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Chapter 1

Introduction

Hilbert’s problems are twenty-three problems in mathematics published by German mathe-

matician David Hilbert in 1900. Hilbert’s eighteenth problem is related to crystallographic

groups. We denote Isom(Rn) to be the group of all isometries of the n-dimensional Eu-

clidean space Rn. One part of the Hilbert’s eighteenth problem is to show that there are

only finitely many types of subgroups of Isom(Rn) with compact fundamental domain.

This part of the question is solved by L. Bieberbach in 1910. Those subgroups of Isom(Rn)

with compact fundamental domain are now called crystallographic groups. In the thesis,

we will study serval properties of torsion-free crystallographic groups.

In Chapter 2, we first introduce the definition of crystallographic groups. We say Γ

is an n-dimensional crystallographic group if it is a cocompact and discrete subgroup of

Isom(Rn) ∼= O(n)nRn. We say Γ is an n-dimensional Bieberbach group if Γ is a torsion-free

n-dimensional crystallographic group. Next, we will present the first Bieberbach theorem.

By the first Bieberbach Theorem (see Section 2.2 for detail), we have the following short

exact sequence,

0→ Zn → Γ→ G→ 1

where Zn is a maximal abelian normal subgroup of Γ and G is a finite group. Given such

a short exact sequence, it induces a representation ρ : G→ GLn(Z). The representation ρ

is called the holonomy representation of Γ and the group G is called the holonomy group of

Γ. Next, we would give an introduction to group cohomology because it plays a main role

in classifying short exact sequences. By using group cohomology, we will state and prove

the second and the third Bieberbach theorems. By the three Bieberbach theorems, we will

understand the group structure of crystallographic groups. After that, we will discuss the

relation between Bieberbach groups and flat manifolds. In the last section of Chapter 2, we

will give two ways to classifying all Bieberbach groups namely the Zassenhaus algorithm

and the induction method of Calabi. A good reference for the definitions and properties

of Bieberbach groups included the three Bieberbach theorems is [31]. A good reference

for the introduction to group cohomology is [5].

In Chapter 3, we focus on the below conjecture.
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Conjecture 1.0.1 (Dekimpe-Penninckx). Let Γ be an n-dimensional Bieberbach group.

Then the minimum number of generators of Γ is less than or equal to n.

The conjecture was solved for some special cases. For example, the conjecture is true if the

holonomy group is an odd prime p-group (see [1, Theorem A]), or the holonomy group is

an elementary abelian p-group (see [14, Theorem 4.1, Theorem 5.7]). On the other hand,

by a computer program namely CARAT, it has been checked that the conjecture is true

if the Bieberbach group has dimension less than 7 (see [6]).

There is a connection between the number of generators of Bieberbach group and the

number of generators of a finite group that can act freely on an n-torus. By [13, Lemma

6.5.1], if G is a finite group and it acts freely on an n-torus Tn, then the quotient space

Tn/G is a manifold with its fundamental group isomorphic to an n-dimensional Bieberbach

group. This provides a short exact sequence as below,

π1(M) G 1π1(Tn)0

where π1(M) is an n-dimensional Bieberbach group. Hence if π1(M) can be generated

by n elements, then the minimal number of generators of G should not be larger than n.

For instance, by [14, Theorem 5.7], we know that (Z/2Z)n+1 cannot act freely on Tn for

n ≥ 1.

We denote d(G) to be the minimal number of generators of the group G. The below three

theorems are our main results in Chapter 3.

Theorem A. Let Γ be an n-dimensional crystallographic group with holonomy group

isomorphic to Cm = 〈g | gm = 1〉 where m ≥ 3.

(i) If m is divisible by prime larger than 3, then d(Γ) ≤ n− 2.

(ii) If m is not divisible by prime larger than 3 and Γ is torsion-free, then d(Γ) ≤ n− 1.

The idea of the proof of Theorem A(i) is to consider Γ ∩ (In × Rn) as a ZCp-module

where p is prime larger than 3. We use the module structure to reduce the number of

generators. For Theorem A(ii), we construct a surjective homomorphism from Γ to Z.

Then by studying how Z acts on the kernel of the homomorphism, we can eliminate some

redundant generators.

By Theorem A, we get two corollaries. One shows that a general n-dimensional Bieberbach

group can be generated by 2n elements. The other corollary shows an n-dimensional

Bieberbach group with a simple group as holonomy group can be generated by n − 1

elements.

Theorem B. Let Γ be an n-dimensional crystallographic group with holonomy group

isomorphic to a finite group G.

(i) If the order of G is not divisible by 2 or 3, then d(Γ) ≤ n.

(ii) If the order of G is odd and divisible by 3, then d(Γ) ≤ n+ 1.
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The idea of the proof of Theorem B is to apply results from [17] to get a relation between

the number of generators of the finite group G and its Sylow p-subgroups. Then we apply

results from [1] to prove Theorem B.

Theorem C. Let Γ be an n-dimensional Bieberbach group with 2-generated holonomy

group. Then d(Γ) ≤ n.

The idea of the proof of Theorem C is to consider a Bieberbach subgroup with cyclic

holonomy group. Then we apply Theorem A to get the desired bound for generators of

the Bieberbach group Γ. Results in Chapter 3 have been published in Geometriae Dedicata

(see [8])

In Chapter 4, we will study about an invariant called the diagonal Vasquez invariant. We

need to define crystallographic groups of diagonal type before discussing this invariant.

Definition 1.0.2. Let Γ be an n-dimensional crystallographic group and ρ be its holonomy

representation. We said Γ is a crystallographic group of diagonal type if im(ρ) ≤ D where

D = {A = [aij ] ∈ GLn(Z) | aij = 0 for i 6= j}.

We define Vasquez invariant of diagonal type by modifying the definition of Vasquez

invariant of finite groups introduced by A. T. Vasquez in [34]. By [34, Theorem 3.6], we

get the below theorem.

Theorem 1.0.3. For any elementary abelian 2-group G, there exists a natural number

x ∈ N with the property that if Γ is a Bieberbach group of diagonal type where its

holonomy group is isomorphic to G, then the lattice subgroup L ⊆ Γ contains a normal

subgroup N such that Γ/N is a Bieberbach group of dimension at most x.

Definition 1.0.4. Let G be an elementary abelian 2-group and x ∈ N. We say x has

property Sd(G) if for every Bieberbach group of diagonal type where its holonomy group

is isomorphic to G, then its lattice subgroup L ⊆ Γ contains a normal subgroup N such

that Γ/N is a Bieberbach group of dimension at most x.

Definition 1.0.5. Let G be an elementary abelian 2-group. We define

nd(G) = min{x ∈ N |x has property Sd(G)}

The natural number nd(G) is called the diagonal Vasquez invariant or diagonal Vasquez

number of the finite elementary abelian 2-group G.

Our main theorems in this chapter are about the bound or the exact value of diagonal

Vasquez invariant of finite groups. In Section 4.2, given a crystallographic group of diag-

onal type, we will construct a matrix corresponds to it. We calculate the bound or the

exact value of diagonal Vasquez invariant of finite groups by using that matrix. In Section

4.4, we will present our two main theorems in this chapter. The below two theorems are

our main results about diagonal Vasquez invariant of finite groups.
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Theorem D. For k ≥ 2, the bound of diagonal Vasquez invariant, nd(C
k
2 ) is given by

5 · 2k−3 + 1 ≥ nd(Ck2 ) ≥


k(k+1)

2 if k ≥ 2 is even

k(k+1)
2 − 1 if k ≥ 3 is odd

Theorem E. For k ∈ {1, 2, 3, 4}, the exact value of diagonal Vasquez invariant, nd(C
k
2 )

is given by

nd(C
k
2 ) =



1 if k = 1

3 if k = 2

5 if k = 3

10 if k = 4

Question 1.0.6. We can view the diagonal Vasquez invariant of finite groups as function

f : N>0 → N>0 where it maps k ∈ N>0 to nd(C
k
2 ). By Theorem D, we know that the

function f is not linear. Is it true that the function f is a quadratic polynomial?

In Chapter 5, we will discuss diffuseness property of Bieberbach groups.

Definition 1.0.7. Let G be a group, A ⊆ G be a subset. We say a ∈ A is an extremal

point of A if for all g ∈ G/{1}, either ga 6∈ A or g−1a 6∈ A. Define

∆(A) = {a ∈ A | a is an extremal point}

We say G is diffuse if for any subset A ⊆ G with 2 ≤ |A| < ∞, we have |∆(A)| ≥ 2. We

say G is weakly diffuse if for any subset A ⊆ G with 1 ≤ |A| < ∞, we have |∆(A)| ≥ 1.

We say G is non-diffuse if it is not diffuse.

The above definition is introduced by B. Bowditch in [4]. By [22, Proposition 6.2], P.

Linnell and D. W. Morris proved that a group is diffuse if and only if it is weakly diffuse.

By the above definition, it is clear that if a group has a non-diffuse subgroup, then it is

non-diffuse.

Diffuseness of a group is interesting because it related to the Kaplansky’s zero divisor

conjecture and connectivity. Kaplansky’s zero divisor conjecture state that if a group G

is torsion-free and R is an integral domain, then the group ring RG has no zero divisor.

B. Bowditch discover that the conjecture is true if the group G is diffuse (see [4, Propo-

sition 1.1]). On the other hand, By [12, Theorem 1.2] and [20, Theorem 3.3], we have a

Bieberbach group Γ is connective if and only if Γ is diffuse.

Definition 1.0.8. We say Γ is an n-dimensional generalized Hantzsche-Wendt group if Γ

is an n-dimensional Bieberbach group and its holonomy group is isomorphic to Cn−1
2 .

Example 1.0.9. The Bieberbach group enumerated in CARAT as ”group.32.1.1.194”

is a diffuse 4-dimensional generalized Hantzsche-Wendt group. Thus not all generalized

Hantzsche-Wendt groups are non-diffuse.
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The below two theorems are our main results about diffuseness of Bieberbach groups of

diagonal type.

Theorem F. Let Γ be an n-dimensional non-diffuse Bieberbach group of diagonal type

with holonomy group isomorphic to C2
2 . Then

Γ = Z(Γ)⊕ (Zn−k−3 o∆3)

where k = b1(Γ), Z(Γ) is the center of Γ and ∆3 is the 3-dimensional non-diffuse Hantzsche-

Wendt group (also known as the Promislow group or Passman group).

Theorem G. Let Γ be a non-diffuse Bieberbach group of diagonal type. Then either

∆3 ≤ Γ or there exists Γ′ ≤ Γ and exists Zs E Γ such that ∆3
∼= Γ′/Zs. In additionally, if

Γ is a non-diffuse generalized Hantzsche-Wendt group, then ∆3 ≤ Γ.

Results from Chapter 4 and Chapter 5 is a preprint (see [9]).

5



Chapter 2

Bieberbach groups and group

cohomology

We have six sections in this chapter. In Section 2.1, we will give an introduction to the

group of all isometries of n-dimensional Euclidean space and give the definition of crystallo-

graphic groups and Bieberbach groups. In Section 2.2, we will present the first Bieberbach

Theorem. By first Bieberbach theorem, crystallographic group is closely related to short

exact sequence. Therefore in Section 2.3, we will give an introduction to group cohomology

and the relation between group cohomology, group extension and short exact sequence. In

Section 2.4, we will give the statement and proof of the second and the third Bieberbach

theorems. In Section 2.5, we will discuss the relation between Bieberbach groups and flat

manifolds. In Section 2.6, we will present two ways to classify Bieberbach groups.

2.1 Definition of Bieberbach group

Given two arbitrary elements u = (u1, ..., un) and v = (v1, ..., vn) in Rn, the n-dimensional

Euclidean space. The norm of u is defined as

‖u‖ =

√√√√ n∑
i=1

u2
i

It is well known that there exists an unique angle θ between u and v where 0 ≤ θ ≤ π

such that

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖cosθ (2.1)

and the inner product in an n-dimensional Euclidean space Rn is defined as

〈u,v〉 =
n∑
i=1

uivi = ‖u‖‖v‖cosθ

In other words, we have

‖u‖ =
√
〈u,u〉
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If we view u and v as column matrices, then the inner product of elements can consider

as matrix multiplication as below

〈u,v〉 = uTv

where uT is the transpose of the column matrix u. We define the set {e1, ..., en} to be

the standard orthonormal basis for Rn, where ek is the kth column of the n-dimensional

identity matrix for all 1 ≤ k ≤ n. Let M be an element of GLn(R), we define the (induced

or operator) norm of M to be

‖M‖ = sup{‖Mx‖ |x ∈ Rn, ‖x‖ = 1}

Definition 2.1.1. An isometry of Rn is an invertible map f : Rn → Rn such that it

preserves distance. In other word, we have

‖x− y‖ = ‖f(x)− f(y)‖

for any x, y ∈ Rn.

Remark 2.1.2. It is easy to notice that the set of all isometries of Rn satisfies all axioms of

being a group with respect to composition of maps. We denote that group to be Isom(Rn).

Definition 2.1.3. Let a ∈ Rn. A translation of Rn is a map ta : Rn → Rn defined by the

following formula

ta(x) = a+ x

Remark 2.1.4. Notice that the set of all translation map of Rn is a normal subgroup of

Isom(Rn) and it is isomorphic to the additive group Rn by the function a 7→ ta.

Definition 2.1.5. A linear map A : Rn → Rn is orthogonal if for any x, y ∈ Rn, we have

〈x, y〉 = 〈A(x), A(y)〉

We will first present a few propositions and corollaries in order to show that Isom(Rn) is

isomorphic to O(n)nRn where the group O(n) is the orthogonal group defined as

O(n) = {M ∈ GLn(R) |MT = M−1}

where MT is the transpose of the matrix M .

Observation 2.1.6. Let f ∈ Isom(Rn) which satisfies f(0) = 0. Then for any u ∈ Rn,

we have

‖f(u)‖ = ‖f(u)− f(0)‖ = ‖u− 0‖ = ‖u‖

Proposition 2.1.7. Let f ∈ Isom(Rn) with f(0) = 0, then

(i) f preserve angles, In other words, the angle between f(u) and f(v) is the same as the

angle between u and v for all u, v ∈ Rn.
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(ii) f preserve the inner product. In other words, we have 〈f(u), f(v)〉 = 〈u, v〉 for all

u, v ∈ Rn

(iii) f is a linear transformation. In other words, the function f satisfies f(x + y) =

f(x) + f(y) and f(λx) = λf(x) for all x, y ∈ Rn and λ ∈ R.

Proof. (i): Let u, v be arbitrary elements in Rn. We define θ to be the angle between the

two vectors u, v ∈ Rn and θ′ be the angle between f(u) and f(v) where 0 ≤ θ ≤ π and

0 ≤ θ′ ≤ π. By (2.1), we have

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖cosθ

and

‖f(u)− f(v)‖2 = ‖f(u)‖2 + ‖f(v)‖2 − 2‖f(u)‖‖f(v)‖cosθ′

Since f is an isometry and it satisfies f(0) = 0, by definition of isometry and Observation

2.1.6, it follows that

‖u− v‖2 = ‖f(u)− f(v)‖2 = ‖f(u)‖2 + ‖f(v)‖2 − 2‖f(u)‖‖f(v)‖cosθ′

= ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖cosθ′

It forces cos θ = cos θ′. Since 0 ≤ θ ≤ π and 0 ≤ θ′ ≤ π, we conclude that θ = θ′.

Therefore we showed that f preserve angles.

(ii): By part (i), θ is also the angle between f(u) and f(v). Since f(0) = 0, by Observation

2.1.6 and definition of inner product, we have

〈f(u), f(v)〉 = ‖f(u)‖‖f(v)‖cosθ

= ‖u‖‖v‖cosθ

= 〈u, v〉

Hence we complete the proof for part (ii).

(ii): Let {v1, ..., vn} be an orthonormal basis of Rn. In other words, the set {v1, ..., vn} is

a basis of Rn, ‖vi‖ = 1 for all 1 ≤ i ≤ n and 〈vi, vj〉 = 0 for all i 6= j. Define wi = f(vi).

First of all, notice that ‖wi‖ = ‖f(vi)‖ = ‖vi‖ = 1. Next, by part (ii), if i 6= j, then

〈wi, wj〉 = 〈f(vi), f(vj)〉 = 〈vi, vj〉 = 0

Therefore {w1, ..., wn} is also an orthonormal basis for Rn. Since {v1, ..., vn} is an or-

thonormal basis for Rn, for any element u ∈ Rn, we can express it as

u =
n∑
i=1

αivi

where the coefficient αi ∈ R can be determined by the formula αi = 〈u, vi〉. By part (ii),

we have

〈u, vi〉 = 〈f(u), f(vi)〉 = 〈f(u), wi〉 (2.2)
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On the other hand, since {w1, ..., wn} is also an orthonormal basis, the element f(u) can

express as

f(u) =
n∑
i=1

ᾱiwi (2.3)

where the coefficient ᾱi ∈ R can be determined by

ᾱi = 〈f(u), wi〉 (2.4)

By combining equation (2.2), (2.3) and (2.4), we have

f(u) =
n∑
i=1

〈f(u), wi〉wi =
n∑
i=1

〈u, vi〉wi

Let x, y ∈ Rn and λ ∈ R, we have

f(x+ y) =
n∑
i=1

〈x+ y, vi〉wi =
n∑
i=1

〈x, vi〉wi +
n∑
i=1

〈y, vi〉wi = f(x) + f(y)

and

f(λx) = f(λx) =

n∑
i=1

〈λx, vi〉wi =
n∑
i=1

λ〈x, vi〉wi = λf(x)

Therefore f is a linear transformation.

Corollary 2.1.8. Let f ∈ Isom(Rn). Then f : Rn → Rn maps x ∈ Rn to g(x) + b where

g is some linear isometry and b ∈ Rn.

Proof. Let b = f(0) and set g(x) = f(x) − b. We have g(0) = f(0) − b = 0. Notice that

g is a composition of two isometries and therefore g is an isometry too. Since g is an

isometry which satisfies g(0) = 0, by Proposition 2.1.7(iii), we can conclude that g is a

linear isometry.

Proposition 2.1.9. There is an one-to-one correspondence between the set of linear

isometry and the set of orthogonal matrix O(n) = {M ∈ GLn(R) |MT = M−1} where

MT is the transpose of the matrix M .

Proof. Let g be an arbitrary linear isometry of Rn. By viewing the element of Rn as

column matrices, we may define g as follow:

g : Rn → Rn

x 7→ Ax

where A is an n × n matrix with entries in R. We want to show that A is indeed an

orthogonal matrix. Since g is linear, we have g(0) = 0. Consider the (i, j) entry of ATA:

(ATA)ij = (ith row of AT ) (jth column of A)

= 〈(ith column of A), (jth column of A)〉

= 〈g(ei), g(ej)〉
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where {e1, ..., en} is the standard orthonormal basis for Rn. By Proposition 2.1.7(ii), we

have

(ATA)ij = 〈g(ei), g(ej)〉 = 〈ei, ej〉 =

1 if i = j

0 otherwise

Hence ATA is an identity matrix. Thus A is an orthogonal matrix.

On the other hand, we need to show that if A ∈ O(n), then it defines a linear isometry.

We claim that the linear map

g : Rn → Rn

x 7→ Ax

is an isometry.

For any u, v ∈ Rn, we have

〈g(u), g(v)〉 = 〈Au,Av〉 = (Au)T (Av) = uTATAv = uT v = 〈u, v〉

Therefore by setting u = v, we get ‖g(u)‖ = ‖u‖. Finally, since g is linear, we have

‖g(u)− g(v)‖ = ‖g(u− v)‖ = ‖u− v‖

Hence g is an isometry.

By combining Corollary 2.1.8 and Proposition 2.1.9, we get the below result.

Corollary 2.1.10. If f ∈ Isom(Rn), then there exists A ∈ O(n) and a ∈ Rn such that

f(x) = a+Ax.

By Corollary 2.1.10, we can express Isom(Rn) as a semi-direct product of the group of all

translations and the orthogonal group O(n). In other words, we have

Isom(Rn) = O(n)nRn

The group operation in Isom(Rn) is given by

(A, a)(B, b) = (AB, a+Ab)

and the inverse of an element is given by

(A, a)−1 = (A−1,−A−1a)

for any (A, a), (B, b) ∈ Isom(Rn).

Definition 2.1.11. A topological space G that is also a group is called a topological group

if the group operation

f : (x, y) 7→ xy

is continuous in both variables and the inversion mapping

g : x 7→ x−1

is also continuous.
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Remark 2.1.12. Let γ = (A, a) be an arbitrary element in Isom(Rn). We can express it

as an (n+1)×(n+1) matrix

(
A a

0 1

)
, which defines an inclusion Isom(Rn) ⊂ GLn+1(R).

Thus Isom(Rn) can be considered as a topological group with topology induced from the

Euclidean space R(n+1)2 .

Definition 2.1.13. (i) A subset X of a Euclidean space is discrete if for any x ∈ X, there

exists an open neighbourhood Ux such that Ux ∩X = {x}.

(ii) Let Γ be a subgroup of Isom(Rn). We say Γ is discrete if it is a discrete subset of the

Euclidean space R(n+1)2 .

(iii) We say Γ acts properly discontinuously on Rn if for any x ∈ Rn, there exists an open

neighbourhood Ux such that the set

{γ ∈ Γ | γUx ∩ Ux 6= ø}

is finite

(iv) We say Γ acts freely on Rn if we have

{γ ∈ Γ | γx = x} = {(In, 0)}

for any x ∈ Rn.

Definition 2.1.14. Let Γ be a subgroup of Isom(Rn). The orbit space of the action of Γ

on Rn is defined to be the set of Γ-orbits

Rn/Γ = {Γx |x ∈ Rn}

topologized with the quotient topology from Rn.

Now we define the geometric definition of the crystallographic groups.

Definition 2.1.15. Let Γ be a subgroup of Isom(Rn). We say Γ is a cocompact subgroup

of Isom(Rn) if Isom(Rn)/Γ is compact. We say Γ is an n-dimensional crystallographic

group if it is a discrete cocompact subgroup of Isom(Rn). Besides, a torsion- free crystal-

lographic group is called a Bieberbach group.

For the rest of this section, we will present several lemmas and show that Γ is an n-

dimensional crystallographic group if it acts properly discontinuously on Rn and Rn/Γ
is compact. Let M be a metric space, we denote Br(x) to be an open ball centred at

x ∈ M with radius r. We say M is a complete metric space if every Cauchy sequence in

M converges in M . In particular, Euclidean space is a complete metric space. Let X be a

subset of Euclidean space. We say {xn}∞n=1 is a convergent sequence in X converging in X

if xi ∈ X for all i ∈ N and the sequence {xn}∞n=1 converges to an element x ∈ X. In other

words, for all ε > 0, there exists N ∈ N such that ‖xn − x‖ < ε for all natural number

n > N . We say such sequence {xn}∞n=1 is eventually constant if there exists N ′ ∈ N such

that xn = xn+1 for all n > N ′.
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Lemma 2.1.16. Let X be a subset of Euclidean space. The subset X is discrete if and

only if every convergent sequence {xn}∞n=1 in X converging in X is eventually constant.

Proof. First, we suppose X is discrete and let {xn}∞n=1 be an arbitrary convergent sequence

in X which converges to x ∈ X. By definition of discreteness, there exists r > 0 such that

Br(x) ∩ X = {x}. Since the sequence {xn}∞n=1 converges to x, there exists an element

N ∈ N such that xn ∈ Br(x) for all n ≥ N . Thus we have xn = x for all n ≥ N .

For the reverse direction, we suppose every convergent sequence in X converging in X

is eventually constant. Assume by contradiction that X is not discrete. By definition,

there exists an element x ∈ X such that Ux ∩ X 6= {x} for any open neighbourhood

Ux. Therefore we have {x} $ B 1
n

(x) ∩ X for any integer n > 0. We choose xn to be

an element in B 1
n

(x) ∩X which is not equal to x for each integer n. It is clear that the

sequence {xn}∞n=1 converges to x and it is not eventually constant, which is a contradiction.

Therefore X is discrete.

Lemma 2.1.17. [31, Lemma 1.2] Let Γ be a discrete subgroup of Isom(Rn). Then Γ is

closed in Isom(Rn).

Proof. Suppose by contradiction that Γ is not close. In other words, Isom(Rn)/Γ is not

open. Then there exists an element γ ∈ Isom(Rn)/Γ such that all open neighbourhood

of γ is not contained in Isom(Rn)/Γ. Thus for all n ∈ N, we can pick γn be an element

in B 1
n

(γ) ∩ Γ. Consider the sequence {γn}∞n=1. Since the sequence {γn}∞n=1 converges to

γ in Isom(Rn), the sequence {γnγ−1
n+1}∞n=1 converges to identity in Γ. But the sequence

{γnγ−1
n+1}∞n=1 is not eventually constant. By Lemma 2.1.16, the group Γ is not discrete,

which is a contradiction.

Proposition 2.1.18. [31, Proposition 1.8] Let Γ be a discrete subgroup of Isom(Rn).

The group Γ acts freely on Rn if and only if it is torsion-free.

Proof. Assume Γ is not torsion-free and there exists a non-identity element γ ∈ Γ with

finite order k. Let x be an arbitrary element in Rn. Define y = x+γx+γ2x+ · · ·+γk−1x.

It is clear that γy = y . Hence Γ cannot act freely on Rn.

For the reverse implication, we assume Γ is torsion-free and we claim that

{γ ∈ Γ | γx = x} = Γ ∩ tx(O(n)× 0)t−x

where x ∈ Rn. Let γ = (A, a) ∈ Γ such that γx = x. Therefore we have a + Ax = x. It

follows that

γ = (A, a) = (A, x−Ax) = (In, x)(A, 0)(In,−x)

Hence

{γ ∈ Γ | γx = x} ⊆ Γ ∩ tx(O(n)× 0)t−x
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On the other hand, let γ ∈ Γ∩ tx(O(n)×0)t−x. Therefore γ has form (In, x)(A, 0)(In,−x)

for some A ∈ O(n). We have

γx = (In, x)(A, 0)(In,−x)x = (A, x−Ax)x = x

It follows that

Γ ∩ tx(O(n)× 0)t−x ⊆ {γ ∈ Γ | γx = x}

Thus the claim is true. Since the group O(n) is compact and Γ is discrete, we can

conclude that the set {γ ∈ Γ | γx = x} is finite. Since Γ is torsion-free, it follows that

{γ ∈ Γ | γx = x} = {(In, 0)}.

Lemma 2.1.19. [31, Lemma 1.3] Let Γ be a discrete subgroup of Isom(Rn). Then for

any r > 0, we have

{γ ∈ Γ | γBr(0) ∩Br(0) 6= ø} ⊂ Γ ∩ (O(n)×B2r(0))

Proof. Let γ = (A, a) ∈ Γ such that γBr(0) ∩ Br(0) 6= ø. There exists x, x′ ∈ Br(0) such

that γx = a+Ax = x′. By triangle inequality, we have

‖a‖ = ‖x′ −Ax‖ ≤ ‖x′‖+ ‖Ax‖ < 2r

Therefore γ ∈ O(n)×B2r(0).

Proposition 2.1.20. [31, Proposition 1.7] Let Γ be a subgroup of Isom(Rn). The fol-

lowing conditions are equivalent:

(i) The group Γ acts properly discontinuously on Rn;

(ii) The group Γ is a discrete subgroup of Isom(Rn);

(iii) For any x ∈ Rn, the group Γx is a discrete subset of Rn.

Proof. First, we want to prove condition (i) implies condition (ii) and assume Γ acts

properly discontinuously on Rn. We first consider a convergent sequence {γn}∞n=1 in Γ

which converge to identity. By definition, there exists a neighbourhood U0 of 0 ∈ Rn such

that the set {γ ∈ Γ | γU0 ∩ U0 6= ø} is finite. In particular, the set

{γi ∈ {γn}∞n=1 | γiU0 ∩ U0 6= ø}

is finite. Therefore we have γi = (In, 0) for large i and the sequence {γn}∞n=1 is eventually

constant. Now, we consider an arbitrary convergent sequence {γn}∞n=1 in Γ which converges

to γ ∈ Γ. Thus the sequence {γnγ−1}∞n=1 is a convergent sequence which converges to

identity and it is eventually constant. It follows that the convergent sequence {γn}∞n=1 is

eventually constant too. By Lemma 2.1.16, we can conclude that Γ is a discrete subgroup

of Isom(Rn).

13



Next, we want to prove condition (ii) implies condition (i) and assume Γ is a discrete

subgroup of Isom(Rn). Let x ∈ Rn be an arbitrary element in Rn. By Lemma 2.1.19, we

have

{γ ∈ Γ | γBr(x) ∩Br(x) 6= ø} = {γ ∈ Γ | γtxBr(0) ∩ txBr(0) 6= ø}

= {γ ∈ Γ | t−xγtxBr(0) ∩ t−xtxBr(0) 6= ø}

= {γ ∈ Γ | t−xγtxBr(0) ∩Br(0) 6= ø}

⊂ t−xΓtx ∩ (O(n)×B2r(0))

Since Γ is discrete and therefore is closed in Isom(Rn) by Lemma 2.1.17, the above set is

finite. Hence Γ acts properly discontinuously on Rn.

Next, we want to prove condition (ii) implies condition (iii) and assume Γ is a discrete

subgroup of Isom(Rn). We want to prove that Γx is a discrete subset of Rn for any x ∈ Rn.

Assume by contradiction that there exists x ∈ Rn such that Γx is not discrete. It follows

that there exists a sequence {γix = Aix+ ai}∞i=1 which converges to y ∈ Rn and it is not

eventually constant. Since the group O(n) is compact, the sequence {Ai}∞i=1 converges to

some A ∈ O(n). Notice that the value

‖ai +Ax− y‖ ≤ ‖ai +Aix− y‖+ ‖Ax−Aix‖

can be arbitrarily small for large i. Hence we conclude that the sequence {γi}∞i=1 converges

to γ = (A,−Ax + y) ∈ Isom(Rn). Since Γ is discrete subgroup of Isom(Rn), by Lemma

2.1.16, the sequence {γi}∞i=1 is an eventually constant convergent sequence. It follows that

{γix}∞i=1 is eventually constant, which is a contradiction.

Last but not least, we want to prove condition (iii) implies condition (ii). Let {γi}∞i=1

be a convergent sequence in Γ. For any x ∈ Rn, the sequence {γix}∞i=1 is a convergent

sequence in Γx. By assumption, Γx is discrete. By Lemma 2.1.16, the sequence {γix}∞i=1

is eventually constant. It follows that the sequence {γi}∞i=1 is also eventually constant.

This finishes the proof.

Proposition 2.1.21. Let Γ be a subgroup of Isom(Rn). Then Rn/Γ is compact if and

only if Isom(Rn)/Γ is compact.

Proof. By definition, we have Isom(Rn)/O(n) = Rn. The group action of Γ acting on

Isom(Rn)/O(n) is given by

φ : Γ× Isom(Rn)/O(n)→ Isom(Rn)/O(n)

(γ, gO(n)) 7→ (γg)O(n)

where γ ∈ Γ and g ∈ Isom(Rn). It is easy to notice that the above action φ agrees with

a standard action of Γ acts on Rn. Next, we consider the map

ψ : Isom(Rn)/Γ→ Rn/Γ = (Isom(Rn)/O(n))/Γ

g−1Γ 7→ Γ(gO(n))
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Notice that it is a continuous open map and the inverse images of points are compact.

Hence Isom(Rn)/Γ is compact if and only if Rn/Γ is compact.

Remark 2.1.22. By Proposition 2.1.20 and Proposition 2.1.21, we say Γ is an n-dimensional

crystallographic group if Γ acts properly discontinuously on Rn and Rn/Γ is compact.

Definition 2.1.23. Let Γ be a subgroup of Isom(Rn). An open, connected subset F ⊂ Rn

is a fundamental domain if

Rn = ∪γ∈ΓγF̄

and γF ∩ γ′F = ø for all γ 6= γ′ ∈ Γ.

Remark 2.1.24. Since an n-dimensional crystallographic group is a discrete cocompact

subgroup of Isom(Rn), it has a compact fundamental domain.

2.2 The First Bieberbach Theorem

In this section, we will state and prove the first Bieberbach theorem. Most arguments in

this section are extracted from [31, Chapter 2].

Theorem 2.2.1 (The first Bieberbach’s Theorem). [31, Theorem 2.1(1)] Let Γ ≤ Isom(Rn)

be an n-dimensional crystallographic group. Then the set of translations of Γ which is

Γ∩ (In×Rn) is a torsion-free and finitely generated maximal abelian normal subgroup of

rank n with finite index.

Before we prove this theorem, we need several lemmas.

Lemma 2.2.2. [31, Lemma 2.1] There exists a neighbourhood of the identity U ⊂ O(n)

such that for any h ∈ U , if g ∈ O(n) commutes with [g, h] = ghg−1h−1, then g commutes

with h.

Proof. Define

U = {h ∈ O(n) | ‖In − h−1‖ <
√

2− 1}

Let h be an arbitrary element in U . Let g ∈ O(n) such that g commutes with [g, h]. Let

λ1, λ2, · · · , λr be the eigenvalues of the map g : Cn → Cn induced by the an orthogonal

matrix g ∈ O(n) and Cn = V1⊕V2⊕· · ·⊕Vr be the eigenspaces decomposition corresponds

to g. Notice that Vi is g-invariant for i = 1, ..., r. Since g commutes with [g, h] by

assumption, we have

g(hg−1h−1) = [g, h] = g−1[g, h]g = (hg−1h−1)g

Thus the element g commutes with hg−1h−1. Moreover, for i = 1, 2, · · · , r and for all

x ∈ Vi, we have gx = λix. Hence

g(hg−1h−1)x = (hg−1h−1)gx = hg−1h−1λix = λihg
−1h−1x
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Since h and g are isomorphism, we have h−1Vi = gh−1Vi. Thus h−1Vi is also a g-invariant

subspace. Therefore we have

h−1Vi = (h−1Vi ∩ V1)⊕ (h−1Vi ∩ V2)⊕ · · · ⊕ (h−1Vi ∩ Vr)

where h−1Vi ∩ Vj = {x ∈ h−1Vi | gx = λjx}. Let 0 6= x ∈ (h−1Vi ∩ Vj) where i 6= j.

Without loss of generality, we assume ‖x‖ = 1. There exists y ∈ Vi such that h−1y = x.

We claim that 〈x, y〉 = 0. Assume by contradiction that 〈x, y〉 6= 0, we have

λi〈x, y〉 = 〈gx, y〉 = 〈x, gT y〉 = λj〈x, y〉

It follows that λi = λj , which is a contradiction. Thus we conclude that 〈x, y〉 = 0 and

therefore we have

√
2 = ‖x− y‖ = ‖h−1y − y‖ = ‖(h−1 − In)y‖ <

√
2− 1

which is a contradiction. Hence (h−1Vi ∩ Vj) = 0 if i 6= j. Thus we have h−1Vi = Vi for

i = 1, ..., r. For x ∈ Vi, we have

hg(x) = h(λix) = λih(x) = g(hx)

It follows that gh = hg|Vi . Since any element of Cn is a sum of elements from Vi, the

orthogonal group element g commutes with h.

Lemma 2.2.3. [31, Lemma 2.2] There exists a neighbourhood of the identity U ⊂ O(n)

such that for any g, h ∈ U , the sequence {xn}∞n=1 converges to the identity, where x1 =

[g, h] and xi = [g, xi−1] for i > 1.

Proof. Define

U =

{
M ∈ O(n)

∣∣∣ ‖In −M‖ < 1

4

}
be a neighbourhood of the identity. It is well known that ‖AB‖ ≤ ‖A‖‖B‖ for any

A,B ∈ GLn(R) and ‖M‖ = 1 if M ∈ O(n). For any M,N ∈ U , we have

‖In − [M,N ]‖ = ‖In −MNM−1N−1‖ = ‖(NM −MN)M−1N−1‖

≤ ‖NM −MN‖

= ‖(In −N)(In −M)− (In −M)(In −N)‖

≤ 2‖In −M‖‖In −N‖

Since M,N ∈ U , we have

‖In − [M,N ]‖ ≤ 2‖In −M‖‖In −N‖ <
1

8
(2.5)

Therefore [M,N ] ∈ U . For any g, h ∈ U , we define x1 = [g, h] and xi = [g, xi−1] for i > 1.

By above calculation, we can conclude that xi ∈ U for all i > 0. By (2.5), we have

‖In − x1‖ ≤ 2‖In − g‖‖In − h‖
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and

‖In − xi‖ = ‖In − [g, xi−1]‖ ≤ 2‖In − g‖‖In − xi−1‖

for i > 1. Hence we get

‖In − xi‖ ≤ 2i‖In − g‖i‖In − h‖

for i > 1. Since g, h ∈ U , we have ‖In − xi‖ < 2i(1
4)i(1

4) = 1
2i+2 for i > 1. Therefore we

can conclude that the sequence {xn}∞n=1 converges to identity.

Lemma 2.2.4. [31, Lemma 2.3] Let G ⊂ O(n) be a connected subgroup and let U be a

neighbourhood of the identity. Then 〈G ∩ U〉 = G where 〈G ∩ U〉 is the group generated

by the set G ∩ U .

Proof. It is clear that 〈G ∩ U〉 ⊆ G. For the opposite inclusion, define the set S =

G/〈G ∩ U〉. We claim that the sets S and 〈G ∩ U〉 are simultaneously open and closed.

Let x ∈ 〈G ∩ U〉 and Bε(x) ⊂ U be an open disk centered at x with radius ε. For any

y ∈ Bε(x) ∩G, we have

‖yx−1 − In‖ = ‖yx−1 − xx−1‖ = ‖y − x‖ < ε (2.6)

Therefore yx−1 ∈ Bε(In) ⊂ G ∩ U for small enough ε. Therefore y = (yx−1)x ∈ 〈G ∩ U〉.
It follows that the set 〈G∩U〉 is an open set. By definition, the set S is therefore closed. If

the set S is an open set, then G/S = 〈G∩U〉 is closed. Therefore we remain to show that S

is an open set. For any y ∈ S, we assume by contradiction that there exists x ∈ Bε(y)∩G
such that x ∈ 〈G ∩ U〉. By (2.6), we have y ∈ 〈G ∩ U〉, which is contradiction. Thus our

claim is true. Since U is a non-empty set and G is a connected set, we can conclude that

S = ∅ and therefore G = 〈G ∩ U〉.

Lemma 2.2.5. [31, Lemma 2.4] There exists an arbitrary small neighbourhood V of

In ∈ O(n) such that for any g ∈ O(n), we have gV g−1 = V .

Proof. Let ε be a positive number and define V = Bε(In). For any g ∈ O(n) and h ∈ V ,

we have

‖ghg−1 − In‖ = ‖g(h− In)g−1‖ = ‖h− In‖ < ε

Hence we have gV g−1 ⊆ V and g−1V g ⊆ V . It follows that V = g(g−1V g)g−1 ⊆ gV g−1.

Therefore we can conclude that gV g−1 = V

Definition 2.2.6. Let U be a neighbourhood of In ∈ O(n). We say U is a stable neigh-

bourhood of identity if it satisfies Lemma 2.2.2, Lemma 2.2.3 and Lemma 2.2.5.

Lemma 2.2.7. [31, Lemma 2.5] Let Γ be a crystallographic group and x ∈ Rn. Then the

linear space generated by the set {γ(x)} where γ ∈ Γ is equal to Rn

Proof. Assume the lemma is false that there exists an element x0 ∈ Rn such that the

linear space generated by the set {γ(x0)} lies in W , a proper linear subspace of Rn. By a
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new choice of origin in Rn, we may assume that O(n) leaves x0 fixed. Since (In, 0) ∈ Γ, we

have (In, 0)(x0) = x0 ∈ W . It follows that for any γ = (A, a) ∈ Γ, we have (A, a)(x0) =

a+ x0 ∈W . Hence we must have a ∈W .

Since Γ is a group, we have A(W ) = W for any A ∈ p1(Γ) where p1 : O(n)n Rn → O(n)

be the projection map. Define

W⊥ = {x ∈ Rn | 〈x, y〉 = 0 ∀y ∈W}

which is the orthogonal complement of W . Let x ∈ W⊥. Then for any γ = (A, a), we

have

〈γ(x), γ(x)〉 = 〈a+Ax, a+Ax〉 = 〈a, a〉+ 〈x, x〉

Hence ‖x‖ ≤ ‖γ(x)‖ for any γ ∈ Γ. Since Γ is a crystallographic group, it has a compact

fundamental domain. It follows that there exists d > 0 such that for all x ∈ Rn, there exists

γ ∈ Γ such that ‖γ(x)‖ ≤ d. This is a contradiction. Because by the above calculation,

for all d > 0, there exists x ∈ Rn where ‖x‖ > d and we have d < ‖x‖ ≤ ‖γ(x)‖ for all

γ ∈ Γ. Therefore Γ cannot have a compact fundamental domain.

Lemma 2.2.8. [31, Lemma 2.6] Let Γ be an n-dimensional abelian crystallographic group,

then Γ contains only pure translations.

Proof. Let (B, b) ∈ Γ where B 6= In. Then we can always choose an origin and a coordinate

system in Rn such that

B =

(
Ir 0

0 B′

)
where Ir is an r-dimensional identity matrix, B′−Is is a nonsingular s×s matrix, r+s = n

and r can be zero. Moreover, we can assume b = (b′, 0, · · · , 0) where b′ ∈ Rr. By Lemma

2.2.7, there exists an element

(
C,

(
t1

t2

))
∈ Γ where t1 ∈ Rr and 0 6= t2 ∈ Rs. By simple

calculation, we have

(B, b)

(
C,

(
t1

t2

))
=

(
BC, b+B

(
t1

t2

))
=

(
BC,

(
b′ + t1

B′(t2)

))
and (

C,

(
t1

t2

))
(B, b) =

(
CB,

(
t1

t2

)
+ Cb

)
=

(
CB,

(
∗
t2

))
Since Γ is abelian, we have B′(t2) = t2 which contradicts that B′ − Is is nonsingular

matrix.

Lemma 2.2.9. [31, Lemma 2.7] Let Γ be an n-dimensional crystallographic group and let

p1 : O(n)nRn → O(n) be a projection map. In other words, we have p1((A, a)) = A where

(A, a) ∈ Isom(Rn). Then (p1(Γ))0 is an abelian group, where (p1(Γ))0 denote the identity

component of the closure of p1(Γ) in O(n). In other words, (p1(Γ))0 is the connected

component of the smallest closed set containing p1(Γ) in O(n) which contain the identity

element.
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Proof. Let U = Bε(In) be a stable neighbourhood of In ∈ O(n). Let γ1 = (A1, a1) and

γ2 = (A2, a2) be elements in p−1
1 (U) ∩ Γ, By recurrence, we define for i ≥ 2,

γi+1 = [γ1, γi]

and denote γi = (Ai, ai) for all i > 0. We now have

γi+1 = (A1, a1)(Ai, ai)(A
−1
1 ,−A−1

1 a1)(A−1
i ,−A−1

i ai)

= (A1Ai, a1 +A1ai)(A
−1
1 A−1

i ,−A−1
1 a1 −A−1

1 A−1
i ai)

= (A1AiA
−1
1 A−1

i , a1 +A1ai −A1AiA
−1
1 a1 −A1AiA

−1
1 A−1

i ai)

= ([A1, Ai] , (In −A1AiA
−1
1 )a1 +A1(In −AiA−1

1 A−1
i )ai)

= ([A1, Ai] , A1(In −Ai)A−1
1 a1 +A1Ai(In −A−1

1 )A−1
i ai)

Hence we know that Ai+1 = [A1, Ai] and ‖ai+1‖ ≤ ‖In−Ai‖‖a1‖+ε‖ai‖. By Lemma 2.2.3,

we have limi→∞Ai = In. Hence limi→∞ai = 0. Since Γ is discrete, we have γi = (In, 0)

for sufficient large i. Since A1 commutes with Ai = [A1, Ai−1], by Lemma 2.2.2, we can

conclude that A1 commutes with Ai−1. Inductively, we can therefore conclude that A1

commutes with A2. It follows that any elements of the set p1(Γ) ∩ U commute. Thus the

closure of p1(Γ) ∩ U is abelian. Since (p1(Γ))0 is a connected subgroup, by Lemma 2.2.4,

we can conclude that (p1(Γ))0 is an abelian group.

Proof of Theorem 2.2.1. Let p1 : O(n)nRn → O(n) be the projection map. Assume first

that Γ ∩ (In × Rn) is trivial. Then p1 is an isomorphism of Γ into O(n). Since O(n)

is compact, so the closure of p1(Γ) has finite number of components. By lemma 2.2.9,

(p1(Γ))0 is abelian. Hence Γ contains a subgroup Γ1 of finite index which is abelian.

Notice that Γ1 has finite index in Γ, it is also a crystallographic group. Hence by lemma

2.2.8, Γ1 contain of pure translations only, which is a contradiction. Thus we conclude

that Γ ∩ (In × Rn) is non empty.

Let W ⊆ Rn be the subspace of Rn spanned by the pure translations of Γ. Let (In, w) be

an arbitrary element in the group of all pure translations of Γ and (A, a) be an arbitrary

element in Γ, we have

(A, a)(In, w)(A, a)−1 = (In, Aw)

which is also an element of the group of all pure translations. It follows that we have

p1(Γ)W = W . We claim that p1(Γ)|W is a finite group. Assume by contradiction that

p1(Γ)|W is infinite. Let {(Ai, ai)}∞i=1 be an infinite sequence of elements in Γ such that

limi→∞Ai = In. Define

(Bi, bi) = (In, ek)(Ai, ai)(In,−ek) = (Ai, (In −Ai)ek + ai)

where ek ∈ Γ∩(In×Rn). Then {(Bi, bi)(A−1
i ,−A−1

i ai)}∞i=1 = {(In, (In−Ai)ek)}∞i=1 defines

a non discrete subset of Γ, which is a contradiction. Moreover, we see that Γ induce a

cocompact action on Rn/W . We claim Γ acts properly discontinuously on Rn/W too.

We have decomposition Rn = W ⊕W⊥ where W⊥ ∼= Rn/W . Let pr1 : Rn → W and
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pr2 : Rn → W⊥ be projections. Since p1(Γ)|W is finite, we can concentrate on elements

γ ∈ Γ such that p1(γ) acts as identity on W. By proposition 2.1.20, since Γ is discrete

subgroup of Isom(Rn), the set Γ(0) is discrete subset of Rn. We are going to prove our

claim by contradiction and assume pr2(Γ(0)) is not discrete at W⊥ and let y ∈W⊥ be an

accumulation point of pr2(Γ(0)). Let {pr2(γi(0))}∞i=1 be a convergent sequence converges

to y where γi ∈ Γ. By using elements from Γ∩ (In×Rn), we can define a new sequence of

elements γ̄i ∈ Γ, i ∈ N such that ∀i ∈ N, pr1(γ̄i(0)) ⊂ C ⊂ W where C is a compact set.

It is easy to see that Γ ∩ (In × Rn) is a cocompact subgroup of W . Notice that the set

{γ̄i(0)}, i ∈ N has an accumulation point at a discrete set Γ(0), which is a contradiction.

Hence we can conclude that Γ acts properly discontinuously on Rn/W . Therefore Γ is

a crystallographic group on Rn/W with no pure translation. Therefore the dimension of

Rn/W is zero.

Let (A, a) ∈ Γ be an arbitrary element in Γ and (In, x) be an arbitrary element in the set

of translations subgroup Γ ∩ (In × Rn). We have

(A, a)(In, x)(A, a)−1 = (In, Ax) ∈ Γ ∩ (In × Rn)

Therefore Γ∩ (In×Rn) is a normal subgroup of Γ. Let T be a maximal abelian subgroup

of Γ and (A, a) be an arbitrary element of Γ. If (A, a) commutes with any translation of

Γ, then we can see that A = In. Thus the set of translation subgroup Γ ∩ (In × Rn) is a

maximal abelian normal subgroup of Γ.

Let Γ be an n-dimensional crystallographic group. By the first Bieberbach theorem, Γ fits

into the short exact sequence below,

0→ Zn ι−→ Γ
p−→ G→ 1 (2.7)

where G is a finite group, ι : Zn ↪→ Γ is an inclusion map which maps ei to (In, ei) where

e1, ..., en are the standard basis of Zn and p : Γ → G is a projection map which maps

(A, a) ∈ Γ to A. Besides, the group Zn is a maximal abelian subgroup. Given such a short

exact sequence, it induces a representation ρ : G → GLn(Z) given by ρ(g)x = ḡι(x)ḡ−1,

where x ∈ Zn and ḡ is chosen arbitrarily such that p(ḡ) = g. In this case, we call the group

G to be the holonomy group and the representation ρ to be the holonomy representation

of Γ.

Lemma 2.2.10. Using the same notations as above. The induced representation ρ : G→
GLn(Z) is a faithful representation. In other words, the kernel of ρ is trivial.

Proof. Let g ∈ ker(ρ). We have ρ(g) = idZn . It follows that

x = ρ(g)x = ḡι(x)ḡ−1

where x ∈ Zn and ḡ is chosen arbitrarily such that p(ḡ) = g. Thus ḡ commutes with any

translation of Γ. Since Zn is the maximal abelian subgroup, we can conclude that g = In.

Therefore ρ is a faithful representation.
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2.3 Group cohomology and group extension

Let G be a group. The integral group ring ZG is defined to be the free Z-module gen-

erated by the elements of G. Therefore an element of ZG can be uniquely expressed as∑
g∈G a(g)(g) where a(g) ∈ Z and a(g) = 0 for almost all g ∈ G. We say M is a G-module

if M is an abelian group and there exists a homomorphism φ : G→ Aut(M) such that the

group G acts on M by g ·m = φ(g)(m). Since all abelian group can be view as a module

over Z, a G-module M is the same as a ZG-module. Through out this section, we denote

R to be a ring with one.

Definition 2.3.1. Let Mi be R-modules and fi be R-module homomorphism for all i > 0.

Consider the below sequence,

M1
f1−→M2

f2−→M3
f3−→M4 → · · · (2.8)

(i) We say the sequence (2.8) is exact at Mn if and only if ker(fn) = im(fn−1) for n > 0.

(ii) We say the sequence (2.8) is exact if and only if it exacts at Mn for all n > 0.

Definition 2.3.2. Let Mi be R-module and di be R-module homomorphism for i ≥ 0.

Then

0→M0
d0−→→M1

d1−→ · · · dn−→Mn+1 → · · ·

is a cochain complex if the composition of any two successive maps dn+1 ◦ dn is zero map.

Definition 2.3.3. A short exact sequence is a 5 terms exact sequence where the first and

last term are identity. In other words, the below exact sequence is a short exact sequence

0→ A
ψ−→ B

φ−→ C → 0 (2.9)

where A,B, C are R-modules. We say the above short exact sequence (2.9) split if there is

an R-module homomorphism s : C → B such that φ ◦ s is the identity map on C. In this

case, we call the map s : C → B to be a splitting homomorphism for the sequence (2.9)

and B ∼= A⊕ C.

Definition 2.3.4. Let M be an R-module. We say M is a free module if there exists a

subset A ⊂ M such that for any non-zero element x ∈ M , there exists unique non-zero

elements r1, ..., rn ∈ R and unique a1, ..., an ∈ A for some n ∈ N such that

x =

n∑
i=1

riai

In this case, we say A is a basis or set of generators of M .

Definition 2.3.5. Let P be an R-module. We say P is a projective module if P has the

following property. For any R-module M and N , if we have a surjection map φ : M → N ,

then for every R-module homomorphism from P to N lifts to an R-module homomorphism

into M . In other words, given f ∈ HomR(P,N), there exists a lift F ∈ HomR(P,M)
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making the following diagram commute:

M N 0

P

F
f

φ

Proposition 2.3.6. Let P be an R-module. P is a projective module if and only if P is

a direct summand of a free R-module.

Proof. First, we assume P is a projective module. Notice that P is the quotient of a free

module. Thus we always have a short exact sequence

0→ ker(φ)→ F φ−→ P → 0

By definition of projective module, the identity map id : P → P lifts to a homomorphism

µ making the following diagram commute,

F P 0

P

ker(φ)0

µ id

φ

(2.10)

Since the above diagram commutes, we have φ ◦ µ = id. Thus µ is a splitting homomor-

phism for the sequence (2.10) and therefore F ∼= ker(φ)⊕ P .

Next, we assume P is a direct summand of a free R-module. Let F(S) = P ⊕K where

F(S) is a free R-module on some set S and K is R-module. Let M and N are any R-

module and φ : M → N be surjection. Let π : F(S) → P be the natural projection and

let f : P → N be any R-module homomorphism. Our aim is to lift the map f to an

R-module homomorphism into M . Consider the map f ◦ π : F(S) → N . For any s ∈ S,

we define ns = f ◦ π(s) ∈ N . Since φ is surjective, we let ms ∈ M be any element of

M satisfies φ(ms) = ns. By the universal property for free modules (see [15, Section 3,

Theorem 6]), there exists a unique R-module homomorphism F ′ : F(S) → M such that
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F ′(s) = ms. Thus we have the following diagram

M N 0

P

F(S) = P ⊕K

F

π

f

φ

for any s ∈ S, we have

φ ◦ F ′(s) = φ(ms) = ns = f ◦ π(s)

It follows that φ ◦ F ′ = f ◦ π. In other words, the above diagram commutes. We define

a map F : P → M where F (d) = F ′((d, 0)). Since F is a composition of a injection

P → F(S) and the homomorphism F ′, the map F is an R-module homomorphism. Then

φ ◦ F (d) = φ ◦ F ′((d, 0)) = f ◦ π((d, 0)) = f(d)

Thus the below diagram commutes

M N 0

P

F
f

φ

and we complete the proof.

By the above proposition, we get the below result.

Corollary 2.3.7. If P is a free module, then P is a projective module.

Definition 2.3.8. Let Ci be R-modules for all i ≥ 0. Consider the following sequence

0→ C0 d0−→ C1 d1−→ C2 d2−→ C3 → · · · → Cn
dn−→ Cn+1 → · · · (2.11)

where dn : Cn → Cn+1 is homomorphism. We say the sequence (2.11) is a cochain complex

if composition of any two consecutive maps is the zero map. We define the nth cohomology

group of that cochain complex to be

Hn(C) = ker(dn)/im(dn−1)

where C is the cochain complex (2.11).
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Definition 2.3.9. Let A be an R-module. A projective resolution of A is an exact sequence

· · · → Pn
dn−→ · · · d1−→ P0

d0−→ A→ 0 (2.12)

where Pi are projective R-module for all i ≥ 0.

Lemma 2.3.10. Let A be an R-module. There always exists a projective resolution of A.

Proof. Choose a free module P0 with a surjection d0 : P0 → A and define ker(d0) = K0.

Inductively, for n ≥ 1, we choose a free module Pn with surjection Pn → Kn−1 and define

Kn to be the kernel of the surjection. We define dn to be the composition Pn → Kn−1 →
Pn−1. It is clear that ker(dn) = ker(Pn → Kn−1) = Kn. By the above construction, we

have a surjection dn : Pn → Kn−1 and ker(dn) = im(dn+1). It follows that the sequence

· · · → Pn → · · · → P1 → P0 → A→ 0

is exact and Pi are projective R-module for all i ≥ 0 by Corollary 2.3.7.

Given the projective resolution (2.12), we can form a cochain complex by talking homo-

morphisms of each of the terms into an R-module D. In other words, we apply the functor

HomR(−, D) to the projective resolution (2.12) and get the below sequence,

0→ HomR(A,D)
d′0−→ HomR(P0, D)

d′1−→ HomR(P1, D)
d′2−→ HomR(P2, D)

d′3−→ · · · (2.13)

Let f ∈ HomR(A,D), we define d′0(f) = f ◦ d0. For n ≥ 0, and let f ∈ HomR(Pn, D), we

define d′n+1(f) = f ◦ dn+1. For any n ≥ 0 and let f ∈ HomR(Pn−1, D) (take P−1 = A),

we have

d′n+1 ◦ d′n(f) = d′n+1(f ◦ dn) = f ◦ dn ◦ dn+1

Since the sequence (2.12) is an exact sequence, the composition d′n+1 ◦ d′n is zero map for

all n ≥ 0. Therefore the sequence (2.13) is a cochain complex.

We define

ExtnR(A,D) = ker(d′n+1)/im(d′n)

for n ≥ 1 and ExtnR(A,D) = ker(d′1).

For n ≥ 0, the nth cohomology group of group G with R-module M as coefficient is defined

as

Hn(G,M) = ExtnZG(Z,M)

We define the standard resolution of Z as

· · · → Fn
dn−→ · · · d1−→ F0

ε−→ Z→ 0 (2.14)

where Fn is defined to be ZG⊗Z ZG⊗Z · · · ⊗Z ZG where there are n+ 1 copies of ZG for

n ≥ 0. Notice that Fn is a G-module where the G-action is given by g · (g0 ⊗ · · · ⊗ gn) =

(gg0) ⊗ g1 ⊗ · · · ⊗ gn. Notice that Fn is a free ZG-module of rank |G|n and the set

{1⊗g1⊗· · ·⊗gn | gi ∈ G for 1 ≤ i ≤ n} is a set of basis of Fn. We denote the basis element
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1⊗ g1 ⊗ · · · ⊗ gn to be (g1, · · · , gn). We define the map d1(1⊗ g) = g − 1 and for n ≥ 2,

we define

dn(g1, ..., gn) = g1·(g2, ..., gn)+

n−1∑
i1

(−a)i(g1, ..., gi−1, gigi+1, gn+2, ..., gn)+(−1)n(g1, ..., gn−1)

Now, we apply the functor HomZG(−,M) to the sequence (2.14) and obtain the below

cochain complex

0→ HomZG(Z,M)
ε−→ HomZG(F0,M)

d′1−→ HomZG(F1,M)
d′2−→ HomZG(F2,M)→ · · ·

(2.15)

Notice that the elements of HomZG(Fn,M) can be uniquely determined by their values

on the ZG basis elements of Fn. In other words, the group HomZG(Fn,M) can be identify

with the set of functions from G×· · ·×G (n copies of G) to M and HomZG(F0,M) = M .

Now, we can give a definition of cohomology of group G with coefficient M as follow.

Definition 2.3.11. Let G be a finite group and M be a G-module. Define C0(G,M) = M ,

Cn(G,M) to be the collection of all function from Gn to M for n ≥ 1 and Cn(G,M) = 0

for n < 0. We define the coboundary operator δn : Cn(G,M)→ Cn+1(G,M) as below,

δnf(g0, g1, ..., gn) = g0 · f(g1, ..., gn)

+
n∑
j=1

(−1)jf(g0, ..., gj−2, gj−1gj , gj+1, ..., gn)

+ (−1)n+1f(g0, ..., gn−1)

for n ≥ 1, δ0m(g1) = g1 ·m−m and δn = 0 for n < 0. Then

0→ C0(G,M)
δ0−→ C1(G,M)

δ1−→ · · · δ
n

−→ Hn+1(g,M)→ · · ·

is a cochain complex. We define Zn(G,M) = ker(δn) and the elements of Zn(G,M) are

called n-cocycles. We define Bn(G,M) = im(δn−1) and the elements of Bn(G,M) are

called n-coboundaries. We define the nth cohomology group of G with coefficients in M to

be

Hn(G,M) = Zn(G,M)/Bn(G,M)

Remark 2.3.12. Using the notation as in (2.15) If G is a finite group and M is a finitely

generated G-module. Then HomZG(Fn,M) is a finitely generated abelian group for all

n ≥ 0. Therefore Hn(G,M) is a finitely generated abelian group for all n ≥ 0.

Now, we discuss the relation between cohomology of groups and extension of groups.

Definition 2.3.13. Let N,G,Γ be groups. We say Γ is an extension G by N if it fits in

the below short exact sequence,

1→ N
ι−→ Γ

p−→ G→ 1 (2.16)
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Let Γ and Γ′ are both extension of G by N . We say two extensions are equivalent via f if

there exists a homomorphism f : Γ→ Γ′ such that the following diagram commute

Γ

1 N G 1

Γ′

f

p1ι1

ι2 p2

Lemma 2.3.14. Using the same notations as above, the homomorphism f is indeed an

isomorphism.

Proof. Let γ ∈ ker(f). Since p2 ◦ f(γ) = p2(1) = 1 and the diagram commutes, we have

p1(γ) = p2 ◦ f(γ) = 1. Thus γ ∈ ker(p1). By exactness at Γ, there exists x ∈ N such that

ι1(x) = γ. Hence ι2(x) = f ◦ ι1(x) = f(γ) = 1. Since ι1 is injective, x = 1 and therefore

γ = ι1(x) = 1. It follows that f is injective.

Let γ′ ∈ Γ′. Since p1 is surjective, there exists γ ∈ Γ such that p1(γ) = p2(γ′). We have

p2 ◦ f(γ) = p1(γ) = p2(γ′) and therefore p2(γ′(f(γ))−1) = 1. By exactness at Γ′, there

exists x ∈ N such that ι2(x) = γ′(f(γ))−1. It follows that f(ι1(x)γ) = f(ι1(x))f(γ) =

ι2(x)f(γ) = γ′(f(γ))−1f(γ) = γ′. Thus f is surjective. Therefore f is an isomorphism.

Lemma 2.3.15. Given the below short exact sequence

0→ N
ι−→ Γ

p−→ G→ 1 (2.17)

where N is an abelian group. Then it induces an G-action on N . In other words, we can

view N as a G-module.

Proof. SinceN is an abelian normal subgroup in Γ, G acts onN by conjugation. Explicitly,

let g ∈ G, x ∈ N and pick ḡ be an element such that p(ḡ) = g. We define the action as

below,

ι(g · x) = ḡι(x)ḡ−1 (2.18)

Let ḡ′ be another element such that p(ḡ′) = g. Since Γ/N ∼= G, there exists x1 ∈ N such

that ḡ′ = ḡι(x1). Since N is an abelian group, we have

ḡ′ι(x)ḡ′−1 = ḡι(x1)ι(x)ι(x1)−1ḡ−1 = ḡι(x)ḡ−1

Hence the action is independent of choice of ḡ. Therefore the action given by (2.18) is well

defined G-action on N

Lemma 2.3.16. Equivalent extensions of G by N define the same G-module structure

on N .
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Proof. Let Γ and Γ′ be equivalent extensions and consider the below commutative diagram.

Γ

0 N G 1

Γ′

f

p1ι1

ι2 p2

(2.19)

Let g ∈ G be an arbitrary element of G. let ḡ be an element such that p1(ḡ) = g. The

G-module structure on N induce from Γ is

ι1(g · x) = ḡι1(x)ḡ−1

where x ∈ N . Let ḡ′ = f(ḡ). Since the diagram (2.19) is a commutative diagram, we have

p2(ḡ′) = p1(ḡ) = g. Thus the G-module structure on N induce from Γ′ is

ι2(g · x) = ḡ′ι2(x)ḡ′−1

where x ∈ N . Since ι1, ι2 and f are injective. We have

f(ḡι1(x)ḡ−1)) = ḡ′ι2(x)ḡ′−1 = ι2(g · x)

Therefore equivalent extension of G by N defines the same G-action on N .

Let G be a group and A be a G-module. We would like to studying the relation between

H2(G,A) and group extension of G by A. Roughly speaking, Given a group extension of

G by A, we would like to define a class in H2(G,A). Next, we are going to reverse the

procedure. Given a class in H2(G,A) and we want to construct a group extension of G by

A correspond to that given class. Therefore we conclude that there is a bijection between

the set of all extension of G by A and group H2(G,A).

Let G be a group and A be a G-module. We first want to show that the below extension

0→ A
ι−→ Γ

p−→ G→ 1 (2.20)

defines a 2-cocycle in Z2(G,A). We want to study the above exact sequence by choosing

a set-theoretic cross-section s : G → Γ such that ps : G → G is an identity map. We call

the map s to be a cross-section of p. We say the map s is normalized or we say s satisfies

the normalization condition if it satisfies the below condition

s(1) = 1 (2.21)

In general, s is not necessary a homomorphism. We would like to define a function

f : G × G → A to measure the failure of s to be a homomorphism. Since for any

g1, g2 ∈ G, the elements s(g1g2) ∈ Γ and s(g1)s(g2) ∈ Γ both map to g1g2 ∈ G, they differ

by an element ι(a) for some a ∈ A. Therefore we define f : G × G → A by the below

equation

s(g1)s(g2) = ι(f(g1, g2))s(g1g2) (2.22)
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In particular, for any g ∈ G, we can view s(g) as a set of coset representative for ι(A) in

Γ. Thus each element of Γ can be written uniquely in the form ι(a)s(g) for some a ∈ A
and g ∈ G. Besides, we say f is normalized if it satisfies the below condition

f(g, 1) = f(1, g) = 0 (2.23)

for all g ∈ G. It is easy to check that if s is normalized, then f is also normalized. We

call the function f to be the factor set associated to the short exact sequence (2.20) and

the section s.

Next, we are going to show that f is an element in Z2(G,A). Let ι(a1)s(g1) and ι(a2)s(g2)

be two arbitrary elements of Γ. By the relation (2.18), we have

ι(g1 · a2) = s(g1)ι(a2)s(g1)−1

By the definition of f given by (2.22), we have

ι(a1)s(g1)ι(a2)s(g2) = ι(a1)ι(g1 · a2)s(g1)s(g2)

= ι(a1 + g1 · a2)ι(f(g1, g2))s(g1g2)

= ι(a1 + g1 · a2 + f(g1, g2))s(g1g2)

Next, we compute the triple product [s(g1)s(g2)]s(g3) and s(g1)[s(g2)s(g3)], we have

[ι(a1)s(g1)ι(a2)s(g2)]ι(a3)s(g3) = ι(a1 +g1 ·a2 +f(g1, g2)+(g1g2)·a3 +f(g1g2, g3))s(g1g2g3)

and

ι(a1)s(g1)[ι(a2)s(g2)ι(a3)s(g3)] = ι(a1+g1·a2+(g1g2)·a3+g1·f(g2, g3)+f(g1, g2g3))s(g1g2g3)

Since Γ is group and therefore it satisfies the associative law, f does satisfy the following

condition

g1 · f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2) = 0

Using the same notations in Definition 2.3.11, f ∈ ker(δ2). Thus f is a 2-cocycle. There-

fore we can conclude that the factor set f associated to the extension 2.20 and a choice

of section s is an element of Z2(G,A). Let f ′ be a factor set associated to the extension

2.20 and a different choice of section s′. We are going to show that f and f ′ differ by a

2-coboundary. For all g ∈ G, the element s(g) and s′(g) lie in the same coset Ag. Thus

there exists a function φ : G→ A such that s′(g) = ι(φ(g))s(g) for all g ∈ G. For arbitrary

elements ι(a1)s′(g1) and ι(a2)s′(g2) in Γ, we have

s′(g1)s′(g2) = ι(f ′(g1, g2))s′(g1g2)

= ι(f ′(g1, g2))ι(φ(g1g2))s(g1g2)

= ι(f ′(g1, g2) + φ(g1g2))s(g1g2)
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and

s′(g1)s′(g2) = ι(φ(g1))s(g1)ι(φ(g2))s(g2)

= ι(φ(g1) + g1 · φ(g2) + f(g1, g2))s(g1g2)

Therefore we have

f ′(g1, g2) = f(g1, g2) + φ(g1) + g1 · φ(g2)− φ(g1g2) (2.24)

It follows that f and f ′ differ by the 2-coboundary φ. Thus we can conclude that the

factor sets associated to the extension 2.20 corresponding to a different choices of section

give a 2-cocycle in Z2(G,A) that differ by a coboundary in B2(G,A). Hence associated

to the extension 2.20 is a well defined cohomology class in H2(G,A) determined by the

factor set in 2.22 for any choice of section s.

Remark 2.3.17. In particular, if the extension 2.20 is a split extension, then there is a

homomorphism section s : G → Γ. Therefore the factor set satisfies f(g1, g2) = 0 for all

g1, g2 ∈ G. Hence the trivial cohomology class in H2(G,A) defined a split extension. In

other words, Γ = AoG.

Next, we want to prove that equivalent extensions define the same cohomology class in

H2(G,A). Let Γ and Γ′ are two equivalent group extensions of G by A. Consider the

below commutative diagram

Γ

0 A G 1

Γ′

ψ

pι

ι′ p′

Let s be a section of p, then s′ = ψ ◦ s is a section of p′. Let f : G ×G → A be a factor

set of the extension correspond to Γ and section s. Recall that f satisfies the condition

s(g1)s(g2) = ι(f(g1, g2))s(g1g2) (2.25)

for all g1, g2 ∈ G. Applying ψ to (2.25), we have

s′(g1)s′(g2) = ψ(s(g1))ψ(s(g2)) = ψ(ι(f(g1, g2)))ψ(s(g1g2))

= ι′(f(g1, g2))s′(g1g2)

for all g1, g2 ∈ G. It follows that the factor set for Γ′ associated to s′ is the same as the

factor set for Γ associated to s. Thus equivalent extensions define the same cohomology

class in H2(G,A).

Next, we want to show that given a class in H2(G,A), we could construct an extension Ef

such that its corresponding factor set is in the given class in H2(G,A). Using the notations
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in Definition 2.3.11. Let f ∈ Z2(G,A) ⊆ C2(G,A) be a 2-cocycle. Define f1 ∈ C1(G,A)

which maps g ∈ G to f(1, 1) for all g ∈ G. We claim that f − δ1(f1) is a normalized

2-cocycle. By definition of δ1, we have

δ1(f1)(g, 1) = g · f1(1)− f1(g) + f1(g) = g · f(1, 1) (2.26)

and

δ1(f1)(1, g) = 1 · f1(g)− f1(g) + f1(g) = f(1, 1) (2.27)

for all g ∈ G. Since f is a 2-cocycle, we have

f(g, h) + f(gh, k) = gf(h, k) + f(g, hk) (2.28)

for all g, h, k ∈ G. By setting g = h = 1 in 2.28, we have

f(1, k)− f(1, 1) = 0 (2.29)

for all k ∈ G. By combining 2.27 and 2.29, we have

f(1, g)− δ1(f1)(1, g) = 0 (2.30)

On the other hand, by setting h = k = 1 in 2.28, we have

f(g, 1)− g · f(1, 1) = 0 (2.31)

By combining 2.26 and (2.31), we get

f(g, 1)− δ1(f1)(g, 1) = 0 (2.32)

for all g ∈ G. It follows that

(f − δ1(f1))(g, 1) = (f − δ1(f1))(1, g) = 0

Thus, we can conclude that f − δ1(f1) is a normalized 2-cocycle.

Let f be a cohomology class representative in H2(G,A) where f is a normalized 2-cocycle.

Define Ef be the set A×G with a binary operation on Ef as below

(a1, g1)(a2, g2) = (a1 + g1 · a2 + f(g1, g2), g1g2)

where (a1, g1), (a2, g2) ∈ A×G. We claim that Ef is indeed a group. Since f is normalized

2-cocycle, we have

(a, g)(0, 1) = (a+ f(g, 1), g) = (a, g)

and

(0, 1)(a, g) = (a+ f(1, g), g) = (a, g)

Thus (0,1) is a 2-sided identity. Next, we check for associativity. By simple calculation,

we have

[(a1, g1)(a2, g2)](a3, g3) = (a1 + g1 · a2 + f(g1, g2) + (g1g2) · a3 + f(g1g2, g3), g1g2g3)
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and

(a1, g1)[(a2, g2)(a3, g3)] = (a1 + g1 · a2 + (g1g2) · a3 + g1 · f(g2, g3) + f(g1, g2g3), g1g2g3)

Since f satisfies 2.28, we have [(a1, g1)(a2, g2)](a3, g3) = (a1, g1)[(a2, g2)(a3, g3)]. Thus the

operation satisfies the associativity law. By simple calculation, we get

(0, g)[(0, g−1)(0, g)] = (g · f(g−1, g) + f(g, 1), g)

and

[(0, g)(0, g−1)](0, g) = (f(g, g−1), g)

Since f is normalized and the binary operation on A × E satisfies associativity law, we

have

g · f(g−1, g) = f(g, g−1)

Besides, by simple calculation, we get

(a, g)(−g−1a− g−1f(g, g−1), g−1) = (0, 1) = (−g−1a− g−1f(g, g−1), g−1)(a, g)

Thus for any (a, g) ∈ A×G, it exists an inverse

(a, g)−1 = (−g−1a− g−1f(g, g−1), g−1)

Thus Ef is a group. Define

A′ = {(a, 1) | a ∈ A} (2.33)

Since f is a normalized 2-cocycle, A′ is a subgroup of Ef , and the map ι′ : a 7→ (a, 1) is

an isomorphism from A to A′. It is clear that A′ is a normal subgroup of Ef and the map

p′ : (a, g) 7→ g is a surjective homomorphism from Ef to G with kernel A′. Thus we have

0→ A
ι′−→ Ef

p′−→ G→ 1 (2.34)

By simple calculation, we check that the action of G on A by conjugation in the above

extension is the module action specified in determining the 2-cocycle f ∈ H2(G,A). The

extension (2.34) has a normalized section s : G → Ef which maps g ∈ G to (0, g) ∈
Ef whose corresponding normalized factor set is f . Thus we can conclude that every

normalized 2-cocycle arises as the normalized factor set of some extension.

Finally, suppose f ′ is another normalized 2-cocycle in the same cohomology class in

H2(G,A) as f and let Ef ′ be the corresponding extension Since f and f ′ are in the

same cohomology class, they differ by the coboundary f1 : G → A. Explicitly, for all

g, h ∈ G, we have

f(g, h)− f ′(g, h) = g · f1(h)− f1(gh) + f1(g)

By setting g = h = 1, we get f1(1) = 0. Define φ : Ef → Ef ′ given by

φ((a, g)) = (a+ f1(g), g)
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It is clear that φ is a bijection. Next, we want to show that φ is a homomorphism.

φ((a1, g1)(a2, g2)) = φ((a1 + g1 · a2 + f(g1, g2), g1g2))

= (a1 + g1 · a2 + f(g1, g2) + f1(g1g2), g1g2))

= (a1 + f1(g1) + g1 · (a2 + f1(g2)) + f ′(g1, g2), g1g2)

= (a1 + f1(g1), g1)(a2 + f1(g2), g2)

= φ((a1, g1))φ((a2, g2))

for all (a1, g1), (a2, g2) ∈ Ef . It follows that φ is an isomorphism. Consider the restriction

of φ to A, we have

φ((a, 1)) = (a+ f1(1), 1) = (a, 1)

for all a ∈ A. Therefore φ|A is the identity map on A. Similarly, φ is the identity map

on the second component of (a, g), so φ induces the identity map on the quotient of G.

It follows that φ defines an equivalent between the extensions Ef and Ef ′ . This shows

that the equivalence class of the extension Ef depends only on the cohomology class of

f ∈ H2(G,A).

We summarize all the above discussion in the following theorem.

Theorem 2.3.18. Let G be a group and A be a G-module. Let E(G,A) be the set of

equivalence classes of extensions of G by A giving rise to the given action of G on A. Then

there is a bijection between the set E(G,A) and the group H2(G,A).

Remark 2.3.19. Let G be group and A be a G-module. The trivial class [0] ∈ H2(G,A)

is correspond to a the below split extension

0→ A→ AoG→ G→ 1

We will present some properties of group cohomology in the rest of this section.

Proposition 2.3.20. [21, Proposition 5.3, page 117] Let G be a group and A be a G-

module. If |G| = k, then every element of Hn(G,A) has order divisible by k for n > 0.

Proof. Let f ∈ Cn(G,A) be an arbitrary n-cochain. Define

g(x1, ..., xn−1) =
∑
x∈G

f(x1, ..., xn−1, x)

By definition of δn for n > 0, we have

δn−1g(x1, ..., xn−1, xn) =x1g(x2, ..., xn−1, xn)

+
n∑
j=2

(−1)j+1g(x1, ..., xj−2, xj−1xj , xj+1, ..., xn−1, xn)

+ (−1)ng(x1, ..., xn−1)
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and∑
x∈G

[δnf(x1, ..., xn, x)] =
∑
x∈G

[x1f(x2, ..., xn, x)]

+
∑
x∈G

n∑
j=2

(−1)j+1f(x1, ..., xj−1xj , xj+1, ..., xn, x)

+
∑
x∈G

(−1)nf(x1, ..., xn−1, xnx) +
∑
x∈G

(−1)n+1f(x1, ..., xn)]

=x1g(x2, ..., xn)

+
n∑
j=2

(−1)j+1g(x1, ..., xj−2, xj−1xj , xj+1, ..., xn−1, xn)

+ (−1)ng(x1, ..., xn−1) + |G|(−1)n+1f(x1, ..., xn)

It follows that∑
x∈G

δnf(x1, ..., xn, x) = δn−1g(x1, ..., xn−1, xn) + |G|(−1)n+1f(x1, ..., xn)

If f ∈ Zn(G,A), then we have δnf = 0. Hence we have

δn−1g(x1, ..., xn−1, xn) = ±|G|f(x1, ..., xn)

Thus the order of f is divisible by k.

By combining Remark 2.3.12 and the above proposition, we get the below corollary.

Corollary 2.3.21. Let G be a group and Zn be a G-module for any n ≥ 1. If G is finite,

then so is H2(G,Zn).

Proposition 2.3.22. [31, Proposition 2.1] let G be a group and M be a G-module. If

|G| = m is invertible in M , then Hn(G,M) = 0 for all n > 0.

Proof. Using same notations as in Definition 2.3.11, Let φ : Cq(G,M) → Cq(G,M) be a

homomorphism that sends f ∈ Cq(G,M) to m · f . It suffices to show that the induced

homomorphism φq : Hq(G,M) → Hq(G,M) is the trivial homomorphism for q ≥ 1. In

other words, we want to show φq(Hq(G,M)) = 0. By Proposition 2.3.20, we know that

all q-cocycle has order divisible by k. Hence φq(Hq(G,M)) = 0.

2.4 The Second and Third Bieberbach theorems

In this section, we will state and prove the second and the third Bieberbach theorems.

Most arguments in this section are extract from [31, Chapter 2]. Before proving the second

and third Bieberbach theorems, we want to present a theorem from Zassenhaus and give

a algebraic definition of crystallographic group.

Theorem 2.4.1. [31, Theorem 2.2] A group Γ is isomorphic to an n-dimensional crys-

tallographic group if and only if Γ has a normal, free abelian subgroup Zn of finite index

which is a maximal abelian subgroup of Γ.
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Proof. First, we assume Γ is an n-dimensional crystallographic group. By the first Bieber-

bach theorem, the group of translation Γ ∩ (In × Rn) is a normal, free abelian subgroup

of finite index which is a maximal abelian subgroup of Γ.

For the reverse direction, Let Γ has a normal, free abelian subgroup Zn of finite index

which is a maximal abelian subgroup of Γ. In other words, we have

0→ Zn ι−→ Γ
p−→ G→ 1

where G is a finite group and Zn is a maximal abelian subgroup of Γ. Given such a short

exact sequence, it induces a representation hΓ : G → GLn(Z). Since Zn is a maximal

abelian subgroup, by Lemma 2.2.10, the representation hΓ is a faithful representation. We

can view the free abelian group Zn as a subgroup of Rn. Thus we have an inclusion map

ι′ : Zn → Rn. Consider the diagram below,

0 Zn Γ G 0

0 0 0

Rn0 Γ′ G 0

GLn(R)Rn Rn oGLn(R)0 0

i p

hΓ

i′

The group Γ′ is defined to be the pustout of the monomorphisms i : Zn → Γ and i′ : Zn →
Rn. Notice that all vertical arrows are monomorphism. By Proposition 2.3.22, we have

H2(G,Rn) = 0. By Remark 2.3.19, Γ′ is isomorphic to GnRn where the group action of

G on Rn is given by hΓ. By [11, page 256], any finite subgroup of GLn(R) is conjugate

to a finite subgroup of O(n). Therefore we can conclude that Γ is an n-dimensional

crystallographic group.

Theorem 2.4.2. [31, Remark 3] Let Γ be a torsion-free group. The group Γ is isomorphic

to a Bieberbach group if and only if there exists A ≤ Γ such that A is an abelian finitely

generated subgroup with finite index.

Proof. Let

∆(Γ) = {x ∈ Γ | |Γ : CΓ(x)|} <∞

where CΓ(x) = {γ ∈ Γ | γx = xγ}. We claim that ∆(Γ) ≤ Γ is a maximal, normal, free

abelian subgroup Zn of finite index. If so, By Theorem 2.4.1, we can concluded that Γ
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is an n-dimensional Bieberbach group. Since A ⊂ ∆(Γ), we can see that ∆(Γ) is finitely

generated. Let {x1, ..., xn} be a set of generators of ∆(Γ). By [26, Lemma 1.5], we have

CΓ(∆(Γ)) =
n⋂
i=1

CΓ(xi)

and |Γ : CΓ(∆(Γ))| < ∞. Since Z(∆(Γ)) = ∆(Γ) ∩ CΓ(∆(Γ)) where Z(∆(Γ)) = {γ ∈
∆(Γ) | γ′γ = γγ′ for allγ′ ∈ ∆(Γ)}, we see that ∆(Γ) has a central subgroup Z(∆(Γ)) of

finite index. Let y1, ..., yk be coset representatives for Z(∆(Γ)) in ∆(Γ) and set cij =

yiyjy
−1
i y−1

j . It is easy to see that they are all elements [∆(Γ),∆(Γ)]. Hence we have

[∆(Γ),∆(Γ)] is finite. Let Ā be a maximal abelian subgroup of Γ which contains A. It is

clear that Ā ⊂ ∆(Γ). Since ∆(Γ) is an abelian group, we have Ā = ∆(Γ) = Zn for some

n ∈ N. Therefore we have complete the proof.

By Theorem 2.4.1, we can introduce the algebraic definition for crystallographic groups.

Definition 2.4.3. A group Γ is an n-dimensional crystallographic group if it can express

as the following short exact sequence

0 Zn Γ G 1

where G is a finite group and Zn is a maximal abelian subgroup of Γ.

Theorem 2.4.4 (The second Bieberbach’s theorem). [31, Theorem 2.1(2)] For any nat-

ural number n, there are only a finite number of isomorphism classes of crystallographic

groups of dimension n.

Before present the proof of the second Bieberbach’s theorem, we need a few propositions

and theorem to prove that the number of conjugacy classes of finite subgroups of GLn(Z)

is finite.

Proposition 2.4.5. [31, Proposition 2.3] For any natural number n > 0, the number of

isomorphism classes of finite subgroup of GLn(Z) is finite.

Proof. Let p be any odd prime. Consider the natural homomorphism

φ : GLn(Z)→ GLn(Z/pZ)

We claim the kernel of the above homomorphism is torsion-free. Assume by contradiction

that there exists an element A 6= In ∈ kerφ such that Aq = In where q is a prime. Since

A ∈ ker(φ), we have A = In + pB where B is an n× n matrix. It follows that

In = Aq = (In + pB)q = In + pqB +

(
q

2

)
p2B2 + · · ·+ pqBq

After rearranging we have(
q

2

)
pB2 +

(
q

3

)
p2B3 + · · ·+ pq−1Bq = −qB
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where 0 denotes the n×n zero matrix. Let α be the maximal number such that pα divides

all entries of B. Thus any entry of pB2 is divisible by p(pα)2 = p2α+1. It follows that

all entries of qB are divisible by p2α+1. If p 6= q, then from the maximality of α, we get

2α + 1 ≤ α, which is impossible. Thus p = q. Hence 2α ≤ α and therefore α = 0. Since

p = q, we have

B +

(
p

2

)
B2 +

(
p

3

)
p2B3 + · · ·+ pp−2Bq = 0 (2.35)

Notice that

(
p

2

)
= p(p−1)

2 and p is an odd prime, we concluded that

(
p

2

)
is divisible by

p. Thus p divides all entries of B. Therefore we have α ≥ 1 which is a contradiction. This

proves our claim is true.

For any finite subgroup G ≤ GLn(Z), we have G ∩ ker(φ) is trivial because ker(φ) is

torsion-free. It follows that G is isomorphic to some finite subgroup of GLn(Z/pZ). Hence

the number of isomorphism classes of finite subgroups of GLn(Z) is finite.

Proposition 2.4.6. For any n > 0, there exists a positive integer υ(n) such that for any

finite subgroup F ≤ O(n) has an abelian normal subgroup A(F ) such that |F : A(F )| <
υ(n).

Proof. Fix n > 0 and F be a finite subgroup of O(n). Let Uε(In) be a stable neighbourhood

of In ∈ O(n). Define U ′ = B ε
2
(In). Let µ denote the Haar measure on O(n) such that

µ(O(n)) = 1. We choose υ(n) to be a positive integer such that υ(n) > 1
µ(U)′ . Define

A(F ) = 〈F ∩ U〉

By Lemma 2.2.5, A(F ) is a normal subgroup. By Lemma 2.2.9, A(F ) is an abelian

subgroup. We remain to show A(F ) has index less that υ(n) in F . Since F is finite group.

Let {f1, ..., fm} be a set of coset representatives of the elements of F/A(F ). In other

words, we have

F/A(F ) = {[f1], [f2], · · · , [fm]}

where f1, ..., fm ∈ F . By definition, if [fi] 6= [fj ], then fiU
′ ∩ fjU ′ = ∅. Hence we have

mµ(U ′) =
m∑
i=1

µ(fiU
′) ≤ µ(O(n)) = 1

It follows that |F/A(F )| = m ≤ 1
µ(U ′) < υ(n).

Theorem 2.4.7. Let Gl, l = 1, ..., k, be the set of finite subgroups of O(n) which can be

expressed as integer matrices with determinant ±1 in GLn(R). Then k is finite.

Proof. Let Al be the normal abelian subgroup of Gl described in the above proposition.

Since the order of Gl/Al is bounded, there exists only a finite number of distinct groups

of the form Gl/Al,l = 1, 2, ..., k. If we can show there exists only a finite number of Al, we

will have proven our assertion as then the group extensions must also be finite. As a finite
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abelian subgroup of O(n), Al is diagnozable over the complex numbers. Hence it has a

generating set consisting of at most n elements. Thus we must show that there are only

a finite number of possibilities for the order of an element g ∈ O(n) which is conjugate in

GLn(R) to an integer matrix. For this we observe that the coefficients of the characteristic

polynomial of g are integers which are elementary symmetric functions in the eigenvalues

e2πiλ of g. This completes the proof.

By the above theorem, we have the below result.

Theorem 2.4.8. [11, Theorem 79.1, Jordan-Zassenhaus Theorem] For any n ≥ 1, the

number of conjugacy classes of finite subgroups of GLn(Z) is finite.

Proof of Theorem 2.4.4. For any finite group G, by Theorem 2.4.8, there are finite many

non isomorphic G-module Zn. Notice that for any given G-module Zn, the number of

short exact sequence

0→ Zn → Γ→ G→ 1

is bounded by the order ofH2(G,Zn), which is finite by Corollary 2.3.21. Thus by Theorem

2.4.1, we can conclude that there are finite many number of isomorphism classes of n-

dimensional crystallographic groups.

Theorem 2.4.9 (The third Bieberbach’s theorem). [31, Theorem 2.1(3)] Two n-dimensional

crystallographic groups are isomorphic if and only if they are conjugate in the group A(n),

where A(n) = Rn o GLn(R). In other words, Let Γ1 and Γ2 be n-dimensional crystallo-

graphic groups. They are isomorphic if and only if, then there exists an element α ∈ A(n)

such that Γ1 = αΓ2α
−1.

Proof. Let h : Γ1 → Γ2 be an isomorphism of n-dimensional crystallographic group. The

restriction h|Γ1∩(In×Rn) to the subgroup of translation defines a linear map x 7→Mx where

M ∈ GLn(R). Let (A, a) ∈ Γ1 and h(A, a) = (B, b) ∈ Γ2. For any i = 1, ..., n, we have

h((A, a)(In, ei)(A, a)−1) = (B, b)(In,Mei)(B, b)
−1 = (In, BMei)

and

h((A, a)(In, ei)(A, a)−1) = h(In, Aei) = (In,MAei)

Hence we have MAei = BMei for i = 1, ..., n. Therefore B = MAM−1. We can conjugate

h by some suitable matrix from GLn(R) such that the matrix M will be the identity. In

other words, we define h′ : Γ1 → Γ2 as h′(Γ) = (M, 0)−1h(γ)(M, 0). Let h′(A, a) =

(A, aA) ∈ Γ2. We claim that there exists x0 ∈ Rn such that

h′(γ) = (In, x0)γ(In, x0)−1

Define h̄ : Γ1 → A(n) which maps (A, a) to (A, a−aA). We claim that h̄ is homomorphism.

Let (A, a), (B, b) ∈ Γ1, we have

h′(AB, a+Ab) = h′((A, a)(B, b)) = h′((A, a))h′((B, b)) = (A, aA)(B, bB) = (AB, aA+AbB)
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Thus

h̄((A, a)(B, b)) = h̄((AB, a+Ab))

= (AB, a+Ab− aA −AbB)

= (A, a− aA)(B, b− bB)

= h̄((A, a))h̄((B, b))

Hence h̄ is a homomorphism. It is clear that ker(h̄) = Γ1 ∩ Rn. Notice that h̄(Γ) ∼=
Γ1/kerh̄ ∼= Γ1/Γ1 ∩ (In ×Rn) which is a finite group by the first Bieberbach theorem. By

Proposition 2.1.18, there is a fixed point x0 ∈ Rn of the action of the finite group h̄(Γ1).

Thus we have

x0 = (A, a− aA)(x0) = Ax0 + a− aA

Hence, a = x0 −Ax0 + aA. Finally, for any x ∈ Rn, we get

(In, x0)(A, aA)(In,−x0)x = (In, x0)(A, aA −Ax0)x

= (A, x0 + aA −Ax0)x

= (A, a)x

Thus we have h′(γ) = (In, x0)−1γ(In, x0). Hence

h(γ) = (M, 0)h′(γ)(M, 0)−1

= (M, 0)(In, x0)−1γ(In, x0)(M, 0)−1

= (M,−Mx0)γ(M−1, x0)

= (M,−Mx)γ(M,−Mx)−1

Therefore we completed our proof.

2.5 Flat manifolds and Bieberbach groups

In this section, we will discuss the relation between Bieberbach groups and flat manifolds.

Definition 2.5.1. A differential n-dimensional manifold is a separable Hausdorff topo-

logical space M together with a family {(Uα, uα)}a∈A such that it satisfies the following

properties.

(i) {Uα}α∈A is a covering of M by open sets;

(ii) uα is a homeomorphism of Uα onto an open subset of n-dimensional Euclidean space;

(iii) if α, β ∈ A, then the composition

uβ ◦ u−1
α : uα(Uα ∩ Uβ)→ uβ(Uα ∩ Uβ)

is an infinitely differentiable (i.e. smooth) map; and

(iv) {Uα, uα)}a∈A is maximal for the first three properties.
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Using the same notations as above, a function f : U → R where U is an open set in M is

said to be smooth if (f |U∩Uα) ◦ u−1
α is smooth for all α ∈ A. We denote the vector space

of smooth functions on U to be C∞(U).

If x ∈ Uα, then uα(x) = (u1
α(x), ..., unα(x)) ∈ Rn. The uiα(x) are called the local coordinates

of x with respect to Uα. The pair (Uα, uα) is called a local coordinate system.

Let M be an n-dimensional differentiable manifold. Let σ : I → M be a smooth curve

where I is an open interval. If t ∈ I and f is a real-valued differentiable function on a

neighbourhood of σ(t), then we define

[σ′(t)](f) = lim
h→0

1

h
(f(σ(t+ h))− f(σ(t)))

If (U, u) is a local coordinate system with σ(t) ∈ U , then we can view f as a function

f(z) = f(u1(z), ..., un(z)) on a subset of u(U), we denote ui(σ(t)) by ui(t) for i = 1, ..., n.

By chain rule for derivatives, we have

[σ′(t)](f) =
n∑
i=1

dui

dt
· ∂f
∂ui

∣∣∣∣
ui=ui(t)

(2.36)

We called σ′(t) to be the tangent vector to σ at σ(t).

Fix a point x ∈ M and consider all smooth curves σ : I → M such that 0 ∈ I and

σ(0) = x. Given two such curves σ and τ , we write σ ∼ τ if σ′(0) = τ ′(0). By 2.36, we

have σ ∼ τ if and only if
dui(σ(t))

dt

∣∣∣∣
t=0

=
dui(τ(t))

dt

∣∣∣∣
t=0

for all i, where (U, u) is a local coordinate system with x ∈ U . We can see that ∼ is an

equivalence relation. A tangent vector to M at x is an equivalence class of curves. We

often identity the tangent vector at x represented by a curve σ, with the operation σ′(0)

on functions differentiable in a neighbourhood of x. We can observe that the set of all

tangent vectors to M at x is the n-dimensional real vector space. We denoted that space

to be Tx(M) and is called the tangent space to M at x.

Definition 2.5.2. Let M be an n-dimensional differentiable manifold. Let U be an open

set in M . A vector field V on U is a map which send x ∈ U to Vx ∈ Tx(M) of a tangent

vector at every point of U such that if f ∈ C∞(U), then the map x 7→ Vx(f) is also

smooth.

Definition 2.5.3. Let x ∈M . A connection ∇ at x is a map which sends (Ux, V ) where

Ux ∈ Tx(M) and V is a vector field defined near x to a vector ∇UxV ∈ Tx(M). The map

∇ satisfies the following properties.

(i) the map ∇ is bilinear, and

(ii) if f is smooth near x, then

∇Ux(f · V ) = Ux(f) · Vx + f(x) · ∇UxV
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A connection on M is a map which assigns to each x ∈ M a connection at x such that if

U and V are vector fields, the map x 7→ ∇UxV is a vector field.

Definition 2.5.4. Suppose X and Y are differential manifolds. A map F : X → Y is

said to be smooth if f ∈ C∞(Y ) then f ◦F ∈ C∞(X). If F is a homeomorphism and both

F and F−1 are smooth, we say F is a diffeomorphism.

Let x ∈ X and σ ∈ Tx(X), then we define dFx(σ) ∈ TF (x)(Y ) by

[dFx(σ)](f) = σ(f ◦ F )

for f ∈ C∞(U). We called dFx to be the differential of F at x.

Definition 2.5.5. Suppose that ∇ is a connection of Y and F : X → Y is locally a

diffeomorphism. We get a connection F ∗(∇) = ∇∗ on X by setting

∇∗U (V ) = ∇dF (U)(dF (V ))

where U and V are vector fields on X and dF (U) is the vector field on F (X) ⊂ Y that

sends f to [dFx(Ux)](f) where f is smooth near F (x). We call ∇∗ to be the induced

connection. If X has a connection ∇̃ such that ∇∗ = ∇̃ and F is a diffeomorphism, we

say F is an affine equivalence.

Definition 2.5.6. Let M be an n-dimensional differentiable manifold. Let U and V be

vector fields on M . Then we define [U, V ] be a vector field defined by

[U, V ](f) = U(V (f))− V (U(f))

for all f ∈ C∞(M).

Definition 2.5.7. Let U and V be vector fields on a manifold M with connection ∇.

Define a transformation R(U, V ) of vector fields to vector fields by

R(U, V )W = −∇U (∇VW )−∇V (∇UW ) +∇[U,V ]W

for any vector field W . The transformation R is called the curvature of M .

Definition 2.5.8. Let M be a manifold. A Riemannian structure on M is a map which

assigns to each x ∈M a positive definite inner product 〈, 〉x on Tx(M) such that if U and

V are vector fields on M , the function x 7→ 〈Ux, Vx〉 is a smooth function. We say M with

〈, 〉 is a Riemannian manifold. We say M is a flat manifold if its riemannian connection

has identically zero curvature.

Theorem 2.5.9. [35, Corollary 2.4.10] Let M be an n-dimensional Riemannian manifold

where n ≥ 2. Then M is complete, connected flat manifold if and only if it is isomorphic

to Rn/Γ where Γ is subgroup of Isom(Rn) and it acts freely and properly discontinuously

on Rn.

By definition, Γ is a crystallographic group if and only if its acts properly discontinuously

and with a compact quotient on Rn. By Proposition 2.1.18, Γ is torsion-free if and only if Γ
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acts freely on Rn. By the above theorem, if M is an n-dimensional compact, connected flat

manifold if and only if it is isomorphic to Rn/Γ where Γ is a Bieberbach group. Therefore,

we can state the Bieberbach Theorems in the context of flat manifolds.

Theorem 2.5.10. [35, Theorem 3.3.1] (i) If M is a flat compact connected n-dimensional

Riemannian manifold, thenM admits a normal Riemannian covering by a flat n-dimensional

torus.

(ii) For any natural number n, there are only finitely many affine equivalence classes of

flat compact connected n-dimensional Riemannian manifold.

(iii) Two flat compact connected Riemannian manifolds are affinely equivalent if and only

if their fundamental groups are isomorphic.

2.6 Classification of crystallographic groups

In this section, we are going to present two classification methods that classify all Bieber-

bach group. We need to introduce a theorem which give a simple criterion for recongnizing

whether a cohomology class is defining a Bieberbach group, the concept of first Betti num-

ber and Calabi construction.

Theorem 2.6.1. [31, Theorem 3.1] Let Γ be an n-dimensional crystallographic group and

let the second cohomology class α ∈ H2(G,Zn) is defining such Γ. Then Γ is torsion-free

if and only if the image of the restriction homomorphism resH(α) ∈ H2(H,Zn) is not zero

for all prime order cyclic subgroup H of G.

Proof. Let Γ be torsion-free. By first Bieberbach theorem, it fits in the below short exact

sequence

0→ Zn → Γ
φ−→ 〈g〉 → 1 (2.37)

Assume by contradiction that there exists an element g ∈ G of prime order p such that

α′ = res〈g〉α = 0. Hence the below short exact sequence splits

0→ Zn → φ−1(〈g〉)→ 〈g〉 → 0 (2.38)

By definition, there exists a section

s : 〈g〉 → φ−1(〈g〉)

such that the composition φs : 〈g〉 → 〈g〉 is an identity map. Since 〈g〉 is a cyclic subgroup

of order p, the group Γ has a torsion element, which is a contradiction. For the reverse

direction, we assume Γ has torsion element γ ∈ Γ, we want to show that there exists a

cyclic subgroup H ≤ G of prime order such that resH(α) = 0. Assume γ has order pm

where p is prime, then consider the element γm ∈ Γ. We have H = 〈φ(γm)〉 is cyclic group

of prime order p. We claim that resH(α) = 0. In order to do that, we want to show the

below short exact sequence

0→ Zn → φ−1(H)→ H → 0 (2.39)
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is a splits short exact sequence. We define a section s : H → φ−1(H) by s(φ(γm)) = γm.

It is clear that φs : H → H is an identity map. Hence the above short exact sequence is

a splits short exact sequence.

Definition 2.6.2. Let M be a flat manifolds with fundamental group Γ. The rank of the

abelian group H1(M,Z) = Γ/[Γ,Γ] is the first Betti number of Γ. We denoted it to be

b1(Γ).

Next, we want to present some results about first Betti number.

Lemma 2.6.3. [19, Corollary 1.3] Let Γ be an n-dimensional Bieberbach group. Then

we have

b1(Γ) = rk((Zn)G)

where G is the holonomy group and G and (Zn)G = {z ∈ Zn | zg = gz for all g ∈ G} (the

G-action is given by holonomy representation).

Proof. By the first Bieberbach’s theorem, Γ fits in the below short exact sequence

0→ Zn → Γ→ G→ 1 (2.40)

Consider the E1,0
2 -term of the Hochschild-Serre spectral sequence associated to the above

short exact sequence. We have

H1(G,H0(Zn,Z)) = H1(G,Z)

Since G is a finite group, we have

H1(G,H0(Zn,Z)) = H1(G,Z) = Hom(G/[G,G],Z) = 0

The only remaining term on the p+ q = 1 line is E0,1
2 = H0(G,H1(Zn,Z)) = H1(Zn,Z)G.

Since the differential d2 : E0,1
2 → E2,0

2 = H2(G,Z) maps to a finite group, we have

rk(H1(Γ,Z)) = rk(H1(Zn,Z)G)

where Z is a trivial Γ-module and rk(A) of an abelian group A is the Q-dimension of

A⊗Z Q. Hence we have

b1(Γ) = rk(H1(Γ,Z)) = rk(H1(Γ,Z)) = rk(H1(Zn,Z)G) = rk((Zn)G)

Next, we present the theorem proved by E. Calabi related to Calabi construction.

Theorem 2.6.4. [31, Proposition 3.1] Let Γ be an n-dimensional Bieberbach group. If

there exists an epimorphism f : Γ→ Z, then the group ker(f) = Γ′ is a Bieberbach group

of dimension n− 1.
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Proof. Consider the below diagram

0 0 0

Γ′ ∩ Zn Zn Zn/(Γ′ ∩ Zn)0 0

Γ′ Γ Z 00

G′ G G/G′ 00

0 0 0

ι|Γ′∩Zn f |Zn

g

ι f

p

The exactness of the middle vertical sequence of the above diagram is followed from the

definition of Γ. Since Γ′∩Zn ⊂ Zn, it follows that Γ′∩Zn is a free abelian group. It is clear

that |Γ′ : Γ′ ∩ Zn| is finite. By Theorem 2.4.2, we can conclude that Γ′ is a Bieberbach

group. We remain to show that the dimension of Γ′ is equal to n − 1. It is clear that

the dimension of Γ is at most n. First, we assume the dimension of Γ′ is less than n− 1.

Since the rank of Γ′ ∩ Zn is at most n− 2, the rank of Zn/(Γ′ ∩ Zn) is at less 2. But this

is impossible because the map g : Zn/(Γ′ ∩ Zn) is an injective map. Next, we assume the

dimension of Γ′ is equal to n. By similar calculation, we have the group Zn/(Γ′ ∩ Zn) is

either a finite group of a trivial group. Since g is an injection map, the group Zn/(Γ′∩Zn)

cannot be a finite group. Next, notice that f is an surjection map, we know Zn/(Γ′ ∩Zn)

cannot be a trivial group. Hence Γ′ is an (n− 1) dimensional Bieberbach group.

Corollary 2.6.5. Let Γ be an n-dimensional Bieberbach group. If there exists an epi-

morphism f : Γ → Zk, then the group ker(f) = Γ′ is a Bieberbach group of dimension

n− k.

Proof. We proceed by induction on k. By Theorem 2.6.4, the statement is true for k = 1.

Assume the statement is true for t = k−1. Consider the case where t = k. Suppose we have

a epimorphism f : Γ→ Zk. Consider the elements of Zk as k-tuple. We define p1 : Zk →
Zk−1 be a projection map which map (x1, ..., xk) ∈ Zk to (x1, x2, ..., xk−1, 0) ∈ Zk and

define p2 : Zk → Z be a projection map which maps (x1, ..., xk) ∈ Zk to xk ∈ Z. Consider

the epimorphism p1 ◦ f : Γ→ Zk−1. By induction hypothesis, we have Γ′ := ker(p1 ◦ f) is
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an (n−k+ 1)-dimensional Bieberbach group. Observe that ker(f) = ker(Γ′
f−→ Zk p2−→ Z).

Thus by Theorem 2.6.4, we know that ker(f) is an n−k-dimensional Bieberbach group.

Remark 2.6.6. Let Γ be an n-dimensional Bieberbach group with b1(Γ) = k 6= 0. By

Lemma 2.6.3, we have b1(Γ) = rk(Zn)G where G is the holonomy group of Γ. Since

Bieberbach group is defined up to conjugation of affine elements, we assume all elements

of Γ can express as 
A B x

0 Ik y

0 0 1


where A ∈ GLn−k(Z), B is an integral matrix of dimension (n − k) × k, x ∈ Qn−k and

y ∈ Qk. Then we can define a surjection map f : Γ→ Zk as

f



A B x

0 Ik y

0 0 1


 = y

Hence by Corollary 2.6.5, we can conclude that if Γ is a n-dimensional Bieberbach group

with b1(Γ) = k ≥ 1, then there exists a surjection map f : Γ → Zk such that ker(f) is a

(n− k)-dimensional Bieberbach group.

Finally, we will state the two ways of classification. The first way is called the Zassenhaus

algorithm. The algorithm is given by the following steps.

1. Classify all finite subgroups of GLn(Z).

2. Classify all G-module Zn where the representation given by the G-action is faithful.

3. Calculate the second cohomology group H2(G,Zn) for all finite subgroup G ≤
GLn(Z) from step 1 and G-module from step 2.

4. Recongnize which crystallographic groups from step 3 are isomorphic.

The second way of classification is called the induction method of Calabi. This classification

method is only suitable for Bieberbach group. The algorithm is given by the following

steps.

1. Classify all Bieberbach group of dimension less than n.

2. Describe all Bieberbach group of dimension n with trivial first Betti number.

3. Describe all Bieberbach group of dimension n, Γ, defined by the below short exact

sequence

0→ Γn−1 → Γn → Z→ 0

where Γn−1 is any Bieberbach group of dimension n− 1.
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Chapter 3

Number of generators of

Bieberbach groups

In this chapter, we focus on the Conjecture 1.0.1. We mainly consider the cases where the

holonomy group of the Bieberbach groups is cyclic group or is generated by 2 elements.

The results in this chapter have been published in Geometriae Dedicata (see [8]).

3.1 Background

Let Γ ≤ O(n) n Rn be an n-dimensional Bieberbach group with G as holonomy group.

Recall that Γ will induce the holonomy representation ρ : G → GLn(Z). Therefore we

can consider Γ ∩ (In × Rn) ∼= Zn as a ZG-module. Let G be a group and M be a ZG-

module. We denote d(G) to be the minimal number of generators of the group G and

denote rkG(M) to be the minimal number of generators of M as a ZG-module. This

chapter contains three sections. In Section 3.1, we give some basic definitions and some

related properties of crystallographic groups. In Section 3.2, we discuss the number of

generators of ZCm-module, where Cm is a cyclic group of order m. In Section 3.3, we

present our three main theorems in this chapter. Let G be a cyclic group with generator g

and let ρ : G→ GLn(Z) where g 7→M ∈ GLn(Z) be its matrix holonomy representation.

For convenience, in this chapter, we denote element (g, a) ∈ Γ to be (M,a) and denote the

ZG-module Zn to be ZnM to specify that the G-action is given by the matrix M . We will

denote In to be the identity matrix of dimension n and Cm to be a cyclic group of order

m.

Remark 3.1.1. Let Γ be an n-dimensional crystallographic group where its holonomy

group is isomorphic to G. Let the holonomy group G is generated by m elements namely

a1, ..., am. By first Bieberbach theorem, we have the below short exact sequence

0→ Zn ι−→ Γ
p−→ G→ 1

where ι and p is defined as in (2.7). We can therefore view Zn as a ZG-module and we

have the following two observations,
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(i) d(Γ) ≤ rkG(Zn) + d(G).

(ii) {ι(e1), ..., ι(en), α1, ..., αm} can be a generating set of Γ where e1, ..., en are the standard

basis of Zn and αi is chosen arbitrarily such that p(αi) = ai for all i = 1, ...,m.

Definition 3.1.2. Let G be a group. Let ρ : G → GLn(Z) and φ : G → GLn(Z) be two

group representations of G. We say ρ and φ are Z-equivalent if there exists S ∈ GLn(Z)

such that ρ(g) = S−1φ(g)S for all g ∈ G.

Definition 3.1.3. Let G be a group, M be a ZG-module and ρ : G → GLm(Z) be the

representation correspond to the ZG-module M .

(i) We say N is a submodule of M if N is a subgroup of M which is closed under the

action of ring elements.

(ii) We say M is decomposable if M is the direct sum of submodules. M is indecomposable

if M is not decomposable.

(iii) We say M is Z-reducible if ρ is Z-equivalent to φ : G→ GLn(Z) where φ(g) has form(
P R

0 Q

)
for all g ∈ G, where P,Q and R are integral matrices. We say M is Z-irreducible

if M is not Z-reducible.

Now, we are going to give a short introduction to the properties of holonomy representa-

tion. Let M1, ...,Mk be square matrices with entries in Z, we denote tri(M1, ...,Mk) to be

matrix of form as below,

tri(M1, ...,Mk) :=


M1 ∗

M2

. . .

0 Mk


Let Γ be an n-dimensional Bieberbach group with cyclic holonomy group and let ρ : Cm →
GLn(Z) be its faithful holonomy representation. Since ρ is defined up to isomorphism, we

are able to conjugate it by a suitable invertible matrix and assume ρ(g) = tri(A1, ..., At)

for some t ∈ N and A1, ..., At are square matrices such that Zdim(A1)
A1

,..., Zdim(At)
At

are

Z-irreducible modules and
∑t

j=1 dim(Aj) = n.

Lemma 3.1.4. Let M = tri(A1, ..., At) ∈ GLn(Z) where A1, ..., At are square matrices.

Denote the order of Ai to be ai for i = 1, ..., t and m to be the order of M . Then the least

common multiple of a1, ..., at equals to m. In particular, m is divisible by ai for i = 1, ..., t.

Proof. We denote the least common multiple of a1, ..., at to be L.C.M(a1, ..., at). Since M

has finite order, the order of Ai are all finite for all i = 1, ..., t. By simple calculation, we

have

In = Mm = tri(Am1 , ..., A
m
t )

Thus Ami are all identity matrix for all i = 1, ..., t. If follows that m is divisible by all ai’s.

Hence L.C.M(a1, ..., at) ≤ m. On the other hand, if L.C.M(a1, ..., at) = l < m, then we
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have

M l = tri(Al1, ..., A
l
t) :=


I ∗

I
. . .

0 I


Since M has finite order, it force M l = In. It contradicts that the order of M is m. Hence

L.C.M(a1, ..., at) = m.

3.2 Generators of ZCm-module

Let Γ be an n-dimensional crystallographic group with holonomy group isomorphic to Cm.

We can consider Γ∩(In×Rn) ∼= Zn as a ZCm-module. Since we can restrict the Cm-action

to be a Ck-action as long as m is divisible by k, we can also view Zn as a ZCk-module. It

is clear that rkCm(Zn) ≤ rkCk(Zn). The below lemma and proposition are on the number

of generators of ZCm-module.

Lemma 3.2.1. Let ρ : Cp → GLn(Z) be a faithful representation and Zn be the corre-

spondence ZCp-module, where p is prime. Then

rkCp(Zn) ≤

n− p+ 2 if p ≤ 19

n− p+ 3 if p > 19

Proof. Let g be the generator of Cp. Assume ρ(g) = tri(A1, ..., Ak) where Zdim(A1)
A1

,· · · ,
Zdim(Ak)
Ak

are Z-irreducible ZCp-modules. By Lemma 3.1.4, there exists i ∈ {1, ..., k} such

that Ai has order p. By [11, Theorem 74.3], Ai has dimension p − 1 and the module

Zdim(Ai)
Ai

is isomorphic to an ideal in Z[ζ] where ζ is a primitive p-root of unity. If p ≤ 19,

by [29, Section 29.1.3], the class number of Z[ζ] is 1. Therefore the module Zdim(Ai)
Ai

is

a principle ideal and it is isomorphic to Z[ζ]. Hence rkCp(Z
dim(Ai)
Ai

) = 1. Now assume

p > 19. Since Z[ζ] is a Dedekind domain. By [29, Section 7.1-2], every ideal in a Dedekind

domain can be generated by two elements. Hence rkCp(Z
dim(Ai)
Ai

) ≤ 2. Therefore we have

rkCp(Zn) ≤ n− dim(Ai) + rkCp(Z
dim(Ai)
Ai

)

= n− p+ 1 + rkCp(Z
dim(Ai)
Ai

)

≤

n− p+ 2 if p ≤ 19

n− p+ 3 if p > 19

This finishes the proof of this lemma.

Remark 3.2.2. The above lemma is obtained by using the idea of [1, Lemma 2.3].

Proposition 3.2.3. Let ρ : Cm → GLn(Z) be a faithful representation and Zn be the

correspondence ZCm-module of ρ, where m ≥ 3.

(i) If m is divisible by prime larger than 3, then rkCm(Zn) ≤ n− 3.
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(ii) If m is not divisible by prime larger than 3, then rkCm(Zn) ≤ n− 1.

Proof. Let m = ps11 · · · p
st
t be the prime decomposition of m and assume p1 < · · · < pt.

Let g be the generator of Cm.

(i): Consider H = 〈gm/pt〉 ∼= Cpt , a subgroup of Cm. We can view Zn as a ZCpt-module

where the Cpt-action is given by ρ|H . Since ρ|H is a faithful representation, by Lemma

3.2.1, we have

rkCpt (Z
n) ≤

n− pt + 2 if pt ≤ 19

n− pt + 3 if pt > 19

Since m is divisible by prime larger than 3, we have rkCm(Zn) ≤ n− 5 + 2 = n− 3.

(ii): We observe that m is either divisible by 3 or 4. If m is divisible by 3, we consider Zn as

ZC3-module. By Lemma 3.2.1, we have rkC3(Zn) ≤ n− 1. Hence rkCm(Zn) ≤ n− 1. Now

we assume m is divisible by 4. Consider H ′ = 〈gm/4〉 ∼= C4, a subgroup of Cm. We can

view Zn as a ZC4-module by restricting the Cm-action to a C4-action, where the C4-action

is given by ρ|H′ . We assume ρ|H′(gm/4) = tri(M1, ...,Mk) and Zdim(M1)
M1

,..., Zdim(Mk)
Mk

are

Z-irreducible ZC4-modules. By Remark 3.1.4, there exists i ∈ {1, ..., k} such that Mi is a

matrix of order 4. Let φ : C4 → GLn(Z) be the corresponding representation of Zdim(Mi)
Mi

.

By [2, Section 5, page 10], there is only one faithful integral Z-irreducible C4-representation

up to equivalence. Hence we assume φ(gm/4) is Z-equivalent to

(
0 1

−1 0

)
. Therefore we

have dim(Mi) = 2. Let y1 = (1, 0) ∈ Z2 and y2 = (0, 1) ∈ Z2 be the standard basis of Z2
Mi

.

We have φ(gm/4)y2 = y1. Hence Z2
Mi

can be generated by y2 as a ZC4-module. Thus we

have rkC4(Zdim(Mi)
Mi

) = 1. Since rkC4(Zdim(Mz)
Mz

) ≤ dim(Mz) for all z = 1, ..., k, we have

rkCm(Zn) ≤
k∑
z=1

rkC4(Zdim(Mz)
Mz

) ≤ n− dim(Mi) + rkC4(Zdim(Mi)
Mi

) ≤ n− 1

3.3 Proofs of Theorem A, B and C

Theorem A. Let Γ be an n-dimensional crystallographic group with holonomy group

isomorphic to Cm = 〈g | gm = 1〉 where m ≥ 3.

(i) If m is divisible by prime larger than 3, then d(Γ) ≤ n− 2.

(ii) If m is not divisible by prime larger than 3 and Γ is torsion-free, then d(Γ) ≤ n− 1.

Proof. (i): By Remark 3.1.1(i), we have d(Γ) ≤ rkCm(Zn) + 1. Since m is divisible by

prime larger than 3, by Proposition 3.2.3, we have rkCm(Zn) ≤ n− 3. Therefore we have

d(Γ) ≤ n− 2.

(ii): By Remark 3.1.1(ii), let Γ = 〈ι(e1), ..., ι(en), α〉, where e1, ..., en are the standard basis

of Zn and p(α) = g. By Lemma 2.6.3, we have b1(Γ) = rk((Zn)Cm). It is well known that
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b1(Γ) 6= 0 (see [31, Example 4.1]). Let k = b1(Γ) > 0. Without loss of generality, every

element of Γ can be expressed as (tri(M, Ik), a) where a ∈ Rn and M ∈ GLn−k(Z). In

particular, let α = (tri(A, Ik), x) where x = (x1, ..., xn) ∈ Rn and A ∈ GLn−k(Z) which do

not fix any non-trivial elements. In other words, Au = u if and only if u = 0 for u ∈ Rn−k.
First we assume xn−k+1 = · · · = xn = 0. Let v := (x1, ..., xn−k) ∈ Rn−k. By simple

calculations, we get αm =
(
In, (

∑m−1
s=0 Asv, 0, ..., 0)

)
. Since A(

∑m−1
s=0 Asv) =

∑m−1
s=0 Asv,

we have
∑m−1

s=0 Asv = 0. There is a contradiction because αm = (In, 0). Therefore there

exists i ∈ {n − k + 1, ..., n} such that xi = q
z 6= 0 ∈ Q. Define f : Γ → Z where it

maps (tri(M, Ik), (y1, ..., yn)) ∈ Γ to zyi ∈ Z. Hence we have f(α) = q, f(ι(ei)) = z

and f(ι(ej)) = 0 for all j 6= i. We claim that f is a surjective homomorphism. Let

γ1 = (tri(M1, Ik), (m1, ...,mn)) ∈ Γ and γ2 = (tri(M2, Ik), (m
′
1, ...,m

′
n)) ∈ Γ. By simple

calculation, we get

γ1γ2 = (tri(M1M2, Ik), (∗, ..., ∗,mn−k+1 +m′n−k+1, ... , mn +m′n))

Hence we have f(γ1) + f(γ2) = f(γ1γ2). Therefore f is a homomorphism. Notice that q

and z are coprime, there exists integers σ and τ such that σq + τz = 1. Hence we have

f(ασι(ei)
τ ) = 1. Therefore f is surjective. Observe that

ker(f) = 〈ι(e1), ..., ι(ei−1), ι(ei+1)..., ι(en)〉 ∼= Zn−1

We have the below short exact sequence

Γ Z 0ker(f) ∼= Zn−10
f

(3.1)

By Lemma 2.3.15, such short exact sequence will induce a representation ρ : Z →
GLn−1(Z) given by ρ(x)ej = x̄ι(ej)x̄

−1 where f(x̄) = x for all j 6= i. Consider the

restriction ρ̄ := ρ|qZ : qZ→ GLn−1(Z). We claim that ker(ρ̄) = mqZ. Let qx ∈ ker(ρ̄) for

any x ∈ Z. We have ej = ρ̄(qx)ej = αxι(ej)α
−x = p(αx)ej for all j 6= i. Hence p(αx) needs

to be an identity matrix. Therefore x is multiple of m or x = 0. Hence ker(ρ̄) ⊆ mqZ.

Since p(αm) is an identity matrix, ρ̄(mqx)(ej) = αmxι(ej)α
−mx = p(αmx)ej = ej for all

j 6= i and x ∈ Z. Hence mqZ ⊆ ker(ρ̄). Therefore we have ker(ρ̄) = mqZ. Now we can

obtain a faithful representation φ : qZ/mqZ→ GLn−1(Z) given by φ(x̄) = ρ̄(x) where x is

the representative of x̄ ∈ qZ/mqZ. Hence we can view Zn−1 as a ZCm-module with faith-

ful Cm-representation. By Proposition 3.2.3, Zn−1 can be generated by n − 2 elements.

By 3.1, we have d(Γ) ≤ rkCm(Zn−1) + 1 ≤ n− 1.

The corollary below gives the general bound on the number of generators of general Bieber-

bach groups.

Corollary 3.3.1. Let Γ be an n-dimensional Bieberbach group with holonomy group G.

Then d(Γ) ≤ 2n.

Proof. Let |G| = ps11 · · · p
sk
k be the prime decomposition of order of G. By [17, Theorem

A], we have

d(G) ≤ max
1≤i≤k

d(Pi) + 1
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where Pi is the Sylow pi-subgroup of G for i = 1, ..., k. We fix j ∈ {1, ..., k} such that

d(Pj) = max1≤i≤k d(Pi). We first assume pj ≥ 3. We can consider Γ ∩ (In × Rn) ∼= Zn as

a ZPj-module. By [1, Theorem A], we have d(Pj) + rkPj (Zn) ≤ n. Hence we have

d(Γ) ≤ d(G) + rkPj (Z
n) ≤ d(Pj) + 1 + rkPj (Z

n) ≤ n+ 1

Now we assume pj = 2. If G is a 2-group, then by [1, Theorem A], we have d(Γ) ≤ 2n.

If G is not a 2-group, then there exists g ∈ G such that g has order p ≥ 3. Hence we

can consider Zn as a ZCp-module. By Lemma 3.2.1, we have rkCp(Zn) ≤ n − 1. By [1,

Proposition 2.2], we have d(Pj) ≤ n. Hence we have

d(Γ) ≤ d(G) + rkCp(Zn) ≤ d(Pj) + 1 + rkCp(Zn) ≤ 2n

Corollary 3.3.2. Let Γ be an n-dimensional Bieberbach group with holonomy group G,

where G is a simple group but not C2. Then d(Γ) ≤ n− 1.

Proof. By Remark 3.1.1(i), we have d(Γ) ≤ d(G) + rkG(Zn). If G is a cyclic group of

odd prime order, then by Theorem A, we have d(Γ) ≤ n − 1. Now, we assume G is not

a cyclic group of prime order. It is well known that G is a simple abelian group if and

only if G is a cyclic group of prime order and every finite non-abelian simple group is

not solvable. By Burnside’s Theorem, [15, Page 886], there exists a prime p ≥ 5 such

that the order of G is divisible by p. So we can view Zn as a ZCp-module. By Lemma

3.2.1, we have rkCp(Zn) ≤ n − 3. By [3, Theorem B], we have d(G) ≤ 2. Hence we have

d(Γ) ≤ d(G) + rkG(Zn) ≤ 2 + rkCp(Zn) ≤ n− 1.

The rest of this chapter will present the proof of Theorem B and Theorem C.

Theorem B. Let Γ be an n-dimensional crystallographic group with holonomy group

isomorphic to a finite group G.

(i) If the order of G is not divisible by 2 or 3, then d(Γ) ≤ n.

(ii) If the order of G is odd and divisible by 3, then d(Γ) ≤ n+ 1.

Proof. Let |G| = ps11 · · · p
sk
k be the prime decomposition of the order of G, where p1 <

· · · < pk.

(i): First, we want to calculate the number of generators of the holonomy group G. By

[17, Theorem A], we have

d(G) ≤ max
1≤i≤k

d(Pi) + 1

where Pi is the Sylow pi-subgroup of G for i = 1, ..., k. We fix j ∈ {1, ..., k} such that

d(Pj) = max1≤i≤k d(Pi). Let ρ : G → GLn(Z) be the holonomy representation for Γ.
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By definition, ρ is a faithful representation. Therefore Pi acts faithfully on Zn. By [1,

Proposition 2.2], we have

d(G) ≤
n− rk

(
(Zn)Pj

)
pj − 1

+ 1

Now, we consider the lattice part. We can view Γ ∩ (Rn × I) ∼= Zn as a ZPj-module. By

[1, Proposition 2.5], we have

rkPj (Z
n) ≤

(a− 1)
(
n− rk(Zn)Pj

)
pj − 1

+ rk(Zn)Pj

where a = 2 if pj ≥ 19, otherwise a = 3. Therefore we have

d(Γ) ≤ d(G) + rkPj (Z
n) ≤

n− rk
(
(Zn)Pj

)
pj − 1

+ 1 +
(a− 1)

(
n− rk(Zn)Pj

)
pj − 1

+ rk(Zn)Pj

=
a
(
n− rk(Zn)Pj

)
pj − 1

+ rk(Zn)Pj + 1

We need to show
a
(
n− rk(Zn)Pj

)
pj − 1

+ rk(Zn)Pj + 1 ≤ n

We have

a
(
n− rk(Zn)Pj

)
pj − 1

+ rk(Zn)Pj + 1 ≤ n

⇐⇒ an− a · rk(Zn)Pj + (pj − 1)rk(Zn)Pj + pj − 1 ≤ n(pj − 1)

⇐⇒ (pj − 1− a)rk(Zn)Pj ≤ (pj − 1− a)n− (pj − 1)

⇐⇒ rk(Zn)Pj ≤ n− pj − 1

pj − 1− a
= n− 1− a

pj − 1− a

If 5 ≤ pj ≤ 19, we have a
pj−1−a = 2

pj−3 ≤ 1. If pj > 19, we have a
pj−1−a = 3

pj−4 < 1.

Therefore we can conclude that if rk(Zn)Pj ≤ n−2, then d(Γ) ≤ n. By Cauchy’s Theorem

[15, Page 93, Theorem 11], Pj has an element x ∈ Pj with order pj . Let Cpj be a cyclic

subgroup of Pj generated by x. Consider (Zn)
CPj , where CPj acts faithfully on Zn via

ρ|CPj : CPj → GLn(Z). By [11, Theorem 74.3], the degree of a faithful indecomposable

Cpj -representation is either pj − 1 or pj . If the degree is pj − 1, then it has trivial fix

point set. If the degree is pj , then the fix point set is 1-dimensional. Observe that

rk(Zn)Cpj has maximum value when ρ|CPj is a direct sum of one faithful indecomposable

sub-representation and all others are trivial sub-representations. Therefore rk(Zn)Cpj ≤
n−pj + 1 ≤ n−4. Hence we have rk(Zn)Pj ≤ n−4. Therefore we can conclude d(Γ) ≤ n.

(ii): By [1, Theorem A], we can assume G is not a p-group. By [17, Theorem A], we have

d(G) ≤ max
1≤i≤k

d(Pi) + 1

where Pi is the Sylow pi-subgroup of G for i = 1, ..., k. If max1≤i≤k d(Pi) 6= d(P1), then by

part (i), we have d(Γ) ≤ n. Therefore we assume max1≤i≤k d(Pi) = d(P1). We can consider

the lattice part as a ZP1-module. Since P1 is a Sylow 3-subgroup, by [1, Theorem A], we

have d(P1) + rkP3(Zn) ≤ n. Hence we can conclude that d(Γ) ≤ d(P3) + rkP3(Zn) + 1 =

n+ 1.
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Theorem C. Let Γ be an n-dimensional Bieberbach group with 2-generated holonomy

group. Then d(Γ) ≤ n.

Proof. Let G be the holonomy group of Γ. Let x and y be the generators of G. They

have order a and b respectively. If either a = 1 or b = 1, then G is a cyclic group.

By [14, Theorem 5.7] and Theorem A, d(Γ) ≤ n. Next, consider cases where a ≥ 3 or

b ≥ 3. It is sufficient to consider only the case where a ≥ 3. By Remark 3.1.1(ii), let

Γ = 〈ι(e1), ..., ι(en), α, β〉, where e1, ..., en are the standard basis for Zn, p(α) = x and

p(β) = y. Define Γ′ = 〈ι(e1), ..., ι(en), α〉. Notice that Γ′ is an n-dimensional Bieberbach

subgroup of Γ with holonomy group Ca. Since a ≥ 3, by Theorem A, d(Γ′) ≤ n−1. Hence

we have d(Γ) ≤ n. Finally, we assume a = b = 2. Consider element xy ∈ G. Since G

is finite, xy has finite order. If xy is of order 1 (i.e. xy = 1), then x = y. So G ∼= C2.

By [14, Theorem 5.7], d(Γ) ≤ n. If xy is of order 2 (i.e. xyxy = 1), then xy = yx.

Hence G ∼= C2 × C2. By [14, Theorem 5.7], we have d(Γ) ≤ n. Lastly, we assume xy is of

order k, where k ≥ 3. We can rewrite the generating set of Γ to be {ι(e1), ..., ι(en), αβ, β}.
Define Γ′′ = 〈ι(e1), ..., ι(en), αβ〉, which is an n-dimensional Bieberbach subgroup of Γ with

holonomy group isomorphic to Ck. By Theorem A, d(Γ′′) ≤ n−1. Therefore d(Γ) ≤ n.

By [1], [14] and the three main theorems in this chapter, the Conjecture 1.0.1 is still open

for certain cases of holonomy group where the minimal number of generators has at least

three elements. For example, the case where the holonomy group is a 2-group or the

order of holonomy group is even. By Corollary 3.3.1, the corresponding n-dimensional

Bieberbach group can be generated by 2n elements. Another case is when the order of

holonomy group is odd and divisible by 3. In this case, by Theorem B, the corresponding

n-dimensional Bieberbach group can be generated by n+1 elements. In order to prove this

conjecture fully, we believe further study is needed in the key case where the holonomy

group is a 2-group.
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Chapter 4

Bieberbach groups of diagonal

type and Vasquez invariant

4.1 Bieberbach groups of diagonal type

Let Γ be an n-dimensional crystallographic group of diagonal type. As an immediate

consequence of diagonality of the holonomy representation, it follows that the holonomy

group of Γ is isomorphic to Ck2 for some k ≥ 1. By the first Bieberbach Theorem, it fits

in the below short exact sequence

0→ Zn ι−→ Γ
p−→ Ck2 → 0 (4.1)

where Ck2 acts diagonally on Zn. By the third Bieberbach Theorems, we can assume

ρ(g) is a diagonal matrix with all diagonal entries equal to 1 or -1 for all g ∈ Ck2 by

conjugating Γ with suitable element in GLn(R) n Rn. We denote diag(a1, ..., an) to be

the diagonal matrix where the entries starting in the upper left corner are a1, ..., an. Let

α ∈ H2(Ck2 ,Zn) be the second cohomology class defining the short exact sequence (4.1).

Since Ck2 acts diagonally on Zn, we can express the Ck2 -module Zn as direct sum of n

copies of Ck2 -module Z. Hence we have the isomorphism

H2(Ck2 ,Zn) ∼= H2(Ck2 ,M1 ⊕ · · · ⊕Mn)

where Mj
∼= Z for j = 1, ..., n. Thus we have α ∼= α1⊕α2⊕· · ·⊕αn, where αj ∈ H2(Ck2 ,Mj)

for j = 1, ..., n. An obvious action defines Ck2 -modules R and R/Z and a short exact

sequence,

0→ Z→ R→ R/Z→ 0

By [31, Proposition 2.2], we haveH2(Ck2 ,Mj) ∼= H1(Ck2 ,R/Mj) and αj ∼= α′j ∈ H1(Ck2 ,R/Mj)

for all j = 1, ..., n.

Lemma 4.1.1. Using the same notations as above, Consider [α′j ] ∈ H1(Ck2 ,R/Mj) where

j ∈ {1, ..., n}, we can pick a representative βj ∈ [α′j ] such that βj(g) ∈ {0, 1
2} for all g ∈ Ck2 .
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Proof. Fix j ∈ {1, ..., n}. We define

Der(Ck2 ,R/Mj) = {f : Ck2 → R/Mj | ∀x, y ∈ Ck2 , f(xy) = x · f(y) + f(y)} (4.2)

and

P (Ck2 ,R/Mj) = {f : Ck2 → R/Mj | ∃m ∈ R/Z,∀x ∈ Ck2 , f(x) = x ·m−m} (4.3)

By [31, Page 19], we have

H1(Ck2 ,R/Mj) ∼= Der(Ck2 ,R/Mj)/P (Ck2 ,R/Mj)

We could assume α′j(1) = 0. First, we assume Ck2 acts trivially on R/Mj . It follows that

P (Ck2 ,R/Mj) is trivial. For any g ∈ Ck2 , by (4.2), we have

0 = α′j(1) = α′j(gg) = g · α′j(g) + α′j(g) = 2α′j(g) (4.4)

It follows that α′j(g) ∈ {0, 1
2} for all g ∈ Ck2 . Next, we assume Ck2 acts non trivially

on R/Mj . Let g1, ..., gk be generators of Ck2 and assume without loss of generality that

g1 acts non-trivially on R/Mj and gi acts trivially on R/Mj for all i = 2, ..., n. Define

β′j ∈ Der(Ck2 ,R/Mj) such that β′j(g1) = 0 and β′j(gi) = α′j(gi) for all i ∈ {2, ..., n}. For all

g ∈ Ck2 that acts trivially on R/Mj , by definition of Der(Ck2 ,R/Mj), we have

0 = β′j(1) = β′j(gg) = g · β′j(g) + β′j(g) = 2β′j(g)

and

β′j(g1g) = g1 · β′j(g) + β′j(g1) = −β′j(g)

It follows that β′j(g) ∈ {0, 1
2} for all g ∈ Ck2 . We remain to show that β′j and α′j are in the

same cohomology class. For all g ∈ 〈g2, ..., gk〉, we have

β′j(g) = α′j(g)

and

β′j(g1g)− α′j(g1g) = g1 · β′j(g) + β′j(g1)− g1 · α′j(g)− α′j(g1)

= −β′j(g) + β′j(g1) + α′j(g)− α′j(g1)

= −α′j(g1)

Thus we have

(β′j − α′j)(g) =

0 if g acts trivially on R/Mj

−α′j(g1) if g acts non-trivially on R/Mj

Hence we have (β′j − α′j)(g) = g · (α
′
j(g1)

2 )− α′j(g1)

2 for all g ∈ Ck2 . It follows that β′j − α′j ∈
P (Ck2 ,R/Mj). We can conclude that we can always pick a representative β′j ∈ [α′j ] such

that β′j(g) ∈ {[0], [1
2 ]} for all g ∈ Ck2 .
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By the above lemma, we could assume α′j(g) ∈ {0, 1
2} for all j ∈ {1, ..., n} and for all

g ∈ Ck2 . It follows that α′j has order 2 if it is not a trivial class.

Let p : Rn → Rn/Zn be the natural homomorphism. We say s : Ck2 → Rn is a vector

system for Γ if ps ∈ ⊕1≤j≤nα
′
j . By [23, Section 3], we get an isomorphism

Γ ∼=

{(
ρ(g) s(g) + z

0 1

)∣∣∣∣∣ g ∈ Ck2 , z ∈ Zn
}

and

Γ ∼=

〈(
ρ(g) s(g)

0 1

)
,

(
In ei

0 1

)∣∣∣∣∣ g ∈ Ck2 , i ∈ {1, ..., n}
〉

(4.5)

where In is the n-dimensional identity matrix and ei is the ith column of In. For conve-

nience, we may express the matrix

(
ρ(g) s(g) + z

0 1

)
in the form (ρ(g), s(g) + z).

By Lemma 4.1.1, we could take α′1⊕· · ·⊕α′n : Ck2 → {0, 1
2}
n be a vector system. Thus for

an arbitrary element γ ∈ Γ, we can express it as γ = (diag(aa, ..., an), (x1, ..., xn)) where

a1, ..., an ∈ {−1, 1} and x1, ..., xn ∈ 1
2 + Z. Besides, the set {ι(e1), ..., ι(en), γ1, ..., γk}

is a generating set of Γ where γi = (ρ(gi), α
′(gi)). We called {γ1, ..., γk} to be a set of

non-lattice generators of Γ.

4.2 Characteristic matrix for crystallographic group

In this section, for each n-dimensional crystallographic groups of diagonal type where its

holonomy group is isomorphic to Ck2 , we define a ((2k − 1) × n)-matrix which gives a

combinatorial description of the crystallographic group of diagonal type.

Let S1 be the unit circle in C. We consider the elements gi ∈ Aut(S1) given by

g0(z) = z, g1(z) = −z, g2(z) = z̄, g3(z) = −z̄

for all z ∈ S1.

Equivalently, we can identity S1 with R/Z. For any [t] ∈ R/Z, we have

g0([t]) = [t] , g1([t]) =

[
t+

1

2

]
, g2([t]) = [−t] , g3([t]) =

[
−t+

1

2

]
Let D = 〈gi | i = 0, 1, 2, 3〉. It is easy to see that

g3 = g1g2, g
2
i = g0 and gig0 = g0gi = gi (4.6)

for i = 1, 2, 3. Notice that D is isomorphic to the Klein four-group. We define an action

of Dn on Tn by

(t1, ..., tn)(z1, ..., zn) = (t1z1, ..., tnzn)

for (t1, ..., tn) ∈ Dn and (z1, ..., zn) ∈ Tn = S1 × · · · × S1. Any subgroup Z2 ⊆ Dn defines

a (1× n)-row matrix with entries in D, which in turn defines a row matrix entries in the

set {0, 1, 2, 3} under the identification i↔ gi for 0 ≤ i ≤ 3.
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Let Γ be an n-dimensional crystallographic group and let α ∈ H2(Ck2 ,Zn) be the coho-

mology class corresponds to Γ. As mentioned at Section 4.1, we have

α ∼= α′ ∼= α′1 ⊕ α′2 ⊕ · · · ⊕ α′n

where α′ ∈ H1(Ck2 ,R/M1 ⊕ · · · ⊕ R/Mn) and α′j ∈ H2(Ck2 ,R/Mj) for j = 1, ..., n. Let

g ∈ Ck2 be a non identity element and ρ : Ck2 → Zn be the holonomy representation of

Γ. We have ρ(g) = diag(X1, ..., Xn) and α′(g) = (α′1(g), ..., α′n(g))T = (x1, ..., xn)T where

Xj ∈ {1,−1} and xj ∈
{

0, 1
2

}
for j = 1, ..., n. The corresponding element of Dn is an

n-tuple (t1, ..., tn) ∈ Dn defined by

tj([t]) = [Xjt+ xj ]

where t ∈ R and j ∈ {1, ..., n}. We define AΓ(g,Mj) = tj ∈ {0, 1, 2, 3} where j ∈ {1, ..., n}
under the identification i↔ gi for 0 ≤ i ≤ 3. In other words, we have

AΓ(g,Mj) =



0 if Xj = 1 and xj = 0

1 if Xj = 1 and xj = 1
2

2 if Xj = −1 and xj = 0

3 if Xj = −1 and xj = 1
2

Fix h1, ..., h2k−1 be all non identity elements of Ck2 . We define a ((2k − 1) × n) matrix

AΓ as (AΓ)i,j = AΓ(hi,Mj). We called the matrix AΓ to be a characteristic matrix of Γ.

Note that given a crystallographic group Γ, the matrix AΓ is not unique since we could

re-index the holonomy group elements hi’s and the module Mi’s.

Let r1 = (a1 a2 · · · an) and r2 = (b1 b2 · · · bn) be rows of AΓ. We denote ? to be the

group multiplication in the Klein four-group corresponds to (4.6). In other words, we

have a1 ? b1 = c1 if and only if ga1gb1 = gc1 and r1 ? r2 = (a1 ? b1 · · · an ? bn).

Lemma 4.2.1. Using the same notations as above and assume hs1 = hs2hs3 for some

s1, s2, s3 ∈ {1, ..., 2k − 1}. Then the (sth1 row of AΓ) = (sth2 row of AΓ) ? (sth3 rows of AΓ.)

Proof. Let ρ(hs2) = diag(X1, ..., Xn), α′(hs2) = (x1, ..., xn), ρ(hs3) = diag(Y1, ..., Yn) and

α′(hs3) = (y1, ..., yn). we have

(diag(X1, ..., Xn), (x1, ..., xn))(diag(Y1, ..., Yn)(y1, ..., yn))

=(diag(X1Y1, ..., XnYn), (X1y1 + x1, ..., Xnyn + xn))

Thus the corresponding element of AΓ(hs1 ,Mj) for any j ∈ {1, ..., n} is given by

g[t] = [XjYjt+Xjyj + xj ] = [Xj(Yjt+ yj) + xj ]

where g ∈ D and t ∈ R. Therefore, we have

AΓ(hs1 ,Mj) = AΓ(hs2 ,Mj) ? AΓ(hs3 ,Mj)

It follows that (sth1 row of AΓ) = (sth2 row of Γ) ? (sth3 rows of Γ).
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Remark 4.2.2. Using the same notations as above and assume the holonomy group of

Γ which is Ck2 is generated by elements h1, ..., hk. If we know the value of AΓ(hi,Mj)

for all i ∈ {1, ..., k} and for all j ∈ {1, ..., n}, then by Lemma 4.2.1, we can workout the

matrix AΓ. Define a (k × n)-matrix A such that Ai,j = AΓ(hi,Mj) where 1 ≤ i ≤ k and

1 ≤ j ≤ n. The matrix A is the same as the matrix constructed in [24, Section 2].

Next, we would like to reverse the above construction. Given a characteristic matrix, we

are going to define a crystallographic group.

Let AΓ be a (2k − 1)× n dimensional characteristic matrix such that (AΓ)ij = AΓ(gi,Mj)

where g1, ..., g2k−1 are all non identity element of Ck2 and M1, ...,Mn
∼= Z. Without loss

of generality, we assume g1, ..., gk are the generators of Ck2 . First, we need to define a

representation ρ : Ck2 → GLn(Z). For any 1 ≤ i ≤ k, we define ρ(gi) = diag(X1, ..., Xn)

where

Xj =

1 if AΓ(gi,Mj) ∈ {0, 1}

−1 if AΓ(gi,Mj) ∈ {2, 3}

for all 1 ≤ j ≤ n. Next, we are going to define a cohomology class α′ ∈ H1(Ck2 ,R/M1 ⊕
· · ·⊕R/Mn) where the Ck2 -module structure of R/M1⊕ · · ·⊕R/Mn is given by ρ. For any

1 ≤ i ≤ k, we define α′(gi) = (s1, ..., sn) where

sj =

0 if AΓ(gi,Mj) ∈ {0, 2}
1
2 if AΓ(gi,Mj) ∈ {1, 3}

for all 1 ≤ j ≤ n. Since we have a cohomology class α′, we could define a n-dimensional

crystallographic group Γ. By Section 4.1, Γ is generated by {ι(e1), ..., ι(en), γ1, ..., γk}
where

ι(ej) =

(
In ej

0 1

)
and ej is the jth column of the n-dimensional identity matrix for 1 ≤ j ≤ n and

γi =

(
ρ(gi) α′(gi)

0 1

)

for 1 ≤ i ≤ k. By the construction, we can see that the characteristic matrix of Γ equals

to AΓ. Notice that the holonomy group of Γ is not necessary isomorphic to Ck2 because

the representation ρ : Ck2 → GLn(Z) is not necessary faithful.

If two characteristic matrices define isomorphic crystallographic groups, we will say that

they are equivalent. In particular, matrix obtained from swapping rows or columns of AΓ

equivalents to AΓ.
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Example 4.2.3. Let Γ be the Bieberbach group enumerated in CARAT as ”min.19.1.1.7”.

Let

γ1 =


−1 0 0 0 0

0 −1 0 0 0

0 0 1 0 1
2

0 0 0 −1 1
2

0 0 0 0 1

 and γ2 =


1 0 0 0 1

2

0 1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 1


be non-lattice generators of Γ. The holonomy group of Γ is C2

2 which is generated by

h1 = p(γ1) and h2 = p(γ2) where p : Γ→ C2
2 be the surjection map defined at (4.1). Using

the same notations as Remark 4.2.2, We have

A =

(
2 2 1 3

1 0 2 2

)
We get the third row of AΓ by using Lemma 4.2.1. We have(

2 2 1 3
)
?
(

1 0 2 2
)

=
(

3 2 3 1
)

Thus

AΓ =

2 2 1 3

1 0 2 2

3 2 3 1


By simple calculation, we have

γ1γ2 =


−1 0 0 0 1

2 − 1

0 −1 0 0 0

0 0 −1 0 1
2

0 0 0 1 1
2

0 0 0 0 1


Therefore we check that the third row of AΓ is indeed equals to (3 2 3 1).

Example 4.2.4. Let

AΓ′ =

2 1 2 3

1 2 0 2

3 3 2 1


be a characteristic matrix such that (AΓ′)ij = AΓ(gi,Mj) where g1, g2, g3 are non identity

elements of C2
2 and M1,M2,M3,M4

∼= Z. Given such a matrix, we are going to define a

4-dimensional crystallographic group. Notice that (3rd row of AΓ′) = (1st row of AΓ′) ?

(2nd rows of AΓ′). Thus g1, g2 are the generators of C2
2 . First, we define a representation

ρ : C2
2 → GL4(Z) where

ρ(g1) = diag(−1, 1,−1,−1) and ρ(g2) = diag(1,−1, 1,−1)

Next, we define a cohomology class α′ ∈ H1(C2
2 ,R4/Z4) where

α′(g1) =

(
0,

1

2
, 0,

1

2

)
and α′(g2) =

(
1

2
, 0, 0, 0

)
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Thus the characteristic matrix AΓ′ defines a 4-dimensional crystallographic group Γ′ where

its non lattice generators are

γ′1 =


−1 0 0 0 0

0 1 0 0 1
2

0 0 −1 0 0

0 0 0 −1 1
2

0 0 0 0 1

 and γ′2 =


1 0 0 0 1

2

0 −1 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 1


Compare the group Γ′ with Γ defined in Example 4.2.3. Observe that we have

γ′i =



1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1


γi



1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1


for i = 1, 2 where γi are the elements defined in Example 4.2.3. By the third Bieberbach

theorem, we have Γ ∼= Γ′. Thus AΓ and AΓ′ define isomorphic crystallographic group and

therefore AΓ′ is equivalent to AΓ. This result is not surprising because we observe that

AΓ′ can be obtained by swapping the 2nd and the 3rd column of AΓ.

Next, we are going to derive some properties of the characteristic matrix AΓ.

Lemma 4.2.5. Using the same notations as above. AΓ(h,Mj) = 1 if and only if 0 6=
res〈h〉α

′
j ∈ H1(C2,R/Mj).

Proof. Let Γ′ be the group corresponding to res〈h〉αi. Notice that Γ′ can be expressed as

0→Mi
∼= Z→ Γ′

p−→ 〈g〉 ∼= C2

Therefore res〈h〉αi 6= [0] if and only if Γ′ ∼= Z. Recall that ρ : Ck2 → GL(Zn) is the

holonomy representation of Γ and α′1 ⊕ · · · ⊕ α′n : Ck2 → {0, 1
2}
n is the vector system of Γ.

Let ρ(h) = diag(X1, ..., Xn). By (4.5), Γ′ ∼= Z if and only if

Γ′ ∼=

〈(
Xj α′j(h)

0 1

)〉

Thus Γ′ ∼= Z if and only if (Xj , α
′
j(h)) = (1, 1

2). Hence, we conclude that Γ′ ∼= Z if and

only if AΓ(h,Mj) = 1.

Lemma 4.2.6. Let AΓ be a (2k − 1)× n dimensional characteristic matrix which defines

an n-dimensional crystallographic group Γ.

(i) Γ has torsion element if and only if AΓ exists a row where all its entries are not equals

to 1.

(ii) The holonomy group of Γ is not Ck2 if and only if AΓ exists a row where all its entries

are equals to 0 or 1 only.
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Proof. By construction, the characteristic matrix AΓ defines a cohomology class α =⊕
1≤j≤n αj ∈

⊕
1≤j≤nH

1(Ck2 ,R/Mj) where Mj
∼= Z for all j = 1, ..., n. By [31, Theorem

3.1], Γ has torsion element if and only if there exists g ∈ Ck2 such that

res〈g〉α = res〈g〉α1 ⊕ · · · ⊕ res〈g〉αn = 0

Hence Γ has torsion element if and only if res〈g〉αi = 0 for all i = 1, ..., n. By Lemma 4.2.5,

we can conclude that Γ has torsion element if and only if AΓ(g,Mi) 6= 1 for all i = 1, ..., n,

which complete the prove of part (i).

Next, the holonomy group of Γ is not Ck2 if and only if there exists g ∈ Ck2 such that

g acts trivially on Rn/Zn. By construction, g acts trivially on Rn/Zn if and only if

AΓ(g,Mi) ∈ {0, 1} for all i = 1, ..., n. Hence we complete the prove of part (ii).

From the above Lemma, we have

Corollary 4.2.7. Let Γ be an n-dimensional Bieberbach group of diagonal type where

its holonomy group isomorphic to Ck2 . The (2k − 1)× n dimensional characteristic matrix

AΓ satisfies the below two properties,

(i) For every row of AΓ, there exists an entry equal to 1.

(ii) For every row of AΓ, there exists an entry equal to either 2 or 3.

Proof. It follows immediately from Lemma 4.2.6.

Definition 4.2.8. Let α ∈ H2(Ck2 ,Z). We define R(α) = {g ∈ Ck2 | res〈g〉α 6= 0}.

Remark 4.2.9. Let Γ be an n-dimensional crystallographic group and its holonomy group

isomorphic to Ck2 . Let α ∈ H2(Ck2 ,Zn) be the cohomology class corresponds to Γ. Notice

that we have α ∼= α1 ⊕ · · · ⊕ αn where αj ∈ H2(Ck2 ,Mj) where j ∈ {1, ..., n} and Mj
∼= Z.

For any j ∈ {1, ..., n}, by Lemma 4.2.5, we have AΓ(g,Mj) = 1 if and only if g ∈ R(αj).

Proposition 4.2.10. Let 0 6= α ∈ H2(Ck2 ,Z) where Ck2 acts trivially on Z. Then we have

|R(α)| = 2k−1.

Proof. By Lemma 4.1.1, we have α ∼= α′ ∈ H1(Ck2 ,R/Z) and we can assume α′(g) ∈ {0, 1
2}.

Thus

|R(α)| =
∣∣∣∣{g ∈ Ck2 |α′(g) =

1

2

}∣∣∣∣
Since α 6= 0, there exists g ∈ Ck2 such that α′(g) = 1

2 . Let Ck2 = Ck−1
2 t gCk−1

2 where

Ck−1
2 ≤ Ck2 . For any h ∈ Ck−1

2 , we have

α′(gh) = α′(g) + α′(h) =

0 if α′(h) = 1
2

1
2 if α′(h) = 0

Thus |R| = |Ck−1
2 | = 2k−1
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Proposition 4.2.11. Let 0 6= β ∈ H2(Ck2 ,Z) where Ck2 acts non-trivially on Z via ρ :

Ck2 → GL(Z). Then |R(β)| = 2k−2.

Proof. Define α = resker(ρ)β ∈ H2(ker(ρ),Z). Since β 6= 0 and H2(〈g〉,Z) = 0 for all

g 6∈ ker(ρ), it follows that α 6= 0 and

|R(β)| = |{g ∈ Ck2 | res〈g〉β 6= 0}| = |{h ∈ ker(ρ) ∼= Ck−1
2 | res〈h〉α 6= 0}| = |R(α)|

By Proposition 4.2.10, we have |R(β)| = 2k−2.

Remark 4.2.12. Let Γ be an n-dimensional Bieberbach group of diagonal type where

its holonomy group isomorphic to Ck2 . An arbitrary column of AΓ corresponds to a co-

homology class α ∈ H2(Ck2 ,Z). By Proposition 4.2.10 and Proposition 4.2.11, we have

|R(α)| = 2k−2 or 2k−1. By Lemma 4.2.5, we can conclude that in every column of AΓ,

there exists at least 2k−2 entries are equal to 1.

Proposition 4.2.13. Let α ∈ H2(Ck2 ,Z) where Ck2 acts non-trivially on Z via ρ : Ck2 →
GL(Z). If T ⊆ R(α) with |T | ≥ 2k−3 + 1, then 〈T 〉 ∼= ker(ρ).

Proof. Since T ⊆ R(α) ⊆ ker(ρ), we have 〈T 〉 ≤ ker(ρ). We assume by contradiction

that 〈T 〉 � ker(ρ). Since |T | ≥ 2k−3 + 1, we have 〈T 〉 ∼= Ck−2
2 . Consider α′ = res〈T 〉α ∈

H2(Ck−2
2 ,Z). Recall that R(α′) = {h ∈ 〈T 〉 ∼= Ck−2

2 |res〈h〉α′ 6= 0}. By Proposition 4.2.10,

we have |R(α′)| = 2k−3. Since T ⊆ R(α′), we have

2k−3 + 1 ≤ |T | ≤ |R(α′)| = 2k−3

which is a contradiction.

Corollary 4.2.14. Let Γ be an n-dimensional Bieberbach group of diagonal type with its

holonomy group is isomorphic to Ck2 . Let

α1 ⊕ · · · ⊕ αn ∈ H2(Ck2 ,M1)⊕ · · · ⊕H2(Ck2 ,Mn)

be the cohomology class corresponding to standard extension of Γ where Mz
∼= Z for

z = 1, ..., n. Let ρz : Ck2 → GL(Mz) be the representations given by the Ck2 -action

on Mz and let R(αz) = {g ∈ Ck2 | res〈g〉αz 6= [0]} for all z = 1, ..., n. If there exists

i, j ∈ {1, ..., n} such that ρi and ρj are non-trivial representations and there exists a

subset T ⊆ R(αi) ∩R(αj) such that |T | ≥ 2k−3 + 1, then R(αi) = R(αj).

Proof. Let i, j ∈ {1, ..., n} such that ρi and ρj are non-trivial representation and there

exists a subset T ⊆ R(αi) ∩ R(αj) such that |T | ≥ 2k−3 + 1. By Proposition 4.2.13, we

have ker(ρi) ∼= 〈T 〉 ∼= ker(ρj). Since R(αi) ⊆ ker(ρi) ∼= 〈T 〉 and R(αj) ⊆ ker(ρj) ∼= 〈T 〉,
every element inside R(αi) ∪ R(αj) can be expressed as a combination of elements of T .

Let x = t1 · · · ts ∈ R(αi) where t1, ..., ts ∈ T . We have AΓ(x,Mi) = Fs
z=1AΓ(tz,Mi) and
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AΓ(x,Mj) = Fs
z=1AΓ(tz,Mj). Since T ⊆ R(αi)∩R(αj), we have AΓ(t,Mi) = AΓ(t,Mj) =

1 for any t ∈ T . Hence we have

AΓ(x,Mi) = Fs
z=1AΓ(tz,Mi) = Fs

z=1AΓ(tz,Mj) = AΓ(x,Mj)

By Remark 4.2.9, we have x ∈ R(αi) if and only if x ∈ R(αj). Hence R(αi) = R(αj).

4.3 Vasquez invariant of diagonal type

By Section 2.5 and [7, Chapter II], we know that the fundamental group of compact flat

Riemannian manifold is a Bieberbach group. Vasquez invariant allows one to determine

whether given flat Riemannian manifold fibers over a lower dimensional flat Riemannian

manifold with fibers flat tori [34].

Let M be a closed flat Riemannian manifold with the fundamental group π1(M) = Γ. Let

T k = Rn/Zn be a flat torus where Γ acts on it by isometries. Then Γ also acts on the

space M̃ ×T k by isometries, where M̃ is the universal cover of M . It is easy to show that

the space (M̃ × T k)/Γ is a flat manifolds (see [34, Section 2]). (M̃ × T k)/Γ is called the

flat toral extension of the manifolds M . We shall make the convention that a point is the

0-dimensional torus, and hence any flat manifold can be a flat toral extension of itself.

We first give the definition of Vasquez invariant introduced by A. T. Vasquez in [34].

Theorem 4.3.1. [34, Theorem 3.6] For any finite group G, there exists a natural number

x ∈ N with the property that if Γ is a Bieberbach group where its holonomy group is

isomorphic to G, then the lattice subgroup L ⊆ Γ contains a normal subgroup N such

that Γ/N is a Bieberbach group of dimension at most x.

Definition 4.3.2. Let G be a finite group and x ∈ N. We say x has property S(G) if for

every Bieberbach group Γ where its holonomy group is isomorphic to G, then its lattice

subgroup L ⊆ Γ contains a normal subgroup N such that Γ/N is a Bieberbach group of

dimension at most x. We define

n(G) = min{x ∈ N |x has property S(G)}

The number n(G) is called the Vasquez invariant or Vasquez number of the finite group

G.

We can reformulate the statement of Theorem 4.3.1 geometrically.

Theorem 4.3.3. [34, Theorem 4.1] For any finite group G, there exists a natural number

x ∈ N with the property that if M is any compact flat Riemannian manifolds with holon-

omy group G, then M is a flat toral extension of some compact flat Riemannian manifolds

of dimension at most x.

Definition 4.3.4. Let n ≥ 1 be a natural number. A ZG-lattice is any G-module isomor-

phic to a free abelian group Zn. Let M be a ZG-lattice where {e1, ..., en} is the generating

set of M . We say M is a diagonal ZG-lattice if g · ei = ±ei for all g ∈ G and i ∈ {1, ..., n}.
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By [32, Theorem 3], there is another way to define Vasquez invariant of finite groups.

Definition 4.3.5. Let G be a finite group and let L be ZG-lattice. An element α ∈
H2(G,L) is said to be special if its extension defines a Bieberbach group. ZG-lattice L has

property S if for any ZG-lattice M and any special element α ∈ H2(G,M), there exists a

G-homomorphism f : M → L such that f∗ : H2(G,M) → H2(G,L) sends α to another

special element f∗(α) ∈ H2(G,L). The Vasquez invariant of a finite group G is then

n(G) = min{rankZ(L) | L is ZG-lattice with property S}.

Let G be a finite group. By [10, Theorem 1], we have n(G) ≤
∑

C∈X |G : C| where X is

the set of conjugacy classes of G of prime order. In particular, by [10, Theorem 2], we

have n(G) =
∑

C∈X |G : C| if G is a p-group.

Remark 4.3.6. We get Theorem 1.0.3 by adapting Theorem 4.3.1 to the special case of

Bieberbach groups of diagonal type.

Remark 4.3.7. It is clear that 1 ≤ nd(G) ≤ n(G). Hence by [10, Theorem 2], we have

nd(C2) = 1.

Lemma 4.3.8. Let Γ be a n-dimensional Bieberbach group of diagonal type where its

holonomy group is isomorphic to G and let α ∈ H2(G,Zn) be the corresponding cohomol-

ogy class. Let f : Zn →M be a G-homomorphism such that f∗(α) is special. Then f∗(α)

defines a Bieberbach group of diagonal type.

Proof. Since Γ is a Bieberbach group of diagonal type, let {e1, ..., en} be a basis of Zn

such that g · ei = ±ei for all g ∈ G and i = 1, ..., n. It follows that M is generated by

f(e1), ..., f(en). The holonomy representation of the Bieberbach group defined by f∗(α) is

given by the G-action on M . Since f is a module homomorphism, for all g ∈ G and for

all i ∈ {1, ..., n} we have

g · f(ei) = f(g · ei) = f(±ei) = ±f(ei)

Hence f∗(α) defines a Bieberbach group of diagonal type.

By Lemma 4.3.8 and Theorem 4.3.1, we can reformulate Theorem 1.0.3 as follows.

Theorem 4.3.9. For any elementary abelian 2-group G, there exists a natural number

x ∈ N with the property that if Γ is a Bieberbach group of diagonal type where its

holonomy group is isomorphic to G, then the lattice subgroup L ⊆ Γ contains a normal

subgroup N such that Γ/N is a Bieberbach group of diagonal type with dimension at most

x.

Remark 4.3.10. Let G be an elementary abelian 2-group and let L be a diagonal faithful

ZG-lattice (G acts faithfully on L). Let α ∈ H2(G,L) be cohomology class defines Γ,

a Bieberbach group of diagonal type where its holonomy group is isomorphic to G. By

Theorem 4.3.9, there exists a normal subgroup N E L such that Γ/N is a Bieberbach
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group of diagonal type with dimensional at most nd(G). In other words, we can define

a G-homomorphism f : L → L/N such that f∗ : H2(G,L) → H2(G,L/N) sends α to

another special element f∗(α) which defines a Bieberbach group of diagonal type with

dimension at most nd(G). Besides, L/N is a diagonal ZG-lattice of rank at most nd(G).

Definition 4.3.11. Let G be an elementary abelian 2-group and let L be a diagonal ZG-

lattice. An element α ∈ H2(G,L) is said to be a diagonal special element if its extension

defines a Bieberbach group of diagonal type. We say a diagonal ZG-lattice L has property

Sd if for any diagonal ZG-lattice M and any diagonal special element α ∈ H2(G,M), there

exists a G-homomorphism f : M → L such that f∗ : H2(G,M) → H2(G,L) sends α to

another diagonal special element f∗(α).

Theorem 4.3.12. Let G be an elementary abelian 2-group. Define

n′d(G) = min{rankZ(L) | L is a diagonal ZG-lattice with property Sd}

Then we have nd(G) = n′d(G).

Proof. By definition, it is clear that nd(G) ≤ n′d(G). Now we want to prove that n′d(G) ≤
nd(G). Let L be a diagonal ZG-lattice of minimal rank with property Sd. In other

words, rankZ(L) = n′d(G). Let M be any diagonal ZG-lattice and α ∈ H2(G,M) be any

diagonal special element. Since L has property Sd and by Definition 4.3.11, there exists a

G-homomorphism g : M → L such that g∗(α) ∈ H2(G,L) is a diagonal special element.

First, we assume L is a faithful diagonal ZG-lattice (G acts faithfully on L). Since L is

faithful, by Remark 4.3.10, there exists a diagonal ZG-lattice K with rankZ(K) ≤ nd(G)

and a G-homomorphism h : L → K such that h∗(g∗(α)) is a special element defining a

Bieberbach group of diagonal type. Hence K is a diagonal ZG-lattice with property Sd.
It follows that n′d(G) ≤ rankZ(K). Therefore we have n′d(G) ≤ rankZ(K) ≤ nd(G).

Now assume L is not a faithful diagonal ZG-lattice. Let P be a faithful diagonal ZG-lattice.

Consider the faithful diagonal ZG-lattice L⊕P . We have g∗(α)⊕0 ∈ H2(G,L)⊕H2(G,P )

is a diagonal special element. By Remark 4.3.10, there exists a diagonal ZG-lattice N with

rankZ(N) ≤ nd(G) and a G-homomorphism f : L ⊕ P → N such that f∗(g∗(α) ⊕ 0) ∈
H2(G,N) is special. Since

HomG(L⊕ P,N) ∼= HomG(L,N)⊕HomG(P,N),

we can let f = f1 ⊕ f2 where f1 ∈ HomG(L,N) and f2 ∈ HomG(P,N). Therefore,

f∗(g∗(α)⊕0) = (f1)∗(g∗(α)). Thus N is a diagonal ZG-lattice with property Sd. It follows

that n′d(G) ≤ rankZ(N). Hence we have n′d(G) ≤ nd(G).

4.4 Proofs of Theorems D and E

In this section, given a Bieberbach group Γ of diagonal type, we will analyse the char-

acteristic matrix AΓ to determine whether there exists a normal subgroup such that the

quotient is still a Bieberbach group.
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Definition 4.4.1. Let Γ be an n-dimensional Bieberbach group of diagonal type. The

characteristic matrix AΓ is said to be col-reducible (by ith column) if after removing a

column (ith column) from AΓ, there still exists an entry equals to 1 in every row. We say

AΓ is col-irreducible if it is not col-reducible.

Lemma 4.4.2. Let f : M1 ⊕ · · · ⊕Mn → M1 ⊕ · · · ⊕Mn be a Ck2 -homomorphism where

M1, . . . ,Mn are all Ck2 -lattices of rank one. Let ei be the generator of Mi and ρi : Ck2 →
GL(Mi) be the representation defining the Ck2 -action on Mi for all 1 ≤ i ≤ n. For any

i ∈ {1, ..., n}, if there exists t ≥ 2 and i1, ..., it ∈ {1, ..., n} such that f(ei) = ai1ei1+· · · aiteit
where ai1 , ..., ait 6= 0, then ker(ρi1) = · · · = ker(ρit).

Proof. Let i ∈ {1, ..., n} such that there exists t ≥ 2 and i1, ..., it ∈ {1, ..., n} such that

f(ei) = ai1ei1 + · · · aiteit where ai1 , ..., ait 6= 0. For any g ∈ Ck2 that acts trivially on Mi,

since f is a Ck2 -homomorphism, we have∑
1≤z≤t

aiz(g · eiz) = g ·
∑

1≤z≤t
aizeiz = g · f(ei) = f(g · ei) = f(ei) =

∑
1≤z≤t

aizeiz

Thus g · eiz = eiz for all z ∈ {1, ..., t}. It follows that g ∈ ker(ρiz) for all z ∈ {1, ..., t}. For

each h ∈ Ck2 that acts non-trivially on Mi, by similar calculation, we get∑
1≤z≤t

aiz(h · eiz) = h ·
∑

1≤z≤t
aizeiz = h · f(ei) = f(h · ei) = f(−ei) =

∑
1≤z≤t

−aizeiz

It follows that h ·eiz = −eiz for all z ∈ {1, ..., t}. Therefore h 6∈ ker(ρiz) for all z ∈ {1, ...t}.
Hence we can conclude that ker(ρi1) = · · · = ker(ρit).

Corollary 4.4.3. Let Γ be an n-dimensional Bieberbach group of diagonal type where

its holonomy group is isomorphic to Ck2 and α ∈ H2(Ck2 ,⊕1≤i≤nMi) be the corresponding

cohomology class where Mi
∼= Z. Let ρi : Ck2 → GL(Mi) be the representation given

by the Ck2 -action on Mi for all 1 ≤ i ≤ n. If ker(ρi) 6= ker(ρj) for all i 6= j and AΓ is

col-irreducible, then there does not exist a Ck2 -homomorphism f : Zn → Zs where s < n

such that f∗(α) is special.

Proof. Assume by contradiction that there exists a Ck2 -homomorphism f : Zn → Zs where

s < n such that f∗(α) is special. Assume α = α1 ⊕ · · · ⊕ αn where αi ∈ H2(Ck2 ,Mi) for

1 ≤ i ≤ n. We have f∗(α) = f∗(α1) ⊕ · · · ⊕ f∗(αn). Let ei be the generator of Mi for

1 ≤ i ≤ n. For any i ∈ {1, ..., n}, since f is a module homomorphism, there exists t ≥ 1,

i1, ..., it ∈ {1, ..., n} and ai1 , ..., ait ∈ Z such that f(ei) = ai1ei1 + · · · + aiteit . By Lemma

4.4.2, if t ≥ 2, we have ker(ρi1) = · · · = ker(ρit), which contradicts that the kernels of ρi

are all distinct for 1 ≤ i ≤ n. Therefore we can assume the homomorphism f has form

f(ei) = ai′ei′ for 1 ≤ i ≤ n where i′ ∈ {1, ..., n} and ai′ ∈ Z. By Lemma 4.1.1, we have

f∗(αi) = ai′αi′ =

αi′ if ai′ is odd

0 otherwise
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Let S = {x ∈ {1, ..., n} | ax′ is odd} = {s1, ..., sr} for some r ∈ Z. We have r ≥ 1,

otherwise f∗(α) = 0 which is a contradiction. We have f∗(α) = αs′1 ⊕ · · · ⊕ αs′r . Let Γ′

be the Bieberbach group defined by the cohomology class f∗(α). We can construct the

matrix AΓ′ by defining the ith column of the matrix AΓ′ equals to the (s′i)
th column of

AΓ. Since Γ′ is Bieberbach group, by Lemma 4.2.6, there exists an entry equals to 1 in

every row of AΓ′ . Since r ≤ s < n, there exists i ∈ {1, .., n} such after removing the ith

column of AΓ, there still exists an entry equals to 1 in every row. It contradicts that AΓ

is col-irreducible.

Remark 4.4.4. Using the same notation as above, consider the characteristic matrix AΓ.

Define a map φ : {0, 1, 2, 3} → {a, b} such that φ(0) = φ(1) = a and φ(2) = φ(3) = b.

Define ψ(AΓ) be a (2k − 1) × n matrix such that [ψ(AΓ)]ij = φ([AΓ]ij). Observe that

ker(ρs) = ker(ρt) if and only if the sth column of ψ(AΓ) is equal to the jth column of

ψ(AΓ).

Proposition 4.4.5. Let Γ be an n-dimensional Bieberbach group with holonomy group

isomorphic to Ck2 and let AΓ be a characteristic matrix . The matrix AΓ is col-irreducible

if and only if AΓ is equivalent to

(
X

N

)
where X is an n× n matrix such that all diagonal

entries are equal to 1 and other entries are not equal to 1.

Proof. First, we want to prove that

(
X

N

)
is col-irreducible. For any i ∈ {1, ..., n}, if

we remove the ith column of

(
X

N

)
, then the ith row of the of new matrix do not have

entries equal to 1. Hence we conclude that

(
X

N

)
is col-irreducible. Now, we assume AΓ is

col-irreducible. For any i ∈ {1, ..., n}, we consider the ith column of AΓ. By definition of

col-irreducible, if we remove the ith column of AΓ, there exists ri ∈ {1, ..., 2k−1} such that

the rthi row of the new matrix do not have entries equal to 1. By Corollary 4.2.7, the rthi

row of AΓ has at least one entry equal to 1. Therefore we can conclude that (AΓ)ri,i = 1

and (AΓ)ri,s 6= 1 for all s 6= i. Notice that we have ri 6= rj for any j ∈ {1, ..., n} where

i 6= j. We define a new matrix A′Γ as follow. We define the ith row of A′Γ to be the rthi

row of AΓ. Since we have A′Γ =

(
X

N

)
, we conclude that AΓ is equivalent to

(
X

N

)
.

Lemma 4.4.6. Let Γ be an n-dimensional Bieberbach group of diagonal type with its

holonomy group is isomorphic to Ck2 and let Γ ∩ (In × Rn) = 〈e1, ..., en〉 ∼= Zn. If AΓ is

col-reducible by ith column, then Γ/〈ei〉 is a Bieberbach group of diagonal type.

Proof. We define a Ck2 -homomorphism f : Zn → Zn−1 such that f(ei) = 0 and f(ej) = ej

for all j 6= i. Let

α = ⊕1≤z≤nαz ∈ H2(Ck2 ,⊕1≤z≤nMz)
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be the cohomology class defining Γ. We have

f∗(α) = α1 ⊕ · · · ⊕ αi−1 ⊕ αi+1 ⊕ · · · ⊕ αn

and f∗(α) is defining the Bieberbach group Γ/〈ei〉. The characteristic matrix correspond-

ing to Γ/〈ei〉 can be obtained by removing the ith column of AΓ. Since AΓ is col-reducible

by ith column, every row of AΓ/〈ei〉 has at least one entry equal to 1. Therefore Γ/〈ei〉 is

a Bieberbach group. By Lemma 4.3.8, Γ/〈ei〉 is a Bieberbach group of diagonal type.

Corollary 4.4.7. Let k ≥ 1, we have nd(C
k
2 ) ≤ 2k − 1.

Proof. Assume by contradiction that there exists Γ, an n-dimensional Bieberbach group

of diagonal type with its holonomy group isomorphic to Ck2 where n ≥ 2k such that Γ/N is

not a Bieberbach group for all normal subgroup N ≤ Γ ∩ Rn. Consider the characteristic

matrix AΓ of Γ. By Proposition 4.4.5, AΓ cannot be col-irreducible. Thus AΓ is col-

reducible. By Lemma 4.4.6, there exists a normal subgroup N ≤ Γ∩Rn such that Γ/N is

a Bieberbach group, which is a contradiction.

Proposition 4.4.8. Let Γ be an n-dimensional Bieberbach group of diagonal type with

holonomy group isomorphic to Ck2 . If n ≥ 5·2k−3+2 where k ≥ 3, then AΓ is col-reducible.

Proof. Let α = ⊕1≤z≤nαz ∈ H2(Ck2 ,⊕1≤z≤nMz) be the cohomology class corresponding

to Γ, where Mi
∼= Z for all 1 ≤ i ≤ n. Assume by contradiction that AΓ is col-irreducible.

By Proposition 4.4.5, AΓ is equivalent to

(
X

N

)
where X is an n× n matrix such that all

diagonal entries are equal to 1 and other entries are not equal to 1 and N is a matrix with

2k − 1− n rows. Since Ck2 is acting faithfully on Zn, there exists i, j ∈ {1, ..., n} such that

Ck2 acts non-trivially on both Mi and Mj where i 6= j. Consider the ith and jth columns

of N . By Proposition 4.2.11, the ith and jth columns of N has 2k−2− 1 entries equal to 1.

Since k ≥ 3, we ensure that the ith and jth columns of N has at least one entry equal to

1. Define

z = |{m ∈ {1, ..., 2k − 1− n} |Nm,i = Nm,j = 1}|

and observe that we have

2k−2 − 1− z = |{m ∈ {1, ..., 2k − 1− n} |Nm,i = 1, Nm,j 6= 1}|

and

2k−2 − 1− z = |{m ∈ {1, ..., 2k − 1− n} |Nm,i 6= 1, Nm,j = 1}|

Since N has 2k − 1− n rows, we have

2(2k−2 − 1− z) + z ≤ 2k − 1− n

By re-arranging the above inequality, we get

n− 2k−1 − 1 ≤ z
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Since n ≥ 5 · 2k−3 + 2, it follows that

z ≥ 5 · 2k−3 + 2− 2k−1 + 1 = 2k−3 + 1

Thus

|{g ∈ Ck2 |AΓ(g,Mi) = AΓ(g,Mj) = 1}| ≥ 2k−3 + 1

By Corollary 4.2.14, we have

{g ∈ Ck2 | res〈g〉αi 6= 0} = {g ∈ Ck2 | res〈g〉αj 6= 0}

It contradicts that X is a matrix where all diagonal entries are equal to 1 and other entries

are not equal to 1.

In the next two propositions, we obtain upper and lower bounds for the diagonal Vasquez

number.

Proposition 4.4.9. For k ≥ 3, the upper bound of diagonal Vasquez invariant is given

by nd(C
k
2 ) ≤ 5 · 2k−3 + 1.

Proof. We proceed by induction. First, consider the base case where k = 3. Let Γ be

an n-dimensional Bieberbach group of diagonal type with holonomy group isomorphic to

C3
2 where n ≥ 7. Let α ∈ H2(C3

2 ,Zn) be the cohomology class defining Γ. By Corollary

4.4.7, we have nd(C
3
2 ) ≤ 7. Hence there exists a C3

2 -homomorphism f : Zn → Zm where

m ≤ 7 such that f∗(α) is special. By Lemma 4.3.8, f∗(α) defines a Bieberbach group

of diagonal type. We remain to show that if Γ′ is a 7-dimensional Bieberbach group of

diagonal type with holonomy group isomorphic to C3
2 and corresponds to cohomology

class β ∈ H2(C3
2 ,Z7), then there exists a C3

2 -homomorphism g : Z7 → Zs where s ≤ 6

such that g∗(β) is special. We assume by contradiction that there does not exist such

homomorphism g. By Lemma 4.4.6, AΓ′ is col-irreducible. By Proposition 4.4.5, AΓ′ is

equivalent to the 7-dimensional square matrix such that all diagonal entries equal to 1

and all other entries are not equal to 1. This contradicts Remark 4.2.12. Hence we can

conclude that there always exists a C3
2 -homomorphism g : Z7 → Zs where s ≤ 6 such that

g∗(β) is special. Therefore we have nd(C
3
2 ) ≤ 6.

We assume the statement is true for k ≤ t− 1. Now we consider the case where k = t.

Let Γ be an n-dimensional Bieberbach group with its holonomy group isomorphic to Ct2

where n ≥ 5 · 2t−3 + 2. Let

α = α1 ⊕ · · · ⊕ αn ∈ H2(Ct2,M1 ⊕ · · · ⊕Mn)

be the cohomology class corresponding to the standard extension of Γ. We want to show

that there exists a Ct2-homomorphism f such that f∗(α) corresponds to a Bieberbach

group of dimension at most 5 · 2t−3 + 1. Since n ≥ 5 · 2t−3 + 2, by Proposition 4.4.8, AΓ is

col-reducible. By Lemma 4.4.6, there exists a module homomorphism f1 : Zn → Zn−1 such

that (f1)∗(α) defines a Bieberbach group of diagonal type Γ1. If dim(Γ1) ≥ 5 · 2t−3 + 2
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and holonomy group of Γ is isomorphic to Ct2, then by Proposition 4.4.8 and Lemma

4.4.6, there exists f2 : Zn−1 → Zn−2 such that (f2 ◦ f1)∗(α) defines a Bieberbach group

of diagonal type. Inductively, there exists r ∈ Z and we can define fi : Zn−i+1 → Zn−i

for i = 1, ..., r such that (fr ◦ · · · ◦ f1)∗(α) defines a Bieberbach group of diagonal type

Γr, either dim(Γr) ≤ 5 · 2t−3 + 1 or the holonomy group of Γr is isomorphic to G � Ct2.

We remain to consider the second case where the holonomy group of Γr is isomorphic to

a proper subgroup of Ct2. By induction hypothesis, there exists a module homomorphism

g : Zdim(Γr) → Zs such that (g ◦ fr ◦ · · · ◦ f1)∗(α) defines a Bieberbach group of dimension

at most 5 · 2t−4 + 1. Hence we conclude that there exists a Ct2-homomorphism f such that

f∗(α) defines a Bieberbach group of dimension at most 5 · 2t−3 + 1.

Proposition 4.4.10. Let Γ be a Bieberbach group of diagonal type with holonomy group

isomorphic to Ck2 where k ≥ 2. Then

nd(C
k
2 ) ≥


k(k+1)

2 if k is even

k(k+1)
2 − 1 if k is odd

Proof. First, we assume k is even. We are going to construct a matrix AΓ and show that

it defines Γ, a k(k+1)
2 -dimensional Bieberbach group of diagonal type such that there does

not exist a Ck2 -homomorphism f such that f∗(α) defines a smaller dimensional Bieberbach

group where α is the cohomology class defining Γ.

Define a (k × k)-matrix Q such that

Qij =

1 if i = j

2 if i 6= j

for 1 ≤ i ≤ k and 1 ≤ j ≤ k. Let S = {(a, b) ∈ {1, ..., k} × {1, ..., k} | a < b}. It is easy to

see that |S| = k(k−1)
2 . Let sj = (s

(1)
j , s

(2)
j ) for 1 ≤ j ≤ k(k−1)

2 be all elements of S. Define

a (k × k(k−1)
2 )-matrix N such that

Nij =


2 if i = s

(1)
j

3 if i = s
(2)
j

0 otherwise

where 1 ≤ i ≤ k and 1 ≤ j ≤ k(k−1)
2 . In other words, fix j ∈ {1, ..., k(k−1)

2 } and consider

the jth column of N . The (s
(1)
j )th entry of the jth column of N is equal to 2, the (s

(2)
j )th

entry of the jth column of N is equal to 3 and all other entries of the jth column of N is

equal to 0.

Define a (k× k(k+1)
2 )-matrix A =

(
Q N

)
by combining Q and N together. Let g1, ..., gk

be generators of Ck2 and Mz
∼= Z for all 1 ≤ z ≤ k(k+1)

2 . We define AΓ(gi,Mj) = Ai,j for

1 ≤ i ≤ k and 1 ≤ j ≤ k(k+1)
2 . By Remark 4.2.2, we can construct a ((2k − 1) × k(k+1)

2 )-

matrix AΓ.
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For example, we assume k = 2. We have S = {s1 = (1, 2)}. We define Q, N and A as

below,

Q =

(
1 2

2 1

)
, N =

(
2

3

)
and A =

(
1 2 2

2 1 3

)
and the third row of AΓ can be calculated by ”adding” the first two row together. We get


r1 1 2 2

r2 2 1 3

r1 ? r2 3 3 1

 = AΓ

We denote the ith row of A to be ri.

Now we are going to show that AΓ defines a k(k+1)
2 -dimensional Bieberbach group of

diagonal type Γ by using Lemma 4.2.6. Let r be an arbitrary row of AΓ. There exists m ∈
{1, ..., k} and 1 ≤ i1 < ... < im ≤ k such that the row can be expressed as r = ri1 ? · · ·?rim .

Notice that the jth column of the row r equals to AΓ(gi1 · · · gim ,Mj) and

AΓ(gi1 · · · gim ,Mj) = F1≤z≤mAΓ(giz ,Mj)

We claim that there exists c1, c2 ∈ {1, ..., k(k+1)
2 } such that AΓ(gi1 · · · gim ,Mc1) = 1 and

AΓ(gi1 · · · gim ,Mc1) ∈ {2, 3}. In other words, we claim that there exists an entry on the

row equals to 1 and there exists an entry on the row equals to 2 or 3. By Lemma 4.2.6,

we can conclude that AΓ defines a k(k+1)
2 -dimensional Bieberbach group of diagonal type

where its holonomy group isomorphic to Ck2 .

We are going to prove the claim now. First, it is clear the claim is true for m = 1.

Now, we assume 2 ≤ m ≤ k. There exists j ∈ {1, ..., k(k−1)
2 } such that sj = (i1, i2) ∈ S.

Then we have

AΓ(gi1 · · · gim ,Mk+j) = Fm
z=1AΓ(giz ,Mk+j) = 0 ? · · · ? 2 ? 0 ? · · · ? 0 ? 3 ? 0 ? · · · ? 0 = 1

Next, we are going to show there exists an entry equals to 2 or 3 in row r. If m is odd,

then there exists i ∈ {1, ..., k} − {i1, ..., im}. Thus we have

AΓ(gi1 · · · gim ,Mi) = Fm
z=1AΓ(giz ,Mi) =

odd copies︷ ︸︸ ︷
2 ? · · · ? 2 = 2

If m is even, then we have

AΓ(gi1 · · · gim ,Mi1) = Fm
z=1AΓ(giz ,Mi1) =

odd copies of 2︷ ︸︸ ︷
2 ? · · · ? 2 ? 1 ? 2 ? · · · ? 2 = 3

Thus, our claim is true. By Lemma 4.2.6, the matrix AΓ defines a k(k+1)
2 -dimensional

Bieberbach group of diagonal type where its holonomy group isomorphic to Ck2 . Next,

70



notice that AΓ is equivalent to

r1

...

rk

r
s
(1)
1

? r
s
(2)
1

...

r
s
(1)
k(k−1)

2

? r
s
(2)
k(k−1)

2

P


=

(
X

P

)

where X is a (k(k+1)
2 × k(k+1)

2 ) matrix such that the diagonal entries all equals to 1 and

all other entries are not equal to 1. By Proposition 4.4.5, we can conclude that AΓ is

col-irreducible. Let ρi : Ck2 → GL(Mi) be the representation given by the Ck2 -action

on Mi for all 1 ≤ i ≤ k(k+1)
2 . By Remark 4.4.4, observe that columns of ψ(AΓ) are all

distinct. Therefore ρi 6= ρj for all i 6= j. by Corollary 4.4.3, there does not exist an Ck2 -

homomorphism f such that f∗(α) defines a smaller dimensional Bieberbach group where

α is the cohomology class defining Γ. Hence we have nd(C
k
2 ) ≥ k(k+1)

2 if k is even.

Now, we assume k is odd. We are going to construct a matrix AΓ and show that it defines

Γ, a (k(k+1)
2 − 1)-dimensional Bieberbach group of diagonal type such that there does not

exist a Ck2 -homomorphism f such that f∗(α) defines a smaller dimensional Bieberbach

group where α is the cohomology class defining Γ.

Define a (k × k)-matrix Q where

Qij =

1 if i = j

2 if i 6= j

for 1 ≤ i ≤ k and 1 ≤ j ≤ k. Let S′ = {(a, b) ∈ {1, ..., k}×{1, ..., k}|a < b}−{(1, 2), (1, 3)}.
It is easy to see that |S′| = k(k−1)

2 − 2. Let s′j = (s
′(1)
j , s

′(2)
j ) for 1 ≤ j ≤ k(k−1)

2 − 2 be all

elements of S′. Define a (k × (k(k−1)
2 − 2))-matrix N where

Nij =


2 if i = s

′(1)
j

3 if i = s
′(2)
j

0 otherwise

Define a k × (k(k+1)
2 − 1) matrix A such that

A =


Q N

2

3

3

0
...

0


.
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Let g1, ..., gk be generators of Ck2 and Mz
∼= Z for 1 ≤ z ≤ k(k+1)

2 − 1. We define

AΓ(gi,Mj) = Ai,j . By Remark 4.2.2, we can construct a ((2k − 1)× (k(k+1)
2 − 1))-matrix

AΓ. For example, if k = 3, we have

A =

1 2 2 0 2

2 1 2 2 3

2 2 1 3 3


and



r1 1 2 2 0 2

r2 2 1 2 2 3

r3 2 2 1 3 3

r1 ? r2 3 3 0 2 1

r1 ? r3 3 0 3 3 1

r2 ? r3 0 3 3 1 0

r1 ? r2 ? r3 1 1 1 1 2


= AΓ

We denote the ith row of A to be ri.

Now we are going to show that AΓ defines a (k(k+1)
2 − 1)-dimensional Bieberbach group

of diagonal type Γ by using Lemma 4.2.6. Let r be an arbitrary row of AΓ. There

exists m ∈ {1, ..., k} and 1 ≤ i1 < ... < im ≤ k such that the row can be expressed as

r = ri1 ? · · · ? rim . Notice that the jth column of the row r equals to AΓ(gi1 · · · gim ,Mj)

and

AΓ(gi1 · · · gim ,Mj) = F1≤z≤mAΓ(giz ,Mj)

We claim that there exists c1, c2 ∈ {1, ..., k(k+1)
2 −1} such that AΓ(gi1 · · · gim ,Mc1) = 1 and

AΓ(gi1 · · · gim ,Mc1) ∈ {2, 3}. In other words, we claim that there exists an entry on the

row r equals to 1 and there exists an entry on the row r equals to 2 or 3. By Lemma 4.2.6,

we can conclude that AΓ defines a (k(k+1)
2 − 1)-dimensional Bieberbach group of diagonal

type where its holonomy group isomorphic to Ck2 .

We are going to prove the claim now. First, it is clear that the claim is true for m = 1.

Next, we assume 2 ≤ m ≤ k − 1. If (im−1, im) ∈ {(1, 2), (1, 3)}, then m = 2 and we have

AΓ(gi1gi2 ,M k(k+1)
2
−1

) = AΓ(gi1 ,M k(k+1)
2
−1

) ? AΓ(gi2 ,M k(k+1)
2
−1

) = 2 ? 3 = 1

If (im−1, im) 6∈ {(1, 2), (1, 3)}, then there exists j ∈ {1, ..., k(k−1)
2 − 2} such that s′j =

(im−1, im) ∈ S′. Then we have

AΓ(gi1 · · · gim ,Mk+j) = Fm
z=1AΓ(giz ,Mk+j) = 0 ? · · · ? 2 ? 0 ? · · · ? 0 ? 3 ? 0 ? · · · ? 0 = 1

Next, we are going to show there exists an entry equals to 2 or 3 in row r. If m is even,

we have

AΓ(gi1 · · · gim ,Mi1) = Fk
z=1AΓ(giz ,Mi1) =

odd copies of 2︷ ︸︸ ︷
2 ? · · · ? 2 ? 1 ? 2 ? · · · ? 2 = 3
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If m = k, then

AΓ(g1 · · · gk,M k(k+1)
2
−1

) = Fk
z=1AΓ(gz,M k(k+1)

2
−1

) = 2 ? 3 ? 3 ? 0 ? · · · ? 0 = 2

If m is odd and m 6= k, then there exists i ∈ {1, ..., k} − {i1, ..., im} and we have

AΓ(gi1 · · · gim ,Mi) = Fk
z=1AΓ(giz ,Mi) =

odd copies︷ ︸︸ ︷
2 ? · · · ? 2 = 2

Thus, our claim is true. By Lemma 4.2.6, AΓ defines a (k(k+1)
2 −1)-dimensional Bieberbach

group of diagonal type Γ where its holonomy group isomorphic to Ck2 .

Next, notice that AΓ is equivalent to

r1

...

rk

r
s
′(1)
1

? r
s
′(2)
1

...

r
s
′(1)
k(k−1)

2 −2

? r
s
′(2)
k(k−1)

2 −2

r1 ? r2

P



=

(
X

P

)

where X is a ((k(k+1)
2 − 1)× (k(k+1)

2 − 1)) matrix such that the diagonal entries all equals

to 1 and all other entries are not equal to 1. By Proposition 4.4.5, we can conclude that

AΓ is col-irreducible. Let ρi : Ck2 → GL(Mi) be the representation given by the Ck2 -action

on Mi for all 1 ≤ i ≤ k(k+1)
2 − 1. By Remark 4.4.4, observe that columns of ψ(AΓ) are

all distinct. Therefore ρi 6= ρj for all i 6= j. by Corollary 4.4.3, there does not exist

an Ck2 -homomorphism f such that f∗(α) defines a smaller dimensional Bieberbach group

where α is the cohomology class defining Γ. Hence we have nd(C
k
2 ) ≥ k(k+1)

2 − 1 if k is

odd.

By combining Proposition 4.4.9 and Proposition 4.4.10, we get Theorem D.

Proof of Theorem E. By Remark 4.3.7, the theorem holds for k = 1.

Now assume k = 2. By Theorem D, we have nd(C
2
2 ) ≥ 3. By Corollary 4.4.7, we have

nd(C
2
2 ) ≤ 22 − 1 = 3 and thus nd(C

2
2 ) = 3.

Now we assume k = 3. By Theorem D, we have 5 ≤ nd(C
3
2 ) ≤ 6. It remains to show

that if Γ′ is a 6-dimensional Bieberbach group of diagonal type with holonomy isomorphic

to C3
2 where α′ ∈ H2(C3

2 ,Z6) is the corresponding cohomology class, then there exists

f : Z6 → Z5 such that f∗(α
′) is special. Assume by contradiction that there does not

exist such f and hence we assume AΓ′1
is col-irreducible. By Proposition 4.4.5, AΓ is
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equivalent to

(
X

N

)
where the diagonal entries of X is the only entries equal to 1 and N

is a row matrix. By Remark 4.2.12, each column of AΓ has at least 2 entries equal 1. It

forces N is a row matrix with all entries equal to 1. Hence the element of the holonomy

group corresponds to that row acts trivially on Z6 which contradicts that the holonomy

representation of Γ is faithful. We conclude that nd(C
3
2 ) = 5.

Now we assume k = 4. By Theorem D, we have 10 ≤ nd(C
4
2 ) ≤ 11. We remain to show

that if Γ′ is a 11-dimensional Bieberbach group of diagonal type with holonomy group

isomorphic to C4
2 where α′ ∈ H2(C4

2 ,M1 ⊕ · · · ⊕M11) where Mj
∼= Z for j = 1, ..., 11 is

the corresponding cohomology class, then there exists a C4
2 -homomorphism f : Z11 → Z10

such that f∗(α
′) is special. Assume by contradiction that there does not exist such f .

By Lemma 4.4.6, the characteristic matrix AΓ′ is col-irreducible. By Proposition 4.4.5,

we assume AΓ′ is equivalent to

(
X

N

)
where the diagonal entries of X is the only entries

equal to 1 and N is a row matrix and N is matrix with four rows. By Remark 4.2.12,

each column of AΓ′ has either 4 or 8 entries equal to 1. It forces each column of N has 3

entries equal to 1. Since N has eleven columns, there exists i, j ∈ {1, ..., 11} such that

|{g ∈ C4
2 | AΓ′(g,Mi) = AΓ′(g,Mj) = 1}| = 3.

By Corollary 4.2.14, we have

{g ∈ C4
2 | AΓ′(g,Mi) = 1} = {g ∈ C4

2 | AΓ′(g,Mj) = 1}

It follows that AΓ′ is col-reducible, which is a contradiction. Hence nd(C
4
2 ) = 10.
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Chapter 5

Diffuseness of Bieberbach groups

5.1 introduction

In this chapter, we will discuss diffuseness property of Bieberbach groups. First, we recall

the definition of diffuseness.

Let G be a group, A ⊆ G be a subset. We define

∆(A) = {a ∈ A | for all γ ∈ Γ, either γa 6∈ A or γ−1a 6∈ A}

We say G is diffuse if for any subset A ⊆ G with 2 ≤ |A| < ∞, we have |∆(A)| ≥ 2. We

say G is weakly diffuse if for any subset A ⊆ G with 1 ≤ |A| < ∞, we have |∆(A)| ≥ 1.

We say G is non-diffuse if it is not diffuse.

Definition 5.1.1. Let G be a group and A ⊆ G be a non-empty finite subset. We say A

is a ravel if ∆(A) = ø.

Remark 5.1.2. By definition, we can see that all finite subgroup is non-diffuse. Let Γ

be a group and let N ≤ Γ. By definition of diffuseness, if N is non-diffuse, then Γ is

non-diffuse. Thus if Γ is diffuse, then Γ is torsion-free.

Let Γ be a group and let X be a set. We say X is a Γ-set if there is an action on X by

the group Γ. Given x ∈ X, we define

Γ(x) = {γ ∈ Γ | γx = x}

Suppose X is a Γ-set. Given any subset A ⊆ X, we define

∆Γ(A) = {a ∈ A | if γ ∈ Γ satisfies γa, γ−1 ∈ A, then γa = a}

We say X is diffuse as a Γ-set if given any finite subset A ⊆ X with 2 ≤ |A| < ∞, then

|∆Γ(A)| ≥ 2

Lemma 5.1.3. Let Γ be a group. We view Γ as a Γ-set where the structure of the Γ-set

is given by left multiplication. We have Γ is diffuse if and only if Γ is diffuse as Γ-set.
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Proof. It is sufficient to show that ∆(A) = ∆Γ(A) for any finite subset A ⊆ X with

2 ≤ |A| < ∞. Let x ∈ ∆(A). If γ ∈ Γ satisfies γx, γ−1x ∈ A, then γ is the identity

element because x ∈ ∆(A). Thus we have γx = x. Hence ∆(A) ⊆ ∆Γ(A). For the reverse

direction, we assume by contradiction that x 6∈ ∆(A) and x ∈ ∆Γ(A). Since x 6∈ ∆(A),

there exists γ ∈ Γ/{1} such that γx, γ−1x ∈ A. Since x ∈ ∆Γ(A) and γx, γ−1x ∈ A,

we have γx = x. Thus γ = 1 which is a contradiction. Hence we have ∆Γ(A) ⊆ ∆(A).

Therefore ∆(A) = ∆Γ(A).

A morphism between two Γ-sets X and Y is a map f : X → Y such that f(γx) = γf(x)

for all x ∈ X and γ ∈ Γ. Note that if y ∈ Y , then f−1y has the structure of Γ(y)-set.

Lemma 5.1.4. [4, Lemma 2.1] Let Γ be a group and suppose X and Y are Γ set. Let

f : X → Y be a morphism between two Γ-set. If Y is diffuse as a Γ-set and that f−1y is

diffuse as Γ(y)-set for all y ∈ Y , then X is diffuse as a Γ-set.

Proof. Let A be an arbitrary finite subset of X such that 2 ≤ |A| < ∞ and define

B = f(A) ⊆ Y . Our aim is to show that |∆Γ(A)| ≥ 2.

First, we assume |B| ≥ 2. Since Y is diffuse as Γ-set, we have |∆Γ(B)| ≥ 2. Let b ∈ ∆Γ(B).

Suppose |A ∩ f−1b| ≥ 2. Since A ∩ f−1b ⊆ f−1b and f−1b is diffuse as Γ(b)-set, we have

|∆Γ(b)(A∩f−1b)| ≥ 2. Let a ∈ ∆Γ(b)(A∩f−1b), we claim that a ∈ ∆Γ(A). If γ ∈ Γ satisfies

γa, γ−1a ∈ A, then f(γa) = γf(a) = γb ∈ B and f(γ−1a) = γ−1b ∈ B. Since b ∈ ∆Γ(B),

we have γb = b. Thus γ ∈ Γ(b) and γa, γ−1a ∈ A ∩ f−1b. It follows that γa = a because

a ∈ ∆Γ(b)(A ∩ f−1b). Therefore we have a ∈ ∆Γ(A). By similar argument, if f−1 = {a}
for some a ∈ A. then a ∈ ∆Γ(A). In either case, we obtain ∆Γ(A) ∩ f−1b 6= ∅. Since

|∆Γ(B)| ≥ 2, we have |∆Γ(A)| ≥ 2.

Next, we assume B = {b} for some b ∈ B. We have A = f−1b. We see that ∆Γ(A) =

∆Γ(b)(A). Since A = f−1b is diffuse as Γ(b)-set, we have |∆Γ(b)(A)| ≥ 2. It follows that

|∆Γ(A)| ≥ 2. Thus X is diffuse as a Γ-set.

Theorem 5.1.5. [4, Theorem 1.2 (1)] Let Γ be a torsion-free group. Suppose N EΓ and

both N and Γ/N are diffuse. Then Γ is diffuse.

Proof. Let f : Γ → Γ/N be quotient map. Notice that f is a morphism of Γ-sets. By

Lemma 5.1.3, Γ/N is diffuse as (Γ/N)-set. Hence Γ/N is diffuse as a Γ-set too. Also, if

y ∈ Γ/N , then Γ(y) is conjugate to N in Γ. Thus Γ(y) is isomorphic to N . Besides, f−1y

is isomorphic to Γ(y) ∼= N viewed as an Γ(y)-set. Since N is diffuse, f−1y is diffuse for all

y ∈ Γ/N . By Lemma 5.1.4, Γ is diffuse.

Theorem 5.1.6. [20, Lemma 3.4] Let Γ be an n-dimensional crystallographic group. If

b1(Γ) = 0, then Γ is non-diffuse.

Proof. Let G be the holonomy group of Γ. We claim that the set S = {γ ∈ Γ | ‖γ(0)‖ ≤ r}
for sufficiently large r > 0 is a ravel. Let γ′ = (I, u) ∈ S ∩ (In × Rn). Our aim is to find
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an element γ ∈ Γ such that ‖γγ′(0)‖ ≤ r and ‖γ−1γ′(0)‖ ≤ r. By Lemma 2.6.3, we have

rk(Zn)G = 0. Thus the group G acts on Rn without non-trivial fixed point. Hence there

exists a real number δ < 1 and there exists g ∈ G such that

‖gu+ u‖ ≤ 2δ‖u‖

Pick γ0 ∈ Γ such that p(γ0) = g. Define w0 = γ0(0). In other words, we have γ0 =

(g, w0) ∈ Γ. Fix r0 > 0 such that for all v ∈ Rn, there exists t ∈ T such that ‖u− t‖ ≤ r0.

Observe that for all v1, v2 ∈ Rn where ‖v1 − v2‖ = d, there exists x ∈ w0 + T with

max(‖v1 − x‖, ‖v2 − x‖) ≤ r0 +
d

2

Apply the above calculation to v1 = u and v2 = −gu to find such x = w0 + t. We have

d = ‖gu+ u‖ ≤ 2δ‖u‖ ≤ 2δr

Define γ = (In, t)γ0. By simple calculation, we get

‖γγ′(0)‖ = ‖(In, t)(g, w0)(In, u)(0)‖ = ‖w0 + gu+ t‖ = ‖gu+ x‖ ≤ r0 +
d

2
≤ r0 + δr

and

‖γ−1γ′(0)‖ = ‖(g−1,−g−1w0)(In,−t)(In, u)(0)‖ = ‖ − g−1x+ g−1u‖ = ‖u− x‖ ≤ r0 + δr

As δ < 1, for all sufficiently large r, we have ‖γγ′(0)‖ ≤ r and ‖γ−1γ′(0)‖ ≤ r. Therefore

the set S is ravel.

Definition 5.1.7. A finite group G is holonomy diffuse if every Bieberbach group Γ with

holonomy group G is diffuse. The group G is holonomy anti-diffuse if every Bieberbach

group Γ with holonomy group G is non-diffuse. Otherwise we say that G is holonomy

mixed.

Next, we state a theorem given by S. Kionke, J. Raimbault in [20] that give an algebraic

characterisation of the above three classes of finite group.

Theorem 5.1.8. [20, Theorem 3.5] Let G be a finite group.

(i) The group G is holonomy anti-diffuse if and only if it is not solvable.

(ii) The group G is holonomy diffuse if and ony if every Sylow subgroup is cyclic.

(iii) The group G is holonomy mixed if and only if it is solvable and has a non-cyclic

Sylow subgroup.

Next, we are going to introduce a way to determine whether a given Bieberbach group Γ

is diffuse or not as follow.

Let Γ be n-dimensional Bieberbach group. By Theorem 5.1.6, if b1(Γ) = 0, then Γ is

a non-diffuse group. We now assume b1(Γ) = k > 0. By Corollary 2.6.5, we get an

epimorphism

f : Γ→ Zk
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such that ker(f) is an (n−k)-dimensional Bieberbach group. In other words, we have the

below short exact sequence

0→ ker(f)→ Γ→ Zk → 0

Since Zk is diffuse, By Proposition 5.1.5, Γ is diffuse if and only if ker(f) is diffuse. Hence

we can reduced the question to whether ker(f) is diffuse or not. If the first Betti number

of ker(f) is non-zero then we can apply the above steps and obtain another epimorphism

such that the kernel of such epimorphism is a Bieberbach group of smaller dimension. We

can apply the above steps inductively until either you get a Bieberbach subgroup of trivial

first Betti number or the kernel of the last epimorphism is Z and hence Γ is indeed diffuse.

We want to study the classification of diffuseness of Bieberbach group with holonomy

mixed group as holonomy group. In this chapter, we will consider Bieberbach group of

diagonal type, which the holonomy group is elementary 2-group.

In next section, we will first consider a simpler case where the holonomy group of Bieber-

bach groups is C2 × C2. Finally, we will present Theorem F and G.

5.2 Proof of Theorem F and G

Lemma 5.2.1. Let Γ be an n-dimensional Bieberbach group and suppose there exists

N E Γ∩Rn such that Γ′ = Γ/N is still a Bieberbach group. If b1(Γ) = 0, then b1(Γ′) = 0.

Proof. Consider the below short exact sequence,

0→ N → Γ→ Γ′ → 1

By [5, Chapter 7, Corollary 6.4] we have the following exact sequence

· · · → H1(Γ,Z)→ H1(Γ′,Z)→ 0

Since b1(Γ) = 0, we have rk(H1(Γ,Z)) = 0. It forces rk(H1(Γ′,Z)) = 0. Therefore we

have b1(Γ̄) = 0.

By [20, Section 3.4], it presents all non-diffuse Bieberbach groups less than dimension

5. All Bieberbach groups in 2-dimensional is diffuse and there is only one non-diffuse

Bieberbach group in 3-dimensional. We denote that group to be ∆3. It has the below

presentation

∆3 = 〈x, y |x−1y2xy2 = y−1x2yx2 = 1〉

∆3 is indeed a 3-dimensional generalized Hantzsche-Wendt group (also known as Promis-

low group or Passman group). The following proposition and lemma will tell us why ∆3

is an important non-diffuse group.

Proposition 5.2.2. If Γ be an n-dimensional Bieberbach group of diagonal type with

holonomy group C2
2 such that b1(Γ) = 0. Then ∆3 ≤ Γ.
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Proof. Since Γ is Bieberbach group of diagonal type and b1(Γ) = 0, without loss of gener-

ality, we let

α = (diag(X1, ..., Xn), (x1, ..., xn)) and β = (diag(Y1, ..., Yn), (y1, ..., yn))

where Xi, Yi ∈ {1,−1} and xi, yi ∈ {0, 1
2} for all i ∈ {1, ..., n} be the non lattice gener-

ators of Γ. There exists i, j ∈ {1, ..., n} such that (Xi, xi) = (1, 1
2) and (Yj , yj) = (1, 1

2).

Otherwise, α ∈ Γ or β ∈ Γ is an element of order 2, which contradicts the fact that Γ

is torsion-free. There exists k ∈ {1, ..., n} such that (Xk, Yk) = (−1,−1) and (xk, yk) ∈
{(0, 1

2), (1
2 , 0)} otherwise αβ ∈ Γ has order 2. By the third Bieberbach’s Theorem, we may

assume

α =


Is 0 0 a1

0 −Ip 0 b1

0 0 −Iq c1

0 0 0 1

 and β =


−Is 0 0 a2

0 Ip 0 b2

0 0 −Iq c2

0 0 0 1


where s, p, q ∈ Z+, a1, a2 ∈ {0, 1

2}
s, b1, b2 ∈ {0, 1

2}
p and c1, c2 ∈ {0, 1

2}
q. Besides, a1, b2,

and c2 are non-zero.

By a simple calculation, we checked that α and β satisfy the below relation

α−1β2αβ2 = β−1α2βα2 = 1

Since

∆3 = 〈x, y |x−1y2xy2 = y−1x2yx2 = 1〉

there exists a normal subgroup N E ∆3 such that 〈α, β〉 ∼= ∆3/N . Let Γ̄ = 〈α, β〉. Since

α2, β2 and (αβ)2 are three linearly independent elements inside the lattice Γ̄ ∩ Rn and

thus dim(Γ̄) ≥ 3. This implies that N has rank zero and is therefore trivial. Hence we

have ∆3
∼= 〈α, β〉 ≤ Γ.

Remark 5.2.3. Since a Bieberbach group with trivial first betti number is a torsion-free

metabelian group with a finite commutator subgroup, the above proposition is a special

case of [18, Theorem 1].

Lemma 5.2.4. Let Γ be an n-dimensional non-diffuse Bieberbach group of diagonal type

with holonomy group C2
2 . Then there exists Zn−3 C Γ such that Γ/Zn−3 ∼= ∆3.

Proof. By Theorem E, we have nd(C
2
2 ) = 3. So, there exists Zs C Γ such that Γ/Zs = Γ̄

is a Bieberbach group with dim(Γ̄) ≤ 3. By Proposition 5.1.5, Γ̄ is non-diffuse. Since

∆3 is the only non-diffuse Bieberbach group below 4-dimensional, we can conclude that

s = n− 3 and Γ̄ ∼= ∆3.

Proof of Theorem F. Let {α, β} be a set of non-lattice generators of Γ. Since b1(Γ) = k,

without loss of generality, assume

α = (diag(x1, ..., xn), (a1, ..., an)) and β = (diag(y1, ..., yn), (b1, ..., bn))
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where aj , bj ∈ {0, 1
2} for j ∈ {1, ..., n}, (xi, yi) ∈ {(1,−1), (−1, 1)} for i ∈ {1, ..., n−k} and

(xi, yi) = (1, 1) for i ∈ {n− k + 1, ..., n}.

Given an arbitrary element γ = (diag(z1, ..., zn−k, 1, ..., 1), (s1, ..., sn)) ∈ Γ where zi ∈
{1,−1} for i ∈ {1, ..., n − k} and (s1, ..., sn) ∈ Qn. By Corollary 2.6.5, there exists a

homomorphism f : Γ→ Zk which maps γ to (2sn−k+1, ..., 2sn) ∈ Zk and the kernel of the

homomorphism is an (n− k)-dimensional Bieberbach group.

We claim that ai = 0 for all i ∈ {n − k + 1, ..., n}. Assume by contradiction that there

exists j ∈ {n − k + 1, ..., n} such that aj 6= 0. We have α 6∈ ker(f). Then the holonomy

group of ker(f) will either be identity or cyclic group of order two. By [20, Theorem 3.5],

ker(f) is diffuse. Since ker(f) and Zk are both diffuse, by Proposition 5.1.5, Γ is diffuse,

which is a contradiction. Hence ai = 0 for all i ∈ {n− k + 1, ..., n}. By similar argument,

we get bi = 0 for all i ∈ {n − k + 1, ..., n}. Therefore Γ = Z(Γ) ⊕ Γ̄, where Z(Γ) is the

center of Γ and Γ̄ = ker(f). By Lemma 5.2.4, we have

Γ̄ ∆3 1Zn−k−30
φι

(5.1)

Notice that b1(Γ̄) = 0, otherwise b1(Γ) > k. By Proposition 5.2.2, we have ∆3 ≤ Γ̄. By

restricting the domain of φ, we have

∆3 G 1H0
φ|∆3ι

where H is a subgroup of Zn−k−3 and G is the image of the map φ|∆3 . We claim that φ|∆3

is an isomorphism. Since H is a subgroup of Zn−k−3, H is a diffuse group. By Proposition

5.1.5, G is non-diffuse, otherwise it contradicts that ∆3 is a non-diffuse group. Besides, G

is a quotient of ∆3. Hence G is a non-diffuse Bieberbach group of dimension less than or

equal to three. Thus G ∼= ∆3 and hence φ|∆3 is an isomorphism. Therefore (5.1) is a split

short exact sequence.

Lemma 5.2.5. Let Γ be an n-dimensional non-diffuse Bieberbach group with b1(Γ) > 0,

then there exists Γ′ ≤ Γ such that b1(Γ′) = 0.

Proof. We proceed by induction on n. Since all Bieberbach group is diffuse if n ≤ 2, we

first consider the base case where n = 3. Notice that ∆3 is the only 3-dimensional non-

diffuse Bieberbach group and b1(∆3) = 0. Thus the statement is true for n = 3. Assume

the statement is true for n = k and consider the case where n = k + 1. Let Γ be an

(k+ 1)-dimensional non-diffuse Bieberbach group with b1(Γ) = k > 0. By Theorem 2.6.4,

there exists an epimorphism f : Γ → Z such that ker(f) is a k-dimensional Bieberbach

group. By Proposition 5.1.5, ker(f) is non-diffuse. If b1(ker(f)) = 0, then we are done.

Assume b1(ker(f)) > 0. By induction hypothesis, there exists Γ′ ≤ ker(f) ≤ Γ such that

b1(Γ′) = 0.
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Given a non-diffuse Bieberbach group with non trivial center, by the above lemma, there

exists a non-diffuse Bieberbach subgroup with trivial center. Therefore before proving

Theorem G, we need the below two propositions to consider a simpler case where the

Bieberbach group has trivial center.

Proposition 5.2.6. Let Γ be an n-dimensional Bieberbach group of diagonal type, b1(Γ) =

0 and its holonomy group is isomorphic to Ck2 . Let p : Γ→ Ck2 be the projection map as in

(4.1). If n < 2k−1, then there exists Ck−1
2 ≤ Ck2 such that p−1(Ck−1

2 ) is an n-dimensional

Bieberbach group with holonomy group isomorphic to Ck−1
2 and b1(p−1(Ck−1

2 )) = 0.

Proof. First note that there are 2k−1 subgroups in Ck2 isomorphic to Ck−1
2 . LetA1, ..., A2k−1

denote these subgroups. Assume by contradiction that p−1(Ai) is Bieberbach group with

non-trivial first betti number for all i ∈ {1, ..., 2k − 1}. Hence we have (Zn)C
k
2 = 0 and

(Zn)Ai 6= 0 for all i ∈ {1, ..., 2k − 1} where Zn ∼= Γ ∩ Rn. For any i ∈ {1, ..., 2k − 1}, let

zi ∈ (Zn)Ai and e1, ..., en be the standard basis of Zn such that Ck2 acts diagonally on

{e1, ..., en}. We have zi = ci1e1 + ...+cinen where ci1 , ..., cin ∈ Z. For each g ∈ Ai, we have

zi = g · zi = ci1(g · e1) + ...+ cin(g · en)

Thus there exists ti ∈ {1, ..., n} such that eti ∈ (Zn)Ai . We conclude that for any i ∈
{1, ..., 2k − 1}, there exists ti ∈ {1, ..., n} such that eti ∈ (Zn)Ai . Notice that ti 6= tj for

all i 6= j, otherwise eti ∈ (Zn)Ai ∩ (Zn)Aj = (Zn)C
k
2 , contradicts that b1(Γ) = 0. Thus we

have n ≥ 2k − 1 which is a contradiction.

Proposition 5.2.7. Let Γ be an n-dimensional Bieberbach group of diagonal type with

b1(Γ) = 0. Let Γ ∩ Rn = 〈e1, ..., en〉 such that the holonomy group acts diagonally on

{e1, ..., en}. Then either ∆3 ≤ Γ or there exists Γ′ ≤ Γ and Zs = 〈ei1 , ..., eis〉EΓ such that

Γ′/Zs ∼= ∆3, where 1 ≤ i1 < · · · < is ≤ n.

Proof. Let Cp2 where p ≥ 1 be the holonomy group of Γ. We proceed by induction on p.

By Theorem F, we know the statement holds for p = 2. Assume that it is true for all

p ≤ k − 1. Let Γ be an n-dimensional Bieberbach group of diagonal type with b1(Γ) = 0

and the holonomy group is isomorphic to Ck2 .

First we consider the case where dim(Γ) ≤ nd(C
k
2 ) < 2k − 1. By Proposition 5.2.6,

there exists Γ′ ≤ Γ such that b1(Γ′) = 0 and the holonomy group of Γ′ isomorphic to

Ck−1
2 . Notice that Γ′ ∩ Rn = Γ ∩ Rn = 〈e1, ..., en〉. By induction hypothesis, either

∆3 ≤ Γ′ in which case ∆3 ≤ Γ, or there exists Γ′′ ≤ Γ′ ≤ Γ and Zs = 〈ei1 , ..., eis〉 where

1 ≤ i1 < · · · < is ≤ n such that Γ′′/Zs ∼= ∆3. Since Ck2 is acting diagonally on Zs, we have

Zs = 〈ei1 , ..., eis〉E Γ.

Next, we assume dim(Γ) > nd(c
k
2). By Theorem D, without loss of generality, we can

assume that there exists 〈e1, ..., et〉 ∼= Zt such that Γ̄ = Γ/Zt is a Bieberbach group

of diagonal type with dimension at most nd(C
k
2 ) < 2k − 1. Notice that Γ̄ ∩ Rn−t =

〈et+1, ...., en〉. By Lemma 5.2.1, we have b1(Γ̄) = 0. By previous calculation and the
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induction hypothesis, we have either ∆3 ≤ Γ̄, in which case, ∆3
∼= A/Zt where A ≤ Γ,

or there exists Γ̄′′ ≤ Γ̄ and Zs = 〈ei1 , ..., eis〉 where t + 1 ≤ i1 < · · · < is ≤ n such that

Γ̄′′/Zs ∼= ∆3. Consider the later case, since Γ̄′′ ≤ Γ̄ = Γ/Zt, we have Γ̄′′ ∼= B/Zt where

B ≤ Γ. It follows that B/Zt ⊕ Zs ∼= ∆3.

Proof of Theorem G. Let Γ be an n-dimensional non-diffuse Bieberbach group of diagonal

type and Γ∩Rn = 〈e1, ..., en〉. By Lemma 5.2.5, there exists Γ1 ≤ Γ such that b1(Γ1) = 0.

By Proposition 5.2.7, either ∆3 ≤ Γ1 ≤ Γ or there exists Γ2 ≤ Γ1 ≤ Γ and Zs E Γ1 such

that Γ2/Zs ∼= ∆3. Since the holonomy group of Γ is acting diagonally on Zs, we have

Zs E Γ.

Now, assume that Γ is a non-diffuse generalized Hantzsche-Wendt group. By [30, Theorem

3.1], Γ is a Bieberbach group of diagonal type. Let the holonomy group of Γ be Cp2 . We

proceed by induction on p to show that ∆3 ≤ Γ. The base case p = 2 is clear. Assume

that the statement is true for all p ≤ k − 1 and consider p = k. If b1(Γ) = 0, then

by [30, Proposition 8.2], we have ∆3 ≤ Γ. Hence we could assume b1(Γ) > 0. By [30,

Proposition 4.1], there exists f : Γ → Z such that ker(f) is an (n − 1)-dimensional

generalized Hantzsche-Wendt group. Since Γ is non-diffuse, by Proposition 5.1.5, ker(f)

is non-diffuse. Hence by induction hypothesis, we have ∆3 ≤ ker(f) ≤ Γ.

Example 5.2.8. In this example, we point out that there exists a non-diffuse 7-dimensional

Bieberbach group Γ of diagonal type with holonomy group isomorphic to C3
2 which does not

contain ∆3 as subgroup. Therefore Theorem G cannot be improved. Define A,B,C ∈ Γ

as below.

A :=



1 0 0 0 0 0 0 1/2

0 1 0 0 0 0 0 1/2

0 0 1 0 0 0 0 1/2

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 1/2

0 0 0 0 0 0 0 1


B :=



1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 1/2

0 0 0 0 1 0 0 1/2

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1



C :=



−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 1 0 1/2

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1


Let {A,B,C} be set of non lattice generators of Γ. Let p : Γ → C3

2 be the projection

map as in (2.7). The holonomy group is generated by p(A), p(B) and p(C). Assume by

contradiction that ∆3 ≤ Γ. Then there exists C2
2
∼= 〈x, y〉 ≤ 〈p(A), p(B), p(C)〉 such that

82



〈x̄, ȳ〉 ∼= ∆3 for some p(x̄) = x and p(ȳ) = y. The holonomy group C3
2 has seven distinct

C2
2 subgroups. Hence we need to consider all seven cases one by one. The argument for

all seven cases are similar, we will present one of them and assume C2
2 = 〈p(A), p(B)〉. In

this case, we have

x̄ :=



1 0 0 0 0 0 0 x1 + 1/2

0 1 0 0 0 0 0 x2 + 1/2

0 0 1 0 0 0 0 x3 + 1/2

0 0 0 −1 0 0 0 x4

0 0 0 0 −1 0 0 x5

0 0 0 0 0 −1 0 x6

0 0 0 0 0 0 −1 x7 + 1/2

0 0 0 0 0 0 0 1


ȳ :=



1 0 0 0 0 0 0 y1

0 −1 0 0 0 0 0 y2

0 0 −1 0 0 0 0 y3

0 0 0 1 0 0 0 y4 + 1/2

0 0 0 0 1 0 0 y5 + 1/2

0 0 0 0 0 −1 0 y6

0 0 0 0 0 0 −1 y7

0 0 0 0 0 0 0 1


where xi, yi ∈ Z for i = 1, ..., 7. By [25, Lemma 1], since x̄ and ȳ are the standard

generators of ∆3, they must satisfy the relation a−1waw = I8 where w = (x̄ȳ)2. By simple

calculation, we have

C :=



1 0 0 0 0 0 0 4x1 + 4y1 + 2

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


It is clear that the solution of the equation 4x1 + 4y1 + 2 = 0 is never integral which is a

contradiction.
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