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Chapter 1

Introduction

Hilbert’s problems are twenty-three problems in mathematics published by German mathe-
matician David Hilbert in 1900. Hilbert’s eighteenth problem is related to crystallographic
groups. We denote Isom(R™) to be the group of all isometries of the n-dimensional Eu-
clidean space R™. One part of the Hilbert’s eighteenth problem is to show that there are
only finitely many types of subgroups of I'som(R"™) with compact fundamental domain.
This part of the question is solved by L. Bieberbach in 1910. Those subgroups of Isom(R™)
with compact fundamental domain are now called crystallographic groups. In the thesis,

we will study serval properties of torsion-free crystallographic groups.

In Chapter we first introduce the definition of crystallographic groups. We say I’
is an n-dimensional crystallographic group if it is a cocompact and discrete subgroup of
Isom(R™) = O(n)xR"™. Wesay I is an n-dimensional Bieberbach group if I is a torsion-free
n-dimensional crystallographic group. Next, we will present the first Bieberbach theorem.
By the first Bieberbach Theorem (see Section for detail), we have the following short
exact sequence,

0—-72" =T —-G—1

where Z'™ is a maximal abelian normal subgroup of I' and G is a finite group. Given such
a short exact sequence, it induces a representation p : G — GL,(Z). The representation p
is called the holonomy representation of I' and the group G is called the holonomy group of
I'. Next, we would give an introduction to group cohomology because it plays a main role
in classifying short exact sequences. By using group cohomology, we will state and prove
the second and the third Bieberbach theorems. By the three Bieberbach theorems, we will
understand the group structure of crystallographic groups. After that, we will discuss the
relation between Bieberbach groups and flat manifolds. In the last section of Chapter 2] we
will give two ways to classifying all Bieberbach groups namely the Zassenhaus algorithm
and the induction method of Calabi. A good reference for the definitions and properties
of Bieberbach groups included the three Bieberbach theorems is [3I]. A good reference

for the introduction to group cohomology is [5].

In Chapter 3] we focus on the below conjecture.



Conjecture 1.0.1 (Dekimpe-Penninckx). Let I" be an n-dimensional Bieberbach group.

Then the minimum number of generators of I" is less than or equal to n.

The conjecture was solved for some special cases. For example, the conjecture is true if the
holonomy group is an odd prime p-group (see [I, Theorem A]), or the holonomy group is
an elementary abelian p-group (see [14, Theorem 4.1, Theorem 5.7]). On the other hand,
by a computer program namely CARAT, it has been checked that the conjecture is true
if the Bieberbach group has dimension less than 7 (see [6]).

There is a connection between the number of generators of Bieberbach group and the
number of generators of a finite group that can act freely on an n-torus. By [13, Lemma
6.5.1], if G is a finite group and it acts freely on an n-torus 7", then the quotient space
T™/G is a manifold with its fundamental group isomorphic to an n-dimensional Bieberbach

group. This provides a short exact sequence as below,

O*>7['1(Tn)*>7T1(M) G 1

where 71 (M) is an n-dimensional Bieberbach group. Hence if 71 (M) can be generated
by n elements, then the minimal number of generators of G should not be larger than n.
For instance, by [14, Theorem 5.7, we know that (Z/2Z)"*! cannot act freely on T" for
n>1.

We denote d(G) to be the minimal number of generators of the group G. The below three

theorems are our main results in Chapter

Theorem A. Let I' be an n-dimensional crystallographic group with holonomy group

isomorphic to Cy, = (g | g™ = 1) where m > 3.
(7) If m is divisible by prime larger than 3, then d(I") <n — 2.
(73) If m is not divisible by prime larger than 3 and I' is torsion-free, then d(I') <n — 1.

The idea of the proof of Theorem [A|7) is to consider I' N (I, x R") as a ZCp-module
where p is prime larger than 3. We use the module structure to reduce the number of
generators. For Theorem (m), we construct a surjective homomorphism from I' to Z.
Then by studying how Z acts on the kernel of the homomorphism, we can eliminate some

redundant generators.

By Theorem[A] we get two corollaries. One shows that a general n-dimensional Bieberbach
group can be generated by 2n elements. The other corollary shows an n-dimensional
Bieberbach group with a simple group as holonomy group can be generated by n — 1

elements.

Theorem B. Let I' be an n-dimensional crystallographic group with holonomy group

isomorphic to a finite group G.
() If the order of G is not divisible by 2 or 3, then d(I") < n.

(73) If the order of G is odd and divisible by 3, then d(I') < n + 1.



The idea of the proof of Theorem [B|is to apply results from [I7] to get a relation between
the number of generators of the finite group G and its Sylow p-subgroups. Then we apply
results from [I] to prove Theorem

Theorem C. Let I' be an n-dimensional Bieberbach group with 2-generated holonomy
group. Then d(T") < n.

The idea of the proof of Theorem [C] is to consider a Bieberbach subgroup with cyclic
holonomy group. Then we apply Theorem [A] to get the desired bound for generators of
the Bieberbach group I'. Results in Chapter [3|have been published in Geometriae Dedicata
(see [8])

In Chapter [4, we will study about an invariant called the diagonal Vasquez invariant. We

need to define crystallographic groups of diagonal type before discussing this invariant.

Definition 1.0.2. Let I' be an n-dimensional crystallographic group and p be its holonomy
representation. We said I is a crystallographic group of diagonal type if im(p) < D where
D = {A = [aij] S GLn(Z) | Qi = 0 for 4 75 j}

We define Vasquez invariant of diagonal type by modifying the definition of Vasquez
invariant of finite groups introduced by A. T. Vasquez in [34]. By [34, Theorem 3.6], we

get the below theorem.

Theorem 1.0.3. For any elementary abelian 2-group G, there exists a natural number
x € N with the property that if I' is a Bieberbach group of diagonal type where its
holonomy group is isomorphic to G, then the lattice subgroup L C I' contains a normal

subgroup N such that I'/N is a Bieberbach group of dimension at most x.

Definition 1.0.4. Let G be an elementary abelian 2-group and x € N. We say z has
property Sy(G) if for every Bieberbach group of diagonal type where its holonomy group
is isomorphic to G, then its lattice subgroup L C I' contains a normal subgroup N such

that I'/N is a Bieberbach group of dimension at most x.

Definition 1.0.5. Let G be an elementary abelian 2-group. We define
nq(G) = min{x € N|z has property S;(G)}

The natural number n4(G) is called the diagonal Vasquez invariant or diagonal Vasquez

number of the finite elementary abelian 2-group G.

Our main theorems in this chapter are about the bound or the exact value of diagonal
Vasquez invariant of finite groups. In Section given a crystallographic group of diag-
onal type, we will construct a matrix corresponds to it. We calculate the bound or the
exact value of diagonal Vasquez invariant of finite groups by using that matrix. In Section
[4:4] we will present our two main theorems in this chapter. The below two theorems are

our main results about diagonal Vasquez invariant of finite groups.



Theorem D. For k > 2, the bound of diagonal Vasquez invariant, ny(C¥) is given by

k(k+1)
2

MEED 1 if k> 3is odd

if k> 2 1is even

5283 41> ng(CF) >

Theorem E. For k € {1,2,3,4}, the exact value of diagonal Vasquez invariant, nd(Céf)

is given by
1 ifk=1
k 3 ifk=2
nqa(Cy) =
5 ifk=3
10 ifk=4

Question 1.0.6. We can view the diagonal Vasquez invariant of finite groups as function
f : Nyg — Ny where it maps & € Nsg to ng(C¥). By Theorem @ we know that the

function f is not linear. Is it true that the function f is a quadratic polynomial?
In Chapter [5] we will discuss diffuseness property of Bieberbach groups.

Definition 1.0.7. Let G be a group, A C G be a subset. We say a € A is an extremal
point of A if for all g € G/{1}, either ga ¢ A or g~'a & A. Define

A(A) ={a € A| ais an extremal point}

We say G is diffuse if for any subset A C G with 2 < |A| < oo, we have |A(A)| > 2. We
say G is weakly diffuse if for any subset A C G with 1 < |A] < oo, we have |[A(A4)| > 1.
We say G is non-diffuse if it is not diffuse.

The above definition is introduced by B. Bowditch in [4]. By [22] Proposition 6.2], P.
Linnell and D. W. Morris proved that a group is diffuse if and only if it is weakly diffuse.
By the above definition, it is clear that if a group has a non-diffuse subgroup, then it is

non-diffuse.

Diffuseness of a group is interesting because it related to the Kaplansky’s zero divisor
conjecture and connectivity. Kaplansky’s zero divisor conjecture state that if a group G
is torsion-free and R is an integral domain, then the group ring RG has no zero divisor.
B. Bowditch discover that the conjecture is true if the group G is diffuse (see [4, Propo-
sition 1.1]). On the other hand, By [12, Theorem 1.2] and [20, Theorem 3.3|, we have a

Bieberbach group I' is connective if and only if I' is diffuse.

Definition 1.0.8. We say I' is an n-dimensional generalized Hantzsche-Wendt group if I’

is an n-dimensional Bieberbach group and its holonomy group is isomorphic to C;‘_l.

Example 1.0.9. The Bieberbach group enumerated in CARAT as ”group.32.1.1.194”
is a diffuse 4-dimensional generalized Hantzsche-Wendt group. Thus not all generalized

Hantzsche-Wendt groups are non-diffuse.



The below two theorems are our main results about diffuseness of Bieberbach groups of

diagonal type.

Theorem F. Let I' be an n-dimensional non-diffuse Bieberbach group of diagonal type

with holonomy group isomorphic to C3. Then

L=2Z() & (Z"" 3 x As)
where k = b1 ("), Z(T") is the center of I and Agj is the 3-dimensional non-diffuse Hantzsche-
Wendt group (also known as the Promislow group or Passman group).

Theorem G. Let I be a non-diffuse Bieberbach group of diagonal type. Then either
A3 < T or there exists I' < T and exists Z° < T such that Ag = I'"/Z*. In additionally, if
I" is a non-diffuse generalized Hantzsche-Wendt group, then Ag <T.

Results from Chapter 4 and Chapter 5 is a preprint (see [9]).



Chapter 2

Bieberbach groups and group

cohomology

We have six sections in this chapter. In Section we will give an introduction to the
group of all isometries of n-dimensional Euclidean space and give the definition of crystallo-
graphic groups and Bieberbach groups. In Section we will present the first Bieberbach
Theorem. By first Bieberbach theorem, crystallographic group is closely related to short
exact sequence. Therefore in Section[2.3] we will give an introduction to group cohomology
and the relation between group cohomology, group extension and short exact sequence. In
Section |2.4] we will give the statement and proof of the second and the third Bieberbach
theorems. In Section we will discuss the relation between Bieberbach groups and flat

manifolds. In Section we will present two ways to classify Bieberbach groups.

2.1 Definition of Bieberbach group

Given two arbitrary elements u = (uy, ..., up) and v = (vy, ..., v,) in R™, the n-dimensional

Euclidean space. The norm of u is defined as

It is well known that there exists an unique angle # between u and v where 0 < 0 < 7
such that

la = v* = fJull + [|v][* = 2l[ul[|v]cost (2.1)

and the inner product in an n-dimensional Euclidean space R" is defined as
n
(w,v) = u; = [[ul|[|v]cosd
i=1

In other words, we have

[ull = V/{u,u)



If we view u and v as column matrices, then the inner product of elements can consider

as matrix multiplication as below

(u,v) =ulv

T

where u’ is the transpose of the column matrix u. We define the set {eq,...,e,} to be

the standard orthonormal basis for R”, where e, is the k** column of the n-dimensional
identity matrix for all 1 < k < n. Let M be an element of GL,(R), we define the (induced

or operator) norm of M to be

M| = sup{|[Mz|||= € R", [[z[| = 1}

Definition 2.1.1. An isometry of R" is an invertible map f : R — R™ such that it

preserves distance. In other word, we have

e =yl = 11/ () = f(W)l

for any x,y € R™.

Remark 2.1.2. It is easy to notice that the set of all isometries of R" satisfies all axioms of

being a group with respect to composition of maps. We denote that group to be Isom(R").

Definition 2.1.3. Let a € R™. A translation of R™ is a map t, : R™ — R" defined by the
following formula

to(x) =a+2x
Remark 2.1.4. Notice that the set of all translation map of R"™ is a normal subgroup of
Isom(R™) and it is isomorphic to the additive group R™ by the function a + t,.

Definition 2.1.5. A linear map A : R" — R" is orthogonal if for any =,y € R", we have
(z,y) = (Az), A(y))

We will first present a few propositions and corollaries in order to show that Isom(R™) is

isomorphic to O(n) x R™ where the group O(n) is the orthogonal group defined as
O(n) = {M € GL,(R) | MT = M~}

where M7 is the transpose of the matrix M.

Observation 2.1.6. Let f € Isom(R™) which satisfies f(0) = 0. Then for any u € R",

we have
1F ()]l = 11f (w) = FO) = llu = Off = [|u]
Proposition 2.1.7. Let f € Isom(R") with f(0) = 0, then

(1) f preserve angles, In other words, the angle between f(u) and f(v) is the same as the

angle between u and v for all u,v € R".



(ii) f preserve the inner product. In other words, we have (f(u), f(v)) = (u,v) for all

u,v € R"”
(797) f is a linear transformation. In other words, the function f satisfies f(x + y) =

f(z)+ f(y) and f(A\x) = Af(z) for all z,y € R™ and \ € R.

Proof. (i): Let u,v be arbitrary elements in R"”. We define 6 to be the angle between the
two vectors u,v € R™ and 6’ be the angle between f(u) and f(v) where 0 < # < 7 and

0 < 6" <. By (2.1), we have
lu = l* = [lull + [[o]|* = 2l|ull|[v]lcose
and

1£(w) = @I = 1F @)* + [ f )P = 2] f @)l f (v)l|cost”

Since f is an isometry and it satisfies f(0) = 0, by definition of isometry and Observation

it follows that

lu =l = [1F (w) = F)I* = [F @+ 1 F @)1 = 2 f @] f (v) ]| cost’
= [[ull® + [[o]* = 2[|ull|v|cost’
It forces cosf = cos®. Since 0 < 0 < 7 and 0 < ¢ < 7, we conclude that § = ¢'.
Therefore we showed that f preserve angles.
(73): By part (i), 6 is also the angle between f(u) and f(v). Since f(0) = 0, by Observation

2.1.6| and definition of inner product, we have

(f (), f(0)) = [ F W)[[[[f ()| cost

= [[ulll|v]lcos6
= (u,v)
Hence we complete the proof for part (i).

(73): Let {v1,...,v,} be an orthonormal basis of R™. In other words, the set {v1,...,v,} is
a basis of R", ||v;]] =1 for all 1 < i < n and (v;,v;) = 0 for all i # j. Define w; = f(v;).
First of all, notice that ||w;|| = ||f(vi)]] = ||vi|| = 1. Next, by part (i3), if i # j, then

(wi, wi) = (f(vi), f(vj)) = (vi,v5) =0

Therefore {wi, ..., wy} is also an orthonormal basis for R™. Since {vy,...,v,} is an or-

thonormal basis for R”, for any element u € R", we can express it as

n
u = E (07X}
=1

where the coefficient ;; € R can be determined by the formula o; = (u,v;). By part (i7),

we have

(u,vi) = {f(u), f(vi)) = (f(u), wi) (2.2)



On the other hand, since {wy,...,w,} is also an orthonormal basis, the element f(u) can

express as
n
flu) =" aw; (2.3)
=1
where the coefficient &; € R can be determined by
a; = (f(u),wi) (2.4)
By combining equation ([2.2)), (2.3) and (2.4)), we have

n n

Flu) =) (fw), wiyw; = (u, vi)w;

=1 i=1

Let z,y € R™ and )\ € R, we have

fle+y) =) (e+yvw =) (zo0w + > (y,vi)wi = f(z) + f(y)
i=1 i=1 i=1
and . .
f(Az) = f(\x) = ZO\JC,W)U&‘ = Z Mz, v)w; = Af(x)
i=1 i=1
Therefore f is a linear transformation. O

Corollary 2.1.8. Let f € Isom(R™). Then f: R"™ — R™ maps = € R" to g(x) + b where

g is some linear isometry and b € R".

Proof. Let b = f(0) and set g(x) = f(x) —b. We have g(0) = f(0) — b = 0. Notice that
g is a composition of two isometries and therefore g is an isometry too. Since g is an
isometry which satisfies g(0) = 0, by Proposition m(zzz), we can conclude that g is a

linear isometry. O

Proposition 2.1.9. There is an one-to-one correspondence between the set of linear
isometry and the set of orthogonal matrix O(n) = {M € GL,(R)|MT = M~} where
MT is the transpose of the matrix M.

Proof. Let g be an arbitrary linear isometry of R™. By viewing the element of R" as
column matrices, we may define g as follow:
g:R" - R"”
x — Ax
where A is an n X n matrix with entries in R. We want to show that A is indeed an
orthogonal matrix. Since g is linear, we have g(0) = 0. Consider the (4,5) entry of AT A:
(AT A);; = (i row of AT) (5 column of A)
= ((i*" column of A), (' column of A))

= (g(ei), g(e;))



where {eq,...,e,} is the standard orthonormal basis for R™. By Proposition [2.1.7ii), we

have

- 1 ifi=jy
(A7 A)ij = (g(ei), g(ej)) = (e e5) =
0 otherwise

Hence AT A is an identity matrix. Thus A is an orthogonal matrix.

On the other hand, we need to show that if A € O(n), then it defines a linear isometry.

We claim that the linear map

g:R" — R"

x = Ax
is an isometry.
For any u,v € R™, we have
(g(u), g(v)) = (Au, Av) = (Au)T (Av) = uT AT Av = wT'v = (u,v)
Therefore by setting u = v, we get ||g(u)| = ||u||. Finally, since g is linear, we have
lg(w) = g(v)|| = [lg(u = v)|| = [Ju — |

Hence g is an isometry. ]

By combining Corollary and Proposition [2.1.9] we get the below result.

Corollary 2.1.10. If f € Isom(R™), then there exists A € O(n) and a € R™ such that
f(z) =a+ Ax.

By Corollary [2.1.10, we can express Isom(R"™) as a semi-direct product of the group of all

translations and the orthogonal group O(n). In other words, we have
Isom(R") = O(n) x R"
The group operation in Isom(R™) is given by
(A,a)(B,b) = (AB,a + Ab)
and the inverse of an element is given by
(A,a) L =(A71, —A7ta)
for any (A4, a),(B,b) € Isom(R™).

Definition 2.1.11. A topological space G that is also a group is called a topological group
if the group operation

fizy) =y
is continuous in both variables and the inversion mapping

g:aw—):v_l

is also continuous.

10



Remark 2.1.12. Let 7 = (A, a) be an arbitrary element in Isom(R™). We can express it
(A a : : :
as an (n+1) X (n+1) matrix 0 1) which defines an inclusion Isom(R™) C GL,11(R).

Thus Isom(R™) can be considered as a topological group with topology induced from the

Euclidean space R(+D?,

Definition 2.1.13. (i) A subset X of a Euclidean space is discrete if for any z € X, there
exists an open neighbourhood U, such that U, N X = {z}.

(73) Let I be a subgroup of Isom(R™). We say I is discrete if it is a discrete subset of the

Euclidean space R(+1?,

(1i1) We say T" acts properly discontinuously on R™ if for any = € R", there exists an open

neighbourhood U, such that the set

{y €T |yU.NU, # o}
is finite

(iv) We say I acts freely on R™ if we have

{yel|yz ==} ={(,0)}
for any z € R™.

Definition 2.1.14. Let I be a subgroup of Isom(R™). The orbit space of the action of T
on R™ is defined to be the set of I'-orbits

R"/T = {Tz |z € R"}

topologized with the quotient topology from R™.
Now we define the geometric definition of the crystallographic groups.

Definition 2.1.15. Let I" be a subgroup of Isom(R™). We say I is a cocompact subgroup
of Isom(R™) if Isom(R™)/T" is compact. We say I' is an n-dimensional crystallographic
group if it is a discrete cocompact subgroup of Isom(R™). Besides, a torsion- free crystal-

lographic group is called a Bieberbach group.

For the rest of this section, we will present several lemmas and show that I' is an n-
dimensional crystallographic group if it acts properly discontinuously on R™ and R"/T
is compact. Let M be a metric space, we denote B,(z) to be an open ball centred at
x € M with radius r. We say M is a complete metric space if every Cauchy sequence in
M converges in M. In particular, Euclidean space is a complete metric space. Let X be a
subset of Euclidean space. We say {x,,}°2 is a convergent sequence in X converging in X
if z; € X for all i € N and the sequence {z,}3°, converges to an element 2 € X. In other
words, for all € > 0, there exists N € N such that ||z, — z|| < € for all natural number
n > N. We say such sequence {z,}>2, is eventually constant if there exists N’ € N such

that z, = z,41 for all n > N'.

11



Lemma 2.1.16. Let X be a subset of Euclidean space. The subset X is discrete if and

only if every convergent sequence {z,}°°; in X converging in X is eventually constant.

Proof. First, we suppose X is discrete and let {z,, }2°; be an arbitrary convergent sequence
in X which converges to x € X. By definition of discreteness, there exists r > 0 such that
By(x) N X = {z}. Since the sequence {z,}5° ; converges to z, there exists an element

N € N such that z,, € B,(x) for all n > N. Thus we have z,, = x for all n > N.

For the reverse direction, we suppose every convergent sequence in X converging in X
is eventually constant. Assume by contradiction that X is not discrete. By definition,
there exists an element x € X such that U, N X # {z} for any open neighbourhood
Uz. Therefore we have {z} & Bi(z) N X for any integer n > 0. We choose z, to be
an element in Bi(z) N X which ig not equal to x for each integer n. It is clear that the
sequence {xn};?f:: converges to x and it is not eventually constant, which is a contradiction.
Therefore X is discrete. O

Lemma 2.1.17. [31, Lemma 1.2] Let T be a discrete subgroup of I'som(R™). Then I is

closed in Isom(R™).

Proof. Suppose by contradiction that I" is not close. In other words, Isom(R™)/I" is not
open. Then there exists an element v € Isom(R™)/I" such that all open neighbourhood
of 7 is not contained in Isom(R™)/T". Thus for all n € N, we can pick 7, be an element
in Bi(y)NT. Consider the sequence {7,}5° ;. Since the sequence {7,}72, converges to
v in T.Lfsom(]R”), the sequence {%W;il}%o:l converges to identity in I'. But the sequence
{’yn'y;_il}ff:l is not eventually constant. By Lemma the group I' is not discrete,

which is a contradiction. O

Proposition 2.1.18. [31, Proposition 1.8] Let T' be a discrete subgroup of Isom(R").

The group I' acts freely on R™ if and only if it is torsion-free.

Proof. Assume I' is not torsion-free and there exists a non-identity element v € I' with
finite order k. Let x be an arbitrary element in R™. Define y = x + vz +~2z +-- -+~ 1a.
It is clear that yy = y . Hence I' cannot act freely on R™.

For the reverse implication, we assume I' is torsion-free and we claim that
{yel'|vz=2} =TNt(O(n) x 0)t_z

where z € R". Let v = (A,a) € I" such that yz = x. Therefore we have a + Az = z. It
follows that
v=(A,a)=(A,x — Az) = (I, x)(A4,0) (I, —x)

Hence
{yveTl|vx=2} CTNt,(O(n) x 0)t_y
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On the other hand, let v € I'Nt,(O(n) x 0)t_,. Therefore v has form (I,,x)(A,0)(I, —x)
for some A € O(n). We have

yr = (In,x)(A,0)(In, —z)z = (A,z — Az)x =
It follows that
I'Nty(O(n) x0)t_y C{y el |yz =2}

Thus the claim is true. Since the group O(n) is compact and T' is discrete, we can

conclude that the set {y € I'|yx = «} is finite. Since I' is torsion-free, it follows that
{yel|ye =z} ={(In,0)}. O

Lemma 2.1.19. [3], Lemma 1.3] Let T' be a discrete subgroup of Isom(R™). Then for

any r > 0, we have
{r € T[~vB:(0) N B(0) # o} CT'N(O(n) x Bz (0))

Proof. Let v = (A,a) € T such that vB,.(0) N B.(0) # ¢. There exists z,2’ € B,(0) such
that vx = a + Az = 2/. By triangle inequality, we have

lall = {2 — Az|| < [l']| + [| Az < 2r
Therefore v € O(n) x Ba,(0). O

Proposition 2.1.20. [31], Proposition 1.7] Let T’ be a subgroup of Isom(R™). The fol-

lowing conditions are equivalent:
(i) The group I' acts properly discontinuously on R";
(74) The group I is a discrete subgroup of Isom(R");

(7i7) For any x € R™, the group I'z is a discrete subset of R"™.

Proof. First, we want to prove condition (i) implies condition (i7) and assume I' acts
properly discontinuously on R"™. We first consider a convergent sequence {7,}>%; in I’
which converge to identity. By definition, there exists a neighbourhood Uy of 0 € R™ such
that the set {y € T'|yUy N Uy # o} is finite. In particular, the set

{vi € {mlnzr [viUo NUo # 0}

is finite. Therefore we have v; = (I,,0) for large 7 and the sequence {v,}22, is eventually

constant. Now, we consider an arbitrary convergent sequence {7, }72 ; in I which converges

to v € T. Thus the sequence {y,7 1}, is a convergent sequence which converges to
identity and it is eventually constant. It follows that the convergent sequence {7, }°2 is
eventually constant too. By Lemma |2.1.16] we can conclude that IT" is a discrete subgroup

of Isom(R™).
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Next, we want to prove condition (i7) implies condition (i) and assume I' is a discrete
subgroup of Isom(R™). Let z € R™ be an arbitrary element in R”. By Lemma [2.1.19, we

have

{v €T |vBr(x) N Br(x) # o} = {y € I' |7t B:(0) Nt B,(0) # 0}
= {y € T'|t_pyte By (0) N t_yt Br(0) # o}
= {y € I'|t_7t=B-(0) N B,(0) # o}
Ct_,I't, N (O(n) x Ba.(0))

Since I' is discrete and therefore is closed in Isom(R"™) by Lemma [2.1.17, the above set is

finite. Hence I' acts properly discontinuously on R™.

Next, we want to prove condition (i7) implies condition (7i7) and assume I' is a discrete
subgroup of Isom(R™). We want to prove that 'z is a discrete subset of R™ for any x € R".
Assume by contradiction that there exists x € R™ such that I'z is not discrete. It follows
that there exists a sequence {v;x = A;x + a;}°, which converges to y € R™ and it is not
eventually constant. Since the group O(n) is compact, the sequence {4;}°; converges to

some A € O(n). Notice that the value
lai + Az —y|| <llai + Aiz — y[| + [ Az — Az

can be arbitrarily small for large i. Hence we conclude that the sequence {v;}3°; converges
toy = (A, —Az +y) € Isom(R"™). Since I is discrete subgroup of I'som(R™), by Lemma
2.1.16| the sequence {7;}°, is an eventually constant convergent sequence. It follows that

{~iz}$2, is eventually constant, which is a contradiction.

Last but not least, we want to prove condition (i7i) implies condition (i7). Let {v;}2,
be a convergent sequence in I'. For any = € R", the sequence {v;z}3; is a convergent
sequence in I'z. By assumption, I'z is discrete. By Lemma the sequence {v;x}7°;
is eventually constant. It follows that the sequence {7;}?°, is also eventually constant.
This finishes the proof. O

Proposition 2.1.21. Let I be a subgroup of Isom(R™). Then R"/I" is compact if and
only if I'som(R™)/I" is compact.

Proof. By definition, we have Isom(R")/O(n) = R™. The group action of I' acting on
Isom(R™)/O(n) is given by
¢ : T x Isom(R™)/O(n) — Isom(R™)/O(n)
(7,90(n)) = (v9)0(n)

where v € I" and g € Isom(R"). It is easy to notice that the above action ¢ agrees with

a standard action of I' acts on R”. Next, we consider the map

Y Isom(R"™)/T" — R"/I" = (Isom(R")/O(n))/T
g~ 'T' = T(g0(n))
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Notice that it is a continuous open map and the inverse images of points are compact.

Hence Isom(R™)/T" is compact if and only if R"/T" is compact. O

Remark 2.1.22. By Proposition[2.1.20|and Proposition [2.1.21] we say I is an n-dimensional

crystallographic group if " acts properly discontinuously on R™ and R™/T" is compact.

Definition 2.1.23. Let I" be a subgroup of Isom(R™). An open, connected subset F' C R"
is a fundamental domain if

Rn = U’YGF’}IF
and YFN~'F = for all v #+" € T.

Remark 2.1.24. Since an n-dimensional crystallographic group is a discrete cocompact

subgroup of Isom(R"), it has a compact fundamental domain.

2.2 The First Bieberbach Theorem

In this section, we will state and prove the first Bieberbach theorem. Most arguments in

this section are extracted from [31, Chapter 2].

Theorem 2.2.1 (The first Bieberbach’s Theorem). [31, Theorem 2.1(1)] Let I' < Isom(R™)
be an n-dimensional crystallographic group. Then the set of translations of I' which is
I'n (I, x R™) is a torsion-free and finitely generated maximal abelian normal subgroup of

rank n with finite index.
Before we prove this theorem, we need several lemmas.

Lemma 2.2.2. [7], Lemma 2.1] There exists a neighbourhood of the identity U C O(n)
such that for any h € U, if g € O(n) commutes with [g, h] = ghg~'h~!, then g commutes
with h.

Proof. Define
U={heOm)|||I,—h | <v2-1}

Let h be an arbitrary element in U. Let g € O(n) such that g commutes with [g, h]. Let
A1, A2, -+, Ar be the eigenvalues of the map g : C* — C” induced by the an orthogonal
matrix g € O(n) and C" = V1@ Va®- - - @V, be the eigenspaces decomposition corresponds
to g. Notice that V; is g-invariant for ¢ = 1,...,r. Since g commutes with [g,h] by

assumption, we have

g(hg™'h™") =[g,h] = g g, hlg = (hg”'h™")g

Thus the element g commutes with hg='h~!. Moreover, for i = 1,2,--- ,r and for all

x € V;, we have gr = \;x. Hence

g(hg th Yz = (hg 'h ™Y gz = hg ' h iz = \ihg th
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Since h and g are isomorphism, we have h='V; = gh~'V;. Thus h~'V; is also a g-invariant

subspace. Therefore we have
hWVi=((h Vinvi) e (h'VinVa) @ --- @ (b 'VinV,)

where h™1V; N V; = {& € h™'V;| gz = N\jz}. Let 0 # = € (h"'V; NV;) where i # j.
Without loss of generality, we assume ||z|| = 1. There exists y € V; such that h~ly = z.

We claim that (z,y) = 0. Assume by contradiction that (x,y) # 0, we have

Xi(z,y) = (gz,y) = (2,97 y) = Aj(z,y)

It follows that A\; = A;, which is a contradiction. Thus we conclude that (z,y) = 0 and

therefore we have
V2=llz—yl=r"y—yl=("" - Lyl <v2-1

which is a contradiction. Hence (h~'V; N Vj) = 0if i # j. Thus we have h=1V; = V; for

1=1,...,r. For x € V;, we have
hg(x) = h(\jz) = \jh(z) = g(hx)

It follows that gh = hgl|y,. Since any element of C" is a sum of elements from V;, the

orthogonal group element g commutes with h. O

Lemma 2.2.3. [71, Lemma 2.2] There exists a neighbourhood of the identity U C O(n)
such that for any g,h € U, the sequence {z,}>°; converges to the identity, where z; =

[g,h] and x; = [g, x;—1] for i > 1.

Proof. Define
1
U= {M € O(n) ] 1L, — M|| < 4}

be a neighbourhood of the identity. It is well known that ||AB| < ||A||||B]|| for any
A,B € GLy(R) and | M| =1if M € O(n). For any M,N € U, we have

| — [M, N]| = |L, = MNM~'N~'| = [(NM = MN)M N7
< |NM - MN|
— Iy = N)(Io = M) — (I, — M) (L, — N)|
< 2||L, — M]|[|L, - N|

Since M, N € U, we have
1
1 = [M, N|| < 2| In = M[[In = N|| < ¢ (2.5)

Therefore [M, N] € U. For any g,h € U, we define x; = [g, h] and z; = [g, z;—1] for i > 1.
By above calculation, we can conclude that z; € U for all ¢ > 0. By (2.5]), we have

[n — 21| < 2[[1n = gl[[[ 10 — Al
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and
I n — zill = [ In — [g, zia]ll < 2|10 — glll[{n — @i-al|

for ¢ > 1. Hence we get
10 — @] < 2|11 — gl |l 10 — 2]

for i > 1. Since g,h € U, we have ||I,, — z;]| < 2/(1)%(3) = 5oz for i > 1. Therefore we

can conclude that the sequence {x, }°2, converges to identity. O

Lemma 2.2.4. [3], Lemma 2.3] Let G C O(n) be a connected subgroup and let U be a
neighbourhood of the identity. Then (G NU) = G where (G NU) is the group generated
by the set GNU.

Proof. 1t is clear that (G N U) C G. For the opposite inclusion, define the set § =
G/{(GNU). We claim that the sets S and (G NU) are simultaneously open and closed.
Let z € (GNU) and Bc(x) C U be an open disk centered at z with radius e. For any
y € Be(z) NG, we have

lyz™ = L]l = [lyz™" — 227! = [ly — =] <e (2.6)

Therefore yz~! € B.(I,,) C GNU for small enough e. Therefore y = (yz~)z € (GNU).
It follows that the set (GNU) is an open set. By definition, the set S is therefore closed. If
the set S is an open set, then G/S = (GNU) is closed. Therefore we remain to show that S
is an open set. For any y € S, we assume by contradiction that there exists € B.(y) NG
such that z € (GNU). By (2.6), we have y € (GNU), which is contradiction. Thus our
claim is true. Since U is a non-empty set and G is a connected set, we can conclude that
S = () and therefore G = (GNU). O

Lemma 2.2.5. [9]1, Lemma 2.4] There exists an arbitrary small neighbourhood V' of
I,, € O(n) such that for any g € O(n), we have gVg~! = V.

Proof. Let € be a positive number and define V' = B(l,). For any g € O(n) and h € V,

we have
thgil - InH = Hg(h - In)gilu = Hh - In” <e€

Hence we have gVg=! C V and ¢g7'Vg C V. It follows that V = g(¢g~'Vg)g~! C gVg~ L.
Therefore we can conclude that gVg=' =V O
Definition 2.2.6. Let U be a neighbourhood of I, € O(n). We say U is a stable neigh-
bourhood of identity if it satisfies Lemma Lemma [2.2.3] and Lemma [2.2.5

Lemma 2.2.7. [7], Lemma 2.5] Let ' be a crystallographic group and = € R™. Then the

linear space generated by the set {~y(x)} where v € I" is equal to R”

Proof. Assume the lemma is false that there exists an element zg € R™ such that the

linear space generated by the set {y(zo)} lies in W, a proper linear subspace of R". By a
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new choice of origin in R", we may assume that O(n) leaves z fixed. Since (I,,0) € I', we
have (I,,0)(zo) = xzg € W. It follows that for any v = (A4,a) € T', we have (A,a)(xg) =
a+ xg € W. Hence we must have a € W.

Since I' is a group, we have A(W) = W for any A € p;(I") where p; : O(n) x R" — O(n)

be the projection map. Define
Wt ={zeR"|(zx,y) =0 Yy c W}

which is the orthogonal complement of W. Let 2 € W+. Then for any v = (4,a), we
have

(y(@),7(x)) = {a+ Az,a + Az) = (a,a) + (z,z)
Hence ||z|| < ||y(z)|| for any v € T'. Since I' is a crystallographic group, it has a compact
fundamental domain. It follows that there exists d > 0 such that for all x € R™, there exists
v € T such that ||y(z)|| < d. This is a contradiction. Because by the above calculation,
for all d > 0, there exists € R™ where ||z|| > d and we have d < |[z|| < [|y(x)]| for all

~v € I'. Therefore I' cannot have a compact fundamental domain. O

Lemma 2.2.8. [31, Lemma 2.6] Let I' be an n-dimensional abelian crystallographic group,

then I' contains only pure translations.

Proof. Let (B,b) € I" where B # I,,. Then we can always choose an origin and a coordinate

I, 0
B =
0 B

where I is an r-dimensional identity matrix, B’ — I is a nonsingular s x s matrix, r+s = n

system in R"™ such that

and r can be zero. Moreover, we can assume b = (b',0,--- ,0) where &’ € R". By Lemma

t
to

2.2.7], there exists an element (C, (

)) € I where t; € R" and 0 # to € R®. By simple

calculation, we have

e ) )- i)
(oo ) ()

Since T' is abelian, we have B'(t3) = to which contradicts that B’ — I, is nonsingular

matrix. O

Lemma 2.2.9. [7], Lemma 2.7] Let I" be an n-dimensional crystallographic group and let
p1: O(n)xR™ — O(n) be a projection map. In other words, we have p;((A4,a)) = A where

(A, a) € Isom(R™). Then (p1(I"))o is an abelian group, where (p1(I"))o denote the identity

component of the closure of p;(I') in O(n). In other words, (pi(I'))o is the connected
component of the smallest closed set containing p;(I') in O(n) which contain the identity

element.
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Proof. Let U = B.(I,) be a stable neighbourhood of I,, € O(n). Let 713 = (A1,a1) and
Yo = (Ag,a3) be elements in p; }(U) NT, By recurrence, we define for i > 2,

Yi+1 = [71,%']
and denote ~; = (4;,a;) for all i > 0. We now have

Yir1r = (A1, a1)(Aiy i) (AT, = AT an) (A — A7 ay)

= (A1 4;,a1 + Ara) (AT AT — ATty — AT A ay)

= (A14;A7 A ,a1 + Aja; — AlAl-Aflal — AlAiAflA;lai)
= ([A1, A, (I, — AL A AT ay + Ay(I, — A AT AT Y ay)

= (

(A1, Al Ar(T, — A) AT ar + AL AT, — ATD A ay)

Hence we know that A;4+1 = [A1, 4;] and ||a;v1|| < ||In— Aill||a1]]+€l|ai]|. By Lemma|2.2.3
we have lim;_00A; = I,,. Hence lim;_oa; = 0. Since I is discrete, we have v; = (I,,,0)
for sufficient large i. Since A; commutes with A; = [A1, 4;—1], by Lemma we can
conclude that A; commutes with A; ;. Inductively, we can therefore conclude that A;
commutes with As. It follows that any elements of the set p;(I') N U commute. Thus the
closure of p;(I') N U is abelian. Since (p;(T))o is a connected subgroup, by Lemma [2.2.4

we can conclude that (p1(T"))o is an abelian group. O

Proof of Theorem [2.2.1] Let p1 : O(n) x R™ — O(n) be the projection map. Assume first
that I' N (I, x R™) is trivial. Then p; is an isomorphism of I" into O(n). Since O(n)
is compact, so the closure of p;(I') has finite number of components. By lemma [2.2.9
(p1(T))o is abelian. Hence I' contains a subgroup I'; of finite index which is abelian.
Notice that I'y has finite index in I, it is also a crystallographic group. Hence by lemma
Iy contain of pure translations only, which is a contradiction. Thus we conclude

that I' N (1, x R™) is non empty.

Let W C R™ be the subspace of R™ spanned by the pure translations of I'. Let (I,,,w) be
an arbitrary element in the group of all pure translations of I' and (A4, a) be an arbitrary

element in I', we have

(A, a)(I,,w)(A, a)_l = (I, Aw)

which is also an element of the group of all pure translations. It follows that we have
p1 (D)W = W. We claim that pi(I")| is a finite group. Assume by contradiction that
p1(T)|w is infinite. Let {(A;,a;)}:2; be an infinite sequence of elements in I" such that
lim; oo A; = I,,. Define

(Bi, bi) = (In, er)(Ai, a;)(In, —er) = (Ai, (In — Aj)er + a;)

where e, € DN(I, xR™). Then {(B;,b:)(A; ", —A; )22, = {(Tn, (In— Ai)er) 32, defines
a non discrete subset of I', which is a contradiction. Moreover, we see that I' induce a
cocompact action on R"™/W. We claim I' acts properly discontinuously on R"/W too.
We have decomposition R* = W @ W+ where Wt = R?/W. Let pr; : R* — W and
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pro : R® — W+ be projections. Since p;(T')|w is finite, we can concentrate on elements
v € T such that p;(vy) acts as identity on W. By proposition since I' is discrete
subgroup of Isom(R"™), the set I'(0) is discrete subset of R". We are going to prove our
claim by contradiction and assume pra(I'(0)) is not discrete at W+ and let y € W+ be an
accumulation point of pra(I'(0)). Let {pra(7:(0))}52, be a convergent sequence converges
to y where v; € I'. By using elements from I' N (,, x R™), we can define a new sequence of
elements 4; € I',i € N such that Vi € N, pri(4;(0)) € C C W where C is a compact set.
It is easy to see that I' N (7, x R™) is a cocompact subgroup of W. Notice that the set
{7:(0)},7 € N has an accumulation point at a discrete set I'(0), which is a contradiction.
Hence we can conclude that I' acts properly discontinuously on R™/W. Therefore I" is
a crystallographic group on R"/W with no pure translation. Therefore the dimension of
R™/W is zero.

Let (A,a) € I" be an arbitrary element in I" and ([,,, ) be an arbitrary element in the set

of translations subgroup I' N (I, x R™). We have
(A,a)(I,2)(A,a)t = (I, Az) € TN (I, x R")

Therefore I'N (I, x R™) is a normal subgroup of I'. Let T be a maximal abelian subgroup
of T" and (A, a) be an arbitrary element of I'. If (A, a) commutes with any translation of
I', then we can see that A = I,,. Thus the set of translation subgroup I' N (I, x R") is a

maximal abelian normal subgroup of I'. O

Let I be an n-dimensional crystallographic group. By the first Bieberbach theorem, I' fits

into the short exact sequence below,

02" 5T 5 G —1 (2.7)
where G is a finite group, ¢ : Z" < T" is an inclusion map which maps e; to (I, e;) where
e, ...,e, are the standard basis of Z™ and p : ' — G is a projection map which maps
(A,a) € T to A. Besides, the group Z" is a maximal abelian subgroup. Given such a short
exact sequence, it induces a representation p : G — GL,(Z) given by p(g)x = gu(x)g},
where x € Z™ and g is chosen arbitrarily such that p(g) = g. In this case, we call the group
G to be the holonomy group and the representation p to be the holonomy representation

of T

Lemma 2.2.10. Using the same notations as above. The induced representation p : G —

GL,(Z) is a faithful representation. In other words, the kernel of p is trivial.

Proof. Let g € ker(p). We have p(g) = idzn. It follows that

where x € Z™ and g is chosen arbitrarily such that p(g) = g. Thus g commutes with any
translation of I'. Since Z" is the maximal abelian subgroup, we can conclude that g = I,,.

Therefore p is a faithful representation. O
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2.3 Group cohomology and group extension

Let G be a group. The integral group ring ZG is defined to be the free Z-module gen-
erated by the elements of G. Therefore an element of ZG can be uniquely expressed as
>_gec a(9)(g) where a(g) € Z and a(g) = 0 for almost all g € G. We say M is a G-module
if M is an abelian group and there exists a homomorphism ¢ : G — Aut(M) such that the
group G acts on M by g-m = ¢(g)(m). Since all abelian group can be view as a module
over Z, a G-module M is the same as a ZG-module. Through out this section, we denote

R to be a ring with one.

Definition 2.3.1. Let M; be R-modules and f; be R-module homomorphism for all ¢ > 0.

Consider the below sequence,
fi f2 f3
My — My —= M3 = My — --- (2.8)

(i) We say the sequence (2.8)) is ezact at M, if and only if ker(f,) = im(fn—1) for n > 0.
(77) We say the sequence ({2.8)) is ezact if and only if it exacts at M, for all n > 0.

Definition 2.3.2. Let M; be R-module and d; be R-module homomorphism for ¢ > 0.
Then

0— My L hry &5 o By My — o
is a cochain complex if the composition of any two successive maps d,41 o d,, is zero map.
Definition 2.3.3. A short exact sequence is a 5 terms exact sequence where the first and
last term are identity. In other words, the below exact sequence is a short exact sequence

0545 B% 00 (2.9)

where A,B, C are R-modules. We say the above short exact sequence split if there is
an R-module homomorphism s : C' — B such that ¢ o s is the identity map on C. In this
case, we call the map s : C — B to be a splitting homomorphism for the sequence
and B2 AgC.

Definition 2.3.4. Let M be an R-module. We say M is a free module if there exists a
subset A C M such that for any non-zero element x € M, there exists unique non-zero

elements 71, ...,7, € R and unique aq,...,a, € A for some n € N such that

n
Tr = E riQ;
i=1
In this case, we say A is a basis or set of generators of M.

Definition 2.3.5. Let P be an R-module. We say P is a projective module if P has the
following property. For any R-module M and N, if we have a surjection map ¢ : M — N,
then for every R-module homomorphism from P to N lifts to an R-module homomorphism

into M. In other words, given f € Hompg(P, N), there exists a lift I € Hompg(P, M)
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making the following diagram commute:

Proposition 2.3.6. Let P be an R-module. P is a projective module if and only if P is

a direct summand of a free R-module.

Proof. First, we assume P is a projective module. Notice that P is the quotient of a free

module. Thus we always have a short exact sequence
0—>ker(¢>)—>]—"£>P—>0

By definition of projective module, the identity map id : P — P lifts to a homomorphism

1 making the following diagram commute,

0 —— ker(¢) F P 0

(2.10)

Since the above diagram commutes, we have ¢ o p = id. Thus p is a splitting homomor-
phism for the sequence (2.10)) and therefore F = ker(¢) & P.

Next, we assume P is a direct summand of a free R-module. Let F(S) = P & K where
F(S) is a free R-module on some set S and K is R-module. Let M and N are any R-
module and ¢ : M — N be surjection. Let 7 : F(S) — P be the natural projection and
let f: P — N be any R-module homomorphism. Our aim is to lift the map f to an
R-module homomorphism into M. Consider the map fox : F(S) — N. For any s € S,
we define ng = fom(s) € N. Since ¢ is surjective, we let ms € M be any element of
M satisfies ¢(ms) = ns. By the universal property for free modules (see [15, Section 3,

Theorem 6]), there exists a unique R-module homomorphism F’ : F(S) — M such that
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F'(s) = ms. Thus we have the following diagram

F(S)=PaK
)/ s
S P
// F
f
v ¢
M N 0

for any s € S, we have
¢o F'(s) = ¢(ms) =nys = fom(s)

It follows that ¢ o F/ = f on. In other words, the above diagram commutes. We define
amap F : P — M where F(d) = F'((d,0)). Since F is a composition of a injection
P — F(S) and the homomorphism F’, the map F is an R-module homomorphism. Then

¢poF(d) =¢oF'((d0) = fon((d0)) = f(d)

Thus the below diagram commutes

and we complete the proof. O

By the above proposition, we get the below result.
Corollary 2.3.7. If P is a free module, then P is a projective module.

Definition 2.3.8. Let C* be R-modules for all i > 0. Consider the following sequence
00 Lot dycr o o ol (2.11)

where d" : O™ — C™*! is homomorphism. We say the sequence (2.11)) is a cochain complex
if composition of any two consecutive maps is the zero map. We define the n* cohomology

group of that cochain complex to be
H™(C) = ker(d"™)/im(d"™")

where C is the cochain complex (2.11]).
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Definition 2.3.9. Let A be an R-module. A projective resolution of A is an exact sequence
dn di do
e P > P —A—>0 (2.12)

where P; are projective R-module for all ¢ > 0.

Lemma 2.3.10. Let A be an R-module. There always exists a projective resolution of A.

Proof. Choose a free module Py with a surjection dy : Py — A and define ker(dy) = K.
Inductively, for n > 1, we choose a free module P,, with surjection P, — K,_1 and define
K, to be the kernel of the surjection. We define d,, to be the composition P, — K,,_1 —
P,_1. It is clear that ker(d,) = ker(P, — K,—1) = K,. By the above construction, we

have a surjection d,, : P, — K,_1 and ker(d,) = im(d,+1). It follows that the sequence
o> P> P —>PFP—>A—=0

is exact and P; are projective R-module for all ¢ > 0 by Corollary O

Given the projective resolution (2.12]), we can form a cochain complex by talking homo-
morphisms of each of the terms into an R-module D. In other words, we apply the functor
Hompg(—, D) to the projective resolution ([2.12]) and get the below sequence,

df d d! d!

0 — Hompg(A, D) - Homp(P,, D) = Hompg(Py, D) - Hompg(Ps, D) - --- (2.13)
Let f € Homp(A, D), we define djy(f) = fody. For n > 0, and let f € Hompg(P,, D), we
define d;, ., (f) = f o dy41. For any n > 0 and let f € Hompg(P,—1,D) (take P_; = A),
we have

d;b+1 © d;(f) = d;lri»l(f e dn) = f © dn o dn+1

Since the sequence (2.12)) is an exact sequence, the composition d;,, ; o d;, is zero map for
all n > 0. Therefore the sequence (2.13) is a cochain complex.

We define
Eath(A, D) = ker(d),) /im(d,)

for n > 1 and Ext}(A, D) = ker(d}).

For n > 0, the n** cohomology group of group G with R-module M as coefficient is defined
as
H"(G, M) = Ewt%G(Zv M)

We define the standard resolution of Z as
NN R NN Ny NN (2.14)

where F), is defined to be ZG ®7 ZG Ry, - - - Q7 Z.G where there are n + 1 copies of ZG for
n > 0. Notice that F), is a G-module where the G-action is given by g+ (go ® -+ ® gn) =
(990) ® g1 ® -+ @ gn. Notice that F, is a free ZG-module of rank |G|" and the set
{121 ®---®gn|gi € Gforl <i <n}isaset of basis of F,,. We denote the basis element
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11 ® - ®gp tobe (g1, -+ ,9n). We define the map d1(1® g) =g — 1 and for n > 2,
we define

n—1

dn(gh ey gn> = gl'(QQ) 7911)‘%2(*01)1(91, -3 9i—15,9i9i4+1, n+2, -+ gn)+(71)n(917 "'7.971*1)

i1
Now, we apply the functor Homgzg(—, M) to the sequence (2.14) and obtain the below

cochain complex

0 — Homzg(Z, M) < Homgg(Fy, M) 4, Homgg(Fy, M) b, Homzg(Fo, M) — - -
(2.15)
Notice that the elements of Homyg(F,, M) can be uniquely determined by their values
on the ZG basis elements of F,,. In other words, the group Homyzg(F,, M) can be identify
with the set of functions from G x - - - x G (n copies of G) to M and Homyg(Fo, M) = M.

Now, we can give a definition of cohomology of group G with coefficient M as follow.

Definition 2.3.11. Let G be a finite group and M be a G-module. Define C°(G, M) = M,
C™(G, M) to be the collection of all function from G™ to M for n > 1 and C"(G, M) =0
for n < 0. We define the coboundary operator 6™ : C™(G, M) — C"(G, M) as below,

8" f(90. 91 - 9n) =90 - (91, s 9n)

n

Y (=1 £(90s - Gj—25 Gi—195> G415 --os Gn)
7=1

+ (=" £ (g0, s 1)
forn > 1, %mn(g1) = g1 - m —m and 6" = 0 for n < 0. Then
0 80 1 st 8" rrntl
0—-C"(G,M) —C(G,M)— -+ — H""(g,M) — ---

is a cochain complex. We define Z"(G, M) = ker(0™) and the elements of Z"(G, M) are
called n-cocycles. We define B"(G, M) = im(6" ') and the elements of B"(G, M) are
called n-coboundaries. We define the n** cohomology group of G with coefficients in M to
be

H"(G,M)=27"(G,M)/B"(G,M)

Remark 2.3.12. Using the notation as in (2.15)) If G is a finite group and M is a finitely
generated G-module. Then Homgg(F,, M) is a finitely generated abelian group for all
n > 0. Therefore H"(G, M) is a finitely generated abelian group for all n > 0.

Now, we discuss the relation between cohomology of groups and extension of groups.

Definition 2.3.13. Let N, G, I be groups. We say I' is an extension G by N if it fits in

the below short exact sequence,

1-NSTEG—1 (2.16)
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Let T' and I are both extension of G by N. We say two extensions are equivalent via f if

there exists a homomorphism f : I' — IV such that the following diagram commute

Lemma 2.3.14. Using the same notations as above, the homomorphism f is indeed an

isomorphism.

Proof. Let v € ker(f). Since ps o f(7y) = p2(1) = 1 and the diagram commutes, we have
p1(y) =p2o f(y) = 1. Thus v € ker(p1). By exactness at I', there exists z € N such that
t1(z) = . Hence wa(z) = fou(x) = f(y) = 1. Since ¢ is injective, z = 1 and therefore

v =11(x) = 1. It follows that f is injective.

Let 1/ € I". Since p; is surjective, there exists v € I' such that pi(y) = p2(7’). We have

p2o f(v) = p1(y) = p2(7’) and therefore pa(7/(f(7))~1) = 1. By exactness at I, there
exists ¥ € N such that 1a(x) = +/(f(v))~L. It follows that f(i1(z)y) = f(u(2))f(y) =

w(x)f(y) =~ (f(7) " f(y) = 4. Thus f is surjective. Therefore f is an isomorphism. [J

Lemma 2.3.15. Given the below short exact sequence
0-N5HTEBHG -1 (2.17)

where N is an abelian group. Then it induces an G-action on N. In other words, we can

view N as a G-module.

Proof. Since N is an abelian normal subgroup in I', G acts on N by conjugation. Explicitly,
let g € G, x € N and pick g be an element such that p(g) = g. We define the action as

below,
Wg-z) = gu(z)g™ (2.18)

Let g’ be another element such that p(g') = g. Since I'/N = G, there exists x1 € N such

that g’ = gu(x1). Since N is an abelian group, we have

/— 1-— =—1

gu(x)g ™" = gu(x)u(x)u(z) g = gu()g

Hence the action is independent of choice of g. Therefore the action given by (12.18)) is well
defined G-action on N O

Lemma 2.3.16. Equivalent extensions of G by N define the same G-module structure
on N.
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Proof. Let I" and I be equivalent extensions and consider the below commutative diagram.

0——> N f G——1 (2.19)

Let g € G be an arbitrary element of G. let § be an element such that p;(g) = ¢g. The

G-module structure on N induce from I' is

u(g-z) =gu(z)g™

where z € N. Let g’ = f(g). Since the diagram (22.19)) is a commutative diagram, we have
p2(g") = p1(g) = g. Thus the G-module structure on N induce from I" is

—/—1

(g - x) = §ia(x)g

where x € N. Since 1, t2 and f are injective. We have

Flgu(@)g™) = §'e(2)d™ = wlg-2)

Therefore equivalent extension of G by N defines the same G-action on N. O

Let G be a group and A be a G-module. We would like to studying the relation between
H?(G, A) and group extension of G by A. Roughly speaking, Given a group extension of
G by A, we would like to define a class in H?(G, A). Next, we are going to reverse the
procedure. Given a class in H?(G, A) and we want to construct a group extension of G by
A correspond to that given class. Therefore we conclude that there is a bijection between
the set of all extension of G' by A and group H?(G, A).

Let G be a group and A be a G-module. We first want to show that the below extension
0-ASTH G (2.20)

defines a 2-cocycle in Z?(G, A). We want to study the above exact sequence by choosing
a set-theoretic cross-section s : G — I' such that ps: G — G is an identity map. We call
the map s to be a cross-section of p. We say the map s is normalized or we say s satisfies

the normalization condition if it satisfies the below condition
s(1)=1 (2.21)

In general, s is not necessary a homomorphism. We would like to define a function
f : G x G — A to measure the failure of s to be a homomorphism. Since for any
91,92 € G, the elements s(g1g2) € I and s(g1)s(g2) € I both map to gi1g2 € G, they differ
by an element t(a) for some a € A. Therefore we define f : G x G — A by the below

equation

s(g1)s(g2) = t(f(91,92))s(g192) (2.22)
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In particular, for any g € G, we can view s(g) as a set of coset representative for ¢(A) in
I'. Thus each element of I' can be written uniquely in the form ¢(a)s(g) for some a € A

and g € G. Besides, we say f is normalized if it satisfies the below condition

for all g € G. It is easy to check that if s is normalized, then f is also normalized. We
call the function f to be the factor set associated to the short exact sequence (2.20) and

the section s.

Next, we are going to show that f is an element in Z2(G, A). Let t(a1)s(g1) and t(a2)s(gz2)
be two arbitrary elements of I'. By the relation (2.18)), we have

v(gr - az) = s(g1)e(az)s(gr) ™

By the definition of f given by (2.22)), we have

t(a1)s(g1)e(az)s(g2) = t(a1)i(gr - a2)s(g1)s(g2)

(a1 + g1 - a2)e(f(91,92))s(9192)

(a1 + g1 - a2 + f(g1,92))s(9192)

Next, we compute the triple product [s(g1)s(g2)]s(g3) and s(g1)[s(g2)s(g3)], we have

[t(a1)s(g1)e(az)s(g2)]e(as)s(g3) = tlar+g1-aa+ f(g1, 92)+(9192) - as+ f (9192, 93)) s(919293)

and

t(a1)s(g1)[t(a2)s(g2)e(as)s(gs)] = t(a1+g1-az+(9192)-as+g1-f (92, 93)+ f (91, 9293))5(919293)

Since I' is group and therefore it satisfies the associative law, f does satisfy the following
condition
91+ f(92,93) — f(9192,93) + f(91,9293) — f(91,92) = O

Using the same notations in Definition f € ker(6%). Thus f is a 2-cocycle. There-
fore we can conclude that the factor set f associated to the extension and a choice
of section s is an element of Z2(G, A). Let f’ be a factor set associated to the extension
and a different choice of section s’. We are going to show that f and f’ differ by a
2-coboundary. For all g € G, the element s(g) and s'(g) lie in the same coset Ag. Thus
there exists a function ¢ : G — A such that s'(g) = t(¢(g))s(g) for all g € G. For arbitrary

elements ¢(a1)s’'(g1) and t(ag)s’(g2) in T', we have

s'(g1)s'(92) = «(f'(91,92))5 (9192)
(f'(g1,92))(D(9192))5(9192)
u(f'(g91,92) + D(9192))5(9192)
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and

5'(91)s'(92) = t(¢(g1))s(g1)e(b(g2))5(g2)
= u(o(g1) + g1 - #(g2) + f(91,92))5(9192)

Therefore we have

f(g1,92) = fg1,92) + 0(91) + g1 - d(g2) — ¢(9192) (2.24)

It follows that f and f’ differ by the 2-coboundary ¢. Thus we can conclude that the
factor sets associated to the extension [2.20] corresponding to a different choices of section
give a 2-cocycle in Z2(G, A) that differ by a coboundary in B?(G, A). Hence associated
to the extension is a well defined cohomology class in H?(G, A) determined by the

factor set in [2:22] for any choice of section s.

Remark 2.3.17. In particular, if the extension [2.20]is a split extension, then there is a
homomorphism section s : G — I'. Therefore the factor set satisfies f(g1,g2) = 0 for all
g1, 92 € G. Hence the trivial cohomology class in H?(G, A) defined a split extension. In
other words, I' = A x G.

Next, we want to prove that equivalent extensions define the same cohomology class in
H?(G,A). Let T and I are two equivalent group extensions of G' by A. Consider the

below commutative diagram

Let s be a section of p, then s’ = 1 o s is a section of p’. Let f: G x G — A be a factor

set of the extension correspond to I' and section s. Recall that f satisfies the condition

s(g91)s(g2) = u(f (91, 92))s(9192) (2.25)
for all g1, g2 € G. Applying ¢ to (2.25)), we have

s'(g1)s'(92) = ¥(s(91))¢(s(g2)) = ¥(e(f(g1,92)))¥(s(g192))
V(f(g1,92))8 (9192)

for all g1, g2 € G. Tt follows that the factor set for I associated to s’ is the same as the

factor set for I' associated to s. Thus equivalent extensions define the same cohomology
class in H?(G, A).

Next, we want to show that given a class in H2(G, A), we could construct an extension F r

such that its corresponding factor set is in the given class in H?(G, A). Using the notations
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in Definition [2.3.11} Let f € Z?(G, A) C C?(G, A) be a 2-cocycle. Define f; € C1(G, A)
which maps g € G to f(1,1) for all g € G. We claim that f — 6'(f1) is a normalized

2-cocycle. By definition of §!, we have

5 (f)(g, 1) =g f1(1) = filg) + fi(g) = g f(1,1)

and
§'(f)(1,9) =1 filg) — fi(g) + f1(g) = f(1,1)

for all g € G. Since f is a 2-cocycle, we have
f(g:h) + fgh, k) = gf (h, k) + f(g, hk)
for all g, h, k € G. By setting g = h =1 in[2.28] we have
f(LE) = f(1,1) =0

for all k € G. By combining and we have

f(1,9) =8 (f1)(1,9) =0
On the other hand, by setting h = & = 1 in [2.28] we have

flg.1) —g-f(1,1) =0

By combining and , we get

fg:1) = 8" (f1)(g.1) =0
for all g € G. It follows that

(f = 3" (fu)(g, 1) = (f = 6" (f1))(1,9) = 0

Thus, we can conclude that f — &§(f1) is a normalized 2-cocycle.

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

Let f be a cohomology class representative in H?(G, A) where f is a normalized 2-cocycle.

Define Ey be the set A x GG with a binary operation on Ey as below

(a1,91)(az2,g2) = (a1 + g1 - a2 + f(91,92), 9192)

where (a1, 91), (a2, 92) € AxG. We claim that E is indeed a group. Since f is normalized

2-cocycle, we have
(a,9)(0,1) = (a + f(g,1),9) = (a,9)

and
(0,1)(a,g) = (a+ f(1,9),9) = (a,9)

Thus (0,1) is a 2-sided identity. Next, we check for associativity. By simple calculation,

we have

[(a1, 91)(az2, g2)](as, 93) = (a1 + g1 - a2 + f(g1,92) + (9192) - a3 + f(g192, 93), 919293)
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and

(a1,91)[(a2,92)(as, g3)] = (a1 + g1 - az + (9192) - a3 + g1 - f(g92,93) + f(91,9293), 919293)

Since f satisfies we have [(a1, g1)(a2, g2)](as, 93) = (a1, g1)[(az, 92)(as, g3)]. Thus the

operation satisfies the associativity law. By simple calculation, we get

(0,9)[(0,g7 (0, 9)] = (g- flg~ ", 9) + f(g.1),9)

and
[(0,9)(0,g71)](0,9) = (f(g.97"),9)

Since f is normalized and the binary operation on A x E satisfies associativity law, we

have
g-flg7"9)=flg.g7")

Besides, by simple calculation, we get

(a.9)(~9ta—g " flg,97 )97 = (0,1) = (~g"ta— g7 f(9,97 "), 97 )(a,9)
Thus for any (a,g) € A x G, it exists an inverse

(a,9) ' = (=g la=g " flg,97"),97")
Thus Ey is a group. Define
A" ={(a,1)|a € A} (2.33)

Since f is a normalized 2-cocycle, A’ is a subgroup of Ey, and the map ¢’ : a — (a,1) is
an isomorphism from A to A’. It is clear that A’ is a normal subgroup of E; and the map

P’ : (a,g) — g is a surjective homomorphism from E; to G with kernel A’. Thus we have
0545 E 561 (2.34)

By simple calculation, we check that the action of G on A by conjugation in the above
extension is the module action specified in determining the 2-cocycle f € H?(G, A). The
extension has a normalized section s : G — Ey which maps g € G to (0,9) €
E; whose corresponding normalized factor set is f. Thus we can conclude that every

normalized 2-cocycle arises as the normalized factor set of some extension.

Finally, suppose f’ is another normalized 2-cocycle in the same cohomology class in
H%(G,A) as f and let Ep be the corresponding extension Since f and f’ are in the
same cohomology class, they differ by the coboundary f; : G — A. Explicitly, for all
g,h € G, we have

f(g.h) = f'(g.h) = g fi(h) = fi(gh) + f1(9)
By setting g = h =1, we get fi(1) = 0. Define ¢ : Ey — Ep given by

¢((a,9)) = (a+ fi(9),9)
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It is clear that ¢ is a bijection. Next, we want to show that ¢ is a homomorphism.

¢((a1,91)(az, 92)) = ¢((a1 + g1 - a2 + f(91,92), 9192))
= (a1 + g1 - a2+ f(91,92) + f1(9192), 9192))
= (a1 + fi(g1) + g1~ (a2 + fi(g2)) + f'(91.92), 9192)
= (a1 + fi(g1), 91)(a2 + f1(g2), 92)
= ¢((a1,91))9((az, g2))

for all (a1, g1), (a2, 92) € Ey. It follows that ¢ is an isomorphism. Consider the restriction
of ¢ to A, we have

¢((a,1)) = (a+ f1(1),1) = (a,1)

for all @ € A. Therefore ¢|4 is the identity map on A. Similarly, ¢ is the identity map
on the second component of (a,g), so ¢ induces the identity map on the quotient of G.
It follows that ¢ defines an equivalent between the extensions Ey and Ey. This shows

that the equivalence class of the extension Ey depends only on the cohomology class of
f € H?(G,A).

We summarize all the above discussion in the following theorem.

Theorem 2.3.18. Let G be a group and A be a G-module. Let £(G, A) be the set of
equivalence classes of extensions of G by A giving rise to the given action of G on A. Then
there is a bijection between the set £(G, A) and the group H?(G, A).

Remark 2.3.19. Let G be group and A be a G-module. The trivial class [0] € H?(G, A)

is correspond to a the below split extension

0-A—-AxG—-G—1

We will present some properties of group cohomology in the rest of this section.

Proposition 2.3.20. [21, Proposition 5.3, page 117] Let G be a group and A be a G-
module. If |G| = k, then every element of H"(G, A) has order divisible by k for n > 0.

Proof. Let f € C™(G, A) be an arbitrary n-cochain. Define

9(T1, ey Tp—1) = Z flx1, oy @1, )

zelG

By definition of §" for n > 0, we have
" rg(xy, oy 1, Tn) =T19(T2, oy T 1, Ty
n
+ Z(—l)j+1g(:p17 sy Lj—2, Lj—1Lj, Tj41, -y Tn—1, I‘n)
=2

+ (=1)"g(x1, .y Tp—1)
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and

S " f @1y s n, )] =Y w1 f (52, 000y T, )]

zeG zelG
E 1
+ Z j+ f 371,...,Hﬁ'j_la}j,xj_i,_l,...,xn,x)
zeG j=2
n+1
+ l’l,.- Tn— 17$nl‘ + f xla"'axn)]
:CEG :CEG

=$19($2, ceey l‘n)

i1
+ E LT g1, oy T2, T 1T, Tjr1, e T 1, Tn)

+ (—1) g(x1, s 1) + |G(=1)" T f (21, ooy )

It follows that
D 6" (@1 Ty ) = 8" (21, s Tty ) + |G (= 1) (21, )
zeG

If f e Z"(G, A), then we have 6" f = 0. Hence we have

5”719(951, vy Tp—1, Tp) = |G| f(z1, ..oy Tp)

Thus the order of f is divisible by k. O

By combining Remark [2.3.12| and the above proposition, we get the below corollary.

Corollary 2.3.21. Let G be a group and Z™ be a G-module for any n > 1. If G is finite,
then so is H%(G,Z").

Proposition 2.3.22. [31], Proposition 2.1] let G be a group and M be a G-module. If
|G| = m is invertible in M, then H"(G, M) = 0 for all n > 0.

Proof. Using same notations as in Definition Let ¢ : C1(G, M) — C1G, M) be a
homomorphism that sends f € CY(G, M) to m - f. It suffices to show that the induced
homomorphism ¢? : HY(G, M) — H%(G, M) is the trivial homomorphism for ¢ > 1. In
other words, we want to show ¢?(H?(G, M)) = 0. By Proposition we know that
all g-cocycle has order divisible by k. Hence ¢?(HY(G, M)) = 0. O

2.4 The Second and Third Bieberbach theorems

In this section, we will state and prove the second and the third Bieberbach theorems.
Most arguments in this section are extract from [31, Chapter 2]. Before proving the second
and third Bieberbach theorems, we want to present a theorem from Zassenhaus and give

a algebraic definition of crystallographic group.

Theorem 2.4.1. [31, Theorem 2.2] A group T is isomorphic to an n-dimensional crys-
tallographic group if and only if I' has a normal, free abelian subgroup Z™ of finite index

which is a maximal abelian subgroup of I'.
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Proof. First, we assume I is an n-dimensional crystallographic group. By the first Bieber-
bach theorem, the group of translation I' N (I,, x R™) is a normal, free abelian subgroup

of finite index which is a maximal abelian subgroup of I'.

For the reverse direction, Let I' has a normal, free abelian subgroup Z™ of finite index

which is a maximal abelian subgroup of I'. In other words, we have
02" 51756 -1

where G is a finite group and Z" is a maximal abelian subgroup of I'. Given such a short
exact sequence, it induces a representation hr : G — GL,(Z). Since Z" is a maximal
abelian subgroup, by Lemma the representation hr is a faithful representation. We
can view the free abelian group Z™ as a subgroup of R"”. Thus we have an inclusion map

/' : Z"™ — R™. Consider the diagram below,

0 0 0
0 Z— T !
p
0 R" I ¢ ’
hr
0 R" R" % GLy(R) — GLy(R) ———— 0

The group I" is defined to be the pustout of the monomorphisms 7 : Z" — I" and ¢’ : Z" —
R"™. Notice that all vertical arrows are monomorphism. By Proposition we have
H?(G,R") = 0. By Remark I is isomorphic to G x R™ where the group action of
G on R" is given by hp. By [11l page 256|, any finite subgroup of GL,(R) is conjugate
to a finite subgroup of O(n). Therefore we can conclude that I' is an n-dimensional

crystallographic group. O

Theorem 2.4.2. [31, Remark 3] Let I" be a torsion-free group. The group I' is isomorphic
to a Bieberbach group if and only if there exists A < I' such that A is an abelian finitely

generated subgroup with finite index.

Proof. Let
AT)={zel||l':Cr(z)|]} <

where Cr(z) = {y € I'|yx = zv}. We claim that A(I') < T is a maximal, normal, free
abelian subgroup Z" of finite index. If so, By Theorem [2.4.1] we can concluded that T
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is an n-dimensional Bieberbach group. Since A C A(I"), we can see that A(I") is finitely
generated. Let {x1,...,z,} be a set of generators of A(T"). By [26l Lemma 1.5], we have

n

Cr(A(T)) =[] Cr(x:)

i=1
and |T' : Cp(A(T))| < oco. Since Z(A(T)) = A(T') N Cr(A(T)) where Z(A(T)) = {v €
AT) | vy = 49/ for ally’ € A(T")}, we see that A(T") has a central subgroup Z(A(T')) of
finite index. Let yi,...,yr be coset representatives for Z(A(I')) in A(I') and set ¢;; =

©]

YiYiy; lyj_l. It is easy to see that they are all elements [A(T"), A(T')]. Hence we have
[A(T), A(T")] is finite. Let A be a maximal abelian subgroup of I which contains A. It is
clear that A C A(T). Since A(T) is an abelian group, we have A = A(T') = Z" for some
n € N. Therefore we have complete the proof. O

By Theorem [2.4.1] we can introduce the algebraic definition for crystallographic groups.

Definition 2.4.3. A group I' is an n-dimensional crystallographic group if it can express

as the following short exact sequence

0 > 2" > I G 1

where G is a finite group and Z" is a maximal abelian subgroup of I'.

Theorem 2.4.4 (The second Bieberbach’s theorem). [31, Theorem 2.1(2)] For any nat-
ural number n, there are only a finite number of isomorphism classes of crystallographic

groups of dimension n.

Before present the proof of the second Bieberbach’s theorem, we need a few propositions
and theorem to prove that the number of conjugacy classes of finite subgroups of GL,,(Z)

is finite.

Proposition 2.4.5. [31, Proposition 2.3] For any natural number n > 0, the number of

isomorphism classes of finite subgroup of GL,,(Z) is finite.

Proof. Let p be any odd prime. Consider the natural homomorphism
¢: GLy(Z) — GL,(Z/pZ)

We claim the kernel of the above homomorphism is torsion-free. Assume by contradiction
that there exists an element A # I, € ker¢ such that AY = I,, where ¢ is a prime. Since
A € ker(¢), we have A = I, + pB where B is an n x n matrix. It follows that

I, = A? = (In—l—pB)q =1, +peB + (Z) p232+...+quq
After rearranging we have

(s (e
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where 0 denotes the n x n zero matrix. Let o be the maximal number such that p® divides
all entries of B. Thus any entry of pB? is divisible by p(p®)? = p?**1. Tt follows that

all entries of ¢B are divisible by p?*+!

. If p # g, then from the maximality of a, we get
2a 4+ 1 < «, which is impossible. Thus p = ¢. Hence 2a < « and therefore a = 0. Since

p = q, we have

B+(Z)BQ—I—(;))pQBS—I—---—i-pp_ZBq:O (2.35)

Notice that Z = p(p72—l) and p is an odd prime, we concluded that <12) is divisible by

p. Thus p divides all entries of B. Therefore we have a > 1 which is a contradiction. This

proves our claim is true.

For any finite subgroup G < GL,(Z), we have G N ker(¢) is trivial because ker(¢) is
torsion-free. It follows that G is isomorphic to some finite subgroup of GL,,(Z/pZ). Hence

the number of isomorphism classes of finite subgroups of GL,(Z) is finite. O

Proposition 2.4.6. For any n > 0, there exists a positive integer v(n) such that for any

finite subgroup F' < O(n) has an abelian normal subgroup A(F') such that |F': A(F)| <
v(n).

Proof. Fixn > 0 and F be a finite subgroup of O(n). Let U(I,,) be a stable neighbourhood
of I, € O(n). Define U" = B¢(I,). Let p denote the Haar measure on O(n) such that
1

u(O(n)) = 1. We choose v(n) to be a positive integer such that v(n) > MO Define

A(F) = (FNU)

By Lemma A(F) is a normal subgroup. By Lemma A(F) is an abelian
subgroup. We remain to show A(F') has index less that v(n) in F. Since F is finite group.
Let {f1,..., fm} be a set of coset representatives of the elements of F/A(F). In other
words, we have

FIAF) ={[fi]. [fo] -+ [fm]}
where f1, ..., fm € F. By definition, if [f;] # [f;], then f;U' N f;U" = 0. Hence we have

m

mu(U") =Y p(FiU") < p(O(n)) =1

=1

It follows that |F/A(F)| =m < — < v(n). O

Theorem 2.4.7. Let G;, | = 1,..., k, be the set of finite subgroups of O(n) which can be

expressed as integer matrices with determinant +1 in GL,(R). Then k is finite.

Proof. Let A; be the normal abelian subgroup of G; described in the above proposition.
Since the order of G;/A; is bounded, there exists only a finite number of distinct groups
of the form G;/A;,l = 1,2, ..., k. If we can show there exists only a finite number of A;, we

will have proven our assertion as then the group extensions must also be finite. As a finite
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abelian subgroup of O(n), A; is diagnozable over the complex numbers. Hence it has a
generating set consisting of at most n elements. Thus we must show that there are only
a finite number of possibilities for the order of an element g € O(n) which is conjugate in
GL,(R) to an integer matrix. For this we observe that the coefficients of the characteristic
polynomial of g are integers which are elementary symmetric functions in the eigenvalues

e2™ of g. This completes the proof. O

By the above theorem, we have the below result.

Theorem 2.4.8. [11, Theorem 79.1, Jordan-Zassenhaus Theorem] For any n > 1, the

number of conjugacy classes of finite subgroups of GL,(Z) is finite.

Proof of Theorem |(2.4.4]. For any finite group G, by Theorem there are finite many
non isomorphic G-module Z". Notice that for any given G-module Z", the number of
short exact sequence

02" ->T—-G—1

is bounded by the order of H?(G, Z™), which is finite by Corollary[2.3.21] Thus by Theorem
2.4.1] we can conclude that there are finite many number of isomorphism classes of n-

dimensional crystallographic groups. O

Theorem 2.4.9 (The third Bieberbach’s theorem). [31l, Theorem 2.1(3)] Two n-dimensional
crystallographic groups are isomorphic if and only if they are conjugate in the group A(n),
where A(n) = R™ x GL,(R). In other words, Let I'y and I's be n-dimensional crystallo-
graphic groups. They are isomorphic if and only if, then there exists an element o € A(n)

such that T'; = al'sa™!.

Proof. Let h: 'y — I's be an isomorphism of n-dimensional crystallographic group. The
restriction h|p (1, xrn) to the subgroup of translation defines a linear map x + Mz where
M € GL,(R). Let (A,a) € T'; and h(A,a) = (B,b) € I's. For any ¢ = 1, ..., n, we have

h((A,a)(In,e)(A,a)™Y) = (B,b) (I, Me;)(B,b) "' = (I,,, BMe;)

and
h((A,a)(In, e) (A a)™Y) = h(I,, Ae;) = (I, M Ae;)

Hence we have M Ae; = BMe; for i = 1,...,n. Therefore B = MAM~'. We can conjugate
h by some suitable matrix from GL,(R) such that the matrix M will be the identity. In
other words, we define ' : T'y — Ty as h/(I') = (M,0) " h(y)(M,0). Let h(A,a) =
(A,aa) € I'y. We claim that there exists g € R™ such that

h/(’Y) = (Im xU)’Y(Inv xo)il

Define h : 'y — A(n) which maps (4, a) to (4,a—a4). We claim that h is homomorphism.
Let (4,a),(B,b) € I'1, we have

W(AB,a+Ab) = h'((A,a)(B,b)) = I'((A,a))W'((B,b)) = (A, a4)(B,bg) = (AB, as+Abp)
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Thus

h((A,a)(B,b)) = h((AB,a + Ab))
(AB,a+ Ab—as — Abp)
=(A,a—an)(B,b—bp)

= h((A,a))h((B,b))

Hence h is a homomorphism. It is clear that ker(h) = I'y N R™. Notice that h(T) =
['1/kerh = T1/T1 N (I, x R") which is a finite group by the first Bieberbach theorem. By
Proposition there is a fixed point xg € R" of the action of the finite group h(I'7).
Thus we have

x0=(A,a—an)(xg) =Axg+a—ay
Hence, a = xg — Axg + a4. Finally, for any = € R, we get
(In,20)(A,aa) (I, —x0)x = (In,20)(A,aq — Axo)x

= (A,z0+as — Axg)x
= (A, a)x

Thus we have h'(v) = (I, 20) "'y (I, 7). Hence

M, —Ml‘o)’y(M_l,:E())
M, —Mz)y(M,—Mz)™?

Therefore we completed our proof. O

2.5 Flat manifolds and Bieberbach groups

In this section, we will discuss the relation between Bieberbach groups and flat manifolds.

Definition 2.5.1. A differential n-dimensional manifold is a separable Hausdorff topo-
logical space M together with a family {(U,,uq)}aca such that it satisfies the following

properties.
(1) {Uns}aeca is a covering of M by open sets;
(7i) uq is a homeomorphism of U, onto an open subset of n-dimensional Euclidean space;
(7i1) if a, B € A, then the composition
ug oug' : ua(Uy NUg) — ug(UaNUp)
is an infinitely differentiable (i.e. smooth) map; and

(1v) {Uq, tua)}aca is maximal for the first three properties.
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Using the same notations as above, a function f : U — R where U is an open set in M is

1

said to be smooth if (f|ynu,) o u, " is smooth for all & € A. We denote the vector space

of smooth functions on U to be C*(U).

If z € Uy, then uy(z) = (ul(),...,u%(x)) € R™. The u’,(z) are called the local coordinates

(67

of  with respect to U,. The pair (Uy,uy) is called a local coordinate system.

Let M be an n-dimensional differentiable manifold. Let ¢ : I — M be a smooth curve
where I is an open interval. If ¢ € [ and f is a real-valued differentiable function on a
neighbourhood of o(t), then we define
o1
o' @®1(f) = lim = (f(o(t + h)) = f(a(t))

h—0

If (U,u) is a local coordinate system with o(t) € U, then we can view f as a function
f(z) = f(ul(2),...,u"(z)) on a subset of u(U), we denote u’(c(t)) by u(t) for i =1,...,n.
By chain rule for derivatives, we have

=Y 0
=1

(2.36)

ut=u’(t)
We called o' (t) to be the tangent vector to o at o(t).

Fix a point x € M and consider all smooth curves ¢ : I — M such that 0 € I and
o(0) = x. Given two such curves o and 7, we write o ~ 7 if ¢/(0) = 7/(0). By we

have o ~ 7 if and only if '
du'(a(t))
dt

_ dui(r(1))
dt

t=0 t=0

for all 4, where (U,u) is a local coordinate system with x € U. We can see that ~ is an
equivalence relation. A tangent vector to M at x is an equivalence class of curves. We
often identity the tangent vector at = represented by a curve o, with the operation ¢’(0)
on functions differentiable in a neighbourhood of x. We can observe that the set of all
tangent vectors to M at x is the n-dimensional real vector space. We denoted that space

to be T, (M) and is called the tangent space to M at x.

Definition 2.5.2. Let M be an n-dimensional differentiable manifold. Let U be an open
set in M. A wector field V on U is a map which send = € U to V,, € T,(M) of a tangent
vector at every point of U such that if f € C*°(U), then the map = — V,(f) is also

smooth.

Definition 2.5.3. Let x € M. A connection V at x is a map which sends (U, V') where
Uy € T,(M) and V is a vector field defined near = to a vector Vi,V € T, (M). The map

V satisfies the following properties.
(1) the map V is bilinear, and

(7i) if f is smooth near z, then

vUz(f : V) = Ux(f) Vi +f(x) -Vy,V
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A connection on M is a map which assigns to each x € M a connection at z such that if

U and V are vector fields, the map x — V7,V is a vector field.

Definition 2.5.4. Suppose X and Y are differential manifolds. A map F': X — Y is
said to be smooth if f € C*°(Y) then foF € C*°(X). If F is a homeomorphism and both

F and F~! are smooth, we say F is a diffeomorphism.

Let € X and o € T;;(X), then we define dF;(c0) € Tp(,)(Y) by

[dFy(0)](f) = o(fo F)
for f € C°(U). We called dF), to be the differential of F' at x.
Definition 2.5.5. Suppose that V is a connection of Y and F' : X — Y is locally a
diffeomorphism. We get a connection F*(V) = V* on X by setting

Vi (V) = Varw)(dF(V))

where U and V are vector fields on X and dF(U) is the vector field on F(X) C Y that
sends f to [dFy(U;)](f) where f is smooth near F(z). We call V* to be the induced
connection. If X has a connection V such that V* = V and F is a diffeomorphism, we

say F'is an affine equivalence.
Definition 2.5.6. Let M be an n-dimensional differentiable manifold. Let U and V be
vector fields on M. Then we define [U, V] be a vector field defined by

(U, VI(f) =0V (f) - VU))
for all f € C*°(M).
Definition 2.5.7. Let U and V be vector fields on a manifold M with connection V.
Define a transformation R(U, V') of vector fields to vector fields by

R(U, V)W = =Vy(VvW) = Vy(VuW) + VigyjW

for any vector field W. The transformation R is called the curvature of M.

Definition 2.5.8. Let M be a manifold. A Riemannian structure on M is a map which
assigns to each « € M a positive definite inner product (, ), on T, (M) such that if U and
V' are vector fields on M, the function x — (U,, V) is a smooth function. We say M with
(,) is a Riemannian manifold. We say M is a flat manifold if its riemannian connection

has identically zero curvature.

Theorem 2.5.9. [33, Corollary 2.4.10] Let M be an n-dimensional Riemannian manifold
where n > 2. Then M is complete, connected flat manifold if and only if it is isomorphic
to R™/I" where I is subgroup of Isom(R™) and it acts freely and properly discontinuously

on R".

By definition, I is a crystallographic group if and only if its acts properly discontinuously

and with a compact quotient on R™. By Proposition[2.1.18] T" is torsion-free if and only if T
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acts freely on R™. By the above theorem, if M is an n-dimensional compact, connected flat
manifold if and only if it is isomorphic to R™/I" where I is a Bieberbach group. Therefore,

we can state the Bieberbach Theorems in the context of flat manifolds.

Theorem 2.5.10. [35, Theorem 3.5.1] (i) If M is a flat compact connected n-dimensional
Riemannian manifold, then M admits a normal Riemannian covering by a flat n-dimensional

torus.

(7i) For any natural number n, there are only finitely many affine equivalence classes of

flat compact connected n-dimensional Riemannian manifold.

(7i7) Two flat compact connected Riemannian manifolds are affinely equivalent if and only

if their fundamental groups are isomorphic.

2.6 Classification of crystallographic groups

In this section, we are going to present two classification methods that classify all Bieber-
bach group. We need to introduce a theorem which give a simple criterion for recongnizing
whether a cohomology class is defining a Bieberbach group, the concept of first Betti num-

ber and Calabi construction.

Theorem 2.6.1. [31, Theorem 3.1] Let I" be an n-dimensional crystallographic group and
let the second cohomology class a € H?(G,Z") is defining such I'. Then T is torsion-free
if and only if the image of the restriction homomorphism resg(a) € H?(H,Z") is not zero

for all prime order cyclic subgroup H of G.

Proof. Let I' be torsion-free. By first Bieberbach theorem, it fits in the below short exact

sequence
052" 5T 5 (g) > 1 (2.37)

Assume by contradiction that there exists an element g € G of prime order p such that

o = resya = 0. Hence the below short exact sequence splits
0—>Z"— ¢ '({g)) = (g) = 0 (2.38)
By definition, there exists a section

s:{g) = ¢ " ((g))

such that the composition ¢s : (g) — (g) is an identity map. Since (g) is a cyclic subgroup
of order p, the group I' has a torsion element, which is a contradiction. For the reverse
direction, we assume I' has torsion element v € I', we want to show that there exists a
cyclic subgroup H < G of prime order such that resgy(a) = 0. Assume 7 has order pm
where p is prime, then consider the element 4™ € T'. We have H = (¢(y™)) is cyclic group
of prime order p. We claim that resy(«) = 0. In order to do that, we want to show the

below short exact sequence

0—=7Z" = ¢ "(H)— H—0 (2.39)
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is a splits short exact sequence. We define a section s : H — ¢~ 1(H) by s(¢p(y™)) = y™.
It is clear that ¢s : H — H is an identity map. Hence the above short exact sequence is

a splits short exact sequence. O

Definition 2.6.2. Let M be a flat manifolds with fundamental group I". The rank of the
abelian group Hy(M,Z) = I'/[I',T] is the first Betti number of T. We denoted it to be

by (T).
Next, we want to present some results about first Betti number.

Lemma 2.6.3. [19, Corollary 1.3] Let I be an n-dimensional Bieberbach group. Then
we have

b1 (T) = rk((Z"))

where G is the holonomy group and G and (Z")¢ = {z € Z" | zg = gz for all g € G} (the

G-action is given by holonomy representation).

Proof. By the first Bieberbach’s theorem, I' fits in the below short exact sequence
0—=-Z"->T—->G—1 (2.40)

Consider the E21 0_term of the Hochschild-Serre spectral sequence associated to the above

short exact sequence. We have
HYG,H(Z", 7)) = HYG,Z)
Since G is a finite group, we have
HY(G,H(z",72)) = HYG,Z) = Hom(G/|G,G],Z) = 0

The only remaining term on the p+ ¢ =1 line is Eg’l = H(G,HY(Z",7)) = H (Z", 7)€.
Since the differential ds : Eg’l — Eg’o = H?(G,Z) maps to a finite group, we have

rk(H\ (T, Z)) = rk(HY(Z", 2)%)

where Z is a trivial I'-module and rk(A) of an abelian group A is the Q-dimension of

A ®7 Q. Hence we have

b (D) = rk(H((T,Z)) = rk(HYT, Z)) = rk(HY (2", 2)%) = rk((Z™"))

Next, we present the theorem proved by E. Calabi related to Calabi construction.

Theorem 2.6.4. [31, Proposition 3.1] Let I" be an n-dimensional Bieberbach group. If
there exists an epimorphism f : I' — Z, then the group ker(f) = I" is a Bieberbach group

of dimension n — 1.
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Proof. Consider the below diagram

0 0 0
LT n n
0oz A o I gy g
g
f
0 [ ————T Z 0
p
0 G’ G G/G'————0
0 0 0

The exactness of the middle vertical sequence of the above diagram is followed from the
definition of I'. Since I"NZ"™ C Z", it follows that IV NZ" is a free abelian group. It is clear
that [TV : TV N Z"| is finite. By Theorem we can conclude that I is a Bieberbach
group. We remain to show that the dimension of I' is equal to n — 1. It is clear that
the dimension of I' is at most n. First, we assume the dimension of I is less than n — 1.
Since the rank of I'' N Z™ is at most n — 2, the rank of Z"/(I" N Z™) is at less 2. But this
is impossible because the map g : Z™/(IY N Z™) is an injective map. Next, we assume the
dimension of I” is equal to n. By similar calculation, we have the group Z"/(I" NZ") is
either a finite group of a trivial group. Since g is an injection map, the group Z"/(I'"NZ™)
cannot be a finite group. Next, notice that f is an surjection map, we know Z"/(I" N Z")

cannot be a trivial group. Hence I is an (n — 1) dimensional Bieberbach group. O

Corollary 2.6.5. Let I' be an n-dimensional Bieberbach group. If there exists an epi-
morphism f : I' — ZF, then the group ker(f) = I is a Bieberbach group of dimension
n—k.

Proof. We proceed by induction on k. By Theorem the statement is true for k = 1.
Assume the statement is true for t = k—1. Consider the case where t = k. Suppose we have
a epimorphism f : ' — Z*. Consider the elements of Z* as k-tuple. We define p; : ZF —
ZF=1 be a projection map which map (1, ...,x3) € Z* to (x1,22,...,23_1,0) € ZF and
define py : ZF — 7 be a projection map which maps (x1,...,2x) € ZF to z;, € Z. Consider
the epimorphism p; o f : T — Z*F~1. By induction hypothesis, we have IV := ker(py o f) is
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an (n — k+ 1)-dimensional Bieberbach group. Observe that ker(f) = ker(T” ENy// R ).

Thus by Theorem we know that ker(f) is an n—k-dimensional Bieberbach group. [

Remark 2.6.6. Let I" be an n-dimensional Bieberbach group with b, (I') = k£ # 0. By
Lemma we have by(T') = rk(Z")¢ where G is the holonomy group of T'. Since
Bieberbach group is defined up to conjugation of affine elements, we assume all elements

of I' can express as

A B =z
0 I y
0 0 1

where A € GL,_;(Z), B is an integral matrix of dimension (n — k) x k, € Q"* and

y € QF. Then we can define a surjection map f : I' — Z* as

A B =z
f 0 Iy y =y
0O 0 1

Hence by Corollary we can conclude that if I' is a n-dimensional Bieberbach group
with by (I') = k > 1, then there exists a surjection map f : I' — ZF such that ker(f) is a

(n — k)-dimensional Bieberbach group.

Finally, we will state the two ways of classification. The first way is called the Zassenhaus

algorithm. The algorithm is given by the following steps.
1. Classify all finite subgroups of GL,(Z).
2. Classify all G-module Z™ where the representation given by the G-action is faithful.

3. Calculate the second cohomology group H?(G,Z") for all finite subgroup G <
GL,(Z) from step 1 and G-module from step 2.

4. Recongnize which crystallographic groups from step 3 are isomorphic.

The second way of classification is called the induction method of Calabi. This classification
method is only suitable for Bieberbach group. The algorithm is given by the following
steps.

1. Classify all Bieberbach group of dimension less than n.
2. Describe all Bieberbach group of dimension n with trivial first Betti number.

3. Describe all Bieberbach group of dimension n, I', defined by the below short exact
sequence

0—-I,-1—->1,—-7Z—0

where I',_1 is any Bieberbach group of dimension n — 1.
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Chapter 3

Number of generators of

Bieberbach groups

In this chapter, we focus on the Conjecture We mainly consider the cases where the
holonomy group of the Bieberbach groups is cyclic group or is generated by 2 elements.

The results in this chapter have been published in Geometriae Dedicata (see [§]).

3.1 Background

Let I' < O(n) x R™ be an n-dimensional Bieberbach group with G as holonomy group.
Recall that I' will induce the holonomy representation p : G — GL,(Z). Therefore we
can consider I' N (I, x R™) = Z" as a ZG-module. Let G be a group and M be a ZG-
module. We denote d(G) to be the minimal number of generators of the group G and
denote rkg(M) to be the minimal number of generators of M as a ZG-module. This
chapter contains three sections. In Section we give some basic definitions and some
related properties of crystallographic groups. In Section we discuss the number of
generators of ZCy,-module, where C), is a cyclic group of order m. In Section we
present our three main theorems in this chapter. Let G be a cyclic group with generator g
and let p: G — GLy(Z) where g — M € GL,(Z) be its matrix holonomy representation.
For convenience, in this chapter, we denote element (g,a) € I' to be (M, a) and denote the
ZG-module Z™ to be Z',; to specify that the G-action is given by the matrix M. We will
denote I, to be the identity matrix of dimension n and C), to be a cyclic group of order

m.

Remark 3.1.1. Let I" be an n-dimensional crystallographic group where its holonomy
group is isomorphic to G. Let the holonomy group G is generated by m elements namely

ai, ..., am. By first Bieberbach theorem, we have the below short exact sequence
02" 5T 5 a@—1

where ¢ and p is defined as in (2.7). We can therefore view Z" as a ZG-module and we

have the following two observations,
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(1) d(T') < rkg(Z™) 4+ d(G).

(13) {e(e1),...,t(en), a1, ..., } can be a generating set of I" where ey, ..., e, are the standard

basis of Z™ and «; is chosen arbitrarily such that p(c;) = a; for alli =1,...,m.

Definition 3.1.2. Let G be a group. Let p: G — GL,(Z) and ¢ : G — GL,(Z) be two
group representations of G. We say p and ¢ are Z-equivalent if there exists S € GL,(7Z)
such that p(g) = S~1¢(g)S for all g € G.

Definition 3.1.3. Let G be a group, M be a ZG-module and p : G — GL,,(Z) be the

representation correspond to the ZG-module M.

(1) We say N is a submodule of M if N is a subgroup of M which is closed under the

action of ring elements.

(ii) We say M is decomposable if M is the direct sum of submodules. M is indecomposable

if M is not decomposable.

(7i1) We say M is Z-reducible if p is Z-equivalent to ¢ : G — G L, (Z) where ¢(g) has form
(1(; ]C;) for all g € G, where P,(Q and R are integral matrices. We say M is Z-irreducible
if M is not Z-reducible.

Now, we are going to give a short introduction to the properties of holonomy representa-
tion. Let My, ..., M} be square matrices with entries in Z, we denote tri(Mi, ..., M) to be

matrix of form as below,

My *
My

0

Let I" be an n-dimensional Bieberbach group with cyclic holonomy group and let p : C,, —

tri(My, ..., My) :==

GL,(Z) be its faithful holonomy representation. Since p is defined up to isomorphism, we
are able to conjugate it by a suitable invertible matrix and assume p(g) = tri(Aq, ..., Az)
for some t € N and Aj,..., A; are square matrices such that Zﬁ:ﬂml),..., Zii:n(At) are

Z-irreducible modules and Z;Zl dim(A;) = n.

Lemma 3.1.4. Let M = tri(Ay,...,At) € GL,(Z) where Ay, ..., A; are square matrices.
Denote the order of A; to be a; for i = 1, ..., t and m to be the order of M. Then the least

common multiple of aq, ..., a; equals to m. In particular, m is divisible by a; for i =1, ..., ¢.

Proof. We denote the least common multiple of aq, ..., a; to be L.C.M(ay, ...,a;). Since M
has finite order, the order of A; are all finite for all ¢ = 1,...,¢t. By simple calculation, we
have

I, =M™ =tri(AT, ..., A]")

Thus A]" are all identity matrix for all 7 = 1, ..., . If follows that m is divisible by all a;’s.
Hence L.C.M(ay,...,a;) < m. On the other hand, if L.C.M(ay,...,a;) =1 < m, then we
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have

M =tri(AL, ... Al = N
0 I
Since M has finite order, it force M! = I,,. Tt contradicts that the order of M is m. Hence
L.C.M(ay,...,at) = m. O

3.2 Generators of ZC,,-module

Let I' be an n-dimensional crystallographic group with holonomy group isomorphic to C,.
We can consider I'N (1, x R™) = Z™ as a ZC),-module. Since we can restrict the Cy,-action
to be a Ci-action as long as m is divisible by k, we can also view Z" as a ZCj-module. It
is clear that rkc,,(Z") < rkc, (Z"). The below lemma and proposition are on the number

of generators of ZC,,-module.

Lemma 3.2.1. Let p : C, = GL,(Z) be a faithful representation and Z" be the corre-

spondence ZCj,-module, where p is prime. Then

n—p+2 ifp<19
rke, (Z%) < b b
n—p+3 ifp>19

Proof. Let g be the generator of C),. Assume p(g) = tri(Ay, ..., Ay) where Z%:”(Al),- .

Zji;n(A’“) are Z-irreducible ZC)-modules. By Lemma [3.1.4] there exists ¢ € {1, ..., k} such

that A; has order p. By [1I, Theorem 74.3], A; has dimension p — 1 and the module
Zdim(Ai)
A;

is isomorphic to an ideal in Z[(] where ¢ is a primitive p-root of unity. If p < 19,

by [29, Section 29.1.3], the class number of Z[(] is 1. Therefore the module Zi‘i:n(Ai) is
a principle ideal and it is isomorphic to Z[¢]. Hence rkc, (Zflzﬁmi)) = 1. Now assume
p > 19. Since Z[(] is a Dedekind domain. By [29, Section 7.1-2], every ideal in a Dedekind
domain can be generated by two elements. Hence rkc, (Zon(A")) < 2. Therefore we have
n : dim(A;)
rkc, (Z") < n —dim(A;) +rkc, (ZAZ- )
=n—p+1+rke, (Z4)

n—p+2 ifp<19
n—p+3 ifp>19

This finishes the proof of this lemma. O

Remark 3.2.2. The above lemma is obtained by using the idea of [I, Lemma 2.3].

Proposition 3.2.3. Let p : C),, — GL,(Z) be a faithful representation and Z" be the

correspondence ZC,,-module of p, where m > 3.

(7) If m is divisible by prime larger than 3, then rk¢,, (Z™) <n — 3.
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(73) If m is not divisible by prime larger than 3, then rk¢,, (Z") <n — 1.

Proof. Let m = pi'---p;* be the prime decomposition of m and assume p; < -+ < p;.

Let g be the generator of C,.

(i): Consider H = (g™/Pt) = C,,,, a subgroup of Cy,. We can view Z" as a ZC)p,-module
where the Cp,-action is given by p|g. Since p|g is a faithful representation, by Lemma
3.2.1) we have

n—p+2 ifp <19

chpt (Zn) <
n—p+3 ifpr>19

Since m is divisible by prime larger than 3, we have rk¢, (Z") <n—-5+2=n—3.

(73): We observe that m is either divisible by 3 or 4. If m is divisible by 3, we consider Z" as
ZCs-module. By Lemma we have rkc, (Z") < n—1. Hence k¢, (Z") < n—1. Now
we assume m is divisible by 4. Consider H' = (gm/ 4y =~ Oy, a subgroup of C,,. We can

view Z" as a ZCs-module by restricting the C,,-action to a Cy-action, where the C4-action

is given by p|g. We assume p|g:(¢™/*) = tri(My, ..., M},) and Z%T(Ml),..., Z‘]i\ZL(M’“) are
Z-irreducible ZCs-modules. By Remark there exists i € {1, ..., k} such that M; is a

matrix of order 4. Let ¢ : Cy — GL,,(Z) be the corresponding representation of Z‘]i\ffm(Mi).

3

By [2], Section 5, page 10], there is only one faithful integral Z-irreducible Cy-representation

1
up to equivalence. Hence we assume ¢(g"™/*) is Z-equivalent to ( O). Therefore we

have dim(M;) = 2. Let y; = (1,0) € Z? and y2 = (0, 1) € Z? be the standard basis of Z%\/[i.
We have qﬁ(gm/ )yo = 1. Hence Z?Mi can be generated by yo as a ZCy-module. Thus we

have rkc, (Z(]i\Zn(Mi)) = 1. Since k¢, (ZﬁT(MZ)) < dim(M,) for all z=1,..., k, we have
k . .
rke, (Z%) < Y rke (Z4" M) < n— dim(My) + rhe, (Z4" M) <n -1

z=1

3.3 Proofs of Theorem A, B and C

Theorem A. Let I' be an n-dimensional crystallographic group with holonomy group

isomorphic to Cy,, = (9| g™ = 1) where m > 3.

(7) If m is divisible by prime larger than 3, then d(I") <n — 2.

(73) If m is not divisible by prime larger than 3 and I is torsion-free, then d(I") < n — 1.
Proof. (i): By Remark i), we have d(I") < rk¢,, (Z™) + 1. Since m is divisible by

prime larger than 3, by Proposition we have rkc,, (Z") < n — 3. Therefore we have
d(I) <n-—2.

(73): By Remark|3.1.1{(i7), let ' = (c(e1), ..., t(en), @), where e, ..., e,, are the standard basis
of Z™ and p(«) = g. By Lemma we have by (T') = rk((Z™)%™). It is well known that
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bi(I") # 0 (see [31, Example 4.1]). Let k = b1(I") > 0. Without loss of generality, every
element of I' can be expressed as (tri(M, Iy),a) where a € R" and M € GL,,_(Z). In
particular, let o = (tri(A, Iy,), z) where x = (z1,...,z,) € R" and A € GL,,_(Z) which do
not fix any non-trivial elements. In other words, Au = u if and only if u = 0 for u € R**.
First we assume z,,_g4y1 = -+ = z, = 0. Let v := (x1,...,2p_k) € Rk, By simple
calculations, we get o™ = <In, (o7t A%, 0, ...,O)). Since A" A%v) = S Asw,
we have 32" ' A%y = 0. There is a contradiction because o’ = (I,,,0). Therefore there
exists i € {n — k + 1,...,n} such that z; = £ # 0 € Q. Define f : I' — Z where it
maps (tri(M, It), (y1,..,yn)) € T to zy; € Z. Hence we have f(a) = q, f(u(e;)) = 2
and f(u(ej)) = 0 for all j # i. We claim that f is a surjective homomorphism. Let
m = (tri(My, I), (m1,....,my)) € T and v = (tri(Ma, Ij), (m},...,m},)) € T'. By simple

calculation, we get
Y172 = (tri( M1 Mo, Ii), (%, oy %, Myt 1 + Moy _piqys ooy Mgy +my,))

Hence we have f(v1) + f(72) = f(7172). Therefore f is a homomorphism. Notice that ¢
and z are coprime, there exists integers ¢ and 7 such that oq + 72 = 1. Hence we have

f(au(e;)7) = 1. Therefore f is surjective. Observe that
ker(f) = (1(e1), ..y tlei1), t(eip1) s tlen)) = 201

We have the below short exact sequence

0 —— ker(f) =z 1 r Z 0 (3.1)

By Lemma such short exact sequence will induce a representation p : Z —
GL,-1(Z) given by p(z)e; = Zu(e;)Z~" where f(z) = = for all j # i. Consider the
restriction p := plqz : ¢Z — GLyp—1(Z). We claim that ker(p) = mqZ. Let qx € ker(p) for
any x € Z. We have e; = p(qzr)e; = a”i(ej)a" = p(a”)e; for all j # i. Hence p(a”) needs
to be an identity matrix. Therefore x is multiple of m or x = 0. Hence ker(p) C mqZ.

Since p(a™) is an identity matrix, p(mgzx)(ej) = a™*

t(ej)a™™® = p(a™*)e; = e; for all
j #iand x € Z. Hence mqZ C ker(p). Therefore we have ker(p) = mgZ. Now we can
obtain a faithful representation ¢ : ¢Z/mqZ — GL,_1(Z) given by ¢(z) = p(x) where x is
the representative of € ¢Z/mqZ. Hence we can view Z" ! as a ZC,,-module with faith-
ful C),-representation. By Proposition Z™! can be generated by n — 2 elements.

By [3.1] we have d(I') < rkc,,(Z"") +1<n— 1. O

The corollary below gives the general bound on the number of generators of general Bieber-

bach groups.

Corollary 3.3.1. Let I' be an n-dimensional Bieberbach group with holonomy group G.
Then d(T") < 2n.

Proof. Let |G| = pi* ---p;* be the prime decomposition of order of G. By [I7, Theorem
A], we have
d < d(P; 1
(G) < max d(F;) +

49



where P; is the Sylow p;-subgroup of G for i = 1,....,k. We fix j € {1,...,k} such that
d(P;) = maxi<i<i d(P;). We first assume p; > 3. We can consider I' N (,, x R") = Z" as
a ZPj-module. By [T, Theorem A], we have d(P;) + rkp;(Z") < n. Hence we have

d(T) < d(G) + rkp, (Z") < d(P}) + 1+ rkp (Z") < n + 1

Now we assume p; = 2. If G is a 2-group, then by [I, Theorem A}, we have d(I') < 2n.
If G is not a 2-group, then there exists g € G such that g has order p > 3. Hence we
can consider Z" as a ZCp-module. By Lemma we have rkc,(Z") < n —1. By [1

Proposition 2.2], we have d(P;) < n. Hence we have
d(I') < d(G) +rkc,(Z") < d(Pj) + 1+ rkc,(Z") < 2n
O

Corollary 3.3.2. Let I' be an n-dimensional Bieberbach group with holonomy group G,
where G is a simple group but not Cy. Then d(T") <n — 1.

Proof. By Remark [3.1.1i), we have d(I') < d(G) + rkg(Z"). 1If G is a cyclic group of
odd prime order, then by Theorem |[A] we have d(I') < n — 1. Now, we assume G is not
a cyclic group of prime order. It is well known that G is a simple abelian group if and
only if G is a cyclic group of prime order and every finite non-abelian simple group is
not solvable. By Burnside’s Theorem, [I5, Page 886], there exists a prime p > 5 such
that the order of G is divisible by p. So we can view Z" as a ZCp,-module. By Lemma
we have rkc, (Z") < n — 3. By [3, Theorem BJ, we have d(G) < 2. Hence we have
dI) <d(G) +rkg(Z") <2 +rke,(Z") <n — 1. O

The rest of this chapter will present the proof of Theorem [B] and Theorem [C]

Theorem B. Let I' be an n-dimensional crystallographic group with holonomy group

isomorphic to a finite group G.
(i) If the order of G is not divisible by 2 or 3, then d(I") < n.

(73) If the order of G is odd and divisible by 3, then d(I') < n + 1.

Proof. Let |G| = pi*-- -pzk be the prime decomposition of the order of GG, where p; <

(7): First, we want to calculate the number of generators of the holonomy group G. By
[17, Theorem A], we have

< A
d(G) < max d(p;) +1

where P; is the Sylow p;-subgroup of G for i = 1,....k. We fix j € {1,...,k} such that
d(Pj) = maxj<;<,d(P;). Let p : G — GL,(Z) be the holonomy representation for I'.
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By definition, p is a faithful representation. Therefore P; acts faithfully on Z™. By [,

Proposition 2.2], we have

n—rk ((Z")"%)
pj—1

Now, we consider the lattice part. We can view I' N (R™ x I) = Z" as a ZPj-module. By

d(G) <

+1

[T, Proposition 2.5], we have

(a—1) (n — rk(Z”)PJ’)

kp, (Z™) <
rkp,(Z") < =1

+ rk(zMF

where a = 2 if p; > 19, otherwise a = 3. Therefore we have

n—rk ((Z")") N (a—1) (n—rk(z™)h)

d(l') <d kp,(Z") < 1 k(Z"™)"i
(1) < d(G) + rhp,(27) < "85 y 2T +rk(Z")
j j
— rk(Z™ P;
I G L) B SL
pj—1
We need to show
a(n—rk(zm)h) P,
+rE(Z")" +1<n
pj—1
We have
— rk(Z" P;
an—rk(2") )+7‘k‘(Z”)Pj+1§n
pj—1
= an —a-rk(Z")5 + (pj — V)rk(Z™)5 +p; —1 < n(p; — 1)
= (pj—1—a)rk(ZM" < (pj =1 —a)n— (p; - 1)
1
k@i <n- BT 1o 94
pi—1—a pi—1—a
If 5 < pj <19, we have ;—4— = ;25 < 1. If p; > 19, we have —4— = 25 < 1.

Therefore we can conclude that if rk(Z")F < n—2, then d(T') < n. By Cauchy’s Theorem
[15, Page 93, Theorem 11], P; has an element z € P; with order p;. Let Cp, be a cyclic
subgroup of P; generated by x. Consider (Z”)CP i

p|Cp]. : Cp; = GLy(Z). By [11, Theorem 74.3], the degree of a faithful indecomposable

, where Cp; acts faithfully on Z" via

Cp,-representation is either p; — 1 or p;. If the degree is p; — 1, then it has trivial fix
point set. If the degree is pj;, then the fix point set is 1-dimensional. Observe that
rk(Z™)°? has maximum value when P|ij is a direct sum of one faithful indecomposable
sub-representation and all others are trivial sub-representations. Therefore rk(Z”)C”J’ <

n—p;+1 < n—4. Hence we have rk(Z")5 < n—4. Therefore we can conclude d(T) < n.

(73): By [1, Theorem A], we can assume G is not a p-group. By [I7, Theorem A], we have
d(G) < max d(P;) + 1

T1<i<k

where P; is the Sylow p;-subgroup of G for i = 1, ..., k. If max;<;<; d(P;) # d(P1), then by
part (i), we have d(I') < n. Therefore we assume max;<;<j d(FP;) = d(Py). We can consider
the lattice part as a ZP;-module. Since P is a Sylow 3-subgroup, by [I, Theorem A], we
have d(Py) + rkp,(Z"™) < n. Hence we can conclude that d(I") < d(Ps3) + rkp,(Z") + 1 =
n+ 1. O

o1



Theorem C. Let I' be an n-dimensional Bieberbach group with 2-generated holonomy
group. Then d(T") < n.

Proof. Let G be the holonomy group of I'. Let x and y be the generators of G. They
have order a and b respectively. If either @ = 1 or b = 1, then G is a cyclic group.
By [14, Theorem 5.7] and Theorem d(I') < n. Next, consider cases where a > 3 or
b > 3. It is sufficient to consider only the case where a > 3. By Remark [3.1.1](ii), let
' = (uer),...,t(en),a, B), where eq,...,e, are the standard basis for Z", p(a) = = and
p(B) = y. Define I'" = (i(e1), ..., t(en), ). Notice that I' is an n-dimensional Bieberbach
subgroup of I' with holonomy group C,. Since a > 3, by Theorem d(I'") < n—1. Hence
we have d(I') < n. Finally, we assume a = b = 2. Consider element zy € G. Since G
is finite, zy has finite order. If zy is of order 1 (i.e. zy = 1), then z = y. So G = (5.
By [14, Theorem 5.7], d(I') < n. If zy is of order 2 (i.e. xyxy = 1), then zy = yx.
Hence G = Cy x Cy. By [14, Theorem 5.7], we have d(I') < n. Lastly, we assume zy is of
order k, where k > 3. We can rewrite the generating set of I to be {¢(e1), ..., t(en), af, 5}.
Define I'" = (1(e1), ..., t(en), @B), which is an n-dimensional Bieberbach subgroup of I" with
holonomy group isomorphic to Cj. By Theorem[A] d(I'"") < n—1. Therefore d(I') < n. O

By [1], [I4] and the three main theorems in this chapter, the Conjecture is still open
for certain cases of holonomy group where the minimal number of generators has at least
three elements. For example, the case where the holonomy group is a 2-group or the
order of holonomy group is even. By Corollary the corresponding n-dimensional
Bieberbach group can be generated by 2n elements. Another case is when the order of
holonomy group is odd and divisible by 3. In this case, by Theorem |B|, the corresponding
n-dimensional Bieberbach group can be generated by n+1 elements. In order to prove this
conjecture fully, we believe further study is needed in the key case where the holonomy

group is a 2-group.
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Chapter 4

Bieberbach groups of diagonal

type and Vasquez invariant

4.1 Bieberbach groups of diagonal type

Let I' be an n-dimensional crystallographic group of diagonal type. As an immediate
consequence of diagonality of the holonomy representation, it follows that the holonomy
group of I' is isomorphic to C} for some k > 1. By the first Bieberbach Theorem, it fits

in the below short exact sequence
0—z" 51T cekso (4.1)

where C’é‘: acts diagonally on Z". By the third Bieberbach Theorems, we can assume
p(g) is a diagonal matrix with all diagonal entries equal to 1 or -1 for all g € C’é’ by
conjugating I" with suitable element in GL,(R) x R". We denote diag(ay,...,a,) to be
the diagonal matrix where the entries starting in the upper left corner are a,...,a,. Let
ac H 2(C’%, Z™) be the second cohomology class defining the short exact sequence ||
Since Cé“ acts diagonally on Z", we can express the Cé“—module Z" as direct sum of n

copies of C5¥-module Z. Hence we have the isomorphism
HQ(CS,Z”) o HQ(Cg, M @@ Mn)

where M; = Z for j = 1,...,n. Thus we have o = a1 Qo ®- - Doy, where o € H2(C§, M;)
for j = 1,...,n. An obvious action defines Cé“—modules R and R/Z and a short exact

sequence,
0—-Z—-R—-R/Z—0

By [31}, Proposition 2.2], we have H?(Cy, M;) = H'(C§,R/M;) and oj = of; € H'(C§,R/M;)

forall j =1,...,n.

Lemma 4.1.1. Using the same notations as above, Consider [o/}] € HY(CY,R/M;) where
j €{1,...,n}, we can pick a representative §; € [049] such that 3;(g) € {0, %} for all g € C5.
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Proof. Fix j € {1,...,n}. We define
Der(C§,R/M;) = {f : C5 = R/M;|Va,y € CF, f(zy) =z f(y) + f(y)}  (4.2)
and
P(C5 R/M;) = {f : C% — R/M;|3Im € R/Z, Yz € C¥, f(x) =2 -m —m} (4.3)
By [31], Page 19], we have
H'(C3,R/Mj) = Der(Cy,R/M;)/ P(Cy, R/M;)

We could assume a}(1) = 0. First, we assume C} acts trivially on R/M;. It follows that

P(Cé“,R/Mj) is trivial. For any g € C¥, by (4.2)), we have
0= aj(1) = aj(99) = g - aj(g) + j(g9) = 2a5(g) (4.4)

It follows that a’(g) € {0, 3} for all g € C4. Next, we assume C§ acts non trivially
on R/M;. Let g1,...,gx be generators of C} and assume without loss of generality that
g1 acts non-trivially on R/M; and g; acts trivially on R/M; for all i = 2,...,n. Define
B € Der(C5,R/M;) such that Bi(g1) = 0 and Bi(g;) = ;(g;) for all i € {2,...,n}. For all
g € C} that acts trivially on R/M;, by definition of Der(C}5,R/M;), we have

0= 6;(1) = B;(99) = g- B;(9) + B;(g9) = 28;(9)

and
Bi(g19) = g1 - Bj(9) + Bj(g1) = —Bi(9)

It follows that f;(g) € {0, 1} for all g € C%. We remain to show that B and o are in the

same cohomology class. For all g € (go, ..., gx), we have

Bi(g) = &(9)
and
Bi(919) — &(919) = g1 - Bj(9) + Bj(g1) — g1 - @ (g) — j(g1)

= —B;(9) + Bj(g1) + i (g9) — aj(g1)
= —aj(q1)

Thus we have

0 if g acts trivially on R/M;

—aj(g1) if g acts non-trivially on R/M;

Hence we have (8 —a})(g) = g- (ajégl)) — aj(le) for all g € C¥. Tt follows that B —al €

P(C%,R/M;). We can conclude that we can always pick a representative B € [a’] such

J
that B)(g) € {[0], []} for all g € C¥. O
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By the above lemma, we could assume /(g) € {0, 3} for all j € {1,..,n} and for all

g € C5. Tt follows that o’; has order 2 if it is not a trivial class.

Let p : R — R"™/Z™ be the natural homomorphism. We say s : C§ — R" is a wvector

system for T if ps € ©1<j<naj. By [23, Section 3], we get an isomorphism

re ) (Pla) sg)+=

- 0 1
re /(P9 s\ (In e
B o 1/ \o 1

where I, is the n-dimensional identity matrix and e; is the it" column of I,,. For conve-

p(og) 8(9)1+ Z) in the form (p(g), s(g) + 2).

gng,zeZ”}

and

geCk ic {1,...,n}> (4.5)

nience, we may express the matrix (

By Lemma we could take o} ©--- @ al, : C5 — {0, %}" be a vector system. Thus for
an arbitrary element v € I', we can express it as v = (diag(aq, ..., an), (21, ..., T,)) where
ai,...an € {~1,1} and z1,...,3, € 1 + Z. Besides, the set {c(e1),...,t(en), V1, Vi }
is a generating set of I" where v; = (p(g:),'(g:)). We called {71,..., 7%} to be a set of

non-lattice generators of I'.

4.2 Characteristic matrix for crystallographic group

In this section, for each n-dimensional crystallographic groups of diagonal type where its
holonomy group is isomorphic to C¥, we define a ((2¥ — 1) x n)-matrix which gives a

combinatorial description of the crystallographic group of diagonal type.

Let S! be the unit circle in C. We consider the elements g; € Aut(S!) given by

gO(Z) =%, gl('z) = =z, 92(2) =2z, 93(2) ==z
for all z € S™.

Equivalently, we can identity S' with R/Z. For any [t] € R/Z, we have

(it =[], g1(lt)) = [Hﬂ, w(]) = 1, gs([t]) = [Hﬂ
Let D = (g;|i=0,1,2,3). It is easy to see that

93 = 9192, 9; = go and gigo = gogi = i (4.6)
for ¢ = 1,2,3. Notice that D is isomorphic to the Klein four-group. We define an action
of D" on T" by

(tl, ceny tn)(zl, ceey Zn) = (tlzl, ceny thn)
for (t1,...,t,) € D" and (21,...,2,) € T" = S* x --- x S'. Any subgroup Zy C D" defines
a (1 x m)-row matrix with entries in D, which in turn defines a row matrix entries in the

set {0,1,2,3} under the identification i <+ g; for 0 < i < 3.
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Let T' be an n-dimensional crystallographic group and let a € H?(C%,Z") be the coho-

mology class corresponds to I'. As mentioned at Section 4.1} we have

/ / / /
a=Za Za;Dayd---Day,

where o/ € H'(C§,R/My @ --- ® R/M,) and o € H?(C§,R/Mj) for j = 1,...,n. Let
g € Cé“ be a non identity element and p : C’§ — Z" be the holonomy representation of
I'. We have p(g) = diag(X1, ..., X,,) and o/(g) = (}(9), ..., o, (9)T = (1, ...,,)T where
X; € {1,-1} and z; € {0,%} for j = 1,...,n. The corresponding element of D" is an

n-tuple (t1,...,t,) € D" defined by
t;([t]) = [X;t + 5]
where t € R and j € {1,...,n}. We define Ap(g, M;) =t; € {0,1,2,3} where j € {1,...,n}
under the identification ¢ <> g; for 0 < ¢ < 3. In other words, we have
0 ifX;=1landz; =0
1 ifijlandxj:%

AF(gan) =
2 ifX;=-landz; =0

3 fXj=-landua; =1

Fix hq, ..., hoe_; be all non identity elements of C5. We define a ((2% — 1) x n) matrix
Ar as (Ar);; = Ar(hs, M;). We called the matrix Ar to be a characteristic matriz of T,
Note that given a crystallographic group I', the matrix Ar is not unique since we could

re-index the holonomy group elements h;’s and the module M;’s.

Let 11 = (a1a2---a,) and r9 = (b1 by---b,) be rows of Ap. We denote x to be the
group multiplication in the Klein four-group corresponds to (4.6). In other words, we

have a; x by = ¢ if and only if ga, gp, = ge, and 71 x 72 = (a1 x b1 -+ an * by).

Lemma 4.2.1. Using the same notations as above and assume hy;, = hg,hs, for some

s1,82,83 € {1,...,28 — 1}. Then the (s{" row of Ar) = (s4* row of Ar)  (s4* rows of Ar.)

Proof. Let p(hs,) = diag(Xi, ..., Xpn), &/ (hsy) = (x1,...,2), p(hsy) = diag(Y1,...,Y,) and
o/ (hsg) = (Y1, e, Yn). we have

(diag(X1,...; Xpn), (X1, ooy xp) ) (diag(Y1, o, Yo ) (Y1, oo Un))
:(diag(Xl}/lv cey XnYn)7 (lel +x1,..., Xnyn + xn))

Thus the corresponding element of Ar(hg,, M;) for any j € {1,...,n} is given by
glt] = [X;Yjt + Xjy; + 23] = [X;(Yjt + y5) + ;]
where g € D and t € R. Therefore, we have
Ar(hs,, M;) = Ar(hsy, M) x Ap(hs,, M;)
It follows that (si row of Ar) = (st row of ') x (s4* rows of T). O
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Remark 4.2.2. Using the same notations as above and assume the holonomy group of
I which is C} is generated by elements hi, ..., hy. If we know the value of Ar(h;, M;)
for all i € {1,...,k} and for all j € {1,...,n}, then by Lemma we can workout the
matrix Ar. Define a (k x n)-matrix A such that A;; = Ar(h;, M;) where 1 <1 < k and

1 <7 < n. The matrix A is the same as the matrix constructed in [24, Section 2].

Next, we would like to reverse the above construction. Given a characteristic matrix, we

are going to define a crystallographic group.

Let Ar be a (28 — 1) x n dimensional characteristic matrix such that (Ar);; = Ar(g;, M;)
where g1, ..., gox_; are all non identity element of C§ and My, ..., M, = Z. Without loss
of generality, we assume g¢i, ..., gr are the generators of C’é‘:. First, we need to define a
representation p : C5 — GL,(Z). For any 1 < i < k, we define p(g;) = diag(X1, ..., X,)
where

1 if Ap(gi,Mj) S {0,1}

-1 if Ar(gi, M]) € {2, 3}
for all 1 < j < n. Next, we are going to define a cohomology class o/ € H'(C¥ R/M; &

.- @®R/M,) where the C5¥-module structure of R/M; @ - -- & R/M,, is given by p. For any
1 <i <k, we define &/(g;) = (s1, ..., $p) where

0 if Ap(gi,Mj) S {0,2}
% if Ap(gi,Mj) (S {1,3}

S5 =

for all 1 < j < n. Since we have a cohomology class o', we could define a n-dimensional

crystallographic group I'. By Section I' is generated by {u(e1),...,e(en), V1, Yk}

N In €
L(ej)—<0 1)

and e; is the 4 column of the n-dimensional identity matrix for 1 < j < n and

= p(gi) o'(gi)
' 0 1

for 1 < i < k. By the construction, we can see that the characteristic matrix of I' equals

where

to Ar. Notice that the holonomy group of I' is not necessary isomorphic to C§ because

the representation p : C5 — G'L,(Z) is not necessary faithful.

If two characteristic matrices define isomorphic crystallographic groups, we will say that
they are equivalent. In particular, matrix obtained from swapping rows or columns of Ap

equivalents to Ar.
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Example 4.2.3. Let I" be the Bieberbach group enumerated in CARAT as ”min.19.1.1.77.
Let

-1 0 0 0 10 0 3
0 -1 0 0 01 0 0
=10 0 1 2| and 92=1]0 0 -1 0 0
0 0 -1 % 00 -1 0
0 0 0 1 00 0 0 1

be non-lattice generators of I'. The holonomy group of I' is C3 which is generated by
hi = p(y1) and hy = p(v2) where p : I' — C2 be the surjection map defined at (4.1]). Using
the same notations as Remark We have

2 21
1 0 2 2
We get the third row of Ar by using Lemma We have

(2 2 1 3)*(1 0 2 2>:<3 2 3 1)

Thus
2 21 3
Ar=11 0 2 2
3 2 31
By simple calculation, we have
-1 0 0 $-1
0 -1 0 0
MYe=|0 0 -1 0 1
0 1 3
0 0 1

Therefore we check that the third row of Ar is indeed equals to (3 2 3 1).

Example 4.2.4. Let

2
Arr= |1
3

w N =
N O N
= N W

~~

be a characteristic matrix such that (Ar);; = Ar(g;, M;) where g1, g2, g3 are non identity
elements of C’22 and My, Mo, M3, My = 7Z. Given such a matrix, we are going to define a
4-dimensional crystallographic group. Notice that (37 row of Ap) = (1% row of Ap) *
(2" rows of Ap/). Thus g1, go are the generators of C3. First, we define a representation

p: C2 — GL4(Z) where
p(gl) = dlag(ila ]-a 717 71) and p(QQ) = dlag(l’ 717 17 71)

Next, we define a cohomology class o/ € H'(C2, R*/Z*) where

1 1 1
O/(gl) = <07 570) 2> and 0/(92) = (2505070)
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Thus the characteristic matrix A defines a 4-dimensional crystallographic group IV where

its non lattice generators are

-1 0 0 0 0 1 0 0 0 1%
o 1 0 0 3 0 -1 0 0 0
Y=10 0 -1 0 0 and =0 1 0 0
o 0 o0 -1 1% 0 0 -1 0
0 0 0 0 1 0 0 0 1

Compare the group I'V with T' defined in Example Observe that we have

100 00 100 00
00100 00100
%=]1010 0 0]%|0 1 0 0 O
00010 00010
000O01 00001

for ¢ = 1,2 where 7; are the elements defined in Example By the third Bieberbach
theorem, we have I' 2 IT". Thus Ar and Ar define isomorphic crystallographic group and
therefore Ars is equivalent to Ap. This result is not surprising because we observe that

Ar can be obtained by swapping the 27¢ and the 3"¢ column of Ar.

Next, we are going to derive some properties of the characteristic matrix Ar.

Lemma 4.2.5. Using the same notations as above. Ar(h,M;) = 1 if and only if 0 #
respa € H'(Cy,R/M;).

Proof. Let T' be the group corresponding to res ;. Notice that I can be expressed as

0= M=ZT"2 (9) =,

Therefore resg,a; # [0] if and only if ' = Z. Recall that p : Cyk — GL(Z") is the
holonomy representation of I' and oy @ --- @ o, : C§ — {0, 1}" is the vector system of T'.
Let p(h) = diag(X7, ..., Xy). By (.5), I" = Z if and only if

(30
0 1

Thus I" = Z if and only if (Xj,a}(h)) = (1, 3). Hence, we conclude that I'" = Z if and
only if Ar(h,Mj) =1. O

Lemma 4.2.6. Let Ar be a (2¥ — 1) x n dimensional characteristic matrix which defines
an n-dimensional crystallographic group T.

(7) T has torsion element if and only if Ap exists a row where all its entries are not equals

to 1.

(43) The holonomy group of I is not C% if and only if Ar exists a row where all its entries

are equals to 0 or 1 only.
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Proof. By construction, the characteristic matrix Ar defines a cohomology class a =
Di<j<n € Di<j<n HY(C% R/M;) where M; & Z for all j = 1,...,n. By [31, Theorem
3.1], T has torsion element if and only if there exists g € Cé“ such that

TSy =TeSgy B - DTesgom = 0

Hence I" has torsion element if and only if resgya; = 0 foralli = 1,...,n. By Lemma
we can conclude that I" has torsion element if and only if Ap(g, M;) # 1 foralli =1,...,n,

which complete the prove of part (i).

Next, the holonomy group of T' is not C§ if and only if there exists g € C¥ such that
g acts trivially on R™/Z"™. By construction, g acts trivially on R"™/Z" if and only if
Ar(g, M;) € {0,1} for all i = 1,...,n. Hence we complete the prove of part (i7). O

From the above Lemma, we have

Corollary 4.2.7. Let I' be an n-dimensional Bieberbach group of diagonal type where
its holonomy group isomorphic to C5. The (2% — 1) x n dimensional characteristic matrix

Ar satisfies the below two properties,
(i) For every row of Ar, there exists an entry equal to 1.

(i) For every row of Ar, there exists an entry equal to either 2 or 3.
Proof. It follows immediately from Lemma [£.2.6] O

Definition 4.2.8. Let a € H*(C§,Z). We define R(a) = {g € C§ | resgo # 0}.

Remark 4.2.9. Let I' be an n-dimensional crystallographic group and its holonomy group
isomorphic to C§. Let a € H?(C%,Z") be the cohomology class corresponds to I'. Notice
that we have o = oy @ - - - @ o, where oj € H2(C}, M;) where j € {1,...,n} and M; = Z.
For any j € {1,...,n}, by Lemma we have Ar(g, M;) =1 if and only if g € R(«;).

Proposition 4.2.10. Let 0 # « € H%(C%,Z) where C§ acts trivially on Z. Then we have

R(a)] = 281,

Proof. By Lemma4.1.1} we have a = o/ € H'(C},R/Z) and we can assume o/ (g) € {0, 5}.
Thus

Rl =|{s e cflao = 5}

Since a # 0, there exists g € C§ such that o/(g) = % Let C§ = Cgil L gC’é“*1 where
Ch=1 < C%. For any h € C5~1, we have

o' (gh) = o' (g) + o/ (h) =

NO|—
=
-
Q
~
—~
>
SN—
Il
S i

Thus |R| = [C5~!| = 2k1 O
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Proposition 4.2.11. Let 0 # 8 € H?(C¥,7Z) where C} acts non-trivially on Z via p :
CY — GL(Z). Then |R(B)| = 2F2.

Proof. Define a = resye )3 € H?(ker(p),Z). Since 8 # 0 and H?*({g),Z) = 0 for all
g & ker(p), it follows that « # 0 and

[R(B)| = {g € CF | resiB # 0} = [{h € ker(p) = C57" [resyya # 0} = [R(a)]
By Proposition we have |R(B)| = 2F2. O

Remark 4.2.12. Let I' be an n-dimensional Bieberbach group of diagonal type where

its holonomy group isomorphic to C5¥. An arbitrary column of Ar corresponds to a co-

homology class o € H2(C§,Z). By Proposition 4.2.10] and Proposition 4.2.11{ we have

IR(a)] = 2¢72 or 2¥~1. By Lemma we can conclude that in every column of Ar,

2k72

there exists at least entries are equal to 1.

Proposition 4.2.13. Let a € H%(C%,Z) where C¥ acts non-trivially on Z via p : C§¥ —
GL(Z). If T € R(a) with |T| > 2573 4+ 1, then (T) = ker(p).

Proof. Since T C R(a) C ker(p), we have (T) < ker(p). We assume by contradiction
that (T) S ker(p). Since |T| > 2F=3 4 1, we have (T) = C5~2. Consider o/ = resimya €
H*(C5%,Z). Recall that R(o') = {h € (T) = C5 2|resyya’ # 0}. By Proposition [1.2.10]
we have |R(a)| = 2¥73. Since T C R(c), we have

2"+ 1< T < [R()] =257
which is a contradiction. O]

Corollary 4.2.14. Let I' be an n-dimensional Bieberbach group of diagonal type with its

holonomy group is isomorphic to C%. Let
a1 @ ®ap, € H(CS,My) @ - @ H*(C, M,,)

be the cohomology class corresponding to standard extension of I' where M, = Z for
z =1,..,n. Let p, : C¥ — GL(M.) be the representations given by the C4-action
on M, and let R(a,) = {g € C§|res<g>az # [0]} for all z = 1,...,n. If there exists
i,j € {1,...,n} such that p; and p; are non-trivial representations and there exists a
subset T C R(a;) N R(a;) such that |T| > 2873 + 1, then R(a;) = R(a).

Proof. Let i,j € {1,...,n} such that p; and p; are non-trivial representation and there
exists a subset T C R(a;) N R(a;) such that |T| > 2¥=3 4+ 1. By Proposition we
have ker(p;) = (T) = ker(p;). Since R(«;) C ker(p;) = (T) and R(«j) C ker(p;) = (T),
every element inside R(c;) UR(c;) can be expressed as a combination of elements of 7.
Let x = t1---ts € R(ay) where t1,...,ts € T. We have Ar(x, M;) = %5_,Ar(tz, M;) and
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A[‘(IE, MJ) = *2:1Ap(tz, M]) Since T - R(ai)ﬂR(aj), we have Ar(t, Ml) = Ar(t, M]) =
1 for any t € 7. Hence we have

Ar(z, M;) = %i_1 Ar(t., M;) = ;1 Ar(t., M;) = Ap(x, M;)

By Remark we have € R(q;) if and only if # € R(«a;). Hence R() = R(ej). O

4.3 Vasquez invariant of diagonal type

By Section and [7, Chapter II|, we know that the fundamental group of compact flat
Riemannian manifold is a Bieberbach group. Vasquez invariant allows one to determine
whether given flat Riemannian manifold fibers over a lower dimensional flat Riemannian

manifold with fibers flat tori [34].

Let M be a closed flat Riemannian manifold with the fundamental group 7 (M) =T". Let
TF = R"/Z"™ be a flat torus where I' acts on it by isometries. Then I' also acts on the
space M x Tk by isometries, where M is the universal cover of M. Tt is easy to show that
the space (M x T*)/T is a flat manifolds (see [34, Section 2]). (M x T*)/T is called the
flat toral extension of the manifolds M. We shall make the convention that a point is the

0-dimensional torus, and hence any flat manifold can be a flat toral extension of itself.
We first give the definition of Vasquez invariant introduced by A. T. Vasquez in [34].

Theorem 4.3.1. [3], Theorem 3.6] For any finite group G, there exists a natural number
x € N with the property that if I' is a Bieberbach group where its holonomy group is
isomorphic to G, then the lattice subgroup L C I' contains a normal subgroup N such

that I'/N is a Bieberbach group of dimension at most x.

Definition 4.3.2. Let G be a finite group and x € N. We say z has property S(G) if for
every Bieberbach group I' where its holonomy group is isomorphic to G, then its lattice
subgroup L C T contains a normal subgroup N such that I'/N is a Bieberbach group of

dimension at most . We define
n(G) = min{x € N |z has property S(G)}

The number n(G) is called the Vasquez invariant or Vasquez number of the finite group

G.
We can reformulate the statement of Theorem 4.3.1]| geometrically.

Theorem 4.3.3. [3], Theorem 4.1] For any finite group G, there exists a natural number
x € N with the property that if M is any compact flat Riemannian manifolds with holon-
omy group G, then M is a flat toral extension of some compact flat Riemannian manifolds

of dimension at most x.

Definition 4.3.4. Let n > 1 be a natural number. A ZG-lattice is any G-module isomor-
phic to a free abelian group Z". Let M be a ZG-lattice where {ey, ..., e, } is the generating
set of M. We say M is a diagonal ZG-lattice if g-e; = te; forall g € G and i € {1,...,n}.
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By [32, Theorem 3], there is another way to define Vasquez invariant of finite groups.

Definition 4.3.5. Let G be a finite group and let L be ZG-lattice. An element o €
H?(G, L) is said to be special if its extension defines a Bieberbach group. ZG-lattice L has
property S if for any ZG-lattice M and any special element o € H2(G, M), there exists a
G-homomorphism f : M — L such that f. : H*(G,M) — H?*(G, L) sends « to another
special element f,(a) € H?(G, L). The Vasquez invariant of a finite group G is then

n(G) = min{rankz(L) | L is ZG-lattice with property S}.

Let G be a finite group. By [10, Theorem 1], we have n(G) < > -cy |G : C| where X is
the set of conjugacy classes of G of prime order. In particular, by [10, Theorem 2], we
have n(G) = > ccy |G : C if G is a p-group.

Remark 4.3.6. We get Theorem by adapting Theorem [£.3.1] to the special case of
Bieberbach groups of diagonal type.

Remark 4.3.7. It is clear that 1 < ny(G) < n(G). Hence by [10, Theorem 2|, we have
nd(Cg) =1.

Lemma 4.3.8. Let I' be a n-dimensional Bieberbach group of diagonal type where its
holonomy group is isomorphic to G and let a € H?(G,Z") be the corresponding cohomol-
ogy class. Let f:Z"™ — M be a G-homomorphism such that f.(«) is special. Then f,(«)
defines a Bieberbach group of diagonal type.

Proof. Since T' is a Bieberbach group of diagonal type, let {e1,...,e,} be a basis of Z"
such that g-e; = +e; for all g € G and ¢ = 1,...,n. It follows that M is generated by
f(e1), ..., f(en). The holonomy representation of the Bieberbach group defined by f(«) is
given by the G-action on M. Since f is a module homomorphism, for all ¢ € G and for

all i € {1,...,n} we have
g flei) = f(g-ei) = f(&e:) = £f(ei)
Hence f.(«) defines a Bieberbach group of diagonal type. O

By Lemma [4.3.8 and Theorem [£.3.1 we can reformulate Theorem as follows.

Theorem 4.3.9. For any elementary abelian 2-group G, there exists a natural number
x € N with the property that if I' is a Bieberbach group of diagonal type where its
holonomy group is isomorphic to G, then the lattice subgroup L C I' contains a normal
subgroup N such that I'/N is a Bieberbach group of diagonal type with dimension at most

x.

Remark 4.3.10. Let G be an elementary abelian 2-group and let L be a diagonal faithful
Z.G-lattice (G acts faithfully on L). Let o € H?(G,L) be cohomology class defines T,
a Bieberbach group of diagonal type where its holonomy group is isomorphic to G. By
Theorem there exists a normal subgroup N < L such that I'/N is a Bieberbach
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group of diagonal type with dimensional at most ng(G). In other words, we can define
a G-homomorphism f : L — L/N such that f. : H*(G,L) — H*(G,L/N) sends « to
another special element f,(«) which defines a Bieberbach group of diagonal type with
dimension at most ny(G). Besides, L/N is a diagonal ZG-lattice of rank at most ng(G).

Definition 4.3.11. Let G be an elementary abelian 2-group and let L be a diagonal ZG-
lattice. An element a € H?(G, L) is said to be a diagonal special element if its extension
defines a Bieberbach group of diagonal type. We say a diagonal ZG-lattice L has property
Sq if for any diagonal ZG-lattice M and any diagonal special element o € H?(G, M), there
exists a G-homomorphism f : M — L such that f, : H*(G, M) — H*(G, L) sends « to

another diagonal special element f, ().
Theorem 4.3.12. Let G be an elementary abelian 2-group. Define
nly(G) = min{rankz(L) | L is a diagonal ZG-lattice with property Sy}

Then we have ng(G) = nj(G).

Proof. By definition, it is clear that nq(G) < n};(G). Now we want to prove that n/,(G) <
nq(G). Let L be a diagonal ZG-lattice of minimal rank with property Sy. In other
words, rankz(L) = nl,(G). Let M be any diagonal ZG-lattice and o € H*(G, M) be any
diagonal special element. Since L has property S; and by Definition there exists a
G-homomorphism g : M — L such that g.(a) € H?(G, L) is a diagonal special element.

First, we assume L is a faithful diagonal ZG-lattice (G acts faithfully on L). Since L is
faithful, by Remark there exists a diagonal ZG-lattice K with rankz(K) < ng(G)
and a G-homomorphism h : L — K such that h.(g«(c)) is a special element defining a
Bieberbach group of diagonal type. Hence K is a diagonal ZG-lattice with property Sy.
It follows that n),(G) < rankz(K). Therefore we have n);(G) < rankz(K) < nq(G).

Now assume L is not a faithful diagonal ZG-lattice. Let P be a faithful diagonal ZG-lattice.
Consider the faithful diagonal ZG-lattice L& P. We have g.(a)®0 € H*(G, L)® H*(G, P)
is a diagonal special element. By Remark [4.3.10] there exists a diagonal ZG-lattice N with
rankz(N) < ng(G) and a G-homomorphism f : L @& P — N such that f.(g.(a) ®0) €
H?(G, N) is special. Since

Homg(L® P,N) = Homg(L,N)® Homg(P,N),

we can let f = f1 @ fo where fi € Homg(L,N) and fo € Homg(P,N). Therefore,
fx(g«(@) ®0) = (f1)+(g«(a)). Thus N is a diagonal ZG-lattice with property S4. It follows
that n);(G) < rankz(N). Hence we have n/)(G) < nq(G). O

4.4 Proofs of Theorems D and E

In this section, given a Bieberbach group I' of diagonal type, we will analyse the char-
acteristic matrix Ar to determine whether there exists a normal subgroup such that the

quotient is still a Bieberbach group.
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Definition 4.4.1. Let I' be an n-dimensional Bieberbach group of diagonal type. The
characteristic matrix Ar is said to be col-reducible (by i*" column) if after removing a
column (i*" column) from Ar, there still exists an entry equals to 1 in every row. We say

Ar is col-irreducible if it is not col-reducible.

Lemma 4.4.2. Let f: M1 &--- &M, - M ®---S M, be a C’;‘:—homomorphism where
My, ..., M, are all Ck-lattices of rank one. Let e; be the generator of M; and p; : C§¥ —
GL(M;) be the representation defining the C4-action on M; for all 1 < i < n. For any
i€{1,...,n},if there exists t > 2 and i1, ...,9; € {1,...,n} such that f(e;) = a; e, + - - a;,e;,
where a;, , ...,a;, # 0, then ker(p;,) = --- = ker(p;,).

Proof. Let ¢ € {1,...,n} such that there exists ¢ > 2 and 4y,...,4; € {1,...,n} such that
fles) = aj eqy + - - a;,e;, where a;,...,a; # 0. For any g € C§ that acts trivially on M;,

since f is a Cé“—homomorphism, we have

Y ailgeen)=g- Y aei.=g-fle)=flg-e)=fle) = > aiei
1<z2<t 1<z<t 1<z<t
Thus g-e;, = ¢;, for all z € {1,...,t}. It follows that g € ker(p;,) for all z € {1,...,¢t}. For

each h € C§ that acts non-trivially on M;, by similar calculation, we get

> an(he)=h- Y aie.=h-fle)=f(h-e)=f(-e)= > —ae.
1<2<t 1<z<t 1<z<t
It follows that h-e;, = —e;, for all z € {1, ...,t}. Therefore h & ker(p;,) for all z € {1, ...t}.

Hence we can conclude that ker(p;,) = --- = ker(p;,). O

Corollary 4.4.3. Let I' be an n-dimensional Bieberbach group of diagonal type where
its holonomy group is isomorphic to C’é’“ and « € H 2(05, @1<i<nM;) be the corresponding
cohomology class where M; = Z. Let p; : C§ — GL(M;) be the representation given
by the Ch-action on M; for all 1 < i < n. If ker(p;) # ker(p;) for all i # j and Ar is
col-irreducible, then there does not exist a Cg—homomorphism f:Z" — 7% where s <n

such that f.(a) is special.

Proof. Assume by contradiction that there exists a C5-homomorphism f : Z" — Z° where
s < n such that fi() is special. Assume a = a1 @ - - ® a,, where o; € H*(C¥, M;) for
1 <i < n. We have f.(a) = fi(a1) ® -+ & fi(an). Let e; be the generator of M; for
1 <i<n. Forany i € {1,...,n}, since f is a module homomorphism, there exists ¢t > 1,
i1,...,0t € {1,...,n} and a;,,...,a;, € Z such that f(e;) = ai, e;, +--- + aj,e;,. By Lemma
if t > 2, we have ker(p;,) = - -+ = ker(p;,), which contradicts that the kernels of p;
are all distinct for 1 < i < n. Therefore we can assume the homomorphism f has form
f(ei) = apey for 1 <i < n where i € {1,...,n} and a; € Z. By Lemma we have

il if a;/ is odd
felai) = apay =
0  otherwise
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Let S = {z € {1,...,n}|ay is odd} = {s1,...,s,.} for some r € Z. We have r > 1,
otherwise f.(a) = 0 which is a contradiction. We have fi(a) = oy & -+ @ a . Let I’
be the Bieberbach group defined by the cohomology class f.(a). We can construct the
matrix Ap by defining the i’ column of the matrix Ap equals to the (s})"® column of
Ar. Since I' is Bieberbach group, by Lemma there exists an entry equals to 1 in
every row of Ap. Since r < s < n, there exists i € {1,..,n} such after removing the i*"
column of Ar, there still exists an entry equals to 1 in every row. It contradicts that Ar

is col-irreducible. O

Remark 4.4.4. Using the same notation as above, consider the characteristic matrix Ar.
Define a map ¢ : {0,1,2,3} — {a,b} such that ¢(0) = ¢(1) = a and ¢(2) = ¢(3) = b.
Define ¥(Ar) be a (2% — 1) x n matrix such that [¢)(Ar)];; = #([Ar];;). Observe that
ker(ps) = ker(p;) if and only if the s column of ¥(Ar) is equal to the j* column of
¥(Ar).

Proposition 4.4.5. Let I be an n-dimensional Bieberbach group with holonomy group

isomorphic to C’é“ and let Ar be a characteristic matrix . The matrix Ap is col-irreducible
X
if and only if Ar is equivalent to <N> where X is an n X n matrix such that all diagonal

entries are equal to 1 and other entries are not equal to 1.
: X\ . . . . .
Proof. First, we want to prove that N is col-irreducible. For any i € {1,...,n}, if
th X th :
we remove the i** column of Nk then the i** row of the of new matrix do not have

X
entries equal to 1. Hence we conclude that (N) is col-irreducible. Now, we assume Ar is

col-irreducible. For any i € {1,...,n}, we consider the i* column of Ar. By definition of
col-irreducible, if we remove the i column of Ar, there exists r; € {1,..., 2k 1} such that
the rt" row of the new matrix do not have entries equal to 1. By Corollary the rih
row of Ar has at least one entry equal to 1. Therefore we can conclude that (Ar),,; =1
and (Ar)r,s # 1 for all s # i. Notice that we have r; # r; for any j € {1,...,n} where

i # j. We define a new matrix A} as follow. We define the i row of A% to be the 7"

X X
row of Ar. Since we have A’F = <N>’ we conclude that Arp is equivalent to (N) O

Lemma 4.4.6. Let I' be an n-dimensional Bieberbach group of diagonal type with its
holonomy group is isomorphic to C§ and let T'N (I, x R") = (eq,...,e,) = Z". If Ar is
col-reducible by " column, then I'/{e;) is a Bieberbach group of diagonal type.

Proof. We define a C5-homomorphism f : Z" — Z"~1 such that f(e;) = 0 and f(e;) = e,
for all j # i. Let
a = Di1<<ny € HQ(C§7 @1§z§an)
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be the cohomology class defining I". We have
f*(Oé) =1 D D1 DA+ DD ay

and fi(«) is defining the Bieberbach group I'/{e;). The characteristic matrix correspond-
ing to I'/(e;) can be obtained by removing the i column of Ar. Since Ar is col-reducible
by i*" column, every row of Ap /(e;) has at least one entry equal to 1. Therefore I'/{e;) is
a Bieberbach group. By Lemma [1.3.8] I'/(e;) is a Bieberbach group of diagonal type. [J

Corollary 4.4.7. Let k > 1, we have ng(C¥) < 2F — 1.

Proof. Assume by contradiction that there exists I', an n-dimensional Bieberbach group
of diagonal type with its holonomy group isomorphic to Cé“ where n > 2% such that T'/N is
not a Bieberbach group for all normal subgroup N < T'NR". Consider the characteristic
matrix Ap of I'. By Proposition Ar cannot be col-irreducible. Thus Ar is col-
reducible. By Lemma there exists a normal subgroup N < I'R"™ such that I'/N is

a Bieberbach group, which is a contradiction. ]

Proposition 4.4.8. Let I' be an n-dimensional Bieberbach group of diagonal type with
holonomy group isomorphic to C§. If n > 5-2873 42 where k > 3, then Ar is col-reducible.

Proof. Let a = ®1<<pa; € HQ(Cg,@lgzgan) be the cohomology class corresponding
to I', where M; = Z for all 1 < i < n. Assume by contradiction that Ar is col-irreducible.

X
By Proposition [4.4.5) Ar is equivalent to (N) where X is an n X n matrix such that all

diagonal entries are equal to 1 and other entries are not equal to 1 and N is a matrix with
2k — 1 —n rows. Since C¥ is acting faithfully on Z", there exists 4,5 € {1,...,n} such that
C} acts non-trivially on both M; and M; where i # j. Consider the i'® and j* columns
of N. By Proposition the i*" and j* columns of N has 2¥=2 — 1 entries equal to 1.
Since k > 3, we ensure that the i*" and j** columns of N has at least one entry equal to
1. Define

z={me{l,..28 =1 —n}|Npy; = Np; =1}

and observe that we have
262 1 s={{me{l,...28 —1—n}|Npi=1, Ny, # 1}

and
22 1 —z=|{me{l,.,2" ~1—n}|Np; #1, Ny = 1}

Since N has 2 — 1 — n rows, we have
2282 —1—2)+z2<2"—1-n
By re-arranging the above inequality, we get
n—2k1 1<
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Since n > 5-2k3 4 2, it follows that
2>5.283 4o okl 1 —9ok3

Thus
{g € C¥ | Ar(g, M;) = Ap(g, M;) =1} > 273 +1

By Corollary we have
{geC¥| resgyo; # 0} = {g € c¥| resgo; # 0}

It contradicts that X is a matrix where all diagonal entries are equal to 1 and other entries

are not equal to 1. ]

In the next two propositions, we obtain upper and lower bounds for the diagonal Vasquez

number.

Proposition 4.4.9. For k£ > 3, the upper bound of diagonal Vasquez invariant is given
by ng(C5) < 5-2F3 4+ 1.

Proof. We proceed by induction. First, consider the base case where k = 3. Let I" be
an n-dimensional Bieberbach group of diagonal type with holonomy group isomorphic to
C3 where n > 7. Let a € H%(C3,Z") be the cohomology class defining I'. By Corollary
we have ng(C3) < 7. Hence there exists a C3-homomorphism f : Z" — Z™ where
m < 7 such that f.(a) is special. By Lemma f«(a) defines a Bieberbach group
of diagonal type. We remain to show that if I is a 7-dimensional Bieberbach group of
diagonal type with holonomy group isomorphic to C3 and corresponds to cohomology
class 3 € H?(C3,Z7), then there exists a C3-homomorphism g : Z7 — Z°* where s < 6
such that g.(f) is special. We assume by contradiction that there does not exist such
homomorphism g. By Lemma Ars is col-irreducible. By Proposition Arps is
equivalent to the 7-dimensional square matrix such that all diagonal entries equal to 1
and all other entries are not equal to 1. This contradicts Remark Hence we can
conclude that there always exists a C3-homomorphism g : Z" — Z* where s < 6 such that

g«(pB) is special. Therefore we have ng(C3) < 6.
We assume the statement is true for £ <t — 1. Now we consider the case where k = ¢.

Let T’ be an n-dimensional Bieberbach group with its holonomy group isomorphic to C%

where n > 5-273 4+ 2. Let
04:04169-”@04”EHZ(Cé,M1EB~-69Mn)

be the cohomology class corresponding to the standard extension of I'. We want to show
that there exists a Ci-homomorphism f such that f.(a) corresponds to a Bieberbach
group of dimension at most 5-2/73 4 1. Since n > 5-2/=3 4+ 2, by Proposition Ar is
col-reducible. By Lemma there exists a module homomorphism f; : Z" — Z" ! such
that (f1)«() defines a Bieberbach group of diagonal type I'y. If dim(I'y) > 5- 2173 + 2
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and holonomy group of I' is isomorphic to C}, then by Proposition and Lemma
there exists fo : Z"~! — Z"2 such that (f2 o f1)«(a) defines a Bieberbach group
of diagonal type. Inductively, there exists 7 € Z and we can define f; : Z"~ 1 — Zn—*
for i = 1,...,r such that (f, o---o fi).(a) defines a Bieberbach group of diagonal type
[y, either dim(T,) < 52173 + 1 or the holonomy group of T, is isomorphic to G S C%.
We remain to consider the second case where the holonomy group of I'; is isomorphic to
a proper subgroup of C¢. By induction hypothesis, there exists a module homomorphism
g : 24m(I'r) 5 75 such that (go fro---o f1)«() defines a Bieberbach group of dimension
at most 5- 2174 4 1. Hence we conclude that there exists a Ci-homomorphism f such that

.(a) defines a Bieberbach group of dimension at most 5 - 2:73 + 1. ]
g

Proposition 4.4.10. Let I' be a Bieberbach group of diagonal type with holonomy group
isomorphic to C’§ where £ > 2. Then

@ if k£ is even

cy) >
nq(Cs3) > @_1 if k is odd

Proof. First, we assume k is even. We are going to construct a matrix Ar and show that
it defines I', a @—dimensional Bieberbach group of diagonal type such that there does
not exist a C§-homomorphism f such that f.(a) defines a smaller dimensional Bieberbach

group where « is the cohomology class defining I'.

Define a (k x k)-matrix @ such that

1 ifi=j
ij =

2 ifi
for1<i<kand1l<j<k. Let S={(a,b) €{l,....k} x{1,...,k} | a <b}. It is easy to
see that |S| = @ Let s; = (sg.l), 55-2)) for 1 <j < k(kT_l) be all elements of S. Define

a (k x k(kgl))—matrix N such that
2 ifi=s"
(2)

Nij=43 ifi=s,

<

0 otherwise

where 1 <7 <kand1<j<

the j** column of N. The (s§1))th entry of the j** column of N is equal to 2, the (s§2))th

entry of the 5 column of N is equal to 3 and all other entries of the j** column of N is

k(kg_l). In other words, fix j € {1,..., @} and consider

equal to 0.

Define a (k x k(kTJrl))—matrix A= (Q N) by combining () and N together. Let g1, ..., g

be generators of C’é“ and M, 2 Z forall1 < z < @ We define Ar(g;, M;) = A; ; for

1<i<kand1<j< @ By Remark 4.2.2, we can construct a ((2¥ — 1) x @)-

matrix Ar.
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For example, we assume k& = 2. We have S = {s; = (1,2)}. We define ), N and A as

below,
1 2 2 1 2 2
2 1 3 2 1 3

and the third row of Ar can be calculated by ”adding” the first two row together. We get

1 1 2 2
T9 2 1 3|=A4r
rixro\3 3 1

We denote the it" row of A to be r;.
k(k+1

Now we are going to show that Ap defines a 2+ )_dimensional Bieberbach group of
diagonal type I' by using Lemma[f.2.6] Let r be an arbitrary row of Ar. There exists m €
{1,...,k}and 1 <4 < ... < iy, < k such that the row can be expressed as r = r;, x---x71;, .

Notice that the j* column of the row 7 equals to Ar(g;, - - - gi,,, M;) and

Ar(gi, - Gipn» M) = Ki<z<mAr(gi,, M)

We claim that there exists ¢1,co € {1,.. kH } such that Ar(gi, - - - gi,,, M¢,) = 1 and
Ar(giy - i,y Me,) € {2,3}. In other Words, we claim that there exists an entry on the
row equals to 1 and there exists an entry on the row equals to 2 or 3. By Lemma |4.2.6

(k:—i—l)

we can conclude that Ar defines a -dimensional Bieberbach group of diagonal type

where its holonomy group isomorphic to Cz.

We are going to prove the claim now. First, it is clear the claim is true for m = 1.

k(k 1)

Now, we assume 2 < m < k. There exists j € {1, ... } such that s; = (i1,42) € S.

Then we have
Ar(Giy -+ Gip> Mitj) = Ko Ar(giss Miqj) =0x -+ 424 0% - - x0x3%x0%---x0=1

Next, we are going to show there exists an entry equals to 2 or 3 in row r. If m is odd,

then there exists i € {1,...,k} — {i1, ..., 4m }. Thus we have
odd copies
*
Ar(gil' “Gim> ) *;n lAF(glzv ) =2x---%2=2
If m is even, then we have

odd copies of 2
AF(gi1"'gim7Mi1) = *?:1141“(91’2,]\4@'1) =2% k2% 1*k2%---%x2=3

Thus, our claim is true. By Lemma the matrix Ar defines a @—dimensional
Bieberbach group of diagonal type where its holonomy group isomorphic to C’g. Next,
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notice that Ar is equivalent to

™

Tk

T *T (2 — X
31 51 - p

. *T (2

k(k—1) Sk(k—1)
—z —z

P

(@ X @) matrix such that the diagonal entries all equals to 1 and

where X is a
all other entries are not equal to 1. By Proposition we can conclude that Arp is
col-irreducible. Let p; : C5 — GL(M;) be the representation given by the C4-action
on M; forall 1 < < k(kTH) By Remark (4 observe that columns of ¢(Ar) are all
distinct. Therefore p; # p; for all i # j. by Corollary 4.4.3) there does not exist an C}-
homomorphism f such that f.(«) defines a smaller dimensional Bieberbach group where

k(k+1)
2

« is the cohomology class defining I'. Hence we have ng(C}) > if k is even.

Now, we assume k is odd. We are going to construct a matrix Ar and show that it defines
I, a (@ — 1)-dimensional Bieberbach group of diagonal type such that there does not
exist a C§-homomorphism f such that fi(a) defines a smaller dimensional Bieberbach

group where « is the cohomology class defining I'.
Define a (k x k)-matrix ) where
1 ifi=y
2 ifi#y
forl1<i<kand1<j<k Let S ={(a,b) € {1,....,k}x{1,....k}a < b}—{(1,2),(1,3)}.

It is easy to see that |S| = k(k_l) —2. Let s} = (s/-(l), @ )) for 1 <j< ( U _ 2 be all

J
elements of S’. Define a (k x (k(k D 2))-matrix N where

ij =

2 ifi=s"
Nij=13 ifi=s"

0 otherwise

Define a k x (=5~ (kﬂ) — 1) matrix A such that

S W W N
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Let g1,...,gx be generators of C§ and M, = Z for 1 < z < M — 1. We define
Ar(gi, Mj) = A; j. By Remark we can construct a ((2F — 1) x (@ — 1))-matrix

Ar. For example, if kK = 3, we have

1 2 0 2
A=12 1 2 3
2 2 3 3
and
r1 1 2 2 0 2
T9 2 1 2 2 3
r3 2 21 3 3
r1xT2 330 2 1|=A4r
71 %73 3 0 3 3 1
T2 XT3 0 3 3 10
T1x7T2 %73 1 1 11 2
We denote the it row of A to be r;.
Now we are going to show that Ar defines a (@ — 1)-dimensional Bieberbach group

of diagonal type I' by using Lemma Let r be an arbitrary row of Ar. There
exists m € {1,....,k} and 1 < iy < ... < i, < k such that the row can be expressed as
7 =71y % %7;,. Notice that the 5 column of the row 7 equals to Ar(g;, - - gi,., M)
and

Ar(giy -+ Gin» M) = Ki<z<mAr(gi,, M)

We claim that there exists ¢, co € {1, ..., M —1} such that Ar(gi, - - ¢i,,, M) = 1 and

Ar(gi, -+ 9i,,» Mc,) € {2,3}. In other words, we claim that there exists an entry on the
row 7 equals to 1 and there exists an entry on the row r equals to 2 or 3. By Lemma |4.2.6

k(k
)

we can conclude that Ar defines a ( -dimensional Bieberbach group of diagonal

type where its holonomy group isomorphic to C’é“.
We are going to prove the claim now. First, it is clear that the claim is true for m = 1.

Next, we assume 2 < m < k — 1. If (iy—1,9m) € {(1,2),(1,3)}, then m = 2 and we have

Ar(9i1 Gia Mk(k;l),l) = Ar(gilaMm;l),l) * Ar(Gis Mk(k;l),l) =2%3=1

If (im—1,im) & {(1,2),(1,3)}, then there exists j € {1,...,@ — 2} such that s, =

(tm—1,%m) € S’. Then we have
Ar(Giy - G Mi1j) = Ko Ar(gins Mi4j) =0x -+ 4240k - - x 0% 3% 0% ---x0=1

Next, we are going to show there exists an entry equals to 2 or 3 in row r. If m is even,
we have

odd copies of 2
AF(gil"'gim,Mil) :*Izc:lAF(giz,Mil) =2% - *k2%x1*%2%---%x2=3
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If m =k, then
Ar(gi- - gk Mugrny ) = FE_y Ar(ge Migeany ) = 24343 % 0%+ %0 =2
2 2

If m is odd and m # k, then there exists ¢ € {1,...,k} — {i1, ..., i} and we have

odd copies

f—/\ﬁ
Ar(giy =+ Ginys Mi) = KN Ar(gin, M) =24 - %2 =2

Thus, our claim is true. By Lemma Ar defines a (=5 (kH) 1)-dimensional Bieberbach

group of diagonal type I' where its holonomy group 1som0rphlc to CF.

Next, notice that Ar is equivalent to

1
Tk

7'8/1(1> * 7"8/1(2) X
: P

r pes) *xT e
Sk(k—1) Ly Sk(k—1) L
71 %79

P

where X is a ((@ —1) x (@ — 1)) matrix such that the diagonal entries all equals
to 1 and all other entries are not equal to 1. By Proposition we can conclude that
Ar is col-irreducible. Let p; : Cé“ — GL(M;) be the representation given by the Cé“—action
on M; for all 1 < i < (kﬂ) — 1. By Remark 4 observe that columns of ¢(Ar) are
all distinct. Therefore p; # p; for all i # j. by Corollary -, there does not exist
an C§-homomorphism f such that f,(a) defines a smaller dimensional Bieberbach group

where « is the cohomology class defining I'. Hence we have ng(C5) > @ —1lif kis
odd.

By combining Proposition [£.4.9] and Proposition we get Theorem

Proof of Theorem [H. By Remark the theorem holds for k = 1.

Now assume k = 2. By Theorem |§|, we have ng(C3) > 3. By Corollary we have
ng(C3) < 2% — 1 =3 and thus ny(C3) = 3.

Now we assume k£ = 3. By Theorem @ we have 5 < ng(C3) < 6. It remains to show
that if T is a 6-dimensional Bieberbach group of diagonal type with holonomy isomorphic
to C3 where o/ € H?(C3,7Z5) is the corresponding cohomology class, then there exists
f : Z% — 7P such that f.(’) is special. Assume by contradiction that there does not
exist such f and hence we assume Al"/l is col-irreducible. By Proposition bl Ar is
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X
equivalent to <N> where the diagonal entries of X is the only entries equal to 1 and N

is a row matrix. By Remark each column of Ar has at least 2 entries equal 1. It
forces N is a row matrix with all entries equal to 1. Hence the element of the holonomy
group corresponds to that row acts trivially on Z% which contradicts that the holonomy

representation of I is faithful. We conclude that ny(C3) = 5.

Now we assume k = 4. By Theorem @7 we have 10 < ng(C3) < 11. We remain to show
that if I is a 11-dimensional Bieberbach group of diagonal type with holonomy group
isomorphic to C§ where o/ € H*(C3, My & --- ® My1) where M; = Z for j = 1,...,11 is
the corresponding cohomology class, then there exists a Cj-homomorphism f : Z!* — 710
such that fi(a/) is special. Assume by contradiction that there does not exist such f.
By Lemma the characteristic matrix Aps is col-irreducible. By Proposition [4.4.5

X
we assume Arps is equivalent to (N) where the diagonal entries of X is the only entries

equal to 1 and N is a row matrix and N is matrix with four rows. By Remark
each column of A has either 4 or 8 entries equal to 1. It forces each column of N has 3

entries equal to 1. Since N has eleven columns, there exists i,7 € {1, ..., 11} such that
{g € C3 | Arv(g, M;) = Ari(g, M;) = 1}| = 3.
By Corollary we have
{9€Cy| Ar(g, My) =1} = {g € Oy | Ar(g, M;) = 1}

It follows that A is col-reducible, which is a contradiction. Hence ng(C3) = 10. 0
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Chapter 5

Diffuseness of Bieberbach groups

5.1 introduction

In this chapter, we will discuss diffuseness property of Bieberbach groups. First, we recall

the definition of diffuseness.

Let G be a group, A C G be a subset. We define
A(A) = {a € Alfor all v €T, either ya & Aory 'a & A}

We say G is diffuse if for any subset A C G with 2 < |A| < oo, we have |A(A)| > 2. We
say G is weakly diffuse if for any subset A C G with 1 < |A] < oo, we have |[A(A)| > 1.
We say G is non-diffuse if it is not diffuse.

Definition 5.1.1. Let GG be a group and A C G be a non-empty finite subset. We say A
is a ravel if A(A) = o.

Remark 5.1.2. By definition, we can see that all finite subgroup is non-diffuse. Let T’
be a group and let N < I'. By definition of diffuseness, if N is non-diffuse, then I" is

non-diffuse. Thus if I' is diffuse, then I' is torsion-free.

Let I' be a group and let X be a set. We say X is a ['-set if there is an action on X by
the group I'. Given x € X, we define

I(z)={yeTl|yz =z}

Suppose X is a I'-set. Given any subset A C X, we define
Ar(A) = {a € A|if v € T satisfies ya,y~ ' € A, then ya = a}

We say X is diffuse as a I'-set if given any finite subset A C X with 2 < |A| < oo, then
|Ar(A4)] =2

Lemma 5.1.3. Let I' be a group. We view I' as a I'-set where the structure of the I'-set
is given by left multiplication. We have I' is diffuse if and only if " is diffuse as I'-set.
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Proof. 1t is sufficient to show that A(A) = Ap(A) for any finite subset A C X with
2 < |A] < o. Let x € A(A). If v € T satisfies yo,v 'z € A, then v is the identity
element because x € A(A). Thus we have yr = z. Hence A(A) C Ap(A). For the reverse
direction, we assume by contradiction that x ¢ A(A) and = € Ar(A). Since x & A(A),
there exists v € T'/{1} such that yx,v 'z € A. Since z € Ap(A) and yx,v 'z € A,
we have yx = z. Thus v = 1 which is a contradiction. Hence we have Ap(A) C A(A).
Therefore A(A) = Ar(A4). O

A morphism between two I'-sets X and Y is a map f: X — Y such that f(yx) = vf(x)
for all # € X and v € I'. Note that if y € Y, then f~'y has the structure of I'(y)-set.

Lemma 5.1.4. [/, Lemma 2.1] Let T be a group and suppose X and Y are I set. Let
f:X — Y be a morphism between two I'-set. If Y is diffuse as a I'-set and that f~'y is
diffuse as I'(y)-set for all y € Y, then X is diffuse as a I'-set.

Proof. Let A be an arbitrary finite subset of X such that 2 < |A| < oo and define
B = f(A) CY. Our aim is to show that |Ap(A)| > 2.

First, we assume |B| > 2. Since Y is diffuse as I'-set, we have |[Ap(B)| > 2. Let b € Ap(DB).
Suppose |AN f71b| > 2. Since AN f~1b C f~1b and f~1b is diffuse as I'(b)-set, we have
[Are) (ANf7H)| > 2. Let a € Apgy (AN f7'b), we claim that a € Ap(A). If v € I satisfies
va,y ta € A, then f(vya) = ~vf(a) = b € B and f(y 'a) =y b € B. Since b € Ap(B),
we have vb = b. Thus v € I'(b) and vya,y ta € AN f~1b. Tt follows that ya = a because
a € Apgy (AN f71b). Therefore we have a € Ap(A). By similar argument, if f~! = {a}
for some a € A. then a € Ap(A). In either case, we obtain Ar(A) N f~1b # (. Since
|Ar(B)| > 2, we have |[Ap(A4)| > 2.

Next, we assume B = {b} for some b € B. We have A = f~!b. We see that Ap(A) =
Arp)(A). Since A = f~1b is diffuse as I'(b)-set, we have |Apg(A)| > 2. It follows that
|Ap(A)| > 2. Thus X is diffuse as a I'-set. O

Theorem 5.1.5. [/, Theorem 1.2 (1)] Let I be a torsion-free group. Suppose N <T' and
both N and I'/N are diffuse. Then T is diffuse.

Proof. Let f : I' — I'/N be quotient map. Notice that f is a morphism of I'-sets. By
Lemma I'/N is diffuse as (I'/N)-set. Hence I'/N is diffuse as a I'-set too. Also, if
y € T'/N, then I'(y) is conjugate to N in I'. Thus I'(y) is isomorphic to N. Besides, f~ly
is isomorphic to I'(y) = N viewed as an I'(y)-set. Since N is diffuse, f~1y is diffuse for all
y € I'/N. By Lemma [5.1.4] T is diffuse. O

Theorem 5.1.6. [20}, Lemma 3.4/ Let I be an n-dimensional crystallographic group. If
b1(T') = 0, then T is non-diffuse.

Proof. Let G be the holonomy group of I'. We claim that the set S = {y € I'| [|[7(0)|| < r}
for sufficiently large r > 0 is a ravel. Let v = (I,u) € SN (I, x R™). Our aim is to find
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an element v € T such that ||y (0)|| < r and ||[y~4/(0)|| < . By Lemma we have
rk(Z™)¢ = 0. Thus the group G acts on R” without non-trivial fixed point. Hence there

exists a real number § < 1 and there exists g € G such that
lgu + ul| < 26]|ull

Pick «p € T such that p(vy) = g. Define wg = 79(0). In other words, we have vy =
(g,wp) € T'. Fix ro > 0 such that for all v € R™, there exists ¢ € T" such that ||ju —t|| < ro.

Observe that for all vy, v € R™ where ||v; — va]| = d, there exists € wg + T with

d
maa (v =zl o2 = al)) < 7o+ 5

Apply the above calculation to v; = u and vy = —gu to find such x = wg + t. We have
d=|gu+ u| < 26||ul| <2dr

Define v = (I, t)vo. By simple calculation, we get

d
vy )1 = [1(Zn £)(g, wo) (L, W) (O)| = llwo + gu+t|l = llgu + 2| <o+ 5 < 7o+ 7

and
v O = [Itg™", =g wo) (In, —t)(In, w) O)|| = | = g 'z + g ul| = [lu— || < 7o+ 6r

As § < 1, for all sufficiently large 7, we have ||vy/(0)|| < r and [|y~14/(0)|| < r. Therefore
the set S is ravel. O

Definition 5.1.7. A finite group G is holonomy diffuse if every Bieberbach group I' with
holonomy group G is diffuse. The group G is holonomy anti-diffuse if every Bieberbach
group [' with holonomy group G is non-diffuse. Otherwise we say that G is holonomy

maxed.

Next, we state a theorem given by S. Kionke, J. Raimbault in [20] that give an algebraic

characterisation of the above three classes of finite group.

Theorem 5.1.8. 20, Theorem 3.5] Let G be a finite group.

(1) The group G is holonomy anti-diffuse if and only if it is not solvable.

(74) The group G is holonomy diffuse if and ony if every Sylow subgroup is cyclic.

(7i1) The group G is holonomy mixed if and only if it is solvable and has a non-cyclic

Sylow subgroup.

Next, we are going to introduce a way to determine whether a given Bieberbach group I'

is diffuse or not as follow.

Let T' be n-dimensional Bieberbach group. By Theorem if b1(T') = 0, then T is
a non-diffuse group. We now assume b;(I') = k£ > 0. By Corollary we get an
epimorphism

f:T —zF
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such that ker(f) is an (n — k)-dimensional Bieberbach group. In other words, we have the

below short exact sequence
0— ker(f) =T =2 =0

Since Z* is diffuse, By Proposition I is diffuse if and only if ker(f) is diffuse. Hence
we can reduced the question to whether ker(f) is diffuse or not. If the first Betti number
of ker(f) is non-zero then we can apply the above steps and obtain another epimorphism
such that the kernel of such epimorphism is a Bieberbach group of smaller dimension. We
can apply the above steps inductively until either you get a Bieberbach subgroup of trivial

first Betti number or the kernel of the last epimorphism is Z and hence I' is indeed diffuse.

We want to study the classification of diffuseness of Bieberbach group with holonomy
mixed group as holonomy group. In this chapter, we will consider Bieberbach group of

diagonal type, which the holonomy group is elementary 2-group.

In next section, we will first consider a simpler case where the holonomy group of Bieber-

bach groups is Cy x Cy. Finally, we will present Theorem [F] and [G]

5.2 Proof of Theorem F and G

Lemma 5.2.1. Let I" be an n-dimensional Bieberbach group and suppose there exists
N QT NR"™ such that I = T'/N is still a Bieberbach group. If b;(T") = 0, then b;(I') = 0.

Proof. Consider the below short exact sequence,
0 N—-T—=I"—1
By [B, Chapter 7, Corollary 6.4] we have the following exact sequence
v Hy(T,2) — Hi(T',Z) = 0

Since b1(T') = 0, we have rk(H;(I',Z)) = 0. It forces rk(H,(I",Z)) = 0. Therefore we
have b1 (') = 0. O

By [20, Section 3.4], it presents all non-diffuse Bieberbach groups less than dimension
5. All Bieberbach groups in 2-dimensional is diffuse and there is only one non-diffuse
Bieberbach group in 3-dimensional. We denote that group to be As. It has the below
presentation

1

A = (z,y |z Y oy® =y taPya® = 1)

Aj is indeed a 3-dimensional generalized Hantzsche-Wendt group (also known as Promis-
low group or Passman group). The following proposition and lemma will tell us why Ag

is an important non-diffuse group.

Proposition 5.2.2. If I' be an n-dimensional Bieberbach group of diagonal type with
holonomy group C3 such that b (I') = 0. Then Az <T.
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Proof. Since T' is Bieberbach group of diagonal type and b;(I") = 0, without loss of gener-
ality, we let

a = (diag(X1, ..., Xn), (21, ..., zp)) and B = (diag(Y1, ..., Yy), (Y1, .-y Yn))

where X;,Y; € {1,—1} and x;,y; € {0,3} for all i € {1,...,n} be the non lattice gener-
ators of I'. There exists i, € {1,...,n} such that (X;,z;) = (1,3) and (Yj,y;) = (1, 3).
Otherwise, a € I' or § € I' is an element of order 2, which contradicts the fact that T"
is torsion-free. There exists k € {1,...,n} such that (X,Ys) = (—1,—1) and (zg,yx) €
{(0,3),(3,0)} otherwise a3 € T has order 2. By the third Bieberbach’s Theorem, we may

' 2
assume
I; O 0 a —I; 0 0 a2
0 —I 0 b 0 I 0 b
a= P ! and (= P 2
0 0 —I; a 0 —I; c
0 0 0 1 o 0 o0 1

where s,p,q € Z*, a1,as € {0, %}5, b1,by € {O,%}p and c1,c9 € {0,%}‘1. Besides, aq, bo,

and c9 are non-zero.

By a simple calculation, we checked that v and 3 satisfy the below relation
04_1[320452 — /B_IOL2BO£2 -1

Since

Ag = (z,y |2 Y2y’ =y latya® = 1)

there exists a normal subgroup N <! Az such that (o, 8) = Az/N. Let ' = (a, 3). Since
a?, 4% and (af3)? are three linearly independent elements inside the lattice I' N R™ and

thus dim(I') > 3. This implies that N has rank zero and is therefore trivial. Hence we
have Az = (o, ) <T. O

Remark 5.2.3. Since a Bieberbach group with trivial first betti number is a torsion-free
metabelian group with a finite commutator subgroup, the above proposition is a special

case of [18, Theorem 1].

Lemma 5.2.4. Let I be an n-dimensional non-diffuse Bieberbach group of diagonal type

with holonomy group C3. Then there exists Z" 2 < T such that T'/Z" 3 = As.

Proof. By Theorem [E} we have ny(C3) = 3. So, there exists Z° < T such that I'/Z* =T
is a Bieberbach group with dim(I') < 3. By Proposition I is non-diffuse. Since
Ag is the only non-diffuse Bieberbach group below 4-dimensional, we can conclude that
s=n—3and I = As. O

Proof of Theorem[F|. Let {«, 8} be a set of non-lattice generators of I'. Since b (T") = k,

without loss of generality, assume
a = (diag(x1,...,xn), (a1,...,a,)) and B = (diag(y1, ..., Yn), (b1, ..., bp))
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where aj,b; € {0,1} for j € {1,...,n}, (zi,y;) € {(1,—1),(~1,1)} for i € {1,...,n—k} and
(xi,yi) = (L,1) forie {n—k+1,...,n}.

Given an arbitrary element v = (diag(21, ..., Zn—k, 1, .., 1), (81, ..., 8n)) € T’ where z; €
{1,—-1} for ¢ € {1,...,n — k} and (s1,...,s,) € Q™. By Corollary there exists a
homomorphism f : I' — Z* which maps v to (25,_k41, ..., 25,) € Z* and the kernel of the

homomorphism is an (n — k)-dimensional Bieberbach group.

We claim that a; = 0 for all i € {n — k+1,...,n}. Assume by contradiction that there
exists j € {n —k +1,...,n} such that a; # 0. We have o & ker(f). Then the holonomy
group of ker(f) will either be identity or cyclic group of order two. By [20, Theorem 3.5],
ker(f) is diffuse. Since ker(f) and Z* are both diffuse, by Proposition I' is diffuse,
which is a contradiction. Hence a; = 0 for all i € {n — k + 1,...,n}. By similar argument,
we get b; = 0 for all i € {n — k + 1,...,n}. Therefore I' = Z(I') @ ', where Z(T') is the
center of I' and T’ = ker(f). By Lemma we have

OHZ"—k—3L>f‘4>A3*>1 (5.1)

Notice that by (T) = 0, otherwise by (I') > k. By Proposition we have Az < T. By

restricting the domain of ¢, we have

L

Pl
0 H As 2

where H is a subgroup of Z" ¥~ and G is the image of the map ¢|a,. We claim that ¢|a,
is an isomorphism. Since H is a subgroup of Z"*=3, H is a diffuse group. By Proposition
G is non-diffuse, otherwise it contradicts that Ag is a non-diffuse group. Besides, G
is a quotient of A3. Hence G is a non-diffuse Bieberbach group of dimension less than or
equal to three. Thus G = Aj and hence ¢|a, is an isomorphism. Therefore is a split

short exact sequence. OJ

Lemma 5.2.5. Let I' be an n-dimensional non-diffuse Bieberbach group with b;(T") > 0,
then there exists IV < T such that b;(I") = 0.

Proof. We proceed by induction on n. Since all Bieberbach group is diffuse if n < 2, we
first consider the base case where n = 3. Notice that Ags is the only 3-dimensional non-
diffuse Bieberbach group and b;(A3) = 0. Thus the statement is true for n = 3. Assume
the statement is true for n = k and consider the case where n = k + 1. Let I' be an
(k + 1)-dimensional non-diffuse Bieberbach group with b, (I') = k£ > 0. By Theorem m
there exists an epimorphism f : I' — Z such that ker(f) is a k-dimensional Bieberbach
group. By Proposition ker(f) is non-diffuse. If by (ker(f)) = 0, then we are done.
Assume by (ker(f)) > 0. By induction hypothesis, there exists IV < ker(f) < T" such that
b1 (I") = 0. O]
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Given a non-diffuse Bieberbach group with non trivial center, by the above lemma, there
exists a non-diffuse Bieberbach subgroup with trivial center. Therefore before proving
Theorem [G], we need the below two propositions to consider a simpler case where the

Bieberbach group has trivial center.

Proposition 5.2.6. Let I" be an n-dimensional Bieberbach group of diagonal type, b1 (I") =
0 and its holonomy group is isomorphic to C§. Letp: T — C’é’“ be the projection map as in
. If n < 2% — 1, then there exists Cg_l < Ck such that pil(Cg_l) is an n-dimensional
Bieberbach group with holonomy group isomorphic to Cgil and by (p_l(Cgfl)) = 0.

Proof. First note that there are 28 —1 subgroups in Cé“ isomorphic to Cg 1 Let Ay, ..., Aok
denote these subgroups. Assume by contradiction that p~!(A;) is Bieberbach group with
non-trivial first betti number for all € {1,...,2¥ — 1}. Hence we have (Z™M)% = 0 and
(ZM)Ai £ 0 for all 4 € {1,...,2F — 1} where Z" 2 T NR". For any i € {1,...,2F — 1}, let
z € (Z™)4 and ey, ...,e, be the standard basis of Z" such that C§ acts diagonally on

{e1,...,en}. We have z; = ¢;,e1 +...+¢;, e, where ¢;,, ..., ¢;, € Z. For each g € A;, we have

zi=g-zi=ci,(g-e1)+..+¢, (g en)

Thus there exists t; € {1,...,n} such that e;, € (Z")%. We conclude that for any i €
{1,...,2F — 1}, there exists t; € {1,...,n} such that e;, € (Z")%. Notice that t; # t; for
all i # j, otherwise e;, € (Z™)4 N (Z™)4 = (Z")%% | contradicts that by(I') = 0. Thus we

have n > 2F — 1 which is a contradiction. O

Proposition 5.2.7. Let I' be an n-dimensional Bieberbach group of diagonal type with
b1(I') = 0. Let ' NR™ = (ey,...,ey) such that the holonomy group acts diagonally on
{e1,...,en}. Then either Az < T or there exists I <T and Z® = (e;,, ..., ¢;,) IT such that
IV/Z° = Ag, where 1 < iy < --- < i5 < n.

Proof. Let C% where p > 1 be the holonomy group of I'. We proceed by induction on p.
By Theorem [F] we know the statement holds for p = 2. Assume that it is true for all
p < k—1. Let I" be an n-dimensional Bieberbach group of diagonal type with b;(I') = 0

and the holonomy group is isomorphic to C’é’“.

First we consider the case where dim(I") < ng(C¥) < 2¥ — 1. By Proposition
there exists IV < T' such that b;(I') = 0 and the holonomy group of I" isomorphic to
Cg_l. Notice that IV N R™ = T N R"™ = (ey,...,e,). By induction hypothesis, either
Az < T in which case Ag < T, or there exists I/ <T” < T and Z° = (e;,, ..., €;,) where
1 <4y <---<is <nsuchthat I”/Z* = As. Since C} is acting diagonally on Z*, we have
7° = {eiy,...,e;,) T

Next, we assume dim(T") > ng(c§). By Theorem @ without loss of generality, we can

assume that there exists (eq,...,e;) = Z! such that [ = I'/Z! is a Bieberbach group
of diagonal type with dimension at most ng(C%) < 2¥ — 1. Notice that T N R*~* =
(€441, ...y €n). By Lemma we have b1(I') = 0. By previous calculation and the
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induction hypothesis, we have either Az < T, in which case, Az = A/Z! where A < T,
or there exists I/ < T' and Z* = (e, ...,e;,) where t +1 < iy < --- < igz < n such that
[/Z* = Asz. Consider the later case, since [ < T' = I'/Z!, we have I = B/Z! where
B <T. It follows that B/Z! ® Z5 = A;. O

Proof of Theorem[G. Let I' be an n-dimensional non-diffuse Bieberbach group of diagonal
type and I'NR™ = (eq, ..., €,). By Lemma there exists I'y < T' such that by (I';) = 0.
By Proposition [5.2.7] either A3 < T'y < T or there exists 'y < T'; < TI' and Z°* <T'; such

that T'y/Z° = Ag. Since the holonomy group of I' is acting diagonally on Z°, we have
7° 4T

Now, assume that I' is a non-diffuse generalized Hantzsche-Wendt group. By [30, Theorem
3.1], T is a Bieberbach group of diagonal type. Let the holonomy group of I' be C%. We
proceed by induction on p to show that As < I'. The base case p = 2 is clear. Assume
that the statement is true for all p < k — 1 and consider p = k. If b;(I') = 0, then
by [30, Proposition 8.2], we have Az < I". Hence we could assume b;(I") > 0. By [30,
Proposition 4.1], there exists f : I' — 7Z such that ker(f) is an (n — 1)-dimensional
generalized Hantzsche-Wendt group. Since I' is non-diffuse, by Proposition ker(f)
is non-diffuse. Hence by induction hypothesis, we have Ag < ker(f) <T. O

Example 5.2.8. In this example, we point out that there exists a non-diffuse 7-dimensional
Bieberbach group I of diagonal type with holonomy group isomorphic to C3 which does not
contain Ag as subgroup. Therefore Theorem [G] cannot be improved. Define A, B,C € T’

as below.
100 O O O 0 1/2 1 0 0 0 0 0 O
010 0 0O O 0 1/2 0O -1 0 0 0 0 O
001 0 0 0 0 1/2 o 0 -1 0 0 0 O
A 00 0 -1 0 0 0 0 B 0 O 0 1 0 O 0 1/2
oo0oo0 0 -1 0o 0 O 0 0 0 01 0 0 1/2
o 00 o0 o0 -1 0 O o 0 o0 00 -1 o0
000 0O O 0 -1 1/2 o 0 o0 00 0 -1
00 0 O 0 1 o 0 o0 00 0 o0
-1 0 0 O 0O O O O
o 1 0 0 O O 0O O
o 0o -1 0 0 O 0 O
0:200010000
0O 0o 0 0 -1 0 0O O
00 0 0 0 1 0 1/2
o o 0 0 0 0 -1 o0
0O 0 0 o0 0O 0 1

Let {A, B,C} be set of non lattice generators of I'. Let p : I' — C§ be the projection
map as in (2.7). The holonomy group is generated by p(A),p(B) and p(C). Assume by
contradiction that Az < T'. Then there exists C5 = (z,y) < (p(A),p(B),p(C)) such that
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(z,7) = Az for some p(z) = z and p(y) = y. The holonomy group Cj has seven distinct
C3 subgroups. Hence we need to consider all seven cases one by one. The argument for
all seven cases are similar, we will present one of them and assume C2 = (p(A), p(B)). In

this case, we have

100 0 0 0 0 a+1/2 1 0 0 00 0 O n
010 0 0 0 0 z3+1/2 0 -1 0 00 0 0 Yo
001 0 0 0 0 z3+1/2 00 -1 00 0 0 ys
~Jooo -1 0 0 o0 24 o0 0 10 0 0 y+1/2
“Tlooo 0 -1 0 o0 s YZ1o 0 0 01 0 0 y+1/2
000 0 0 -1 0 6 00 0 00 -1 0 Yo
000 0 0 -1 x7+1/2 000 0 00 0 -1 vy
000 0 0 1 00 0 00 0 1

where z;,y; € Z for i = 1,...,7. By [25, Lemma 1], since Z and y are the standard

1

generators of Az, they must satisfy the relation ¢~ 'waw = Is where w = (Z%)?. By simple

calculation, we have

1 000 00 0 4x1+4y+2
01000O00O0 0
0010O0O0O0 0
O 0001000 0
000O0T1O0PO0 0
000 O0O0OT1F®O 0
00 0O0O0O01 0
000O0O0OO 0O 1

It is clear that the solution of the equation 4x1 4+ 4y; + 2 = 0 is never integral which is a

contradiction.
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