δ2φ) =
∫

Σ
ω , (3.3.7)

called presymplectic form. Let us recall that in the symplectic formulation of mechanics, a symplec-
tic form Ω takes two vectors v1 and v2 in the tangent space of a symplectic manifold and outputs a
number. In the field theory case the two vectors are (δ1φ) and (δ2φ). The symplectic form is well
defined if it is non degenerate and can be inverted, namely Ω(v1, v2) = 0(= Ωijvivj in a chosen
chart) ⇐⇒ v1 = 0 or v2 = 0. If this is not the case, then we speak of presymplectic forms.
In such a case a reduction procedure removes the zero modes of the presymplectic form from the
presymplectic phase space and the resulting smaller space is a proper phase space. Degeneracies
are usually the case in field theories. We do not enter in many of the details of these procedures.

For the following we just need to recall that canonical transformations (or symplectic symmetries,
or symplectomorphisms) are those vector fields v on the phase space such that Ω is preserved,

LvΩ = 0. (3.3.8)

A function, called Hamiltonian Hv, is associated to each such symplectic symmetry. Indeed, from
the Cartan identity

0 = LvΩ = ivdΩ + d(ivΩ) = d(ivΩ) (3.3.9)

we get that ivΩ is closed and hence, by the Poincaré Lemma, Hv exists (locally at least) such
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that20

dHv = ivΩ. (3.3.10)

Poisson brackets {., .} can also be defined to be consistent with the Lie braket of two symplecto-
morphisms. This boils down to

{f, g}PB = Ωab∂af∂bg, (3.3.11)

for any two functions on the phase space. The Hamiltonian generates the flow along the vector
field via Poisson brackets

{f,Hv}PB = Lvf. (3.3.12)

Covariance. From the very definition of presymplectic form (3.3.7) it appears that, despite
what promised at the beginning, we break covariance because our definitions depends on the
chosen slice Σ. This is not so as long as i) φ is a solution, i.e. E = 0, and ii) the two variations
δ1φ and δ2φ are in TφF , namely δiE = 0. To check this take 0 := [δ1, δ2]L = δ1(δ2L) − δ2(δ1L).
With the above conditions we have

δ1δ2L ≈ dδ1θ(φ, δ2φ), (3.3.13)

so that
0 = [δ1, δ2]L ≈ dω(φ, δ1, δ2). (3.3.14)

Here ≈ stands for equality on-shell.

Variational principle. In this section we have not made any statement about the variational
principle. The Lagrangian may not be the one associated with an on-shell stationary action, as in
the Einstein-Hilbert case. So if ∂M is a boundary of M ,∫

∂M

θ (3.3.15)

may not vanish. We will see that a well-defined phase space, with a well-defined Hamiltonian, is
the one for which L can be modified to

L− T , (3.3.16)

where T is a (d− 1, 1) boundary term21 such that

δT =
←
θ , (3.3.17)

for given boundary conditions on the field variations. The left arrow over θ denotes its pullback
to ∂M .

In other words, there is a tight relation between a well-defined phase space and a well-defined
variational principle.

20Conversely, any function f is associated to a vector field w by wa = Ωab∂bf , but not all functions are
Hamiltonians because not all vector fields generate symplectic symmetries. Notice also that Hv is globally
defined if H1(F) = 0 (the first cohomology group).

21A term
←
dχ, where χ is a (d− 2, 1)-form, is also possible. See paragraph Ambiguities in Section 3.3.6.
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The variational principle for Einstein-Hilbert gravity in a finite region of spacetime with a timelike
boundary and Dirichlet boundary conditions is well defined with the addition of the Gibbons-
Hawking-York term and leads to Brown-York quasi-local charges. The same leads to a well-defined
covariant phase space Hamiltonian [153]. The case of asymptotic timelike boundary was discussed
in [120].

3.3.2 Definition of the Hamiltonian, existence and integrability

Neglecting the problems with degeneracies, we pretend that we are working in a proper phase space.
In our case, noticing that an arbitrary vector field ξ on M naturally induces a field variation over
F given by the Lie derivative δξ := Lξ, we define the Hamiltonian conjugate to ξ as the function
Qξ : F → R obtained as the integral in field space22 [149]

Qξ[φ] =
∫ φ

φ0

δQξ +Q0
ξ , (3.3.18)

of
δQξ = ΩΣ(φ, δφ,Lξφ) =

∫
Σ
ω(φ, δφ,Lξφ) (3.3.19)

for all φ ∈ F ⊂ F and all tangent vectors δφ to F (not necessarily to F). Notice that δφ ∈ TφF
means it satisfies the linearised equations of motion: δE(δφ) = 0. We will come back to this
important point later. In (3.3.18) Q0

ξ = Qξ[φ0] is the Hamiltonian computed on a reference
solution φ0 ∈ F , from which we move to reach the point φ in F .

The given expressions are appropriate definitions for the generating charge because we can formally
easily show that Qξ generates the Hamiltonian flow. However, beyond formal manipulations, the
above definition is subtle and strong. The Hamiltonian Qξ exists if ΩΣ(φ, δφ,Lξφ) is finite (so that
δQξ exists) and if it is integrable in the field space. These requirements impose constraints on the
triplet (F , ξ, Σ). In particular, the Wald-Zoupas definition [149] requires that the triplet is chosen
so that ΩΣ is finite for all φ ∈ F and δφ ∈ TφF .

The integrability condition means that (3.3.18) must be independent of the path chosen to go from
a reference field configuration φ0 to another φ, which amounts to satisfy the condition

(δ1δ2 − δ2δ1)Qξ = 0. (3.3.20)

Assuming that ΩΣ is finite, then the Hamiltonian does not exist unless (3.3.20) holds. In other
words, for Qξ to exist, δQξ must be an exact variation.

Once the existence of the Hamiltonian is established, another point to be analysed is the conser-
vation. To investigate this we have to check that

δQξ|Σ2 − δQξ|Σ1 = 0 (3.3.21)
22From now on I denote the Hamiltonian with Qξ rather than Hξ because in the literature such Hamil-

tonians are usually called charges. Notice the dependence on the reference charge, see Section 3.1. In this
section we explicitly work with transformations in field space induced by transformations on the spacetime
manifold, however, the formalism is general and applies also to gauge transformations.
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for any Σi.

Clearly, the answer to both questions is encoded in the behavior of ω. In the next section we will
show, following [149], that the integrability condition (3.3.20) corresponds to∫

∂Σ
iξω(φ, δφ1, δφ2) = 0 , (3.3.22)

where φ and δiφ are taken so that ΩΣ is finite according to the Wald-Zoupas convention (φ ∈ F
and δφ ∈ TφF). In the above, ∂Σ is the boundary of Σ and iξ is the operator contracting ξ with
the first index of the form on which it acts.

The conservation condition (3.3.21), instead, amounts to

0 = δQξ|Σ2 − δQξ|Σ1 = δQξ|∂Σ2 − δQξ|∂Σ1 = −
∫
B12

ω(φ, δφ,Lξφ) , (3.3.23)

where B12 is the (d − 1)-dimensional boundary surface enclosed by the two boundaries ∂Σ1 and
∂Σ2. In discussing the conservation of charges we obviously refer to symmetry transformations, so
Lξφ is required to be a symmetry variation, as opposed to the generic variation along any vector
field ξ on the manifold M considered above.

Both the integrability and the conservation conditions boil down to surface integrals. This is
perfectly consistent with the fact that in the theories under considerations the charges (3.3.19) are
explicitly given as surface integrals, as we show in the next section, where we also derive (3.3.22)
and (3.3.23). Before doing so we discuss the conditions on the phase space under which (3.3.22)
and (3.3.23) hold.

The condition (3.3.22) is trivially satisfied if

i) φ satisfies appropriate boundary conditions so that ω → 0 sufficiently rapidly that the
integral of iξω vanishes over the boundary ∂Σ, or

ii) ξ is tangent to ∂Σ, so that the pullback of iξω to ∂Σ vanishes.

The condition (3.3.23) is instead satisfied if the pullback of ω to B12 vanishes. If instead it does
not vanish, then the Hamiltonian (on F̄) does not in general exist except if ii) is satisfied. In
such a case, however, it is not conserved. We stress that we are considering the Hamiltonian on F̄
because the integrability condition (3.3.22) refers only to F̄ .

3.3.3 Hamiltonian in terms of Noether charge

We now show that (3.3.19) is explicitly an integral over the boundary of Σ given by

δQξ =
∫
∂Σ

[δqξ − iξθ(φ, δφ)]︸ ︷︷ ︸
kξ

=: δqξ −
∫
∂Σ
iξθ(φ, δφ) (3.3.24)
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where ξ is a symmetry vector field overM , qξ is the so-called Noether (d−2)-form associated with
ξ and Noether charge qξ. Indeed, for any ξ there exist a Noether (d− 1)-form current jξ

jξ := θ(φ,Lξφ)− iξL , (3.3.25)

which is on-shell closed djξ ≈ 0 and hence is exact by the Poincaré lemma. It can thus be derived
from the (d− 2)-form qξ

jξ ≈ dqξ (3.3.26)

so that
qξ =

∫
Σ
jξ =

∫
∂Σ
qξ (3.3.27)

The proof of (3.3.24) proceeds by first obtaining (3.3.25) and then varying it to get ω. Consider for
simplicity a diffeomorphism invariant Lagrangian so that no total derivative terms are produced
when we vary it under the diffeomorphism ξ:

LξL = iξdL+ d(iξL) = d(iξL) (3.3.28)

The intermediate step is the well known Cartan identity and in the last equality we use the fact
that dL = 0 identically since L is a d-dimensional form on M . From (3.3.4) we have LξL =
ELξφ+ dθ(φ, δφ). Hence

LξL = ELξφ+ dθ(φ,Lφ) = d(iξL)⇐⇒ d (θ(φ,Lφ)− iξL) = −ELξφ .

This defines the on-shell conserved Noether current23 (3.3.25).

We now take a further generic variation of (3.3.25). Assuming that the vector field ξ does not vary
under the variation of the field φ, so that δξ = 0 we have

δjξ = δθ(φ,Lξφ)− iξδL = δθ(φ,Lξφ)− iξ(Eδφ+ dθ(φ, δφ)). (3.3.29)

Using again the Cartan identity we get

δjξ = δθ(φ,Lξφ)− Lξθ(φ, δφ)︸ ︷︷ ︸
ω(φ,δφ,Lξφ)

−iξ(Eδφ) + d(iξθ(φ, δφ)), (3.3.30)

where we recognise the form ω if we extend the notation Lξφ = δξφ to the covariant forms, so that
Lξθ = δξθ. Hence

δjξ = ω + d(iξθ(φ, δφ))− iξ(Eδφ).

On-shell E = 0. Given jξ = dqξ and the commutation property of d and δ, valid when the
variations of φ satisfy the linearised field equations, we get

ω(φ, δφ,Lξφ) ≈ d(δqξ − iξθ(φ, δφ)) =: dkξ(φ, δφ), (3.3.31)

23 More in general one can also construct an off-shell closed current jξ+J employing the second Noether
theorem. There exists a q̃ such that dq̃ = jξ+J (see for example [154]). In [149] the form jξ = dqξ+ξaCa

is given, with Ca the constraints of the theory vanishing on shell. Despite no reference to Noether’s second
theorem is made in [149], the conclusion is the same as J encodes the constraints of the theory.
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which is to be substituted in (3.3.19) to finally get (3.3.24) upon integration over Σ. Notice, indeed
that (3.3.14) is explicitly satisfied.

It is now easy to show the integrability condition (3.3.22). We evaluate the left hand side of (3.3.20)
as

[δ1, δ2]Qξ = [δ1, δ2]qξ +
∫
∂Σ
iξ (δ2θ(φ, δ1φ)− δ1θ(φ, δ2φ))︸ ︷︷ ︸

ω(φ,δ2φ,δ1φ)

, (3.3.32)

so that (3.3.22) follows because the first term on the right hand side of the above vanishes.

Similarly, the conservation condition (3.3.23) is trivially obtained from (3.3.24).

Notice that according to the other characterization of the integrability condition given below
(3.3.20), the integrand of (3.3.24) is a total variation in the field space if there exist a (d− 1)-form
T (φ, δφ) such that

iξθ(φ, δφ) = δ (iξT (φ, δφ)) . (3.3.33)

We also notice that only integrable charges generate symplectic symmetries. Indeed

δ(δQξ) = 0⇒ δ(
∫
∂Σ
iξω) =

∫
∂Σ

(Lξω) = 0⇒ Lξω = 0, (3.3.34)

where we have switched to the phase space notation, so that δ is an exterior derivative, ξ must be
understood as a tangent vector to the phase space (Lξφ) and we have used the Cartan identity
with δδθ = 0.

3.3.4 Charge algebra

The symmetry vectors ξ1 and ξ2 satisfy a Lie algebra under the standard Lie braket

[Lξ1 ,Lξ2 ]Ω = 0 (3.3.35)

Thus [Lξ1 ,Lξ2 ] := Lξ1ξ2 is another symmetry vector under the standard Lie braket.

The integrable charges satisfy, under Dirac brakets, the same algebra as the vectors up to a central
extension

{Qξ1 , Qξ2} = Q[ξ1,ξ2] + Cξ1,ξ2 [φ0] (3.3.36)

where the central term
Cξ1,ξ2 [φ0] =

∫
∂Σ
kξ1(φ0,Lξ2φ0) (3.3.37)

depends only on the reference configuration. The proof can be found in [154].
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3.3.5 A conserved “Hamiltonian” for pathological situations

Above we gave an explicit expression of charge whose validity is tied to conditions i) and ii) at
the end of section (3.3.2). They are constraints on the phase space F . Are they innocuous? The
answer is no.

If we were to define asymptotic flatness at null infinity by requiring that F meets the above
conditions, we would miss all radiative solutions of Einstein’s equations.

Intuitively, as radiation crosses null infinity, we cannot impose too strict falloff conditions on the
fields. Hence ω does not vanish sufficiently fast. In the language of conformal compactification,
the smooth extension of ω to the compactified spacetime does not have a vanishing pullback to
the conformal boundary24.

In this situation, the charges as defined above, in terms of the Noether current and satisfying
integrability and conservation criteria, do not exist in general. In particular, in the subcase corre-
sponding to ii), the charge is integrable (exist) but it is not conserved.

In such a case, Wald and Zoupas [149] built an appropriate definition of charges which are integrable
and “conserved”. To distinguish between truly conserved charges Qξ and the modified charges, we
note the latter with Qξ.

In order to connect with Section 6.1, we give a shortcut summary of the Wald-Zoupas analysis.
The starting point of the construction is to recognise that the non conservation of δQξ is evidently
due to a flux F ξ defined on B12

δQξ|∂Σ2 − δQξ|∂Σ1 = −
∫
B12

δF ξ , (3.3.38)

where F ξ is a (d − 1, 1)-form defined on the boundary. We require the physically motivated
condition that

δQξ|∂Σ2 − δQξ|∂Σ1 = 0 (3.3.39)

when the solution (the spacetime) is stationary25, i.e. there is no radiation at the boundary for
this kind of spacetime. In this case the Hamltonian reduces to δQξ.

Clearly δF ξ must be related to the pull-back ←ω of the presymplectic current to the boundary26.
With the above intuition we expect

ω = ωc +←ω (3.3.40)

where ωc represents the presymplectic current corresponding to conserved charges, i.e. when the
radiation is off.

24For spatial infinity, instead, we can sufficiently restrict F because no dynamical processes can occur
there. A good definition of charges exists in the context of the ADM formalism and in particular the
conserved charge associated with an asymptotic time translation at spatial infinity is the well known ADM
mass. The formalism here summarised is consistent since it returns ADM expressions at i0.

25Stationary spacetimes are those that admits a Killing vector which near the boundary is a timelike
asymptotic symmetry vector.

26Recall that ω is defined in the whole spacetime while the flux is defined directly on the boundary.
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From (3.3.23) we see that27
←
ω = δF ξ , (3.3.41)

namely, mapping to variations over M (see (3.3.5))

←
ω(φ, δ1φ, δ2φ) = δ1F ξ(φ, δ2φ)− δ2F ξ(φ, δ1φ) . (3.3.42)

Thanks to this we can define a “conserved charge” as [149]

δQξ =
∫
∂Σ

[δq − (iξθ)] +
∫
∂Σ
iξF ξ . (3.3.43)

Notice that F ξ plays the role of a symplectic potential for ←ω and by analogy to (3.3.6) we may
call F ξ := Θ. One can check that (3.3.43) satisfies [δ1, δ2]Qξ = 0 (with ξ tangent to B).

These formulae are admittedly far from transparent and our exposition was quite quick. We will
come back to these points in Section 6.1 where the charges will be motivated by BMS symmetries.

3.3.6 Ambiguities and boundaries

Basics ideas and formulas have been given, but some important points need to be mentioned.

Ambiguities. The form θ is not unambiguously defined. Indeed

a) we can add an exact form θ = θ + dY , where Y is an arbitrary (d− 2, 1)-form,

b) if the Lagrangian changes by boundary terms L→ L+dK, so that the equations of motion
are not affected, then also θ → θ + δK.

Only the first one affects ω: ω → ω + dδY . The arbitrariness of Y has to be fixed based on the
particular problem under consideration and can be used in order to make θ a local and covariant
function of its argument, as required by the method [149].

The Noether (d− 1)-form current qξ inherits the same ambiguities of θ:

- ambiguity a) implies jξ → jξ + dY ,

- ambiguity b) implies jξ → jξ + d(iξK)

In addition to these, the Noether (d − 2)-form charge qξ is further defined only up to an exact
form dZ. So the ambiguities of qξ amounts to

qξ → qξ + iξK + Y + dZ (3.3.44)

27In general ←ω + dχ = δF ξ with χ a (d− 2, 2)-form (see the paragraph Ambiguities later). As said, we
are suppressing all the technical steps of the derivation [149], which was proposed the other way round:
from the form Θ defined later to F ξ.
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Several attempts have been made at removing such ambiguities, i.e. [155], but they play a crucial
role in the renormalization of superrotation charges [156, 157] (see Section 6.1) and in aspects of
black hole thermodynamics.

Boundaries. We have tacitly spoken about the (d − 1)-dimensional boundary ∂M of the d-
dimensional manifoldM , about the (d−1)-dimensional slice Σ such that ∂Σ is a (d−2)-dimensional
submanifold intersecting ∂M , and about the (d− 1)-dimensional region B12 of ∂M .

There are several careful treatments of boundary terms in the covariant phase space approach.
See for example [158] for non-null finite boundaries and [159] for some comments on null finite
boundaries.

As said, a deep analysis of boundary contribution is needed to address some important questions
concerning the characteristic ambiguities of the formalism. We do not address these points here,
but since we have been mostly interested in the case of null infinity we point out some of the
technicalities of [149].

There are further issues when we consider an asymptotic boundary. As usual in general relativistic
literature, the spacetime manifold M is considered without boundary. The slice Σ is then by
definition a (d− 1)-dimensional closed, embedded submanifold without boundary. Hence, ∂Σ does
not exist. The integrals over ∂Σ, such as (3.3.22), should be understood as limiting processes where
the meaningful quantities are defined on compact regions K with boundaries ∂K which approach
Σ in the limit.

On the other hand, upon compactification ofM we have an unphysical spacetime M̄ with a bound-
ary I . Now the slices Σ ofM are assumed to extend smoothly to I in M̄ such that they intersect
I in a submanifold which is ∂Σ. Assuming the compactness of such slices in M̄ automatically
ensures the convergence of the integral defining ΩΣ, as already stated before. Furthermore, the
form ω is assumed to extend continuously to I . At this point also the requirements on the validity
of integrability and conservation conditions, as well as the discussion of charges at null infinity,
should be rephrased in these more careful terms. For example, we have stated previously that
the non-existence of a “standard” conserved Hamiltonian is typical of null infinity because of the
generic presence of radiation on I . Such a possibility depends on the given definition of F . In
turn, the choice of F should assure that ω can be extended smoothly to I , see [149, p.10] and in
this light, all the discussions above have to be understood in terms of the smooth extension of ω
to the unphysical spacetime. Notice that the smoothness condition cannot be guaranteed in d > 4
asymptotically flat spacetimes, as we explain later.
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Part II

Asymptotic flatness and
holography





CHAPTER 4

Flat holography?

Minkowski spacetime is maximally symmetric and in this respect is on the same ground as AdS.
The analogies with AdS, however, stop here. Physics in Minkowski backgrounds is so different
from physics in AdS exactly because there are no other similarities between the two.

While light rays reach the boundary of AdS in finite proper time, thus making the boundary
timelike, the boundary of Minkowski space is a more abstract concept. It is the place towards
which null signals travel. But they never reach it. The boundary can always be moved far away,
as the sight horizon of an observer on the Earth.

Still, there is a sensible notion of boundary via conformal compactifications (see Appendix A). It
is thus seen that this far away in Minkowski space is a null surface I , which is the union of a
future I + and a past I − null surface through a point i0 representing the infinity in spacelike
direction. Two further points i+ and i− represents future and past timelike infinity. Both I +

and I − are topologically R × Sd−2. In fact, Minkowski space is naturally foliated by lightcones
emanating from the worldline of an observer at rest. There is a lightcone for each instant of time
and the null boundary is the asymptotic region along these lightcones.

When the metric is allowed to fluctuate, as in any dynamical theory of gravity, Minkowski must be
suitably relaxed to an appropriate notion of asymptotically Minkowski spacetime. For the moment
we take it to state that the spacetime has the same asymptotic structure as Minkowski.

The different causal structure of the boundary of Minkowski spacetime is at the root of the con-
ceptual and technical issues encountered when trying to adapt Λ < 0 holography to Λ = 0. We
have mentioned in the previous chapter that a naive Λ → 0 limit from AdS/CFT is problematic.
We can see the difficulty encountered in the flat limit also from a boundary theory point of view.

65
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From the mass-dimension formula of dual operators we see that the dimension diverges in this
limit.

Indeed, some of the first attempts at the flat spacetime holography problem consist in recovering
an S-matrix description within AdS/CFT which can then be interpreted as a controlled flat limit
[160, 161].

The focus on the S-matrix - rather than the correlators, as in AdS/CFT - is motivated on very
general grounds. The S-matrix

S = 〈pout, sout|pin, sin〉 , (4.0.1)

mapping an initial state with momentum pin and quantum numbers sin into a final state out is
the only gauge/diffeomorphism invariant operator in a theory of gravity in Minkowski spacetime.
In a non gravitational theory, the S-matrix is reconstructed from the correlators of local fields via
the LSZ reduction formula. When dynamical gravity is present correlators such as

〈φ . . . φ〉 , 〈gµν〉 , etc., (4.0.2)

are easily seen to not be diffeomorphism invariant.

The S-matrix, with its analytic and unitarity properties is taken to be the output of quantum
gravity in flat spacetimes [38]. In his famous talk at Strings’98 [162], Witten thus suggested that a
bulk-boundary correspondence in flat space must be based genuinely on some “structure X” whose
degrees of freedom ”live” at infinity and from which the S-matrix can be computed. Using
Witten’s wording, the scheme we draw in the Introduction is

boundary structure X→ flat space S-matrix. (4.0.3)

This “structure X” cannot be a CFT because a CFT defines quantum gravity at Λ < 0 [162, 38].

A field theory associated with null infinity can be an example of “structure X” (interestingly
Witten dubs this proposal of himself as naive [162]). The kinematics of such a theory is then to
be specified by the asymptotic symmetry group at null infinity, which - up to the recent progress
- was considered to be the BMS group introduced at page 10. This is yet another reason for not
expecting a dual CFT.

The first extensive efforts to flat holography intrinsic to d = 4 asymptotically flat spacetimes date
back to 2003 and are due to J. de Boer and S.N. Solodukhin [163, 164] and G. Arcioni, C. Dappiaggi
[165, 166]. Both conclude, somewhat differently from Witten’s suggestion, that the fundamental
holographic data are stored on the spherical cross sections of I , named celestial spheres from now
onwards. The null nature of the boundary is however reflected in different ways, as we are going
to see.

Compared to the work of de Boer and Solodukhin, that of Arcioni and Dappiaggi is closer in
spirit to Witten’s proposal as they base much of their discussions on the representation theory of
BMS, which was first developed in the Seventies [167, 168, 169, 170, 171, 172, 173]. They insist the
“structure X” is a BMS invariant field theory (namely, its fields carry BMS label) and moving from
one cross section to another of the same component of I via a BMS transformation corresponds to



67

a relabeling of fields. In this picture, the S-matrix is supposed to map the two Hilbert spaces of the
two independent theories constructed on these abstract spaces (I + and I −), but no prescription
for this was given.

Using a terminology recently in vogue, BMS-invariant field theories can be called Carrollian field
theories. A Carroll group is an ultrarelativistic Inönü-Wigner contraction of the Poincaré group
[174, 175]. It is identified as the kinematical group of the space resulting from Minkowski when
sending the speed of light to zero, a Carroll “spacetime” where the Minkowski lightcone collapses
to the time axis. A conformal extension of the Carroll group (the Conformal Carroll group) was
shown to be isomorphic to the BMS group [176, 177, 178]. This motivates the terminology. In
Appendix A we show that the given definition of a (conformal) Carroll structure is indeed the usual
definition of universal structure of an asymptotically flat spacetime, and we accordingly extend
the notion of a Carroll structure to include for Diff(Sd−2) superrotations1.

Despite being only a change of names, the latter stresses the fact that we cannot expect a usual
field theory because of the null nature of the boundary. There are by now several works exploring
the properties of Carrollian theories in holography and the possible relevance beyond holography,
see for example [179, 180, 181, 182, 183, 184].

In fact, flat holography in terms of exotic non-relativistic theories was already discussed in the
special three-dimensional case when A. Bagchi realised that the BMS-charge algebra in d = 3 is
isomorphic to the so-called Galilean conformal algebra (gca), a non-relativistic (c → ∞) Inonu-
Wigner contraction of the relativistic conformal algebra[185, 186]. This is not in contrast with the
aforementioned ultrarelativistic contraction, because in a space with only one space and one time
direction (as the boundary of a d = 3 spacetime) the two operations are equivalent (see [176]).

Lower-dimensional gravity has always been a playground for testing and exploring the properties
of gravity, although it is non-dynamical. Three-dimensional asymptotic flatness was defined in
[187] and the first holographic analysis of d = 3 asymptotically flat boundary conditions are due to
Barnich and Compère [188], following the steps of Brown-Henneaux analysis of AdS3 asymptotic
symmetries [92]2. The configuration space of three-dimensional flat spaces was later derived as an
appropriate limit of AdS3 in Bondi-Sachs gauge3 [191] and several checks of the proposed bms/gca

correspondence were performed, the most famous of which is the matching of the entropy of the
cosmological horizon of flat space cosmologies via Cardy-like methods [192, 193, 194].

These developments, however, do not help in shedding light on the higher dimensional problem
because there is no notion of gravitational S-matrix in d < 4 as gravity is topological.

Coming back to d = 4, de Boer and Solodukhin [163] aim at reconstructing the asymptotically
flat spacetime from boundary data with a strategy which is closer in spirit to AdS/CFT. They
advocate a foliation of the interior and exterior of asymptotic light cones. The interior is foliated

1A possibility apparently not considered in the Carroll literature.
2This analysis, already mentioned previously, is in fact a fundamental inspiring example for many of the

proposed holographic dualities beyond AdS/CFT, including the dS/CFT, the Kerr/CFT and ultimately
flat holography.

3The Bondi-Sachs gauge is based on a null foliation of the spacetime and hence is a more clever choice
than Fefferman-Graham in taking the flat limit. The flat limit of the AdS3 holographic stress tensor was
taken in [189]. Flat limits of AdS in Bondi gauge are again in vogue after [190], concerned with d = 4.
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via Euclidean AdS slices parametrised by Minkowski time t, while the exterior is foliated via
Lorentzian dS slices parametrised by the radial coordinate r. The common boundary of such slices
are the celestial spheres. The reconstruction of the bulk spacetime is done via a double asymptotic
expansion along the two different slices. This process however cannot reconstruct the timelike
direction t in the interior of the lightcone. Despite this, de Boer and Solodukhin further suggest
that the S-matrix is obtained from correlators of a theory associated with the celestial spheres.

Since the celestial sphere S2 is the boundary of EAdS3 slices, de Boer and Solodukhin propose to
extend the Lorentz part of the bms algebra to include all local conformal transformations forming
the Witt algebra. This was already advocated by T. Banks in a footnote of [25], arXived one week
before [163]. This extension corresponds to what we named BT-superrotations in the Introduction.

The asymptotic symmetry algebra, the realization on the solution space and the charge algebra
corresponding to this local version of BMS

bms = sr⊕s st, sr = witt×witt (4.0.4)

has been studied by G. Barnich and C. Troessaert in [61, 60]. In (4.0.4) we used the bold face
notation typical of algebras because this cannot be exponentiated to a group.

The proposals summarised until now, despite focussing on different aspects of null infinity, which
should be relevant in the ultimate holographic description, miss the crucial point of giving a
prescription to holographically compute the S-matrix. A. Strominger realised that to make progress
we must look at I + and I − at the same time [43] and looked to a specific sharp result feasible to be
explained with the common symmetry of I + ∪I −: the famous, and aforementioned, Weinberg’s
theorem [47]. Given an n-particle amplitude, where one is an external graviton with momentum q

and vanishing energy Eq, the theorem states that the amplitude factorises as

Mn+1(p1, . . . pn, q) = E−1
q S(−1)Mn(p1, . . . pn) +O(E0

q ), (4.0.5)

where S(−1) is a universal factor not depending on the details of the theory but only on the quantum
numbers of the external particles participating in the scattering.

Such kind of soft factorizations are quite common and were established long ago [195, 196, 197].
It is also known that such soft behaviours are generically related to the realization of symmetries
of the underlying theory [198].

Strominger and collaborators [199] derived Weinberg’s soft graviton theorem as a consequence of
a BMS0-supertranslation Ward identity for the gravitational S-matrix, where BMS0 denotes an
appropriate subgroup of BMS+ × BMS− under a suitable identification of group elements of
BMS+ and BMS− acting respectively on I + and I −. This result can be seen as a first sound
realization of Witten’s proposal: there is a principle whose output is the expected dynamical
behaviour of scattering, at least in the infrared sector.

The subleading soft-graviton theorem mentioned in the Introduction, a statement of the form

Mn+1(p1, . . . pn, q) =
(
E−1
q S(−1) + S(0)

)
Mn(p1, . . . pn) +O(Eq), (4.0.6)
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where S(0) is also universal, was unknown until this picture emerged. It was discovered following the
proposal that BT-superrotations must be included in the asymptotic symmetry algebra. Explicit
field-theoretical checks have been first performed in [49], and hence the new soft theorem is named
Cachazo-Strominger soft theorem(s, s as there is also a sub-subleading one).

At this point, a different extension of the BMS group enters the stage. In fact, [200] shows that the
single subleading soft theorem implies BT-superrotations on the celestial sphere, but the converse
is difficult to derive because of the singularities of superrotations4. On the contrary, M. Campiglia
and A. Laddha realised that the subleading soft theorem can be derived from the asymptotic
symmetries if the latter include arbitrary smooth volume preserving diffeomorphisms SDiff(S2)
of the celestial sphere [64, 65]. They form what we set to call CL-superrotations.

The S-matrix arises from correlators of a -yet unknown- celestial (i.e. associated with the celestial
sphere) conformal field theory (CCFT). Operator insertions correspond to particles entering or
exiting the bulk from specified points on I − or I + respectively and we have some generic set of
rules to relate in and out states.

The properties of the putative CCFT are currently being studied from a bulk point of view, by
casting scattering amplitudes so that the boundary symmetries are manifest. Rather than using
a basis of plane waves, a basis of so-called conformal primary wavefunctions is used. Elements of
this basis are specified by a point on the celestial sphere and a conformal dimension ∆ which is
complex [202, 203, 204].

Note that in this approach, which in a sense departs from the attempt made by de Boer-Solodukhin,
the null nature of infinity is reflected in the BMS transformations to which the celestial field theory
is subject (quite similarly to the way proposed by Arcioni and Dappiaggi). For example, the
papers just mentioned show that a supertranslation shifts ∆ by one and that the two versions of
superrotations are related by a shadow transform of the operators.

It is to be expected (or hoped) that the language of CCFT can be translated into the language of
non-relativistic/ultrarelativistic field theories. Two papers moving in this direction are [205] and
[206]5.

Are we any closer than before in uncovering Witten’s structure X? A sharp answer cannot be
given. Asymptotic symmetry considerations have been powerful enough to suggest, and hence
giving a fundamental explanation of, generic properties of the gravitational S-matrix. At least at
the perturbative level, we have uncovered the symmetries of gravitational scattering in a particular
class of d = 4 spacetimes. The attribute “particular” will be clarified in the course of the next
two chapters, where we also remind the reader that some crucial points of concern still affect the
picture.

Although we may remain agnostic about the consequences for flat holography, the current de-
velopments gave a new spin to reconsider also Abelian and non-abelian gauge theories from the
point of view of asymptotic symmetries. The outcome is the discovery of the vast class of tri-
angular equivalences among infrared phenomena, mentioned in the Introduction. New and old

4It is to be pointed out that this is partially circumvented by double soft limits [201].
5 Thanks to A. Bagchi for pointing this out and for related discussions.
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soft theorems have been discovered or rederived for different spins [207, 208, 209, 210]. Various
forms of memory effects form the manifestation of the asymptotic symmetries at a classical level.
In gravity they are known since the seventies [211, 212] and stimulated an active debate on the
fundamental properties of general relativity [213, 214, 72, 215, 74, 77]. There are various form of
gravitational memories (see also [216, 202, 156]) and we will describe one of them in Section 6.2.1.
Gauge theory memories are based on similar considerations, for a partial list of reference see
[217, 218, 219, 220, 221, 222, 223, 224].



CHAPTER 5

Bondi-Sachs problem and boundary conditions

The Bondi-Sachs approach [138, 57, 58] to the study of gravitational waves in general relativity
is based on the idea of using a family of outgoing null rays forming null hypersurfaces to build
coordinates. First proposed by Hermann Bondi [138], it was the basis for the later developments
of Penrose conformal methods. Bondi-Sachs coordinates are easily adapted to any number of
spacetime dimension. Here we summarise their role in defining asymptotic flatness at null infinity
in d ≥ 4 and the resulting asymptotic symmetries.

5.1 Bondi-Sachs gauge

A d-dimensional metric in Bondi-Sachs gauge reads [57, 58, 59, 70]

ds2 = −Ue2βdu2 − 2e2βdudr + r2hAB(dxA −WAdu)(dxB −WBdu), (5.1.1)

where u = const picks a null surface and the other coordinates are defined by

grr = grA = 0 , det(hAB) = q(u, x), (5.1.2)

with capital latin indices running over the (d−2) coordinates on the cross sections of the u = const

null surface and q a fixed arbitrary function. The coordinate u is a properly defined retarded time
coordiante because u = const defines null hypersurfaces1. The normal vector kµ = gµν∂νu satisfies
by definition kµkµ = 0 (gµνgνρ = δ ρ

µ ), so that guu = 0. The coordinates xA are constant

1It plays the role of the u = t − r coordinate in Minkowski spacetimes, but in curved spacetimes it is
not just u = t− r, consider for example the Schwarzshild case.

71
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on the integral curves of kµ, namely kµ∂µx
A = 0, implying that guA = 0. Both requirements

imply grr = 0 = grA. The determinant condition in (5.1.2) defines r - the parameter along null
geodeodesics (rays) orthogonal to kµ - to be a luminosity distance.

Unless additional symmetry requirements are imposed, the metric functions U , β, WA and gAB :=
r2hAB are functions of all the coordinates. They are determined by solving Einstein’s equations.
Thanks to the Bianchi identites, the strategy to solve the equations is organised in a comfortable
way that holds both for vacuum and non vacuum spacetimes. Here we consider vacuum. Once the
main equations

Rrr = RrA = RAB = 0 , (5.1.3)

are satisfied everywhere, the other components of the equations collapse to

RuA = ∂r
(
rd−2RuA

)
= 0, Ruu = ∂r

(
rd−2Ruu

)
= 0, (5.1.4)

and
Rur ≡ 0. (5.1.5)

Equations (5.1.4), which imply that only the order r2−d of RuA and Ruu are non trivial, are called
supplementary equations. Equation (5.1.5) is trivially satisfied once the main equations are and it
is thus called trivial equation. The equations RAB = 0 are equivalently organised according to the
vanishing of its trace and traceless part2

gBARAB = 0 , RAB −
1

d− 2g
ABRAB = 0, (5.1.6)

and when the first of these is solved, the second can be written as

gDARAB = 0. (5.1.7)

The problem is by construction a characteristic initial value problem where suitabe initial data
for (hAB ,U , β,WA) are to be specified on a characteristic of the equations under considerations
(a null surface) and the supplementary ad trivial equations play the role of constraints among this
set of data. The solution can only be given asymptotically as r →∞.

We will explicitly see in chapter 8 that β, WA and U are not independent from hAB . The r-
dependence of the function β is determined by hAB via Rrr = 0 up to an integration constant
appearing at order r0 which we denote β(0)(u, x). The equation RrA = 0 determines WA up to
two constants, WA

(0)(u, x) at order r(0) andWA
(d−1)(u, x) at order r1−d. The equation gBARAB = 0

determines U up to the constant U(d−3)(u, x) at order r3−d. To summarise we have

β(u, r, x) = β(0)(u, x) + b(u, r, x),

WA(u, r, x) = WA
(0)(u, x) +

WA
(d−1)(u, x)
rd−1 + w(u, r, x),

U(u, r, x) =
U(d−3)(u, x)

rd−3 + υ(u, r, x), (5.1.8)

where the functions b, w, υ depend on hAB and on the integration functions.
2The role of the trace part can be interchanged with Rur, as can be seen from the contracted Bianchi

identities. Namely, we can take Rur = 0 as a main equation and gBARAB ≡ 0.
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There is no equation determining ∂rhAB . The fourth main equation only determines the radial
expansion of y(u, r, x) := ∂uhAB up to an integration constant at order r 2−d

2

yAB(u, r, x) =
y( d−2

2 )AB(u, x)

r
d−2

2
+ ỹAB(u, r, x) (5.1.9)

This situation is to be contrasted with the case of negative cosmological constant spacetimes,
where the radial expansion of the boundary metric was uniquely determined in Fefferman-Graham
gauge3.

The supplementary equations determine respectively ∂uWA
(d−1) and ∂uU(d−3).

5.2 Radiative asymptotically Minkowski spacetimes

The equations for the metric (5.1.1) were first solved by Bondi, Metzner, van der Burgh in the
special d = 4 axisymmetric case [57]. Soon after, Sachs [58] solved the generic problem in d = 4
imposing the assumptions

1) Over the coordinate range u0 ≤ u ≤ u1, r0 ≤ r ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π (with
φ = φ+ 2π) all the metric functions and other quantities of interest are expanded in inverse
powers of r,

2) Over a characteristic, the metric functions behave asymptotically as

lim
r→∞

U = 1 , lim
r→∞

rWA = lim
r→∞

β = 0 lim
r→∞

hAB = γAB(x) (5.2.1)

where γAB is the round metric on S2.

The topological restrictions, as observed by Sachs, follow from the assumed range of coordinates
and the form of the asymptotic metric, but nothing is implied about the topology at r < r0.

These conditions were adapted by Tanabe and collaborators [70] to solve the Bondi-Sachs problem
in any dimension d > 4. To unify the discussion and stress the role of hAB we summarise the
asymptotic conditions as

1’) Asymptotically the base space of the null rays is Sd−2. The metric functions and other
quantities of interest are expanded in inverse integer powers of r in even spacetime dimensions
and half-integer powers in odd spacetime dimensions. The falloff of hAB is taken to be

hAB − γAB = O(r
2−d

2 ), (5.2.2)

2’) Condition 2) holds with γAB being the round sphere metric on Sd−2.

The necessity of half-integer powers in odd dimensions does not come as a surprise after (5.1.9):
3This result is in fact independent of the guage provided that the integration scheme is modified [190].
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if we arbitrarily set half-integer powers to zero we miss a free integration function, which is in
hindsight the most important piece of information we have. However, the behaviour (5.2.2) was
imposed in [58, 69, 70] before solving the equations on the basis of two different arguments. In
d = 4 it is consistent with i) Bondi orginal approach in which the decay of hAB was fixed by
continuity with Weyl solutions in a radiative/non radiative transition, ii) many exact solutions of
Einstein’s equations (cfr. [58] p.110), iii) massless fields in Minkowski space. In d > 4 the authors
of [69, 70] were led to (5.2.2) by consistency with the asymptotic behaviour of massless fields in
Minkowski4. Notice that this condition is consistent with (5.1.9) as long as all the terms of order
r−p in ỹAB with p ∈ (0, 2−d

2 ) are zero.

With the given boundary conditions the metric behaves at infinity as

ds2 ≈ −du2 − 2dudr + r2γABdx
AdxB + subleading, (5.2.3)

and hence we will call (5.2.1) Minkowski boundary conditions and the falloff in 1’) as radiative falloff
as they are consistent with linearised radiation. Spacetimes whose metrics can be cast in Bondi-
Sachs form and satisfy the above boundary conditions are called, in this thesis, asymptotically
Minkowski.

In any spacetime dimensions, with the given boundary conditions the main equations are solved
by [70]

β =
β(d−2)

rd−2 + . . . , U = 1−
U(d−3)

rd−3 + · · · , WA =
WA

( d2 )

r
d
2

+ · · ·+
WA

(d−1)

rd−1 + · · · , (5.2.4)

where the dots represent the orders at the powers following from those shown according to the
conventions above. All the terms in the expansions are functions of (u, xA). The function β is
completely determined by hAB , as well as the coefficients of the expansion of U and WA up to
the order where the integration functions appear. The subleading orders in such expansions are
determined by the integration functions as well. It is customary to rename the free function U(d−2)

U(d−3) = 2
(d− 2)Ωd−2

m (5.2.5)

(with a factor of κ2 to reinstate the gravitational constant) to stress that it is associated with the
mass of the spacetime, Ωd−2 is the unit sphere solid angle. It is called Bondi mass aspect. The free
function generically appearing in the expression of WA

(d−1) also deserves a name: Bondi angular
momentum aspect.

The mass and the angular momentum aspects satisfy respectivelty two evolution equations in u,
obtained from the supplementary equations. Here we state the result in d = 4 as we only need this
in the following

∂um = 1
4DADBN

AB − 1
8NABN

AB . (5.2.6)

∂uWA = DAm+ 1
4(DBDADCC

BC −D2DCCCA) + 1
4DB(NBCCCA + 2DBN

BCCCA) . (5.2.7)

4The details of the analysis of the Green functions for the d-dimensional wave equations can be found
in the book [225]
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We have defined NAB := ∂uCAB , with CAB the first correction to γAB appearing at order r−1. In
higher dimensions similar equations holds and CAB is at order r−(d−2)/2. This object is responsible
of the non-conservation of the mass of the system. For this reason, NAB is given the name of the
news tensor. As opposed to the mass aspect, the angular momentum aspect is not constant when
NAB = 0. DA denotes the covariant derivative on S2 compatible with γAB .

Notice that the names here given are only justified after the full analysis of charges is completed
and a physical meaning to these quantities is given. We note however that the mass aspect appears
at the appropriate order for a mass parameter and that CAB is traceless due to the determinant
condition defining the gauge. Hence - being also symmetric - CAB contains the right number of
degrees of freedom of the gravitational field. When we discuss more general boundary conditions
in later chapters we will see that these identifications are generically modified.

As a last comment, we point out that the name given to the falloff conditions reflects that they
correspond to the linearised behaviour of massless fields in Minkowski space. Despite the hints,
before having sound results on the global gravitational charges, we cannot claim that this cor-
responds to a physical admissible situation in the full non-linear setting. Bondi’s breakthrough
was to discover that the mass aspect gives rise to a mass which is correctly decreasing in time, as
expected if the system is supposed to lose energy by gravitational radiation, and which remains
positive [226, 227, 228, 229, 230]. Thanks to this, the approach suitably describes the physically
oriented notion of asymptotic flatness as a gravitational isolated system (with zero cosmological
constant). Tanabe, Kinoshita and Shiromizu (TKS from now on) [69, 70] provided in higher di-
mensions the most straightforward generalisation of Bondi-Sachs analysis. However, it is to be
noted that already Sachs realised that the given boundary conditions are perhaps too restrictive.
Quoting from Sachs [58]

They do not constitute a set of independent assumptions; moreover, no clear dis-
tinction has been made between topological assumptions, metrical restrictions, and
co-ordinate conventions.

We can notice in this regard that the definition of asymptotic flatness via conformal methods in
d = 4 does not imply that a spacetime is asymptotically Minkowski (see Appendix A) and no a
priori topological restrictions are made on the null boundary. In particular, the null boundary must
be complete and topologically R × S2 for an asymptotically flat spacetime to be asymptotically
Minkowski. Suitable definitions of radiative asymptotically Minkowski spacetimes in higher even
dimensions have also been given via conformal methods [66, 68] and they do correspond to TKS. For
odd dimensions, there is no possible conformal definition of radiative asymptotically flat spacetimes
because the conformal factor cannot be smooth [67].

Remarks

To be precise, we may further distinguish between non-polyhmogeneous and polyhomogeneous
asymptotically Minkowski spacetimes. The requirement of an inverse power expansion is not
innocuous. The field equations RrA = 0 and gABRAB = 0 are solved with two integrations in r,
which give rise to terms of the form r1−d log r in WA and r3−d log r in U . Once these logarithmic
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terms are generated, they propagate down in the asymptotic expansion. An expansion containing
both powers and logarithms is called polyhomogeneous.

Bondi and Sachs argued against logarithmic terms using causality arguments, which have been
later dismissed as incorrect [143, 231]. Such requirements implied the absence in the expansion
of hAB of the terms giving rise to powers of r−2 in the double integrals of the aforementioned
equations. In particular, in d = 4, 5 this implies that h(2)AB is set to zero as a definition of the
configuration space, in d = 6 h(4)AB and so on in higher dimensions. The freedom left by the
integration scheme on hAB suggested the authors of [143] to directly feed the integration with a
polyhomogeneous hAB .

Non-polyhomogeneous four-dimensional spacetimes satisfy the so-called peeling property of the
Weyl tensor (see for example [56]) while non-polyhomogeneous spacetimes do not [232, 143, 231].
The peeling property of higher dimensional asymptotically Minkowski spacetimes in the Bondi-
TKS formulation has been studied in [233].

Here we stress that the general relativity community now regards the peeling property of four-
dimensional spacetimes as highly restrictive and unjustified. For example, the rigorous Christodoulou-
Klainerman’s results on the nonlinear stability of Minkowski spacetime [232, 143] breaks this
property. BMS charges for non-peeling four-dimensional spacetimes have been studied recently
in [234]. In the remaining of this chapter and the next we will consider spacetimes with non-
polyhomogeneous hAB but possibly polyhomogeneous WA and U . In the last chapter we will
briefly consider also a polyhomogeneous hAB .

5.3 Asymptotic Killing vectors

The asymptotic Killing vectors5 are found by solving the gauge preserving conditions

Lξgrr = 0 , LξgrA = 0 , gABLξgAB = 0, (5.3.1)

and the falloff conditions

Lξguu = O

(
1
r

)
, Lξgur = O

(
1
r2

)
, LξguA = O(1), LξgAB = O (r) . (5.3.2)

For the general d-dimensional case the gauge preserving conditions remain the same, but the falloff
preserving equations become

Lξguu = O(r−d/2+1), Lξgur = O(r−d+2), LξguA = O(r−d/2+2), (5.3.3)

LξgAB = O(r−d/2+3) (5.3.4)

5As usual in the litearture we also give the bulk component of them, but on I it is subleading.
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The exact Killing equations determine the general form of ξ

ξ = ξu∂u + ξr∂r + ξA∂A −→


ξu = f(u, xA) ,

ξr = − r

n− 2
[
DAξ

A −WC∂Cf
]
,

ξA = Y A(u, xB)− ∂Bf
∫∞
r
dRe2βgAB ,

(5.3.5)

in terms of two integration functions f(u, xA) and Y A(u, xB), whose behaviour is determined by
the asymptotic Killing equations (5.3.2) or (5.3.3) and crucially depends on the dimensionality of
spacetime. At null infinity the Killing field reduces to ξ(α,Y ) = ξu∂u+ξA∂A and in what follows we
are going to restrict to this. The notation ξ(α,Y ) is useful to recall that there is a different vector
field for each choice of the pair (α, Y ); sometimes only the pair is used instead of ξ(α,Y ).

The falloff preserving conditions must be solved order by order, by expanding the left hand side in
(5.3.3) and setting to zero the terms of order greater than that indicated on the right hand side. In
any dimension, from the first of (5.3.3) at order r and the second at order r0 we get - respectively
- the constraints

Y A = Y A(u), f(u, xA) = α(xA) + u

n− 2F (xA), F (xB) = DAY
A. (5.3.6)

Y A is determined to be a conformal Killing vector on Sd−2 from the vanishing of the order r2 term
in (5.3.4), namely

LY γAB := DAYB +DBYA = 1
d− 2γABDCY

C . (5.3.7)

The function α is either

- an arbitrary function of the angles of S2 when d = 4, so that it can be expanded in an
arbitrary number of scalar spherical harmonics

α = tµnµ +
∞∑
l=2

∑
m

αml Yml , (5.3.8)

where Yml denotes the harmonics, tµ = (t0, ti) and nµ are l < 2 scalar harmonics (1, sin θ cosφ, sin θ sinφ, cos θ),
or

- any combination of l = 0, 1 scalar harmonics on Sd−2 when d > 4: α = tµnµ.

Thus, ξ(α,0) generates translations in d > 4 and an infinite-dimensional extension of them (super-
translations) in d = 4.

These facts, are a direct consequence of the gAB fall-off condition (5.2.2) and the related Killing
equation, (5.3.4). Indeed, for any d ≥ 4, (5.3.4) is of the form

LξgAB = G(2)AB(u, xA)r2 +G(1)AB(u, xA)r +O(r−d/2−3) (5.3.9)

and G(2)AB = 0 implies (5.3.7). As a consequence of G(1)AB = 0 - to be imposed in d > 4 but not
in d = 4 - α must satisfy

(d− 2)DADBα = γABD
2α, (5.3.10)
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in d > 4 and it is free in d = 4. The solution of (5.3.10) is as stated previously.

We now turn our attention to Y A. From the so-called Liouville theorem we know that the algebra
of conformal transformations in d− 2 > 2 is finite dimensional, while when d = 2 it gets enhanced
to the infinite dimensional Witt algebra whose generators are only locally defined [235]. If we adopt
stereographic coordinates z = eiφ cot θ, z̄ = e−iφ cot θ on S2 so that γABdxAdxB = 4(1+zz̄)−2dzdz̄,
(5.3.7) splits in two equations for the components Y z, Y z̄

∂z̄Y
z = 0, ∂zY

z̄ = 0. (5.3.11)

Y z and Y z̄ are respectively holomorphic and antiholomorphic and can be Laurent expanded in a
basis of lm = −zm+1∂z, m ∈ Z, and the complex conjugate. The algebra of conformal Killing fields
on S2 is thus the sum of two copies of the Witt algebra witt⊕witt

[lm, ln] = (m− n)lm+n , [l̄m, l̄n] = (m− n)lm−n , [lm, l̄n] = 0. (5.3.12)

Only six of these vector fields {lm, l̄m}(m=0,±1) are globally well defined and generate an invertible
group of transformations, which is the well-known group of Möbius transformations isomorphic to
SL(2,C)/Z and, in turn, to the orthocronous Lorentz group L↑+ = SO(1, 3)↑. The isomorphism
between the global conformal group in d − 2 dimensions and the Lorentz group in d dimensions
holds also for d > 2.

Bondi and Sachs, originally assumed that the Y A were globally well-defined. With this choice their
definition of the BMS algebra is

bmsglob4 = l↑+ ⊕s st, (5.3.13)

where ⊕s denotes the semidirect sum, st the abelian normal subalgebra of supertranslations, l↑+
the Lorentz algebra. This algebra is easily exponentiated to the global BMS group

BMSglob
4 = L↑+ n ST (5.3.14)

whose elements transform u and xA as

u→ u′ = K−1(x)(u+ f(x)), xA → x′A(x), (5.3.15)

where K is the conformal factor in the transformation of angular coordinates and f is the arbitrary
finite supertranslation.

BT-superrotations are instead obtained by taking Y A meromorphic and thus we get

bmsloc4 = sr⊕s st, sr = witt×witt (5.3.16)

as stated in (4.0.4). For consistency in this case also supertranslations α(z, z̄) have to be expanded
as Laurent series, rather than spherical harmonics, and their expansion is αm,n = (1 + zz̄)−1zmz̄n

(see [63] for details). The mode expanded form of the bmsloc4 algebra is given by (5.3.12) plus the
following commutators

[lj , αm,n] =
(
j + 1

2 −m
)
αm+j,n , [l̄j , αm,n] =

(
j + 1

2 − n
)
αm,n+j . (5.3.17)
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The subalgebra spanned by αm,n, lj , l̄k with the pair m,n acquiring all possible combinations of
(0, 1) and j, k = 0,±1 is the Poincaré algebra. Possible central extensions of the bmsloc4 algebra
have been studied [63, 236, 205]. For completeness let us state the non-mode expanded form for
the commutator of the Killing vectors ξ(α,Y ) restricted to null infinity

[ξ(α1,Y1), ξ(α2,Y2)] = ξ(α3,Y3), (5.3.18)

α3 = Y A1 ∂Aα2 + 1
2α1DAY

A
2 − (1↔ 2), Y A3 = Y B1 DBY

A
2 − (1↔ 2). (5.3.19)

With a slight modification of the brackets the algebra can also be faithfully represented in the
whole bulk [60].

In higher dimensions, instead, the BMS algebra (and group) is reduced to Poincaré

L↑+ n T = ISO(1, d− 2), (5.3.20)

by two effects: the choice of radiative falloff conditions (removing supertranslations) and the
mathematical obstruction given by the Liouville theorem on conformal transformations.

This reduction of the symmetry group prevents Weinberg soft theorem to be found from asymptotic
symmetries. In order to obtain supertranslations in higher dimensions, one can question the
orthodox choice of asymptotic conditions and explore weaker conditions. Chapter 8 is mainly
devoted to this aspect.

5.4 BT & CL superrotations: extending the asymptotics

How can the Diff(S2) transformations (superrotation) proposed by Campiglia and Laddha be
obtained?

They cannot be accommodated within the given boundary conditions because (5.3.4) forces the Kil-
lig vector on S2 to be conformal. Campiglia and Laddha thus argued for extending the asymptotic
condition on hAB to

lim
r→∞

hAB(u, r, x) = h(0)AB(x), deth(0)AB = q (5.4.1)

where h(0)AB is kept free to fluctuate but the determinant is fixed by the requirements of Bondi-
Sachs gauge.

With such condition, (5.3.4) does not apply anymore and instead we have

LξgAB = O(r2), (5.4.2)

which is automatically satisfied and so does not place any constraint on Y A(x), which is now a
smooth vector field.

BT-superrotations also need a non-trivial reconsideration of the boundary conditions. Indeed, such
transformations are singular on S2. (5.3.7) becomes singular at the location of the singularities of
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Y (for example take Y z = z−1) and this singularity is reflected in the bulk expansion of the metric.
It can be interpreted in terms of topological defects, as we are going to discuss in Section 7.2.

In chapter 6 we are going to see the effects of such singularities on the charges. Similarly, CL-
superrotations will be affected by other issues at the level of charges.



CHAPTER 6

BMS4 charges and the infrared triangle

We briefly discuss the supertranslation and superrotation charges in d = 4 and highlight the issues
of the latter. We then move to build the phase space compatible with supertranslations and discuss
an instance of the infrared triangle to exemplify.

6.1 Charges and fluxes

6.1.1 Heuristics

Consider the Bondi mass aspect m, on a given null hypersurface u = u∗. It can be integrated over
the angles and the resulting function is the Bondi mass, representing the mass of the spacetime at
a given u instant1

M := 1
4πG

∫
∂Σ
d2Ωm, (6.1.1)

where we denote d2Ω the integration measure on S2. The mass/energy is the charge associated to
time translation symmetry. Pure time translations are generated by the vector field ξ(α,Y ), given
in Section 3.2.1, with α = 1 and Y A = 0. The other three spatial translations are given by α = tini

(cfr. 5.3.8), hence we can define analogously a Bondi linear momentum P i. Then, we are allowed
to guess that for each α defining a generic supertranslation (Y A = 0) we can associate a charge as

1
4πG

∫
∂Σ
d2Ωα(x)m(u, x) . (6.1.2)

1In this chapter we explicitly write κ2 = 8πG.
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The charges associated to the BMS symmetry are not conserved because of fluxes of them through
null infinity. Let us check this considering the Bondi mass. The Bondi mass aspect m satisfies the
evolution equation (5.2.6), hence the Bondi mass satisfies

∂uM = 1
32πG

∫
∂Σ
d2Ω

[
2DADBN

AB −NABNAB
]
. (6.1.3)

If we discard boundary terms we get the famous Bondi mass loss equation

∂uM = − 1
32πG

∫
∂Σ
d2ΩNABNAB ≤ 0, (6.1.4)

stating that M is a monotonically decreasing function of time u. This eventually fully justify the
interpretation of M as the mass of the spacetime (in a fully general relativistic context!) and the
names given to m and NAB in chapter 5. Equations (6.1.3), (6.1.4) can be integrated in the u
direction between two points ui and uf and the resulting object is the flux of energy radiated
through this section I of null infinity by gravity waves2

∆M = 1
32πG

∫
I

dud2Ω
[
2DADBN

AB −NABNAB
]

=: −
∫
I

dudΩ2F (6.1.5)

with ∆M = M |I+ −M |I− , I± denote the upper/lower boundary of I along the u direction. Notice
in particular that assuming that M |I+ = 0 (i.e. all mass is radiated away) we get the remarkable
equality of M |I− with the flux.

For generic α the flux formula is given by (6.1.3) with M replaced by Qα and α inserted before
the square brackets (because it is u-independent).

6.1.2 Rigour

With intuition driven by the mass aspect, we have obtained the flux integrating the putative charge
along u.

In Section 3.3.5 we saw that the Wald-Zoupas formalism prescribes a flux formula for any asymp-
totic symmetry vector field ξ and its associated charge of the form

QI+
ξ −Q

I−
ξ := ∆IQξ = −

∫
I

F , (6.1.6)

where the charge for a general asymptotic Killing ξ(α,Y ) in the bmsglob4 reads as

Qξ = 1
16πG

∫
∂Σ
d2Ω

[
4αm+ Y AZA

]
, (6.1.7)

with ZA = ZA[m,CAB , NA] a suitable smooth covariant vector whose explicit form is not relevant
here. The explicit expressions can be found in [237].

Equation (6.1.6) can be understood as a consistency check on the charge (6.1.7), namely the
2Also null matter can be considered and a term proportional to Tuu appears.
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difference in charges on two cuts must be equal to the integral of the form F on I. This works for
the supertanslations ξα and for the Lorentz part ξY (glob) of the global BMS. For example, in the
case of pure supertranslations

F α = 1
32πGdud

2ΩNABLαCAB , (6.1.8)

where
LαCAB = αNAB − 2DADBα+ γABD

2α , (6.1.9)

is how CAB transforms under a supertranslation.

However, Wald-Zoupas prescription does not work for generic BT superrotations ξY (BT). In this
case there is a discrepancy of the form [237]

−
∫
I

F = ∆IQξY (BT) + ∆IF , (6.1.10)

meaning that for superrotations the charge formula (6.1.7) and the flux formula (6.1.6) prescribed
by Wald and Zoupas are not consistent.

As pointed out by Flanagan and Nichols [237], this discrepancy hints that BT-superrotations are
not true asymptotic symmetry vectors of asymptotically flat spacetimes. Indeed, the Wald-Zoupas
prescription was explicitly tailored to vector fields in bmsglob4 . It is not possible to consider BT-
superrotations to be part of the asymptotic symmetries of (the standard notion of) asymptotically
flat spacetimes3. They act on an enlarged phase space, an expectation first exemplified in [239]
and reviewed in Section 7.2.

The situation is apparently worse for CL-superrotations. The symplectic forms θ, ω are divergent
[156]. In particular

θu = rθudiv + θufin + r−1θusub +O(r−2), θudiv ∝ δ
√
q = 0 (6.1.11)

θr = rθrdiv + θrfin +O(r−1), (6.1.12)

where the choice of components is motivated by the fact that asymptotically the coordinates behave
as t = r + u and we reach I + by taking t → ∞ with u fixed4. The leading order pieces (notice
that also the finite parts above are problematic since we have to integrate to get the charge) can
be renormalized using the ambiguity a) of Section 3.3.6. Indeed, they can be written as a total
derivative. See [156] for details.

However, as pointed out in [157], such a regularization suffers from fundamental drawbacks. The
resulting symplectic current ω cannot be renormalized by local and covariant redefinitions. Hence
the resulting charges are ill-defined. The authors of [157] suggest however that a loophole in their
argument is the requirement of covariance of θ and ω at any step of the computation (compare
with the paragraph Ambiguities in Section 3.3.6) and that it may be relaxed without affecting the
covariance of the charge, thus bypassing their no-go theorem. Such comments are relevant in the
discussion of charges in higher dimensions we initiate in the last chapter of the thesis.

3In [238] they are named external symmetries.
4Alternatively we can select a r = const surface and send it to infinity.
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6.1.3 The phase space of supertranslated spacetimes

Wald-Zoupas fluxes can be integrated over all of I +. This is going to represent the total charge
radiated off from null infinity, for example the total energy. Physically reasonable spacetimes emits
only a finite amount of energy or, in general, charge. Hence a crucial requirement is the flux ∆∞Qα
to be finite. This is true as long as the news tensor satisfies

lim
|u|→∞

NAB ≈ |u|−εN , εN > 1 , (6.1.13)

namely does not develop logarithmic u terms in its evolution. The same goes for QY provided Y is
the globally well defined vector. This fall-off condition along the u direction, implies from (5.2.7),
that only the electric parity piece of CAB is non zero5 at I +

− (I +
± is a standard notation to denote

the past and future regions of I +)

CeAB = (DADB −
1
2γABD

2)C , (6.1.14)

where C is a scalar function. The solution of this equation gives the initial value of C at u→ −∞
which we denote as C|I +

−
. Under these conditions, we can parametrize the space of solutions with

{m|I +
−
, C|I +

−
, NAB ;WA

(3)|I +
−
}. We have also inserted the second order field WA

(3) but it will not
play any role here.

We can define, for later purposes,∫ +∞

−∞
duNAB =

∫ +∞

−∞
du∂uCAB = ∆∞CAB := (DADB −

1
2γABD

2)N, (6.1.15)

the latter following from the property (6.1.14) of CAB in the non-radiative to non-radiative tran-
sition we are considering. We are defining N := ∆∞C.

BMS supertranslations act on the fields as

LαNAB = α∂uNAB , LαCAB = αNAB − 2DADBα+ γABD
2α , (6.1.16)

4Lαm = 4α∂um+NABDADBα+ 2DAN
ABDBα , LαC = α.

The last one is obtained by comparing (6.1.14) to LαCAB and we do not show the long expression
for LαNA as we are not interested in that now.

These should be realised canonically on the phase space, which is to be built on the space of
solutions to preserve covariance.

Despite not apparent from the discussion in Section 3.3, the natural phase space of asymptotically
flat spacetimes is to be built on the whole of I + (resp. I −). This means that the symplectic
form Ω is given as an integral of ω over I rather than over a slice Σ as we discussed in Section 3.3.

5The tensor CAB on S2, being traceless and symmetric, can be decomposed into electric and magnetic
parity parts CAB = CeAB + CmAB where CeAB is given by (6.1.14) and CmAB = εE(ADB)D

ECm. Notice that
the l = 0, 1 harmonics of Cm can be set to zero because they are annihilated by εE(ADB)D

E as they should
because of symmetry. From (5.2.7) the magnetic part must satisfy (D2 + (D2)2/2)Cm = 0 which implies
that Cm = 0. See for example [237].



6.1. Charges and fluxes 85

In practice, one builds it on Σ and takes a limit to I . The construction was first provided by A.
Ashtekar [141, 240, 241] in his effort toward an asymptotic quantization of the gravitational field,
using the conformal definition of d = 4 asymptotically flat spacetimes. We did not follow this route
because Ashtekar’s construction is tied to6 d = 4. It suffices to note, from Section 3.3.5, that the
Wald-Zoupas flux integrated over the whole of I + exactly provides such symplectic structure.

Wald-Zoupas fluxes are (minus) Ashtekar’s Hamiltonians and with abuse of notation we can use
the same symbol Qξ to denote both quantities. To motivate this consider QI+

ξ = 0 as I+ → i0 in
(6.1.6). From these comments and those after (6.1.5) we have motivated the following statement,
whose proof can be found in [199]: the charge

Qα = 1
32πG

∫
I +

dud2Ωα(x)
[
2DADBN

AB −NABNAB
]

=: Q∂α +Qbα. (6.1.17)

generates the BMS transformations on the phase space

{Qα, NAB} = LαNAB , {Qα, CAB} = LαCAB , {Qα, C} = LαC. (6.1.18)

to which we can also add {Qα, N} = 0. We have explicitly separated in the charge a boundary Q∂α
and a bulk Qbα term. Using the above definitions we find

Q∂α = 1
16πG

∫
I +

du d2Ωα(x)DADBNAB =
∫

d2Ωα(x)DADB∆∞CAB (6.1.19)

or7

Q∂α =
∫

d2Ωα(x)
(
D2 + (D2)2

2

)
N (6.1.20)

The boundary piece acts trivially on the classical phase space {Q∂α, NAB} = 0: it does not con-
tribute classically to the change of solution.

Suppose having a vacuum non radiative configuration m = CAB = NAB = 0. From this Minkowski
configuration, a BMS supertranslation changes CAB by the inhomogeneous term in LαCAB . Since
supertranslations commute with time translations, asymptotically flat gravity is characterised by
a manifold of degenerate vacua (m = NAB = CAB = 0), each of which characterised by a different
value of C. The supertranslation invariance is broken by the fixing of a particular C. Since the
term (DADB − γABD2/2)α responsible for the breaking is annihilated by l = 0, 1 modes, pure
translations are not broken.

The field C is interpreted as a Goldstone boson for the breaking of the supertranslation symmetry
and upon quantization, the soft term can be shown to be the zero frequency limit of a metric
perturbation, hence a soft graviton [43]. Schematically, working in momentum space on the celestial
sphere

CAB ∼
∫

dω(a+e
−iωu + a†−e

iωu) (6.1.21)

where for a given momentum p we have ω = p2 and a+, a− are the correspoding Fock operators.
6It should be possible to extend it to any even d following the conformal definitions of asymptotic

flatness provided in [66], but we are not aware of any work in this direction. In any case, for the final
purpose of this dissertation, this route is not viable.

7The expressions are somewhat more transparent in stereographic coordinates as in [43, 199].
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We also have NAB defined as the Fourier transform in u of (6.1.15), so that with some passages
to be found in [199] we get

(DADB −
1
2γABD

2)N ∼ lim
ω→0

NAB(ω) (6.1.22)

In other words, the breaking of the symmetry is characterised by the insertion of soft gravitons.

We would like to point out, for historic completeness, that the asymptotic quantization program
was aimed at quantizing the algebra of NAB , which is named the observable algebra as only NAB
is directly related to i.e. the Bondi mass loss. In a formal treatment of null infinity, NAB is
understood as the curvature of a connection (which is nothing but the shear tensor) on the phase
space [240, 241, 242]. We here motivate this by referring to the physical meaning of NABNAB and
keeping in mind the known example of Maxwell theory, where Fµν plays the same role. The steps
summarised before, instead, correspond to the quantization of the algebra of CAB , first done in
[199].

All these observations are formalized by Ashtekar’s asymptotic quantization, recently reviewed
within this contemporary view in [242], to which we refer the reader. Here, as well as in the
early lectures [241], the role of N is clarified from the representation theory point of view: a Fock
representation of the observable algebra is possible if N = 0 but not if N 6= 0. If N = 0 the BMS
algebra is realized à la Wigner, i.e. there is no spontaneous breaking. We will see further evidence
of this point with the classical phenomenon of gravitational wave memories.

6.2 An instance of infrared triangle

We summarise the supertranslation phenomenology leading historically to the conjecture of the
first infrared triangle.

6.2.1 Gravitational memory effects

A supertranslation can be considered responsible for a (displacement) gravitational memory effect
[216], a long known general relativistic effect which the new gravitational interferometers may be
able to measure in the next future.

The displacement memory effect is the permanent displacement of two observers after the passage
of a finite burst of gravitational waves8.

The final proper distance between two observers9 that experience the passage of a gravity wave
8Historically the distinction between linear [211] and non-linear memory effect [212] was made and they

were considered two separate effects: the first due to the emission process of the radiation and the second
due to the full non-linearity of Einstein’s gravity, with no reference to the emission process. However there
may be not such a sharp distinction [213, 214, 72].

9In the BMS setting they are not inertial because they travel close to the boundary of spacetime along
at fixed u and at two different angles.
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only in the interval uf − ui shifts, with respect to the initial value, by an amount ∆L = |Lf − Li|
depending only on ∆CAB between the two null times [216, 154].

Let us take two observers travelling along timelike directions in positions (r0, x
A) and (r0, x

A+δxA)
with r0 large and with velocity vµ approximately equal to vµ = (1,~0) and v2 = −1. The separation
vecotr Lµ = (0, δxA) between the two geodesics satisfy the geodesic deviation equation

D2Lµ

dτ2 = −RµνρσvνvρLσ ⇒ ∂2
uL

B = −RBuuAvuvuLA (6.2.1)

using the solution for the metric and the Christoffel symbols one checks that

RBuuA = r

2∂
2
uCAB (6.2.2)

so that integrating we get
∆LA = 1

2r∆CABLB , (6.2.3)

where ∆ denotes the difference between the initial and the final values and LA = γABL
B . This

expression can then be written in terms of ∆L.

As we have seen, ∆CAB can be generated by a BMS supertranslation and hence the memory can be
read off from the supertranslation charges [237]. From the Bondi mass aspect evolution equation
(5.2.6) we get

∆m = 1
4D

ADB∆CAB −
1
8

∫ uf

ui

NABN
AB (6.2.4)

and the change in CAB can be addressed respectively to a change of mass or a passage of gravi-
tational waves (as we supposed before). The first effect is called ordinary (or linear) memory, the
second is called non-linear (or null) memory. Also null matter contributes to the latter (if we solve
Einstein’s equations with an energy-momentum tensor Tµν with appropriate decay, the integrand
above contains Tuu).

This is a beautiful way to exemplify vacuum degeneracy: two observers initially at a distance L
in Minkowski space are perturbed by the passage of gravity waves. Their final distance, after the
train is passed, is shifted by ∆L even if the spacetime is back to Minkowski: it is not the same
Minkowski as before because of the shift in CAB . In the asymptotic limit (along u) ∆∞CAB = N .

Similar considerations have led to the conjecture of the existence of a spin memory effect which is
related to BT superrotations [202, 243, 244, 245] as well as other memories [156]. See Section 7.2
on this.

6.2.2 Christodoulou-Klainerman spacetimes and scattering

All the discussion on I + can be translated in a Bondi gauge appropriate to I −, which is charac-
terised by an advanced Bondi time v. Two distinct copies BMS+ and BMS− of the BMS group
act respectively on I + and I −. To get a unique symmetry group acting at the same time on the
whole of I = I + ∪I − the null generators of the two disjoint components of null infinity have to
be matched.
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This is done in practice via an antipodal identification of points of the spheres at past and future null
infinity, so to define a continuity condition between the asymptotic fields near i0. This matching
condition is always possible in Minkowski spacetime [140], because any null geodesic originating
from a point p− of coordinates (θ, φ) on I − will end to the point q+ of coordinates (θ− π, φ+ π)
on I + upon the identification u = −v. In stereographic coordinates on the spheres, the antipodal
identification is conveniently written as zz̄ = −1.

However, for general AF spacetime, the matching is not obvious. We have already restricted the
fields on I + so that they do not develop logarithmic terms in u as they approach i0. The same
requirement can be imposed on the fields on I −.

Are there physically meaningful spacetimes corresponding to this requirement? There is at least a
class: Christodoulou-Klainerman (CK) spacetimes [232]. They are characterised by εN = 3/2 (see
(6.1.13)) [43]. CK spacetimes are arbitrarily close to Minkowski spacetime (in a mathematically
well-defined sense), are above the threshold for the formation of black holes and are characterised
by m|I +

+
= 0, M |I +

−
= MADM , so that they radiate all their energy10.

On the matched I + and I −, the field CAB at x can be given the same value of11 C−AB evaluated
at an antipodal point x̃ on S2: CAB(x)|I +

−
= C−AB(x̃)|I−+ and the generators of BMS0 can

be identified with the subset of generators of BMS+ × BMS− satisfying α(x) = α−(x̃) and
Y A(x) = Y A− (x̃). The subgroup of BMS+ × BMS− satisfying these conditions is the sought
diagonal BMS0.

Once the fields are antipodally identified, the charges can be antipodally identified so that we also
obtain equality of fluxes along I + and I −.

We are in the position to state the conjecture of the BMS invariance of the S-matrix. In particular,
restricting to supertranslations this condition is written as

〈out| [Q+
αS − SQ−α ] |in〉 = 0. (6.2.5)

To get this, one observes that supertranslation charges on I + commute with those on I − because
the supertranslations do not affect each other: {Q+

α ,Q−α−} = 0. Thinking of the S matrix as the
exponential of the time evolution operator (the usual Hamiltonian), the claim is made that it
commutes with Qα when α = 1 because in such a case Q1|I→i0 = MADM is the “Hamiltonian” of
the system [43]. From these observations, the conjecture follows that for any α we have

{Qα, S} = 0 (6.2.6)

where it is understood that the operators act on initial and final data (we use curly brakets as the
same considerations apply at the classical level). This brings to (6.2.5).

10Spacetimes allowing for black holes with both massless and massive final states have been considered in
recent BMS literature (see [154] and references therein). More in general, it seems that the only condition
necessary to the matching is that the spacetimes evolve from a non-radiative (NAB = 0) to a non-radiative
configuration both at early and late advanced/retarded Bondi times, but no rigorous statements exist on
these points at the moment.

11Quantities on I− are denoted as f−, later on we denote quantities on I + with the superscript +,
but this is not necessary.
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The full equivalence of (6.2.5) to the Weinberg soft theorems is shown in [199] and it is based on
the fact that the charge can be split in hard and soft parts

{Qα, S} = {Q∂α, S}+ {Qbα, S} (6.2.7)

A nice, somewhat different from [199], derivation of the soft theorems can be found in [201].
Further rigorous details on the perturbative realization of this theorem and the constraints that
(6.2.6) implies can be found in [242].

Here we conclude with a couple of comments. First of all, these ideas are compatible with the
statements in chapter 4 that the relevant holographic relations come from the cross sections of
I . Indeed, the first step toward the S-matrix analysis is realizing that the in and out states
in (6.2.5) are represented on the cuts of I because they are labelled by the collection of points
from which particles enter or exit the spacetime and their energies (assume no spin for simplicity):
|in〉 = |Z,EZ〉 and |out〉 = |W,EW 〉, where Z = {z1, ..., zk} andW = {w1, ..., wk} are the collection
of points on I −, I + respectively and EZ , EW the energies of the corresponding particles.

We also draw the attention to an early observation by Ashtekar [246], who pointed out that CK
spacetimes do not, in fact, provide any evidence that the S-matrix is invariant under (diagonal)
supertranslations because the associated antipodally identified charges vanish identically. For this
reason and also because soft theorems are indeed established via other means, it is necessary to find
other well-defined classes of spacetimes which do not trivialize the charges. Recently, K. Prabhu
[247] discussed the case of spacetimes where εN = 1+ε 6= 3/2 and showed that the supertranslation
charges are not trivialized. There is however no proof that realistic spacetimes satisfy this condition.
On the other hand, other proofs of stability of Minkowski spacetimes uses εN = 1/2(+ε) [248, 249]
(polyhomogeneous spacetimes) but do not provide any proof that supertranslation charges are well
defined. Given all these subtleties with the easiest case of supertranslations, it seems appropriate
to be optimistically cautious about superrotations, which are affected by issues in the charges
before the imposition of matching conditions. We will however be bolder in the next two chapters
and move to higher dimensions and superrotations.
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CHAPTER 7

Cosmic branes and asymptotic structure

Superrotations of asymptotically flat spacetimes in four dimensions can be interpreted in terms of
including cosmic strings within the phase space of allowed solutions. In this chapter we explore the
implications of the inclusion of cosmic branes on the asymptotic structure of vacuum spacetimes
in dimension d > 4. We first show that only cosmic (d − 3)-branes are Riemann flat in the
neighbourhood of the brane, and therefore only branes of such dimension passing through the
celestial sphere can respect asymptotic local flatness. We derive the asymptotically locally flat
boundary conditions associated with including cosmic branes in the phase space of solutions. We
find the asymptotic expansion of vacuum spacetimes in d = 5 with such boundary conditions; the
expansion is polyhomogenous, with logarithmic terms arising at subleading orders in the expansion.
The asymptotically locally flat boundary conditions identified here are associated with an extended
asymptotic symmetry group, which may be relevant to soft scattering theorems and memory effects.

7.1 Introduction

As mentioned in the Introduction, BT-superrotations can be given a physical interpretation. It is
similar to the memory effect interpretation of supertranslations and is due to A. Strominger and
A. Zhiboedov [239]. They argue that the singularities of BT-superrotations are associated with
cosmic strings piercing the celestial sphere. Indeed, local Witt transformations on the celestial
sphere were already discussed in the cosmic string literature [250, 251]. A physical motivation
for allowing general enough boundary conditions for the asymptotic symmetry group to include
BT-superrotations (see Section 5.4) is hence to ensure that one includes in the phase space solu-
tions such as Robinson-Trautman and their impulsive limits (i.e. snapping cosmic strings). The
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construction of such phase spaces was explored in [156]; see also earlier work [252].

The detailed relationship between BT-superrotations/subleading soft theorems and cosmic strings
in four dimensions is not yet complete. In particular, in the derivations of [201] (see footnote
4, chapter 4) a subtle interplay between boundary terms of integrals in the complex plane and
singularities of Y A at z finite and at infinity is pointed out, but it is assumed that the only
singularities of Y A are associated with infinity. However, if more than one cosmic string pierce the
celestial sphere, the corresponding punctures will correspond to singularities at finite points of the
complex plane (see [251]).

This chapter is about boundary conditions and corresponding asymptotic symmetries for asymp-
totically (locally) flat spacetimes in dimensions higher than four.

As we stated in the Introduction, a puzzling feature is that while soft scattering theorems exist in all
spacetime dimensions, the BMS symmetry is not realised within the radiative configuration space
defined in [70] and while Diff(Sd−2) transformations can always be accommodated (provided
they preserve the configuration space), BT-superrotations do not have any algebraic analogue in
spacetime dimensions higher than four.

Following the relation between cosmic strings and superrotations discussed in [239] and summarised
in Section 7.2, we use cosmic branes to define allowed boundary conditions for asymptotically
(locally) flat spacetimes in d > 4. In d = 4 cosmic strings are Riemann flat except at the location
of the string; their metrics are not Riemann flat in the vicinity of the string in higher dimensions.
In Section 7.3 we explore cosmic branes in d > 4, following the original approach of Vilenkin for
cosmic strings [253]. We point out that in d dimensions only cosmic (d − 3)-branes are Riemann
flat in the vicinity of the brane. (Note that there are distributional curvature singularities at the
location of the brane, as for cosmic strings in four dimensions.) Therefore the direct analogue of
cosmic strings in four dimensions is cosmic (d− 3)-branes in d dimensions. Other types of cosmic
branes are not locally Riemann flat near the brane; if such a brane pierces the celestial sphere,
the geometry in the vicinity is not locally Riemann flat, and hence the resulting spacetime is not
asymptotically locally flat.

This observation is consistent with the fact that higher dimensional generalisations of metrics
describing cosmic strings snapping have never been found. For example, in [254] higher-dimensional
generalisations of Robinson-Trautman spacetimes were constructed. There are no type N spherical
gravitational waves in this class and because of this there is no impulsive limit; nor did [254] find an
analogue of the four-dimensional C metric. It would be interesting to explore whether the class of
solutions constructed in [254] could accommodate cosmic branes breaking: this seems quite likely,
as the transverse spatial part of the metric is an arbitrary Riemann Einstein space, just as we find
for our asymptotic solutions described below.

In Section 7.4 we analyse the asymptotic behaviour of cosmic branes, focussing for definiteness on
the example of cosmic membranes in five dimensions. Following analogous discussions to those in
[251, 239], we assume there are processes in which cosmic branes can snap, and infer the associated
boundary conditions. In four dimensions, cosmic string snapping is consistent with asymptotically
flat boundary conditions (except at the location of the punctures). In d > 4, the inclusion of
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snapping cosmic branes in the phase space requires changing the metric at leading asymptotic order
and manifestly introduce asymptotically locally flat boundary conditions, which are summarised
in Section 7.4.4. While for asymptotically flat spacetimes, the metric on the celestial sphere is
asymptotically conformal to the round metric, the asymptotically locally flat boundary conditions
allow for a general metric on the celestial sphere.

In Sections 7.5 and 7.6 we analyse the asymptotic structure of vacuum Einstein solutions with the
weaker, asymptotically locally flat boundary conditions. As in [68, 69, 70, 255], the structure of
the expansion depends on whether the spacetime is of odd or even dimension. For definiteness, we
focus here on the case of five dimensions.

For five dimensional asymptotically locally flat spacetimes, the iterative solution of the main equa-
tions provides a minimal polyhomogeneous expansion, where each metric function is expanded
as

f(r, u, xA) =
∑
i,j

fij(u, xA) lnj r
ri

(7.1.1)

with fij(u, xA) smooth functions of their arguments but almost all j = 0 (this is the quality referred
to as minimal, see next chapter for a specification of these terms).

There are striking analogies between the structure of the five dimensional asymptotically locally
flat spacetimes we have constructed and that of asymptotically locally anti-de Sitter spacetimes
in five dimensions. In both cases the coefficients of the leading logarithm terms are expressed in
terms of derivatives of the non-normalizable data (the boundary conditions). In the case of anti-de
Sitter, the occurrence of logarithmic terms is associated with conformal anomalies in the dual field
theory.

While much of the earlier relativity literature imposed strictly anti-de Sitter boundary conditions,
it is essential to relax these boundary conditions to asymptotically anti-de Sitter in the context
of holography. The generalized boundary condition represents the background metric for the dual
field theory. Even if one is only interested in the dual field theory in a flat background, one
needs to allow the background metric source to vary to compute correlation functions of the stress
energy tensor. As we discuss in sections 7.6 and sections 7.7, it would be interesting to express
five-dimensional asymptotically locally anti-de Sitter solutions in Bondi gauge and take the limit
of zero cosmological constant, to compare with our results here. This is an easy exercise after
chapter 8 .

7.2 BT-Superrotations and cosmic strings

In section 6.1 we mentioned, following [237], that BT-superrotations are incompatible with the
Wald-Zoupas formalism. This suggests that they cannot be interpreted as symmetries on the
phase space of asymptotically flat spacetimes. Rather they act on a larger phase space. This
interpretation was put forward by A. Strominger and A. Zhiboedov in [239].

The larger phase space contains boost-rotation symmetric solutions of Einstein’s equations [256,
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250, 239]. Such spacetimes possess incomplete null infinity in the sense that S2 is missing two
points, thus they are not asymptotically flat or asymptotically Minkowski. Their asymptotic
structure was studied in [257, 258, 252, 256, 250, 259] to explore the isometries compatible with
gravitational radiation (i.e. with asymptotic flatness)1 In fact, BT-superrotations made their first
appearance in this context [250], but they were simply called with their usual name (Witt algebra)
and were not interpreted as symplectic transformations on a phase space.

The simplest example to consider is the single straight cosmic string. Other examples of such
spacetimes are the C-metric and Bonnor-Swaminarayan spacetimes [260]. The line element of a
straight cosmic string in d = 4 spacetime dimensions can be written as

ds2 = −dU2 − 2dUdR+R2(dΘ2 +K2 sin2 Θ2dΦ2) (7.2.1)

where K = 1 − δ characterizes the deficit angle 2πδ and in the weak field limit δ = 4Gµ, with µ
being the mass density of the string. Note that the cosmic string intersects the celestial sphere at
the north and south pole i.e. Θ = 0, π.

In order to show that this is indeed in the configuration space defined by the asymptotically
Minkowski boundary conditions, we have to find an explicit map to the Bondi gauge with coor-
dinates (u, r, θ, π). Under the assumption that it exists, the map must be of the form of a finite
Bondi transformation [250, 57], namely

U = U(0)(u, θ) +
U(−1)(u, θ)

r
+ · · · , (7.2.2)

R = rR(1)(θ) +R(0)(u, θ) + · · · ,

Θ = Θ(0)(θ) +
Θ(−1)(θ)

r
+ · · · ,

Φ = φ (7.2.3)

Here R(1)(θ) and Θ(0)(θ) are necessarily independent of u to preserve the leading radial dependence
of the u components of the metric and by symmetry one can identify Φ = φ.

The equations are to be solved order by order in r. At leading order, we get the match of (7.2.1)
with the Minkowski metric

ds2 = −du2 − 2dudr + r2(dθ2 + sin2 θdφ2) (7.2.4)

on a null hypersurface at large r, namely

R2(dΘ2 +K2 sin2 ΘdΦ2) = r2(dθ2 + sin2 θdφ2) + · · · , (7.2.5)

where the ellipses denote terms that are subleading in r. Hence we obtain

R2
(1)(∂θΘ(0))2 = 1; K2R2

(1) sin2 Θ(0) = sin2 θ, (7.2.6)

1In the cited works, the answer is that at most two spacelike Killing vectors can exist if the spacetime
is to be radiative.
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Figure 7.2.1: Penrose’s cartoon of the cut and paste mapping and snapping cosmic string
interpretation. Adapted from [262]. Permission granted by Prof. L. Mason, the host of
the electronic copies of Twistor Newsletter.

which can be integrated to give

R(1) = sin θ
K sin Θ(0)

;
∫

cosec Θ(0) dΘ(0) = K

∫
cosec θ dθ. (7.2.7)

Note that the transformation is not analytic as θ → 0. The equations at subleading orders can be
solved analogously. From them the cosmic string news tensor NAB can be found [250] (notice here
C is not the same of the previous chapter)

CAB = diag(1,− sin2 θ)C, NAB = diag(1,− sin2 θ)∂uC, C = − u

sin2 θ
δ

(
1− δ

2

)
. (7.2.8)

It is singular on the axis, as a consequence of the conical singularity. The string metric is thus,
as we said, not asymptotically Minkowski. It can be however defined as asymptotically locally
Minkowski.

Using stereographic coordinates ζ, ζ̄ on S2, (7.2.8) can be written as

Cζζ = −u{h, ζ} = −u2

[
h′′′

h′
− 3

2

(
h′′

h′

)2
]
. (7.2.9)

for the transformation
ζ → h(ζ) = ζ1−δ. (7.2.10)

Thanks to Penrose’s cut and paste construction [261, 262], the map (u, r, ζ, ζ̄) → (u, r, h, h̄) can
be interpreted as the matching of the region outside a light-cone cut in Minkowski space with its
interior after a warp. The complete spacetime admits a C0 metric and describes the propagation
of a spherical impulsive gravitational wave, whose generating process is the snapping/creation of
a cosmic string (see Figure 7.2.1).

Strominger and Zhiboedov [239] interpreted the map (u, r, ζ, ζ̄) → (u, r, h, h̄) as a finite super-
rotation of Minkowski space and thus concluded that superrotations map asymptotically flat to
asymptotically locally flat spacetimes, in the sense appropriate to cosmic strings.

Many examples of such processes have been studied in the past [251] and it would be interesting
to check if they can all be accommodated within superrotations of flat space.
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We notice that [245] studies the spin memory effect - which we said was related to BT-superrtations
- for compact binaries and emphasises that the spin memory effect is not related to the creation
of superrotated spacetimes. Superrotated spacetimes however also generate memories because of
the impulsive gravity waves accompanying the superrotation.

7.3 Defects in dimensions higher than four

In this section we will consider the behaviour of cosmic strings and branes in dimensions higher than
four, following the analysis of Vilenkin in four dimensions [253]; see also discussions in [263, 264].

Let us consider a d-dimensional spacetime, with coordinates (t, w,x). Suppose a static cosmic
string is extended along the w direction, through x = 0; by translation invariance the x position
can always be chosen to be zero. Let µ be the tension of the cosmic string. Then the effective
stress energy tensor sourcing the cosmic string is [253]

Tµν = µδ(d−2)(x) diag(1, 1,0). (7.3.1)

Physically, this equation states that the energy density is equal to minus the pressure along the
string direction. We will discuss higher dimension defects below.

7.3.1 Linearized gravity

Now let us consider the backreaction of this stress energy tensor on the spacetime; we assume that
µ is small and thus work within linearized gravity. The d-dimensional metric is

gµν = ηµν + hµν (7.3.2)

where η is the Minkowski metric and h is the metric perturbation. The Einstein equations can
then be expressed as

∂ρ∂νhµρ + ∂ρ∂µhνρ −2hµν − ∂µ∂νh+ (2h− ∂ρ∂σhρσ)ηµν = 2Tµν (7.3.3)

where we have set 8πG = 1; 2 is the d-dimensional d’Alembertian and we define

h = ηµνhµν . (7.3.4)

We impose the usual harmonic gauge

∂νhµν = 1
2∂µh. (7.3.5)

The remaining gauge invariance is then captured by diffeomorphisms

hµν → hµν + ∂νξµ + ∂µξν (7.3.6)
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for which
2ξµ = 0. (7.3.7)

In harmonic gauge the Einstein equations can be expressed as

2hµν = −2T̃µν (7.3.8)

where T̃µν is the trace adjusted stress tensor

T̃µν = (Tµν −
1

(d− 2)Tηµν) (7.3.9)

with T = ηρσTρσ.

7.3.2 Cosmic strings in d > 4

We now solve the linearized Einstein equation (7.3.8) with a trace adjusted stress tensor corre-
sponding to a cosmic string (7.3.1):

T̃µν = µ

(d− 2)δ
(d−2)(x) diag

(
(4− d), (d− 4),−21(d−2)

)
. (7.3.10)

Note that the metric backreaction should, by symmetry, be independent of the worldsheet coordi-
nates (t, w) and should be rotationally symmetric in the transverse directions.

In d = 4 the solution to the linearized equations can be written as [253]

htt = hww = 0; (7.3.11)

hxx = hyy = µ̃ ln
(
r

ro

)
where r2 = x2 + y2 and

µ̃ = µ

π
. (7.3.12)

In this solution ro can be interpreted as the characteristic radius scale of the string. The linearized
solution is valid provided that |h| � 1, and thus the linearized solution is strictly only applicable
within a neighbourhood of the string.

Thus one can write the four-dimensional (linearized) cosmic string metric as

ds2 = −dt2 + dw2 + (1− λ)(dr2 + r2dφ2) (7.3.13)

where we use (r, φ) as polar coordinates in the (x, y) plane and

λ = µ̃ ln
(
r

ro

)
. (7.3.14)

Introducing a new radial coordinate

(1− λ)r2 = (1− µ̃)r̃2 (7.3.15)
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(and working to linear order in µ̃) one can change the metric into the more familiar form

ds2 = −dt2 + dw2 + dr̃2 + (1− µ̃)r̃2dφ2 (7.3.16)

i.e. the metric is locally flat in the directions transverse to the string, but there is a conical
deficit proportional to µ̃. Reinstating 8πG we have δ = 4Gµ = µ̃/2. Note that, even though
the derivation above was at the level of the linearised equations, this metric manifestly solves the
Einstein equations at non-linear order and is moreover locally flat.

Now let us turn to d > 4. A qualitative difference in d 6= 4 is that the components of (7.3.10)
along the string do not vanish. Consider the equation

2f = 2
(d− 2)µδ

(d−2)(x). (7.3.17)

Solutions with rotational symmetry in the directions transverse to the string can be expressed as

f = µ̃

r(d−4) (7.3.18)

for d > 4 with
µ̃ = 2

(d− 2)(d− 4)Ω(d−2)
µ (7.3.19)

where Ω(d−2) is the (d− 2)−dimensional solid angle. Then the metric near the cosmic string can
be written as

ds2 =
(

1− (d− 4)
2

µ̃

r(d−4)

)(
−dt2 + dw2)+

(
1 + µ̃

r(d−4)

)(
dr2 + r2dΩ2

(d−3)

)
. (7.3.20)

This solution is not locally Riemann flat close to the cosmic string, although since it satisfies the
Einstein equations (with a string source) it is Ricci flat for r 6= 0. The metric is asymptotically
locally flat for rd−4 � µ̃. However, since an infinite cosmic string necessarily intersects the celestial
sphere in two points, and the metric is not locally flat in the immediate neighbourhood of the string,
the cosmic string metric is not asymptotically locally flat over the entire celestial sphere.

7.3.3 Cosmic branes

Let us now consider a d-dimensional spacetime, with coordinates (t,w,x), where there are p spatial
coordinates w and correspondingly (d− p− 1) transverse coordinates x. A static cosmic p-brane
is extended along the w directions and located at x = 0. (By translation invariance the x position
can again always be chosen to be zero.) Let µ be the tension of the cosmic brane. Then the
effective stress energy tensor sourcing the cosmic brane is, generalizing the cosmic string,

Tµν = µδ(d−p−1)(x) diag(1, 1(p), 0(d−p−1)). (7.3.21)

Physically, this equation states that the energy density is equal to minus the pressures along the
brane. Note that in four dimensions a cosmic membrane would usually be referred to as a domain
wall, as there is only one transverse direction, and such solutions were discussed together with
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cosmic strings in [253].

The corresponding trace adjusted stress tensor is then

T̃µν = µ

(d− 2)δ
(d−p−1)(x) diag(−(d− p− 3), (d− p− 3)(p),−(p+ 1)(d−p−1)). (7.3.22)

In the case that d = (p+ 3) this implies that

htt = hww = 0, (7.3.23)

i.e. the metric perturbations longitudinal to the brane are zero. The transverse space to the brane
then has dimension two and the corresponding form for the metric near the cosmic brane is

ds2 = −dt2 + dw · dw(d−3) + (1− λ)(dr2 + r2dφ2) (7.3.24)

where now
λ = µ̃ ln

(
r

ro

)
(7.3.25)

with
µ̃ = (p+ 1)

(d− 2)
µ

π
. (7.3.26)

Following the same logic as above, the metric (7.3.24) can be written in a form which is manifestly
locally flat, namely

ds2 = −dt2 + dw · dw(d−3) + dr̃2 + (1− µ̃)r̃2dφ2, (7.3.27)

with the transverse space to the brane having a conical singularity at r̃ = 0.

In the case that d 6= (p+ 3) the metric perturbations longitudinal to the brane are non-zero, and
the solution near the brane is Ricci flat but not locally Riemann flat, as in the case of cosmic
strings in d 6= 4 discussed above. Thus we see that branes of codimension two play a distinguished
role when we are interested in asymptotically locally flat geometries.

Notice that in terms of the codimension of the object, the result is independent of the number of
dimension. Our proposal is to include codimension-two objects in the phase space of asymptotically
flat gravity. In d = 3 this is the accepted definition [187].

Remark We should note that there has been considerable discussion in the relativity literature
about distributional sources. The analysis of [265] highlighted subtleties in dealing with distri-
butional source of codimension greater than one: the metric is inherently distributional and the
curvature is constructed from products of metric derivatives. This implies that different regulari-
sations of cosmic strings can lead to thin, static strings with different mass per unit lengths. Later
work by Garfinkle [266] defined a notion of semi-regular metrics, in which the static cosmic string
has a distributional stress energy; however, it is also argued in this work that such stress energy
may not actually describe the physical energy content. The work of [267] explored distributional
brane sources, showing that one can make sense of stress confined to codimension two surfaces
in certain situations. There is also an ongoing programme of work using generalized functions to
understand distributional curvature, beginning with [268, 269].
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Following the earlier work of [216], the metric (7.3.27) will be the starting point for our analysis, and
motivation for considering more general boundary conditions than asymptotically flat in d > 4. The
detailed description of the distributional curvature will not be central to our analysis. Ultimately
the physical interpretation of such branes may well go beyond general relativity into string theory,
in which branes are valid physical objects with well understood stress energy (and where the limits
of the validity of general relativity solutions are also understood).

7.3.4 Cosmic branes: general position and orientation

In the previous section we gave solutions that are longitudinal to the w directions and located at
the origin in the transverse directions. It is clearly straightforward to generalize such solutions to
arbitrary position and orientation. Let us first write the solution (7.3.27) in terms of Cartesian
coordinates in the transverse directions i.e.

dr̃2 + (1− µ̃)r̃2dφ2 = 1
(x2 + y2)

(
(x2 +K2y2)dx2 + 2xy(1−K2)dxdy (7.3.28)

+(y2 +K2x2)dy2) ,
= dx2 + dy2 − µ̃

(x2 + y2) (ydx− xdy)2

where we use the notation K2 = (1− µ̃). Clearly when K = 1 this metric reduces to the standard
Euclidean metric in Cartesian coordinates. Note that one can also write (7.3.27) as

ds2 = dzdz̄ + µ̃

4zz̄ (z̄dz − zdz̄)2 (7.3.29)

in terms of a complex coordinate z = (x+ iy).

It is then straightforward to displace the brane from the origin to (xo, yo) by shifting

x→ (x− xo) y → (y − yo). (7.3.30)

Clearly for K = 1 this would leave the metric invariant but for general K we obtain

dx2 + dy2 − µ̃

((x− xo)2 + (y − yo)2) ((y − yo)dx− (x− xo)dy)2
. (7.3.31)

Moving back to polar coordinates, the metric takes the simple form

dr̃2 +K2(r̃ − r̃o)2dφ2 (7.3.32)

where r̃2
o = (x2

o + y2
o).

Using the Cartesian form of the metric (7.3.28) it is also straightforward to rotate the orientation
of the brane. For example, if we rotate in the (wx) plane by an angle α via

w → cosαw − sinαx x→ cosαx+ sinαw (7.3.33)
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we obtain

dw2 + dx2 + dy2 − µ̃

((cosαx+ sinαw)2 + y2) (y(cosαdx+ sinαdw)− (cosαx+ sinαw)dy)2

(7.3.34)
Note that the residual rotational symmetry transverse to the brane is not manifest in this coordinate
system.

7.3.5 Asymptotics

Let us now return to (7.3.27). To analyse the asymptotics we should rewrite it as

ds2 = −dt2 + dw2 + w2dΩ2
p−1 + dr̃2 +K2r̃2dφ2 (7.3.35)

and then let
w = R cos Θ r̃ = R sin Θ (7.3.36)

to obtain
ds2 = −dt2 + dR2 +R2 (dΘ2 + cos2 ΘdΩ2

p−1 +K2 sin2 Θdφ2) . (7.3.37)

Note that both the longitudinal SO(p) rotational symmetry and the transverse SO(2) rotational
symmetry are manifest.

A brane which is located at r̃ = r̃o (7.3.32) can be expressed as

ds2 = −dt2 + dR2 +R2 (dΘ2 + cos2 ΘdΩ2
p−1 + sin2 Θdφ2) (7.3.38)

−µ̃
(
−R2 sin2 Θdφ− r̃o sin(φ− φo)d(R sin Θ) + r̃oR sin Θ cos(φ− φo)dφ

)2
(R2 sin2 Θ + r̃2

o − 2r̃oR sin Θ cos(φ− φo))

or equivalently as

ds2 = −dt2 + dR2 +R2 (dΘ2 + cos2 ΘdΩ2
p−1 + sin2 Θdφ2) (7.3.39)

−µ̃
(
−R sin2 Θdφ− sin Θo sin(φ− φo)d(R sin Θ) +R sin Θo sin Θ cos(φ− φo)dφ

)2
(sin2 Θ + sin2 Θo − 2 sin Θo sin Θ cos(φ− φo))

where we define
sin Θo = r̃o

R
. (7.3.40)

For Θo to remain finite as R→∞ we will clearly need to take r̃o to infinity with the ratio of r̃o/R
fixed.

Note that the metric (7.3.39) has a hidden U(1) symmetry, corresponding to rotations around
r̃ = r̃o. The metric on a surface of constant R and t is

ds2 = R2 (dΘ2 + cos2 ΘdΩ2
p−1 + sin2 Θdφ2)

−µ̃R2
(
sin2 Θ + sin Θo sin(φ− φo −Θ)

)2
dφ2

(sin2 Θ + sin2 Θo − 2 sin Θo sin Θ cos(φ− φo))
. (7.3.41)



102 Chapter 7. Cosmic branes and asymptotic structure

Figure 7.3.1: Three cosmic strings: a string passing though the north pole of the sphere;
a string rotated with respect to this axis and a third string (red) translated with respect
to the first one.

A surface of constant R and t clearly does not have such a U(1) symmetry; only the SO(p)
symmetry along the longitudinal directions of the brane survives. This is illustrated in the case of
p = 1 in Figure 7.3.1: the string clearly has an axial SO(2) symmetry but the intersection with
the celestial two sphere does not preserve this SO(2) symmetry.

The asymptotics of a rotated cosmic brane can also be obtained using the radial coordinate R.
In this case there is an axial SO(2) symmetry which is respected by the intersection with the
celestial sphere; this is however not manifest in the coordinates (Θ, φ). A rotated string is shown
in Figure 7.3.1.

Note that much of the previous literature on 5d cosmic branes has concentrated on spacetimes
with cylindrical symmetry i.e. one writes the metric for flat space as

ds2 = −du2 − 2dudρ+ ρ2(dθ2 + sin2 θdφ2) + dz2 (7.3.42)

i.e. as a direct product of four-dimensional Minkowski spacetime with a line. This form of the
metric is particularly convenient when one compactifies the z direction around a circle i.e. one
is interested in a Kaluza-Klein spacetime or a brane world Randall-Sundrum setting. However,
(7.3.42) is not expressed in a form that is natural for analysing the asymptotic structure if z is
not compact; analysis of the structure close to null infinity requires the introduction of a radial
coordinate r2 = ρ2 + z2, to characterise the celestial sphere.
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7.4 Cosmic branes and asymptotically locally flat space-
times

In this section we consider the asymptotic structure of cosmic (d − 3)-branes and show how such
spacetimes can be expressed in Bondi gauge. This analysis demonstrates the boundary conditions
that should be imposed on the metric functions in Bondi gauge so that cosmic (d− 3)-branes are
contained within the set of solutions of the vacuum Einstein equations.

For d > 4, the boundary conditions required are weaker than those imposed in earlier literature:
the inclusion of cosmic (d − 3)-branes defines boundary conditions for asymptotically locally flat
spacetimes. For concreteness we focus mostly on the case of d = 5 but the generalization of these
boundary condtions to arbitrary d > 4 is straightforward and is summarised at the end of this
section.

7.4.1 Five dimensional cosmic brane metrics

For the metric in the vicinity of the brane to be locally flat, the brane must be a (d− 3)-brane, i.e.
a membrane in five dimensions. In five dimensions we can parameterise locally flat metrics with
deficits in several ways and in this section we discuss convenient parameterisations.

Let us first consider

ds2 = −dU2 − 2dUdR+R2(dΘ2 + cos2 ΘdΨ2 +K2 sin2 ΘdΦ2). (7.4.1)

For K2 = 1 hypersurfaces of constant U are round three spheres, with a U(1)2 subgroup of the
SO(4) isometry group made manifest. If we introduce a deficit K2 = 1−2δ, the deficit is associated
with Θ = 0, but extends around the entire Ψ circle i.e. there is a cosmic membrane intersecting
the celestial three-sphere in a circle. To see this, it is convenient to exploit the embedding of the
three sphere into R4 i.e.

x = R cos Θ cos Ψ; y = R cos Θ sin Ψ; z = R sin Θ cos Φ; w = R sin Θ sin Φ. (7.4.2)

Thus Θ = 0 corresponds to the circle x2 + y2 = R2 with z = w = 0.

There is an obvious generalisation of (7.4.1):

ds2 = −dU2 − 2dUdR+R2(dΘ2 +K2
1 cos2 ΘdΨ2 +K2

2 sin2 ΘdΦ2) (7.4.3)

in which for K2
1 6= 1 and K2

2 6= 1 there is a cosmic membrane intersecting the sphere in the circle
x2 + y2 = R2 with z = w = 0 and a second membrane intersecting z2 + w2 = R2 with x = y = 0.
This specific configuration of membranes preserves the U(1)2 symmetry associated with rotations
in the (x, y) and (w, z) planes.
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Figure 7.4.1: Cosmic string and membrane intersecting the celestial sphere.

We could alternatively study

ds2 = −dU2 − 2dUdR+R2(dΘ2 +K2
1 sin2 ΘdX2 +K2

2 sin2 Θ sin2(K1X)dΦ2) (7.4.4)

where for K2
1 = K2

2 = 1 hypersurfaces of constant U are round three spheres, in which an SO(3)
subgroup of SO(4) is made manifest. The metric is manifestly locally flat for K1 6= 1 and K2 6= 1:
this follows from the coordinate redefinitions χ = K1X and φ = K2Φ, which bring the metric into
the form of a flat metric. These coordinate redefinitions are locally trivial; deficits are introduced
by imposing the standard ranges on the redefined coordinates i.e. 0 ≤ X ≤ π and 0 ≤ Φ < 2π.

When a deficit is introduced by setting K2
2 6= 1 (with K2

1 = 1), the deficit is associated with
X = 0, π. The interpretation is again most easily seen by embedding the (round) three sphere into
R4 as

x = R sin Θ sinX sin Φ; y = R sin Θ sinX cos Φ; z = R sin Θ cosX; w = R cos Θ
(7.4.5)

i.e. the deficit is associated with z2 + w2 = R2, x = y = 0, a great circle of the sphere. This
metric thus describes the same physics as the metric shown in (7.4.1) but the parameterisation of
(7.4.4) is less convenient, as it does not make manifest the second SO(2) symmetry preserved by
the cosmic membrane.

When K2
1 6= 1 (with K2

2 = 1) the deficit is associated with geodesic incompleteness of the two
spheres parameterized by (X,φ). For constant U , R and Θ the induced two-dimensional metric is

ds2 = R2 sin2 ΘK2
1 (dX2 + 1

K2
1

sin2(K1X)dΦ2) (7.4.6)

which describes part of a two sphere of radius K1R sin θ; more precisely, since 0 ≤ X ≤ π, there is
a boundary to (7.4.6) at X = π:

ds2 = R2 sin2 Θ sin2(K1π)dΦ2 (7.4.7)

i.e. a circle. We will not consider this case further as it does not seem to have a natural physical
interpretation.
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Figure 7.4.2: Cosmic string and membrane intersecting the celestial sphere.

Let us now relate these discussions to the cosmic brane solutions of the previous section. The
metric (7.4.4) can be written in terms of a time coordinate

t = U +R (7.4.8)

as
ds2 = −dt2 + dR2 +R2(dΘ2 +K2

1 cos2 ΘdΨ2 +K2
2 sin2 ΘdΦ2). (7.4.9)

Now introduce coordinates
r̃ = R cos Θ; w = R sin Θ (7.4.10)

in terms of which the metric can be expressed as

ds2 = −dt2 + (dr̃2 +K2
1 r̃

2dΦ2) + (dw2 +K2
2w

2dΨ2) (7.4.11)

Consider first the case of K2
2 = 1. Comparing with (7.3.27), the cosmic membrane is located at

r̃ = 0, i.e. Θ = π/2, and lies in the (w,Ψ) plane. This defect is visualised in Figure 7.4.1, as the
plane intersecting the celestial sphere in a circle. For K2

2 6= 1, there is in addition a membrane
located at w = 0, lying in the (r̃,Φ) plane. This second membrane intersects the first at r̃ = w = 0,
pictured in Figure 7.4.1. Note that this intersection does not take place close to the celestial sphere,
so any non-linear effects at the intersection are not relevant for asymptotic analysis.

Before we move to the general asymptotic analysis, let us consider an infinite cosmic string, which
as shown in Figure 7.4.1 necessarily intersects the celestial sphere at two points. We are interested
in metrics which are asymptotically locally flat at infinity. However, from the discussions of the
previous section, a cosmic string metric is locally flat (as opposed to Ricci flat) near the string only
in four dimensions. We therefore cannot match a cosmic string metric with a flat metric on a null
hypersurface, except in four dimensions; equivalently, we cannot apply coordinate transformations
to a flat metric and obtain a cosmic string metric in dimensions other than four.
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7.4.2 Asymptotically locally flat metrics in five dimensions

Now let us extend the discussion of Section 7.2 to five dimensions. We allow for dynamical processes
in which cosmic branes are created and destroyed and, as before, we consider the matching of a
cosmic brane metric to a Ricci flat metric without cosmic brane on a null hypersurface.

For computational simplicity we consider cosmic brane metrics that preserve U(1)2 symmetry in
the angular directions and have reflection/inversion symmetry in these directions. Such metrics
can be matched to asymptotically locally flat spacetimes with corresponding symmetry which can
be described using a Bondi gauge parametrisation:

ds2 = −(Ue2β − r2W 2eC1)du2 − 2e2βdudr − 2r2WeC1dudθ

+r2(eC1dθ2 + e−(C1+C2) cos2 θdψ2 + eC2 sin2 θdφ2). (7.4.12)

Here the defining metric functions (U ,W, β, C1, C2) depend only on (u, r, θ) due to the symmetry.
We have also imposed the standard Bondi gauge conditions i.e.

grr = grA = 0 (7.4.13)

and the determinant of the angular part of the metric is r6; these conditions mirror the original
four-dimensional conditions [57, 59].

The standard definition of asymptotically flat spacetimes at null infinity in five dimensions (see
chapter 5 and [66, 67, 68, 69, 270]) imposes the following boundary conditions on the defining
functions for solutions of the vacuum Einstein equations:

U(u, r, θ) = 1 +
U(3/2)(r, θ)

r
3
2

+ · · · (7.4.14)

W (u, r, θ) =
W(3/2)(r, θ)

r
3
2

+ · · ·

β(u, r, θ) =
β(3)(r, θ)

r3 + · · ·

Ci(u, r, θ) =
Ci(3/2)(r, θ)

r
3
2

+ · · ·

where i = 1, 2 and the ellipses denote terms that are subleading as r → ∞. As we review below,
gravitational waves are associated with the Ci(3/2) contributions, which in turn induce subleading
terms in the other metric functions. Additional integration functions arise at order 1/r2 and are
associated with mass and angular momentum; we will discuss these later, when we derive the
asymptotic expansions to all orders.

We now consider the matching between (7.4.3) and (7.4.12) on a null hypersurface as r →∞ and
show that such a matching requires weaker boundary conditions than asympotically flat boundary
conditions (7.4.14). By symmetry, we can identify Ψ = ψ and Φ = φ. Following the four-
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dimensional discussion, we parameterise the coordinate transformations as

U = U(0)(u, θ) +
U(−1)(u, θ)

r
+ · · · (7.4.15)

R = rR(1)(θ) +R(0)(u, θ) + · · ·

Θ = Θ(0)(θ) +
Θ(−1)(θ)

r
+ · · ·

Matching on a null hypersurface then imposes three relations at leading order:

(θθ) : R2
(1)(∂θΘ(0))2 = ec1(θ) (7.4.16)

(ψψ) : R2
(1) cos2 Θ(0) = e−(c1(θ)+c2(θ)) cos2 θ

(φφ) : R2
(1) sin2 Θ(0) = 1

K2 e
c2(θ) sin2 θ

where we indicate the components of the induced metric being matched and we expand the defining
metric functions (C1, C2) as

Ci(u, r, θ) = ci(θ) +
Ci(−λ)(u, θ)

rλ
+ · · · (7.4.17)

where the exponent λ > 0 will follow from imposing Ricci flatness. In the case that ci = 0, then
λ = 3

2 as in (7.4.14) but this is no longer true when ci 6= 0, as we will show below.

Before we consider the solution of (7.4.16), let us discuss the structure of the coordinate transfor-
mations in (7.4.15). As in four dimensions, the leading terms in R(u, r, θ) and Θ(u, r, θ) are forced
to be independent of u, as u dependence would induce metric components along the u direction
that scale as a positive power of r, thus breaking the notion of asymptotic local flatness.

The leading order contributions to the other metric components are:

(rθ) : O(r0) grθ = R(1)Θ(−1)∂θΘ(0) + ∂θU(0) (7.4.18)

(ur) : O(r0) gur = R(1)∂uU(0)

(uu) : O(r0) guu = −(∂uU(0))2 +R2
(1)(∂uΘ(−1))2

(uθ) : O(r) guθ = ∂θR(1)∂uU(0) −R2
(1)∂θΘ(0)∂uΘ(−1)

(rr) : O(r2) grr = 2R(1)U(−1) +R2
(1)(Θ(−1))2

These relations put no further conditions on (Θ(0), R(1)), which are determined by (7.4.16), but
instead determine (U(0),Θ(−1), · · · ) in terms of these functions.

Now let us consider the solution of (7.4.16). If we impose strict asymptotic flatness as in (7.4.14),
then we need to set c1(θ) = c2(θ) = 0. However, in this case the three conditions of (7.4.16) are
clearly incompatible: the first and third relations are identical to those in four dimensions and are
solved as in (7.2.7) but this solution is not consistent with the second relation in (7.4.16).

One can conceptualise why a three sphere with a ring of conical deficits cannot be mapped to a
round three sphere as follows. Hypersurfaces of constant Θ are topologically tori, with the ψ and φ
circles parameterising the independent non-contractable cycles of these tori. There is a geometric



108 Chapter 7. Cosmic branes and asymptotic structure

0.5 1.0 1.5

-1.0

-0.5

0.5

1.0
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(

1
2(π2 − 2x)|2

)
, plotted over the range (0, π/2). The

red line shows K
1
2F
(

1
2(π2 − 2x)|2

)
, plotted over the same range, with K

1
2 = 0.8.

interpretation of solving the first and third relations in (7.4.16) (with c1(θ) = c2(θ) = 0): one
uses an angle dependent rescaling of the radius to remove the deficit in the φ circle as θ → 0.
However, this same angle dependent rescaling of the radius is then incompatible with maintaining
the periodicity of the ψ circle.

We thus conclude that we cannot solve (7.4.16) without allowing for non-zero ci(θ). However, if
the functions ci(θ) are non-zero, the system of equations now seems to be under-constrained: there
are only three equations for four functions (Θ(0)(θ), R(1)(θ), c1(θ), c2(θ)). Combining the three
equations one can obtain the following relation

dΘ(0)√
sin 2Θ(0)

= K
1
2
e

3c1(θ)
4 dθ√

sin 2θ
. (7.4.19)

From this relation we can see that one of the four functions follows from the freedom to redefine
the angular coordinate; imposing Θ(0) = θ for K = 1 fixes c1(θ) = 0. Thus Θ(0)(θ) is given by∫

dΘ(0)√
sin 2Θ(0)

= K
1
2

∫
dθ√
sin 2θ

, (7.4.20)

and the other functions are determined by the relations

R(1)(θ) = 1
K

1
2

√
sin 2θ

sin 2Θ(0)
(7.4.21)

ec2(θ) = K
tan Θ(0)

tan θ .

Integrating (7.4.20) we obtain

F

(
1
2(π2 − 2Θ(0))|2

)
= K

1
2F

(
1
2(π2 − 2θ)|2

)
, (7.4.22)

where F (y|m) is the elliptic integral of the first kind. This elliptic integral is plotted in Figure 7.4.3.
For K2 just less than one, we can read off from Figure 7.4.3 the behaviour of Θ(0)(θ): given the
value of 0 ≤ θ ≤ π

2 , we use the red curve to determine the right hand side of (7.4.22). We then
map horizontally from the red curve to the blue curve to read off the value of Θ(0). We note that
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Figure 7.4.4: Θ(0)(θ) for K
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2 = 0.8.

by symmetry
Θ(0)

(π
4

)
= π

4 . (7.4.23)

For 0 ≤ θ < π
4 , Θ(0) > θ while for π

4 < θ ≤ π
2 , Θ(0) < θ. We can solve numerically for Θ(0)(θ);

the plot for K 1
2 = 0.8 is shown in Figure 7.4.4. Once Θ0)(θ) is determined, the other functions are

determined using (7.4.21); the function c2(θ) is non-trivial for K 6= 1.

Thus, to summarise this section, matching a cosmic membrane metric on a constant null hyper-
surface with a Ricci flat metric with no deficits requires a relaxation of the asymptotically flat
boundary conditions (7.4.14) to weaker boundary conditions of the form (7.4.17). We will refer to
Ricci flat metrics in Bondi gauge (7.4.12) satisfying (7.4.17) as asymptotically locally flat2.

7.4.3 Cosmic membranes: alternative parameterisation

In the coordinate system of (7.4.4) the cosmic membrane preserves only a U(1) symmetry, to-
gether with an additional inversion symmetry. To match such a metric, the required Bondi gauge
parameterisation is

ds2 = −(Ue2β − r2W 2eC1)du2 − 2e2βdudr − 2r2WeC1dudθ

+r2
(
eC1dθ2 + sin2 θ(eC2dχ2 + e−(C1+C2) sin2 χdφ2)

)
, (7.4.24)

where the defining functions (U ,W, β, C1, C2) can depend on (u, r, θ, χ) but should be even functions
of χ, to respect the inversion symmetry in (7.4.4).

Now let us consider the matching between a Bondi gauge metric of the form (7.4.24) and a cosmic
2This notion is not to be confused with the one employed for gravitational instantons [271], although

it express the similar concept that the boundary is not exactly Minkowski because of either topological or
metrical differences. We stress that the name is thus to be intended in the same way that the terminology
“asymptotically locally AdS” is used [42].
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membrane (7.4.4) on a constant null time slice at infinity. The required coordinate maps are

U = U(0(u, θ, χ) + 1
r
U(−1)(u, θ, χ) + · · · (7.4.25)

R = rR(1)(θ, χ) +R(0)(u, θ, χ) + · · ·

Θ = Θ(0)(θ, χ) + 1
r

Θ(−1)(u, θ, χ) + · · ·

X = X(0)(θ, χ) + 1
r
X(−1)(u, θ, χ) + · · ·

Φ = φ

Again, the leading order terms in (R,X,Θ) are forced to be independent of u to respect the
asymptotic (local) flatness. Matching on a null hypersurface then imposes four relations at leading
order:

(θθ) : R2
(1)
(
(∂θΘ(0))2 + sin2 Θ(0)(∂θX(0))2) = ec1(θ,χ) (7.4.26)

(θχ) : (∂θΘ(0))(∂χΘ(0)) + sin2 Θ(0)(∂θX(0))(∂χX(0)) = 0

(χχ) : R2
(1)
(
(∂χΘ(0))2 + sin2 Θ(0)(∂χX(0))2) = ec2(θ,χ) sin2 θ

(φφ) : R2
(1) sin2 Θ(0) sin2X(0) = 1

K2 e
−c1(θ,χ)−c2(θ,χ) sin2 θ sin2 χ

where we indicate which components of the induced metric are matched and we expand the defining
functions (C1, C2) as

Ci(u, r, θ, χ) = ci(θ, χ) +
Ci(−λ)(u, θ, χ)

rλ
+ · · · (7.4.27)

where the exponent λ > 0 will be determined by the Einstein equations.

The equations (7.4.26) can clearly be solved by X(0) = χ, i.e. the coordinate transformations
depend only on θ to leading order:

(θθ) : R2
(1)(∂θΘ(0))2 = ec1(θ) (7.4.28)

(χχ) : R2
(1) sin2 Θ(0) = ec2(θ) sin2 θ

(φφ) : R2
(1) sin2 Θ(0) = 1

K2 e
−c1(θ)−c2(θ) sin2 θ

The last two equations are clearly not compatible for K2 6= 1 unless either one or both of
(c1(θ), c2(θ)) is non-zero: combining the last two equations we obtain

ec1+2c2 = 1
K2 (7.4.29)

However, as in the previous discussions, these equations are under-constrained: there are three
equations for four functions, and thus one can fix a linear combination of c1 and c2 to be zero,
provided that (7.4.29) is satisfied. The latter choice represents residual gauge freedom.

The equations (7.4.28) clearly admit the solution

Θ(0) = θ; R(1) = 1
K

1
3

; ec1 = ec2 = 1
K

2
3
, (7.4.30)

i.e. an angle independent rescaling of the radius. This solution is trivial in the sense that the
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Figure 7.4.5: The red line plots f(θ) and the blue line plots λf(θ) for λ = 0.8. For any
value of λ < 1 the blue curve will lie closer to the horizontal axis than the red curve.

metric in coordinates (r, θ, χ, φ) still has a defect.

Combining the first two equations in (7.4.28), one obtains

∂θΘ(0)

sin Θ(0)
= e

1
2 (c1−c2)

sin θ . (7.4.31)

Suppose we fix a gauge in which
e

1
2 (c1−c2) = λ, (7.4.32)

subject to the constraint (7.4.29). Then (7.4.31) can be solved analogously to the angular equations
of the previous sections.

Let us define
f(x) =

∫
dx

sin x = ln
(

tan
(x

2

))
. (7.4.33)

The integrated relation (7.4.31) can hence be expressed as

f(Θ(0)) = λf(θ). (7.4.34)

The function f(θ) is plotted over the range (0, π) in Figure 7.4.5. From the same plot we can
see that if λ < 1 then the relation Θ(0)(θ) has a similar form to that in the previous section, see
Figure 7.4.6: for 0 < θ ≤ π/2, Θ(0) > θ while for π/2 ≤ θ < π, Θ(0) < θ.

Note that for small θ

Θ(0) ≈ 2
(
θ

2

)λ
(7.4.35)

(with a corresponding expression for θ ∼ π). Furthermore, by symmetry,

Θ(0)
(π

2

)
= π

2 . (7.4.36)
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Figure 7.4.6: Θ(0)(θ) for λ = 0.8.

7.4.4 Boundary conditions in d dimensions and cosmic (d− 3) branes

To match the cosmic brane metric to a non-singular Bondi gauge metric on a null hypersurface
at infinity. we are forced to relax asymptotic flatness to asymptotic local flatness. The general
Bondi gauge parameterisation (without imposing additional symmetries) of a spacetime in arbitrary
dimension d is

ds2 = −Ue2βdu2 − 2e2βdudr + r2hAB(dΘA +WAdu)(dΘB +WBdu), (7.4.37)

where the coordinates θA run from A = 1, · · · (d − 2). Here we have imposed the standard Bondi
gauge conditions i.e.

grr = grA = 0 (7.4.38)

and it is usual to impose the determinant condition

∂r (det(hAB)) = 0. (7.4.39)

Asymptotically flat boundary conditions require that

hAB → γAB + 1
r(d−2)/2h(d−2)AB + · · · (7.4.40)

with γAB the metric on a unit (d − 2) sphere and the subleading term being associated with
gravitational waves.

Such boundary conditions exclude cosmic (d− 3)-branes passing through the celestial sphere. To
allow for the latter, we need to relax the boundary conditions to asymptotically locally flat by
setting

hAB → h(0)AB(θC) + · · · (7.4.41)

as r → ∞. In the following sections we will impose such boundary conditions and consider the
implications for the asymptotic structure in five dimensions.

We should note that the boundary condition (7.4.41) is manifestly more general than that obtained
from cosmic branes, for which h(0) is a spherical metric with distributional defects. As we discuss
later, the main motivation for working with the more general boundary condition is holography.
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In (A)dS holography, the metric on the conformal boundary is allowed to be any non-degenerate
metric, and it corresponds to the background metric for the dual quantum field theory. Even if
one is only interested in the quantum field theory on a (conformally) flat background, one needs to
allow for general perturbations of the boundary metric in order to compute correlation functions.
If there is any holographic duality for asymptotically (locally) flat spacetimes, one would similarly
expect that the spatial part of the boundary metric should be unrestricted.

If one takes a more conservative viewpoint and only wishes the boundary condition to be general
enough to include distributional defects, one could regard the boundary condition (7.4.41) as en-
compassing all possibilities for distributional defects i.e. capturing different kinds of regularisations.
One would then expect that asymptotic analysis of the field equations, combined with physical
restrictions on allowed distributional curvature, will determine what additional restrictions should
be placed on (7.4.41).

7.5 Bondi-Sachs problem

In this section we will use the previous discussions of cosmic branes to postulate boundary condi-
tions for asymptotically locally flat spacetimes in Bondi-Sachs gauge in five dimensions.

The Bondi-Sachs metric in d = 5 can be written as

ds2 = −Ue2βdu2 − 2e2βdudr + r2hAB(dΘA +WAdu)(dΘB +WBdu). (7.5.1)

with

hAB =

 eC1 cos θ sinhD1 sin θ sinhD2

cos θ sinhD1 eC2 sin2 θ sin θ cos θ sinhD3

sin θ sinhD2 sin θ cos θ sinhD3 eC3 cos2 θ

 . (7.5.2)

Due to the determinant constraint of the gauge

∂r (det(hAB)) = 0, (7.5.3)

only five of the six functions are independent.

As summarised in chapter 5, the vacuum Einstein equations were analysed asymptotically in [69,
70], under the assumption of asymptotic flatness, i.e. hAB asymptotes to the round metric on the
unit three sphere and the subleading terms in the expansions arise from integration functions on
solving the Einstein equations

Ci →
C( 3

2 )i(u, xA)
r

3
2

Di →
D( 3

2 )i(u, xA)
r

3
2

(7.5.4)

as r →∞. Here i = 1, 2, 3 and the falloff behaviour relates to gravitational waves passing through
null infinity. Without restricting to a specific choice of coordinates on the sphere, the expansion
takes the form

hAB = γAB +
C( 3

2 )AB

r
3
2

+ · · · (7.5.5)
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where γAB is a round metric on a unit three sphere.

As discussed in previous sections, if we wish to impose weaker boundary conditions that would
allow for cosmic branes, we should impose

hAB → h(0)AB(xC) (7.5.6)

as r →∞.

For computational simplicity we will continue to restrict to the case with U(1)2 and reflection
symmetry so that the functions Di defined in (7.5.2) are zero. We can also eliminate C3 using the
determinant constraint i.e.

C3 = −(C1 + C2). (7.5.7)

In this case there are five main equations (Rrr, Rrθ, Rθθ, Rψψ, Rφφ) and three supplementary equa-
tions (Ruu, Rur, Ruθ), including the trivial equation. We will first write down the general form of
these equations and then discuss asymptotic solutions.

The Rrr equation is

Rrr = 6
r
β,r −

1
2
(
(C1,r)2 + (C2,r)2 + (C3,r)2) = 0. (7.5.8)

Here and in the subsequent Einstein equations we denote partial derivatives with commas. Clearly
given (C1, C2) this equation can be integrated to find β, with integration functions in both β and
(C1, C2) left undetermined. Note that this is exactly analogous to the well-known four-dimensional
integration scheme: given the metric on the sphere, one can integrate to get gur.

Following the usual Bondi-Sachs integration scheme, we next use the Rrθ equation:

Rrθ = 1
2r3 (r5eC1−2βW,r),r

+ 1
r

(3β,θ − rβ,rθ) + 1
2((cot θ − 2 tan θ)C1,r + C1,rθ)

− 1
4(2C1,θ + C2,θ)C1,r −

1
4

(
C1,θ + 2C2,θ + 2

sin θ cos θ

)
C2,r = 0. (7.5.9)

Here and from now on we use the abbreviated notation W ≡ W θ. Imposing Rrθ = 0 allows us to
integrate for W in terms of (Ci, β).

The three main equations in the sphere directions are as follows. The Rθθ equation is
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Rθθ = 2− 2(β,θ)2 + β,θC1,θ − 2β,θθ −
1
2r

4(W,r)2e2C1−4β

+ C1,θ(cot θ − tan θ)− 1
2 csc θ sec θ(C1,θ − 2C2,θ)

− 1
2
(
(C1,θ)2 + (C2,θ)2 + C1,θC2,q − C1,θθ

)
+ eC1−2β(4rW,θ + rW (cot θ − tan θ)− 2U)

+ eC1−2β
(

1
2r

2C1,θW,r −
3
2rUC1,r + 3

2rWC1,θ − rU,r
)

+ 1
2r

2eC1−2β (C1,r (W,θ − U,r) +WC1,r(cot θ − tan θ))

+ r2eC1−2β
(

3C1,u

2r − 1
2UC1,rr +WC1,rθ + C1,ur +W,rθ

)
= 0 (7.5.10)

The Rφφ equation is

Rφφ = e2β (−2β,θC2,θ + C2,θ tan θ + C1,θC2,θ − C2,θθ)

+ e2β(4 + cot θ(2C1,θ − 4β,θ − C2,θ − 2eC1r2W,r)

+ r2eC1 (C2,θW,r + C2,rW,θ + 2C2,ur − C2,rU,r − UC2,rr)

+ reC1 (3C2,u + 3WC2,θ − 3UC2,r − 2U,r + 2W,θ)

− 4eC1U + eC1rW ((5 + rC2,r)(cot θ − tan θ) + 2rC2,rθ)

+ 3eC1rW sec θ csc θ = 0 . (7.5.11)

The Rψψ equation is, applying C3 = −(C1 + C2) to simplify,

Rψψ = sin θ
(
4e2ββ,θ − 3e2βC1,θ − e2βC2,θ − 2eC1r2W,r

)
+ cos θC1,θ

(
2e2ββ,θ − e2βC2,θ − eC1r2W,r + e2β cot θ

)
+ e2β cos θ

(
2β,θC2,θ + C2,θ cot θ − (C1,θ)2 − C3,θθ + 4

)
(7.5.12)

+ eC1 cos θ
(
−r2C2,θW,r − 2rU,r + rW,θ (rC3,r + 2)

)
+ eC1rW csc θ (rC3,rθ sin 2θ + rC3,r cos 2θ + 5 cos 2θ − 3))

+ eC1 cos θ
(
r (2rC3,ur + 3C3,u)− U

(
r2C3,rr + 3rC3,r + 4

))
+ reC1 cos θ(3WC3,θ − rC3,rU,r) = 0.

Combining these equations to form the trace along the sphere, i.e gABRAB = 0, one obtains an
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equation that determines U from the previously determined (β,W ) and Ci

gABRAB = −e
−C1

2r2 sec θ csc θ(C1,θ + 2C2,θ)

+ e−2β−C1

r2 (cot θ − tan θ)
(
eC1(6rW + r2W,r)− 2e2ββ,θ + 5

2e
2βC1,θ

)
+ e−C1

2r2

(
12− (2β,θ)2 + 4β,θC1,θ − 2(C1,θ)2 − C1,θC2,θ − (C2,θ)2)

+ e−C1

2r2 (−4β,θθ + 2C1,θθ)−
r2

2 e
−4β+C1(W,r)2

− 3e
−2β

r2

(
(2 + r∂r)U − r(2 + r

3∂r)W,θ

)
= 0 . (7.5.13)

The supplementary equations are

Ruu = +1
2r

4e2C1−4βW 2 (W,r)2 + r2eC1−2βW 2
(

1
2U,rC1,r − 2W,rθ + 1

2UC1,rr

)
+ r2eC1−2βW

(
−C1,urW − 2W,θW,r − 2Uβ,rW,r − C1,r,θW

2 + 2β,θW,rW
)

+ r2eC1−2β
(
−3

2C1,θW,rW
2 − 1

2W,θC1,rW
2 + UW,rC1,rW + UW,rrW −W,urW

)
+ r2eC1−2β

(
+2W,rβ,uW −W,rC1,uW + 1

2U (W,r)2
)

+ reC1−2β
(
−3

2C1,θW
3 − 4W,θW

2 + U,rW 2 + 3
2UC1,rW

2 − 3
2C1,uW

2 + 5UW,rW

)
+ 2W 2(eC1−2βU + (β,θ)2)−W 2β,θC1,θ + (W,θ)2 + 1

2 (C1,u) 2 + 1
2 (C2,u) 2 − 2Wβ,θW,θ

+WW,θC1,θ +WW,θθ + 1
2W

2C1,θθ + 2WU,θβ,r + UW,θβ,r + 1
2W,θU,r − Uβ,rU,r

+ Uβ,θW,r −
1
2U,θW,r −WU,θC1,r + 2UWβ,rθ +WU,rθ − U2β,rr −

1
2UU,rr − 2W,θβ,u

+W,θC1,u + 1
2C1,uC2,u − 2Wβ,uθ +W,uθ +WC1,uθ + 2Uβ,ur

+ e−4β−C1

2r2 (cot θ − tan θ)
(
e6β (2Uβ,θ + U,θ) + r3W 2e2(β+C1) (W (rC1,r + 2) + 2rW,r)

)
− 1

2(cot θ − tan θ)
(
2UWβ,r − 4Wβ,u +W 2C1,θ + 2WC1,u +WU,r + 2WW,θ + 2W,u

)
+ 1
r

(−3β,rU2 + 3Wβ,θU −
3
2U,rU + 3β,uU −

1
2WU,θ −

3
2U,u)

+ e2β−C1

r2

(
−2U (β,θ)2 − U,θβ,θ + UC1,θβ,θ + 1

2U,θC1,θ − Uβ,θθ −
1
2U,θθ

)
= 0 , (7.5.14)

and

Ruθ = 1
4e
−2β(cot θ − tan θ)

(
W
(
4e2ββ,θ − 2eC1r2W,r

)
+ 3e2βC1,u − 2eC1rW 2 (rC1,r + 2)

)
− 1

4 (C1,u + 2C2,u) csc θ sec θ − 2r3e2β+C1 (W,r (C1,u − 2β,u) + 2W,θW,r +W,ur)

+ U,θ4r (4rβ,r − 2rC1,r + 2) +W
(
−β,θC1,θ + 2 (β,θ)2 + β,θθ

)
+ 1

2r
4W (W,r)2

e2C1−4β

+ 1
4 (−4β,uθ − C2,θC1,u − 2C2,θC2,u − C1,θ (2C1,u + C2,u) + 2C1,uθ + 2U,rθ) = 0 .

(7.5.15)
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The first supplementary equations gives the u-evolution equation for the free data in the U expan-
sion. The second gives the u evolution of the free data in W .

The final supplementary equation (sometimes also called the trivial equation) is:

Rur = −e
−C1

2r2 (cot θ − tan θ)
(
−2e2ββ,θ + eC1r2W,r + eC1rW (rC1,r + 2)

)
+r2eC1−2β

(
Wβ,rW,r −

1
2 (W,r)2 − 1

2WC1,rW,r −
1
2WW,rr −

5
2rWW,r

)
+ 2
r2 e

2β−C1((β,θ)2 − β,θC1,θ + β,θ,θ) + 3
r

(Uβ,r − 3Wβ,θ + 3
2U,r −W,θ)

+β,rU,r + Uβ,rr − β,θW,r −Wβ,r,θ − 2β,u,r −
1
2C1,rW,θ −

1
2WC1,rθ (7.5.16)

−1
2C1,rC1,u −

1
4C2,rC1,u −

1
4C1,rC2,u −

1
2C2,rC2,u + 1

2U,r,r −
1
2W,rθ = 0 .

This is automatically satisfied at each order as a consequence of Bianchi identities once the main
equations are satisfied. This equation therefore does not give any new information. If we do not
check Bianchi identities, then the vanishing of this equation at each order provides a check on our
solution.

7.5.1 Asymptotic analysis

Having collected together the Einstein equations, let us consider asymptotic solutions of these
equations. The equations in Bondi gauge are nested, and thus should be solved in the order in
which they are presented above, beginning with (7.5.8).

As we described above, in the Bondi integration scheme we prescribe data for Ci on a null hy-
persurface, say Nu0 in Figure 7.5.1, recursively determine the other metric coefficients using the
main equations and then determine the null evolution of Ci using the final null equation. Thus
we should impose boundary conditions for Ci as r → ∞, and examine their consequences for the
nested integration. Following the discussions of the previous section, we impose the boundary con-
dition that Ci → Ci(0)(θ) as r →∞. The u independence was established in the previous section
but we will understand further below why the final main equation requires u independence of the
defining data on the celestial sphere. The corresponding asymptotic expansion of Ci is therefore

Ci = Ci(0)(θ) + · · · (7.5.17)

where the ellipses denote subleading terms in the radial expansion. The structure of these sublead-
ing terms will be determined below by the field equations i.e. we do not make any assumptions a
priori for the form of the expansion.

We can trivially rearrange the first main equation (7.5.8) to obtain

β,r = r

6
(
C2

1,r + C1,rC2,r + C2
2,r
)
. (7.5.18)



118 Chapter 7. Cosmic branes and asymptotic structure

Figure 7.5.1: Penrose diagram indicating hypersurfaces of constant u and r.

Integrating this equation the leading contribution to β is an integration function

β = β(0)(θ, u) + · · · (7.5.19)

Note that this is clearly the only integration function from this equation to all orders in the radial
expansion. According to the standard analysis in four and higher dimensions this integration
function is set to zero to satisfy the Minkowskian boundary conditions.

Moving now to the (7.5.9) equation, we can write this in the form

1
2r3 (r5eC1−2βW,r),r = G(C1, C2, β) (7.5.20)

with G as given in (7.5.9). Integrating for W we obtain

W = W(0) +
W(1)[Ci(0), β(0)]

r
+ · · · (7.5.21)

where [· · · ] denotes the functional dependence of the coefficients. W(0) is again an integration
function and the coefficient W(1) is completely determined by the 1/r terms in the Rrθ equation:

W(1) = 2e2β(0)−C1(0)∂θβ(0). (7.5.22)

The only way to satisfy the Einstein equation at this order is either to allow for W(1) or to fix β(0)

to be independent of θ. However, we will see that the function W(0) must actually be set to zero,
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as a consequence of the next equation.

Next we consider the trace of the main equations along the sphere (7.5.13). One can write this in
the form

3e
−2β

r2 (2 + r∂r)U = F(C1, C2, β,W ), (7.5.23)

where the leading contribution to the functional F is at order3 1/r

F = 6e2β(0) = 6e2β(0) (∂θ + (cot θ − tan θ))W(0). (7.5.24)

Then (7.5.23) implies that

U = rU(−1)[W(0)] + U(0)[Ci(0), β(0)] + · · · (7.5.25)

where
U(−1) = 2

3(∂θ + (cot θ − tan θ))W(0). (7.5.26)

However, this solution implies that

guu = r2eC1W 2 − Ue2β → r2eC1(0)W 2
(0) (7.5.27)

as r →∞ i.e. ∂u is spacelike rather than null or timelike. The requirement that ∂u is not spacelike
at infinity thus fixes W(0) = 0.

The physical interpretation of non-zero W(0) can be understood using the example of Minkowski
spacetime in four dimensions. Starting from

ds2 = −du2 − 2dudr + r2(dθ2 + sin2 θdφ2) (7.5.28)

we can change coordinates to
dφ = dφ̃+ du

Ω (7.5.29)

(where Ω characterises the angular velocity) so that

ds2 = −du2 − 2dudr + r2

(
dθ2 + sin2 θ

(
dφ̃+ du

Ω

)2
)

(7.5.30)

i.e. comparing with (7.5.1)W φ̃
(0) 6= 0. Thus, physically, a non-zeroW(0) can be interpreted as using

a rotating frame at null infinity.
3Note that (∂θ + (cot θ − tan θ))W = DθW

θ where D is the covariant derivative.
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Setting W(0) = 0, the leading contribution to the function F in (7.5.23) is at order 1/r2:

F(2) = − e−C1(0)

2 sin θ cos θ (∂θC1(0) + 2∂θC2(0))− e−C1(0)(cot θ − tan θ)(2∂θβ −
5
2∂θC1(0))

+e−C1(0)(6− 2(∂θβ(0))2 − 2∂2
θβ(0) + 2∂θβ(0)∂θC1(0)) (7.5.31)

−e
−C1(0)

2 (2(∂θC1(0))2 + ∂θC1(0)∂θC2(0) + (∂θC2(0))2 − 4∂2
θC1(0))

and thus integrating (7.5.23) we obtain

U(0) = 1
6e

2β(0)F(2). (7.5.32)

For ∂u to be non-spacelike as r →∞ we require that

eC1(0)W 2
(1) − e

2β(0)U(0) ≤ 0 (7.5.33)

i.e.
F(2) ≥ 24e−C1(0)(∂θβ(0))2 (7.5.34)

so

6− 26(∂θβ(0))2 − 2∂2
θβ(0) + 2∂θβ(0)∂θC1(0) (7.5.35)

− 1
2 sin θ cos θ (∂θC1(0) + 2∂θC2(0))− (cot θ − tan θ)(2∂θβ −

5
2∂θC1(0))

−1
2
(
2(∂θC1(0))2 + ∂θC1(0)∂θC2(0) + (∂θC2(0))2 − 4∂2

θC1(0)
)
≥ 0

This is a non-trivial constraint. In the case of cosmic membranes discussed previously the functions
(Ci(0), β(0)) are proportional to the membrane tension; provided that the tension is much less than
one, the leading term in this expression will be the first one and the constraint be satisfied. In
other words, for a cosmic membrane,

U(0) ≈ 1, (7.5.36)

up to corrections of order the membrane tension.

The remaining Einstein equations do not place further constraints on this defining data. The
Einstein equations along the sphere can be expressed in the form:

Rθθ = 0⇔ (3r + 2r2∂r)∂uC1 =H1(Ci, β,W,U);

Rφφ = 0⇔ (3r + 2r2∂r)∂uC2 =H2(Ci, β,W,U);

Rψψ = 0⇔ (3r + 2r2∂r)∂uC3 =H3(Ci, β,W,U),

(7.5.37)

and these determine the u evolution of the functions Ci. Here the functionals Hi depend on the
functions (Ci, β,W,U) and their (r, θ) derivatives, but not on u derivatives. The three equations
are not independent: C3 = C1 + C2.

Asymptotically, the leading contributions to Hi are of order one, thus determining that there are
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terms at order 1/r in the Ci expansions

Ci = Ci(0)(θ) +
Ci(1)(u, θ)

r
+ · · · (7.5.38)

The equations (7.5.37) can immediately be integrated at leading order to give

Ci(1) =
∫
Hi(u, θ)du. (7.5.39)

where Hi are

H1 = 1
3e

2β(0)−C1(0)
(
(C1(0),θ)2 + 2C2(0),θC1(0),θ + 2(C2(0),θ)2 − C1(0),θθ

)
+ 2

3e
2β(0)−C1(0)

(
C1(0),θβ(0),θ − 8(β(0),θ)2 − 4β(0),θθ

)
+ 1

3e
2β(0)−C1(0)(tan θ − cot θ)

(
C1(0),θ − 4β(0),θ

)
+ 2

3e
2β(0)−C1(0) csc θ sec θ

(
C1(0),θ + 2C2(0),θ

)
(7.5.40)

and

H2 = 1
3e

2β(0)−C1(0)
(
−4β(0),θC1(0),θ − 6β(0),θC2(0),θ

)
+ 1

3e
2β(0)−C1(0)

(
+8(β(0),θ)2 + 4β(0),θθ − 2C2

1(0),θ

)
− 2

3e
2β(0)−C1(0)(tan θ + cot θ)C1(0),θ

+ 1
3e

2β(0)−C1(0)(cot θ − 5 tan θ)C2(0),θ

− 4
3e

2β(0)−C1(0)(tan θ + 2 cot θ)β(0),θ

− 1
3e

2β(0)−C1(0)
(
(C2(0),θ)2 + 4C1(0),θC2(0),θ

)
+ 1

3e
2β(0)−C1(0)

(
2C1(0),θθ3C2(0),θθ

)
(7.5.41)

Note that H3 is the sum of H1 and H2.

The equations (7.5.37) demonstrate why the defining data Ci(0) should be independent of u as
r →∞: these equations cannot be solved self-consistently if Ci(0) depends on u, without inducing
an infinite series of terms in Ci that scale as positive powers of r, hence breaking the notion of
local flatness.

Thus, in summary, the leading terms in the asymptotic expansions are

Ci = Ci(0) + · · · β = β(0) + · · · (7.5.42)

W =
W(1)

r
+ · · · U = U(0) + · · ·

where (Ci(0)(θ), β(0)(u, θ)) are the independent data and (W(1),U(0)) are determined from this data.
Note that if W(1) is non-zero then guθ ∼ r. By setting ∂θβ(0) = 0, one can set W(1) = 0. If β(0) is
a function only of u, one can then use reparameterisation freedom of the retarded time coordinate
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to fix β(0) = 0. In this case Ci(0) is the only remaining non-trivial data, with U(0) determined from
this data via (7.5.32).

One can use this behaviour to write down the asymptotics of the metric in the general case:

gAB = r2hAB = r2h(0)AB +O(r) (7.5.43)

guu = (−Ue2β + r2hABW
AWB) = −U(0)e

2β(0) + h(0)ABW
A
(1)W

B
(1) +O(r−1)

gur = −e2β = −e2β0 +O(r−2)

guA = gABW
B = rh(0)ABW

B
(1) +O(r0),

where the orders of the subleading terms follow from the next to leading contributions to the
Einstein equations. Note that if one imposes the additional constraint that

β(0),A = 0 (7.5.44)

then WA
(1) = 0 and guA is order r0, as in the four-dimensional case.

7.6 Asymptotic expansion to all orders

In the previous section we established the leading asymptotics for the metric components, given
the generalised boundary condition for the metric on the celestial sphere. In this section we will
establish the asymptotic expansion for the metric in this context. It is useful to first review
the structure of the expansion of an asymptotically flat vacuum metric, analysed in detail in
[69, 270]. For direct comparison with the results above, we restrict to U(1)2 symmetry and inversion
symmetry, i.e. we set Di = 0. The expansions for the five metric functions are then

Ci =
Ci( 3

2 )

r
3
2

+ · · · (7.6.1)

β =
β(3)

r3 + · · ·

W =
W( 5

2 )

r
5
2

+
W(3)

r3 +
W( 7

2 )

r
7
2

+
W(4)

r4 + · · ·

U = 1 +
U( 3

2 )

r
3
2

+
U(2)

r2 + · · ·

Here we have highlighted in colour the defining data for the asymptotic expansion; all other expan-
sion coefficients can be expressed in terms of this data and its derivatives, with explicit expressions
given in [69, 270]. The integration functions Ci( 3

2 ) are associated with gravitational wave degrees
of freedom and their u-evolution is not fixed by Einstein equations and has to be prescribed to
fully determine the solution. The integration functions highlighted in red are associated with con-
served charges; in particular, U(2) is associated with the mass of the spacetime. (Note that the
assumed symmetries - axisymmetry and inversion, Section 7.5 - set the angular momentum charges
associated with rotations in the φ and ψ directions to zero.)

We now turn to the asymptotic expansions of asymptotically locally flat vacuum metrics. The
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expansions for the five metric functions are

Ci = Ci(0) +
Ci(1)

r
+
Ci( 3

2 )

r
3
2

+ · · · (7.6.2)

β = β(0) +
β(2)

r2 +
β( 5

2 )

r
5
2

+
β(3)

r3 + · · ·

W =
W(1)

r
+
W(2)

r2 +
W( 5

2 )

r
5
2

+
W(3)

r3 +
W( 7

2 )

r
7
2

+
W(4)

r4 +
W̃(4)

r4 ln r + · · ·

U = U(0) +
U(1)

r
+
U( 3

2 )

r
3
2

+
U(2)

r2 +
Ũ(2)

r2 ln r + · · ·

Again, the integration functions are highlighted in colours, and all other coefficients in the expan-
sions are expressed in terms of these data. The data (Ci(0), β(0)) is the analogue of non-normalisable
boundary data in asymptotically locally AdS spacetimes, while the integration functions at sub-
leading orders in the expansion (Ci( 3

2 ),W(4),U(2)) are analogous to normalisable boundary data.

Explicit expressions for the first few terms in the expansions were derived in the previous section.
These are summarised together with expressions for the subleading coefficients in the Appendix B.1.
Here we focus on the structure of these expansions and, in particular, how the logarithmic terms
in these expansions arise.

First of all, let us note that the integration functions in Ci at order r−3/2 are unaffected at this
order by the new boundary conditions. Just as in previous works [69, 270], we therefore expect
that these integration functions are associated with gravitational waves: the defining data has
the correct number of degrees of freedom to represent gravitational waves, and is unconstrained.
Furthermore, as shown in Appendix B.1, the u-evolution of the data Ci( 3

2 ) is left unspecified by
the equations (7.5.37), so that also ∂uCi( 3

2 ) have to be given as a coordinate on the phase space,
in agreement with the asymptotically flat case. Note however that the new boundary conditions
do affect the explicit forms for the expansion coefficients at subleading fractional orders.

To definitely show that Ci( 3
2 ) corresponds to gravitational radiation, one would need to show that

spacetimes with non-vanishing radiation lose mass. We should also note that, for Ci( 3
2 ) to be

interpreted as the degrees of freedom corresponding directly to gravitational waves, one should
show rigorously that ∂uCi( 3

2 ) is gauge invariant, generalising the discussions of [77]. If ∂uCi( 3
2 ) was

not gauge invariant then one would need to construct a gauge invariant quantity that reduces to
∂uCi( 3

2 ) in the asymptotically flat case.

Consider the Einstein equations (7.5.20) and (7.5.23); both these equations have associated inte-
gration functions, shown in red above. As discussed in the previous section, these equations can
be viewed as inhomogeneous equations for W and U , respectively, which determine these func-
tions from the functions that have already been determined. The asymptotic expansions of the
functionals (F ,G) have the structure

G =
G(1)

r
+
G(2)

r2 +
G(5/2)

r5/2 +
G(3)

r3 +
G(7/2)

r7/2 +
G(4)

r4 + · · · (7.6.3)

F =
F(2)

r2 +
F(3)

r3 +
F(7/2)

r7/2 +
F(4)

r4 + · · ·
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Then integrating (7.5.20) and (7.5.23) we obtain

Ũ(2) = 1
3F(4)e

2β(0) (7.6.4)

W̃4 = −1
2G(4)e

2β(0)−C1(0)

Consistent integration of the Einstein equations thus requires either allowing for logarithmic terms
in the asymptotic expansions or imposing constraints on the defining data such that F(4) = G(4) =
0. In the standard case of asymptotically flat spacetimes, the defining data are chosen such that
indeed these terms in the expansions of F and G vanish, so no logarithmic terms are induced. This
implies overconstraining subleading terms in the expansion of hAB . Note that while the terms
Ũ(2) and W̃4 are the leading logarithmic terms in the expansions, they clearly induce at subleading
orders further logarithmic terms.

It is particularly useful to recall the case of asymptotically locally anti-de Sitter spacetimes in
five dimensions (see Section 2.3.1.1 and Appendix A.1.2), which solve the Einstein equations with
cosmological constant and no matter. Then, working in Fefferman-Graham coordinates, the metric
expansion in the vicinity of the conformal boundary ρ→ 0 is4

ds2 = dρ2

ρ2 + 1
ρ2hij(x, ρ)dxidxj (7.6.5)

where the four-dimensional metric hij is expressed as

hij = h(0)ij + ρ2g(2)ij + ρ4h(4)ij + ρ4 log ρ ĥ(4)ij + · · · (7.6.6)

Just as in the expansions given above, the data highlighted in colours completely determines the
integration functions in solving the equations and hence the entire asymptotic expansion. All other
terms in the expansion are expressed in terms of curvature tensors of (h(0)ij , h(4)ij). Recall that
the interpretation of the defining data in the dual CFT is that the non-normalisable data h(0)ij

is the background metric for the field theory, while the normalisable data h(4)ij determines the
expectation value of the stress tensor in the CFT. The occurrence of logarithmic terms in the
asymptotic expansion and in the regulated onshell action relates to Weyl anomalies in the field
theory.

The coefficient of the leading log term is [107, 108]

ĥ(4)ij = 1
2

(0)

Rikjl

(0)

Rkl − 1
12∇i∇j

(0)

R + 1
4∇

2
(0)

Rij −
1
6

(0)

R
(0)

Rij (7.6.7)

− 1
24

(
∇2

(0)

R −
(0)

R2 + 3R(0)kl

(0)

Rkl

)
h(0)ij

where ∇ is the covariant derivative associated with h(0) and
(0)

R denotes the curvature of h(0). Note
that ĥ(4)ij does not depend on the normalizable data h(4)ij : conformal anomalies depend only
on the background fields of the CFT, not on the specific state of the field theory and its energy

4Compared to the Fefferman-Graham metric written in previous parts, we have renamed z = ρ to
avoid possible confusion with other z’s in this part and we have automatically set to zero the terms which
vanishes by the Einstein’s equations.
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momentum tensor.

It is interesting to compare (7.6.7) with our results for asymptotically locally flat spacetimes in
five dimensions. In both cases, the coefficients of the leading log terms depend only on the non-
normalizable data and its derivatives (see Appendix B.1). Furthermore, the coefficient of the
leading log in WA is not independent from the coefficient of the leading log of U . Notice, however,
that the number of independent degrees of freedom of the “normalizable data” is the same (modulo
symmetry reduction) in this case as in AlAdS.

If one restricts either asymptotically flat or to asymptotically AdS, the coefficients of the log terms
vanish.

The analysis of five-dimensional asymptotically locally anti-de Sitter spacetimes in Fefferman-
Graham gauge makes manifest four-dimensional covariance, and accordingly this is the most com-
monly used gauge for asymptotic analysis. To make contact with our analysis of asymptotically
locally flat spacetimes, one can instead use Bondi gauge for the asymptotic analysis in anti-de
Sitter, see [190, 272] for the corresponding analysis in four dimensions. It would be interesting
to carry out the asymptotic analysis in Bondi gauge for five dimensional asymptotically locally
anti-de Sitter, and to explore the limit as the cosmological constant is taken to zero, in order to
elucidate the structure found here.

In the context of asymptotically flat spacetimes in four dimensions, polyhomogeneous expansions
have been discussed in a number of earlier works, see [273, 274, 275, 276, 277, 278]. In these
contexts, however, the appearance of logarithmic terms is associated with non-smoothness of the
boundary data; imposing suitable regularity conditions sets the logarithmic terms to zero. This
fits with asymptotically locally anti-de Sitter spacetimes in four dimensions that satisfy Einstein’s
equations with negative cosmological constant: these also do not have logarithmic terms in their
asymptotic expansions, since the Weyl anomaly of the stress tensor in a three-dimensional confor-
mal field theory vanishes.

7.7 Summary of results

We have argued that only (d− 3)-branes in d spacetime dimensions are flat in the vicinity of the
brane, and therefore the natural generalization of cosmic strings/superrotations in four dimensions
should involve (d− 3)-branes.

We have then showed that such branes are accommodated in a configuration space defined in Bondi
gauge by what we called asymptotically locally flat boundary conditions, rather than flat. The are
defined in (7.4.41) in terms of a non-trivial (d − 2) metric, describing a (d − 2)-manifold that is
topologically a (d − 2)-sphere. These boundary conditions include cosmic branes, but are rather
general.

We have then commented on the analogies of the asymptotic solution with the well-known asymp-
totic solutions for asymptotically locally AdS spacetimes in Fefferman-Graham gauge and proposed
a holographic interpretation for the former.
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We showed that the vacuum Einstein equations can be solved consistently with these boundary
conditions near the null boundary. The resulting asymptotic expansions are polyhomogeneous,
with the leading logarithmic terms in the expansions are expressed in terms of derivatives of the
boundary metric on the celestial sphere. Again, this seems very much analogous to the structure
of asymptotically locally anti-de Sitter spacetimes in five dimensions.



CHAPTER 8

General null asymptotics and superrotation-compatible configuration
spaces in d ≥ 4

Bondi-Sachs gauge vacuum Einstein equations in spacetime dimension d ≥ 4 are solved at the
non-linear level with the most general boundary conditions preserving the null nature of infinity.
When restricting to locally Minkowskian asymptotics, the analysis clarifies and gives necessary
conditions for the configuration space of solutions to be acted by supertranslations andDiff(Sd−2)
superrotations in d > 4. The interplay of radiative/non-radiative falloff behaviours with the
constraints imposed on the leading asymptotic data by the former is highlighted. The minimal
case in which extended supertranslations and Diff(Sd−2) superrotations form consistent allowed
diffeomorphisms requires the boundary metric on cuts of I to be time (u) dependent. This
is a new feature with respect to the four-dimensional case. We also show that an asymptotic
symmetry with Diff(Sd−2) superrotations and radiative falloff behaviour (namely translations
rather than supertranslations) is not allowed; hence in higher dimensions superrotations need
supertranslations. We discuss both polyhomogeneous and non-polyhomogeneous expansions and
show that the r−1 falloff required to obtain infinite-dimensional asymptotic symmetries implies
that a maximal polyhomogeneous expansion is mandatory in even dimensions unless the r−1 term
is appropriately constrained. In odd dimensions the situation can be argued to be different. We
interpret these points by connecting with the asymptotic expansion of asymptotically locally AdS
spacetimes and suggest a holographic motivation.

127
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8.1 Introduction

Campiglia-Laddha’s proposal of SDiff(S2) superrotations, as well as BT-superrotations in four-
dimensional spacetimes, exemplifies how the realization of Strominger’s triangular equivalence at
subleading order requires boundary conditions on a bulk spacetime to be appropriately engineered
to host enough asymptotic symmetries.

The same path can be followed to address the problem of soft theorems/asymptotic symmetries in
higher dimensions [71, 279, 79, 80].

In higher dimensions, as we have said (see Section 5.3), the lack of of supertranslations is due
to the choice of radiative falloff conditions in Tanabe, Kinoshita, Shiromizu analysis (TKS in the
following)

hAB − γAB = O(r
2−d

2 ). (8.1.1)

Given that superrotations apparently only depend on the degree of freedom imposed on the bound-
ary metric, we may wonder that we can consistently enlarge the Poincaré asymptotic symmetry
in d > 4 to include generic Diff(Sd−2) CL-transformations, as we on the other hand know that
BT-superrotations in d > 4 are forbidden. We leave the answer to this question at the end of this
chapter.

Focussing first on leading soft theorems and supertranslations, Kapec, Lysov, Pasterski and Stro-
minger [71] (KLPS in the following) engineered appropriate falloff conditions such that the corre-
sponding solution space (or configuration space) hosts supertranslations. Since supertranslations
are strictly related to the order r−1 in hAB , KLPS seek to construct a configuration space where

hAB = γAB +
h(1)AB

r
+ . . . . (8.1.2)

This is the same falloff behaviour as in d = 4, but in higher dimensions it is not consistent with
linearised radiation and hence we name it non-radiative falloff condition. They further assume
that all the subleading terms are associated with integer powers. This is thus the same expansion
as in d = 4 and a minimal overleading extension of the expansion taken by TKS in even dimension.
Hence, KLPS results are valid in even dimensions. These authors furthermore restrict their analysis
to the linear level1.

We have mentioned in chapter 5 that Einstein’s equations in Bondi gauge do not uniquely fix the
radial expansion of hAB , but only that of ∂uhAB . Thanks to this fact, the equations can be solved
consistently for virtually any expansion of hAB . Namely, set an ansatz for the expansion of hAB
and solve the equations with that. The solutions will constrain ∂uhAB at various orders and in
turn β, U and WA, but not the r-dependence of hAB itself. This is the reason why several forms
of polyhomogeneous hAB have been analysed in the d = 4 literature. This is also the motivation
of the KLPS argument.

On the contrary, in the previous chapter we avoided assuming any expansion a priori, and instead
1Notice that they do not consider vacuum field equations, but impose the Ricci tensor exactly vanishes

to some order.
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fed the equations with generic boundary data (h(0)AB , β(0)). We concluded that in order not to
overconstrain such data we have to allow for the order r−1 in hAB . That is, if we do not take hAB
to have a r−1 term, then the equations imply constraints on (h(0)AB , β(0)). On the other hand, if
we take h(1)AB to be non-vanishing but h(0)AB = γAB and β(0) = 0, we get the constraint

∂uh(1)AB = 0. (8.1.3)

In five dimensions, the next subleading order is r−3/2 and hosts the shear/news tensor.

Equation (8.1.3) is what characterises the configuration space built in the KLPS analysis. In any
even dimension greater than four, the KLPS analysis gives the vanishing of ∂uh(p)AB up to the
order of the news tensor. In such a configuration space, later reconsidered via covariant phase
space methods [279], pretty much all the fundamental results and the necessary conditions from
d = 4 can be transferred [199], including (if we are brave enough) the matching conditions between
future and past null infinity. The result is a linear configuration space which is consistent with
the action of supertranslations, where the matter of scattering and soft theorems associated to
supertranslations can be discussed. Some of the difficulties encountered at the non-linear level are
briefly discussed in [279].

In the published version of the previous chapter, [1], we show that the five-dimensional configuration
space we constructed supports supertranslations, thus establishing that the results of [71] and [279]
can be extended to odd dimensions.

The possibility of BT-superrotations in higher dimensions is algebraically speaking impossible,
as we said several times, but the extensions of CL-superrotations to d > 4 only require allowing
the leading asymptotic order of hAB to “fluctuate” (with fixed determinant) under the action
of asymptotic Killing vectors. However, “only require” is a wrong statement. The analysis of
this chapter moves from this point, which seems not to be appreciated in (the scarce) existing
literature. Colferai and Lionetti [79] construct explicit CL-charges in higher dimensions2 adapting
the KLPS analysis to CL boundary conditions: they take the CL condition LξgAB = O(r2) rather
than LξgAB = O(r) (recall gAB = r2hAB) within the KLPS configuration space. As noted by
these authors, the resulting SDiff(Sd−2) superrotations are inconsistent with the definition of
the configuration space because they act on h(1)AB as

LY h(1)AB ∝ uf(x)AB , (8.1.4)

where f is a covariant combination of Y and covariant derivatives compatible with h(0). This
transformation rule explicitly breaks the configuration space defined by (8.1.3), thus making any
subsequent identification of the broader picture of Strominger’s triangles and flat spacetime holog-
raphy void.

We have explored in chapters 4 and 6 the necessary conditions for such pictures to hold, and we
can here summarise the main points to better frame the aforementioned problem and the solution
presented in this chapter. A plausible fundamental condition for the resulting pictures - including
holography - to hold is the existence of a well-defined phase space. In a covariant phase space

2Albeit glossing over a proper derivation that takes into account the divergences and the issues of the
incompatibility with the configuration space.
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perspective, where the phase space is built over a configuration space by endowing the latter with
a symplectic structure, the problem is schematically divided as:

1) Definition of the configuration space of fields with given boundary conditions (in this case
either at I + or I −) with consistent asymptotic Killing fields,

2) Definition of the phase space: charges associated to the asymptotic Killing fields must be
finite and - in principle - integrable.

If the ultimate goal is the scattering problem, the phase space must be defined so that the con-
jectured symmetry of the S-matrix is consistent. This is non-trivial since BMS per se is defined
separately on I + and I −. Another condition must be met:

3) Definition of matching conditions (boundary conditions along I ) that do not trivialize
charges.

This chapter addresses the first point of the previous list. We approach the problem from a general
point of view which allows us to study the basic conditions underlying the consistency of the
configuration space (in Bondi-Sachs gauge) with the action of asymptotic Killing fields in any
dimension higher than four. We also compare and contrast the four-dimensional case with higher
dimensions (Section 8.4).

We clarify in which sense, and under what conditions on the boundary data, radiative and non-
radiative falloff beahviours in higher dimensions are consistent. Supertranslations and CL-like
superrotations arise from subcases in an automatically consistent configuration space (section 8.5).
In the next subsection we further specify the results and the organisation of the chapter.

8.1.1 Results and organization

We recognise that the root of the issue discussed around (8.1.4) is the choice of boundary conditions.
To make (8.1.4) consistent with the configuration space we must provide a configuration space
where

∂uh(1)AB 6= 0. (8.1.5)

Since ∂uh(1)AB is determined by (h(0)AB , β(0)), which we called non-normalizable data in the pre-
vious chapter, in this chapter we will prove the claim

Claim: Consistency between the action of CL-like superrotations and the definition of the config-
uration space is obtained with the boundary data (h(0)AB , β(0) = 0) with i) h(0)AB u-dependent
and Einstein, or ii) h(0)AB u-independent but not Einstein, or iii) h(0)AB arbitrary3.

We notice that already in the previous chapter (namely in [1]) we gave a d = 5 configuration
space where CL-like superrotations are supported. That analysis corresponds to a subcase of the

3We can recast this claim including β(0), but since it is never considered in the literature concerning
d = 4 (see later) we will not deeply analyse its role here.
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present chapter: there h(0)AB is u-independent and hence, according to this Claim, it must not be
Einstein to host CL-like superrotations.

The possible u-dependence of h(0)AB is not arbitrary, but is fixed by Einstein’s equations to

h(0)AB(u, x) = e2ϕ(u,x)ĥ(0)AB(x) , ∂uϕ := l

d− 2 := ∂uq

(d− 2)2q (8.1.6)

where q is the determinant of hAB . See [60] for the corresponding analysis in four dimensions.

A fundamental equation in this chapter is (for d > 4)

∂uh(1)AB −
l

d− 2h(1)AB = 2e2β(0)

d− 4

(
h(0)AB

d− 2
(0)

R −
(0)

RAB + (4− d)BAB [β(0)]
)

(8.1.7)

where

BAB = 2
[

(0)

DA∂Bβ(0) + 2∂Aβ(0)∂Bβ(0) −
h(0)AB

d− 2

( (0)

D2β(0) + 2∂Cβ(0)∂
Cβ(0)

)]
. (8.1.8)

From the above, the previous considerations arise because BAB = 0 if β(0) = 0 or ∂Aβ(0) = 0.
Notice that in the previous chapter we did not take h(0)AB (i.e the functions C(0)i) to depend on
u.

Equation (8.1.7) can be recast as

∂uh(1)AB −
l

d− 2h(1)AB = 2
d− 4e

2β(0)
[
−R̂AB + (d− 4)

(
ΦAB [ϕ]− BAB [β(0)]

)]
, (8.1.9)

where R̂AB is the traceless part of the Ricci tensor R̂AB of ĥ(0)AB and R̂AB−(d−4)ΦAB [ϕ] = RAB
is the traceless part of the Ricci tensor

(0)

RAB of h(0)AB , so that

ΦAB [ϕ] = (D̂AD̂Bϕ− D̂AϕD̂Bϕ)− ĥAB
d− 2(D̂2ϕ− (D̂ϕ)2). (8.1.10)

Given (8.1.9) we immediately infer (see Table 8.1.1) what restrictions are imposed on the boundary
data (h(0)AB(u, x), β(0)(u, x)) by the radiative falloff behaviour. Conversely, to have a configuration
space compatible with superrotation-like asymptotic transformations we must have, as argued
before ∂uh(1)AB 6= 0, and from (8.1.9) we get the cases summarised in Table 8.1.2

While proving these statements at the non-linear level, we observe that they also provide a solution
to the concerns raised in [279] when briefly exploring supertranslations at the non-linear level in
even dimension.

A different take on this problem was pursued in [80]. They partially solve the issue of [79] because
they work in the linearised regime and in even dimensions and find that h(1)AB is pure gauge
(consistently with [71, 77]) and linear in u. Our result is more general.

The summarised results are obtained as subcases of the most general choice of boundary data
possible, further discussed in Section 8.2. Both h(0)AB and β(0) are a priori unrestricted, and
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Radiative falloff h(1)AB ≡ 0 ⇒ H(2)AB = 0

∂uh(0)AB = 0
Einstein (R̂AB ≡ 0, ΦAB ≡ 0) BAB = 0 −→ ∂Aβ(0) = 0
Conformal to Einstein
(R̂AB ≡ 0, ∂uΦAB = 0)

BAB = ΦAB −→ ϕ(x) = 2β(0)(x)

Not Einstein R̂AB ∼ ΦAB − BAB
∂uh(0)AB = e2ϕ(u,x)ĥAB(x)
ĥ Einstein (R̂AB ≡ 0) BAB = ΦAB −→ ϕ(u, x) = 2β(0)(u, x)
Not Einstein R̂AB ∼ ΦAB − BAB

Table 8.1.1: Synoptic view of various constraints imposed on the boundary data
(h(0)AB, β(0)) by the request h(1)AB ≡ 0 in d > 4. The right column reports the con-
ditions stemming from H(2)AB under the assumptions in the left column and the simple
arrow −→ indicates a possible solution of the conditions.

∂uh(1)AB 6= 0

l = 0 H(2)AB 6= 0
R̂AB = 0, ϕ(x) = 0⇒ BAB 6= 0 (8.1.11)
R̂AB = 0, ϕ(x) 6= 0⇒ ΦAB − BAB 6= 0 (8.1.12)
R̂AB 6= 0 (8.1.13)

l 6= 0
H(2)AB = 0 R̂AB = 0⇒ ΦAB = BAB −→ ϕ = 2β(0) (8.1.14)

R̂AB 6= 0 (8.1.15)

H(2)AB 6= 0 R̂AB = 0⇒ ΦAB − BAB 6= 0 (8.1.16)
R̂AB 6= 0 (8.1.17)

Table 8.1.2: Various boundary data compatible with ∂uh(1)AB 6= 0. The cases such that
∂uh(1)AB = 0 can also be obtained from this under appropriate changes.
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we also do not use at any point the spherical topology of the cross sections of I , so that the
conclusions reached are valid for any asymptotic null boundary with topology R × Bd−2, where
Bd−2 is a base space. The solution space is built in section Section 8.4.

We can rephrase the conclusions of this chapter by saying that the solution space we provide is
manifestly associated with a boundary generalised Carrollian structure, where “generalised” stands
for the inclusion of CL-superrotations (see Appendix A.1.1).

At the end of this chapter (Section 8.6) we make some preliminary comments on the asymptotic
charges and the phase space. We should expect divergences, but - at least when β(0) = 0 - we
believe we can consistently renormalize the charges as was done by Compère and collaborators
[156] for CL-superrotation charges in d = 4. The criticism of [157] about the covariance of the
procedure will apply also in this case.

The main points of the discussion are exemplified and summarised in Section 8.3 and Section 8.5
discusses the asymptotic Killing vectors, while Section 8.4 includes the details of the asymptotic
analysis and comments on polyhomogeneous expansions.

8.2 On the role of β(0)

We set out to solve vacuum Einstein’s equations in Bondi gauge

ds2 = −Ue2βdu2 − 2e2βdudr + r2hAB(dxA −WAdu)(dxB −WBdu), (8.2.1)

grr = 0 = grA, det(hAB) = q(u, x), (8.2.2)

with the boundary pair (h(0)AB(u, x), β(0)(u, x)).

We pause here to briefly discuss the role of a non-vanishing β(0). Indeed, up to the previous
chapter we took β(0) = 0 without worrying so much. β(0) is related to the definition of r (a
non-affine parameter along null geodesics) such that the expansion is Θ = e2β/r. Setting β(0) = 0
formally corresponds to gauge β(0) away by appropriately redefining the coordinates. This is always
possible when we assume the standard notions of asymptotically flat spacetimes, namely isolated
spacetimes with appropriate falloffs of the matter stress-energy tensor.

However, as argued in [143], the required transformation deforms the initial null surface in the
spacetime and thus is not a natural condition from a characteristic initial value problem point of
view. If we advocate a boundary perspective on the integration scheme, gauging β(0) away from
the start may seem less unnatural. However, it may not be desirable if we think of a flat limit
from AdS/CFT in Bondi gauge, where β(0) was given a role in the dual CFT [190, 272] From this
perspective we would ideally like to keep track of the fate of the degrees of freedom included in
β(0) when taking the limit.

We can still argue in favour of keeping β(0) by simply observing that, with the knowledge of the
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asymptotic solutions (see for example (5.2.4) or later in the chapter) the leading order metric is

ds2 = e2β(0)(−guudu2 − 2dudr) + gABdx
AdxB (8.2.3)

In particular we can take the boundary condition gAB = r2γAB so that

ds2 = e2β(0)(−du2 − 2dudr) + r2γABdx
AdxB . (8.2.4)

Any metric in the class

ds2 = e2β(−du2 − 2dudr) + r2γABdx
AdxB (8.2.5)

with β = β(u, r, x) can be conformally compactified in d = 4 with a smooth Ω = r−1 and admits
a smooth I [187], however its curvature is such that the stress-energy tensor does not satisfy
the falloff requirements usually assumed in d = 4. This is why such metrics are not considered
asymptotically flat [187]. With a non-zero β(0) we are genuinely in presence of a non-asymptotically
flat spacetime (in the standard sense) which can be called asymptotically locally Minkowski by
comparison with the AdS/CFT jargon.

Notice that in d = 3, the notion of asymptotically flat spacetimes, defined by symmetry reductions
of four dimensional cylindrical waves, is necessarily of this form [187].

We have thus several good arguments to take β(0) generic, but to make contact with supertrans-
lations and CL-superrotations we will restrict - when appropriate - to β(0) = 0 and spherical
cross sections. Once again we stress that the presence of β(0) will affect considerations of the
well-posedness of the variational principle.

8.3 Asymptotic analysis: discussion

For ease of comparison with existing literature, we adopt conventions similar to [60]. We define
the quantities (see Appendix C)

lAB = 1
2∂ugAB , kAB = 1

2∂rgAB , nA = 1
2e
−2βgAB∂rW

B , (8.3.1)

as well as4

ñA = nA
r2 , K̃C

D := 1
2h

AC∂rhAD, so that kAB = δAB
r

+ K̃A
B . (8.3.2)

Einstein main equations take the form

Rrr = 0⇒ ∂rβ = r

2(d− 2)K̃
A
BK̃

B
A , (8.3.3)

4Notice that [60] uses KA
B := r2K̃A

B .
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RAr = 0⇒ ∂r(rdñA) = GA(β, K̃) (8.3.4)

GA(hAB , β) = rd−2
[(
∂r −

d− 2
r

)
∂Aβ − (d−2)DBK̃

B
A

]
,

gABRAB = 0⇒ d− 2
r2 [(d− 3) + r∂r]U = F(hAB , β,WA) , (8.3.5)

F(hAB , β,WA) = e2β [(d−2)R− 2(DAD
Aβ + ∂Aβ∂Aβ + nAnA)

]
+
(
∂r + 2d− 2

r

)
DAW

A + 2d− 2
r

l ,

gDARAB = 0⇒
(
∂r + d− 2

r

)
lDB + (∂u + l) kDB = HDB , (8.3.6)

HDB = −e2β [(d−2)RDB − 2
(

(d−2)DD∂Bβ + ∂Dβ∂Bβ + nDnB
)]

−
(
∂r + d− 2

r

)(
1
2

(d−2)DDWB + 1
2

(d−2)DBW
D − kDBU

)
−
[

(d−2)DC(WCkDB ) + kDA
(d−2)DBW

A − kAB (d−2)DAW
D
]
.

We can stress the difference with field equations in Fefferman-Graham gauge with Λ.

In that case the terms involving the time derivative are hidden in the covariant derivatives along the
timelike hypersurfaces that foliate the spacetime and the only terms that are distinguished are those
analogous to kAB , involving derivatives along the radial direction orthogonal to the hypersurfaces:
this is (appropriately normalised) the extrinsic curvature of the timelike surfaces that foliate the
spacetime in the typical AlAdS integration scheme in terms of Gauss-Codazzi equations.

Analogously, kAB is the (non-normalised) extrinsic curvature of the r = const timelike surfaces.
The cuts of such surfaces by u = const null surfaces are spacelike and their extrinsic curvature is

QAB = lAB + (d−2)D(AWB). (8.3.7)

Equation (8.3.6) can be rewritten in terms of QAB and ∂ukAB but not much is gained for our
current purposes5.

The solution of all the main equations can be given in a closed integral form depending on K̃A
B and

encoding the asymptotic behaviour of hAB . As we have commented several times, such behaviour
is not uniquely determined by any equation.

The integral form of the solution in subsection 8.3.1 can be given following [60]. Then in subsection
8.3.2 we discuss, to fix the ideas, the leading order solution and the strategy pursued in Section
8.4, where full details are given and the comparison between radiative and non radiative behaviour
is made and logarithmic terms are discussed.

5We get a shorter form, but upon performing the manipulations of the next section to remove ∂ukAB ,
the equation will almost look the same as what we already have.
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8.3.1 Integral solution of the main equations

In the following, we use the somewhat imprecise convention of singling out the relevant integration
functions and leaving integrals as indefinite when no chance of confusion arises. This set, we write
the solution of equation (8.3.3) as

β(u, r, x) = β(0)(u, x) + 1
2(d− 2)

∫
rK̃A

BK̃
B
A . (8.3.8)

With (??), (8.3.4) becomes

∂r(rdñA) = rd−2
[(
∂r −

d− 2
r

)
∂Aβ − (d−2)DBK̃

B
A

]
=: G(β, K̃) (8.3.9)

where we have also defined for convenience

ñA = 1
2e
−2βhAB∂rW

B , (8.3.10)

so that
ñA(u, r, x) = NA(u, x)

rd
+ 1
rd

∫ r

GA ds, (8.3.11)

and hence

WA(u, r, x) = WA
(0)(u, x) + 2

∫ r

dt e2β(u,t,x)hAB(u, t, x) 1
td

(
NB(u, x) +

∫ t

GB ds
)

(8.3.12)

The integration of (8.3.5) gives

U(u, r, x) =
U(d−3)(u, x)

rd−3 + 1
rd−3

∫ r F
d− 2s

d−2 ds. (8.3.13)

Using
∂uk

D
B = ∂rl

D
B − 2(lDAkAB − kDA lAB) , (8.3.14)

the latter equation (8.3.6) can be conveniently rewritten as

∂rl
D
B + oDACB l

C
A = jDB (8.3.15)

where
oDACB = d− 2

2r δDC δ
A
B − (δDC kAB − kDC δAB) , jDB = 1

2
(
HDB − lkDB

)
(8.3.16)

and the solution is given by Lagrange method. Indeed, it is of the form

ẏ(x) + f(x)y(x) = g(x), (8.3.17)

whose solution is
y(x) = e−F (x)(c+ ȳ(x)), (8.3.18)

where F (x) is an antiderivative of f(x) and ȳ(x) is an antiderivative of g(x)eF (x) and c is a constant.
We write the solution of (8.3.15) as

lDB = e−θ
DA
CB

(
1
2N

C
A + l̄DB

)
(8.3.19)
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where the factor 1/2 is chosen to cancel later factors of 2 in the definition of NAB , with

θDACB =
∫

oDACB , l̄DB =
∫
jCAe

θDACB . (8.3.20)

Notice that oDACB contains a term explicitly of order r−1, which when integrated contributes with
logarithmic terms. The integral defining θDACB is to be considered between a generic r in the bulk
(where the coordinate system breaks down) and a large R to be sent to infinity. It is easy to see
that the potential logarithmic divergence is absorbed in a power of r.

Equivalently, to ease comparison with [60], we can split

lAB = lA(0)B + L̃AB , lA(0)B = 1
2h

AC
(0) ∂uh(0)CB , (8.3.21)

and, to remove the explicit r−1 piece from the operator acting on L̃AB , we can further define

L̃DB := r
2−d

2 LDB (8.3.22)

so that (8.3.15) becomes
∂rL

D
B +ODACBLCA = JDB (8.3.23)

with
ODACB = −(δDC K̃A

B − K̃D
C δ

A
B), (8.3.24)

and

JDB := r
d−2

2 J̃DB := r
d−2

2

[
jDB +

(
δDC K̃

A
B − K̃D

C δ
A
B

)
lC(0)A −

(d− 2)
2r δDC δ

A
Bl
C
(0)A

]
. (8.3.25)

The solution thus read

LDB = e−ΘDACB
(

1
2N

C
A + L̄DB

)
(8.3.26)

with
ΘDA
CB =

∫
ODACB , L̄DB =

∫
JCA e

ΘDACB . (8.3.27)

To reconstruct lDB from LDB one just uses

lDB = r
2−d

2 LDB + lD(0)B . (8.3.28)

Having solved the equations, we can complete the scheme (5.1.8) as

β(u, r, x) = β(0)(u, x) + b(u, r, x), b = b[K̃]

WA(u, r, x) =
WA

(d−1)(u, x)
rd−1 + wA(u, r, x), wA = wA[β0, K̃]

U(u, r, x) =
U(d−3)(u, x)

rd−3 + υ(u, r, x), υ = υ[β0, K̃,W(d−1),U(d−2)] (8.3.29)

and
lAB(u, r, x) = lAB [β0, K̃,Wd−1,U(d−2)] (8.3.30)
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The notation here indicates that the metric functions on the left depend of the quantities in square
brackets on the right hand side, K̃ standing for any combination of K̃A

B . All the solutions are given
in terms of the auxiliary quantity K̃A

B defined in (??). Thus, in principle, the boundary conditions
should not involve hAB directly but rather K̃A

B and lAB . Clearly the boundary condition

lim
r→∞

hAB(u, r, x) = h(0)AB(u, x) (8.3.31)

does correspond to the boundary condition

lim
r→∞

lAB = lA(0)B (8.3.32)

which allowed us to perform the splitting (8.3.21), in terms of which, then, the boundary condition
on LAB is

lim
r→∞

LAB = 0. (8.3.33)

Furthermore, it is self evident that the boundary condition (8.3.31) cannot be relaxed further.

These boundary conditions on hAB or equivalently lAB imply a boundary condition on K̃A
B

lim
r→∞

K̃A
B = 0 (8.3.34)

However, as opposed to lAB (or equivalently LAB) and remarked several times, the radial behaviour
of K̃A

B is not determined by any of the equations.

We can pick virtually any form of K̃A
B and we will be able to consistently solve the equations.

However, the resulting conditions at subleading order may restrict the leading data. This happens
if generic boundary conditions are assumed together with an asymptotic behaviour compatible
with radiation at the leading order

K̃A
B ∼ r−d/2 ⇔ hAB − h(0)AB ∼ r

2−d
2 . (8.3.35)

That is, radiative falloff conditions necessarily restrict the asymptotically locally Minkowski bound-
ary conditions, as we now exemplify.

The goal is to use the equation for lAB to infer the radial behaviour of K̃A
B without restricting the

leading order data.

8.3.2 Example: leading expansion

To exemplify we take K̃A
B = 0. Hence kAB reduces to kAB = δAB/r. We get

b = 0 , wA =
WA

(1)

r
, υ = rU(−1) + U(0), (8.3.36)
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where according to the scheme above all the coefficients of this expansion depend on β(0) and
h(0)AB . In turn, oDACB = d−2

2r δ
D
C δ

A
B and equation (8.3.15) reduces to

∂rl
D
B + d− 2

2r δDC δ
A
Bl
C
A =

jD(1)B

r
+
jD(2)B

r2 , (8.3.37)

where (all the expressions are taken from the next section)

jD(1)B = 1
2
(
(d− 2)δDBU(−1) − lδDB

)
,

jD(2)B =
HD(2)B

2 , HD(2)B = −e2β(0)RAB + (4− d)BAB [β(0)], (8.3.38)

where RAB is the trace-free part of the Ricci tensor of h(0)AB and BAB [β(0)] is a trace-free tensor
vanishing when β(0) = 0 or ∂Aβ(0) = 0, see (8.4.42). The solution of this equation is

d > 4 : lDB = 2
d− 2j

D
(1)B + 2

d− 4
jD(2)B

r
+ ND

B

r
d−2

2
,

d = 4 : lDB = jD(1)B + 1
r

(
jD(2)B log r +ND

B

)
. (8.3.39)

However, the boundary conditions imply lDB = lD(0)B , and we infer (for any d)

lD(0)B = 2
d− 2j

D
(1)B (8.3.40)

From lDB = hDA∂uhAB we get a condition on ∂uh(0)AB

lD(0)B = lδDB
d− 2 ⇔ ∂uh(0)AB = 2l

d− 2h(0)AB , (8.3.41)

which is (8.1.6).

What about the subleading parts of lDB depending on r? In this example they are set to zero by the
boundary condition K̃A

B = 0. Indeed, from (8.3.14), K̃A
B = 0 imposes ∂rlAB = 0. So, the constant of

integration NA
B is to be set to zero and the term jD(2)B must vanish identically. The latter implies

HD(2)B = 0 (8.3.42)

with HD(2)B given by (8.3.38).

This condition is not necessarily valid under the more general case of K̃A
B 6= 0. Indeed, suppose

K̃A
B = O(r−a−1) (8.3.43)

for some a, employing the notation of next section. Then, K̃A
B not only contributes to the subleading

orders, but for some values of a, the leading terms of K̃A
B may as well contribute to jA(2)B .

For any a not modifying the above expressions, jA(2)B = 0 implies the following

δDB
d− 2

(0)

R −
(0)

RDB + (4− d)e−2β(0)BDB [β(0)] = 0 (8.3.44)
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In d = 4 it reduces to
δDB
2

(0)

R −
(0)

RDB = 0, (8.3.45)

which is automatically satisfied.

In any d > 4, instead, the constraint relates the pair of boundary data (h(0)AB , β(0)). To uncover
this relationship we may proceed either by making assumptions on β(0) or on h(0)AB .

We can assume that h(0)AB satisfies itself Einstein’s equations

(0)

RAB −
1
2h(0)AB

(0)

R + Ch(0)AB = 0, (8.3.46)

so that, as in many cases of potential interest, h(0)AB is an Einstein metric with a curvature
parameter C

C = d− 4
2(d− 2)

(0)

R. (8.3.47)

and we are left with
BDB [β(0)] = 0 (8.3.48)

to satisfy.

On the other hand, assume that β(0) is gauged away. In this case we are left with the task of

satisfying the trace-free condition of
(0)

RAB . A class of solution is given by Einstein metrics, but
this is not the general solution in d− 2 > 2.

Consider for example h(0)AB = e2ϕ(u,x)γAB , where γAB is the round metric on Sd−2 or any other
Einstein metric, so that its Ricci tensor is trace-free. From the conformal transformation properties
of the curvature tensors, we get an equation relating ϕ and β(0). If on the other hand, γ is not
Einstein, then ϕ and β(0) are related by γ.

These points further suggest that the interplay of h(0) and β(0) is to be considered with more care
in d > 4.

The conclusion of the toy solution presented here is the following. The metric

ds2 = −e2β(0)(rU(−1) + U(0))du2 − 2e2β(0)dudr + r2h(0)AB

(
dxA +

WA
(1)

r
du

)(
dxB +

WB
(1)

r
du

)
(8.3.49)

is a solution of the field equations if (8.3.44) holds. As WA
(1) = 0 when β(0) = 0, this means that

ds2 = −(rU(−1) + U(0))du2 − 2dudr + r2h(0)ABdx
AdxB (8.3.50)

is a solution of Einstein equations in d = 4 but not in d > 4 unless (8.3.46) is satisfied.

As we will see in the next section, the situation here discussed holds for radiative falloff conditions
of (8.3.43), i.e. a = (d− 2)/2.

If instead we wish to recover an infinite dimensional asymptotic symmetry group with supertrans-
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lations and Diff(Sd−2) superrotations, then the choice a = 1 is necessary, and the boundary data
are unconstrained. Instead, new relationships for the u-derivative of the subleading terms in hAB
(as for the leading (8.3.40)) are obtained.

8.4 Asymptotic solutions: details

To give general explicit solutions of the main equations we select an ansatz for K̃A
B or equivalently

hAB . As we wish to compare with previous literature, we employ

hAB(u, r, x) = h(0)AB(u, x) +
∑
p

h(a+p)AB(u, x)
ra+p . (8.4.1)

where a is the leading power that we will now discuss and p ∈ N0 if d is even and p ∈ N0/2 if d is
odd. Several comments are in order before proceeding.

Radiative falloff ansatz. Linearized perturbations around Minkowski space suggest that for
radiative solutions a = d−2

2 , which is integer for d even and half-integer for d odd. This justifies p
belonging to different sets according to d even or odd. This splitting between even and odd does
not depend on the gauge.

In literature we usually find other kinds of considerations which restrict the orders at which both
integer and half-integer powers coexist in odd d. We may argue that the expansion only contains
half-integer powers of r up to a certain point at which integer powers starts to contribute [70, 233,
77]. Indeed, the mixture of both integer and half-integer powers can be attributed to non-linear
effects, which are supposed to be negligible asymptotically.

For example, Wald and Satishchandran [77] (not working in Bondi gauge) considered the following
ansatz for odd d

gµν = ηµν +Gµν , Gµν =
∑

n= d−2
2

r−nG(n)
µν +

∑
m=d−3

r−mG̃(m)
µν , (8.4.2)

where n is half-integer and p is integer and both sums proceed with unity steps. Thus, here the
integer powers enter starting from the Coulombic order. Despite sounding sensible, it is important
to stress - following [233], that it is not known when exactly the nonlinearities mixing integer and
half-integer expansions kicks in. It is possible that they appear before the Coulombic order.

Non-radiative falloff ansatz. Since in the following we consider slower falloff behaviour
than the radiative one, and in particular a = 1, we are not going to restrict further h(a+p)AB .
Indeed with a = 1, the nonlinearities will appear at order r−2 already.
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Mimicking (8.4.2), we could particularize (8.4.1) for a = 1 as

hAB = h(0)AB +
∑
m=1

h(m)AB

rm
+
∑

n= d−2
2

h̃(n)AB

rn
(8.4.3)

in order to include all and only the integer terms of order m < (d−2)/2 (in d even the sum will not
be over n). But for the problem at hand we do not find any particular reason (except simplicity)
for doing so and it will break the sort of “boundary” integration scheme we have set up6.

Furthermore we will write expressions where switching from integers to half-integers is in principle
easy, although care is needed.

Polyhomogeneous expansion. Another point to be considered is the presence of logarith-
mic terms in the expansion. Following what is known about d = 4, the most general ansatz would
be

hAB(u, r, x) = h(0)AB(u, x) +
∑
p

H(a+p)AB(u, r, x)
ra+p ,

H(a+p)AB(u, r, x) = h(a+p)AB(u, x) +
∑
j

log rjh(a+p,j)AB(u, x) (8.4.4)

For a d = 4 radiative spacetime (a = 1), j ∈ N0 (see for example [280, 274]). Notice that the
leading expansion of the previous section indicates the presence of the first log term at order r−1

in d = 4. So, to exemplify again what discussed above: if H(1)AB is imposed to be non-zero
from the start, with Minkowski boundary conditions, then taking j(2) = 0 implies that h(1,1)AB is
u-independent (consistently with [280]), while ∂uh(1)AB = NAB .

In our analysis, we will consider logarithmic terms in hAB only tangentially whenever they stem
from the equations, rather than imposing a polyhomogeneous expansion to start with. We are
not aware of other works along these lines. Recently BMS charges were discussed for d = 4
asymptotically Minkowski spacetimes with general polyhomogeneous expansion in [234].

Determinant condition constraints. With the given ansatz (8.4.1), the determinant con-
dition hAB∂rhAB = 0, implies

hAB(0) h(a+p)AB = 0 ∀ p < a (8.4.5)

while the trace of the others h(a+p)AB (p ≥ 0)is determined in terms of the previous orders. To
exemplify consider

hAB(u, r, x) = h(0)AB(u, x) +
h(a)AB

ra
+
h(a+po)AB(u, x)

ra+po
, po =

 1
2 d odd

1 d even
. (8.4.6)

Its inverse is

hAB = hAB(0) −
hAB(a)

ra
−
hAB(a+po)

ra+po
+
hA(a)Ch

CB
(a)

r2a , (8.4.7)

6It is explicit from the formulas of the main equations along the transverse directions that the expansions
of WA and U induce half-integer as well as integer powers in ∂uhAB .
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where we understand that we have to discard all terms of order greater than a+ po. We retain the
order 2a because it may be equal to a+ po according to the cases:

R) a = d−2
2 , d ≥ 4: 2a = a+ po iff d = 4, otherwise a+ po < 2a,

NR) a = 1, d > 4: a+ po = 2a for any d even, a+ po < 2a for any d odd.

where R and NR stand for radiative and non-radiative.

The determinant condition thus implies

− a

ra+1h
AB
(0) h(a)AB −

a+ po
ra+po+1h

AB
(0) h(a+po)AB + a

r2a+1h
AB
(a) h(a)AB + · · · = 0. (8.4.8)

So we get
hAB(0) h(a)AB = 0 ∀a, d (8.4.9)

and

d > 4 odd (po = 1
2), a = d− 2

2 or a = 1 : hAB(0) h(a+po)AB = 0

d > 4 even (po = 1), a = d− 2
2 : hAB(0) h(a+po)AB = 0 (8.4.10)

d ≥ 4 even (po = 1), a = 1 : hAB(0) h(2)AB = 1
2h

AB
(1) h(1)AB .

As we can see from this example, the consequences of the gauge choice in even d > 4 with a = 1
is really like d = 4 and this is why many results can be transferred to such generic dimensions
quickly. However, the situation changes with radiative falloff conditions.

Furthermore, when d = 4 we can also use the relationship valid for any 2× 2 symmetric traceless
matrices [60]

MA
CM

C
B = 1

2δ
A
BM

C
DM

C
C , (8.4.11)

which does not hold for higher dimensional symmetric and traceless matrices. These are subtle
remark which should be taken into account when computing charges.

8.4.1 Asymptotic expansion of β, WA and U

With the ansatz (8.4.1) given a and the boundary condition WA
(0) = 0 we get,

β = β(0) +
∑
p≥0

β(2a+p)

r2a+p

WA =
WA

(1)

r
+
d−2−a∑
p=0

WA
(a+1+p)

ra+1+p + 1
rd−1

(
WA

(d−1) + WA(d−1) log r
)

+ . . .

U = rU(−1) + U(0) +
a+p<d−3∑
p=0

U(a+p)

ra+p + 1
rd−3

(
U(d−3) + U(d−3) log r

)
+ . . .
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The details of the expansions can be found in Appendix C.2. Here we make some comments and
list the expressions relevant in the next parts. The expansion is shown up to the order of the free
functions WA

(d−1) and U(d−3) which are universal (i.e. their functional form does not depend on
the spacetime dimension) and are given by

WA
(d−1) = − 2

d− 1e
2β(0)hAC(0) NC , (8.4.12)

with NA free, and U(d−3) is normalized as

U(d−3) = 2κ2

(d− 2)Ωd−2
m. (8.4.13)

to highlight the functionm corresponding to the mass aspect in radiative asymptotically Minkowski
spacetimes.

The leading terms of the expansion are universal in the sense that they take the same form for
both values of a

β(2a) = − a

16(d− 2)h(a)ABh
AB
(a) , WA

(1) = 2e2β(0)hAB(0) ∂Bβ(0), (8.4.14)

WA
(a+1) = e2β(0)

a+ 1

(
a

a+ 2− dh
AC
(0)

(0)

DBh
B
(a)C − e

−2β(0)hAB(a) W(1)B

)
(8.4.15)

U(−1) = 2
d− 2 l (8.4.16)

U(0) = e2β(0)

(d− 3)(d− 2)

(
(0)

R + 2(d− 3)e−2β(0)
(0)

DAW
A
(1)

)
, (8.4.17)

(0)

DAW
A
(1) = 2e2β(0)

( (0)

D2β(0) + 2∂Aβ(0)∂Aβ(0)

)

U(a) = 1
(d− 2)(d− 3− a)

[
e2β(0)(δR)(a) + (2d− 5− a)

(
(0)

DAW
A
(a+1) + ΓA(a)ACW

C
(1)

)
−(a+ 1)e−2β(0)WA

(1)W(a+1)A

]
(8.4.18)

(δR)(a) = hAB(0)
(a)

RAB − hAB(a)
(0)

RAB ,
(a)

RAB = 1
2

(
(0)

DC

(0)

DAh
C
(a)B +

(0)

DC

(0)

DBh
C
(a)A −

(0)

D2h(a)AB

)
(8.4.19)

In the latter, only the terms in the square brackets are universal in any dimension. Indeed when
d = 4 (a = 1) and the denominator vanishes so that only the part enclosed i Notice that (8.4.18)
holds for both values of a only in d > 4, while in d = 4 (a = 1) the term in square brackets
constitute the coefficient of the logaritmic term U(1). With the notation of Appendix C.2, F(a+2).
Hence in d > 4 U(1) ∼ F(3), while to discuss U(d−3) in d > 4 we need further subleading terms as
detailed in Appendix C.2 and they are discussed next. With β(0) = 0, F(3) = 0 in d = 4 and so
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the logarithmic coefficient U(1) = 0. By substituting either a = 1 or a = d−2
2 we have

a = 1


F(3) = e2β(0)

[
(δR)(1) −

(0)

DA

(0)

DBh
BA
(1)

]
− F̃(3)[W(1)]

F̃(3)[W(1)] = −(d− 2)W(1)B
(0)

DAh
AB
(1) − (d− 3)hAB(1)

(0)

DAW(1)B

+ 1
d−3W

A
(1)

(0)

DBh
B
(1)A + e−2β(0)hB(1)AW

A
(1)W(1)B

(8.4.20)

(8.4.21)

a = d− 2
2


F( d+2

2 ) = e2β(0)

[
(δR)( d−2

2 ) −
8−3d
d

(0)

DA

(0)

DBh
BA
( d−2

2 )

]
− F̃( d+2

2 )[W(1)]

F̃( d+2
2 )[W(1)] = 2( 8−3d

d )W(1)B
(0)

DAh
AB
( d−2

2 ) + ( 8−3d
d )hAB( d−2

2 )

(0)

DAW(1)B

+WA
(1)

(0)

DBh
B
( d−2

2 )A + e−2β(0)hB(1)AW
A
(1)W(1)B

(8.4.22)

With β(0) = 0, F̃(a+2)[W(1)] = 0 and the term in square brackets vanishes only when a = 1 if the
Ricci tensor of h(0)AB is proportional to h(0)AB because (using the determinant constraint)

(δR)(a) =
(0)

DA

(0)

DBh
AB
(a) − h

AB
(a)

(0)

RAB (8.4.23)

In four dimensions the vanishing of U(1) thus is automatic with β(0)AB = 0, while in higher dimen-
sions along with β(0)AB = 0 is essential that the metric h(0)AB is Einstein. With radiative falloffs
in higher dimensions F(a+2) 6= 0 ∼ U(a) 6= 0 even with Minkowskian asymptotics.

At subleading orders the different expansions of hAB in even and odd dimensions impact on the
other expressions. To list a couple we have

β(2a+p) = − a(a+ p)
8(d− 2)(2a+ p)h(a)ABh

AB
(a+p). (8.4.24)

and the next order in WA splits into (we are expressing everything in terms of β(0) rather than
WA

(1) here)

WA
(a+po+1) = e2β(0)

a+ po + 1

(
a+ po

(a+ po) + 2− dh
AC
(0)

(0)

DBh
B
(a+po)C − 2hAC(a+po)∂Cβ(0)

)
, (8.4.25)

WA
(2a+1) = e2β(0)

2a+ 1

[
2hAC(0)

d− 2− 2a

(
(d− 3 + 2a)∂Cβ(2a) + a

2h
BD
(a) DBh(a)DC

)
+ a

d− 2− ah
AC
(0) DBh

B
(0)C − 4β(2a)h

AC
(0) ∂Cβ(0)

]
, (8.4.26)

according to the spacetime dimension. The above terms are valid if the denominators do not vanish,
otherwise they contribute to the logarithmic term in WA. This contribution is already present in
asymptotically Minkowski spacetimes (h(0)AB = γAB , β(0) = 0) in four dimensions unless the first
post-radiative term in hAB , namely h(2)AB , is constrained [57, 58, 143, 60]. Similarly in higher
dimensional radiative asymptotically Minkowski spacetime the first post-radiative order of hAB is
to be constrained to avoid the logarithmic term [69, 70].

The first logarithmic terms that appear in WA and U propagate down in the expansion with
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various powers and unless they are consistently set to zero by constraining the leading order data
they also affect hAB so that the ansatz break down at some point, via hAB further logarithmic
terms appear in β. This gives the minimal form of polyhomogeneous expansion.

We discuss for example the log term in WA. The logarithmic term appearing in WA at order r1−d

is given by (see Appendix C.2)

WA(d−1) = − 2
d− 1e

2β(0)hAB(0) ñ(d)B (8.4.27)

ñ(d)B = −

(0)
DCK

C
(d−3)B + 2(d− 2)∂Bβ(d−2) +

∑
p+m=d−4

(
��

��(1+p)
ΓB BDK

D
(m)A −

(1+p)
ΓD BAK

B
(m)D

)
With the non-radiative (NR) falloff (d > 4) a = 1 we can organise this (as any other coefficient of
the metric expansion) as

ñ(d)A = ñ
(R)
(d)A + ñ

(NR)
(d)A (8.4.28)

with ñ(NR)
(d)A vanishing when restricting to the radiative behaviour of h (its expansion starting from

a = d−2
2 ). In four dimensions, clearly there is no distinction. The functional dependence of ñ(R)

(d)A
on the orders of h is as follows

ñ
(R)
(d)A = ñ

(R)
(d)A[h(d−2), h( d−2

2 )]. (8.4.29)

It is interesting to compare the explicit expressions of ñ(R)
(d)B in the cases d = 4, 5

ñ
(R)
(4)A =

(0)
DCh

(tf)C
(2)A (8.4.30)

ñ
(R)
(5)A = 3

2

[
(0)
DCh

(tf)C
(3)A + 1

6
(0)
DA(hCD( 3

2 )h( 3
2 )CD)− 1

2
(0)
DB(hBC( 3

2 )h( 3
2 )CA)

]
(8.4.31)

The result W(3) = − 2
3e

2β(0)
(0)
DCh

(tf)AC
(2) in four dimensions is well known [60], the exponential factor

being a trivial effect of allowing a generic β(0).

On the other hand, the logarithmic term in U is not visible in d = 4 with the Minkowskian
boundary conditions.

8.4.2 Fourth equation: LAB

In order to discuss the asymptotic expansion of the general solution of the fourth main equation

LDB = e−ΘDACB
(

1
2N

C
A + L̄CA

)
, (8.4.32)

it is useful to collect the expansions of the intermediate quantities ΘDA
CB

ΘDA
CB =

∫
ODACBdr = −

∫
(δDC K̃A

B − K̃D
C δ

A
B)dr =: 1

ra

∑
p

ΘDA
(a+p)CB

rp
, (8.4.33)
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and7 JDB

JDB = r
d−2

2

[
1
2
(
HDB − lkDB

)
+
((((

((((
((((

δDC K̃
A
B − K̃D

C δ
A
B

)
lC(0)A −

1
r

(d− 2)
2 δDC δ

A
Bl
C
(0)A

]
(8.4.34)

HDB =
HD(1)B

r
+
HD(2)B

r2 +
∑
p=0

HD(a+1+p)B

ra+1+p + log r
rd−1 H(d−1)[U(d−3)] + log r

rd
H(d)[W(d−1)] + . . . (8.4.35)

lkDB = lδDB
r

+ 1
ra+1

∑
p=0

lKD
(p)B

rp
. (8.4.36)

Notice that no logarithms are generated in Θ and that the first order at which the logarithmic term
appears in HDB comes from the first logarithmic term in U (which can be automatically vanishing
without serious restrictions) and the second logarithmic term is induced from the first logarithmic
term in WA. The expansion of JDB is organised as

JDB =r
d−4

2 JD(− d−4
2 )B + r

d−6
2
HD(2)B

2 +
∑
p=0

r
d−4−2(a+p)

2 JD(− d−4−2(a+p)
2 )B

+ log r
r
d
2

H(d−1)[U(d−3)]
2 + log r

r
d+2

2
H(d)[W(d−1)] + . . .

(8.4.37)

where

JD(− d−4
2 )B = 1

2

(
HD(1)B − lδ

D
B − (d− 2)lD(0)B

)
, HD(1)B = (d− 2)δDBU(−1) (8.4.38)

HD(2)B = (d− 3)δDBU(0) − e2β(0)
(0)

RDB + 4− d
2

(
(0)

DBW
D
(1) +

(0)

DDW(1)B

)
−

(0)

DAW
A
(1)δ

D
B (8.4.39)

(0)

DDW(1)B = 2e2β(0)

(
(0)

DD∂Bβ(0) + 2∂Dβ(0)∂Bβ(0)

)
(8.4.40)

JD(− d−4−2(a+p)
2 )B = 1

2

(
HD(a+1+p)B − lK

D
(p)B

)
+
((((

((((
((((

(
lD(0)AK

A
(p)B −K

D
(p)C l

C
(0)B

)
(8.4.41)

Substituting (8.4.17) in (8.4.39) and lowering indices and using that WA
(1) is a gradient vector, we

get
H(2)AB = −e2β(0)RAB + (4− d)BAB [β(0)] (8.4.42)

where

RAB =
(0)

RAB −
h(0)AB

d− 2
(0)

R (8.4.43)

BAB [β(0)] = 1
2

(
(0)

DAW(1)B +
(0)

DBW(1)A

)
−
h(0)AB

d− 2
(0)

DCW
C
(1) (8.4.44)

are both traceless. BAB [β(0)] can equivalently be written as

BAB = 2e2β(0)

[
(0)

DA∂Bβ(0) + 2∂Aβ(0)∂Bβ(0) −
h(0)AB

d− 2

( (0)

D2β(0) + 2∂Cβ(0)∂
Cβ(0)

)]
(8.4.45)

7We have cancelled a term using the leading solution (8.4.67) lA(0)B ∝ δAB , which we are going to derive
next.
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The first term of (8.4.41) is

JD(− d−4−2a
2 )B = 1

2

(
HD(a+1)B − lK

D
(0)B

)
+
(((

((((
(((

(((
lD(0)AK

A
(0)B −K

D
(0)C l

C
(0)B

)
(8.4.46)

HD(a+1)B = (d− 2− a)KD
(0)BU(−1). (8.4.47)

So that

JD(− d−4−2a
2 )B = 2(d− 2− a)− (d− 2)

2(d− 2) lKD
(0)B =

0 if a = d−2
2

d−4
2(d−2) lK

D
(0)B if a = 1, d > 4

. (8.4.48)

It is also instructive to show explicitly the integral
∫
JDB =: IDB , which enters the definition of L̄DB

a = d− 2
2 : IDB =

∫
r
d−4

2 JD(− d−4
2 )B + r

d−6
2
HD(2)B

2 +
∑
p=0

JD(1+p)B

r1+p + log r
r
d
2

HD(d−1)B

2 + . . . (8.4.49)

a = 1 : IDB =
∫
r
d−4

2 JD(− d−4
2 )B + r

d−6
2
HD(2)B

2 +
∑
p=0

r
d−6

2 −pJD(− d−6
2 +p)B + log r

r
d
2

HD(d−1)B

2 + . . .

(8.4.50)
So that

d > 4 : IDB = r
d−2

2 ID(− d−2
2 )B + r

d−4
2 ID(− d−4

2 )B + ID[d>4]B log r (8.4.51)

+

−
∑
p>0

1
rp
JDB
p if a = d−2

2∑
p>0,6= d−4

2
r
d−4

2 −p 2JDB
d−4−2p if a = 1

− 2
(d− 2)2r

d−2
2

(2 + (d− 2) log r)HDB + . . .

d = 4 : IDB = rID(−1)B + ID[d=4]B log r −
∑
p>0

1
rp
JDB
p
− (1 + log r)

r
d−2

2
HDB + . . . . (8.4.52)

For brevity we have only included in J the logarithmic term corresponding to U(d−3); the logarithmic
term corresponding to WA(d−1) appears at order r−

d
2 upon integration. In any case we are not going

to need these terms as in the next part we limit our considerations to the terms up to r0. In the
above we have

d ≥ 4 : ID(− d−2
2 )B := 2

d− 2J
D
(− d−4

2 )B , (8.4.53)

ID(− d−4
2 )B :=



d > 4 : 1
d−4H

D
(2)B if a = d−2

2

d ≥ 4 : 2
d−4

(
HD(2)B

2 + JD(− d−6
2 )B

)
︸ ︷︷ ︸

J
D(tot)

(− d−6
2 )B

= 2
d−4I

D
[d=4]B if a = 1

(8.4.54)

d > 4 : ID[d>4]B :=

J
D

(− d−4−2(a+p)
2 )B

|p=0 if a = d−2
2

JD
(− d−4−2(a+p)

2 )B
|p= d−4

2
if a = 1

(8.4.55)
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Clearly ID[d>4]B and ID[d=4]B are just the coefficient JD(1)B in (8.4.37) for the given value of a and
the given dimension d. The colour assigned to the logarithmic coefficients is to signal that ID[d=4]B
is the sum of the red and blue coefficients of the expansion with a = (d− 2)/2 in d = 4 (stripping
off the numerical factor stemming from the integral).

The general solution of the fourth main equation

LDB = e−ΘDACB
(

1
2N

C
A + L̄CA

)
(8.4.56)

can thus be expanded as

LDB = r
d−2

2 LD(− d−2
2 )B +

(a+p) 6=(d−2)/2∑
p=0

r
d−2−2(a+p)

2 LD(− d−2−2(a+p)
2 )B + LD[d≥4]B log r + LD(0)B + . . . ,

(8.4.57)
For any a

LD(− d−2
2 )B = ID(− d−2

2 )B (8.4.58)

LD(0)B = ND
B

2 +
∑
k>0

([e−Θ](k)[L̄](−k))DB (8.4.59)

notice the form of L(0): L̄ is always a sum of powers greater or less than 0 and logs, so L(0) is given
by the free function N and the appropriate combinations of orders with e−Θ. The next-to-leading
order is

d > 4 : LD(− d−4
2 )B :=

I
D
(− d−4

2 )B if a = d−2
2

ID(− d−4
2 )B + (Θ(1)L(− d−2

2 ))DB if a = 1
(8.4.60)

d = 4 : LD[d=4]B = ID(d=4)B + (J(0)Θ(1))DB (8.4.61)

The logarithmic coefficient in d > 4 is instead

LD[d>4]B = ID[d>4]B +
∑
k,l

([eΘ](k)J(l))|D(k+l=−1)B (8.4.62)

In d = 5, 6 the logarithmic term appears immediately after the coefficient LD(− d−4
2 )B , while in d = 4

the r0 log r term is the next-to-leading term. The next term after r0 log r is, in any dimension, r0

where the free function ND
B appears: the radiative order. The above expressions are thus all we

need in d = 4, 5, 6 to reach the radiative order. In higher dimensions the sum in (8.4.57) produces
further terms between LD(− d−4

2 )B and r0 log r.

8.4.3 Fourth equation: ∂uhAB

In order to translate the results for LDB in terms of lBD and ∂uhAB , the expression of LDB obtained
from integration (8.4.57) - here noted as solutionLDB - is to be equated to the defining expression of
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LDB ((8.3.22) and (8.3.28)), here noted as definitionLDB

solutionLDB = definitionLDB . (8.4.63)

More explicitly definitionLDB is given by

definitionLDB = r
d−2

2 L̃DB = r
d−2

2

(
lDB − lD(0)B

)
= r

d−2
2 −alD(a)B +

∑
p

r
d−2

2 −a−plD(a+p)B

=
∑
p=0

r
d−2−2a−2p

2
1
2

(
hDE(0) ∂uh(a+p)EB − hDE(a+p)∂uh(0)EB

)
+ non-linear terms, (8.4.64)

In Section 8.4.3.3 the notation notation

l̄D(a+p)B := 1
2

(
hDE(0) ∂uh(a+p)EB − hDE(a+p)∂uh(0)EB

)
. (8.4.65)

will be used. The non-linearities at each order (a+ p) (for appropriate a and p) come from the full
inverse of hAB , while l̄D(a+p)B is only defined with respect to h(a+p)AB with raised indices.

From the leading order of (8.4.63) we get, in any d ≥ 4 and for any a

LD(− d−2
2 )B = 0⇒ ID(− d−2

2 )B = 0 . (8.4.66)

With (8.4.38) and (8.4.16) it gives

lD(0)B = lδDB
d− 2 ⇔ ∂uh(0)AB = 2l

d− 2h(0)AB , (8.4.67)

namely

h(0)AB(u, x) = e2ϕ(u,x)ĥ(0)AB(x) , ∂uϕ = l

d− 2 = ∂uq

(d− 2)2q . (8.4.68)

This shows that in any dimension h(0)AB can depend on u only via a conformal factor, a result
known from the d = 4 analysis of [60].

As a consequence of (8.4.67) we have(
lD(0)AK

A
(p)B −K

D
(p)C l

C
(0)B

)
= 0 (8.4.69)

so that the barred terms (i.e. (8.4.41)) in the expressions of the previous section are justified.

With the given l, U(1) can also be expressed as

U(−1) = 2∂uϕ . (8.4.70)

We now discuss the subleading solutions considering separately the radiative case a = d−2
2 and the

non-radiative case a = 1 in d > 4. In d = 4 there is no distinction between the two cases and we
conveniently include this case in the radiative section.
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8.4.3.1 Radiative falloff a = d−2
2

With radiative falloff conditions, the expansion of LDB up to order r0 in d > 4 automatically
collapses to the sum of the leading term, the next-to-leading, the r0 log r term and the term of
order r0. In d = 4 we have the leading term, the r0 log r term and r0.

Upon using the leading solution (8.4.66), we get in d > 4 the following equations from (8.4.63)

LD(− d−4
2 )B = 0⇒ ID(− d−4

2 )B = 0, (8.4.71)

LD[d>4]B = 0⇒ ID[d>4]B = 0, (8.4.72)

ND
B = hDE(0) ∂uh( d−2

2 )EB − h
DE
( d−2

2 )∂uh(0)EB , (8.4.73)

while, in d = 4
LD[d=4]B = 0⇒ ID[d=4]B = 0, (8.4.74)

ND
B = hDE(0) ∂uh(1)EB − hDE(1) ∂uh(0)EB . (8.4.75)

The coefficients of the logarithmic terms in solutionLDB are equated to zero because, by our original
assumption, definitionLDB contains only powers of r. Notice, however, that (8.4.55) with (8.4.48)
implies that (8.4.72) is trivially satisfied

ID[d>4]B ≡ 0. (8.4.76)

This, also implies, referring to our colour convention (8.4.54), that equation (8.4.74) reduces (8.4.71)
to

ID[d=4]B ∼ H
D
(2)B = 0 (8.4.77)

The same condition HD
(2)B = 0 is seen to be imposed by (8.4.71) because of (8.4.54).

At order r0, (8.4.73) and (8.4.75) have the same structure with d ≥ 4 and, using (8.4.67), we get

NAB = ∂uh( d−2
2 )AB −

2l
d− 2h( d−2

2 )AB , (8.4.78)

which generalises the definition of the news tensor for u-dependent h(0)AB to any d (cfr. [60, 70]).

To recap, with radiative falloffs - imposing that no logarithmic terms are generated by the fourth
main equation - the constraints are solved by (8.4.67) and HD(2)B = 0. The news tensor take the
usual linear form in h( d−2

2 )AB .

In four dimensions, as already discussed, HD(2)B ≡ 0 trivially, and this implies that the r0 log r
term is not generated by the integration. In higher dimensions, the r0 log r is again trivially
not generated, but the condition HD(2)B ≡ 0 is to be imposed on h(0)AB and β(0) to ensure that
no overleading powers with respect to the radiative order are generated. The discussion of the
implications of HD(2)B = 0 in d > 4 was presented in Section 8.3.2.
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8.4.3.2 Leading logs

With a maximal polyhomogeneous expansion of hAB

hAB = h(0)AB + 1
ra
(
h(a)AB + h(a)AB log r

)
+ . . . , a = d− 2

2 , (8.4.79)

equation (8.4.63) gives

log r definitionLDB = log r solutionLDB := log rJD(−1)B , (8.4.80)

where
definitionLDB = 1

2

(
hDE(0) ∂uh( d−2

2 )EB − hDE( d−2
2 )∂uh(0)EB

)
, (8.4.81)

thus equation (8.4.72) becomes

d > 4 : 1
2

(
hDE(0) ∂uh( d−2

2 )EB − hDE( d−2
2 )∂uh(0)EB

)
= 0, (8.4.82)

while (8.4.74)
d = 4 : 1

2

(
hDE(0) ∂uh(1)EB − hDE(1) ∂uh(0)EB

)
= 0. (8.4.83)

Both are solved by
d ≥ 4 : h( d−2

2 )AB(u, x) = e2ϕ(u,x)ĥ( d−2
2 )AB(x) , (8.4.84)

If h(0)AB is u-independent then h( d−2
2 )AB is such, namely a constant of motion. This corresponds to

the case summarised in [280] for d = 4 axisymmetric spacetimes and generalises to any dimension.

Notice that the analysis of this subsection is valid only if h( d−2
2 ) does not modify the asymptotic

expansions of all the other metric functions up to the orders we need to consider to carry on this
analysis. This is indeed the case.

8.4.3.3 Non-radiative falloff a = 1 in d > 4

The leading solution (8.4.66) still holds. With this, the next-to-leading order of (8.4.63) reads

LD(− d−4
2 )B = 1

2

(
hDE(0) ∂uh(1)EB − hDE(1) ∂uh(0)EB

)
(8.4.85)

where LD(− d−4
2 )B = ID(− d−4

2 )B because the term (Θ(1)L(− d−2
2 ))DB in the second line of (8.4.60) vanishes

by the leading solution and at this order, lD(1)B = l̄D(1)B . Using (8.4.54) and (8.4.48), (8.4.85) is

2
d− 4

(
HD(2)B

2 + d− 4
2(d− 2) lK

D
(0)B

)
= 1

2

(
hDE(0) ∂uh(1)EB − hDE(1) ∂uh(0)EB

)
, (8.4.86)

Using (8.4.66), we then get

∂uh(1)AB −
l

d− 2h(1)AB = 2
d− 4H(2)AB (8.4.87)
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which can be equivalently written in terms of KD
(0)B as

∂uK(0)AB −
l

d− 2K(0)AB = − 1
d− 4H

D
(2)B . (8.4.88)

The formal solution of this equation is

h(1)AB(u, x) = eϕ(u,x)ĥ(1)AB(x) + eϕ(u,x)
∫
e−ϕ(u′,x)Ĥ(2)ABdu

′ , (8.4.89)

where we have absorbed the factor 2/(d − 4) into Ĥ(2)AB and we have used (8.4.68). The same
considerations made after (8.3.44) applies to Ĥ(2)AB , but this time it is not forced to vanish. It is
interesting to note that in this non-radiative setting ∂uh(1)AB solves an equation formally analogous
to those satisfied by the leading log term in Section 8.4.3.2. Differently from those cases, however,
the u-dependence of h(1)AB is not included only in the conformal factor encoding the u-dependence
of h(0)AB .

Suppose that h(0)AB does not depend on u and that also β(0) is u-independent, then h(1)AB is
linear in u. However, if β(0) is gauged away and h(0)AB is taken to be Einstein, then h(1)AB is
u-independent. This is inconsistent with the action of CL-superrotations, as we have said in the
introduction and as we are going to show in the next section. More general boundary conditions
are then needed, as claimed. Notice also that, differently from the radiative higher dimensional
case, β(0) is not related to ϕ.

We have now discussed the first two equations of the cascade

LD(− d−2
2 )B = 0 (8.4.90)

LD(− d−4
2 )B = lD(1)B (8.4.91)

...

stemming from (8.4.63) solutionLDB = definitionLDB . It continues in steps of one in even dimensions
and one-half in odd dimensions, so that other few are

LD(− d−5
2 )B = lD( 3

2 )B (8.4.92)

LD(− d−6
2 )B = lD(2)B (8.4.93)

LD(− d−7
2 )B = lD( 5

2 )B (8.4.94)

...

LD(0)B = lD( d−2
2 )B (8.4.95)

LD[d>4]B = 0 (8.4.96)

where the odd figures 5, 7, . . . only appear if the dimension is odd. It is understood that the
equations appear iteratively up to when L(− d−n2 ) = L(0), which is the radiative order. The equation
for the logarithmic coefficient also appear at this order. Thus in d = 5 and d = 6, (8.4.90) and
(8.4.91) are the only equations above the radiative order, as well as (8.4.96). In d = 7, for example,
we need to discuss also (8.4.92) and (8.4.93) before the radiative and the log order. As said, here we
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do not consider equations which are more subleading than radiative in the asymptotic expansion.

We now turn to the discussion of the radiative (8.4.95) and the logarithmic order (8.4.96). For
d = 5 and 6 the analysis is quick and exemplifies the case of higher odd and even dimensions
respectively.

d = 5 and odd. The radiative order in five dimensions is r− 3
2 and hence l( 3

2 ) in (8.4.95) is
simply l̄( 3

2 ) with no non-linear contribution. The tensor NAB satisfies the same expression as the
radiative news tensor discussed above

d = 5 : NAB = ∂uh( 3
2 )AB −

2l
3 h( 3

2 )AB . (8.4.97)

The equation for the vanishing of the logarithmic coefficient (8.4.96) is automatically satisfied.
Recall that LD[d>4]B is given by (8.4.62). Referring to that equation, in five dimensions only ID[d=5]B
contributes. This is given by (8.4.55) and (8.4.41), which in five dimensions reads

JD(1)B = HD( 5
2 )B −

l

4h
D
( 3

2 )B ≡ 0 (8.4.98)

because HD( 5
2 )B = lK̃D

( 5
2 )B .

In higher odd dimensions we can easily see that NAB satisifies the same equation as in the radiative
case if the half-integer powers of the expansion before the radiative order are zero, namely if

hAB = h(0)AB +
< d−2

2∑
k∈N

h(1)AB

r
+
h( d−2

2 )AB

r
d−2

2
+ . . . (8.4.99)

In such a case also the logarithmic term at radiative order automatically vanishes.

The expansion (8.4.99) is indeed very natural. As we have seen in the first example, Einstein field
equations always implies a r−1 falloff and that the free function appears at order r− d−2

2 . Despite
what assumed in our initial ansatz, the equations do not induce any half-integer power before the
radiative order.

d = 6 and even. In d = 6 the left hand side of (8.4.95) is given by (8.4.59) with k = 1 and
the equation reads as

ND
B

2 − [Θ(1)L̄(−1)]DB = l̄D(2)B −
1
2h

DE
(1)

(
∂u −

l

2

)
h(1)EB (8.4.100)

Notice that the second term in each side of the equations is not independent from (8.4.91), which
has already been analysed. In particular

− 1
2h

DE
(1)

(
∂u −

l

2

)
h(1)EB = −1

2h
DE
(1) H(2)EB + l

8h
DE
(1) h(1)EB = KDE

(0) H(2)EB + l

2K
DE
(0) K(0)EB .

(8.4.101)
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On the other hand, since L̄D(−1)B = ID(− d−4
2 )B |d=6 = 2

d−2J
D(tot)
(0)B we have

[Θ(1)L̄(−1)]DB = 1
2

(
HD(2)AK

A
(0)B −H

C
(2)BK

D
(0)C

)
. (8.4.102)

Hence we have

ND
B

2 = l̄D(2)B + 1
2

(
KDE

(0) H(2)EB +HD(2)AK
A
(0)B + l

2K
DE
(0) K(0)EB

)
(8.4.103)

The trace of the equation is
N = lh(2) (8.4.104)

and vanishes if l = 0 (h(0)AB time-independent). Calling the “news tensor” in this non radiative
situation asN (NR)

AB , and the news tensor in the radiative case asN (R)
AB , we get the following structure

in any dimension d ≥ 6

N
(NR)
AB = N

(R)
AB + non linear terms depending on leading orders (8.4.105)

and its trace is non vanishing if l 6= 0 due to the non-linearities, which makes the identification
of N (NR)

AB with a news tensor obscure. This is in general true also in odd dimensions unless we
restrict to the (very natural) case discussed above.

Suppose further that we insist on imposing the vanishing of the non-linear terms so that N (NR)
AB

reduces to a radiative news tensor despite the non-radiative expansion. Take d = 6 as an example,
we must impose that the term in parenthesis in (8.4.103) vanishes. If β(0) = 0 and h(0)AB is
Einstein, then only l

2K
DE
(0) K(0)EB remains to be equated to zero, which again is solved by l = 0.

In general, however, we see that with β(0) 6= 0 or a non-Einstein h(0)AB , even if time independent,
the constraint is more involved.

Equation (8.4.96) in d = 6 is
JD(1)B + [Θ(0)J

(tot)
(0) ]BD = 0, (8.4.106)

where [Θ(0)J(0)]BD is exactly given by (8.4.102) because the numerical factor differentiating J(0)

and L(−1) is 1 in d = 6 and JD(1)B is given by (8.4.55) and (8.4.41)

JD(1)B = 1
2

(
HD(3)B − lK̃

D
(3)B

)
. (8.4.107)

Differently from d = 5, this is not generically zero. For the sake of clarity let us consider the
case β(0) = 0. This does not affect the main conclusion because, as in the previous cases (see for
example HD(2)B), HD(3)B is of the form

HD(3)B = e2β(0)H̄D(3)B

[
(0)

R, h(1)

]
+ B̊D(3)B [β(0)] (8.4.108)

where H̄D(3)B does not depend on β(0) but on the Ricci curvature and scalar of h(0) and on covariant
combinations of h(1)AB and B̊D(3)B [β(0)] = 0 whenever ∂Aβ(0) or β(0) are zero (we have placed a
circle on B to overstress the obvious fact that it is different from the analogous term appearing at
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the previous order). We have

H̄D(3)B =−
(1)

RDB + hDE(1)
(0)

REB + 2
(
K̃D

(3)BU(−1) + K̃D
(2)BU(0) + δDBU(1)

)
−

(0)

DBW
D
(2) −

(0)

DDW(2)B −
(0)

DCW
C
(2)δ

D
B (8.4.109)

Which, using WA
(2) from (8.4.15), U(−1) from (8.4.16), U(0) from (8.4.17) and U(1) = − 1

8h
EF
(1)

(0)

REF

from (8.4.18) and (8.4.23), as well as
(1)

RAB from (8.4.19), reads

H̄D(3)B − lK̃
D
(3)B =− 1

2

(
(0)

DC

(0)

DDhC(1)B +
(0)

DC

(0)

DBh
DC
(1) −

(0)

D2hD(1)B

)
+ hDE(1)

(0)

REB

− 1
12h

D
(1)B

(0)

R − 1
4h

EF
(1)

(0)

REF δ
D
B (8.4.110)

+ 1
6

(0)

DB

(0)

DCh
CD
(1) + 1

6

(0)

DD
(0)

DCh
C
(1)B + 1

6
(0)

DC

(0)

DAh
CA
(1) δ

D
B

By sorting covariant derivatives we can combine the first and the last line, but they are not going
to cancel each other. Also when h(0)AB is Einstein this term is not automatically zero.

This analysis suggests that with the non-radiative falloff r−1 in h, a maximal polyhomogeneous
expansion is to be considered in d ≥ 6 even. It is easy to check that if the asymptotic analysis
is repeated with the logarithmic term in hAB at the radiative order, the u-dependence of h(0)AB

couples to this to give log2 r term at the same order. This will produce a cascade of log terms si
that at each order of the expansion we also have an infinite sum of logarithmic terms8.

Conjecture on leading logs and flat limit of AlAdS. Thinking about how this asymp-
totic expansion compares to that of AlAdS spacetimes in Fefferman-Graham gauge we may con-
jecture that the two expansions map under a sort of dimensional transmutation:

AlAdSd−1 ←→ AlMd (8.4.111)

because we know that the expansion of odd-dimensional AlAdS is necessarily polyhomogeneous,
while that of even-dimensional AlAdS is not. The conjecture (8.4.111) is to be analysed by solving
the equations in Bondi gauge with Λ and mapping to Fefferman-Graham gauge, as done in [190, 272]
in four dimensions. These authors could not see this structure because four-dimensional AlAdS
is special and does not contain logs. Clearly, we must be more careful in reaching the conclusion
(8.4.111) because the metric hij (see (2.3.13))in Fefferman-Graham gauge is related to the induced
metric gij

gij =
(
−Ue2β + gABW

AWB gABW
A

gABW
B gAB

)
(8.4.112)

on r = const surfaces in Bondi gauge, not only to hAB . However, we think the result is sugges-
tive and need to be analysed more as a path toward the flat limit of the anomaly coefficients of
AdS/CFT .

8With a u-independent boundary metric in d = 4, an infinite sum of logarithmic terms was argued in
[234] to reduce to powers of r. This is however not proved rigorously. Thanks to the M. Godazgar for
comments on this.
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8.5 Asymptotic Killing fields

The gauge preserving conditions with the determinant of gAB imply (see chapter 5)

Lξgrr = 0 , LξgrA = 0 , gABLξgAB = 0 . (8.5.1)

We can be more general and allow for conformal rescalings of the boundary metric, so that gener-
alising [60]

gABLξgAB = 2(d− 2)ω, (8.5.2)

for an arbitrary positive scalar function ω(u, x).

The exact Killing equations are solved by the vector field

ξ = ξu∂u + ξr∂r + ξA∂A (8.5.3)
ξu = f(u, xA) ,

ξr = − r

d− 2
[(d−2)DAξ

A −WC∂Cf + fl − (d− 2)ω
]
,

ξA = Y A(u, xB)− ∂Bf
∫∞
r
dRe2βgAB ,

(8.5.4)

with f , Y A and ω arbitrary. They act on the remaining metric components as

LξgAB = r2(δξgAB)(2) + r(δξgAB)(1) + r2−a(δξgAB)(2−a) + r1−a(δξgAB)(1−a) + . . . (8.5.5)

Lξguu = r(δξguu)(1) + r1−a
∑
p=0

r−p(δξguu)(1−a−p) (8.5.6)

Lξgur = (δξgur)(0) + r−a−1
∑
p=0

r−p(δξgur)(−a−1−p) (8.5.7)

LξguA = r2(δξguA)(2) + r(δξguA)(1) + r2−a
∑
p>0

r−p(δξguA)(2−a−p) (8.5.8)

Notice that all except (8.5.8) match the leading order of the metric expansion. Indeed, asWA
(0) = 0,

the leading order term on the right-hand side of (8.5.8) equates to zero and give

∂uY
A = 0 , (8.5.9)

while the first and the third give, at leading order, the transformation laws of h(0)AB , β(0)

δξh(0)AB = LY h(0)AB −
2

d− 2
(
DCY

C − (d− 2)ω
)
h(0)AB (8.5.10)

δξβ(0) = (f∂u + LY )β(0) + 1
2(∂u − ∂uϕ)f − 1

2(d− 2)
(
DAY

A − (d− 2)ω
)
, (8.5.11)

whereas the second gives the transformation law of U(−1) = 2∂uϕ, which is not independent from
the above. Here DA is the covariant derivative compatible with h(0), we remove the superscript
(0) used in the previous sections because no confusion arise.

The boundary conditions usually considered in literature are
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CL) Campiglia-Laddha: I = R × Sd−2, h(0)AB u-independent and free except for its fixed
determinant, β(0) = 0 fixed

LξgAB = O(r2) , Lξguu = O(r0) , Lξgur = O(r−2a) , LξguA = O(r1−a). (8.5.12)

BS) Bondi-Sachs: I = R × Sd−2, h(0)AB = γAB round sphere metric, u-independent and
β(0) = 0 fixed

LξgAB = O(r2−a) , Lξguu = O(r−a) , Lξgur = O(r−2a) , LξguA = O(r1−a).
(8.5.13)

These can be taken as subcases of the following generic boundary conditions

I = R× Bd−2, h(0)AB(u, x) free within a conformal class, β(0)(u, x) fixed, (8.5.14)

which we here take for a = 1 and are our generalised CL conditions. The only change with respect
to (8.5.12) is

Lξguu = O(r), (8.5.15)

which simply give the transformation law of U(−1), namely of ∂uϕ.

If we take δξβ(0) = 0 we get from (8.5.11)

f(u, x) = eϕ−2β(0)α(x) + eϕ−2β(0)

∫ u

e−(ϕ−2β(0))
(

F

d− 2 − ω − 2(d− 2)LY β(0)

)
du′

F (u, x) := DAY
A(x) = (d− 2)Y A∂Aϕ+

(
1
2∂A log |q̂|+ ∂A

)
Y A︸ ︷︷ ︸

D̂AY A

(8.5.16)

The scalar α is an arbitrary function on Bd−2 and we have defined F as the leading covariant
divergence of Y A, which splits in a part depending on u and a covariant divergence with respect to
the u-independent factor of h(0)AB , which we denoted with a hat and hence q̂ is its determinant.

With (8.5.9), (8.5.10) and (8.5.16) all the leading order conditions are solved. With a = 1, δξgur =
O(r−2) is now automatically satisfied because the O(r−1) component is trivially zero. On the other
hand, (δξguA)(1) = 0 reads

1
d− 2∂A [F + fl − ω] e2β(0) − ∂u

(
∂Cfh

CB
(0) e

2β(0)
)
h(0)BA −

2l
d− 2e

2β(0)∂Af

+W(1)A

[
(∂u + 1)f + 1

d− 2 (F + lf − (d− 2)ω)
]
− Y B∂BW(1)A − ∂A(Y B)W(1)B = 0 (8.5.17)

As we are ultimately interested in approaching the cases considered in literature, we consider9

β(0) = 0. The last line vanishes identically and exp(2β(0)) = 1. Using the equations found
previously, we check that the first line also vanishes.

9The result should not depend on this choice. In particular the conclusion we are going to describe
holds also when β(0) 6= 0 but ∂Aβ(0) = 0 so that WA

(1) = 0. We have not explicitly checked the case in
which WA

(1) 6= 0, but all should be consistent as it only depends on β(0). In this latter case, if the second
line does not vanish identically we get a constraint on β(0).
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The asymptotic Killing fields of the given generalised set of boundary conditions thus comprise
supertranslations and smooth CL-superrotations, which we should denote with SDiff(Bd−2) as
we have not restricted to10 Bd−2 = Sd−2.

At subleading orders we find the transformation laws of the subleading terms of the metric expan-
sion. To complete the goal set in the introduction of the chapter, the most relevant to address is
δξh(1)AB . Notice that with a = 1, both

(δξgAB)(1) = e2β(0)

(
2

d− 2D
2f − 2DADBf

)
+ 4
d− 2h(0)ABW

E
(1)∂Ef − 4W(1)(A∂B)f (8.5.18)

and

(δξgAB)(2−a) = f∂uh(a)AB −
(2− a)
d− 2

(
DCY

C + fl − (d− 2)ω
)
h(a)AB + LY h(a)AB (8.5.19)

contribute to the end result. We get

δξh(1)AB = 2e2β(0)

(
1

d− 2h(0)ABD
2 −DADB

)
f + f ∂uh(1)AB︸ ︷︷ ︸

(8.4.87) d>4
(8.4.78) d=4

− F

d− 2h(1)AB + LY h(1)AB

−
(

fl

d− 2 + ω

)
h(1)AB + 2

[
∂CfW(1)C

d− 2 h(0)AB − 2∂(BfW(1)A)

]
(8.5.20)

The term in square brackets vanishes for the standard boundary condition on β(0).

We now exemplify which subcases are consistent and which are not, taking ω = 0 for simplicity
and for comparison to the literature.

CL & a = 1, d > 4. This is the case in [79] for even d. The above expressions reduce to

f(u, x) = α(x) + u

d− 2F (x), F (x) := D̂AY
A(x) (8.5.21)

and

δξh(1)AB = 2
(

1
d− 2h(0)ABD̂

2 − D̂AD̂B

)
f − f���

��∂uh(1)AB −
F

d− 2h(1)AB + LY h(1)AB (8.5.22)

which, restricted to (α = 0, Y ) gives11

δY h(1)AB = 2u
(d− 2)2

(
h(0)ABD̂

2 − (d− 2)D̂AD̂B

)
F +

(
LY −

F

d− 2

)
h(1)AB (8.5.23)

which contains a u-dependent piece as stated in the introduction to the chapter, making it incon-
sistent with the configuration space.

10In principle, we should be cautious in using the names supertranslations and superrotations because
the topology of the phase space is relevant, as shown in [281].

11The last term in the next equation does not appear in [79]. However, our expressions are fully consistent
with [156] when restricted to d = 4.
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BS & a = d−2
2 . This corresponds to the TKS analysis [70]. From (8.5.16) we again recover

[70, 60]
f(u, x) = α(x) + u

d− 2F (x), F (x) := D̂AY
A(x) (8.5.24)

but now, from the vanishing of (8.5.10), we get

δY h(0)AB = 2
d− 2Fh(0)AB , (8.5.25)

so that Y is a conformal Killing vector.

With this value of a, (δξg(1)
AB) is of the same order of (δξg(2−a)

AB ) only in d = 4 and hence

δξh(1)AB = 2
(

1
d− 2h(0)ABD̂

2 − D̂AD̂B

)
f − f ∂uh(1)AB︸ ︷︷ ︸

NAB

− F

d− 2h(1)AB + LY h(1)AB (8.5.26)

only in d = 4. The function α remains arbitrary. We get the bms algebra (either global or local).

When d > 4, we have a constraint on f coming from (δξg(1)
AB) = 0

2
d− 2h(0)ABD̂

2f − 2D̂AD̂Bf = 0, (8.5.27)

from which we get
2

d− 2h(0)ABD̂
2α− 2D̂AD̂Bα = 0, (8.5.28)

as F can be proved to satisfy

D̂AD̂BF −
1

d− 2D̂
2Fh(0)AB = 0 (8.5.29)

from the properties of the Riemann tensor of a maximally symmetric space [70]. F is given by the
l = 1 modes of the scalar harmonics on the hypersphere and α by l = 0, 1 modes. Given this, the
subleading conditions

(δξgur)(−a−1−p) = 0 ∀ p < a− 1, (δξguA)(2−a−p) ∀ p < 1 (8.5.30)

are automatically satisfied as in [70]. Let us take for example (δξgur)(−a−1−p) = 0. For each
p < a− 1 it is of the form

h(a+p)ABD̂
AD̂Bf = 0. (8.5.31)

Hence it holds using (8.5.27) and the fact that h(a+p)AB is traceless for any p < a.

The resulting algebra of asymptotic symmetries is Poincaré. The action of the asymptotic Killing
on the radiative data follow from (δξg(2−a)

AB ) as

δξh( d−2
2 )AB = −f ∂uh( d−2

2 )AB︸ ︷︷ ︸
NAB

− F

d− 2h( d−2
2 )AB + LY h( d−2

2 )AB (8.5.32)

For Bd−2 6= Sd−2 in d = 4 the asymptotic symmetries have been studied in [281].
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BS in d > 4 & a = 1. In even spacetime dimensions this is the case considered by KLPS
[71]. The analysis is the same as the above except that (8.5.27) does not apply. Thus α is free and
h(1)AB transforms formally as in d = 4

δξh(1)AB = 2
(

1
d− 2h(0)ABD

2 −DADB

)
f − f���

��∂uh(1)AB −
F

d− 2h(1)AB + LY h(1)AB (8.5.33)

Notice that since Y generates Lorentz transformations in this case, the remark after (8.5.23) does
not apply because the u-dependent piece of (8.5.23) automatically vanishes. The action of the
Killing field on the radiative data is read by pushing the expansion of (8.5.5) up to p = d−4

2 . So
for example in d = 5 it is found at p = 1/2, as it should as a(= 1) + p(= 1/2) = 3/2. As we have
commented in Section ??, the news tensor in this case is linear only in d = 5.

CL & a = d−2
2 . In all our discussion we have never mentioned the possibility that we can have

superrotations without supertranslations in d > 4. This may seem plausible since we have repeat-
edly stated that superrotations only depend on the boundary conditions, while supertranslations
depend on the falloff conditions. So can

Diff(Sd−2) n T (8.5.34)

be an asymptotic symmetry group?

Given the CL conditions, (8.5.27) does not apply. However, the conditions (8.5.30) must be
considered. While they were automatically satisfied by the solutions of (8.5.27), they are not
so now. For example consider again (8.5.31). Since α exponentiates to translations (and hence
satisfies (8.5.28)), (8.5.31) becomes

h(a+p)ABD̂
AD̂BF = 0, (8.5.35)

constraining Y A. As we know a solution of this equation is given by (8.5.29), and we come back
to the standard Bondi-Sachs case. We have not investigated other solutions.

Thus, (8.5.34) cannot be an asymptotic symmetry group. We are either forced to the Poincaré
group or to some other group where the diffeomorphisms generated by Y A are restricted. It would
have been puzzling otherwise, because we would have been able, in principle, to recover subleading
soft theorems from the Diff(Sd−2) invariance but there is not enough symmetry for the leading
theorems.

8.6 Comments on the asymptotic charges

To analyse the charges and the variational principle, we have to use (see Section 3.3)

1
2κ2 θ

µ = 1
2κ2

(
gνρδΓµνρ − gµνδΓρρν

)
, (8.6.1)



which is the boundary term obtained in the variation of Einstein-Hilbert action (2κ2 = 16πG). In
the following we absorb the numerical factor in the definition of θµ.

The relevant components for the boundary analysis are θr and θu

θr = 2rd−2∂u (√qδβ) +√q∂r
(
rd−2δU

)
− 2√q∂r

(
δβrd−2U

)
− rd−2√q(d−2)DA

(
δWA

)
+ 2rd−2√q(d−2)DA

(
δβWA

)
+ 2rd−2√qδβ∂rU − 2rd−2√qδWA(nA + ∂Aβ) + 2rd−2√qδU∂rβ

− rd−4√qδhAB ((d−2)DAWB + lAB − UkAB)− 4rd−2√q∂u (δβ)

+ rd−2√q∂u
(
hABδh

AB
)

+ 4rd−2√qU∂r (δβ)− 4rd−2√qWA∂A (δβ) ,

(8.6.2)

θu = 1
2r

d−2√q
[
gABδ∂rgAB −

4δβ(d− 2)
r

+ 4δ∂rβ
]
. (8.6.3)

Some considerations on the variational principle with null boundaries at finite positions have
appeared in literature (see for example [144]), but they are all affected by unsolved fundamental
issues. For example, the strategy pursued in [144] to obtain the “Gibbons-Hawking-York” term for
a null boundary imposes too strong restrictions on the variations, which are in principle unwanted.
Anyway, we do not have to follow the same conceptual route used in AdS/CFT, because the
on-shell Einstein-Hilbert action in our case is automatically zero. So we can directly discuss the
variational principle at infinity by analysing the above two expressions.

For example, the leading order diverging piece of θr is

O
(
rd−2) : 2∂u

(√
qδβ(0)

)
+√q(d− 1)δU(−1) − 2√q(d− 2)U(−1)δβ(0)

−
√
q

2 δhAB(0) ∂uh
(0)
AB − 2U(−1)δ (√q)− 4√q∂u

(
δβ(0)

)
− 2√q∂u

(
δ
√
q

√
q

)
.

(8.6.4)

As we are working on-shell we can use our solutions and see that this term is of the form

∂u(√qδβ(0)) +A∂uδ
√
q. (8.6.5)

In literature (d = 4), the first term does not appear since β(0) = 0 fixed from the start and, since
h(0)AB is taken to be u-independent, the latter term automatically vanishes. If we insist on the
u-independence of h(0)AB , then we have to look at δβ(0). However it enters a total derivative, so
it only contributes as a corner term. Furthermore, with h(0)AB depending on u via the conformal
factor ϕ, it can be shown that the variation in the total derivative term becomes of the form
δ(β(0)−ϕ). According to the cases considered thus only one among β(0) and ϕ is independent and
if we if we require, consistently with CL superrotations that the volume of the boundary metric is
kept fixed, then this diverging piece cancel.

All these matters are under investigation at the time of writing. To conclude we notice that the
expansion of θr and θu correctly generalises the one known in d = 4 (see (6.1.11)) to any d. Indeed

θr = rd−2θr(d−2) + rd−3θr(d−3) + rd−2−aθr(d−2−a) + . . . (8.6.6)

θu = rd−3θu(d−3) + rd−3−aθu(d−3−a) + . . . (8.6.7)

and each coefficient reduce to the expressions in [156] under those conditions.
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The problem of holography in asymptotically flat spacetimes is being uncovered in recent years.
In this thesis, we presented some preliminary results which should be taken into account to extend
the four-dimensional picture to higher dimensions. We conclude the journey of this dissertation
by summarising the picture motivating it, the results obtained and future directions.

Bird’s eye view of the motivations. Soft theorems characterise scattering processes in
any theory of gravity with d ≥ 4 flat non-compact dimensions [51, 52]. Extensions of the BMS
group of four-dimensional asymptotically flat spacetimes have been conjectured to be symmetries
of semiclassical scattering, at least at a perturbative level, because the action of the associated
generating charges on the S-matrix can be argued to imply gravitational leading (Weinberg [47])
and subleading (Cachazo-Strominger [49]) soft theorems [43, 199, 200, 64]. The soft graviton factor
is also understood as a Fourier transform of classical gravitational memory formulae [216, 202].
These chains of equivalences pictorially forms triangles with asymptotic symmetries, soft theorems
and memories at each vertex and hold analogously in gauge theories [44].

The BMS group is defined as preserving the universal structure of asymptotically flat spacetimes
at either future I + or past I − null infinity, where I ± have R × S2 topology and the universal
structure is the pair formed by a null normal to I and the round sphere metric on S2. Such
spacetimes can be easily called asymptotically Minkowski [55]. Under such conditions, the BMS
group is the semidirect product of supertranslations (the Abelian factor), acting geometrically by
arbitrarily shifting each point of S2 along R, and the proper orthocronous Lorentz group (the
non-Abelian part), acting on S2 as global conformal transformations. Supertranslations are intrin-
sically related to gravitational waves leaking through null infinity and the displacement memory
effect. The space of asymptotically Minkowski spacetimes can be given the structure of a covariant
phase space where Hamiltonian charges generating supertranslations act mapping a solution to a
different solution.

Extensions of BMS concern its non-Abelian part. The global conformal transformations of S2 can
be relaxed to either local conformal transformations (generated by two copies of Witt algebra) or
to arbitrary smooth diffeomorphisms of S2. Local conformal transformations are usually called
superrotations in this context. We will refer to them as BT-superrotations - BT standing for
Barnich-Troessaert, the authors that first studied the associated phase space [60, 63] - because we
will use CL-superrotations, CL standing for Campiglia-Laddha [64, 65], for Diff(S2).

Both extensions of BMS require relaxing the above asymptotic Minkowski conditions. Campiglia-
Laddha superrotations need the universal structure to be defined as a pair involving a normal
and a volume form [64, 157] over S2. As transformations over a phase space, CL-superrotations
map spacetimes with different metrics on the cross sections of I but with the same volume. This
process can also be associated to memory effects [272].

The Witt algebra naturally arises in boost-rotation symmetric spacetimes [250, 256] because these
spacetimes possess incomplete null infinity. They are usually called asymptotically locally flat.
BT-superrotations are interpreted as inducing transitions in the larger phase space of asyptotically
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locally flat solutions, as crystallised by the creation or snapping of a cosmic string [239] and the
production of impulsive memory.

The uncovered triangular relations revived the interest in the asymptotically flat spacetime holog-
raphy problem because it fuels a program long believed to hint to holography [163]: casting scat-
tering in Minkowski spacetime in terms of correlators of operators associated with the boundaries
[282, 203, 204, 205, 206]. This is supposed to relate to holography in flat spacetime in the same way
that quantum fields in AdS written in terms of boundary operators relate to AdS/CFT in hindsight
[102]. However, AdS/CFT is greatly more general than this [18, 24]. Analogously, the dynamical
principles such that a boundary structure X (using Witten’s terminology [162, 38]) outputs the
S-matrix are probably hidden beyond perturbative physics around Minkowski spacetime. We are
thus led to approach the problem from more general points of view. One of various ways toward
the more general principle is looking for (asymptotically) flat (Minkowski) holography as Ricci flat
hlography [163] and its relations with AdS holography [42, 283, 185, 191, 193, 182, 284, 285]. This
is the underlying spirit of the thesis.

A plausible fundamental condition for the resulting pictures - including holography - to hold is the
existence of a well-defined phase space. In a covariant phase space perspective, where the phase
space is built over a configuration space by endowing the latter with a symplectic structure. The
analysis of such configuration space is the original contribution of the thesis in chapters 7 and 8.

Summary of results and further directions. Motivated by the relation between cosmic
strings and superrotations in four dimensions, we began chapter 7 by exploring cosmic branes in
higher dimensions. We argued that only (d − 3)-branes in d spacetime dimensions are flat in the
vicinity of the brane, and therefore the natural generalization of cosmic strings/superrotations in
four dimensions should involve (d− 3)-branes. We then showed that, if one wishes to allow cosmic
(d − 3)-branes to penetrate the celestial sphere, one needs to relax the boundary conditions from
asymptotically flat to asymptotically locally flat.

The proposed generalized boundary conditions are defined in (7.4.41) in terms of a non-trivial
(d−2) metric, describing a (d−2)-manifold that is topologically a (d−2)-sphere. These boundary
conditions include cosmic branes, but the rather general form is primarily motivated by the analogy
with asymptotically locally anti-de Sitter spacetimes. The generalization of d-dimensional asymp-
totically anti-de Sitter spacetimes (for which the metric on the conformal boundary isRt×Sd−2) to
asymptotically locally anti-de Sitter spacetimes is obtained by allowing the metric on the conformal
boundary is a generic smooth (non-degenerate) metric.

The analysis of the generic boundary conditions has been extended beyond five dimensions in
chapter 8 and consistent configuration spaces supporting the action of supertranslations and su-
perrotations in higher dimensions have been constructed there. We are confident that the analysis
can produce a consistently renormalized phase space in any number of dimensions at the non-linear
level. This will encompass all the cases previously considered in even spacetime dimensions, and
will potentially answer the questions on the past/future matching conditions that previous works
left unanswered. A fundamental ingredient we need, which we have not included in this account
yet, is the solution of the supplementary equations, giving the u-evolution of the (analogous of)
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Bondi mass and angular momentum aspects.

Although we should acknowledge that - at the time of writing - there are interesting fundamental
issues in the four-dimensional picture which have not been tamed yet, several reasons motivate
the interest in the higher dimensional explorations we have pursued. We have listed them in the
Introduction, but here we can add one more. AdS/CFT realises the Holographic Principle irrespec-
tively of the number of spacetime dimensions. We may thus expect the same for flat holography.
However, the most interesting thing that can happen in studying physics in diverse dimensions is
the discovery that some laws and principles only work in specific number of dimensions, perhaps
four.

Perhaps the connection between asymptotic symmetries and soft theorems does not hold in higher
dimensions because of the impossibility (fundamental, not technical) to consistently renormalize the
asymptotic charges and/or the lack of relevant phase spaces with appropriate matching conditions
between I + and I −. While it is too early to speculate on the latter point - as it can only be
answered after the radial divergences to each I are separately (roughly speaking) removed - we
are confident that a regularization prescription along the lines of those used in four dimensions can
be found. However, there are subtle differences. We hope that our analysis enlightens such points.

On the gravitational side, the first aim is to address the problem of Bondi mass and its evolution,
as well as the angular momentum, for the spacetimes with the more general boundary conditions
and non-radiative falloffs. However, we also note that a more modest goal, missing in literature,
is the analysis of covariant phase space charges for radiative falloff conditions.

To get the connection with soft theorems, appropriate matching conditions have to be found. A
preliminary comment on the issues of the non-linear analysis of supertranslations in even dimen-
sions was given in [279] and we noted that the general boundary conditions may resolve this issue.
It remains to check what additional subtleties are brought in by the more general boundary con-
ditions and the non-linearities.

A tantalizing direction to pursue, given the results of chapter 7 and chapter 8, is to perform
the integration of Einstein’s equations in Bondi gauge for AlAdS spacetimes in arbitrary dimen-
sions and take the flat space limit. This was done in d = 4 in [272] along the lines of [190].
Odd-dimensional bulk spacetimes are more interesting in this respect because of the AdS/CFT
conformal anomaly12. Providing the solution of Einstein’s equations with Λ is going to be an
easy exercise after the analysis performed in chapter 8 because the structure of the equations is
unchanged. In this way we can check the conjecture made in the last chapter that the logarithmic
terms in hAB in a d-dimensional spacetime with null asymptotics is related to the logarithmic term
in gij of a (d−1)-dimensional AlAdS spacetime. This analysis may open a new important window
on the properties of a holographic dual of flat spacetimes. This point is related to the completion
of the analysis of the polyhomogeneous expansion of asymptotically flat spacetimes.

One would also like to prove that the general boundary conditions are stable and that the class
so defined is physical. Rigorous proofs and derivations may be challenging. In the case of AlAdS

12Only recently we became aware of [189, 286]. A stress tensor for asymptotically flat gravity is defined
by a flat limit of AdS3 and Robinson-Trautmann AdS4 in Bondi gauge. In such cases no log terms arise
in the AdS solution. The first non-trivial case is thus AdS5.
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spacetimes, rigorous proofs of existence and uniqueness in Euclidean signature were given in the
original mathematics literature [112, 287], but many outstanding issues still remain in Lorentzian
signature. In the case of zero cosmological constant, the analysis is inherently Lorentzian.

Other possible interesting directions, which did not find any mention in this dissertation, for which
generalised BMS symmetries and our constructions may be relevant, are the asymptotic symmetries
of string theories (see [288]) and the near-horizon symmetries of generic null horizons, including
the dS cosmological horizon. The role of BMS and extended BMS symmetries in relation to the
information paradox was discussed in [289, 290, 291] and various BMS-like near-horizon symmetries
have been defined [146, 292, 293, 294] also in three [295] and arbitrary dimensions [148], while some
BMS-like transformations may be relevant for the evolution of the entropy current of dynamical
horizons [296]13.

As a last comment and warning, we mention that physically reasonable matching rules of I + and
I − are unknown in the presence of black holes. Flat holography is still in her infancy, if not in
an embryonic state.

13Thanks to N. Kundu for sharing opinions on this.



APPENDIX A

Asymptotics in the conformal language

A.1 Spacetime asymptotics

Definition. An asymptote of a D-dimensional spacetime (M̄, ḡ) is a triplet (M, g,Ω) plus a
diffeomorphism ψ : M̄ → M\I , where M is a manifold with boundary I , ḡ is a smooth metric
on M , ψ identifies M with the interior M\I of M , and Ω : M → R is a smooth function which is
strictly positive in the interior M\I and such that

i) gµν = Ω2ḡµν on M̄ ,

ii) Ω = 0, n := dΩ 6= 0 at I .

This is a slight adaptation of Geroch’s definition of asymptote of a spacetime [55], where we take D
generic rather than D = 4. The smoothness assumption is to be commented momentarily. We use
D rather than d or d+ 1 so as to facilitate maps of formulas according to the various conventions
used.

The last condition implies that g is finite at infinity, Ω can be used as a coordinate on M and
defines the one form n which is associated with the normal nµ = gµνD̄νΩ to the boundary.

Manifestly, the given definition does not totally determine topology of I . We will see however,
that when Λ = 0 the boundary topology is restricted.
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Conformal freedom. Given a spacetime (M̄, ḡ) and an asymptote (M, g,Ω) and any smooth
positive scalar function ω on M , (M,ω2g, ωΩ) is an equivalent asymptote. Under the conformal
transformation

Ω→ Ω′ := ωΩ, gµν → g′µν = ω2gµν (A.1.1)

the normal nµ transforms as

nµ → n′µ = ω−1nµ + ω−2ΩDµω. (A.1.2)

The function Ω is called “defining function” in mathematics literature [112] and the gauge/gravity
duality literature [19, 42].

Causal structure of the boundary. Einstein’s equations have to be imposed to infer the
causal nature of I . The boundary I is timelike if the spacetime solves Einstein’s equations with
Λ < 0, null if Λ = 0 and spacelike if Λ > 0, because

|dΩ|2 = − 2Λ
(D − 1)(D − 2) = ∓ 1

l2
, |dΩ|2 = gµν∂µΩ∂νΩ (A.1.3)

where we have used the relation between Λ and the characteristic length scale l and the sign is −
is for Λ > 0 and + for Λ < 0.

The given relationship is true in vacuum or as long as the stress-energy tensor falloffs sufficiently
fast at infinity. The definitions of asymptotically flat, AdS or dS spacetimes require such conditions.

The Riemann tensor R̄µνρσ of (M̄, ḡ) behaves in the limit Ω→ 0 as

R̄µνρσ ≈ −|dΩ|2(ḡµρḡνσ − ḡµσ ḡνρ), (A.1.4)

and the Ricci tensor as
R̄µν ≈ −(D − 1)|dΩ|2ḡµν (A.1.5)

This result is seemingly in tension with the previous consideration. If the spacetime is asymptoti-
cally Ricci-flat, this equation is solved by either admitting dΩ = 0 or that the boundary is null. The
first condition is not allowed by the definition of asymptote because it implies that the boundary
surface collapse to a point. Indeed, these are the points i0, i± in the conformal compactification of
Minkowski spacetime. They are considered part of the boundary but must be treated separately.

Universal structure. The smoothness assumption is necessary to provide the necessary ana-
lytical tools to do tensor analysis on I as induced fromM , but taking I abstractly as “detached”
from M : i.e. we can safely define a pullback operation from M to I . We denote the pulled-back
quantities with an over arrow pointing left, i.e. ←g µν ,

←
n
µ
.

The pulled-back fields which are shared by all spacetimes in the same class (i.e. asymptotically
flat or asymptotically (A)dS) define the universal geometry. Asymptotic symmetries preserve the
universal geometry.
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As discussed in the main text, the smoothness assumption overrestrict the space of solutions of
both asymptotically flat and asymptotically AdS spacetimes and cannot be extended to odd D > 4
asymptotically flat radiative spacetimes [66]. Cases with lower regularity I have been studied in
literature.

A.1.1 Asymptotic flatness, null infinity and Carroll manifolds

Topology of null infinity. Since I is null, its normal ←n
µ
is both null and tangent and

←
g µν

←
n
ν

= 0, meaning that ←g µν is degenerate.

The set B of all maximally extended integral curves of ←n
µ
can be given the structure of a manifold

provided that for any given point p along one such curve, the curve itself does not reenters suffi-
ciently small neighborhood of p. This is accomplished by the mapping Π : I → B sending each
p ∈ I to the integral curve to which it lies.

The manifold B is the base space of I and by abuse of terminology B is a cross section of I . The
topology of I is

I ∼ R× B (A.1.6)

The usual definition of asymptotic flatness in D = 4 and by extension D > 4 takes B = SD−2 and
the null generators of I to be complete. This is the asymptotically Minkowski case.

Bondi condition. Due to the conformal freedom and Einstein’s equations, ←g and ←n are related
by L←

n

←
g µν = b

←
g µν for a positive function b. It is always possible to find b locally such that

L←
n

←
g µν = 0. This defines Ω as

Dµnν = 0⇔ DµDνΩ = 0 (A.1.7)

on I and defines the so-called Bondi frame. In this frame there is a residual conformal freedom
given by

Ln
←
ω = 0, ←

ω > 0 (A.1.8)

This is sufficient to show that in D = 4 all asymptotically flat spacetimes have locally the same
conformally flat boundary metric [55] and when B = S2 a natural choice is the standard round
sphere metric.

The phase space of asymptotically flat spacetimes is usually defined by such condtions. This
immediately lead to BMS without CL-superrotation. Apart from the spherical case, the group
of conformal motions of the other possible simply connected B2 has been studied in [281], but
the analysis of asymptotic symmetries and charges in such cases lack. An explicit example of a
spacetime with a non simply connected null boundary was found [297] as an A-metric with toroidal
B2.

Abstract I as a Carroll structure. A Carroll manifold is defined in [177] as a triple
(C, q, χ), where C is a smooth (D − 1)-dimensional manifold endowed with a twice-symmetric
covariant positive tensor field q whose kernel is generated by the nowhere vanishing, complete
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vector field ξ.

A generic Carroll structure is given by CD−1 = BD−2 × R, χ = ∂s where s is the Dth coordinate
known as Carrollian time. The standard Carroll manifold is defined by BD−2 = RD−2 and qµν =
δµν (notice we use the same indices as before for brevity).

The isometry group of the Carroll manifold is the infinite dimensional group of transformations
x′A = xA, s′ = s+ α(x). A conformal Carroll transformation of level N is defined as the group of
transformations preserving the tensor

Γ(N) = q ⊗ χ⊗N = qµνχ
ρ1 . . . χρN , (A.1.9)

The conformal Carroll group transforms q and χ as

qµν → a2qµν , χµ → a−2/Nχµ . (A.1.10)

When N = 2, (A.1.9) with the identification of C ≡ I and q ≡ ←g , χ ≡ ←n (s ≡ u), a ≡ ←ω is the
universal geometry of null infinity as defined by Geroch [55].

There is thus no surprise in the claim that Conformal Carroll transformations of level two are
(standard) BMS transformations. The interesting insight provided by the Carrollian language is
that BMS arise as (a conformal extension) of a Inönu-Wigner contraction of the Poincaré group.

The point to be stressed, however, is that null infinity in the conformal sense is only well defined
for D = 4 (or even). The identifications we made here between the abstract fields on the Carroll
manifold (i.e. abstract I ) and the pull-backs of bulk fields are only allowed when the pull-back
operation can be given a meaning.

Extended Carroll structures and CL-superrotations. The Carrollian picture can be
easily extended to explicitly include CL-superrotations. We define the extended conformal Carroll
group of level P as the group of transformations preserving the tensor

Γ̃(P ) = ε⊗ χ⊗P = εµ1...µD−1χ
ρ1 . . . χρP (A.1.11)

where ε is the volume element on C. The infinitesimal transformation acts on ε and χ as

Lξεµ1...µD−1 = λεµ1...µD−1 , Lξχ
µ = kχµ, k = − λ

P
(A.1.12)

If the Carroll manifold is the null boundary of a spacetime C ≡ I and we take P = D − 1 with
χ identified with the normal to I , and ε taken as the pullback of the (D − 1)-form induced by
the spacetime volume element εµ1,...µD = Dε[µ1...µD−1nµD], (A.1.12) constitute BMS extended with
CL-superrotations. Indeed the above identifications correspond to choosing the normal and the
induced volume form to I as universal structure of asymptotically flat spacetimes [157]. Again,
here the spacetime picture is only valid when the Carroll manifold can be consistently “attached”
to the bulk.
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A.1.2 Asymptotic analysis of AlAdS in Fefferman-Graham gauge

Asymptotically locally AdS spacetimes are usually named conformally compact Einstein metrics
of negative cosmological constant Λ < 0. This is a synonim of the previous definition.

In the vicinity of the boundary they admit the Fefferman-Graham metric (2.3.13)

ds2 = l2

z2 (dz2 + hij(z, x)dxidxj), i, j = 0, . . . d. (A.1.13)

The nomenclature “asymptotically locally” indicate that the leading order metric of the expansion
is not necessarily the standard AdS metric in Poincaré coordinates. Also the topology of the
boundary is not fixed.

We solve vacuum Einstein’s equations in any D = d+ 1

Rµν = − d
l2
gµν , Λ = −d(d− 1)

2l2 (A.1.14)

N.B.: here unbarred quantities refer to the physical spacetime, as in chapter 2. The ij components
of Einstein’s equations are

z∂2
zhij + (1− d)∂zhij − 2khij − 2zkli∂zhlj + zk∂zhij − 2z (d)Rij = 0, (A.1.15)

and the other two are

zi : 2(d)Dik − (d)Dj(∂zgij) = 0, (A.1.16)

zz : zhij∂2
zhij − 2k − 2zkijk

j
i = 0. (A.1.17)

We have defined (d)Rij the Ricci tensor of hij and

kij = 1
2∂zhij , kij = 1

2h
il∂zhlj , k = hijkij (A.1.18)

to shorten the equations. It is interesting to note that if we perform a splitting as in the Bondi-
Sachs strategy (cfr. Section 5.1 and Section 8.3) the equations can be entirely written in terms of
kij [60].

They can be solved iteratively starting from (A.1.15). At step p the equation is differentiated p

times and z is set to zero. The resulting equation is solved algebrically giving h(p+1)ij in terms of
h(0), up to the order p+ 1 = d, where it is necessary to distinguish between d even and odd.

Indeed, the pth derivative of (A.1.15), after setting z = 0, reads as

(p+ 1− d)∂p+1
z hij − hijhlm∂p+1

z hlm = Fij [∂qzhij |q<p+1] (A.1.19)

where Fij is a sum of products of terms involving ∂qzhij with q < p + 1 such that the sum of the
derivative orders of each term of the product is p + 1. This is due to the fact that the sum of
powers of z and derivatives with respect to z in each term of (A.1.15) has a definite parity, odd in
particular. As a consequence each term in (A.1.19) must have the same number of derivatives of
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the first one (p+ 1), because z has been set to zero.

To solve the equation we first take its trace and determine hij∂p+1
z hij , then we substitute back to

get the (traceless part of)1 ∂p+1
z hij , so that each h(p)ij is determined. This can be continued as

long as p+ 1 < d.

For example, at order p = 0 we set z = 0 in (A.1.15)/(A.1.19) and, by evaluating its trace and
substituting it back, we get h(1)ij = 0. At order p = 1, repeating the procedure of taking the trace
and putting back we get

h(2)ij = − 1
d− 2

(
(0)

Rij −
1

2(d− 1)h(0)ij
(0)

R

)
. (A.1.20)

where the superscript (0) is for quantities referred to h(0)ij .

When p+ 1 = d odd, (A.1.19) collapse to

hijh
lm∂dzhlm = 0 (A.1.21)

because of the parity argument. The trace of ∂dzhlm vanishes and the traceless part is left undeter-
mined by this equation. By similar arguments as those seen, the equations for the zi components
constrain it to be covariantly conserved with respect to the derivative compatible with h(0)ij

(0)Di(∂dzh(p)ij) = 0 (A.1.22)

When p+ 1 = d even, (A.1.19) becomes

hijh
lm∂dzhlm = −Fij [∂qzhij |q<d] (A.1.23)

where the terms in Fij are locally determined by h(0)ij . The trace of this equation determines
hlm∂dzhlm locally in terms of h(0)ij . By substituting back we get

FTij = 0 (A.1.24)

where T stands for trace-free. This is a constraint on the previous coefficients of the expansion
and signals that the power-law assumption breaks down. This implies that the expansion contains
a term

zd log zh(d)ij (A.1.25)

where h(d)ij is traceless, hij(0)h(d)ij = 0, and determined by FTij . Furthermore, it is also covariantly
conserved with respect to (0)D as a consequence of the zi equation. Indeed, the (d−1)th derivative
of that equation gives log z(0)Dih(d)ij which must be set to zero in order to have a well-defined
z → 0 limit.

1Notice that this exactly correspond to what we will do in Bondi-Sachs gauge (cfr. Section 5.1 and
Section 8.3), where however we will split the equations for the (degenerate) boundary metric in trace and
traceless part from the start.



APPENDIX B

Appendix to chapter 7

B.1 Solutions of the main equations and supplementary equa-
tions

In this appendix we collect the solutions of the main equations (7.5.8), (7.5.9), (7.5.10) and (7.5.13)
as well as the supplementary equations (7.5.14) and (7.5.15). In writing the appendix a logistic
problem concerning the typesetting of the equations arose: whether to write all equations in terms
of the initial and free data or implicitly in terms of the previously determined data. We have used
one form or the other according to space constraints; shorter equations are usually written in the
fully expanded form while the longest ones are not.

B.1.1 β coefficients

β(2) = − 1
24(C2

1(1) − C1(1)C2(1) − C2(1)) (B.1.1)

β(5/2) = − 1
20(2C1(1)C1(3/2) + C2(1)C1(3/2) + C1(1)C2(3/2) + 2C2(1)C2(3/2)) (B.1.2)

β(3) = − 1
16

(
C2

1( 3
2 ) + C2( 3

2 )C1( 3
2 ) + C2

2( 3
2 )
)

−1
9
(
C1(1)C1(2) + C2(1)C2(2)

)
+ 1

18
(
C1(2)C2(1) + C1(1)C2(2)

)
(B.1.3)
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B.1.2 W coefficients

W(1) = 2e2β(0)−C1(0)∂θβ(0) (B.1.4)

8e−2β(0)+C1(0)W(2) = 2C1(0),θC1(1) + C2(0)θC1(1) + C1(0),θC2(1)

+ 2C2(0),θC2(1) − 2C1(1),θ + 2 csc θ sec θC2(1)

+ 2(2 tan θ − cot θ)C1(1) − 4C1(1)W(1) (B.1.5)

5e−2β(0)+C1(0)W(5/2) = 2C1( 3
2 )
(
−e−2β(0)+C1(0)W(1) + C1(0),θC2(0),θ

)
+ 4C1( 3

2 ) (2 tan θ − cot θ)− 2C1( 3
2 ),θ

+ C2( 3
2 )
((
C1(0),θ + 2C2(0),θ

)
+ 2 csc θ sec θ

)
(B.1.6)

3e−2β(0)+C1(0)W(3) = 10β(0,1)
(2) − 2C1(2),θ + C1(1)C1(1),θ

+ 1
2C1(1)C2(1),θ + 1

2C2(1)C1(1),θ + C2(1)C2(1),θ

+ 2C1(2)C1(0),θ + C2(2)C1(0),θ + C1(2)C2(0),θ

+ 2C2(2)C2(0),θ − 2C1(2)(cot θ − 2 tan θ) + 2C2(2) csc θ sec θ

+ eC1(0)−2β(0)

(
2β(2)W(1) −

1
2(C1(1))2W(1) − 2C1(1)W(2) − C1(2)W(1)

)
(B.1.7)

7e−2β+C(1)W(7/2) = 44β( 5
2 ),θ − 10C1( 5

2 ),θ + 4C1(1)C1( 3
2 ),θ + 2C1(1)C2( 3

2 ),θ + 6C1( 3
2 )C1(1),θ

+ 3C1( 3
2 )C2(1),θ + 2C2(1)C1( 3

2 ),θ + 4C2(1)C2( 3
2 ),θ + 3C2( 3

2 )C1(1),θ

+ 6C2( 3
2 )C2(1),θ + 10C1( 5

2 )C1(0),θ + 5C2( 5
2 )C1(0),θ + 5C1( 5

2 )C2(0),θ

+ 10C2( 5
2 )C2(0),θ − 10C1( 5

2 )(cot θ − 2 tan θ) + 10C2( 5
2 ) csc θ sec θ

+ eC1(0)−2β(0)
(

4β( 5
2 )W(1) − 2C1(1)C1( 3

2 )W(1) − 2C1( 5
2 )W(1)

)
− eC1(0)−2β(0)

(
5C1(1)W( 5

2 ) + 4C1( 3
2 )W(2)

)
(B.1.8)

At order r−4 the equation determine the coefficient W̃(4) of the log term

16e−2β+C1(0)W̃(4) = 48β(3),θ + 12C1(0),θC1(3) + 6C2(0),θC1(3) + 6C1(0),θC2(3)

+ 12C2(0),θC2(3) − 12C1(3),θ + 4C1(2),θC1(1) + 2C2(2),θC1(1)

+ 6C1( 3
2 ),θC1( 3

2 ) + 3C2( 3
2 ),θC1( 3

2 ) + 8C1(1),θC1(2) + 4C2(1),θC1(2)

+ 2C1(2),θC2(1) + 4C2(2),θC2(1) + 3C1( 3
2 ),θC2( 3

2 ) + 6C2( 3
2 ),θC2( 3

2 )
+ 4C1(1),θC2(2) + 8C2(1),θC2(2) − 12(2 tan θ + cot θ)C1(3)

+ 12 csc θ sec θC2(3) (B.1.9)
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Here, substituting for β(3) results in

24e2β−C1(0)W̃(4) = −18C1(3),θ − 2C1(1)C1(2),θ − C1(1)C2(2),θ + 4C1(2)C1(1),θ

+2C1(2)C2(1),θ − C2(1)C1(2),θ − 2C2(1)C2(2),θ + 2C2(2)C1(1),θ

+4C2(2)C2(1),θ + 18C1(3)C1(0),θ + 9C2(3)C1(0),θ + 9C1(3)C2(0),θ

+18C2(3)C2(0),θ + 36C1(3) tan θ + 18C2(3) csc θ sec θ − 18C1(3) (B.1.10)

The subleading terms W(k) with k > 4 can all be determined in terms of the previous ones as was
the case up to W(7/2).

B.1.3 U coefficients

to be consistent with notation are better written in a non-expanded form, but this implies a
rweriting of all equations

12e2β(0)+C1(0)U(0) = 4β(0),θe
4β(0)

(
C1(0),θ − (cot θ − tan θ)− β(0),θ

)
+ e4β(0)

(
β(0),θθ − 2(C1(0),θ)2 − (C2(0),θ)2 − C1(0),θC2(0),θ + 2C1(0),θθ

)
+ e4β(0)

(
5(cot θ − tan θ)C1(0),θ − csc θ sec θ

(
C1(0),θ + 2C2(0),θ

)
+ 12

)
+ 10W(1)(cot θ − tan θ)eC1(0)+2β(0) − e2C1(0)W 2

(1) (B.1.11)

6e2β(0)+C1(0)U(1) = −e4β(0)(4C1(1),θC1(0),θ + C2(1),θC1(0),θ + 4C1(1)β(0),θC1(0),θ+)

− e4β(0)C1(1),θC2(0),θ − 2e4β(0)C2(1),θC2(0),θ + 8W(2),θe
C1(0)+2β(0)

+ e4β(0)(10C1(1),θ + 8β(0),θC1(1)) cot 2θ − e4β(0)C1(1),θ csc θ sec θ

− 2e4β(0)C2(1),θ csc θ sec θ + 4e4β(0)β(0),θC1(1),θ + 2e4β(0)C1(1),θθ

+ 4e4β(0)C1(1)(β(0),θ)2 + 4e4β(0)C1(1)β(0),θθ + 2e4β(0)C1(1)

+ (C1(0),θ)2 + e4β(0)C1(1)(C2(0),θ)2 + e4β(0)C1(1)C1(0),θC2(0),θ

− 10e4β(0)C1(1) cot 2θC1(0),θ + e4β(0)C1(1) csc θ sec θC1(0),θ

+ 2e4β(0)C1(1) csc θ sec θC2(0),θ − 2e4β(0)C1(1)C1(0),θθ

− 4W(2)e
C1(0)

(
W(1)e

C1(0) − 4e2β(0) cot 2θ
)

− C1(1)W
2
(1)e

2C1(0) − 12e4β(0)C1(1) (B.1.12)
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3e−2β(0)+C1(0)U(3/2) = (−4C1(0),θC1( 3
2 ),θ − C2(0),θC1( 3

2 ),θ − C1(0),θC2( 3
2 ),θ)

+ (−2C2(0),θC2( 3
2 ),θ + 2(C1(0),θ)2C1( 3

2 ) + (C2(0),θ)2C1( 3
2 ))

+ (C1(0),θC2(0),θC1( 3
2 ) − 4C1(0),θβ(0),θC1( 3

2 ))

+ csc 2θ(2C1(0),θC1( 3
2 ) + 4C2(0),θC1( 3

2 ) − 2C1( 3
2 ),θ − 4C2( 3

2 ),θ)

(−2C1(0),θθC1( 3
2 ) + 4β(0),θC1( 3

2 ),θ + 2C1( 3
2 ),θθ − 12e4β(0)C1( 3

2 ))

+ 4((β(0),θ)2C1( 3
2 ) + 4β(0),θθC1( 3

2 ))

+ cot 2θ(−10C1(0),θC1( 3
2 ) + 10C1( 3

2 ),θ + 8β(0),θC1( 3
2 ))

+ e−2β(0)+C1(0)(14W( 5
2 ) + 7W( 5

2 ),θ)

− e−2β(0)+2C1(0)(C1( 3
2 )(W(1))2 − 5W( 5

2 )W(1)) (B.1.13)

12e2β(0)+C1(0) Ũ(2) = e2β(0)+C1(0)(48β(2)U(0) − cot 2θ(80β(2)W(1) + 24W(3)))

+ e2β(0)+C1(0)(−40β(2)W(1),θ + 12W(3),θ)

+ e2C1(0)(−C2
1(1)W

2
(1) + 8β(2)W

2
(1) − 2C1(2)W

2
(1))

+ e2C1(0)(−12W(3)W(1) − 8W(2)C1(1)W(1) − 8W 2
(2))

+ e4β(0)(−4C2
1(1)(β(0),θ)2 + 8C1(2)(β(0),θ)2 − 16β(2),θβ(0),θ)

+ e4β(0)(8C1(2),θβ(0),θ − 8C1(1),θC1(1)β(0),θ + 4C2
1(1)C1(0),θβ(0),θ)

+ e4β(0)(−8C1(2)C1(0),θβ(0),θ − 4(C1(1),θ)2 − 2(C2(1),θ)2 − 4β(0),θθC
2
1(1))

+ e4β(0)(12C2
1(1) − 2C2

1(1)(C1(0),θ)2 + 4C1(2)(C1(0),θ)2 − C2
1(1)(C2(0),θ)2)

+ e4β(0)(2C1(2)(C2(0),θ)2 + csc 2θ(−4C1(2),θ − 8C2(2),θ + 4C1(1),θC1(1)))

+ e4β(0)(−2C1(1),θC2(1),θ − 8β(2),θθ + 4C1(2), θθ + 8 csc 2θC2(1),θC1(1))

+ e4β(0)(−4C1(1), θθC1(1) + 8β(0),θθC1(2) − 24C1(2) − 2 csc 2θC2
1(1)C1(0),θ)

+ e4β(0)(8β(2),θC1(0),θ − 8C1(2),θC1(0),θ − 2C2(2),θC1(0),θ + 8C1(1),θC1(1)C1(0),θ)

+ e4β(0)(2C2(1),θC1(1)C1(0),θ + 4 csc 2θC1(2)C1(0),θ)

+ e4β(0) cot 2θ(−8β(0),θC
2
1(1) + 10C1(0),θC

2
1(1) − 20C1(1),θC1(1))

+ e4β(0)(−16β(2),θ + 20C1(2),θ + 16β(0),θC1(2) − 20C1(2)C1(0),θ)

+ e4β(0)(−4 csc 2θC2
1(1)C2(0),θ − 2C1(2),θC2(0),θ − 4C2(2),θC2(0),θ)

e4β(0)(+2C1(1),θC1(1)C2(0),θ + 4C2(1),θC1(1)C2(0),θ + 8 csc 2θC1(2)C2(0),θ)

e4β(0)(−C2
1(1)C1(0),θC2(0),θ + 2C1(2)C1(0),θC2(0),θ + 2C2

1(1)C1(0),θθ − 4C1(2)C1(0),θθ)
(B.1.14)

The next equations determine U(i) with i ≥ 7/2 and as said in the main text U(2) remains free.

B.1.4 Ci,u coefficients

We collect here the derivatives with respect to u of Ci(n) determined by the equations (7.5.37).
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At order r0:

C1(1),u = H1 = 1
3e

2β(0)−C1(0)
(
(C1(0),θ)2 + 2C2(0),θC1(0),θ + 2(C2(0),θ)2 − C1(0),θθ

)
+ 2

3e
2β(0)−C1(0)

(
C1(0),θβ(0),θ − 8(β(0),θ)2 − 4β(0),θθ

)
+ 1

3e
2β(0)−C1(0)(tan θ − cot θ)

(
C1(0),θ − 4β(0),θ

)
+ 2

3e
2β(0)−C1(0) csc θ sec θ

(
C1(0),θ + 2C2(0),θ

)
(B.1.15)

and

C2(1),u = H2 = 1
3e

2β(0)−C1(0)
(
−4β(0),θC1(0),θ − 6β(0),θC2(0),θ

)
+ 1

3e
2β(0)−C1(0)

(
+8(β(0),θ)2 + 4β(0),θθ − 2C2

1(0),θ

)
− 2

3e
2β(0)−C1(0)(tan θ + cot θ)C1(0),θ

+ 1
3e

2β(0)−C1(0)(cot θ − 5 tan θ)C2(0),θ

− 4
3e

2β(0)−C1(0)(tan θ + 2 cot θ)β(0),θ

− 1
3e

2β(0)−C1(0)
(
(C2(0),θ)2 + 4C1(0),θC2(0),θ

)
+ 1

3e
2β(0)−C1(0)

(
2C1(0),θθ3C2(0),θθ

)
(B.1.16)

There are no equations at order r−1/2. In particular no equations constrain Ci( 3
2 ),u and the next

derivative to be determined is C1(2),u from the order r−1:

C1(2),u = −e2β(0)−C1(0)
(
2C1(1),θC1(0),θ + C2(1),θC1(0),θ + C1(1),θC2(0),θ + 2C2(1),θC2(0),θ

)
+ e2β(0)−C1(0)

(
2β(0),θC1(1),θ + C1(1),θθ + 2C1(1),θ(cot θ − tan θ)− 2C1(1)W

2
(1)

)
− e2β(0)−C1(0) csc θ sec θ

(
C1(1),θ + 2C2(1),θ

)
+ 5C1(1)W(1),θ + C1(1)C1(1),u + 4W(2),θ

+W(2)
(
−4W(1)e

C1(0)−2β(0) + C1(0),θ + 2(cot θ − tan θ)
)

+ 2C1(1)W(1)C1(0),θ − 3C1(1)U(0) + C1(1)W(1)(cot θ − tan θ)− 2U(1) (B.1.17)
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C2(2),u = e2β(0)−C1(0)(C2(1),θC1(0),θ + C1(1),θC2(0),θ + 2C1(1)β(0),θC2(0),θ − 2C2(1)β(0),θC2(0),θ)

+ tan θ
(
C2(1),θe

2β(0)−C1(0) − C1(1)e
2β(0)−C1(0)C2(0),θ + C2(1)e

2β(0)−C1(0)C2(0),θ
)

+ cot θe2β(0)−C1(0)
(
4C1(1)β(0),θ − 4C2(1)β(0),θ + 2C1(1),θ − C2(1),θ − 2C1(1)C1(0),θ

)
+ cot θe2β(0)−C1(0)

(
+2C2(1)C1(0),θ + C1(1)C2(0),θ − C2(1)C2(0),θ

)
+ e2β(0)−C1(0)(−2β(0),θC2(1),θ − C2(1),θθ) + C2(1)W(1),θ + C2(1)C2(1),u

+ 2W(2),θ + e2β(0)−C1(0)(−C1(1)C1(0),θC2(0),θ + C2(1)C1(0),θC2(0),θ + C1(1)C2(0),θθ)

+ 2W(2),θ + e2β(0)−C1(0)(−C2(1)C2(0),θθ − 4C1(1) + 4C2(1))

+
(
−4C2(1)W(1) − 3W(2)

)
tan θ +

(
2C2(1)W(1) + 3W(2)

)
cot θ

+W(2)C2(0),θ + 2C2(1)W(1)C2(0),θ − 3C2(1)U(0)

+
(
3C2(1)W(1) +W(2)

)
csc θ sec θ − 2U(1) (B.1.18)

The equations at subleading orders determine the u-derivatives of Ci(n/2) with n > 3. In general,
the equation for Ci(n/2),u with n ∈ Nr 3 comes from the order rn/2−1.

B.1.5 Supplementary equations

In order for the Bondi procedure to be consistent, once the main equations are solved the sup-
plementary equations turns out to be automatically solved except at the order in which the free
integration functions U(2) and W(4) enter, in which case they give their evolution equation. These
are the following.

At order r−3 in Ruθ = 0

3(U(2) − 4 log rŨ(2)),u = 24 log rŨ(2)β(0),u +W(1) + (C1( 3
2 ),u)2 + (C2( 3

2 ),u)2 + U(0)U(1)

+2U(0)W(2)β(0),θ +W(2)U(0),θ − U(1)W(1),θ − 4W(2)β(0),θW(1),θ

+4W(1),θW(2),θ + 2W(2)W(1),θθ + 6U(2)β(0),u − 4W(3),θβ(0),u

−2U(0)β(2),u − 4W(1),θβ(2),u + 2W(2),θC1(1),u + 2W(1),θC1(2),u

+2C1(1),uC1(2),u + C1(2),uC2(1),u + C1( 3
2 ),uC2( 3

2 ),u + C1(1),uC2(2),u

+2C2(1),uC2(2),u − 4W (3)β(0),uθ + 2W (3)(1,1) + 2W(2)C1(1),uθ

+eC1(0)−2β(0)(tan θ − cot θ)(C1(1)W
3
(1) + 2W(2)W

2
(1))

+e2C1(0)−4β(0)(2C1(1)W
4
(1) + 6W(2)W

3
(1)) + 2W(2)W(1),θC1(0),θ

+e2β(0)−C1(0)(cot θ − tan θ)(2U(1)β(0),θ − 2U(0)C1(1)β(0),θ)

+e2β(0)−C1(0)(cot θ − tan θ)(U(1),θ − U(0),θC1(1))

+(cot θ − tan θ)(−C1(1),θW
2
(1) + U(1)W(1) − 2W(2),θW(1) + 4β(2),uW(1))

−2(cot θ − tan θ)(C1(2),uW(1) +W(2)C1(0),θW(1) +W(2)W(1),θ)

+2(cot θ − tan θ)(2W(3)β(0),u −W(3),u −W(2)C1(1),u)

+eC1(0)−2β(0)(2C1(1),θW
3
(1) − 4β(0),θC1(1)W

3
(1) − 2β(0),uC1(1)

2W 2
(1))

+eC1(0)−2β(0)(−3U(1)W
2
(1) − 16W(2)β(0),θW

2
(1) + 4W(2),θW

2
(1))

+eC1(0)−2β(0)(+8β(2)β(0),uW
2
(1) − 4β(2),uW

2
(1) + 3C1(2),uW

2
(1))

+eC1(0)−2β(0)(W(1),θC1(1)W
2
(1) + C1(1),uC1(1)W

2
(1) − 4β(0),uC1(2)W

2
(1))
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+eC1(0)−2β(0)(3W(2)C1(0),θW
2
(1) +W(1),uC1(1)

2W(1) − 2U(0)W(2)W(1))

+eC1(0)−2β(0)(+4W(2)W(1),θW(1) − 16W (3)β(0),uW(1) − 4β(2)W(1),uW(1))

+eC1(0)−2β(0)(6W(3),uW(1) + 4W(2)C1(1),uW(1) − 12W(2)β(0),uC1(1)W(1))

+eC1(0)−2β(0)(4W(2),uC1(1)W(1) + 2W(1),uC1(2)W(1) − 8W 2
(2)β(0),u)

+eC1(0)−2β(0)(2W (3)W(1),u + 4W(2)W(2),u + 2W(2)W(1),uC1(1))

+e2β(0)−C1(0)(−4U(1)(β(0),θ)2 + 4U(0)C1(1)(β(0),θ)2)

+e2β(0)−C1(0)(−2U(1),θβ(0),θ + 2U(0)C1(1),θβ(0),θ + 2U(0),θC1(1)β(0),θ)

+e2β(0)−C1(0)(2U(1)C1(0),θβ(0),θ − 2U(0)C1(1)C1(0),θβ(0),θ + U(0),θC1(1),θ)

+e2β(0)−C1(0)(−2U(1)β(0),θθ − U(1),θθ + 2U(0)β(0),θθC1(1))

+e2β(0)−C1(0)(U(0),θθC1(1) + U(1),θC1(0),θ − U(0),θC1(1)C1(0),θ) , (B.1.19)

and at order r−7/2 in Ruθ = 0

24W(4),u = −2 log r
(
−36Ũ(2)W(1) − 12e2β(0)−C1(0) Ũ(2),θ + 48W̃(4),u − 96W̃(4)β(0),u

)
− 3 cot θ

(
C1(1)

2W 2
(1) + 4β(2)W

2
(1) + 2C1(2)W

2
(1) + 4e2β(0)−C1(0)β(2),θW(1)

)
− 3 cot θ

(
2W(2)C1(1)W(1) + 4e2β(0)−C1(0)W(3)β(0),θ + 3e2β(0)−C1(0)C1(3),u

)
+ 3 tan θ

(
C2

1(1)W
2
(1) + 4β(2)W

2
(1) + 2C1(2)W

2
(1) + 4e2β(0)−C1(0)β(2),θW(1)

)
+ 3 tan θ

(
2W(2)C1(1)W(1) + 4e2β(0)−C1(0)W(3)β(0),θ + 3e2β(0)−C1(0)C1(3),u

)
− 3eC1(0)−2β(0)

(
4C2

1(1)W
3
(1) − 8β(2)W

3
(1) + 4C1(2)W

3
(1) + 14W(3)W

2
(1)

)
− 3eC1(0)−2β(0)

(
20W(2)C1(1)W

2
(1) + 16W 2

(2)W(1)

)
− 12e2β(0)−C1(0)

(
W(3)

(
β(0),θ

)2 + 4W(1)β(2),θβ(0),θ −W(2)C1(1),θβ(0),θ

)
+ 6e2β(0)−C1(0)

(
2W(1)C1(2),θβ(0),θ + 2W(3)C1(0),θβ(0),θ − Ũ(2),θ + 4β(2)U(0),θ

)
+ 3e2β(0)−C1(0)

(
2U(2),θ − 4W(3)β(0),θθ − 4W(1)β(2),θθ + 2C1(2),θC1(1),u

)
+ 3e2β(0)−C1(0)

(
C2(2),θC1(1),u + 2C1( 3

2 ),θC1( 3
2 ),u + C2( 3

2 ),θC1( 3
2 ),u

)
+ 3e2β(0)−C1(0)

(
2C1(1),θC1(2),u + C2(1),θC1(2),u + C1(2),θC2(1),u

)
+ 3e2β(0)−C1(0)

(
2C2(2),θC2(1),u + C1( 3

2 ),θC2( 3
2 ),u + 2C2( 3

2 ),θC2( 3
2 ),u

)
+ 3e2β(0)−C1(0)

(
C1(1),θC2(2),u + 2C2(1),θC2(2),u + csc θ sec θ

(
C1(3),u + 2C2(3),u

))
+ 6e2β(0)−C1(0)

(
2β(3),θθ − 6C1(3),θθ − U(1),θC1(1) − 2U(0),θC1(2) + 2W(1)β(2),θC1(0),θ

)
+ 3e2β(0)−C1(0)

(
2C1(3),uC1(0),θ + C2(3),uC1(0),θ + C1(3),uC2(0),θ + 2C2(3),uC2(0),θ

)
−W(1),uC

3
1(1) + 2W(1)β(0),uC

3
1(1) − 3U(0)W(1)C

2
1(1) + 3W(1)W(1),θC

2
1(1)

+ 6W 2
(1)β(0),θC

2
1(1) − 6W(2),uC

2
1(1) + 12W(2)β(0),uC

2
1(1) + 3W 2

(1)C1(0),θC
2
1(1)

− 6U(0)W(2)C1(1) − 6W(1)W(2),θC1(1) + 36W(1)W(2)β(0),θC1(1) − 6W 2
(1)C1(1),θC1(1)

+ 12β(2)W(1),uC1(1) − 18W(3),uC1(1) + 36W(3)β(0),uC1(1) − 24W(1)β(2)β(0),uC1(1)

+ 12W(1)β(2),uC1(1) − 6W(2)C1(1),uC1(1) − 12W(1)C1(2),uC1(1) − 6W(1),uC1(2)C1(1)

+ 12W(1)β(0),uC1(2)C1(1) − 3W(1),uC1( 3
2 )

2 + 6W(1)β(0),uC1( 3
2 )

2 − 12Ũ(2)W(1)

+ 18U(2)W(1) + 12U(1)W(2) − 6U(0)W(3) + 36U(0)W(1)β(2) − 6W(3)W(1),θ
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− 36W(1)β(2)W(1),θ − 12W(2)W(2),θ − 18W(1)W(3),θ + 24W 2
(2)β(0),θ

+ 48W(1)W(3)β(0),θ − 24W 2
(1)β(2)β(0),θ + 12W 2

(1)β(2),θ − 24W(1)W(2)C1(1),θ

− 18W 2
(1)C1(2),θ + 6W̃(4),u + 12β(3)W(1),u + 24β(2)W(2),u − 12W̃(4)β(0),u

+ 48W(4)β(0),u − 48W(2)β(2)β(0),u − 24W(1)β(3)β(0),u + 24W(2)β(2),u

+ 12W(1)β(3),u − 12W(3)C1(1),u − 15W( 5
2 )C1( 3

2 ),u − 18W(2)C1(2),u

− 24W(1)C1(3),u − 15W( 5
2 ),uC1( 3

2 ) + 30W( 5
2 )β(0),uC1( 3

2 ) − 6W(1)C1( 3
2 ),uC1( 3

2 )
− 18U(0)W(1)C1(2) + 6W(1)W(1),θC1(2) + 12W 2

(1)β(0),θC1(2) − 12W(2),uC1(2)

+ 24W(2)β(0),θC1(2) − 6W(1),uC1(3) + 12W(1)β(0),uC1(3) − 6W 2
(2)C1(0),θ

− 12W(1)W(3)C1(0),θ − 12W 2
(1)β(2)C1(0),θ + 6W 2

(1)C1(2)C1(0),θ (B.1.20)

B.2 Iterative differentiation approach

In analysing equations asymptotically as r → ∞, it is more elegant to change the radial variable
so that the boundary is at z → 0. One may then proceed to determine the asymptotic solution via
an iterative differentiation procedure as in AdS [108, 190].

To illustrate this, let us implement the change of variables r = 1/z2 in the first three main equations
(7.5.8),(7.5.9) and (7.5.13)

β,z = − z

24
(
(C1,z)2 + (C2,z)2 + (C3,z)2) (B.2.1)

z9

4 ∂z
(

1
2z7 e

C1−2βW,z

)
= zeC1−2β

4 (zW,zz + zC1,zW,z − 2zβ,zW,z − 7W,z)

− z2

2 (6β,θ + zβ,θz) + z3

4 ((cot θ − 2 tan θ)C1,z + C1,zθ) (B.2.2)

− z3C1,z

8 (2C1,θ + C2,θ)−
z3C2,z

8

(
C1,θ + 2C2,θ + 2

sin θ cos θ

)

3z4(2− z∂z)U = −z
4e2β−C1

2 sec θ csc θ(C1,θ + 2C2,θ) (B.2.3)

+ z4e−C1(cot θ − tan θ)
(
eC1

2 (12z−2 − z−1∂z)W − 2e2ββ,θ + 5
2e

2βC1,θ

)
+ z4e2β−C1

2
(
12− (2β,θ)2 + 4β,θC1,θ − 2(C1,θ)2 − C1,θC2,θ − (C2,θ)2)

+ z4e2β−C1

2 (−4β,θθ + 2C1,θθ)−
z2

8 e
−4β+C1(W,z)2

− 3z2
(

2− z

6∂z
)
W,θ

The reason for the specific choice of variable z is that the powers in the resulting asymptotic series
will then be integer.
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Let us now explain the iterative differentiation approach, beginning with equation (B.2.1). Taking
the limit of (B.2.1) as z → 0 we obtain

[β,z]z=0 = 0 (B.2.4)

provided that z 1
2Ci,z → 0 as z → 0; this limit can be justified using the last of the main equations,

applying the given boundary conditions. Clearly (B.2.1) does not impose any restrictions on [β]z=0,
while the equation above implies that the term in the asymptotic expansion of β at order z vanishes,
as we found before. Differentiating (B.2.1) and taking the limit as z → 0 then gives

[β,zz]z=0 = − 1
24
[
(C1,z)2 + (C2,z)2 + (C3,z)2]

z=0 (B.2.5)

Continuing the process, we will clearly determine the derivatives of β as z → 0 to all orders.

Just as in the standard Bondi analysis, we solve the differential equations in the nested order,
substituting the solution of (B.2.1) into the righthandside of (B.2.2), and then using the solutions
of both (B.2.1) and (B.2.2) in (B.2.3). To understand how logarithms arise in the asymptotic
expansion it is useful to rewrite (B.2.3) in the form

(2− z∂z)U = P[β,Ci,W ], (B.2.6)

where P is implicitly a functional of the functions (β,Ci,W ) and their derivatives. Using the
solutions of the other main equations one can show that

[P]z=0 [P,z]z=0 [P,zz]z=0 (B.2.7)

are all non-vanishing for generic boundary data ([β]z=0, [Ci]z=0). From (B.2.6) and its first deriva-
tive one obtains

[U ]z=0 = 1
2[P]z=0 [U,z]z=0 = [P,z]z=0 (B.2.8)

but differentiating again one obtains

[z∂3
zU ]z=0 = −[P,zz]z=0 (B.2.9)

i.e. [U,zz]z=0 is unconstrained, while ∂3
zU has a first order pole at z → 0. The latter induces the

logarithmic term in the asymptotic expansion at order z2.
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APPENDIX C

Appendix to chapter 8

C.1 Derivation of Einstein’s equations

The Ricci tensor
Rµν = ∂ρΓρµν + ΓρρσΓσµν − ∂µΓρρν − ΓρµσΓσρν (C.1.1)

is conveniently computed using

Γρρµ = 1√
|(d)g|

∂µ
√
|(d)g| , |(d)g| = e4β |(d−2)g| = e4βr2(d−2) |h(0)|︸ ︷︷ ︸

q

(C.1.2)

such that
Γρρµ = ∂µ

(
2β + 1

2 log |(d−2)g|
)

=: ∂µO2 (C.1.3)

and

Rµν =
[
∂ρ + ∂ρ

(
2β + 1

2 log |(d−2)g|
)]

︸ ︷︷ ︸
Oρ

Γρµν − ∂µ∂ν
(

2β + 1
2 log |(d−2)g|

)
− ΓρµσΓσρν . (C.1.4)

Some useful relationships involving detgAB = |(d−2)g| are found using

gAB∂µgAB = ∂µ(detgAB)
detgAB

(C.1.5)
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so that1

gAB∂rgAB = 2(d−2)
r and hAB∂rhAB = 0

gAB∂ugAB = ∂uq
q and hAB∂uhAB = ∂uq

q
(C.1.6)

gAB∂CgAB = ∂Cq

q
and hAB∂ChAB = ∂Cq

q

(C.1.7)

To make contact with [60] we define

lAB = 1
2∂ugAB , kAB = 1

2∂rgAB , nA = 1
2e
−2βgAB∂rW

B (C.1.8)

whose indices are raised and lowered with gAB and such that

lAB = −1
2∂ug

AB , kAB = −1
2∂rg

AB (C.1.9)

The Christoffel symbols are given in the following asΓµuu Γµur ΓµuC
Γµru Γµrr ΓµrC
ΓµAu ΓµAr ΓµBC

 , µ = u, r,A (C.1.10)

Γuuu = 2∂uβ − 1
2 (2∂rβ + ∂r)U + 2nAWA + e−2βkCDW

CWD ,

Γuur = 0 , ΓuuA = ∂Aβ − nA − e−2βkABW
B ,

Γurr = 0 , ΓurA = 0 , ΓuAB = e−2βkAB ,

Γruu = 1
2 (∂u − 2∂uβ)U + 1

2U(∂r + 2∂rβ)U − 1
2W

A(∂A + 2∂Aβ)U − 2U nAWA

+e−2β (UkABWAWB + lABW
AWB +WAWB (d−2)DAWB

)
Γrur = 1

2 (2∂rβ + ∂r)U − (∂Aβ + nA)WA ,

ΓruA = 1
2 (∂A + 2nA)U − 1

2e
−2βWB ((d−2)DAWB + (d−2)DBWA + 2lAB − 2kABU)

Γrrr = 2∂rβ , ΓrrA = 1
2e
−2βgAC∂rW

C + ∂Aβ ,

ΓrAB = e−2β

2 ((d−2)DBWA + (d−2)DAWB + 2lAB − 2UkAB)

(C.1.11)

ΓAuu = 2WA∂uβ − 1
2W

A(∂r + 2∂rβ)U + 2nBWBWA − ∂uWA − 2lACWC

+e−2βkBCW
AWBWC + 1

2e
2β(2∂Aβ + ∂A)U + 1

2
(d−2)DA(W 2)

ΓAur = −kACWC + e2β∂Aβ − 1
2δ
A
C∂rW

C = −kACWC + e2β(∂Aβ − nA) ,

ΓAuB = WA(∂Bβ − nB)− e−2βkBCW
AWC + lAB + 1

2
(d−2)DAWB − 1

2
(d−2)DBW

A

ΓArr = 0 , ΓArB = kAB , ΓABC = e−2βWAkBC + (d−2)ΓABC ,

1I.e.: ∂r|gAB |︸ ︷︷ ︸
2(d−2)r2(d−2)−1q

= |gAB |︸ ︷︷ ︸
r2(d−2)q

gAB∂rgAB , gAB∂rgAB = hAB

r2 ∂r
(
r2hAB

)
= 2(d−2)

r
+ hAB∂rhAB
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The relevant Ricci tensor components giving rise to the main equations are

Rrr = OrΓrrr − ∂2
rO2 − ΓrrrΓrrr − ΓrrAΓArr + ΓBrAΓABr (C.1.12)

RrA = OrΓrrA +OBΓBrA − ∂r∂AO2 − ΓrrrΓrrA − ΓrrBΓBrA + ΓCrBΓBCA + ΓCruΓuCA (C.1.13)

RAB = OuΓuAB +OrΓrAB +OCΓCAB − ∂A∂BO2 (C.1.14)

− ΓuAuΓuuB − ΓuACΓCuB − ΓrACΓCrB − ΓrArΓrrB − ΓCAuΓuCB − ΓCArΓrCB − ΓCADΓDCB

The components (C.1.12),(C.1.13) are easily evaulated. The symbol KA
B can be further defined

as KA
B = r2

2 h
AC∂rhCB so that kAB = 1

r δ
A
B + 1

r2K
A
B and Rrr = 1

2(d−2)r3K
A
BK

B
A can be directly

compared with (4.33) of [60].

In C.1.14, the third, fourth and latter terms can be arranged to

OCΓCAB − ∂A∂BO2 − ΓCADΓDCB = (d−2)RAB + ∂C
(
e−2βWCkAB

)
(C.1.15)

+ 2e−2β∂CβW
CkAB + (d−2)ΓDDCe−2βWCkAB

+ 2(d−2)ΓCAB∂Cβ − 2∂A∂Bβ − e−4βWCWDkADkCB

− e−2βUCkAD
(d−2)ΓDCB − e−2βUCkDB

(d−2)ΓDAC .

so that

RAB =
(
∂r + 2∂rβ + d− 2

r

)
ΓrAB + (∂u + 2∂uβ + l) ΓuAB − 2(d−2)DA∂Bβ + (d−2)RAB

+ (d−2)DC

(
e−2βUCkAB

)
+ 2e−2β∂CβU

CkAB − e−4βUCUEkAEkCB

− ΓuAuΓuuB − ΓuACΓCuB − ΓrACΓCrB − ΓrArΓrrB − ΓCAuΓuCB − ΓCArΓrCB (C.1.16)

and by contraction

gDARAB = (d−2)RDB − 2
(

(d−2)DD∂Bβ + ∂Dβ∂Bβ + nDnB
)

+ e−2β
(
∂r + d− 2

r

)(
1
2

(d−2)DDWB + 1
2

(d−2)DBW
D + lDB − kDBU

)
(C.1.17)

+ e−2β [(∂u + l) kDB + (d−2)DC(WCkDB ) + kDA
(d−2)DBW

A − kAB (d−2)DAW
B
]

leading to (8.3.6).

C.2 Recursive formulae

Given hAB as (8.4.1)

hAB(u, r, x) = h(0)AB(u, x) +
∑
p

h(a+p)AB(u, x)
ra+p . (C.2.1)
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its inverse is recursively given by

h−1 = h−1
(0) +

ba+poc∑
n=1

(−1)n
(

po∑
p

h−1
(0)h(a+p)

ra+p

)n
h−1

(0)

= h−1
(0) +

ba+poc∑
n

(−1)n

ran

∑
⊕jt=n

(
n

j[0,po]

) po∏
t=0

(
h−1

(0)h(a+t)

rt

)jt
h−1

(0) (C.2.2)

where n is integer and ba + poc is the floor of the maximal power a + po we keep in (C.2.1).
Eventually discard from h−1 terms of order higher than a + po. In the second line we have used
the multinomial theorem and defined(

n

j[0,po]

)
:=
(

n

j0, . . . , jt, . . . , jpo

)
:= n!∏po

t=0(jt!)
(C.2.3)

where j[0,po] is the collection of non negative integer indices jp associated to the object r−ph−1
(0)h(a+p)

for each p. The sum
∑
⊕jp=n is taken on any combination of jp such that their total sum ⊕jp

is equal to n. The tensor indices must match in the contraction and each inverse is taken with
respect to h(0), so that h(0)h

−1
(0) = δ, h−1

(0)h(a+p)h
−1
(0) = h−1

(a+p).

These conventions translates the practice. To find the explicit expressions of the metric functions
we have to fix a and expand up to the relevant order, so up to a p = po. For example in d = 4
we have a = 1 and it is appropriate to take the maximal p to be po = 2 (but for many purposes
po = 1 suffices in d = 4).

The same conventions apply to the expansion of any other object, so in the following we simplify
notation where no confusion arise.

K̃A
B = 1

2h
AC∂rhCB now follows as

K̃A
B = −

∑
p

a+ p

2ra+p+1h
A
(a+p)B −

1
2
∑
n

(−1)n
(∑

p

h−1
(0)h(a+p)

ra+p

)n
h−1

(0)

∑
q

a+ q

ra+q+1h(a+q)

= 1
ra+1

∑
p

K̃E
(a+1+p)F

rp

[
δAEδ

F
B +

∑
n

(−1)n

ran

(∑
q

hA(a+q)E

rq

)n
δFB

]

= 1
ra+1

po∑
p

K̃E
(a+1+p)F

rp

δAEδFB +
∼a+po∑
n=1

(−1)n

ran

∑
⊕jt=n

(
n

j[0,qo]

) po∏
t=0

(
hA(a+q)E

rt

)jt
δFB


= 1

ra+1

po∑
p

K̃E
(a+1+p)F

rp

δAEδFB +
∼a+po∑
n=1

(−1)n

ran

∑
⊕jt=n

(
n

j[0,qo]

)
r−
∑

tjt

po∏
t=0

(hA(a+q)E)jtδFB


(C.2.4)

where
K̃E

(a+1+p)F = −a+ p

2 hA(a+p)B (C.2.5)

at convenience we reshuffle indices and write

K̃A
B = 1

ra+1

∑
p=0

KA
(p)B

rp
(C.2.6)
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Christoffel symbols are expanded as

(d−2)ΓABC =
(0)

ΓA
BC + 1

2
∑
p

1
ra+ph

AD
(0)
(
∂Bh(a+p)DC + ∂Ch(a+p)BD − ∂Dh(a+p)BC

)
(C.2.7)

+ 1
2
∑
n=1

(−1)n
(∑

p

hAE(0) h(a+p)EF

ra+p

)n
hFD(0)

(
∂Bh(0)DC + ∂Ch(0)BD − ∂Dh(0)BC

)
+1

2
∑
n=1

(−1)n
(∑

p

hAE(0) h(a+p)EF

ra+p

)n
hFD(0)

∑
q=1

1
ra+q

(
∂Bh(a+q)DC + ∂Ch(a+q)BD − ∂Dh(a+q)BC

)
and appropriately rewrites each order in terms of the quantites at the previous orders, so for
example

(a)ΓABC = 1
2

(
(0)

DBh
A
(a)C +

(0)

DCh
A
(a)B −

(0)

DAh(a)BC

)
. (C.2.8)

Curvature tensors and scalar are expanded as

(d−2)R = r−2
(0)

R + r−(2+a)
∑
p

r−p
(a+p)
R . (C.2.9)

C.2.1 First equation: β

The integrand of (8.3.8) is

rK̃A
BK̃

B
A = 1

r2a+1

∑
p,q

K̃EG
(p+q)BA

rp+q

[
δAEδ

B
G + 2δAE

∑
m

(−1)m

ram

∑
⊕ls=m

(
m

l[0,po]

)
r−
∑

sls

po∏
t=0

(hB(a+q)G)ls(C.2.10)

+
∑
n,m

(−1)n+m

ra(n+m)

∑
⊕jt=n

(
n

j[0,po]

)
r−
∑

tjt

po∏
t=0

(hA(a+t)E)jt
∑
⊕ls=m

(
m

l[0,po]

)
r−
∑

sls

po∏
s=0

(hB(a+s)G)ls


So that we can list the orders in the expansion of β(u, r, x) with an expression which is not so
enlightening, but turns out to be useful

β = β(0) +
po∑
p,q

[
β̆(2a+p+q)

r2a+p+q +
ba+poc∑
m=1

( ∑
⊕ls=m

β̊((2+m)a+p+q+sls)

r(2+m)a+p+q+sls
(C.2.11)

+
ba+poc∑
n=1

∑
⊕jt=n

β̌((2+m+n)a+p+q+sls+tjt)

r(2+m+n)a+p+q+sls+tjt


For example, at order 2a we have only

β(2a) = β̆(2a) = − a

16(d− 2)
1
r2ah(a)ABh

AB
(a) (C.2.12)

while at order 3a we have

β(3a) = β̊(3a) +
β̆(2a+p+q)

r2a+p+q

∣∣∣∣∣
2a+p+q=3a

(C.2.13)

and so on for all orders.
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As a is fixed, all the terms can be reorganised as

β = β(0) +
∑
k>0

β(2a+k)

r2a+k (C.2.14)

where k, as p moves forward by half integer steps if d is odd and by integer steps if d is even. We
will such expressions with the understanding that each order 2a + k has been computed with a
procedure like the one exemplified above. So for example

β(2a) = β̆(2a)

...

β(3a) = β̊(3a) +
β̆(2a+p+q)

r2a+p+q

∣∣∣∣∣
2a+p+q=3a

. (C.2.15)

In particular for d = 4 and a = 1 and p moves in integer steps, so β(3a) is the next order after β(2a)

and we get

To produce the two terms given in the main text we take the expansion with p ∈ [0, po = 1or1/2]
and hence n,m ∈ [1, ba+ 1c].

β(2a) = − a

16(d− 2)
1
r2ah(a)ABh

AB
(a) (C.2.16)

β(2a+p) = − a(a+ p)
8(d− 2)(2a+ p)h(a)ABh

AB
(a+p) (C.2.17)

C.2.2 Second equation: WA

The two terms collected in GA in (8.3.9) are expanded as

rd−2
(
∂r −

d− 2
r

)
∂Aβ = −(d− 2)rd−3∂Aβ(0) +

∑
k=0

rd−3−2a−kG[1]
(k)A,

rd−2(d−2)DBK̃
B
A ∼ rd−3−a

(
(0)

DB + r−a
∑
p

r−p
(a+p)
ΓB

)∑
m

r−mKB
(m)A (C.2.18)

= rd−3−a
(0)

DB

∑
m

r−mKB
(m)A + rd−3−2a

∑
p,m

r−p−m
(a+p)
ΓB KB

(m)A

where
G[1]

(k)A = (2− d− 2a− k)∂Aβ(2a+k), (C.2.19)

and in the second expansion we noted the subleading terms in the covariant derivatives with a Γ
for the subleading Christoffel symbols and we assume implicit that the indices must be organised
to respect covariant differentiation rules. We can again formally reorganise the sums in the second
term so to have only one index to sum over, we define

∑
q

rd−3−a−qG[2]
(q)A = rd−3−a

(0)

DB

∑
m

r−mKB
(m)A + rd−3−2a

∑
p,m

r−p−m
(a+p)
ΓB KB

(m)A (C.2.20)
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So we have

rdñA =
∫
drGA = −

∂Aβ(0)

r2−d +
∫
dr

[∑
k

rd−3−2a−kG[1]
(k)A −

∑
m

rd−3−a−qG[2]
(q)A

]
(C.2.21)

When k = d− 2− 2a and q = d− 2− a the integral give a log r term. This happens when

R) a = d−2
2 , d ≥ 4: k = 0, q = d−2

2 ,

NR) a = 1, d > 4: k = d− 4, q = d− 3.

Thus under the case R) we get

ñA = −
∂Aβ(0)

r2 −
∑
k>0

G[1]
(k)A

krd+k −
∑
m=0,
6= d−2

2

G[2]
(m)A

(d−2
2 −m)r d+2

2 +m
+ log r

rd

(
G[1]

(0)A − G
[2]
( d−2

2 )A

)
(C.2.22)

In the case NR)

ñA = −
∂Aβ(0)

r2 +
∑
k=0,
6=d−4

G[1]
(k)A

(d− 4− k)rk+4 −
∑
m=0,
6=d−3

G[2]
(m)A

(d− 3−m)rm+3 + log r
rd

(
G[1]

(d−4)A − G
[2]
(d−3)A

)
(C.2.23)

Notice that the notation is a bit misleading because G[1]
A enters the asymptotic expansion only after

G[2]
A Then WA follows from

WA = 2
∫
dre2βhABñB (C.2.24)

so that in general we can write

WA = WA
(0) +

WA
(1)

r
+
d−2−a∑
p=0

WA
(a+1+p)

ra+1+p + 1
rd−1

(
WA

(d−1) + WA(d−1+p) log r
)

+ . . . (C.2.25)

where the exact expression of each coefficient depends on whether we are dealing with R) or NR).

C.2.3 Third equation: U

Now move to the equation for U (8.3.5). Using the above results, F is expanded

F =
F(1)

r
+
F(2)

r2 +
∑
p

(F(a+p+2)

ra+p+2 + 1
rd+p

(
F(d+p) + log rF̃(d+p)

))
+ . . . , (C.2.26)

hence the integrand in (8.3.13) is

rd−2F = rd−3F(1) + rd−4F(2) +
∑
p

rd−4−a−pF(a+p+2) + r−2−p (F(d+p) + log rF(d+p)
)

+ . . . .

(C.2.27)
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Notice that d− 4− a− p > −2− p for both values of a we are considering, while

d− 4− a− p = −1⇔ p = d− a− 3⇒ p =

d− d−2
2 − 3 = d−4

2

d− 1− 3 = d− 4
(C.2.28)

So the solution (8.3.13) of (8.3.5) can be organised as

U = rU(−1) + U(0) +
a+p<d−3∑
p=0

U(a+p)

ra+p + 1
rd−3

(
U(d−3) + U(d−3) log r

)
+ . . . (C.2.29)

where the sum in (C.2.27) integrates to the first sum in (C.2.29) and in the rd−3, rd−3 log r terms,
as well as in the further subleading parts noted wit . . . , to which also F(d+p) and F(d+p) contribute.
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