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Abstract

Financial markets rely heavily on the informational efficiency of
their participants, setting security prices by aggregating the decisions
made by these participants. Errors in the decision making process can
pervade financial markets, creating opportunities for savvy traders to
exploit and achieve excess risk-adjusted returns.

Systematic errors arise when the complexity of a decision problem
exceeds the capabilities of an individual who, in turn, employs heuris-
tics to reduce the complexity of the task. These so called cognitive
biases have been observed in human behaviour affecting attitudes to
risk, reliance on certain information sources, and the veracity of judge-
ments.

Inconsistent data, containing conflicting information, increases the
complexity of decision problems and the likelihood that individuals will
make sub-optimal decisions. This project studies the impact on deci-
sion making and market efficiency of inconsistent ranking data, data
used for ranking purposes containing intransitive patterns of prefer-
ences.

HodgeRank, a topologically-inspired ranking algorithm, is used to
understand and explore inconsistent ranking data (Jiang et al. 2011).
This technique separates pairwise comparison matrices into consistent
and inconsistent components, and derives a ranking solution from the
consistent ranking data. This project extends the algorithm to account
for (i) the reliability of the information contained in the data and
(ii) information contained in the inconsistent ranking data.

A study of parimutuel horserace wagering markets is undertaken
to establish whether inconsistent ranking data is fully accounted for in
real world settings. The results of a statistical and economic evaluation
demonstrate that the presence of inconsistent ranking data reduces the
quality of decisions made by bettors and that market inefficiencies exist
as a result. HodgeRank, in conjunction with conditional logit models
and Kelly wagering strategies, is capable of exploiting this inefficiency
and achieving abnormal returns.
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1 Introduction

Financial markets are traditionally understood through models in which
agents are ‘rational’. According to Barberis & Thaler (2003), these rational
agents immediately update their beliefs in line with a Bayesian interpreta-
tion of Bayes’ theorem and make decisions which maximise their subjective
expected utility (Savage 1972, Von Neumann & Morgenstern 1944).

These models of rational behaviour provide an appealingly intuitive un-
derstanding of financial markets. Market values, which are determined and
adjusted by the collective behaviour of participants in the market, immedi-
ately and accurately incorporate available information. If a security is under-
or over-priced, rational agents have an incentive to trade until the market
value agrees with the intrinsic value of the security.

The Efficient Market Hypothesis is the theory that, in financial markets,
"prices always ‘fully reflect’ available information" (Fama 1969)[p. 383]. This
does not require that individual agents are rational but rather that the market
as a whole behaves in a rational fashion, although clearly models assuming
rational behaviour will also satisfy the Efficient Market Hypothesis. In an
efficient market, no participant can consistently outperform the market and
generate excess risk-adjusted returns (Fama 1976). That is not to say that
abnormal returns cannot be achieved over shorted time frames but that they
should only be possible over longer periods by accepting greater levels of risk
or being privy to information that is not widely available.

Three forms of the Efficient Market Hypothesis are commonly employed,
differing in their definitions of ‘available information’ (Jensen 1978):

(i) Weak: Prices fully reflect past price movements

(ii) Semi-strong: Prices fully reflect all publicly available information

(iii) Strong: Prices fully reflect all information, whether publicly or pri-
vately available

In a weak-form efficient market, an individual cannot outperform the mar-
ket by analysing historic prices alone. In a semi-strong form efficient mar-
ket, abnormal returns can be generated with inside information however this
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advantage is nullified in a strong form efficient market where it is already
accounted for in the market values.

Efficient markets aggregate information disseminated amongst their par-
ticipants to accurately price securities. Prediction markets, capitalising on
the presumed efficiency of markets, employ this mechanism to determine the
probability of an event occurring. Traders in these markets wager on the
probability of an event occurring and the market allocates "market values to
make predictions about specific future events" (Berg & Rietz 2003)[p. 79].
If a contract, paying £10 if it rains tomorrow and nothing otherwise, is be-
ing traded at £1, the market has determined that the probability of rain
tomorrow is 10%.

Prediction markets have been used for forecasting trends and outcomes
including sales volumes (Chen & Plott 2002, Hopman 2007), initial public
offerings (Cowgill et al. 2009, Berg et al. 2009) and elections and geopolitical
events (Wolfers & Zitzewitz 2004, Forsythe et al. 1992, Berg et al. 2008,
Wolfers & Leigh 2002, Atanasov et al. 2017). Evidence of their effectiveness
has led to prediction markets increasingly influencing decision and policy
making (Healy et al. 2010, Cowgill et al. 2009).

Despite the theoretical merit and widespread application of the Efficient
Market Hypothesis, evidence has emerged of inefficiencies in markets. Stud-
ies have identified cases where there have been delays updating prices and
information has not been fully captured by the market (Schwert 2003, Bar-
beris & Xiong 2009, Imas 2016, Basu 1977). These inefficiencies, whilst not
widespread (Jensen 1978), are evidence that the presumption of rational be-
haviour in markets does not always hold.

Deviations from rationality are a well documented phenomenon in psy-
chology as models governing the behaviour of rational decision makers have
been found lacking (Simon 1979, Arthur 1994, Smith & von Winterfeldt 2004,
Doyle 1999a, Doyle 1999b). One prominent example of irrational decision
making is an experiment by Tversky & Kahneman (1981) in which subjects
were asked if they would rather:

(i) gain $240 or risk gaining $1000 with a 75% chance of gaining nothing
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(ii) lose $750 or risk losing $1000 with a 25% chance of losing nothing

The majority of subjects were risk averse in a financial gain context, accepting
the certain gain, and risk seeking in a loss context, gambling for the chance
to lose nothing. Both choices, in different ways, demonstrated that subjects
failed to maximise their subjective expected utility and make decisions in a
rational manner.

Non-rational decision making arises from failures to use information effec-
tively in maximising subjective expected utility. The complexity of a decision
problem is affected by the number of possible outcomes that require con-
sideration (‘alternative-based complexity’) (Timmermans 1993, Payne et al.
1993) and the ease with which differences between them can be discerned
(‘attribute-based complexity’) (Sung et al. 2009). Attribute-based complex-
ity increases as the relationships between attributes become more compli-
cated (Klein & Yadav 1989, Sung & Johnson 2007) and the outcomes become
fundamentally more similar (Biggs et al. 1985, Bockenholt et al. 1991).

Increased levels of complexity place additional computational demands on
the cognitive resources of the decision maker (Ballou & Pazer 1985, Wand &
Wang 1996). When the computational demands of a task approach or exceed
the limits of the cognitive resources available to the individual, individuals
experience cognitive strain. If a task persists in inducing cognitive strain,
maintaining focus on the task depletes a limited mental resource and leaves
the individual more susceptible to giving up on the task (Baumeister et al.
1998, Sweller 1988). This was illustrated in a study by Frederick (2005) which
found that only 17% of participants answered the following three questions
correctly:

(i) A bat and ball cost $1.10 in total. The bat costs $1 more than the ball.
How much does the ball cost?

(ii) If it takes 5 machines 5 minutes to make 5 widgets, how long would it
take 100 machines to make 100 widgets?
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(iii) In a lake, there is a patch of lily pads. Every day, the patch doubles in
size. If it takes 48 days for the patch to cover the entire lake, how long
would it take fo the patch to cover half of the lake?

The complexity of this task induced cognitive strain in the participants, re-
sulting in them providing intuitive but incorrect answers.

In an attempt to alleviate cognitive strain, individuals employ simplify-
ing heuristics to reduce the complexity of the task and lower its computa-
tional demands to manageable levels (Tversky & Kahneman 1974, Slovic &
Lichtenstein 1971, Cosmides & Tooby 1994, Gigerenzer & Gaissmaier 2011).
Although heuristics are useful and often necessary in judgement and deci-
sion making, these simplifications can be imperfect and introduce cognitive
biases, systematic errors in reasoning, into the process (Allais 1953, Kah-
neman & Tversky 1984, Tversky & Kahneman 1986, Prelec & Loewenstein
1991, Schumpeter 1976).

Numerous cognitive biases have been identified since Kahneman & Tver-
sky (1973) demonstrated that human behaviour can deviate from the nor-
mative standards of rationality including:

i) Availability

The availability heuristic estimates frequencies and likelihoods of events
"by the ease with which instances or associations could be brought to
mind" (Tversky & Kahneman 1973)[p. 208]. The easier it is to recall
instances of an event, the more likely the event is deemed to be.

Whilst availability simplifies the process, the ease with which instances
can be recalled is not necessarily indicative of the likelihood of an event
and can be affected by factors such as vividness and recency (Schwarz
et al. 1991, Nisbett & Ross 1980). Does the letter K appear more
frequently in the first or third position of a word? It is certainly easier to
recall words beginning with K than words with K appearing in another
position. Individuals believe that words are more likely to begin with
the letters K,L,N,R and V than have those letters in their third position
however the opposite is true (Tversky & Kahneman 1973).
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ii) Representativeness This heuristic estimates the likelihood of an event
by the "degree to which it (a) is similar in essential characteristics to
its parent population; and (b) reflects the salient features of the process
by which it is generated." (Kahneman & Tversky 1972)[p. 431]. An
event is considered more likely if it is closer in similarity to the average
or expected event.

Individuals applying the representativeness heuristic often fail to ac-
count for variability in samples from a population. The sequence of coin
tosses H-T-H-T-H-T is thought more likely to occur than the sequences
H-H-H-T-T-T and H-H-H-H-T-H, even though all three sequences are
equally likely (Tversky & Kahneman 1974).

Kahneman & Tversky (1973) explored the existence and failings of the
representativeness heuristic by presenting participants with a descrip-
tion of TomW., a fictional first-year graduate student, and asking them
to estimate the likelihood he studied one of nine courses.

Tom W. is of high intelligence, although lacking in true cre-
ativity. He has a need for order and clarity, and for neat
and tidy systems in which every detail finds its appropriate
place. His writing is rather dull and mechanical, occasionally
enlivened by somewhat corny puns and by flashes of imagina-
tion of the sci-fi type. He has a strong drive for competence.
He seems to have little feel and little sympathy for other peo-
ple and does not enjoy interacting with others. Self-centered,
he nonetheless has a deep moral sense.

The experiment showed that participants over-estimated the likelihood
of Tom W. studying a course when he fit the image of the stereotypical
student for that course, not accounting for the face that some courses
are more popular than others and a random student is more likely to
study a more populated course.
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iii) Framing Effects Framing effects are a cognitive bias where individuals
respond "differently to different but objectively equivalent descriptions
of the same problem" (Levin et al. 1998)[p. 150].

In an experiment establishing the existence of framing effects (Tversky
& Kahneman 1981), subjects were presented with a fictional epidemic
scenario and two responses to it.

Imagine that the U.S. is preparing for the outbreak of an
unusual Asian disease, which is expected to kill 600 people.
Two alternative programs to combat the disease have been
proposed:

(a) If Program A is adopted, 200 people will be saved

(b) If Program B is adopted, there is a 1 in 3 chance that
600 people will be saved and a 2 in 3 chance that no-one
will be saved

A separate group were given the same problem with the responses
framed in terms of lives lost instead of saved. Although both decision
problems were objectively equivalent, each groups’ responses demon-
strated that "choices involving gains are often risk averse and choices
involving loses are often risk taking" (Tversky & Kahneman 1981)[p.
453].

Although cognitive biases have been observed in human decision making,
their origin remains somewhat contentious. Whilst Tversky & Kahneman
(1974)[p. 1124] believe that cognitive biases are "severe and systematic er-
rors" indicative of failings of human decision making, evolutionary psycholo-
gists claim that the "human mind is not worse that rational.. but may often
be better than rational" (Cosmides & Tooby 1994)[p. 329]. Gigerenzer &
Gaissmaier (2011) argue that rationality is only a fair benchmark for decision
making in a limitless environment where the aim is to maximise subjective
expected utility. Heuristics are not error-prone design flaws but features,
aware of time and information processing restraints, which enable people to
solve natural adaptive problems reliably (Cosmides & Tooby 1994).
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Regardless of their construction, cognitive biases are observed occurrences
of non-rational behaviours in decision making (Haselton et al. 2005). These
biases affect individual decision making but are also known to pervade finan-
cial markets with favourite long shot biases (Ali 1977, Snyder 1978, Thaler &
Ziemba 1988) and disposition effects (Suhonen & Saastamoinen 2018, Bar-
beris & Xiong 2009, Andrikogiannopoulou & Papakonstantinou 2018, Imas
2016) having been identified in market prices. Cognitive biases are there-
fore not only systematic errors in information usage, but sources of potential
market inefficiencies.

Data quality is an ongoing concern for agents operating in financial mar-
kets, affecting their ability to use information effectively (Redman 1996,
English 1999). Wand & Wang (1996) categorised facets of data quality into
external dimensions, relating to the suitability of a dataset for a given task,
and internal dimensions, task-independent assessments of the intrinsic accu-
racy of a data.

The intrinsic accuracy of a dataset is comprised of several dimensions,
reflecting issues which can arise during the production of data (Ballou &
Pazer 1985, Wand & Wang 1996). Concerns with any of these dimensions
indicate that the dataset represents a different real-world state from the one
intended, limiting the usefulness of the data.

(i) Precision: How precisely the information is recorded. Imprecise data
represents an incorrect world state

(ii) Consistency: Level of agreement amongst the data. Inconsistent data
is representative of multiple world states

(iii) Objectivity: How unbiased, unprejudiced and impartial the informa-
tion is. Subjective data represents a perceived world state rather than
the real-world state

(iv) Completeness: Amount of information recorded. Missing entries pre-
vent the dataset from fully representing a world state

(v) Timeliness: How quickly changes to a real-world state are recorded.
Delayed data represents a previous real-world state
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Poor quality data is not "fit for use by data consumers" (Wang & Strong
1996)[p. 6] and impedes them from making good decisions. Accounting for
data quality increases the attribute-based complexity of decision problems,
with inaccurate data often removed (Allison 2001) or replaced by estimates
(Rubin 2004, Schafer 1999, Sterne et al. 2009).

Conflicting data is often produced by uncertain events where there is
no clear real-world state and repetitions of an event can lead to different
outcomes. It is also a common feature of decision problems where the pos-
sible choices can be ranked rather than individually evaluated (Tversky &
Kahneman 1974). Ranking larger sets of alternatives in a coherent fash-
ion is a more complex task and is often simplified by considering pairs of
alternatives in isolation (Saaty 1990). In doing so, intransitive patterns of
preferences can emerge where alternative A is preferred to B and B is pre-
ferred to C, yet C is preferred to A (Tversky 1969).

Intransitive patterns of preferences are a deviation from normative models
which can lead to individuals acting as ’money-pumps’. Given the above
pattern of preferences, it is reasonable to assume that an individual would
pay to replace alternative C by B. Similarly they would pay to replace B by
A and A by C. The net result is that the individual has paid a sum of money
for no gain, replacing the original alternative by itself.

Ranking data, data on pairs of alternatives that is used to rank the al-
ternatives themselves, which is produced from uncertain events can often
be inconsistent, containing intransitive patterns of preferences. Such incon-
sistent ranking data promotes a tendency in individuals to avoid making
judgements, deferring the task (Tversky & Kahneman 1992) or accepting the
status quo (Luce 1998). Where they do form judgements in the presence
of conflicting data, individuals often exhibit a confirmation bias, rejecting
information which disagrees with their pre-established internalised mental
models (Nickerson 1998, Jonas et al. 2001), or express uncertainty in their
judgements and later contradict them (Fischer et al. 2000).

Participants in financial markets which surround uncertain events, in par-
ticular prediction markets, are faced with the difficulty of making decisions
from inconsistent ranking data containing intransitive patterns of preferences.
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It has been shown that individuals struggle with this type of data and there-
fore there is a very real risk that these markets violate the Efficient Market
Hypothesis and that prices fail to capture all of the information available in
datasets containing inconsistent ranking data.
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2 Research Problem

Inconsistent ranking data poses a risk to the efficiency of financial markets,
increasing the complexity of decision problems and the likelihood that in-
formation will not be entirely utilised for maximal expected utility by in-
dividuals. This project assesses whether this risk materialises in real world
experiences, with inconsistent ranking data leading to poorer decision making
and inaccurate market prices.
RQ1: Does the presence of inconsistent ranking data prevent decision makers
from fully utilising the available consistent information?
RQ2: Do decision makers capture all of the information contained within
inconsistent ranking data?
RQ3: Is there an economic cost to inconsistent ranking data? Do semi-strong
form market inefficiencies exist as a result?

2.1 Evaluating Market Efficiency

If there is a discrepancy between the market price and intrinsic value of a
security, there is an opportunity for risk-free gains and market participants
have an incentive to trade. This incentive lasts until the discrepancy is
resolved and the market price reflects the intrinsic value of the security.

In efficient financial markets, prices fully reflect all available information
and should align with intrinsic values, although this may not always be the
case. Differences between market prices and intrinsic values occur when
information is inaccessible, however they disappear when this information
becomes available.

Prices in an efficient market are the best estimate of the intrinsic value of
a security, given the available information, and thus there is no trading strat-
egy which can consistently outperform the market and generate excess risk-
adjusted returns (Basu 1977). There is, however, an inherent randomness in
market prices, which take time to react to new information and settle on a
valuation, and this randomness allows investors to generate excess returns by
the sole virtue of being lucky. Nonetheless it is impossible to systematically
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outperform an efficient market by utilising the same information available to
the market.

Determining whether the efficient market hypothesis holds across different
financial markets has been a popular pursuit of economists (Malkiel 2003,
Fama 1969). Different methodologies are employed for each form of the
efficient market hypothesis, testing necessary conditions for each.

2.1.1 Weak Form

A weak efficient market fully accounts for past price movements in the prices
it sets. A necessary condition for weak form efficiency is that there is no
auto-correlation, correlation between a series and a delayed copy of itself,
in the prices series of securities. If auto-correlation did exist, future price
movements could be somewhat predicted from historical prices, presenting
an opportunity for excess risk-adjusted returns.

Price series which exhibit no level of auto-correlation behave as a ran-
dom walk, with historical prices having no bearing on future prices. A
substantial body of work has tested whether there is auto-correlation in
security prices with a range of time lags, concluding that financial mar-
kets are weak form efficient and prices series exhibit no auto-correlation of
significance (Cootner 1964, Kendall & Hill 1953, Moore 1962, Granger &
Morgenstern 1963, Godfrey et al. 1964).

2.1.2 Semi-Strong Form

In semi-strong efficient markets, all publicly available information is ac-
counted for, leaving no opportunity for trading strategies to systematically
earn excess risk-adjusted returns by using this information more effectively.
Tests of semi-strong form efficiency often attempt to outperform the market,
using information which is hypothesised to be fully unaccounted for.

Determining what constitutes an excessive risk-adjusted return is a neces-
sary step in semi-strong efficiency tests. There is no unequivocal risk-adjusted
return on an investment and experimental returns are instead compared to
returns generated by an asset pricing model. In doing so, the experiment

12



tests the joint hypothesis that the market is semi-strong efficient and that
the asset pricing model is appropriate and not solely whether the market is
semi-strong efficient (Fama 1976, Timmermann & Granger 2004). Despite
this flaw in testing semi-strong market efficiency, the potential for excess risk-
adjusted returns is used as evidence for or against the efficiency of financial
markets (Jensen 1978).

Basu (1977) showed that price-to-earnings (P/E) ratios, commonly re-
garded as indicating whether securities are under- or over-priced, were not
fully account in market prices. Securities with low P/E ratios produced
higher risk-adjusted returns than those with high P/E ratios.

Public announcements of earnings are often followed by anomalous se-
curity prices, allowing for "systematic excess returns in post-announcement
periods" (Ball 1978)[p. 103]. This phenomenon was confirmed by Watts
(1978), even after accounting for the effects of the joint hypothesis problem.

Despite evidence that semi-strong form inefficiencies exist (Smith 1986,
Brunnermeier & Nagel 2004, Jensen & Ruback 1983), there is a consensus
that financial markets are highly semi-strong efficient and that excess risk-
adjusted returns are not systematically achievable (Malkiel 2003). Where
semi-strong form inefficiencies do exist, markets often adapt and quash the
opportunity for abnormal returns (Schwert 2003).

2.1.3 Strong Form

A strong form efficient market is required to account for all information in its
prices, regardless of public availability. Strong efficiency is an extension of
semi-strong efficiency with the additional requirement that inside information
cannot be used to achieve excess risk-adjusted returns.

Strong form efficiency is considered less a reasonable criteria for assessing
the performance of financial markets, and more of a theoretical completion of
the Efficient Market Hypothesis (Fama 1969). There is limited research into
strong market efficiency, with the most notable being a study by Finnerty
(1976) showing that known insiders were able to achieve abnormal returns
before they were identified.
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2.2 Project Outline

The project develops a tech broadly consists of three stages:

1. Develop a technique for analysing inconsistent data

(i) Represent a dataset of pairwise comparisons containing intransi-
tive patterns of preferences

(ii) Identify consistent and inconsistent ranking data within the dataset

(iii) Determine the underlying preference for each alternative from the
consistent ranking data

(iv) Extract information from the inconsistent ranking data and re-
determine the underlying preferences with regard to this informa-
tion

2. Evaluate the decision making ability of individuals in the presence of
inconsistent ranking data

(i) Identify an appropriate setting to evaluate decision making

(ii) Model decision making in this setting

(iii) Evaluate whether the presence of inconsistent ranking data pre-
vents decision makers from using the consistent data to its fullest

(iv) Evaluate whether decision makers account for information con-
tained in inconsistent ranking data

3. Identify market inefficiencies resulting from the presence of inconsistent
ranking data

(i) Determine market prices accounting for consistent and inconsis-
tent ranking data

(ii) Model a strategy for seeking returns from the market

(iii) Evaluate the potential for excess risk-adjusted returns and the
existence of market inefficiencies
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HodgeRank, a topologically-inspired ranking algorithm (Jiang et al. 2011),
is extended and employed to separate ranking data containing intransitive
patterns of preference into consistent and inconsistent ranking data, extract
information from the dataset as a whole, and measure the underlying pref-
erences for each alternative.

A case study is undertaken to assess how well individuals make decisions
in the presence of inconsistent ranking data. Following established meth-
ods for testing the efficiency of financial markets, this case study models the
expected outcomes of decision makers and assesses whether the model can
be improved by the inclusion of information extracted by the HodgeRank
algorithm. If the model can be improved, there is evidence that this infor-
mation has not been fully accounted for in the decisions made by market
participants.

Assessing the efficiency of financial markets in regards to inconsistent
ranking data requires an appropriate setting which satisfies three require-
ments:

(i) Conflicting Data: Expectation that the available ranking data is
significantly inconsistent

(ii) Quantifiable: Decisions made by market participants can be modelled

(iii) Verification: Accuracy of market prices in agreeing with intrinsic val-
ues can be established

15
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3 Topology

The techniques employed throughout this project to separate, understand
and exploit consistent and inconsistent parts of a dataset are derived from
HodgeRank, a topological ranking algorithm. This section introduces the
concepts and theories required to understand the topological underpinnings
of HodgeRank, however the reader is directed to Hatcher (2001) for a thor-
ough treatment of topology.

3.1 Simplicial Complex

Topology is a field of mathematics which studies properties of shapes and
spaces that are invariant under continuous deformations such as stretching
and twisting. These shapes are often represented by discrete (hence com-
putationally tractable) structures called simplicial complexes, encoding the
‘mesh’ of the shape. Before we can define a simplicial complex, we have to
introduce the notion of affine independence.

Definition 1. Elements v0, v1, ..., vn ∈ Rm are affinely independent if the
vectors v1 − v0, v2 − v0, ..., vn − v0 ∈ Rm are linearly independent.

Affine independence is the concept that a set of points in Rm are linearly
dependent but the direction vectors from any fixed point in the set to any
other point in it are linearly independent. Thus if you move any vi to the
origin in Rm, the remaining elements will be linearly independent.

To motivate an understanding of this definition, consider the case where
three vectors, 0 6= v0, v1, v2 ∈ R3 form a triangle with v1 = 2v0. Obviously
these vectors are not linearly independent, however it is clear that they are
affinely independent since the two direction vectors from any fixed vi to the
remaining vj must be linearly dependent or else the three vectors form a line
instead of a triangle.



Definition 2. Let v0, v1, ..., vn be a set of affinely independent vectors in Rm.
An n-simplex σ is a subset of Rm defined as:

σ =

{
n∑
i=0

λivi |
n∑
i=0

λi = 1 and λi ≥ 0, λi ∈ R,∀i = 0, ..., n

}

and the vertices of σ are v0, ..., vn.

An n-simplex over the affinely independent n+ 1 vertices v0, v1, ..., vn can
be alternatively defined as the convex hull of the n + 1 vertices. Intuitively,
the n-simplex is the smallest n-dimensional object in Euclidean space which
contains every segment between every pair of vertices.

Example 1. A 0-simplex is a point. A 1-simplex is the line-segment from
v0 to v1.

Figure 1: 1-simplex

A 2-simplex is the triangle spanned by v0, v1, v2.

Figure 2: 2-simplex

A 3-simplex is the solid tetrahedron spanned by v0, v1, v2, v3.

Figure 3: 3-simplex
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By taking a subset of the vertices of a k-simplex, we can form a lower
dimensional simplex which is contained in the k-simplex. Such a simplex is
referred to as a face of the k-simplex. Formally, a face τ of a k-simplex is
the m-simplex formed from m+ 1 of the m ≤ k vertices written as τ ⊆ σ.

The 2-simplex above is bounded by edges. As these are 1-simplices, these
edges are faces of the 2-simplex. Similarly the 3-simplex has triangles and
edges as faces since these are 2-simplices and 1-simplices respectively.

Definition 3. A finite collection K of simplices in Rn is called a simplicial
complex if the following conditions hold:

1. σ ∈ K and τ ⊆ σ =⇒ τ ∈ K

2. σ, τ ∈ K and σ ∩ τ 6= ∅ =⇒ σ ∩ τ ⊆ σ and σ ∩ τ ⊆ τ

The first part of this definition is a transitivity condition stating that any
face of a simplex in K is also itself a simplex of K. A simplicial complex
contains all the faces of the simplices it is a collection of. Secondly, the
definition states that the intersection of two simplices is a simplex in K and
is a face of both simplices. The following example illustrates this point.

Example 2. The first object is a simplicial complex whilst the second is not
as the intersection of its two 2-simplices is not simplex.

Figure 4: Simplicial complex

Figure 5: Not a simplicial complex
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Essentially an n-simplex is the n-dimensional analogue of the triangle
and a simplicial complex is a combinatorial representation of a space made
by ‘gluing’ simplices along faces.

3.2 Orientation

A (k − 1)-simplex has k vertices which can be ordered in k! different ways,
describing the order to traverse the vertices. A permutation alters the order-
ing of the vertices and the set of all permutations of the k vertices is denoted
by Sk. The reader is directed to Dixon & Mortimer (1996) for a detailed
understanding of permutations.

It is a standard result from group theory that every permutation can be
written in terms of transpositions. A permutation is referred to as odd if it
is the product of an odd number of transpositions or even otherwise and for
a permutation σ,

sgn(σ) =

1 if σ is an even permutation,

−1 otherwise

The decomposition of a permutation into transpositions is not unique;
however, the parity is unaffected by the choice of decomposition.

Example 3. Consider the set {1, 2, 3, 4} and two permutations σ, τ ∈ Sk

which permute the set to {1, 3, 4, 2} and {1, 2, 4, 3}, in this order, respectively.
σ can be expressed as transposing the elements 2 and 3 before transposing the
elements 2 and 4 and so σ is an even permutation. τ transposes 3 and 4 and
so τ is an odd permutation. Alternatively, τ can be expressed as transposing
the elements 1 and 3, transposing 3 and 4 and finally transposing 1 and 4.

An orientation of the (k− 1)-simplex is the equivalence class of orderings
of the k where two orderings are equivalent if one is an even permutation of
the other. Since every permutation is either even or odd, there are precisely
two orientations of any simplex of dimension greater than zero, although the
precise ordering of the vertices can vary. In Example 3, the two orderings
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{1, 2, 3, 4} and {1, 3, 4, 2} are in the same equivalence class whilst the ordering
{1, 2, 4, 3} is in the opposite equivalence class.

Example 4. Orientation is an intuitive notion for simplices of dimension
less than 3.

• 0-simplices are points and only have one orientation

• Orientated 1-simplices are directed edges:

Figure 6: Orientations of a 1-simplex

• 2-simplices are orientated by rotational direction (clockwise or anti-
clockwise)

Figure 7: Orientations of a 2-simplex

A k-simplex of the simplicial complex K, with vertices ordered v0 < v1 <

... < vk−1, is denoted by [v0, v1, ..., vk]. An ordering of the vertices of k induces
a natural orientation on each k-simplex, given by [vi0 , vi1 , ..., vik−1

] with i0 <
i1 < ... < ik−1, and a natural indexing of the set of k-simplices is given by
sorting the simplices coordinate-wise in an ascending order. Throughout the
project, this natural orientation and indexing will be used.

3.3 Cohomology

Cohomology is the dualization of homology and is most often defined in this
way. In this section we will introduce cohomology distinctly from homology
although an understanding of homology is beneficial. The reader is directed
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to Hatcher (2001), from which the section is informed, for a thorough expla-
nation of simplicial homology and cohomology.

In cohomology, functions act on oriented simplices. Thus it is important
to fix an orientation of the simplices and to remain consistent with this
orientation throughout. We will order the vertices v0, v1, ..., vn of a simplicial
complex by their index so v0 < v1 < ... < vn which induces an ordering on
all simplices contained within the complex.

Definition 4. Let K be a simplicial complex and Σk be the corresponding
set of oriented k-simplices. A k-cochain, f , is a real-valued function on
the vertices of the k-simplices whose value alternates sign according to the
orientation of the vertices, that is,

f([vσi0 , vσi1 , ..., vσik ]) = sgn(σ)f([vi0 , vi1 , ..., vik ])

for all k-simplices [vi0 , vi1 , ..., vik ] ∈ Σk and all σ ∈ Sk+1, the permutation
group of the k + 1 vertices.

The set of all k-cochains is denoted by Ck(K,R) although we will abuse
notation and abbreviate it to Ck. Each Ck≥0 is a vector space over R and is,
in particular, an abelian group.

A k-cochain can also be considered a real-valued function on the k-
simplices themselves and so 0-cochains are vertex functions, 1-cochains
are (directed) edge functions, 2-cochains are oriented triangle functions
etc. For example a 2-cochain, f2 ∈ C2 assigns a real number to each 2-simplex
[vi, vj, vk] such that

f2([vi, vj, vk]) = f2([vj, vk, vi]) = f2([vk, vi, vj])

= −f2([vi, vk, vj]) = −f2([vk, vj, vi]) = −f2([vj, vi, vk])

as {j, k, i} and {k, i, j} are even permutations of {i, j, k} whilst the remaining
permutations are odd.

Following the natural oredering of the k-simplices (explained above), we
can pointwise identify f ∈ Ck with a vector u ∈ Rm by ui = f(mi) where mi
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is the i-th k-simplex (Edelsbrunner & Harer 2010). We will abuse notion and
refer to f ∈ Ck both as a k-cochain and as the vector it is identified with.

Example 5. Consider the following simplicial complex and cochains. These

Figure 8: Cochains on a simplicial complex

cochains can be identified the following vectors

f0 =


14

16

20

5

 , f1 =


−2

−6

9

−4

 , f2 =
(

3
)

Definition 5. The k-th coboundary operator on the simplicial complex
K is the linear map δk : Ck → Ck+1 that takes a k-cochain, f ∈ Ck, to a
(k + 1)-cochain, δkf ∈ Ck+1, defined as

(δkf)([v0, ..., vk+1]) :=
k+1∑
i=0

(−1)if([v0, ..., vi−1, vi+1, ..., vk+1])

The coboundary operators are linear maps, with coefficients in R, con-
necting the cochain groups of a simplicial complex by extending cochains to
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act on higher dimensional simplices.

Example 6. Consider the set of vertices {0, 1, 2} and let f ∈ C0 be defined
by f(vi) = i. By applying the 0-th coboundary operator, we can derive a
1-cochain in C1 as

(δ0f)([vi, vj]) = j − i

We can also derive a 2-cochain by applying the 1-th coboundary operator to
this 1-cochain, giving

(δ1δ0f)([v0, v1, v2]) =
2∑
i=0

(−1)i(δ0f)([v0, ..., vj−1, vj+1, ..., v2])

= (2− 1)− (2− 0) + (1− 0)

= 0

This holds in general: the composition of two coboundary operators is
always zero (Hatcher 2001, Lemma 2.1, p. 105).

Lemma 1. For any k ∈ N,

δk+1 ◦ δk = 0

In particular, the image of δk is contained in the kernel of δk+1.
Coboundary operators are linear maps which have degree 1, mapping

from a cochain group to a higher dimensional cochain group. Thus for any
simplicial complex K we have the following sequence of cochain groups and
coboundary operators

0
δ−1−−→ C0(K,R)

δ0−→ C1(K,R)
δ1−→ C2(K,R)

δ2−→ ...
δr−1−−→ Cr(K,R)

δr−→ ...

Cochains can be identified with vectors and thus coboundary operators,
as linear maps between sets of cochains, can be identified with matrices (after
fixing an ordering of the k-simplices for each k).

A coboundary operator, δk : Ck → Ck+1, can be identified with A ∈ Rn×m

where m is the number of k-simplices and n is the number of (k+1)-simplices
(Edelsbrunner & Harer 2010). The entries of A are given by
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• If the i-th k-simplex is a face of the j-th (k + 1)-simplex, with the
k-simplex maintaining its orientation in the (k + 1)-simplex, Aji = 1;

• If the i-th k-simplex is a face of the j-th (k + 1)-simplex, with the
k-simplex reversing its orientation in the (k + 1)-simplex, Aji = −1;

• If the i-th k-simplex is not a face of the j-th (k + 1)-simplex, Aji = 0.

A 0-simplex is considered to have its orientation preserved if it is the
starting vertex of a 1-simplex and reversed if it is the end. Again we will
abuse notation and refer to δk as both a coboundary operator and the matrix
it is identified with.

Example 7. Consider the simplicial complex and cochains from Example 5.

Figure 9: Cochains on a simplicial complex

The cochains can be identified with vectors and the 0-th and 1-th cobound-
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ary operators can be identified with the following matrices

δ0 =


1 −1 0 0

1 0 −1 0

1 0 0 −1

0 1 −1 0

 , δ1 =
(

1 −1 0 1
)

Given a choice of inner product for each cochain group, which we denote
by 〈 , 〉Ck , we can also introduce a linear map from a cochain group to a
lower dimensional cochain group.

Definition 6. Given a choice of inner products on each Ck, we define the
adjoint δk of the coboundary operator δk : Ck+1 → Ck as the only linear
operator satisfying

〈δkfk, gk+1〉Ck+1 = 〈fk, δ∗kgk+1〉Ck

for all fk ∈ Ck and for all gk+1 ∈ Ck+1.

The adjoint of a linear map from one inner product space to another is
itself a linear map from the latter inner product space to the former. The
adjoint to a coboundary operator exists and is unique (Hatcher 2001). It
should be stressed that the adjoint of an operator is not the inverse of the
operator but rather the generalisation of conjugate transposes.

Similarly to the coboundary operators, the adjoint operators also form
a sequence of cochain groups and linear maps, although these maps have
degree −1.

0
δ∗−1←−− C0(K,R)

δ∗0←− C1(K,R)
δ∗1←− C2(K,R)

δ∗2←− ...
δ∗r−1←−− Cr(K,R)

δ∗r←− ...

An adjoint operator, δ∗k : Ck+1 → Ck, can be identified with a matrix
A∗ ∈ Rm×n where m is the number of k-simplices and n is the number of
(k + 1)-simplices (Edelsbrunner & Harer 2010). The entries of this matrix
vary according to the inner products attached to the relevant cochain spaces.
We will denote both the adjoint operator and its identified matrix by δ∗k.
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Clearly the maps δ∗k ◦ δk and δk−1 ◦ δ∗k−1 are operators from Ck to itself
and we refer to these as the k-dimensional combinatorial up Laplace operator
and the k-dimensional combinatorial down Laplace operator respectively.

Definition 7. Let K be a simplicial complex. The following are linear oper-
ators on Ck(K,R):

i) k-dimensional up Laplace operator

∆up
k = δ∗k ◦ δk

ii) k-dimensional down Laplace operator

∆down
k = δk−1 ◦ δ∗k−1

iii) k-dimensional combinatorial Laplacian

∆k = ∆up
k + ∆down

k

The 0-dimensional combinatorial Laplacian is more commonly known as
the graph Laplacian and encodes the structure of the underlying graph (re-
stricting the complex to vertices and edges) (Chung 1997). The k-dimensional
combinatorial Laplacian is a generalisation of the graph Laplacian to higher
dimensions.
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4 HodgeRank

This project addresses the question of whether the presence of inconsistent
information in available ranking data affects decision making processes and
whether market inefficiencies are created as a result. Following the approach
of previous literature in testing semi-strong market efficiency (Basu 1977, Ball
1978, Figlewski 1979, Bolton & Chapman 1986, Snyder 1978, Johnson et al.
2006, Sung et al. 2009), the project attempts to understand inconsistencies in
ranking data and exploit this understanding to achieve excess risk-adjusted
returns.

In this project a topologically-inspired technique for modelling, separating
and exploiting ranking data containing inconsistent preferences for alterna-
tives is developed and employed. The technique is derived from HodgeRank,
an algorithm for ranking alternatives from observed pairwise comparisons by
modelling the comparisons as a simplicial complex (Jiang et al. 2011).

This section describes the HodgeRank framework and improvements that
have been made to it. Unless otherwise stated, theorems in this section are
from Jiang et al. (2011) with original proofs.

Several contributions have been made to the HodgeRank algorithm, de-
veloping it further and enhancing its ability to exploit information contained
within inconsistent ranking data. Although it cannot be said that the avail-
able data has been utilised to its fullest, the improvements made to the al-
gorithm have increased the amount of information extracted from the data.
This has allowed the project to more thoroughly assess the impact of incon-
sistent ranking data on decision making and semi-strong market efficiency in
real world scenarios.

(i) Measuring underlying preference: HodgeRank was conceived as
an algorithm for ranking alternatives from pairwise comparisons con-
taining inconsistencies and missing entries, and has been applied as
such (Jiang et al. 2011, Xu et al. 2012, Yang et al. 2014). In doing so,
however, a more nuanced understanding of the underlying preference
for each alternative has been disregarded.
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HodgeRank not only provides a ranking of the preference for each alter-
native, but also captures the degree to which one alternative is preferred
over another. This project argues, and successfully demonstrates, that
a granular understanding of the underlying preference improves the
quality of the output and is of economic significance.

(ii) Edge weights: Inconsistent ranking data commonly occurs when in-
formation is gathered from a range of sources and there is disagreement
between them. These sources may vary in quality with some being
regarded as more trustworthy or relevant than others. It is therefore
important to capture the perceived quality of information for each pair-
wise comparison and adjust its contribution to the output accordingly.

In its simplicial complex representation of a pairwise comparison ma-
trix, HodgeRank assumes no prior knowledge of the important of each
edge, weighing them all equally. The algorithm presented here has been
extended to account for the perceived quality of the information form-
ing each pairwise comparison, producing more credible and valuable
outputs from HodgeRank.

(iii) Measuring inconsistent features: By nature, alternatives cannot be
coherently ranked from intransitive patterns of preferences. HodgeR-
ank identifies transitive patterns of preference in pairwise comparison
matrices and separates them from the intransitive patterns, deriving
ranking solutions solely from this consistent ranking data.

Although coherent rankings of alternatives cannot be found from in-
transitive patterns of preferences, their location can provide insights
into the relationships between alternatives. In any intransitive pattern
of preferences, it may not be the case that every pair of alternatives
precludes a ranking but rather a subset of the alternatives. Alterna-
tives found together in many intransitive patterns of preference may
possess fundamental characteristics which naturally produce these pat-
terns (such as tennis players whose style of play is strong against certain
players but less effective against others). Identifying which subsets of
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alternatives cannot be easily ranked provides a more nuanced under-
standing of the data, and any ranking solution, which can better inform
applications.

Some intransitive patterns of preferences may arise not from inherent
relationships between alternatives, but from noise in the ranking data.
Noisy data should be considered less reliable or informative in any con-
clusions drawn from the data and therefore it is important to establish
whether an intransitive pattern is a feature of the alternatives being
ranked or noise in the dataset.

By counting the number of intransitive patterns of preferences that a
subset of alternatives are part of, and measuring how far those intran-
sitive patterns are from satisfying the transitive property, the contribu-
tion of this subset to overall inconsistency in the ranking data can be
measured. If a subset of alternatives contributes significantly to incon-
sistency in the ranking data, it indicates the inconsistent ranking data
they produce is a signal that these alternatives do not admit a clear
ranking and is not simply noise in the ranking data.

The value of this measure is established in this project, being applied to
weight pairwise comparisons related to historical horse races. Weight-
ing pairwise comparisons in this way, the HodgeRank algorithm is able
to extract more valuable information which is then used to improve a
statistical model forecasting the outcomes of future races.

4.1 Representing a dataset as a simplicial complex

Following Jiang et al. (2011), a pairwise comparison matrix (PCM) is mod-
elled as a simplicial complex. The alternatives are represented as vertices
in the complex, forming the 0-skeleton, and each pair of alternatives is con-
nected by a directed edge (1-simplex) if there is a pairwise comparison be-
tween them, pointing towards the preferred alternative. The sets of vertices
and directed edges are denoted by V and E respectively. Any k-tuple of
vertices, where every pair of vertices are connected by a directed edge, forms
a (k − 1)-simplex.
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Pairwise comparisons are real-valued functions on pairs of alternatives
whose value changes sign if the alternatives are flipped. They are equivalent
to 1-cochains, directed edge functions, and can similarly be represented as
vectors. The vector space C1 contains every possible collection of pairwise
comparisons for the pairs of alternatives which have been compared (pairs
with non-zero entries in the pairwise comparison matrix). Similarly C0 is the
vector space of all possible vertex functions (0-cochains), C2 of all possible
oriented triangle functions (2-cochains) and so on.

Example 8. The pairwise comparison matrix

P =


0 −3 0 0 −5

3 0 −4 −6 0

0 4 0 −3 0

0 6 3 0 2

5 0 0 −2 0


produces the following simplicial complex

Figure 10: Simplicial complex representation of pairwise comparisons

Removing the higher dimensional features of the complex (simplices above
dimension 1), the complex is equivalent to a network representation of the
pairwise comparisons. The presence of higher dimensional features presents
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opportunities for more detailed analysis of the set of comparisons using topo-
logical tools.

4.2 Extracting consistent ranking data

One of the biggest advantages offered by a network model of pairwise com-
parisons is the ability to infer incomplete information from the observed
comparisons. Whilst the directed edges provide a direct comparison between
pairs of alternatives, every longer path between a pair of alternatives pro-
vides an indirect comparison via a series of intermediary nodes. Multiple
paths may exist between any pair of vertices, providing different indirect
comparisons between the alternatives.

There are different ways to combine observed pairwise comparisons along
a path to form an indirect measurement of the relative preference for pairs
of alternatives, most commonly by adding or multiplying their values along
the path. A teacher grading tests may ask whether one student deserve five
marks more than another student. On the other hand, in tennis it is often
more useful to question whether one player is twice as good as another. In
this project it is assumed that the dataset is comprised of additive pairwise
comparisons, noting that multiplicative comparisons can be transformed in
additive ones by a logarithm transformation.

In a dataset containing no contradictory information, it is expected that
all comparisons between the same pair of alternatives agree with each other.
In particular, every indirect comparison should agree with the observed direct
comparison. A path {v0, ..., vk} is said to be transitive (with respect to
the pairwise comparisons f ∈ C1) if f(v0, v1) + ... + f(vk−1, vk) = f(v0, vk).
Wherever a pair of alternatives can be compared both directly and indirectly,
a cycle exists in the network formed by joining the two respective paths. If
the indirect comparison is transitive then

f(v0, v1) + ...+ f(vk−1, vk) + f(vk, v0) = f(v0, vk) + f(vk, v0)

= f(v0, vk)− f(v0, vk)

= 0
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and so the sum of the direct comparisons around the cycle is zero. Any such
cycle is consistent and every indirect comparison of length one less than the
length of the cycle is transitive.

Contradictions in a dataset of pairwise comparisons produce intransitive
paths in the network and therefore can be understood by the behaviour
of cycles in the simplicial complex. Contradicting pairwise comparisons,
direct and indirect, are represented by inconsistent cycles and the further
from zero the sum around the cycle is, the greater the disparity between the
comparisons.

Non-contradictory information can be extracted from the dataset by find-
ing a collection of pairwise comparisons which are close to the observed com-
parisons and are consistent on every cycle in the complex. This can be
achieved by solving the optimisation problem

min
f∈M
||f −O||22 (1)

where O are the observed pairwise comparisons and M is the subset of C1

containing 1-cochains which do not produce any inconsistencies in the com-
plex.

In the above optimisation problem, equal emphasis is placed on each of the
edges of the complex and so the solution will not favour matching a particular
comparison. This assumes that each comparison in the dataset is equally
reliable in representing the competition between the alternatives, however
the provenance of each data point is likely to vary in practice. Each pairwise
comparison can be weighted according to a chosen measure or estimate of
the reliability of the information which contributes to it (for instance the
trustworthiness of the sources, the recency of the information). These weights
are given by a symmetric matrix W and the extracted consistent pairwise
comparisons are found by solving the weighted optimisation problem

min
f∈M
||f −O||22,W = min

f∈M

∑
{i,j}∈E

Wij(fij −Oij)
2 (2)

An inner product on C1 can be constructed from the reliability weights
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with
〈f, g〉C1 =

∑
{i,j}∈E

Wijf(vi, vj)g(vi, vj)

Inner products can similarly be defined on C0 and C2 however, since we
are concerned with pairwise comparison datasets, there is no rationale to
emphasise certain vertices or triangles in the complex and so unweighted
Euclidean inner products are chosen for these vector spaces. With these
choices of inner products, cohomological theories can be brought to bear upon
the complex. Coboundary operators and adjoint operators exist between the
low dimensional vector spaces of cochains producing the cochain complex

C0 C1 C2
δ0

δ∗0

δ1

δ∗1

The Hodge Decomposition Theorem orthogonally decomposes cochain
groups by their relationships with neighbours in the cochain complex. The
space of possible pairwise comparisons can be decomposed, with each orthog-
onal subspace exhibiting different characteristics. Projecting the observed
pairwise comparisons into each subspace, the characteristics of the dataset
can be evaluated.

Theorem 1 (Hodge Decomposition Theorem). Ck(K,R) admits an orthog-
onal decomposition

Ck(K,R) = im(δk−1)⊕ ker(∆k)⊕ im(δ∗k)

and
ker(∆k) = ker(δk) ∩ ker(δ∗k−1).

Proof. It is a standard result that for any subspace U in an inner product
space V , with the inner product 〈·, ·〉V , it holds that V = U ⊕U⊥, where U⊥

denotes the orthogonal complement of U defined as

U⊥ := {v ∈ V | 〈v, u〉V = 0, ∀u ∈ U}

and ⊕ denotes a direct sum.
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As im(δk−1) ⊆ Ck, it follows that Ck = im(δk−1)⊕ im(δk−1)⊥.

im(δk−1)⊥ = {fk ∈ Ck | 〈δk−1gk−1, fk〉Ck = 0, ∀gk−1 ∈ Ck−1}

= {fk ∈ Ck | 〈gk−1, δ
∗
k−1fk〉Ck−1 = 0, ∀gk−1 ∈ Ck−1}

For all fk ∈ Ck, δ∗k−1fk ∈ Ck−1, and so if fk ∈ im(δk−1)⊥, then

〈δ∗k−1fk, δ
∗
k−1fk〉Ck−1 = 0

By the definition of an inner product, if 〈x, x〉 = 0 then x must necessarily
equal 0. As such, we have that δ∗k−1fk = 0 and so im(δk−1)⊥ = ker(δ∗k−1)

Therefore Ck = im(δk−1)⊕ ker(δ∗k−1). Similarly, Ck = im(δ∗k)⊕ ker(δk).
For any fk−1 ∈ Ck−1 and any gk+1 ∈ Ck+1,

〈(δk ◦ δk−1)fk−1, gk+1〉Ck+1 = 〈δk(δk−1fk−1), gk+1〉Ck+1

= 〈δk−1fk−1, δ
∗
kgk+1〉Ck

= 〈fk−1, δ
∗
k−1(δ∗kgk+1)〉Ck−1

= 〈fk−1, (δ
∗
k−1 ◦ δ∗k)gk+1〉Ck−1

and so (δk ◦ δk−1)∗ = δ∗k−1 ◦ δ∗k.
By Lemma 1, δk ◦ δk−1 = 0 and so δ∗k−1 ◦ δ∗k = (δk ◦ δk−1)∗ = 0. This

implies that im(δ∗k) ⊆ ker(δ∗k−1). From this it follows that

ker(δ∗k−1) = Ck ∩ ker(δ∗k−1)

= (im(δ∗k)⊕ ker(δ∗k)) ∩ ker(δ∗k−1)

= (im(δ∗k) ∩ ker(δ∗k−1))⊕ (ker(δk) ∩ ker(δ∗k−1))

= im(δ∗k)⊕ (ker(δk) ∩ ker(δ∗k−1))

and therefore Ck = im(δk−1) ⊕ (ker(δk) ∩ ker(δ∗k−1)) ⊕ im(δ∗k). It remains to
show that ker(∆k) = ker(δk) ∩ ker(δ∗k−1)
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Let fk ∈ ker(δk) ∩ ker(δ∗k−1). As ∆k = δ∗k ◦ δk + δk−1 ◦ δ∗k−1,

∆kfk = (δ∗k ◦ δk)(fk) + (δk−1 ◦ δ∗k−1)(fk)

= δ∗k(δkfk) + δk−1(δ∗k−1fk)

= δ∗k(0) + δk−1(0)

= 0

Hence ker(δk) ∩ ker(δ∗k−1) ⊆ ker(∆k).
It remains to show that ker(∆k) ⊆ ker(δk)∩ ker(δ∗k−1). Let fk ∈ ker(∆k).

It follows that

0 = ∆kfk = (δ∗k ◦ δk)fk + (δk−1 ◦ δ∗k−1)fk

and so
δ∗k(δkfk) = −δk−1(δ∗k−1fk)

Consider the inner product of δ∗k(δkfk) with itself.

〈δ∗k(δkfk), δ∗k(δkfk)〉Ck = 〈δ∗k(δkfk),−δk−1(δ∗k−1fk)〉Ck

= −〈δ∗k(δkfk), δk−1(δ∗k−1fk)〉Ck

= −〈δkfk, (δk ◦ δk−1)(δ∗k−1fk〉Ck+1

By Lemma 1, (δk ◦ δk−1)(δ∗k−1fk) = 0, so

〈δ∗k(δkfk), δ∗k(δkfk)〉Ck = −〈δkfk, (δk ◦ δk−1)(δ∗k−1fk〉Ck+1

= −〈δkfk, 0〉Ck+1

= 0

and therefore δ∗k(δkfk) = 0. Now consider the inner product of δkfk with
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itself.

〈δkfk, δkfk〉Ck+1 = 〈fk, δ∗k(δkfk)〉Ck

= 〈fk, 0〉Ck

= 0

Hence δkfk = 0 and so fk ∈ ker(δk). Similarly, as 0 = δ∗k(δkfk) = −δk−1(δ∗k−1fk),
it follows that

〈δ∗k−1fk, δ
∗
k−1fk〉Ck−1 = 〈fk, δk−1(δ∗k−1fk〉Ck

= 〈fk, 0〉Ck

= 0

Again, we have that δ∗k−1fk = 0 and so fk ∈ ker(δ∗k−1). Therefore ker(∆k) ⊆
ker(δk) ∩ ker(δ∗k−1).

The space of all possible pairwise comparisons can be orthogonally de-
composed as C1 = im(δ0) ⊕ ker(δ∗0). The cochains in these two subspaces
behave differently on the cycles of the complex, providing a useful tool for
separating a dataset of pairwise comparisons into consistent and inconsistent
parts.

i) Consistent: Directed edge functions in the image of δ0 can be ex-
pressed in the form δ0g for some vertex function g. Every cycle is
consistent since, for any path {v0, ..., vk},

(δ0g)(v0, v1) + ...+ (δ0g)(vk−1, vk) = −g(v0) + g(v1) + ...+ g(vk)

= g(vk)− g(v0)

= (δ0g)(v0, vk)

These are consistent collections of pairwise comparisons and contain
no contradictory information.

Lemma 2. Any two cochains g, h ∈ C0 satisfy δ0g = δ0h if and only if
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g and h differ by an additive constant on each connected component of
the complex.

Proof. If g, h ∈ C0 differ by an additive constant on each connected
component of the complex then gi = hi + ci where ci is the additive
constant on the connected component which vertex i belongs to. For
each directed edge {i, j} ∈ E, it follows that ci = cj and so

(δ0g)i,j = gj − gi
= (hj + cj)− (hi + ci)

= hj − hi
= (δ0h)i,j

Let g, h ∈ C0 be such that δ0g = δ0h. For all i, j ∈ V it follows that gj−
gi = hj−hi. Fixing an initial vertex v0k for each connected component
of the complex, for every vertix in component k the following holds

gi = gi − g0k + g0k

= hi − h0k + g0k

and so gi−hi = g0k −h0k for every vertex in the k-th component. This
holds for each connected component and therefore

h = g +
∑
k

αjcj

where j indexes the connected components of the complex, αj ∈ R and
(cj)i = 1 if vertex i belongs to the component j and 0 otherwise.
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Example 9. Decomposing the 1-cochain in Example 8, the consistent
1-cochain is represented by the following simplicial complex

Figure 11: Consistent 1-cochain component

ii) Inconsistent: The adjoint of δ0 satisfies 〈f, δ∗0g〉C0 = 〈δ0f, g〉C1 for any
f ∈ C0 and g ∈ C1. Expanding these two inner products gives

〈f, δ∗0g〉C0 =
∑
i∈V

fi(δ
∗
0g)i

and, noting thatWij = 0 if there is no comparison between alternatives
i and j,

〈δ0f, g〉C1 =
∑
{i,j}∈E

Wij(δ0f)ijgij

=
∑
{i,j}∈E

Wijfjgij −
∑
{i,j}∈E

Wijfigij

= −
∑
{i,j}∈E

Wjifjgji −
∑
{i,j}∈E

Wijfigij

= −
∑
i∈V

∑
j∈V

Wijfigij

Therefore (δ∗0g)i = −
∑

j∈V Wijgij for all i ∈ V .

The kernel of δ∗0 contains directed edge functions such that
∑

j∈V Wijfij =

0 for every alternative i. This subspace can be understood in the frame-
work of vector calculus. In the language of vector calculus, preference
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‘flows’ from less to more preferable alternatives and δ∗0 is known as the
divergence.

At every vertex in the complex, the total weighted in-flow equals the
total weighted out-flow for directed edge functions in this subspace.
Wherever flow leaves a vertex, indicating that it is less preferable than
a neighbouring alternative, there must be a path for some of that flow to
return to the initial vertex, forming a cycle. Therefore any directed edge
function in the kernel of δ∗0 is inconsistent, only producing inconsistent
cycles and assigning a 0 to every edge which does not participate in a
cycle.

Example 10. The inconsistent 1-cochain component of the pairwise
comparison matrix in Example 8 is represented by the following simpli-
cial complex

Figure 12: Consistent 1-cochain component

Any choice of pairwise comparisons on the complex can be written as
the addition of a consistent cochain and an inconsistent cochain. Therefore
im(δ0) is the only subspace of C1 to contain pairwise comparisons which
produce no inconsistencies nor contradictory information.

The remaining problem is how to find this decomposition into consistent
and inconsistent cochains. The optimisation problem (2) extracting consis-
tent pairwise comparisons from a dataset of pairwise comparisons can be
rewritten as

min
f∈im(δ0)

||f −O||22,W (3)
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Any function in the image of δ0 can be expressed in terms of a vertex function
in C0 and therefore the optimisation problem is equivalent to

min
g∈C0
||δ0g −O||22,W = min

g∈C0

∑
{i,j}∈E

Wij(gj − gi −Oij)
2 (4)

The consistent pairwise comparisons which minimise the weighted difference
with the observed pairwise comparisons can be found by applying the bound-
ary operator δ0 to the solution of this optimisation problem.

Theorem 2 (Jiang et al., 2011). There exist minima of the optimisation
problem (4) which are given by the solutions of

∆0f = δ∗0O (5)

Any two minima differ by an additive constant on each connected component.

Proof. The cost function associated with the optimisation problem (4) is
given by

J(f) = 〈δ0f −O, δ0f −O〉C1

=
∑
{i,j}∈E

Wij(fj − fi −Oij)
2

J(f) is a continuous real-valued function which is bounded below by zero. If
this function does not have a minimum which is achieved by a finite cochain,
then J(f) must tend to an infimum as f tends to infinity in some direction.
There are two cases under which a cochain can tend to infinity: either the
value on each vertex in a connected component changes at the same rate,
or there exists at least one vertex in a connected component whose value
changes at a faster rate than the others.

Consider limh→∞ J(g + hû) in a direction û from a finite cochain g ∈
C0. In the first case, û is constant on every vertex in the same connected
component. By Lemma 2, δ0(g + hû) = δ0g and so J(g + hû) = J(g). If
J(f) tends to an infimum as f tends to infinity, with the value of each vertex
in a connected component changing at the same rate, then there exists a
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minimum achieved by a finite cochain.
In the second case, û varies across at least one connected component.

Let v ∈ C0 be such that vi is the minimum value of û across the connected
component that vertex i belongs to. This vector is constant on every vertex
in the same connected component so J(g+hû) = J(g+h(û− v)) by Lemma
2. Every element of û−v is non-negative and there must be at least one non-
zero element, therefore there exists at least one edge {α, β} in the complex
with (g+h(û−v))β−(g+h(û−v))α tending to (positive or negative) infinity
as h tends to infinity. Thus

J(g + hû) =
∑
{i,j}∈E

Wij((g + h(û− v))β − (g + h(û− v))α −Oij)
2

tends to infinity as h tends to infinity. There must therefore exist a finite
cochain which minimises J(f).

At any critical point of a differentiable function, the directional derivative
in every direction is zero. In an arbitrary direction û

J(f + hû) = 〈δ0(f + hû)−O, δ0(f + hû)−O〉C1

= 〈δ0f −O + hδ0û, δf −O + hδ0û〉C1

= J(f) + h〈δ0f −O, δ0û〉C1 + h2〈δ0û, δ0û〉C1

and so the directional derivative of J(f) in the direction of û is given by

∇ûJ(f) = lim
h→0

J(f + hû)− J(f)

h

= lim
h→0
〈δ0f −O, δ0û〉C1 + h〈δ0û, δ0û〉C1

= 〈δ0f −O, δ0û〉C1

This limit exists and so J(f) is differentiable. The directional derivative is
zero in every direction precisely when f ∈ C0 satisfies ∆0f = δ∗0O.

Let f1, f2 be critical points of J(f). Both cochains satisfy (5), thus

δ∗0O = ∆0f1 = ∆0f2
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and (f1 − f2) ∈ ker(∆0). Since ∆0(f1 − f2) = 0, the cochain (f1 − f2) is an
eigenvector of ∆0 corresponding to an eigenvalue λk = 0. It follows that∑

{i,j}∈E

Wij((f1 − f2)j − (f1 − f2)i)
2 = (f1 − f2)′∆0(f1 − f2) = 0

and so (f1 − f2)j = (f1 − f2)i if {i, j} is a directed edge in the complex.
Hence (f1−f2) is constant across each connected component of the complex.
By Lemma 2, δ0f1 = δ0f2 and so both cochains have the same value of
J(f). Therefore every critical point has the same cost associated to it and,
since there exists at least one minimum, every critical point is a minimum of
J(f).

Theorem 2 reduces the optimisation problem to a system of linear equa-
tions (5). If ∆0 is non-singular then a unique solution to the optimisation
problem can be found by inverting this matrix. However it follows from
Lemma 2 that (3) has infinitely many solutions and so ∆0 must be singu-
lar. Indeed it is well-known that the graph Laplacian has 0 as an eigenvalue
and that this eigenvalue has multiplicity given by the number of connected
components in the graph (Chung 1997, Von Luxburg 2007).

Although (5) cannot be solved by inverting ∆0, it is possible to find a
solution (and therefore all solutions) by constructing a matrix inverse-like
object. A generalised inverse is any matrix satisfying the condition

AXA = A

A variety of generalised inverses can be constructed which are applicable
to different problems, depending on the properties they exhibit. The Pen-
rose equations are four conditions used to categorise generalised inverses
(Penrose 1955):

AXA = A (6)

XAX = X (7)

(AX)H = AX (8)
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(XA)H = XA (9)

where XH denotes the complex transpose of X.

Theorem 3 (Penrose, 1955). A unique generalised inverse exists satisfying
all four of the Penrose equations for any A ∈ Rm×n.

Penrose, 1955. If a matrix satisfies the first and fourth Penrose equations
then

XAAH = (XA)HAH = (AXA)H = AH

Conversely if XAAH = A′ then

(XA)H = AHXH = XAAHXH = (XA)(XA)H = ((XA)(XA)H)H = XA

and
A = (AH)H = (XAAH)H = AAHXH = A(XA)H = AXA

Therefore the first and fourth Penrose equations are equivalent to the condi-
tion

XAAH = AH (10)

Similarly, given the symmetry of the Penrose equations, it follows that the
second and third Penrose equations are equivalent to the condition

XXHAH = X (11)

The set of matrices {(AHA)k|k ∈ N} must be linearly dependent, since
A ∈ Rm×n, so there exists p ∈ N with

λ1A
HA+ λ2(AHA)2 + ...+ λp(A

HA)p = 0

where λ1, ..., λp are not all zero. If λr denotes the first non-zero constant then

(AHA)r = − 1

λr
(AHA)r+1(λr+1I + λr+2A

HA+ ...+ λp(A
HA)p−r−1) (12)

Observing that BAAH = CAAH implies BA = CA and BAHA = CAHA
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implies BAH = CAH , and letting

W = − 1

λr
(λr+1I + λr+2A

HA+ ...+ λp(A
HA)p−r−1)

it follows from equation (12) that WAHAAH = A′ and hence that WAH is
a solution to equation (10). Applying the first and fourth Penrose equations
to (10),

AH = WHAHAAH

= WAH(AWAHA)AH

= WAHA(AHAWH)AH

= (AH)AWHAH

and so WAH = (WAH)(WAH)HAH . Therefore WAH is a solution to all
four of the Penrose equations.

If X and Y are solutions to all four of the Penrose equations then

X = XXHAH

= XXH(Y AAH)

= XXH(AHY H)AH

= XXHAH(AY )

= (X)AY

= XA(Y Y HAH)

= XAY (AY )

= XA(AHY H)Y

= (AH)Y HY

= (Y A)Y

= Y

Hence there is a unique solution of the Penrose equations for any given ma-
trix.
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The unique matrix satisfying all four of the Penrose equations is the
Moore-Penrose pseudoinverse and denoted by A†. For any invertible
matrix, it is precisely the inverse of the matrix. The Moore-Penrose pseu-
doinverse can be used to solve overdetermined systems of equations, such as
those given by (5).

Lemma 3. The overdetermined system of equations Ax = y has solutions if
and only if

AA†y = y

In particular A†y is a solution.

Proof. If AA†y = y then A†y is a solution to Ax = y. Conversely if x is a
solution to Ax = y then

y = Ax

= AA†Ax

= AA†y

Theorem 2 establishes that optimisation problem (4) has solutions and
hence (5) also has solutions. Applying Lemma 3, the solutions to the opti-
misation problem are given by

ŝ = ∆†0δ
∗
0O + û (13)

where û ∈ C0 is constant on each connected component of the complex. The
consistent pairwise comparisons extracted from observed pairwise compar-
isons are therefore

S = δ0∆†0δ
∗
0O (14)

The solution given by (13) is a real-valued function measuring the under-
lying preference of the consistent pairwise comparisons for each alternative.
The HodgeRank algorithm derives a ranking of the alternatives by the rule
that i ≤ j if and only if ŝ(i) ≤ ŝ(j).
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After extracting the consistent ranking data from the observed pairwise
comparisons, the remaining ranking data, the residual, is a directed edge
function which is intransitive, or trivial, on every cycle. This inconsistent
ranking data, given by R = O − S, produces intransitive patterns of prefer-
ences from which a consistent ranking of the alternatives cannot be found.

4.3 Inconsistencies

In their paper detailing the HodgeRank algorithm, Jiang et al. (2011) iden-
tify inconsistent ranking data as an issue for ranking algorithms, producing
intransitive patterns of preferences which do not permit a coherent ranking
of the underlying alternatives. The presence of inconsistent ranking data is
overcome by applying discrete Hodge theory to a simplicial complex represen-
tation of the observed pairwise comparisons, identifying and separating out
inconsistencies, and forming a ranking of the alternatives from the remaining
ranking data.

Although this approach allows for a coherent ranking of the alternatives
from pairwise comparisons containing contradictions, it disregards any in-
formation contained within the inconsistent ranking data. It is tempting
to suggest that inconsistent ranking data reflects errors in the underlying
data however, as the authors note, inconsistent ranking data is "not nec-
essarily due to error or noise in the data by may very well be an inherent
characteristic of the data" (Jiang et al. 2011)[p. 206]. There is therefore a
need to understand the size, location and nature of inconsistencies within the
ranking data, and establish whether the inconsistent ranking data is noise
in the dataset or a fundamental feature of the ranking data arising from the
relationships between the alternatives.

Jiang et al. (2011) examined the inconsistent ranking data, the residual, to
assess the degree to which the pairwise comparisons admit a coherent ranking.
If the residual is small, the pairwise comparisons contain few inconsistencies
and the ranking found by HodgeRank is representative of the underlying
competitiveness of the alternatives. On the other hand, if the residual is
large then there is a high level of inconsistency in the pairwise comparisons
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and any ranking found from them should be considered unreliable.
Interpreting the residual directly is difficult as it is neither scale- nor

translation-invariant and thus the size of the residual naturally varies across
different pairwise comparison matrices. Contextualising the size of the resid-
ual in relation to the pairwise comparisons it is extracted from, the cyclicity
ratio

c =
||R||2,W
||O||2,W

(15)

measures the level of inconsistency in the dataset, approaching one as the
level of inconsistency increases.

The cyclicity ratio provides a measure by which the validity of the ranking
solution found by the HodgeRank algorithm can be assessed, however it does
not provide insights into the nature of the inconsistencies in the ranking data.
Hodge theory provides tools to understand the type of inconsistencies present
in the ranking data. By the Hodge Decomposition Theorem (Theorem 1),
the space of inconsistencies can be orthogonally decomposed into

ker(δ∗0) = ker(∆1)⊕ im(δ∗1)

with ker(∆1) = ker(δ∗0) ∩ ker(δ1).
Any directed edge function which belongs to ker(δ∗0) can be expressed as

the sum of a directed edge function in ker(∆1) and a directed edge function
in im(δ∗1), and so inconsistent ranking data can be understood by its pro-
jection onto these two subspaces. Understanding the behaviour of directed
edge functions in both of these subspaces on cycles in the simplciail complex
provides a window to understanding the inconsistent ranking data contained
in the observed pairwise comparisons.

(i) Type I: The coboundary operator δ1 maps directed edge func-
tions to oriented triangle functions by summing (with re-
spect to the orientation) the value of the directed edge
function around the triangle. Given an oriented triangle
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{v0, v1, v2} and a directed edge function f ∈ C1,

(δ1f)(v0, v1, v2) = f(v0, v1) + f(v1, v2)− f(v0, v2)

Hence directed edge functions in ker(δ1) behave consis-
tently on oriented triangles in the complex (cycles of
length three).

Directed edge functions in ker(∆1) also belong to the
subspace ker(δ∗0) and therefore produce inconsistencies on
cycles of length greater than three. These Type I inconsis-
tent directed edge functions produce transitive patterns
of preferences on any triple of alternatives but intransitive
patterns of preferences on larger subsets of alternatives.

Example 11. Decomposing the inconsistent 1-cochain
component of the pairwise comparison matrix in Example
8, the Type I inconsistent 1-cochain is represented by the
following simplicial complex

Figure 13: Type I inconsistency
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(ii) Type II: The adjoint of the 1-th coboundary operator is a linear
operator which satisfies 〈f, δ∗1g〉C1 = 〈δ0f, g〉C2 for any
f ∈ C1 and g ∈ C2. Expanding these two inner products
gives

∑
{i,j}∈E

Wijfij(δ
∗
1g)ij = 〈f, δ∗1g〉C1

= 〈δ1f, g〉C2

=
∑

{i,j,k}∈T

(δ1f)ijkgijk

=
∑

{i,j,k}∈T

gijk(fij + fjk + fki)

=
∑
{i,j}∈E

(
∑

{i,j,k}∈T

fijgijk −
∑

{i,p,j}∈T

fijgipk)

=
∑
{i,j}∈E

∑
{i,j,k}∈T ′

fijgijk

=
∑
{i,j}∈E

fij ·
∑

{i,j,k}∈T ′
gijk

where T ′ denotes the set of unoriented triangles in the
complex. It follows that

(δ∗1g)ij =
1

Wij

∑
{i,j,k}∈T ′

gijk (16)

The adjoint of the 1-th coboundary operator, δ∗1, dif-
fuses values on oriented triangles to the directed edges
which bound them. These Type II directed edge functions
produce intransitive patterns of preferences on subsets of
alternatives of any size.
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Example 12. The Type II inconsistent 1-cochain com-
ponent of the pairwise comparison matrix in Example 8
is represented by the following simplicial complex

Figure 14: Type II inconsistency

Both Type I and Type II directed edge functions produce intransitive
patterns of preferences, forming inconsistent cycles in the simplicial com-
plex. They differ in their behaviour on oriented triangles, with Type I func-
tions providing a coherent ranking of triples of alternatives whereas Type II
functions cannot be used to rank any subset of the alternatives.

By orthogonally decomposing the residual into Type I and II directed
edge functions, its level of inconsistency on a local level can be determined.
If the inconsistent ranking data is mostly projected onto the subspace of
Type I functions, there is non-contradictory information regarding relation-
ships between triples of alternatives which is excluded by the HodgeRank
algorithm.

Theorem 4. Given a directed edge function O, the residual R can be orthog-
onally decomposed as

R = Pker(∆1)O + Pim(δ∗1)O (17)

where the projections are given respectively by Pker(∆1) = I−∆1 and Pim(δ∗1) =

∆1 − δ0∆†0δ
∗
0

Proof. The space of directed edge function C1 can be orthogonally decom-
posed with

C1 = im(δ0)⊕ ker(δ∗0)
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Any directed edge function O can be orthogonally decomposed into two
cochains S and R, where S is a consistent cochain given by (14) and R

is the residual given by (??). Projections are linear operators and so the
projection of O onto the subspace ker(δ∗0) can be expressed as

Pker(δ∗0)O = Pker(δ∗0)S + Pker(δ∗0)R

The consistent cochain S belongs to the im(δ0), a subspace which is or-
thogonal to ker(δ∗0), from whence it follows that Pker(δ∗0)S = 0. In addition,
Pker(δ∗0)R = R since

δ∗0R = δ∗0(O − S)

= δ∗0O − δ∗0δ0s

= δ∗0O −∆0s

= 0

and thefore R = Pker(δ∗0)O. Under the Hodge Decomposition Theorem (The-
orem 1), the subspace ker(δ∗0) can be further decomposed as ker(∆1)⊕ im(δ∗1)

and so R = Pker(∆1)O + Pim(δ∗1)O as claimed.
It remains to derive expressions for the projections onto ker(∆1) and

im(δ∗1). For any x ∈ C1 and y ∈ ker(∆1),

〈x− (I −∆1)x, y〉C1 = 〈∆1x, y〉C1

= 〈(δ0δ
∗
0 + δ∗1δ1)x, y〉C1

= 〈δ0δ
∗
0x, y〉C1 + 〈δ∗1δ1x, y〉C1

= 〈x, δ0δ
∗
0y〉C1 + 〈x, δ∗1δ1y〉C1

= 〈x, (δ0δ
∗
0 + δ∗1δ1)y〉C1

= 〈x,∆1y〉C1

= 〈x, 0〉C1

= 0

Hence (I −∆1) is the orthogonal projector onto the subspace ker(∆1).
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Any x ∈ C1 can be expressed as the sum of its projection onto the three
orthogonal subspaces given by the Hodge Decomposition Theorem (Theorem
1). The projection of a directed edge function onto im(δ0) is given by (14)
and so

x = Pim(δ0)x+ Pker(∆1)x+ Pim(δ∗1)x

= (δ0∆†0δ
∗
0)x+ (I −∆1)x+ Pim(δ∗1)x

Therefore the orthogonal projection onto the subspace im(δ∗1) is given by
∆1 − δ0∆†0δ

∗
0.

As with the residual itself, determining whether the inconsistencies in the
ranking data are largely of the Type I or II nature is difficult. This project
proposes the local inconsistency ratio

L =
||R−∆1R||2,W
||R||2,W

(18)

as a measure of the proportion of inconsistency in the pairwise comparison
matrix which is consistent on local-scale features of the simplicial complex. If
the ranking data has a high local inconsistency ratio, it potentially contains
information in its inconsistent component which can be used to rank, in
isolation, triples of alternatives.

4.4 Measuring Inconsistency

Although (Jiang et al. 2011) acknowledge that inconsistent ranking data
may be produced as a consequence of the fundamental characteristics of the
underlying alternatives, the HodgeRank algorithm they devise excludes it for
the purpose of ranking the alternatives. This is a sensible approach as the
inconsistent ranking data contains intransitive patterns of preferences, from
which a coherent coherent ranking of the alternatives cannot be found. The
authors propose the cyclicity ratio (15) as a means of evaluating how readily
a pairwise comparison matrix admits a coherent ranking of the alternatives.
If the observed pairwise comparisons are largely inconsistent, the ranking
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is produced from a fraction of the available data and should be considered
unreliable.

The cyclicity ratio provides a high level understanding of inconsistency in
the ranking data, measuring inconsistency across the entire dataset. Whilst
this has value in assessing the suitability of HodgeRank for ranking alterna-
tives from a given pairwise comparison matrix, it gives no insights into how,
where or why inconsistency arises.

One of the main contributions of this project is exploring the space of
inconsistent directed edge functions, measuring inconsistency at different
scales, and identifying the features of the complex which produce incon-
sistency. This more nuanced understanding of inconsistency exploits the
information contained in the inconsistent ranking data, and the project goes
on to demonstrate the value of this information.

Inconsistencies are cycles in the simplicial complex around which the sum,
with respect to orientation, of the directed edge function encoding the ob-
served pairwise comparisons is non-zero. These cycles produce intransitive
patterns of preferences, pairwise comparisons which contradict themselves
and indicate that an alternative is more preferable than itself.

The degree to which the cycle of alternatives {v0, ..., vk} is inconsistent
(equivalently the extent to which the underlying pairwise comparisons con-
tradict themselves), is given by ΨO({v0, ..., vk}) = |ψO({v0, ..., vk})| with

ψO({v0, ..., vk}) = Ovkv0 +
k∑
i=1

Ovi−1vi (19)

where O is the directed edge function corresponding to the pairwise com-
parisons. A consistent cycle {u0, ..., um} satisfies the transitivity criteria
and so ψO({u0, ..., um}) = 0. The more inconsistent a cycle is, the further
away this value is from 0, however this can be positive or negative depend-
ing on the relative orientation of the directed edges around the cycle, with
ψO({vk, ..., v0}) = −ψO({v0, ..., vk}). Regardless of orientation, the cycle is
equally far from satisfying the transitivity criteria and so it is necessary to
measure its inconsistency by ΨO({v0, ..., vk}).
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By measuring how inconsistent each cycle in the simplicial complex is
using the above measure, a distinction can be made between cycles which
are close to satisfying transitivity and those which are far from it. This
matters because the inconsistent cycles which are close to being consistent
are likely a result of noise in the data and thus represent well the underlying
preferences for the participating alternatives. On the other hand, highly
inconsistent cycles more likely encode fundamental inconsistency arising as
a consequence of the relationships between the alternatives.

Information regarding direct pairwise comparisons between pairs of al-
ternatives which participate in many, highly inconsistent cycles can be con-
sidered unreliable for the purpose of ranking the entire set of alternatives.
These pairwise comparisons are outliers in the pairwise comparison matrix,
disagreeing strongly with the majority of the observed pairwise comparisons.

The contribution of a pairwise comparison to inconsistency in the ranking
data can be measured as the total of its contribution to inconsistency in
each cycle in the simplicial complex representation. In isolation the cause of
inconsistency in a cycle, σ, cannot be identified since subtracting ψ(σ) from
any of its constituent pairwise comparisons transforms an inconsistent cycle
into a consistent one. Instead, each pairwise comparison is deemed equally
responsible for producing inconsistency in the cycle. This gives ΨO(σ)(i, j) =

|ψO(σ)(i, j)| as a measure of the contribution of the pairwise comparison
between alternatives i and j to inconsistency in the cycle σ = {v0, ..., vk}
with the directed edge function O, with

ψO(σ)(i, j) =

ψO(σ)/k + 1 if i, j ∈ σ

0 otherwise
(20)

and Ψ∞O (i, j) = |ψ∞O (i, j)| as a measure of the contribution of the pairwise
comparison to inconsistency in the simplicial complex representation, with

ψ∞O (i, j) =
∑
σ

ψO(σ)(i, j) (21)

Again, as with measuring the inconsistency in a cycle, the absolute value is
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required to account for the arbitrary choice of orientation.
These measures discount the inconsistency in each cycle by the length of

the cycle, accounting for the larger impact that perturbations in the pair-
wise comparisons have on inconsistency in longer cycles. Consider a cycle
{v0, ..., vk−1} with directed edge functions f and f̃ where f̃ij = fij + ε for
every pairwise comparison. Although the inconsistency in the cycle differs
with the two directed edge functions,

ψf̃ ({v0, ..., vk−1}) = f̃vkv0 +
k∑
i=1

f̃vi−1vi

= fvkv0 + ε+
k∑
i=1

fvi−1vi + ε

= ψf ({v0, ..., vk−1}) + kε

the contribution of each pairwise comparison to inconsistency in the cycle is
equal.

Evaluating the contribution of pairwise comparisons to inconsistency across
a simplicial complex can be a computationally expensive task, particularly
as the number and size of cycles grows. It can, however, be approximated
by generalising from paths, in which vertices cannot be repeated, to walks
which allow backtracking.

It is well known in graph theory that, as a consequence of matrix multi-
plication, the number of walks in an undirected graph of length k between
vertices i and j is Akij, where A is the adjacency matrix of the graph. It
follows that the number of walks, of any length, between vertices i and j is∑∞

k=0A
k
ij. In general this sum diverges however the matrix exponential of the

adjacency matrix, the Estrada Index (Estrada & Rodríguez-Velázquez 2005),

expA(i, j) =
∞∑
k=0

Akij
k!

(22)

scales the contribution of walks by the factorial of their length, ensuring the
sum converges.
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This approach can be extended to approximate the level of inconsistency
contained in every cycle of the complex by evaluating the Estrada index of the
observed pairwise comparisons however there are three important considera-
tions: (i) inconsistency is defined in terms of the sum, not product, of values
on edges; (ii) edges in simplicial complexes have an associated orientation
and are not undirected; (iii) the measure should be symmetric.

The first issue can be dealt with by using the element-wise exponential of
the observed pairwise comparisons eO, whereby multiplication of the values
on the edges in the Estrada index effectively becomes addition. The second
issue, the orientation of edges, is accounted for by the skew-symmetry of
pairwise comparison matrices since edges in the complex can be traversed in
either direction by negating the value on the edge. Lastly, whilst the Estrada
index of the element-wise exponential of the observed pairwise comparisons
is not symmetric by virtue of the exponential function, a symmetric measure
can be formed by combining the value for the directed pair {i, j} and {j, i}.

Under the expectation of transitivity, the sum of the pairwise compar-
isons around any walk between alternative i and j should equal Oij. Thus if
a pairwise comparison does not contribute to any inconsistency in the sim-
plicial complex (every cycle it participates in is consistent), exp eO(i, j) =

eOij exp eA(i, j). An approximation of the contribution of the pairwise com-
parison between alternatives i and j to inconsistency in the simplicial com-
plex can be defined as Ψ̃O(i, j) = 1

2

(
|ψ̃O(i, j)|+ |ψ̃O(j, i)|

)
with

ψ̃O(i, j) = exp eO(i, j)− eOij exp eA(i, j) (23)

where A is the adjacency matrix of the undirected graph underlying the
complex. Pairwise comparisons which only participate in consistent cycles
have a Ψ̃ value of 0 with this value increasing as a pairwise comparison
contributes more to inconsistency in the simplicial complex.

The contribution of a pairwise comparison to inconsistency in the simpli-
cial complex can also be approximated by studying local-scale inconsistency,
limiting the cycles under consideration to those of length three. There are
two main motivations behind this approach. Firstly, longer cycles are formed
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of more pairwise comparisons and so noise in the ranking data is more likely
to produce inconsistency in the cycle. Secondly, cycles of length three have a
natural topological equivalent in the form of the 2-simplices in the complex
and as such, topological tools already exist for examining them.

Any inconsistent directed edge function can be orthogonally decomposed
as the sum of a Type I function which belongs to the subspace ker(δ1), and
a Type II function which belongs to im(δ∗1), the orthogonal complement of
ker(δ1). These functions differ in their behaviour around 2-simplices, with
Type I functions, unlike Type II functions, satisfying the transitivity criteria
around these local-scale cycles.

The 1-st coboundary operator δ1 is a map from C1 to C2 which assigns a
value to each oriented triangle by summing the pairwise comparisons on the
directed edges which bound it with respect to their orientation. It follows
that for any cycle of length three {v0, v1, v2}

δ1({v0, v1, v2}) = Ov2v0 +Ov0v1 +Ov1v2

= ψ({v0, v1, v2})

As such, inconsistency in local-scale cycles can be measured by |δ1(σ)|.
Local-scale inconsistency can be diffused back to the pairwise comparisons

bounding each local-scale cycle by the adjoint of the 1-st coboundary operator
δ∗1. Since ∆up

1 = δ∗1δ1, this gives a measure of the contribution of each pairwise
comparison to local-scale inconsistency as

ΦO(i, j) = |(∆up
1 O)ij| (24)

This measure differs from ΨO(σ)(i, j) in that it does not assign equal
responsibility for the inconsistency to each pairwise comparisons, rather it
diffuses the inconsistency back to the pairwise comparisons with respect to
the a priori edge weights. Pairwise comparisons with higher edge weights are
deemed to have contributed less to the inconsistency in the cycle.
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4.5 Incorporating Measures Of Inconsistency

HodgeRank allows reliability weights to be assigned to the pairwise compar-
isons between alternatives, placing greater emphasis on pairwise comparisons
with large weights when finding a ranking of the alternatives. In the formu-
lation of HodgeRank described above, these reliability weights are measures
or estimates of the reliability of the information underlying each pairwise
comparison, evaluated outside of the HodgeRank framework.

In the previous section, several measures were derived for the contribution
of a pairwise comparison on inconsistency within the ranking data. Pair-
wise comparisons which contribute greatly to inconsistency in the ranking
data disagree strongly with the remainder of the available data and can be
considered unreliable for the purpose of ranking the underlying alternatives
coherently.

This project proposes re-weighting the simplicial complex to account for
both the initial reliability weights and the contribution of each pairwise com-
parison to inconsistency in the complex. No prescribed method is given for
combining the two reliability measures as this will be highly application de-
pendent, influenced by both the underlying data and the perceived reliability
of the reliability weights (in most applications, a subjective assessment). The
new reliability weights should be largest for pairwise comparisons with large
initial reliability weights and a small contribution to inconsistency within the
ranking data.

Implementing this extension to the HodgeRank algorithm, the simpli-
cial complex representation is first equipped with an inner product on C1,
derived from the initial reliability weights, and then re-equipped with an in-
ner product derived from both the initial reliability weights and measure of
the contribution of each pairwise comparison to inconsistency in the ranking
data. This project goes on to demonstrate an application of this extended
HodgeRank algorithm in a case study, and to discuss the costs and benefits
of including measures of inconsistency.
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4.6 Computational Issues

HodgeRank is an algorithm for ranking alternatives from pairwise compar-
isons by measuring the underlying competitiveness of each alternative. The
algorithm represents a pairwise comparison matrix, expressing the degree to
which one alternative is preferred over another, as a simplcial complex and
applies discrete Hodge theory to understand the ranking data and identify a
coherent ranking of the alternatives.

This project implements the HodgeRank algorithm, and variants of, in
MATLAB, a programming language often used by the Applied Mathematics
community. MATLAB is designed to efficiently handle and performa calcula-
tions over matrices and lends itself nicely to the practical implementation of
HodgeRank, a topologically-inspired algorithm whose ranking solution can
be expressed in terms of matrices as described above. No claim is made that
MATLAB represents the best choice of programming language in which to
implement HodgeRank, simply that it is an appropriate choice.

The procedure for implementing HodgeRank is described below, includ-
ing the additional steps required to measure the contribution of each pairwise
comparison to local-scale inconsistency and re-weight the simplicial complex
accordingly. These additional steps can be replaced in the case that a dif-
ferent choice is made to measure the contribution of pairwise comparisons
to inconsistency in the ranking data, or skipped entirely if the user does not
wish to incorporate inconsistency-based weights.
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Algorithm 1: HodgeRank algorithm (including local-scale incon-
sistency weights)
Input: Skew-symmetric matrix O ∈ Rn×n encoding pairwise

comparisons between n alternatives. Symmetric matrix
W ∈ Rn×n

≥0 encoding initial weights for each comparison.
Output: HodgeRank score ŝ measuring underlying preference for

each alternative. Ranking of the n alternatives.
1 Fix an orientation and indexing of the m 1-simplices in the simplicial

complex
2 Linearise O as Ô ∈ Rm and W as Ŵ ∈ Rm

3 if re-weighting the complex by local-scale inconsistency measure then
4 Fix an orientation and indexing of the p 2-simplices
5 Compute δ1 and its adjoint δ∗1
6 Compute δ1 and its adjoint δ∗1
7 Calculate ∆up

1 = δ∗1δ1

8 Set Ŵ = 1

∆up
1 Ô

9 Compute δ0 and its adjoint δ∗0
10 Calculate δ∗0Ŷ
11 Calculate ∆0 = δ∗0δ0

12 Compute the Moore-Penrose pseudo-inverse ∆†0

13 Calculate ŝ = ∆†0δ
∗
0Ŷ

14 Rank the n alternatives by the rule i ≤ j ⇐⇒ ŝ(i) ≤ ŝ(j)

Implementing HodgeRank for practical applications can require use of
significant computational resources. In previous experiments the demand of
the algorithm on the available computation resources limited the amount of
ranking data that could be input into the algorithm. Therefore in order to
facilitate meaningful applications of HodgeRank, it has been a requirement
of this project to improve the efficiency of the algorithm.

There are three main issues which place a heavy burden on the available
computational resources: the size of the simplicial complex, calculating the
pseudoinverse, and iterating the algorithm. This project has gone some way
to address these issues, reducing the computational burden of the algorithm
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in the process. Nonetheless, more work remains to be done in this area.
From a computational perspective the worst case scenario is one in which

every pair of alternatives has been compared, forming a complete graph.
Given a set of n alternatives, there are at most n(n−1)

2
pairwise comparisons

and n(n−1)(n−2)
6

oriented triangles. The coboundary operators for such a sim-
plicial complex are therefore δ0 ∈ R

n(n−1)
2
×n and δ1 ∈ R

n(n−1)(n−2)
6 × n(n−1)

2
.

The size of these matrices increase exponentially with the number of alter-
natives, requiring greater memory and processing power.

Although these matrices can be large, the proportion of non-zero elements
in them is small. Each row of δ0 corresponds to an oriented 1-simplex in the
simplicial complex with

(δ0)ij =


1 if j-th oriented 1-simplex is {i, k} for some k ∈ V,

−1 if j-th oriented 1-simplex is {k, i} for some k ∈ V,

0 otherwise.

The number of non-zero elements in both δ0 and δ∗0 is therefore 2m ≤ n(n−1)

where m is the number of directed edges in the complex. By a similar argu-
ment the number of non-zero elements in both δ1 and δ∗1 is 3p ≤ n(n−1)(n−2)

2

where p is the number of oriented triangles in the complex.
Given that MATLAB requires 8 bytes to store each element in a matrix,

storing an r× s matrix requires 8rs bytes. MATLAB can also store matrices
as sparse matrices, concatenating the non-zero elements of each column into
a single vector and storing this together with their row index and the number
of non-zero elements in each column. This approach requires 8x+ 16y bytes
of memory where x is the number of columns in the matrix and y is the
number of non-zero elements.

Given the sparsity of the coboundary operators, storing δ0 as a full matrix
requires 8nm bytes against 8n+32m bytes as a sparse matrix, and storing δ1

as a full matrix requires 8mp bytes against 8m+48p bytes as a sparse matrix.
Employing sparse matrices therefore reduces the memory requirements of
the HodgeRank algorithm for sufficiently large n,m, p (≥ 7). For a pairwise
comparison matrix of 10,000 alternatives, in the worst case scenario where
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the underlying graph is complete, storing δ0 requires 4,000 GB as a full
matrix but just 0.04% of this (1.6GB) as a sparse matrix. The sparse matrix
representation of δ1 is less than 2 · 10−5% of the full matrix representation,
although this is still large at 8,000 GB.

Fortunately in most applications of HodgeRank the underlying graph
is likely far from complete. Nonetheless, the above example illustrates the
significant improvement made by employing sparse matrices in the algorithm,
reducing the computational requirements drastically. This reduction made
an analysis of local-scale inconsistency, and subsequent re-weighting of the
simplicial complex, feasible in a case study involving pairwise comparisons
on up to 35,000 alternatives.

Another problematic issue in implementing the HodgeRank algorithm
is computing the Moore-Penrose pseudoinverse of the 0-dimensional combi-
natorial Laplacian, a necessary step in solving the weighted least squares
problem given by (13). This step proves to be the largest single bottleneck
in the algorithm, accounting for over 80% of its run-time.

MATLAB includes a built-in function, pinv, for computing the Moore-
Penrose pseudoinverse of a matrix using singular value decomposition (SVD).
The complexity of computing the pseudoinverse of anm×n matrix using this
approach is O(mn ·min(m,n)). Given that the 0-dimensional combinatorial
Laplacian is an operator from C0 to itself, computing its pseudoinverse has
complexity O(n3).

In their paper, Chen & Feng (2014)[p.183] identify QR decomposition as
the "best choice for computing the Moore-Penrose pseudoinverse." Although
the complexity of the QR decomposition approach is also O(n3), empirical
evidence suggest this approach requires fewer floating point operations per
second (FLOPS) than the SVD approach, and runs between 2-3 times faster.

In this project, the QR decomposition approach has been followed how-
ever, instead of computing the Moore-Penrose pseudoinverse of ∆0, a Moore-
Penrose pseudoinverse factorisation object, PIF1, has been created such that
∆†0x = PIF (∆0)x. Whilst not directly computing the pseudoinverse, this

1B. Luong (2009). Pseudo-inverse (https://www.mathworks.com/matlabcentral/fileexchange/25453-
pseudo-inverse), MATLAB Central File Exchange
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technique is sufficient for the purpose of solving the weighted least squares
problem. Implementing the HodgeRank algorithm in a case study, this
project did indeed see the run-time of the algorithm halve by following the
QR decomposition method.

MATLAB also provides an in-built function, lscov, for solving the weighted
least squares problem without the need for computing the pseudoinverse of
∆0. This function uses a variant of QR decomposition to return the weighted
least squares solution to Ax = b. By following this approach and directly
solving the weighted least squares problem given by (4) the HodgeRank al-
gorithm can be simplified. Although this project has not employed this
approach to solving the weighted least squares problem, simulations suggest
that it reduces run-times by ∼ 12%. The algorithm detailed below is recom-
mended for future implementations of HodgeRank.
Algorithm 2: Improved HodgeRank algorithm (including local-
scale inconsistency weights)
Input: Skew-symmetric matrix O ∈ Rn×n encoding pairwise

comparisons between n alternatives. Symmetric matrix
W ∈ Rn×n

≥0 encoding initial weights for each comparison.
Output: HodgeRank score ŝ measuring underlying preference for

each alternative. Ranking of the n alternatives.
1 Fix an orientation and indexing of the m 1-simplices in the simplicial

complex
2 Linearise O as Ô ∈ Rm and W as Ŵ ∈ Rm

3 if re-weighting the complex by local-scale inconsistency measure then
4 Fix an orientation and indexing of the p 2-simplices
5 Compute δ1 and its adjoint δ∗1
6 Compute δ1 and its adjoint δ∗1
7 Calculate ∆up

1 = δ∗1δ1

8 Set Ŵ = 1

∆up
1 Ô

9 Compute δ0

10 Compute ŝ = lsvoc(δ0, Ô, Ŵ )

11 Rank the n alternatives by the rule i ≤ j ⇐⇒ ŝ(i) ≤ ŝ(j)

63



The last significant issue faced in implementing HodgeRank is that prac-
tical applications often require many iterations of the algorithm. In the case
study undertaken by this project, the evolving underlying preference of alter-
natives is measured across time by inputting a sliding window of the available
ranking data into the HodgeRank algorithm. This requires running the al-
gorithm multiple times, once for each time the window slides (the case study
requires over 1000 iterations). Given the high memory requirements and long
run-time of the algorithm, performing multiple iterations of the algorithm on
a single computing node can quickly overcome the available resources.

Parallel processing can be applied to overcome this issue since each it-
eration of the algorithm can be performed independently. This project has
employed the IRIDIS High Performance Computing Facility2, specifically
IRIDIS 4 consisting of 750 compute nodes, each with dual 2.6GHz proces-
sors, 16 processor cores and 64GB of memory. In addition, IRIDIS 4 is
equipped with four high memory nodes, each with four 2.4GHz processors,
32 processor cores and 252GB of memory. In the case study, each iteration of
the algorithm was run on pairwise comparison matrices of around 25,000 al-
ternatives which were approximately 98.5% sparse. Including the local-scale
inconsistency re-weighting, each iteration of the algorithm required around
52GB of memory and 4.5 hours of run-time.

The improvements made to the HodgeRank algorithm have reduced the
computational resources required, facilitating its application in practical prob-
lems as illustrated in the case study below. There remains scope for improv-
ing the efficiency of the algorithm, in particular the choice of programming
language (C/C++ may be more appropriate choices) and method for solving
the weighted least squares problem. Increasing the efficiency of the algo-
rithm above its current level is however beyond the scope of this project
which has focused on making necessary improvements to practically imple-
ment HodgeRank.

2https://cmg.soton.ac.uk/research/categories/computational-platforms/iridis/
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5 Case Study: How well does the market han-

dle inconsistent information?

Inconsistent ranking data poses a challenge to the decision making ability of
individuals, increasing the complexity of decision problems and the likelihood
that these decisions will not reflect all of the available information (Tversky
1969, Tversky & Kahneman 1992, Luce & Raiffa 1957). Techniques such as
HodgeRank can be used to analyse and account for inconsistencies within
ranking data, however doing so is computationally expensive.

When faced with complex mental tasks which strain their available re-
sources, individuals often employ heuristics to simplify and reduce the cog-
nitive load of these tasks (Tversky & Kahneman 1974, Slovic & Lichtenstein
1971). This project examines how well decision makers handle and exploit
inconsistent ranking data in a real world scenario, balancing the competing
desires to improve decision making and reduce cognitive strain.

Competitive events arise when participants compete against each other
for rewards. Notable examples of competitive events include political elec-
tions and sporting events (Lessmann et al. 2012). A variety of approaches
have been taken to predict the outcome of competitive events with varying
levels of success, however a large degree of uncertainty remains reflecting the
underlying randomness of the event. This randomness leads to inconsistent
outcomes of events, producing conflicting data which individuals attempt to
use in their decision making.

The unpredictable nature of competitive events gives rise to associated
speculative markets. Participants in these markets place wagers on out-
comes based on their assessment of the likelihood of each outcome. These
speculative markets therefore function as prediction markets for the com-
petitive events, aggregating the predictions of their participants with mar-
ket prices quantifying the predictions and decisions of individual bettors
(Figlewski 1979, Asch et al. 1982). These decisions can then be easily verified
against the observed outcome of an event, resulting in a payoff for the bettor
if their prediction was correct.

Competitive events are a natural setting to study the impact of incon-
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sistent information in decision making and financial markets with a high
expectation of conflicting data, quantifiable decisions and verifiable market
prices. They are especially appealing for studying issues regarding market
efficiency as "wagering markets are especially simple financial markets, in
which the scope of the pricing problem is reduced" (Sauer 1998)[p. 2021].

Horse racing markets are considered highly semi-strong efficient with
prices quickly and effectively incorporating all available information (Sung
& Johnson 2008, Edelman 2007). A large body of work exists examining the
informational efficiency of these markets, providing a framework for assessing
whether inconsistent data is fully accounted for in market prices.

These markets are valuable case studies of market efficiency, exhibiting
similar features to stock markets (Gabriel & Marsden 1990, Ali 1998) yet
providing "a clear view of pricing issues which are more complicated else-
where" (Sauer 1998)[p. 2021]. Moreover they are of economic significance
themselves with an estimated turnover of £11 billion in 2016.

This case study evaluates the impact of inconsistent ranking data pro-
duced from past performance data on the semi-strong efficiency of parimutuel
win markets surrounding horse racing. Results from 6 years (2009 to 2014
inclusive) of UK horse racing betting markets is analysed to test the impact
of inconsistent ranking data on decision making in financial markets. The
data consists of 54,346 races across all 34 UK racetracks competed in by
59,719 horses.

If the winning probabilities, encoded as market prices, for competing
horses estimated by bettors can be improved by including a variable output
by the HodgeRank algorithm, then the inconsistent data, has not been fully
accounted for in the decisions made by bettors. The economic cost of a
market inefficiency relating to inconsistent information is estimated as the
excess returns made by including the HodgeRank variable in an existing
wagering strategy employing market prices.

This case study makes several contributions to the existing literature, ex-
ploring the effects of inconsistent information on decision making and market
efficiency in a real world setting. Although the study has focused exclusively
on parimutuel horserace win markets, their similarity to wider financial mar-
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kets suggest that the findings are likely to be replicated in other settings
with access to inconsistent data, examples of which include other prediction
markets and understanding consumer choice behaviour.

i) Topological methods: This case study represents a novel application
of the HodgeRank algorithm to modelling and understanding informa-
tion in financial markets. The application of a topologically-inspired
technique is shown to have merit, capturing information which markets
themselves have failed to.

Not only does this demonstrate how the study of financial markets can
benefit from the adoption of topological and network based methods,
but it also demonstrates the value of this approach to data analysis.
The succesful application of HodgeRank to parimutuel horserace win
markets adds to the body of evidence indicating that these methods
provide new insights into understanding data.

ii) Inconsistent data: The inherent randomness of competitive events
often produces conflicting information. This data is generally regarded
as problematic, often considered either noise or erroneous, and few
studies have sought to extract information from them.

This project explores the effects of inconsistent data on decision mak-
ing and market efficiency and shows that valuable information can be
contained within such data. Combining a more sophisticated version
of the HodgeRank algorithm with statistical forecasting methods and
wagering strategies, this case study develops a technique to understand
and exploit this data.

iii) Cognitive errors: Decision making is known to be affected by the
complexity of the decision problem which in turn is affected by the
ease with which conclusions can be drawn from the available data.
Inconsistent data poses a challenge to decision makers, representing
multiple real world states and requiring careful consideration.

This case study demonstrates that this challenge is not fully met by
bettors in parimutuel horserace win markets whose decisions are af-
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fected by the presence of inconsistent data and fail to fully encapsulate
the information contained within inconsistencies. These failings repre-
sent deviations from models of rational decision making and represent
cognitive errors on behalf of participants in wagering markets.

iv) Market inefficiencies: Horserace wagering markets are widely con-
sidered highly semi-strong efficient and security prices are expected to
reflect most of the available information. The case study shows that
inconsistent data is not adequately accounted for by market prices and
that, by both separating out consistent data and exploiting inconsistent
data, excess risk-adjusted returns are achievable.

Although the findings of this case study run contrary to the common
consensus regarding the efficiency of wagering markets, a number of
studies have highlighted inefficiencies in wagering markets and the op-
portunity for abnormal returns. The application of a more sophisti-
cated version of HodgeRank, together with conditional logit models and
Kelly wagering strategies, exposes a previously unknown market ineffi-
ciency. Given the similarity between wagering markets and wider finan-
cial markets, the existence of this inefficiency raises questions about the
extent to which inconsistent data is accounted for by financial markets
in general.

5.1 Conditional Logit Modelling of Decision Making

Participants in speculative markets make decisions, ranging from invest-
ing in securities to wagering on sporting events, by assessing the likelihood
of potential outcomes occurring. Modelling this decision making behaviour
is a complex task, complicated by the number of factors under considera-
tion and the difficulty in observing decision makers without influencing their
behaviour.

Conditional logistic regression is a popular choice for modelling decision
making in areas including demography (Radner & Miller 1970, Boskin 1974,
Davies et al. 2001, Hoffman & Duncan 1988), transportation demand (Ben-
Akiva & Lerman 1985, McFadden 1974) and consumer behaviour (Berry
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1994, Berry et al. 1995). A key feature of these conditional logit models is
that they directly account for competition between alternatives (McFadden
1973). They have been extensively applied across studies of horseracing
demonstrating their suitability for modelling decision making and security
pricing in parimutuel horse race win markets (Bolton & Chapman 1986,
Figlewski 1979, Benter 1993, Johnson et al. 2006).

A conditional logit model estimates the probability that each of the
ni alternatives competing in the ith selection event will be the sole alterna-
tive selected by the decision maker of that event (McFadden 1973). These
probabilities are derived from the representative utility, the preference of
the decision maker for each alternative (equivalently the competitiveness of
each alternative). The representative utility of alternative j during the ith

selection event is given by
µij = Vij + εij

where Vij is the systematic component, reflecting known or observed informa-
tion about the competitiveness of the alternative, and εij is a term accounting
for randomness in the behaviour of the decision maker. Often the systematic
component is modelled as a linear combination of m characteristics

Vij =
m∑
k=1

βkxijk

where the β are coefficients and xijk is the evaluation of the kth characteristic
of alternative j for the ith selection event as perceived by the decision maker
for the event.

A rational decision maker will select the alternative with the highest
representative utility and so the probability that alternative j will be selected
during the ith is

Pij = P [µij > µih] ∀h 6= j
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This probability is conditional upon the random ε terms and is given by

Pij|εij = P [Vij + εij > Vih + εih] ∀h 6= j

= P [Vij − Vih + εij > εih] ∀h 6= j

Marschak (1960) showed that the selection probabilities can be evalu-
ated by assuming the random ε terms are identically and independently dis-
tributed according to the Gumbel (or generalised extreme value type-I) dis-
tribution. Under this assumption the probability distribution function of ε
is given by

p(εij) = e−εij−e
−εij

and the cumulative probability by

P [εij ≤ α] = e−e
−α

It follows that the probability of an alternative being selected, conditional
upon the ε terms, is

Pij|εij =
∏
h6=j

e−e
(Vih−Vij−εij)

=

ni∏
h=1

e−e
(Vih−Vij−εij) · ee

−εij

Applying Bayes’ theorem, the probability that the jth alternative will be
selected during selection event i is
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Pij =

∫ ∞
−∞

Pij|εij p(εij) dεij

=

∫ ∞
−∞

ni∏
h=1

e−e
(Vih−Vij−εij) · ee

−εij · e(−εij−e−εij ) dεij

=

∫ ∞
−∞

ni∏
h=1

e−e
(Vih−Vij−εij) · e−εij dεij

=

∫ ∞
−∞

e−εij · e
(−e−εij )(e−Vij )(

ni∑
h=1

eVih )
dεij

=
−e

(−e−εij )(e−Vij )(
ni∑
h=1

eVih )

(e−Vij)(
ni∑
h=1

eVih)

∣∣∣∣∣∣∣∣
∞

−∞

=
1

(e−Vij)(
ni∑
h=1

eVih)

=
eVij

ni∑
h=1

eVih

Although the representative utilities are a combination of systematic and
random components, by assuming the random components are identically
and independently distributed according to the Gumbel distribution, the
probabilities of an alternative being selected are dependent only upon the
systematic component of the representative utilities of those alternatives par-
ticipating in the selection event.

There are several assumptions and features of conditional logit models
which must be validated in the context of any potential application. It is only
appropriate to employ conditional logit modelling if all of these conditions
are met:

(i) Single Selection: Exactly one alternative is selected in each selection
event.
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(ii) Rational Decision Maker: In each selection event, the decision
maker selects the alternative deemed most preferable or competitive.

(iii) Dependent Probabilities: Probabilities of alternatives being se-
lected depend only on their competitiveness (representative utility) and
the competitiveness of their competitors, as perceived by the decision
maker of the selection event.

(iv) Independence of Irrelevant Alternatives: The probability ratio
between any pair of alternatives in the same selection event

Pij/Pik = eVij/eVik

is independent of any other competing alternative (Hausman &McFadden
1984).

An important implication of this condition is that including or removing
an alternative from a selection event does not permute the pre-existing
order of preference. If alternative j is preferred to alternative k in a
selection event, the inclusion or removal of another alternative does not
affect this pairwise relation during the event.

(v) Identical and Independent Distribution: Any two random com-
ponents of representative utility are identically distributed

P [εij ≤ α] = P [εpq ≤ α] ∀α

and independently distributed

P [(εij ≤ γ) ∧ (εpq ≤ γ)] = P [εij ≤ γ] · P [εpq ≤ γ] ∀γ

(vi) Gumbel Distribution: The random components of representative
utility follow the Gumbel (or generalised extreme value type-I) distri-
bution, likely being small in magnitude and more likely to improve
representative utility than reduce it.

72



Figure 15: Probability Density of Random Component

This case study considers each race to be a selection event in which the
race ‘chooses’ a single, most preferable horse as the winner. This framework
for modelling the outcomes of horse races satisfies conditions (i) and (ii)
of conditional logit modelling. Each race is a competitive event in which
the outcome depends upon the relative competitiveness of the participating
horses and there is minimal interaction between competing horses, hence
conditions (iii) and (iv) of conditional logit modelling are also satisfied.

The remaining two conditions govern the random components of rep-
resentative utility, namely that they are identically and independently dis-
tributed according to the Gumbel distribution. The inherent unpredictability
of horse racing means that these conditions are unlikely to be unequivocally
hold, however Henery (1983) demonstrated that they do hold in general.
Noting that the problem of estimating winning probabilities is otherwise in-
tractable (Bolton & Chapman 1986, Figlewski 1979), horserace studies have
deemed that these last two conditions are sufficiently met as to not invali-
date the choice of conditional logit models (Ali 1998, Benter 1994, Bolton &
Chapman 1986, Johnson et al. 2006, Sung et al. 2005).

Given the uncertainty of horse races, conditional logit models are widely
regarded as the most suitable choice for modelling decision making and pric-
ing securities in parimutuel horserace win markets (McFadden 1973, Bolton
& Chapman 1986, Benter 1993, Johnson et al. 2006, Sung et al. 2005). Their
extensive application in the field has proven highly successful in demonstrat-
ing both a high degree of semi-strong efficiency (Figlewski 1979, Hausch
& Ziemba 1990, Snyder 1978, Canfield et al. 1987) and evidence of spe-
cific market inefficiencies (Bolton & Chapman 1986, Benter 1993, Johnson
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et al. 2006, Sung et al. 2009).

5.2 Evaluating Conditional Logit Models

Individual choice behaviour can be modelled by conditional logit models,
estimating the probability that each alternative will be selected in a selec-
tion event. Comparing predictions of outcomes made by the model against
the observed outcomes, the accuracy of the conditional logit model can be
evaluated.

The likelihood of a sample of observed outcomes is the probability that
the observations would occur within the conditional logit model. The greater
the likelihood of the data sample, the more accurately the behaviour of the
decision makers behind those selection events has been modelled.

A parameterised conditional logit model, in which some or all parameters
of the systematic component of representative utility are unknown, can be
fitted to a sample of observed outcomes by employing maximum likelihood
estimation (MLE) techniques. These techniques estimate parameters which
maximise the likelihood of the sample of observed outcomes being produced
by the model (McFadden 1973).

Often it can be more convenient to consider the log-likelihood of a
sample of observed outcomes arising from a given model θ̂. The log-likelihood
of a sample of observations in a conditional logit model θ̂ is given by

L(θ̂) =
N∑
i=1

nj∑
j=1

δij lnPij

where Pij is the probability given by the model that alternative i is selected
in event j and

δij =

1 if alternative i is selected during event j,

0 otherwise

The logarithm function is strictly increasing and so likelihood is maximised
when log-likelihood is. In practical implementations, it is often easier to
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maximise the log-likelihood of a data sample and so maximum log-likelihood
estimation techniques are often employed to fit conditional logit models to
observed outcomes (Hosmer Jr. et al. 2013).

When fitting a parameterised conditional logit to a training sample of ob-
served outcomes, the objective is to choose coefficients β̂ for the explanatory
variables x which maximise the log-likelihood. This is equivalent to choosing
β̂ which minimise the score function −L(β̂). Maximum log-likelihood esti-
mation techniques differentiate this score function and identify critical points
where every partial derivative is 0. By evaluating the Hessian at these points,
a matrix of second-order partial derivatives, it can be determined whether
they are a local minimum of the score function (at a minimum, every element
of the Hessian is negative) (Myung 2003).

Standard errors for these estimates are given by the inverse of the square
roots of the diagonal terms of the Hessian matrix. Intuitively, the more
curved the score function is at the minimum, the more certainty there is in
the estimated coefficient (Gill & King 2004, Davidson & MacKinnon 2004).

A conditional logit model which has been fitted to a training sample of
observed outcomes has had its parameters optimised to maximise the likeli-
hood of those observed outcomes being produced by the model. This does
not however mean that the model is a good representation of the underly-
ing processes producing the observed outcomes. It is therefore important to
cross-validate the model and evaluate its performance on samples of observed
outcomes which are independent from the training sample. There are several
tests and statistics available to assess whether a model is correctly specified
and measure the accuracy of its predictions.

5.2.1 Overfitting

Conditional logistic regression models the representative utility of an alter-
native in a selection event as a linear combination of explanatory variables
(x0, ...,xk). It is always possible to include additional explanatory variables
in a conditional logit model, resulting in an increased likelihood of the train-
ing data being produced by the model since the corresponding coefficient can
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be always set to zero. This larger model may however suffer from overfitting
where it fits the training data too closely, providing a worse representation
of the underlying processes generating the observations, resulting in a lower
likelihood of other data samples being produced by the model.

One approach to testing for overfitting is the Wald coefficient test, a
hypothesis test establishing whether each explanatory variable is correlated
with the observed outcomes and thus whether its coefficient in the model is
non-zero. For each explanatory variable, the null and alternative hypotheses
are given by:

H0: The variable is uncorrelated with the observed outcomes.

H1: The variable is correlated with the observed outcomes.

If there is insufficient evidence to reject the null hypothesis, the coefficient
corresponding to the variable should be zero. On the other hand, if the null
hypothesis is rejected in favour of the alternative hypothesis, the coefficient
should not be trivial.

The Wald test can be conducted to determine whether there is sufficient
evidence to reject the null hypothesis. The test statistic for the i-th explana-
tory variable is given by

β̂i

SE(β̂i)

with the standard errors derived from the Hessian matrix of the log-likelihood
function at the point β̂, and approximates a normal distribution with µ = 0

and σ = 1 (Davidson & MacKinnon 2004). If this exceeds the critical value
of the chosen significant level, there is evidence that the variable is correlated
with the observed outcomes and its coefficient should not be trivial.

The Log-Likelihood Ratio (LLR) test is another method testing for
overfitting. Given a conditional logit model θ̂1 with explanatory variables
(x1, ..., xk), a larger model θ̂2 can be found by including additional explana-
tory variables. The smaller model can be recovered by setting the coefficients
of the additional explanatory variables to 0 and so is nested within the larger
model.
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A hypothesis test can be conducted to determine whether there is informa-
tion contained in the additional explanatory variables which is not captured
by the smaller, nested model. The null and alternative hypotheses are given
by:

H0: All the information contained in the larger model θ̂2 which
includes additional explanatory variables is captured by the
smaller, nested model θ̂1.

H1: There is information contained in the larger model θ̂2 not
captured by the smaller, nested model θ̂1 which excludes
the additional explanatory variables.

The test statistic for this hypothesis test is derived from the log likelihoods
of the observations in both models and is given by

λ = 2(L(θ̂2)− L(θ̂1))

where L(θ1) is the log likelihood of the testing sample in the nested model
and L(θ2) is the log likelihood in the larger model. Wilks (1938) demon-
strated that the log likelihood ratio test statistic approximates a chi-squared
distribution with degrees of freedom equal to the number of additional non-
trivial parameters in the larger model. If the log likelihood ratio test statistic
is statistically significant, there is evidence that the larger model contains in-
formation which is missing from the smaller model and that the additional
variables, as a collective and not necessarily individually, improve the model.

5.2.2 Goodness Of Fit

Goodness of fit measures are often provided for statistical models, describing
how well the model fits the observed data. These measures are generally a
summary of the residuals, distances between observed values and the corre-
sponding value expected by the model.

For continuous outcomes the residual is defined as the difference between
the observed value and the expected value. The expected value produced by
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conditional logit models is a continuous variable on [0, 1], the probability of
an alternative being selected during an event, however the observed outcome
is binary, taking a value of 1 if the alternative is selected and 0 otherwise. The
residuals are therefore given by rij = δij − Pij. The residual plot associated
with these residuals is difficult to interpret, giving two straight lines, one for
each of the possible outcomes.

Figure 16: Residual Plot of a Conditional Logit Model

To move towards a meaningful interpretation of the residuals, a binned
residual plot can be produced with individual residuals being binned to-
gether based on their expected value (Gelman & Hill 2007). Typically

√
n

bins of approximately equal size are used where n is the number of obser-
vations in the sample. The average residual of each bin can be shown on
a residual plot, along with ±2 standard error confidence intervals given by
2
√

p(1− p)/n.
The binned residual plot is a method for visualising and interpreting the

residuals of a conditional logit model. The number of residual bins with
average residual outside of the confidence intervals can be counted. If the
model is a good fit for the data, about 95% of the residual bins should fall
within the confidence intervals.
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Figure 17: Binned Residual Plot of a Conditional Logit Model

The binned residual plot is a method for evaluating the absolute fit of a
conditional logit model. A conditional logit model can also be evaluated in
terms of its relative fit compared to other models. The McFadden R2 is a
statistic which measures the goodness of fit of a model in comparison to the
smallest nested model, the trivial model θ̂0.

R̃2 = 1− L(β̂)

L(0)
(25)

Every coefficient in the trivial model is set to 0 and so every alternative has
an equal probability of being selected in each event.

This measure attempts to mimic the coefficient of determination, with
better models achieving a R2 closer to 1. However, unlike the coefficient
of determination, R̃2 can be negative if the model is worse than the trivial
model (this can only occur when the model is evaluated on a holdout sample
of observations).

Another difference with the coefficient of determination is that R2 is not
clearly interpretable with several alternative pseudo-R2’s have been proposed
(Sung et al. 2016). Despite this, increases in pseudo-R2’s are indicative of im-
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provements in the model and increases in its predictive accuracy (Lessmann
et al. 2012).

When presented with a set of candidate models and asked to determine
the model which best fits a set of observed data, evaluating goodness of fit by
the McFadden R̃2 is equivalent to choosing the model with the maximal log-
likelihood. As discussed in the context of the Wald coefficient and LLR tests,
larger models often have an increased log-likelihood due to the inclusion of
additional, not always relevant, explanatory variables.

The Akaike Information Criteria (AIC) is a measure of goodness of
fit which penalises models with more explanatory variables. The test statistic
is given by

AIC(θ̂) = 2k − 2L(θ̂)

where k is the number of independetly adjusted parameters in the model.
Unlike the overfitting tests described above, AIC can be used to compare

non-nested models. Given a set of candidate models, the model with minimal
AIC value is considered the best fit for the data. This does not mean that
the chosen model is a good fit for the data (this must be determined via
other methods), simply that it is the best fit.

5.3 Economic Modelling of Decision Making

More accurately estimating the likelihood of potential outcomes allows
individuals to make decisions which have a greater chance of producing de-
sirable effects. Whilst this can improve decision making under uncertainty,
the primary motivation of decision makers in speculative markets is not to
make accurate decisions but rather to make profitable ones. Thus an evalua-
tion of decision making in speculative markets must assess both its statistical
accuracy and economic impact.

The decision makers under consideration operate in a parimutuel market,
in which prices are set by the decisions made by its participants, and have
access to the information contained within the dataset. Thus if decision
makers in the speculative markets surrounding horse racing fully account for
both the consistent and inconsistent information in this dataset, the market
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itself should be semi-strong efficient with regards to this dataset.
In line with techniques for testing semi-strong form efficiency in financial

markets, an economic evaluation of decision making is conducted by assessing
the potential for achieving abnormal returns by incorporating information
from the consistent and inconsistent parts of the dataset. If individuals
make use of all the information contained within the dataset, including its
inconsistent parts, it should not be possible to consistently outperform the
market (Bolton & Chapman 1986, Basu 1977).

5.3.1 Kelly Wagering Strategy

Decision makers in parimutuel win markets are presented with a range of
alternatives participating in selection events and can invest a portion of their
capital in each alternative, with these investment decisions paying dividends
if the alternative is the single alternative selected during the event. Each
alternative is assigned odds of γi−1 : 1 by the market reflecting the perceived
probability of the alternative being selected and a successful wager returns a
multiple of βi of the initial wager. These odds correspond with the estimated
winning probabilities of each alternative, given by

pi =

∑
j

1/γj

γi

A range of strategies can be employed to determine the level of capital,
if any, that should be invested in each alternative, guided by a variety of
underlying principles. Naive wagering strategies include level stake betting,
which assumes that outcomes of selection events are random and places an
equal wager on each of the competing alternatives, and proportional stake
betting, which assumes the market odds accurately reflect the real selection
probabilities and places a sufficient wager on each alternative to earn a fixed
return. It is possible for level stake betting to make a profit if the market
performs worse than random guessing and for proportional stake betting to
be profitable if the sum of the market perceived probabilities is less than 1,
however it has been shown that these conditions are not met in practice and
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that these naive strategies are unprofitable (Sung & Johnson 2010, Figlewski
1979, Bolton & Chapman 1986).

The Kelly wagering strategy maximises the long term rate of growth of
capital (Kelly 1956). Given that the logarithm function is strictly increasing,
this is achieved by maximising

G = lim
n→∞

1

n
ln
vn
v0

where v0 is the starting capital of the decision maker and vn is their capital
after the nth selection event. Letmn be the number of competing alternatives
in event n, vn(i) be the fraction of capital wagered, and γn(i) be the return
per unit of capital. It follows that if alternative i is selected during event n
then the current capital grows by a rate of 1 + vn(i)γn(i)−

∑mn
j=1 vn(j).

Breiman (1961) showed that maximising the expected log return from
each selection event

g(vn) =
mn∑
i=1

pn(i) ln

(
1 + vn(i)γn(i)−

mn∑
j=1

vn(j)

)
(26)

is asymptotically optimal for maximising the rate of growth of capital. Kelly
strategies wager a proportion of available capital on each alternative in a
selection event, placing larger wagers on alternatives with greater estimated
winning probabilities.

Although the Kelly wagering strategy maximises long term capital growth,
it is accompanied by a increasing risk of catastrophic loss of capital through
a series of unsuccessful wagers (Maclean et al. 2010). Implementations of
Kelly strategies seek to mitigate this risk by wagering a portion of available
capital on each selection event (Benter 1993, Johnson et al. 2006).

The Kelly wagering strategy is considered an optimal technique for wealth
creation, outperforming other strategies for capital growth (Maclean et al.
2010, MacLean et al. 2011). It has been successfully employed in horseracing
literature for seeking abnormal returns when a market ineffiency is believed to
exist (Thorp 2011, Sung et al. 2005, Lessmann et al. 2009, Johnson et al. 2006)
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5.4 Methodology

The effect of inconsistent ranking data on decision making in financial mar-
kets is analysed in the context of UK horse racing parimutuel win markets.
Results are analysed from all UK racetracks over a six year period from 2009
to 2014 inclusive. There are 436,709 observations of 59,719 horses competing
in 54,346 races in the dataset, and a pairwise comparison matrix is con-
structed by aggregating the relative performance of pairs of horses in each
race.

Bettors place wagers on horses when they believe the market odds under-
value their probability of winning a race. The market odds are updated with
this new information, providing new winning probabilities for the competing
horses. Thus the final market odds reflect the winning probabilities of com-
peting horses, as perceived by bettors as a population, and quantitatively
encode their decisions.

If two competing horses are respectively assigned odds of α : 1 and γ : 1

by the market, then bettors believe that the first horse is α/γ more likely to
win the race. It is often advantageous to transform the market odds into the
natural logarithm of the probability implied by them (i.e. odds of γ − 1 : 1

become ln(1/γ)), an additive variable encoding the decisions made by bettors.
The additive version of the market odds can be used as a predictor of the

outcome of the race. The accuracy and profitability of these predictions can
be considered measures of the quality of decision making. If better predic-
tions can be made by incorporating information extracted from consistent
and inconsistent data, then this data has not been fully accounted for in
bettors’ decision making.

Horses are often handicapped to facilitate a more competitive betting
environment. “The essence of handicapping is a well-tried proposition that
the weight a horse carries ultimately affects the speed at which is can gallop”
(A Guide to Handicapping 2014, p.3). Therefore the observed results of races
measure a combination of the competitiveness of the horse and the impact
of weight on its performance.

Handicappers assess the quality of horses and assign weights to reduce
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their performance in a race according to the following table:

Distance (furlong) Handicap (lbs/length)
5 or less 3

6 2.5
7-8 2
9-10 1.75
11-13 1.5
14 1.25

15 or more 1

Table 1: Handicapping Formula

Consider a seven furlong race in which the handicappers expect horse A
to finish five lengths ahead of horse B. Since the handicapping value for a
race of this distance is 2 lbs/length, by allotting 2.5 lbs of additional weight
to A, the handicappers expect that it will finish level with B. If instead 3
lbs of weight was allocated to A, it would be expected to finish one length
behind B.

Assuming the validity of this formula, it is possible to estimate the re-
sults of the race had every horse carried the same weight. This is done by
multiplying t he weight carried by the relevant handicap and subtracting
this value from the observed beaten lengths. Where a race falls in between
distance categories, a proportional handicap value is used.

These adjusted results provide more accurate information about the un-
derlying quality of the competing horses than the unadjusted results which
have been deliberately skewed. Throughout this case study, the adjusted
results are used to measure the performance of a horse in a race.

Two explanatory variables are derived from pairwise comparisons formed
from past performance data, one of which exploits information in the con-
sistent ranking data and another which accounts for information in both the
consistent and inconsistent ranking data. For each race, past performance
data from the three years prior is compiled into a pairwise comparison matrix
by taking a recency weighted average of the pairwise comparisons between
pairs of horses who compete against each other in the same race. Each race
is assigned a recency weight in accordance with the time between the race
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and the current day, with the recency weight of race n which occurred dn

days ago given by

wn = exp(
−dn
h

)

where h is the half-life of the information provided by races.
Let ζni be the performance of horse i in the nth race (which is zero if the

horse did not compete in the race) and

δijn =

1 if horses i & j competed in the nth race,

0 otherwise

The recency weighted average of the pairwise comparisons between horses i
and j is

Oij =

∑
n=1 δijn(ζnj − ζni )∑

n=1 δijnw
n

This observed pairwise comparison matrix can be represented as a sim-
plicial complex and analysed via the framework and techniques described in
Section 4, with initial reliability weights given by

∑
n=1 δijnw

n. A measure
of the underlying competitiveness of each horse can be extracted from the
consistent part of this matrix by applying the HodgeRank algorithm to this
ranking data, without re-weighting the simplcial complex with regards to
inconsistency measures. The real-valued function on the horses given by the
solution to (13) can be used as an explanatory variable in the conditional
logit model, with horses who have performed better being assigned a higher
value.

A second predictive variable can also be derived from this observed pair-
wise comparison matrix which accounts for information contained in the in-
consistent ranking data. This variable is given by applying the HodgeRank
algorithm, including local-scale inconsistency weights, to the ranking data
and again using the real-valued function given by the solution to (13) as an
explanatory variable.

These three predictive variables (the natural logarithm of the probability
implied by market odds, the underlying competitiveness derived from con-
sistent data, and the underlying competitiveness accounting for local-scale
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inconsistency) can be incorporated in conditional logit models to predict the
outcome of future races. These models can be trained on a training set of
observed race outcomes and evaluated on unseen races both statistically and
economically. The three predictive models considered in this case study are:

(i) θ̂odds: Using the natural logarithm of the probability implied by market
odds as the only predictive variable.

(ii) θ̂Hodge: Using both the natural logarithm of the probability implied by
market odds and the underlying competitiveness derived from consis-
tent data as predictive variables.

(iii) θ̂local: Using both the natural logarithm of the probability implied by
market odds and the underlying competitiveness accounting for local-
scale inconsistency.

Two hypothesis tests are conducted to evaluate whether bettors in horse
racing parimutuel win markets utilise all of the data in their decision mak-
ing. In the first test, the ability of bettors to fully utilise the information
contained in consistent data is assessed, with the null and alternative hy-
potheses respectively given as:

H0: The decision making of bettors fully utilises the information
available in the consistent past performance data (i.e. θ̂Hodge
does not produce better wagers than θ̂odds)

H1: The decision making of bettors does not fully exploit the in-
formation available in the consistent past performance data
(i.e. θ̂Hodge improves the wagers made by θ̂odds)

The second hypothesis test examines how well bettors use information
contained in inconsistent data by incorporating this information into the
predictive variable formed from the consistent data. The null and alternative
hypotheses are:

H0: The decision making of bettors fully accounts for the infor-
mation contained in both the consistent and locally incon-
sistent parts of the past performance data (i.e. θ̂local does
not produce better wagers than θ̂Hodge)
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H1: The decision making of bettors can be improved by exploit-
ing the information available in both the consistent and lo-
cally inconsistent pasts of performance data (i.e. θ̂local im-
proves the wagers made by θ̂Hodge)

5.5 Results

The three conditional logit models utilising combinations of market odds,
consistent past performance data and local-scale inconsistency were trained
on a training sample of observed race outcomes between 2010 and 2013 con-
sisting of 21915 races and 210328 observations. These predictive models
were then statistically and economically evaluated on an unseen sample of
observed race outcomes from 2014 consisting of 7395 races and 67567 obser-
vations, employing a fractional Kelly wagering strategy with starting capital
of £1000.

5.5.1 Consistent Ranking Data

The ability of bettors to fully extract and utilise the information contained
in the consistent ranking data produced from the past performance data was
assessed by comparing models θ̂odds and θ̂Hodge. This comparison evaluated
whether the decisions made by bettors could be statistically and economically
improved by incorporating the underlying competitiveness derived from the
consistent ranking data formed from pairwise comparisons of historic race
results.

Statistic θ̂odds θ̂Hodge

Wald Coefficient p-value N/A 1.45847e−6

LLR p-value N/A 8.89971e−5

R̃2 0.165476 0.165699

AIC 5.66757e4 5.66625e4

Table 2: Statistical evaluation of θ̂odds and θ̂Hodge
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There was evidence at the 1% level that the coefficient of the predictive
variable derived from the underlying competitiveness of the horses produced
from the consistent ranking data should not be trivial and that the variable
improved the predictive power of the conditional logit model. A log likelihood
ratio test, with one degree of freedom, confirmed at the 1% significance level
that there was information contained within θ̂Hodge which was not contained
within the nested model θ̂odds.

The R̃2 value of θ̂Hodge was slightly higher than θ̂odds, indicating that
θ̂Hodge provided a better fit for the holdout sample of observations. This was
further confirmed by the AIC values of the two models, with AIC(θ̂Hodge) <

AIC(θ̂odds). Although the increase in R̃2 and decrease in AIC appear small,
this was expected since pairwise comparisons formed from past performance
data are one of many variables available to bettors for use in their decision
making.

In conclusion, there was statistical evidence that the addition of the ex-
planatory variable derived from the consistent ranking data improved the
conditional logit model and that the decisions made by bettors could be im-
proved by incorporating this information. An economic evaluation of both
models was also conducted with the betting simulation beginning with £1000
of capital and employing a fractional Kelly wagering strategy.

Statistic θ̂odds θ̂Hodge

Total Bet (£) 4205.24 7775.66

Win/Bet Ratio (%) 40.1079 39.4631

Rate of Return (%) -7.80934 -2.09111

Profit (£) -328.40 -162.60

Table 3: Economic evaluation of θ̂odds and θ̂Hodge

The aim of decision makers in speculative markets is to make profitable
decisions however these results indicate that bettors overall do not make
profitable decisions. The conditional logit model using only the market odds
as a predictive variable produced a loss of £328.40 from the initial starting
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capital of £1000. The addition of the predictive variable derived from the
consistent ranking data increased the return from wagers yet, whilst there
were periods in the holdout sample where substantial profits were made,
these predictions still resulted in a loss of £162.60.

Although there was compelling evidence that more accurate predictions
could be made by incorporating information from the consistent ranking data
derived from pairwise comparisons of past performances, the decisions made
by including this information remained unprofitable. Nonetheless there was
an improvement in the economic performance of the model by incorporating
this information in the conditional logit model, suggesting the presence of a
market inefficiency.

5.5.2 Inconsistent Ranking Data

The results of the first hypothesis test indicated that bettors fail to fully ex-
ploit the information available to them in the consistent ranking data derived
from past performances. The second comparison test between θ̂odds and θ̂local
evaluated whether better decisions could be made by exploiting information
in the local-scale inconsistent ranking data. If θ̂local were to fit the holdout
sample better and lead to better wagering decisions, there would be evidence
that bettors fail to account for the information contained in the local-scale
inconsistent ranking data. If greater risk-adjusted returns could be made by
θ̂local, there would be evidence of a market inefficiency resulting from this
failure to account for information contained in inconsistent ranking data.

Statistic θ̂odds θ̂local

Wald Coefficient p-value N/A 1.15638e−6

LLR p-value N/A 6.01213e−7

R̃2 0.165476 0.165848

AIC 5.66757e4 5.66524e4

Table 4: Statistical evaluation of θ̂odds and θ̂local

Again there was evidence at the 1% significance level from both the Wald
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coefficient and log-likelihood ratio tests that the inclusion of the explanatory
variable derived from the consistent and local-scale inconsistent ranking data
improved the conditional logit model. Both relevant null hypotheses are
therefore rejected in favour of their alternatives that this explanatory variable
is correlated with the observed outcomes and that it contains information not
captured by the odds.

Both the R̃2 and AIC values for θ̂local were better than those of θ̂Hodge
providing evidence that this model better fit the observed outcomes in the
holdout sample. This suggests that there is information contained in the
consistent and inconsistent ranking data formed from past performance data
which is not accounted for by bettors, and that this information can be used
to improve decision making in betting markets.

The economic impact of including information extracted from both con-
sistent and locally inconsistent data was also assessed. A betting simulation
was performed starting with £1000 of capital and again employing a frac-
tional Kelly wagering strategy.

Statistic θ̂odds θ̂local

Total Bet (£) 4205.24 9852.15

Win/Bet Ratio (%) 40.1079 41.7824

Rate of Return (%) -7.80934 0.492332

Profit (£) -328.40 48.51

Table 5: Economic evaluation of θ̂odds and θ̂local

The model including both the natural logarithm of the probabilities im-
plied by the market odds and the underlying competitiveness derived from
both the consistent and local-scale inconsistent ranking data, produced a
profit of £48.51 over the holdout sample and a superior win/bet ratio over
θ̂odds. There is therefore evidence of a market inefficiency in parimutuel win
markets surrounding horse racing, and that this inefficiency can be exploited
by including information from inconsistent ranking data related to the past
performance of horses.
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The statistical and economic evaluation of θ̂Hodge and θ̂local demonstrates
that both these models improve upon θ̂odds. It can therefore be concluded
that there is information contained in the pairwise comparisons derived from
past performance data which has not been fully discounted in the odds. This
suggests that the presence of inconsistencies in the ranking data inhibits the
decision making ability of bettors.

In the conclusions reached so far, no direct comparison has been made of
θ̂Hodge and θ̂local. Instead these models have been compared to θ̂odds which
models the decision making of bettors in these betting markets. The McFad-
den R̃2 value across these three models is highest for θ̂local suggesting that
this model is the best fit for the observed outcomes in the holdout sample
from amongst the three candidate models. It is expected, and observed,
that θ̂odds has the lowest R̃2 if for no other reason than it incorporates fewer
explanatory variables. It is however reassuring that this conclusion is also
reached by examining the AIC values which penalises models for including
additional explanatory variables which do not sufficiently improve the model.
It can therefore be concluded that θ̂local is indeed the best choice of model
for predicting winners of horse races.

Although the tests above have shown that θ̂local is the best choice of the
candidate model, they make no judgement about whether it is a good model
for the data. The absolute fit of the model is assessed by its binned residual
plot (Fig. 20). There are 67572 observations in the holdout sample and
therefore the residuals are grouped together into 260

√
67572 bins.

This plot appears reasonable at first with the majority of residuals falling
within the confidence intervals, however it is difficult to firmly conclude this
given the density of bins towards the lower end of the expected outcome
spectrum. The number of bins which exceed their associated ±2 standard
error confidence intervals is 7, equivalent to 2.7% of the total number of bins.
At a 5% significance level, it can be concluded that the model is a good fit
for the observed outcomes in the holdout sample.
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Figure 20: Binned Residual Plot of θ̂local

5.6 Conclusion

This case study assessed whether the presence of inconsistencies in ranking
data in past performance data inhibited bettors participating in parimutuel
horserace wagering markets and, if so, whether market inefficiencies existed
as a result. Bettors in these markets seek to place successful wagers and
maximise their returns, however the results show that bettors were expected
to lose 32.8% of their starting capital over 2014. This loss is unsurprising
as these are prediction markets surrounding highly unpredictable events and
prices are unlikely to correctly estimate winning probabilities for horses (Lo
et al. 1995, Snyder 1978, Lessmann et al. 2010).

To evaluate the impact of inconsistent ranking data on decision mak-
ing, HodgeRank was employed to separate the pairwise comparisons of past
performance data into consistent and inconsistent ranking data, and extract
information from the consistent ranking data. Incorporating this information
into the conditional logit model, there was a statistically significant improve-
ment in the accuracy of predictions and an improvement in the economic
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performance of the fractional Kelly wagering strategy.
HodgeRank was able to better exploit consistent information in the pair-

wise comparisons of past performance, having first removed inconsistencies
from the ranking data, demonstrating that the presence of inconsistent rank-
ing data impacted the decision making of bettors in parimutuel horserace
wagering markets. Deviations from rational decision making, fully utilising
available information, present an opportunity for achieving excess returns
and improved returns were made by including the HodgeRank output from
the consistent ranking data.

These results illustrate a deviation from rational decision making and
a resulting opportunity for excess returns. Participants in these wagering
markets are, however, unlikely to regard this as an issue of much concern.
Their aim is to generate economic gain and, whilst less of a financial loss is of
benefit, they are unlikely to acknowledge this deficiency in decision making
as a true market inefficiency unless there is a demonstrable opportunity for
positive.

Although the version of the HodgeRank algorithm employed in θ̂Hodge

resulted in a loss, the more complex version employed in the θ̂local was able
to improve the accuracy of predictions, generate excess returns and achieve a
small profit. This version exploited information contained within local-scale
inconsistencies, more fully utilising the available data, by incorporating them
into the simplicial complex representation of the past performance pairwise
comparisons and re-weighting the edges of this complex by their contribution
to local-scale inconsistency.

There is a clear impact of inconsistencies within ranking data affecting
the ability of individuals to fully exploit available information and creating
semi-strong inefficiencies in wagering markets. Accounting for local scale
inconsistencies, HodgeRank is able to improve decision making in these areas
and take advantage of these inefficiencies for economic gain.

Existing literature in the area shows that wagering markets, particu-
larly those surrounding horse racing, are highly semi-strong efficient, with
market prices dominating other variables in forecasting models (Sung &
Johnson 2008, Sung et al. 2005, Edelman 2007). Market prices were also
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the most significant variable in the conditional logit model with the addition
of a HodgeRank variable providing a very small, but statistically significant,
improvement to the R̃2 of the mode. The study provides further evidence
that parimutuel horserace wagering markets are highly semi-strong efficient,
despite the presence of market inefficiencies.

Despite the high degree of semi-strong efficiency in horse race wagering
markets, inefficiencies have been observed (Sung et al. 2005, Sung et al. 2019,
Gabriel & Marsden 1990, Gramm & Ziemba 2008). A series of studies have
shown that bettors have difficulties simultaneously accounting for a range of
variables derived from available information and their complex interactions
(Bolton & Chapman 1986, Benter 1994, White et al. 1992, Sung & Johnson
2008). Techniques which combine and capture these complex, non-linear
relationships are capable of outperforming wagering markets (Edelman 2007,
Lessmann et al. 2010, Lessmann et al. 2012, Ma et al. 2016, Goddard 2005).

Systematic errors in the behaviour of market participants also contribute
to inefficiency in horserace wagering markets (Sung et al. 2019). The most
prominent of these errors is the favourite-longshot bias, a phenomenon where
market prices underestimate the likelihood of favourites winning and over-
estimate the winning probabilities of longshots (Ali 1977, Sung et al. 2009,
Snyder 1978, Asch et al. 1982). The origin of the favourite-longshot bias is
a matter for debate, having been attributed to the behaviour of both bet-
tors (Thaler & Ziemba 1988, Sobel & Raines 2003) and bookmakers reacting
to perceived insider trading (Shin 1991, Shin 1991, Sung & Johnson 2010).
Nonetheless, the existence of a favourite-longshot bias in wagering markets
illustrates the imapact of cognitive errors on market efficiency.

Anchoring effects are another example of inefficiency in wagering mar-
kets caused by cognitive errors (Johnson et al. 2009). Individuals display
a tendency to anchor their judgements to a previous starting point which
may be internally or externally primed (Jacowitz & Kahneman 1995, Chap-
man & Johnson 1999). This anchoring heuristic can produce cognitive errors
when insufficient adjustments are made in forming a judgement from the ini-
tial anchor (Tversky & Kahneman 1974, Furnham & Boo 2011), and nuanced
anchoring effects have been observed in horserace wagering markets (Johnson
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et al. 2009).
Semi-strong inefficiencies have been observed in horserace wagering mar-

kets, resulting from the complexity and range of available information, and
cognitive errors in bettors themselves. The results of this case study are
therefore consistent with existing literature in the field, illustrating how the
complexity produced by the presence of conflicting information inhibits de-
cision making in bettors and producing inefficiencies in parimutuel horserace
win markets. HodgeRank provides a means to address this inefficiency and,
together with the methodology outlined above, exploit it for economic gain.
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6 Discussion

Financial markets depend upon the rational behaviour of their participants in
order to operate efficiently. These participants are expected to immediately
and fully make use of information to maximise their subjective expected
utility. In doing so, they ensure that market prices are fundamentally correct
and agree with intrinsic valuations.

Although rational behaviour is of paramount importance to financial mar-
kets, research has shown that rationality constitutes an ideal that is rarely
observed in human behaviour(Tversky & Kahneman 1974, Kahneman &
Tversky 1972, Frederick 2005). Individuals exhibit tendencies to deviate
from normative models of decision making, increasingly so as the complexity
of a decision problem taxes their cognitive capabilities.

Inconsistent data poses a challenge for decision makers, providing conflict-
ing evidence for multiple world states. Inconsistencies are often found when
information is gathered from multiple sources and these sources are not fully
aligned, although they can also occur when criteria for evaluating alterna-
tives shift. Conflicting data requires more effort and attention to effectively
utilise, and its presence increases the complexity of decision problems.

Intransitive patterns of preferences are a form of inconsistent ranking data
where alternative A is preferred to B, B is preferred to C, and C is preferred
to A. These cycles of preferences indicate that an alternative is more (or
less) preferable than itself, violating normative models of decision making.
Intransitive patterns are a common feature of uncertain events with similar
events producing highly different outcomes. For financial markets surround-
ing uncertain events to be efficient, their participants must effectively handle
the intransitive patterns of preferences found in the available rankingdata.

HodgeRank is a topologically-inspired algorithm which models and ex-
tracts information from intransitive patterns of preferences, exploiting the
natural affinity of topological models for handling cycles in pairwise compar-
isons. If financial markets are efficient in regards to inconsistent ranking data,
market prices should fully reflect the output of HodgeRank and employing
the algorithm should offer no competitive advantage over the market.
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Our experiment shows, however, that in financial markets surrounding
horse racing, historical performance data contains information which is not
accounted for in decisions of market participants. Applying HodgeRank to th
highly inconsistent ranking data produced from past performance data, the
likelihood of outcomes can be more accurately estimated and better decisions
made. This represents a failure to fully utilise the available information
contained within inconsistent ranking data and a deviation from rational
decision making.

The effect of inconsistent ranking data not only inhibits the decision mak-
ing ability of individuals but also permeates the financial market, affecting
the market prices of each outcome. By applying the HodgeRank algorithm
to historic performance data and incorporating the output into a conditional
logit model, a fractional Kelly wagering strategy is able to determine better
prices for the outcomes and generate greater returns than the market. These
returns still represent a loss of capital for the second model, which separates
out and disregards inconsistent data, however the third model, which re-
weights the simplicial complex representation with regard to the local scale
inconsistency measure, generates a small profit.

Combining an improved version of the HodgeRank algorithm with con-
ditional logit models and Kelly wagering strategies, the inconsistency-based
inefficiency in UK parimutuel horserace win markets is exploited to achieve a
profit, illustrating that this inefficiency has a real economic cost. This profit is
relatively small in comparison with that achieved by exploiting other market
inefficiencies (Benter 1993, Sung et al. 2019, Lessmann et al. 2009), however
this is to be expected as i) the experiment uses a small portion of the data
available to bettors (Bolton & Chapman 1986) (historic performance, weight
and distance) and ii) optimising the technique for maximum returns has not
been an aim of the project.

It is debatable whether the returns of the second model are sufficiently
large to suggest the existence a market inefficiency. It creates an opportunity
for traders to reduce their loss rather than satisfy their ambition of achiev-
ing gains, and using the returns from this model as evidence of a market
inefficiency arguably violates the spirit of the efficient market hypothesis.
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Nevertheless, the third model achieves a small profit in the holdout sample,
and is clear evidence of an inefficiency in the financial markets surrounding
UK horse racing.

The findings of this experiment align with those of the existing literature
in the field showing that wagering markets are highly semi-strong efficient
(Sung & Johnson 2008, Edelman 2007). Market prices were the dominant
variable in the conditional logit model and despite the sophistication of the
HodgeRank algorithm, the information extracted by it was only able to pro-
vide a very small increase to the R̃2 of the mode. This should come as
little surprise, however, as bettors consider a plethora of data beyond the
historic performance, weight and distance data used in the experiment and,
whilst past performances are a significant factor in forecasting winners of
future races, they are not the sole determinant of market prices (Bolton &
Chapman 1986, Lessmann et al. 2009).

Inefficiencies in wagering markets arise from difficulties capturing com-
plex non-linear relationships between variables (Ma et al. 2016, Lessmann
et al. 2009, Lessmann et al. 2010, Lessmann et al. 2012, Edelman 2007,
Goddard 2005) and from systematic behavioural errors in market participants
(Ali 1977, Sung et al. 2009, Snyder 1978, Asch et al. 1982). Security prices
in parimutuel horserace win markets are affected by the presence of incon-
sistencies in ranking data produced from historical performance data, failing
to fully account for information contained in both the consistent and incon-
sistent parts of the dataset. This provides evidence for a new, inconsistency-
based, market inefficiency relating to the difficult of understanding complex
non-linear relationships.

6.1 Origins of inconsistency-based inefficiencies

One area which this project has not addressed is the precise mechanism by
which inconsistent ranking data causes systematic errors in decision mak-
ing. The presence of inconsistent ranking data increases the complexity of
decision problems, placing additional burden on the cognitive resources of
the decision maker. If the decision problem persists in straining these re-
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sources, focusing on the task depletes a limited pool of attention, and the
individual is more likely to defer or give up on the problem (Tversky &
Kahneman 1992, Baumeister et al. 1998, Sweller 1988, Frederick 2005).

Heuristics are often employed to simplify decision problems and decrease
the feeling of cognitive strain to acceptable levels (Tversky & Kahneman
1974, Slovic & Lichtenstein 1971, Cosmides & Tooby 1994). These heuristics
are simplifications, approximating portions of the decision making process
with simpler tasks. Applying heuristics risks the integrity of the decision
making process as these approximations may be inadequate and produce
errors in the decisions made.

Decision makers may exhibit a degree of confirmation bias, rejecting infor-
mation which disagrees with their already held internalised mental models
(Nickerson 1998, Jonas et al. 2001). Where conflicting information exists,
decision makers acknowledge data which agrees with the world state they
perceive, bolstering their evidence in support of it, and disregard other data.

In contrast to confirmation bias which relates to internally held beliefs,
Luce (1998) argued that when faced with conflicts, decision makers often
opt to maintain the status quo. One explanation for this status quo bias is
that individuals attempt to conserve cognitive resources and avoid making
decisions (Ritov & Baron 1992). Alternatively this bias may be an extension
of anchoring effects where the status quo forms an ‘anchor’ for judgements
and decision makers require a significant incentive to move away from this
initial judgement due to their risk averse tendencies (Kahneman & Tversky
1979).

An explanation for the existence of inconsistency-based inefficiencies is
that decision makers display tendencies to adhere to previously held beliefs,
whether externally or internally held, and the confusing nature of inconsistent
data does little to alter these beliefs. "People are awfully good at fooling
themselves. They’re so sure they know the answer that they don’t want to
confuse people with ugly-looking data" (Broad 1999). It should be noted
that this explanation for inconsistency-based inefficiencies is supported by
observations of anchoring effects in wagering markets (Johnson et al. 2009).
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6.2 Methodology

HodgeRank, a topologically-inspired ranking algorithm, is applied, in com-
bination with statistical forecasting methods and Kelly wagering strategies,
to seek returns from historical performance data. The findings of the ex-
periment demonstrate the value of the HodgeRank framework, and by ex-
tension network and topological approaches, in modelling and understanding
inconsistent ranking data, extracting information from the publicly available
information which is not captured by the market.

It has been necessary to increase the informational efficiency of the HodgeR-
ank algorithm itself in order to achieve abnormal returns. This has been
realised by further developing the algorithm in three ways:

(i) Measuring underlying performance: HodgeRank finds a ranking
solution by measuring underlying preference for alternatives, minimis-
ing the difference between observed and consistent pairwise compar-
isons. This ranking lacks a nuanced understanding of how close or far
apart consecutively ranked items are.

Experiments demonstrate that the information lost by converting a
measurement of underlying preference into a ranking is sufficient that
the resulting output is entirely captured by market prices in wagering
markets. This is not, however, true for the measurement of of un-
derlying preference where there is information of economic importance
contained within.

(ii) Edge weights: Information sources are not all equal in terms of their
utility and reliability in a decision problem. The project has extended
HodgeRank to incorporate weights on each edge in the simplicial com-
plex representation, estimating how important the information con-
tained in the edge should be. Again, experiments show the value of
weighting edges in the complex, improving the informational efficiency
of the algorithm.

(iii) Exploiting inconsistency: Unlike other techniques which analyse
inconsistent ranking data, HodgeRank includes a framework for un-
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derstanding inconsistencies. The algorithm itself, however, does not
exploit this understanding, separating out consistent and inconsistent
information and deriving ranking solutions from the consistent data
alone.

The version of HodgeRank presented in this project, and employed in
experiments, analyses the structure of these inconsistencies and identi-
fies pairs of alternatives which contribute greatly to local-scale incon-
sistency in the complex. The information about these pairs conflicts
with the remaining information in the dataset to a large extent. By
regarding this data with scepticism, and re-weighting the complex ap-
propriately, economically valuable is extracted by the algorithm which
is not captured by the market.

There is no claim that HodgeRank has been developed to its fullest,
nor that it extracts all the information available in pairwise comparisons of
historical performance data of UK horseraces. It may be the case that other
techniques, or a further developed HodgeRank algorithm, are more effective
in finding more valuable information from the available data. Nevertheless,
the development of HodgeRank outlined in this project is sufficient to answer
the research questions.

6.3 Further work

Inconsistency-based inefficiencies are not necessarily limited to financial mar-
kets surrounding uncertain events. Datasets gathered from multiple sources
are highly likely to contain conflicting information with some level of dis-
agreement between the various sources. Examples of settings likely to pro-
duce conflicting information include uncertain events, voter aggregation and
consumer choice behaviour. Evaluating the potential for inconsistency-based
inefficiencies in other financial markets will provide a better picture of the
impact of inconsistent data on decision making and market efficiency. In
addition, a broader study of inconsistency-based inefficiencies data may shed
light on their origin.
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There are areas where changes to the application of the HodgeRank al-
gorithm may result in improved performance and greater economic gains. It
is important, however, that this be balanced with the substantial computa-
tional cost of running the algorithm and other approaches may ultimately be
deemed more economically viable.

Some work has been conducted to optimise the parameters of HodgeRank
in this environment however, due to its theoretical complexities, in partic-
ular its use of pseudo-inverses, it is exceedingly difficult to determine how
perturbations in these parameters affect the output of the algorithm. Thus it
is impractical to analytically optimise the parameters of the input variables,
the pairwise comparisons and weights, to maximise the value of the output.
Instead a grid search approach will have to be adopted at a significant cost
in both computational resources and time.

Re-weighting pairwise comparisons by their contribution to local-scale in-
consistency in the network improves the information captured from the data.
It is intuitive to consider whether re-weighting comparisons by their contri-
bution to global scale inconsistency in the network, cycles of any length, will
further increase the effectiveness of the HodgeRank algorithm. Whilst this
measure has been theoretically developed, it requires unfeasible computa-
tional resources and is unsuitable for practical applications. Approximations
or significant computational resources (most likely both) will be required to
assess whether this more general measure of inconsistency adds value to the
HodgeRank algorithm.

HodgeRank may also be improved by incorporating more theory from
topology and network studies, although many of these avenues have been
exhausted. An unfortunate consequence of Lemma 1 is that there is no
clear approach to extending the analysis of the 1-cochain space to dimensions
higher than 2. All k-cochains, with k > 2, derived from a pairwise comparison
matrix are 0. Nonetheless, there is a large body of existing literature about
networks and a growing body concerning topological data analysis, and so
the potential for substantive theoretical leaps remains.
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6.4 Concluding Remarks

Inconsistent ranking data will continue to impact decision making and the
efficiency of financial markets until individuals improve their handling and
processing of such data. Evolutionary psychologists would argue that fully
utilising inconsistent ranking data falls beyond the purview of human be-
haviour, exceeding reasonable computational and time restraints (a point we
cannot deny given the computational requirements of the HodgeRank algo-
rithm). We believe, however, there is scope to improve decision making and
a necessary first step in this process is to understand the mechanisms which
are involved in making decisions from inconsistent ranking data, and how
these mechanisms fail to adhere to the standards of rationality.
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