
UNIVERSITY OF SOUTHAMPTON

FACULTY OF SOCIAL SCIENCES

MATHEMATICAL SCIENCES

Earning while learning: Using
Thompson Sampling to maximize

rewards from online sales

by

Andria ELLINA

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

April 2019

https://www.southampton.ac.uk/

iii

Declaration of Authorship

Andria ELLINA

“Earning while learning: Using Thompson Sampling to maximize rewards from
online sales”
I declare that this thesis and the work presented in it are my own and has been
generated by me as the result of my own original research. I confirm that:

1. This work was done wholly or mainly while in candidature for a research
degree at this University.

2. Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has
been clearly stated.

3. Where I have consulted the published work of others, this is always clearly
attributed.

4. Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

5. I have acknowledged all main sources of help.

6. Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

7. None of this work has been published before submission

Signed:

Date:

v

University of Southampton

Abstract

Faculty of Social Sciences

Mathematical Sciences

Thesis for the degree of Doctor of Philosophy

Earning while learning: Using Thompson Sampling to maximize rewards from
online sales

Andria ELLINA

The problem of finding the best option amongst a range of suboptimal candidates
in an uncertain environment is a challenging task in a number of domains rang-
ing from clinical trials to advertising, website optimization and dynamic pricing.
Initially, very little is known about the performance of the different options and
the decision maker needs to simultaneously learn about the performance of the
different options and earn some reward from the decisions made. This introduces
a trade-off between "exploration", the phase where new information is being ac-
quired and "exploitation", where the goal is maximizing rewards or alternatively
minimizing total regret. Regret is defined as the difference between the reward of
an oracle strategy that selects the best option at each time step and the reward of
the option we choose.

In this thesis, we develop new algorithms based on Thompson Sampling that
improve the overall performance and minimize total regret. Numerical experi-
ments are performed on simulated datasets in order to examine the effect of the
algorithms’ hyperparameters, to assess the robustness of the algorithms presented
and compare the performance of our new algorithms with current algorithms. We
use benchmarking experiments for a fair comparison of the different algorithms
on the simulated datasets.

An additional complication, especially common in the area of revenue manage-
ment, is seasonal changes that have an impact on the performance of the different
options and consequently affect our decisions. In order to tackle the challenge of
non-stationarity we deploy contextual Thompson Sampling to account for season-
ality and develop a new algorithm that combines contextual Thompson Sampling

https://www.southampton.ac.uk/

vi

with a standard statistical model selection method to solve the problem of un-
known seasonality in the reward distribution of the candidate options.

Finally, we focus on an application of dynamic pricing in which we develop an
algorithm that learns how to price a product in a competitive environment where
the demand function is unknown. Using simulation we compare our algorithm
in an oligopoly and duopoly setting with a set of other algorithms introduced
elsewhere in the literature.

vii

Acknowledgements

This journey was accompanied and made possible due to amazing people.
First and foremost, I would like to thank my PhD supervisors, Dr Christine Cur-
rie and Prof Christophe Mues. Their motivation, confidence and curiosity have
encouraged me throughout these years. A special thanks to Christine for always
making the time to discuss my work, regardless how confusing these discussions
could get!
A very special gratitude goes to my family for their endless support and for al-
ways being there to inspire me, even from 4000 km away.
I would also like to thank all of my friends in Cyprus, Loughborough and Southamp-
ton for their continuous support.
Last but by no means least, a special thanks to Christos for being my co-rider in
this 3.5-year adventurous journey. He has always been the best companion I could
ever have!
Ευχαριστώ πολύ!!!!

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis outline . 3

2 Literature review 7
2.1 Ranking and selection algorithms . 7

2.1.1 Indifference-zone method . 8
2.1.2 Optimal computing budget allocation 10

2.2 Multi-armed bandit algorithms . 11
2.2.1 ε-greedy . 12
2.2.2 Upper confidence bound . 13
2.2.3 Thompson Sampling . 14

2.3 Time-dependent bandits . 18
2.4 Contextual bandits . 20
2.5 Concluding remarks . 23

3 Stationary case 25
3.1 Background information . 26
3.2 Problem formulation . 27
3.3 Stationary Thompson Sampling . 28

3.3.1 Bayesian analysis . 28
3.3.2 Algorithm . 30

3.4 Stationary ε-greedy . 31
3.5 Learning and deployment buckets 32

3.5.1 Bayesian analysis . 34
3.5.2 Algorithm . 37

x

3.6 Numerical experiments on real-world datasets 38
3.6.1 Results for Dataset 1 . 39
3.6.2 Results for Dataset 2 . 45
3.6.3 Discussion . 48

3.7 Numerical experiments on artificial datasets 50
3.7.1 Setting up the artificial datasets 50
3.7.2 Experimental framework . 51
3.7.3 Comparison of algorithms over multiple datasets 52
3.7.4 Results . 54
3.7.5 Discussion . 64

3.8 Concluding remarks . 65

4 Seasonal case 67
4.1 Problem formulation . 68
4.2 Bayesian linear regression models 69
4.3 Algorithm . 71
4.4 Numerical experiments on real-world datasets 72

4.4.1 Results for Dataset 1 . 73
4.4.2 Results for Dataset 2 . 75
4.4.3 Discussion . 78

4.5 Multi-armed bandits for unknown seasonality 79
4.5.1 Reward models . 80
4.5.2 Model selection . 83

4.6 Numerical experiments on artificial datasets 84
4.6.1 Setting up the artificial datasets 84
4.6.2 Results . 86
4.6.3 Discussion . 93

4.7 Concluding remarks . 94

5 Dynamic pricing application 97
5.1 Related literature . 98
5.2 Problem definition . 100

5.2.1 Demand mechanism . 100
5.3 Experimental design . 102
5.4 Algorithm . 103

5.4.1 Hoeffding races . 105
5.5 Competitor algorithms . 108
5.6 Results . 109

xi

5.6.1 Monopoly . 109
5.6.1.1 Discussion . 112

5.6.2 Competitive market environment 113
5.6.2.1 Oligopoly . 113
5.6.2.2 Duopoly . 118
5.6.2.3 Discussion . 121

5.7 Concluding remarks . 121

6 Conclusions and future work 125
6.1 Contributions . 125

6.1.1 Contributions to practice . 127
6.2 Future work . 128

A Nemeneyi test for cumulative regret at t = 100 for Scenario1 131

B Golden-section search algorithm 139

C Revenue share in oligopoly for different parameter values 141

D Contextual TS-HR 143

xiii

List of Figures

3.1 Flowchart of the main steps of the learning and deployment buckets
algorithm . 34

3.2 Impact of varying ε on ε-greedy in the stationary case-Dataset 1 . . 40
3.3 Impact of varying µ0 on Thompson Sampling in the stationary case-

Dataset 1 . 41
3.4 Impact of varying µ0 and α0 on Thompson Sampling in the station-

ary case- Dataset 1 . 42
3.5 Impact of varying κ0 and β0 on Thompson Sampling in the station-

ary case- Dataset 1 . 42
3.6 Decisions made by Thompson Sampling with different prior param-

eters in the stationary case- Dataset 1 43
3.7 Comparison between ε-greedy and Thompson Sampling in the sta-

tionary case- Dataset 1 . 44
3.8 Performance of learning and deployment buckets algorithm when

µ0 = 2000, κ0 = 1, α0 = 1 and β0 = 1 for different percentages of p,
when N = 7 in Dataset 1. The curves are averages over 100 runs. . 45

3.9 Impact of varying ε on ε-greedy in the stationary case- Dataset 2 . . 45
3.10 Impact of varying µ0 on Thompson Sampling in the stationary case-

Dataset 2 . 46
3.11 Impact of varying β0 and κ0 on Thompson Sampling in the station-

ary case- Dataset 2 . 47
3.12 Comparison between ε-greedy and Thompson Sampling in the sta-

tionary case- Dataset 2 . 47
3.13 Performance of learning and deployment buckets algorithm when

µ0 = 2000, κ0 = 1, α0 = 1 and β0 = 1 for different percentages of p,
when N = 7 in Dataset 2. The curves are averages over 100 runs. . 48

3.14 Overview of setting up the artificial datasets. m and s are sets with
seven values representing the real mean and the standard deviation
respectively for each of the seven options. Each m is paired with
each s from each Scenario to create a total of 300 different datasets. 51

xiv

3.15 Cumulative regret over time for 100 different datasets in each sce-
nario for standard Thompson Sampling with µ0 = 25. 62

3.16 Cumulative regret over time for 100 different datasets in each sce-
nario for learning and deployment buckets with µ0 = 25 and 80%
of learning. 63

3.17 Cumulative regret over time for 100 different datasets in each sce-
nario for learning and deployment buckets with µ0 = 40 and 50%
of learning. 64

4.1 Percentage of optimal selection and cumulative regret for different
µ0 when σ2 = 1000, α0 = 1, β0 = 1. The curves are averages over
100 runs. 73

4.2 Percentage of optimal selection and cumulative regret for different
µ0 and σ2 when α0 = 1, β0 = 1. The curves are averages over 100
runs. 74

4.3 Percentage of optimal selection and cumulative regret for different
α0 and β0 when µ0 = (0, 0, .., 00) and σ2 = 2000. The curves are
averages over 100 runs. 74

4.4 Comparison between the standard Thompson Sampling algorithm
and contextual Thompson Sampling in the seasonal case for Dataset
1. The curves are averages over 100 runs. 75

4.5 Percentage of optimal selection and cumulative regret for different
µ0 when σ2 = 1000, α0 = 1, β0 = 1. The curves are averages over
100 runs. 76

4.6 Percentage of optimal selection and cumulative regret for different
µ0 and σ2 when α0 = 1, β0 = 1. The curves are averages over 100
runs. 76

4.7 Percentage of optimal selection and cumulative regret for different
α0 and β0 when µ0 = (2000, 2000, .., 2000) and σ2 = 1. The curves
are averages over 100 runs. 77

4.8 Comparison between the standard Thompson Sampling algorithm
and contextual Thompson Sampling in the seasonal case for Dataset
2. The curves are averages over 100 runs. 77

4.9 Percentage of runs in which contextual Thompson Sampling selects
each option for Dataset 2 in the seasonal case (Option 2 is the best
option). 78

xv

4.10 Overview of setting up the artificial datasets for Scenario 1. m and s
are sets with seven values representing the real mean and the stan-
dard deviation respectively for each of the seven options. Each m is
paired with each s to create a total of 50 different datasets and then
matched with a different Z, a set with seven values representing the
seasonal factors for each level-period of seasonality 86

4.11 Cumulative regret for the different algorithms against the difference
between the expected value of the best and the second best option
when there is daily seasonality. The first column is for low season-
ality and second column is the high seasonality. A-B, C-D, E-F are
for Scenario 1, Scenario 2, and Scenario 3 respectively 89

4.12 Cumulative regret for the different algorithms against the difference
between the expected value of the best and the second best option
when there is monthly seasonality. The first column is for low sea-
sonality and second column is the high seasonality. A-B, C-D, E-F
are for Scenario 1, Scenario 2, and Scenario 3 respectively 90

4.13 Cumulative regret for the different algorithms against the difference
between the expected value of the best and the second best option
when there is daily and monthly seasonality. The first column is
for low seasonality and second column is the high seasonality. A-B,
C-D, E-F are for Scenario 1, Scenario 2, and Scenario 3 respectively 91

4.14 Model selection of the new methodology in 2000 time steps. The
results are averaged over 200 individual runs 93

5.1 Illustration of the case where at t = 14 the worst bucket was B2,14

and the best bucket was B1,14 . 105
5.2 An example of case where there are 5 buckets in comparison. Bucket

1 is discarded because the upper bound of its mean performance is
lower than the lower bound of the best bucket 4 and its mean is
lower than the mean of Bucket 3 . 106

5.3 Average total revenue earned in 1000 time steps for 4 different val-
ues of µ0 when κ0 = 1, α0 = 1, β0 = 1, for different values of Range
(R). The results are averaged over 1000 independent simulation runs 109

5.4 Average number of bucket eliminations in each run with 1000 time
steps for 4 different values of µ0 when κ0 = 1, α0 = 1, β0 = 1, for
different values of Range (R). The results are averaged over 1000
independent simulation runs . 110

xvi

5.5 Comparison of cumulative revenue for standard Thompson Sam-
pling and Thompson Sampling that uses Hoeffding races for bucket
eliminations (TS-HR) with R = 100. In both algorithms µ0 = 700,
κ0 = 1, α0 = 1, β0 = 1. 111

5.6 Comparison of demand for standard Thompson Sampling and Thomp-
son Sampling that uses Hoeffding races for bucket eliminations (TS-
HR) with R = 100. In both algorithms µ0 = 700, κ0 = 1, α0 = 1,
β0 = 1. 111

5.7 Prices charged and revenue earned by standard TS with µ0 = 700,
κ0 = 1, α0 = 1, β0 = 1 and Thompson Sampling that uses Hoeffding
races for bucket eliminations with R = 100. The graphs are from
simulation 900. 112

5.8 Revenue share for the four competitors in oligopoly, in duopoly and
their overall revenue share. The results are the from 500 simula-
tions. 114

5.9 Boxplot based on the prices charged in 50× 1000 randomly chosen
time steps out of the total of 500(number of simulations) × 1000
(number of time steps) time steps. 115

5.10 Boxplot based on the prices charged in 50× 500 randomly chosen
time steps out of the total of 500(number of simulations) × 1000
(number of time steps). 500 refers to the 500 last times steps in each
simulation. 115

5.11 Mean demand for each time step split out over the three customer
segments . 116

5.12 Revenue and prices charged for each competitor individually. These
results are just for illustrative purposes from a random simulation,
simulation 100. In the brackets it is the total revenue earned by the
competitors in the same simulation. In this particular simulation
TS-HR earns the highest total revenue. 117

5.13 Revenue and prices charged for each competitor individually. These
results are just for illustrative purposes from a random simulation,
simulation 303. The number in brackets is the total revenue earned
by the competitors in the same simulation. In this simulation logit
earns the highest total revenue and TS-HR the lowest total revenue. 118

5.14 Revenue and prices charged by TS-HR in three different duopolies
with the three competitors. These results are just for illustrative pur-
poses from a random simulation, simulation 369. 120

xvii

C.1 Revenue share for the four competitors in oligopoly when R = 50,
in TS-HR. The results are averaged over 10 independent simulation
runs . 141

C.2 Revenue share for the four competitors in oligopoly when R = 400,
in TS-HR. The results are averaged over 10 independent simulation
runs . 141

C.3 Revenue share for the four competitors in oligopoly when µ0 = 400,
in TS-HR. The results are averaged over 10 independent simulation
runs . 142

xix

List of Tables

3.1 List of some likelihood functions with their conjugate prior distri-
butions and prior hyperparameters 27

3.2 Mean ma and standard deviation sa for the “real system” when N =

7 in Dataset 1 . 39
3.3 Mean ma and standard deviation sa of the “real system” when N = 7

in Dataset 2 . 39
3.4 Percentage of optimal selection at different time steps t using ε-

greedy with different ε . 40
3.5 Cumulative regret and percentage of optimal selection for the learn-

ing and deployment buckets algorithm, standard Thompson Sam-
pling and ε-greedy with different parameter values in Scenario 1 at
t = 2000. The values are averaged over 100× 200 runs. We under-
line the best parameter setting for each algorithm. 55

3.6 Cumulative regret and percentage of optimal selection for the learn-
ing and deployment buckets algorithm, standard Thompson Sam-
pling and ε-greedy with different parameter values in Scenario 2 at
t = 2000. The values are averaged over 100× 200 runs. We under-
line the best parameter setting for each algorithm. 55

3.7 Cumulative regret and percentage of optimal selection for the learn-
ing and deployment buckets algorithm, standard Thompson Sam-
pling and ε-greedy with different parameter values in Scenario 3 at
t = 2000. The values are averaged over 100× 200 runs. We under-
line the best parameter setting for each algorithm. 56

3.8 Test statistics for the different algorithms at different time steps and
in different scenarios . 57

3.9 Average Rankings for the three algorithms, with different parameter
settings, in Scenario 1, Scenario 2, Scenario 3 based on cumulative
regret at t = 100. We underline the best parameter setting for each
algorithm. The results are averaged over 100 × 200 runs in each
scenario. 58

xx

3.10 Average Rankings for the three algorithms, with different parameter
settings, in Scenario 1, Scenario 2, Scenario 3 based on cumulative
regret at t = 500. We underline the best parameter setting for each
algorithm. The results are averaged over 100 × 200 runs in each
scenario. 59

3.11 Average Rankings for the three algorithms, with different parameter
settings, in Scenario 1, Scenario 2, Scenario 3 based on cumulative
regret at t = 1500. We underline the best parameter setting for each
algorithm. The results are averaged over 100 × 200 runs in each
scenario. 60

3.12 Average Rankings for the three algorithms, with different parameter
settings, in Scenario 1, Scenario 2, Scenario 3 based on cumulative
regret at t = 2000. We underline the best parameter setting for each
algorithm. The results are averaged over 100 × 200 runs in each
scenario. 61

4.1 Additive factors for each day of the week 72
4.2 Cumulative regret at t = 2000 for standard Thompson Sampling,for

contextual Thompson Sampling that assumes daily, monthly, both
daily and monthly seasonality and for the new methodology. We
highlight the smallest value for each row. 88

5.1 Mean revenue at each time step for each competitor against each of
the other competitors in all duopolies. Each row shows the mean
revenue of the competitor in the first column against each of the
other competitors in duopoly. 119

5.2 Mean price charged at each time step for each competitor against
each of the other competitors in all duopoly competitions. Each row
shows the mean price of the competitor in the first column against
each of the other competitors in duopoly. 120

A.1 Nemeneyi test for α = 0.05. The horizontal line shows the pairs
whose p-value allows as to reject the Null hypothesis. We high-
light the pairs in which the performance of standard Thompson
Sampling is significantly different than the algorithm is compared
against . 137

1

Chapter 1

Introduction

In this thesis we focus on two main applications arising in earning while learning
methodologies: website optimization and dynamic pricing. Website optimization
is the process of finding the best version of a website in order to attract more cus-
tomers. Dynamic pricing describes the process of changing the price of a product
in real time in order to maximize revenue. The aim is to maximize total rewards
by finding the best option amongst a range of candidate options, when we have
limited initial information about their performance and the rewards are stochastic.
In website optimization, the best option refers to the version of a website that will
result in high sales and consequently high revenue. In dynamic pricing the best
option is the price that will result in the highest possible revenue for the retailer. In
both applications decisions are made in real-time with the effect of each decision
becoming available during the process and not in advance.

An alternative term used to describe the idea of earning while learning, which
has been receiving increased amount of interest by academics and practitioners
(Sutton and Barto, 1998; Wang, Deng, and Ye, 2014), is exploration vs exploitation.
This name captures the need to collect new information whilst operating the sys-
tem and find the right trade-off between acquiring new information (exploration/
learning) and making the best decision, given the current information (exploita-
tion/ earning). This approach is common in companies that seek for continuous
improvements in their systems with information becoming available during the
process. Thus, a good algorithm can avoid losses caused by wrong decisions in
the exploitation phase.

Earning while learning methodologies are of interest in various other fields,
ranging from hotel and flight reservations to personalized recommendation sys-
tems (Li et al., 2010a) and advertising (Agarwal, Chen, and Elango, 2009). What
links these applications is the need to learn the optimal action on the fly so that
in the long term the total revenue is maximized. These problems are particular
examples of sequential ranking and selection methods but with the rewards being

2 Chapter 1. Introduction

earned during the experimentation.
Since information about the performance of the different options is collected in

real-time, the task of finding the best option is even more challenging when there
are seasonal changes in the rewards of the candidate options. This implies that
when collecting new information about the different options, as is the case in the
website optimization problem we consider in Chapter 4, we always need to take
into consideration the seasonality factor. Ignoring the impact of seasonality would
result in comparisons between options tested at different times being meaningless.

In dynamic pricing, a particular problem in revenue management, the goal is
to find the most profitable price for a product. Hence, learning refers to the phase
where the retailer aims to obtain information about the demand of the candidate
prices and earning is the phase where the most profitable price is chosen in order
to maximize revenue. Here, we consider an example in which we have no prior
information about the relationship between price and demand.

The methods developed in this research project are in the class of algorithms
known as multi-armed bandits (MAB). In particular, our methods build on Thomp-
son Sampling, which was originally applied to clinical trials (Thompson, 1933) but
has since been applied to a number of different areas with very good empirical per-
formance (Chapelle and Li, 2011). Initially, we study the problem in a stationary
environment and then we proceed to the case where the reward of the different
candidate options follows some seasonality. Finally, we consider an example of
dynamic pricing, a particular application of MAB, in order to get a good under-
standing of what constitutes a good pricing strategy.

1.1 Contributions

Below we list the main contributions of this thesis before proceeding to the thesis
outline describing what is included in each chapter.

• Development of the learning and deployment buckets algorithm that combines
Thompson Sampling and ε-greedy. The algorithm uses the idea of splitting
the traffic of a website into two buckets, introduced by Agarwal et al. (2009).
Our empirical results on artificial datasets show that the algorithm has good
performance in a stationary environment, in situations where there is high
variability in rewards.

• A rigorous statistical comparison of Thompson Sampling, ε-greedy and our
newly developed algorithm, based on benchmarking tests. We compared

1.2. Thesis outline 3

these algorithms with different parameter values on a large number of arti-
ficial datasets. The benchmarking tests we performed for a consistent com-
parison of the algorithms shed light upon the effect that the different char-
acteristics of the datasets have on their performance and the benefits of our
newly developed algorithm.

• Development of AIC-TS, a new algorithm that combines the idea of contex-
tual bandits and statistical model selection for situations where the reward
of the different candidate options follows some unknown seasonality. In this
algorithm we incorporates the information about the season as contextual
information, i.e. additional information that may affect the performance of
the different options.

• Development of TS-HR, a novel pricing strategy that performs well in situ-
ations where little is known about market behaviour prior to the selling pe-
riod. The pricing strategy builds on Thompson Sampling and incorporates
a racing machine learning algorithm, Hoeffding races. We demonstrated its
efficacy in dynamic pricing, by conducting an empirical study in monopoly
and in a competitive market environment against other pricing strategies
from the literature, in oligopoly and duopoly. The results demonstrate that
it outperforms the other pricing algorithms in one-to-one competitions and
provide further insights into the problem of dynamic pricing in a competitive
environment.

1.2 Thesis outline

In Chapter 2, we present a literature review of important methodologies from the
area of ranking and selection and machine learning that are related to our work.
Algorithms from both areas have the same objective - compare a number of dif-
ferent options/“arms” in order to find the best one and maximize total rewards.
Even though theoretical analysis of the algorithms is out of the scope of this thesis,
some existing theoretical results are included along with important methodologi-
cal details and significant empirical results.

In Chapter 3, we consider the problem of online decision making, in the frame-
work of earning while learning, in a stationary environment. At the beginning, we
provide a formal problem formulation and we introduce the terms that we will be
using throughout the thesis. Then we present results from the practical implemen-
tation of two existing algorithms from the area of MAB, ε-greedy and Thompson

4 Chapter 1. Introduction

Sampling, and the new algorithm that we propose. The new algorithm, called
learning and deployment buckets algorithm, aims to improve the performance of
the standard formulation of the Bayesian learning algorithm. The three algorithms
are empirically tested on two real-world datasets, in order to observe how they
work and discuss their benefits and drawbacks. We are particularly interested in
the practical implementation of these algorithms. Thus, in our results, we examine
how the different values for the hyperparameters affect their performance when
the reward of the different candidate options follows a normal distribution with
unknown mean and variance. In Section 3.7, we test the performance of all algo-
rithms described in the chapter on a large number of artificial datasets. The tests
on the algorithms are followed by benchmarking tests that provide a consistent
comparison of their performance on the different datasets.

Chapter 4 focuses on the implementation of Thompson Sampling in a seasonal
environment. For this purpose, we use the idea of contextual bandits through-
out the chapter and incorporate the information about the season as contextual
information in the learning process. We first perform some testing on the hyper-
parameters to observe how they can affect the performance of contextual Thomp-
son Sampling (Section 4.4). We then develop a new algorithm that combines con-
textual bandits with statistical model selection in order to handle the problem of
unknown seasonality (Section 4.5). The algorithms are then tested on different
artificial datasets and different seasonal environments in order to study the ad-
vantages and disadvantages of our method, AIC-TS, over different versions of the
traditional Thompson Sampling algorithm.

In Chapter 5, motivated by the Dynamic Pricing Challenge 1 (Geer et al., 2018),
we pay attention to a practical application from the area of revenue management,
dynamic pricing. We propose a pricing strategy that builds on Thompson Sam-
pling and incorporates an idea from Hoeffding’s inequality. Then, we study the
performance of our pricing algorithm by testing it on a simulated market envi-
ronment with three different customer segments in two different environments:
monopoly (Section 5.6.1) and in a competitive market environment (Section 5.6.2).
In the competitive market environment the algorithm competes against other pric-
ing strategies from the literature . Our findings demonstrate the complexity of
the dynamic pricing problem and the benefits and drawbacks of our pricing algo-
rithm, under the demand mechanism used in the experiments.

1Dynamic Pricing Challenge was a group challenge held on the occasion of the 17th INFORMS
Revenue Management and Pricing Section Conference 2017

1.2. Thesis outline 5

The thesis concludes in Chapter 6 which summarizes our contributions and
presents future research directions.

7

Chapter 2

Literature review

This chapter provides an overview of existing methods used to solve the problem
of finding the best option amongst a range of candidate options.

The problem we examine can be described as one of sequential ranking and
selection. Thus, we start by explaining some existing ranking and selection pro-
cedures, mainly used in simulation, before proceeding to explain multi-armed-
bandit methods, in order to examine whether there is a single method that is su-
perior in a number of different settings. Along with the description of the main al-
gorithms, different applications and examples of empirical work are also included
in order to identify the research gaps in the area.

2.1 Ranking and selection algorithms

Sequential ranking and selection (R&S) procedures were first developed by statisti-
cians but have also attracted attention within the computer simulation community
(Branke, Chick, and Schmidt, 2007). The main objective is to either identify the
best option (alternative) out of a set of candidate options based on some expected
performance measure, compare all options against a standard, select the option
with the highest probability of being the best or select the option with the highest
probability of success, where success is a binary outcome. A general rule for se-
quential R&S procedures is that estimates of the mean and variance of each option
are used to determine how samples should be collected sequentially until a stop-
ping criterion is met. The three main steps followed by a typical R&S procedure
are: initialization, screening, stopping rule.

What distinguishes a good R&S procedure is the requirement of fewer sam-
ples (replications) to achieve the same level of evidence for correct selection (Fu,
2015). In general, for the comparison of the performance of various alternatives,
the number of samples for each option is gradually increased until the variance of
the estimator becomes sufficiently small. Using the same number of samples for

8 Chapter 2. Literature review

all options can be inefficient because if the variance of one option is very low then
only a few samples can be enough for an accurate estimation of its performance
(Fu, 2015). The same is true for the case where the performance of an option is
much worse than that of the other options; continuing to sample this bad option is
not very efficient.

R&S procedures have been used throughout simulation optimization (Boesel,
Nelson, and Kim, 2003). Outputs in simulation are stochastic and algorithms are
designed to be computationally efficient by choosing the appropriate set of in-
put parameters to use in each iteration of the simulation optimization algorithm.
Therefore, many of the ideas used in simulation optimization may be of bene-
fit in online learning. Since simulations do not generate real output, the idea of
earning while learning is not relevant and the focus is purely on efficient “learn-
ing”. Instead of an earning/learning trade off, here we are dealing with a trade
off between the estimated quality of a feasible solution and the uncertainty of the
estimate in order to make an efficient allocation of the simulation budget and find
the best option (Chau et al., 2014).

The three most popular approaches used to solve the problem of selection are
the indifference zone (IZ) (Bechhofer, 1954), the optimal computing budget alloca-
tion (OCBA) (Chen, 1995) and the value of information procedure (VIP) (Branke,
Chick, and Schmidt, 2007). All the approaches differ by the way sampling allo-
cations are made and by the way the evidence of correct selection is described.
Branke, Chick, and Schmidt (2007) give an overview of these three approaches in
order to compare their performance.

Below we describe two of the most popular R&S procedures with the most
relevance to our project.

2.1.1 Indifference-zone method

Indifference zone methods (IZ) determine an efficient sampling scheme that allows
the best option to be selected with probability 1− α assuming that the difference
between the objective values of the best and the second best is at least δ > 0. The
idea of IZ methods was firstly introduced by Bechhofer (1954) and it has been stud-
ied extensively in the literature since then (Rinott, 1978; Kim and Dieker, 2011). IZ
methods aim to guarantee a lower bound for probability of correct selection (PCS),
subject to the indifference-zone constraint, that the best option is at least δ > 0 bet-
ter than others. The methods provide a PCS guarantee and estimate the variance
of the output of each option by using the sample variance from a first stage of
sampling.

2.1. Ranking and selection algorithms 9

The state of the art for IZ methods is the KN++ procedure introduced by Kim
and Kim and Nelson (2006a), extending their previous KN algorithm to allow for
correlated samples. In the KN++ procedure there is one additional step, the update
step, where the variance estimators are updated as more data are obtained and
thus the efficiency increases since more samples are used for the calculation of
the sample variance (Kim and Nelson, 2006b). Options that perform badly are
screened out, a similar idea used in earning while learning algorithms as well,
with the bad options stop getting chosen after sufficient information about their
bad performance has been collected. The method provides only an asymptotic
PCS guarantee.

A step by step description of KN++ is provided:

1. Specify:

• Confidence level: 1
N < 1− α < 1, where N is the number of options

• Indifference-Zone Parameter: δ > 0

• First stage sample size: n0 ≥ 2

• Initial batch size (i.e. number of samples to run per non-eliminated op-
tion, per subsequent stage): m0 < n0

2. Initialization: Let I = {1, 2, ..., N}, the set of the options we are comparing,
n = 0, z = n0

3. While the stopping rule is not satisfied:

• Observe z samples from option i, ∀i ∈ I. Set n = n + z and z = m0

• Update: h2 = 2η(n− 1) and η = 1
2

[(
2α

N−1

) −2
n−1 − 1

]
. Update the sample

statistics x̄i and σ2
i ∀i ∈ I.

Screening:

• For all i, j ∈ I and i > j set dij = x̄i − x̄j and

εij = max
{

0, δ
2n (

h2(σ2
i +σ2

j)

δ2 − n)
}

where n is the number of observations

• If dij < εij then stop sampling option i. If dij < −εij then stop sampling
option j, i.e. remove option i or option j from I respectively.

The stopping rule in KN++ is: | I |= 1 i.e. all options have been eliminated and
there is only one option left

10 Chapter 2. Literature review

2.1.2 Optimal computing budget allocation

The main idea of optimal computing budget allocation (OCBA) (Chen, 1995) is
to allocate a limited sampling budget in a way that maximises the probability of
correct selection (PCS). Thus, the algorithm tries to estimate how PCS will be im-
proved when additional samples are added to one of the options. Branke, Chick,
and Schmidt (2007) summarize the OCBA algorithm as follows:

1. Specify:

• First-stage sample size n0 > 2

• Number of options to simulate per stage: q

• z > 0: Sampling increment z to allocate per subsequent stage

• Stopping rule parameters

2. Initialization: Run independent replications xi1, xi2, ..., xin0 and initialize the
number of replications ni = n0 run so far ∀i ∈ I.

3. Determine the sample statistics x̄i and σ2
i and put the samples means x̄1,

x̄2,...x̄N in an increasing order .

4. While the stopping rule is not satisfied:

• Compute EAPCSi (Estimated approximate probability of correct selec-
tion) ∀i ∈ I
Screening:

• Calculate EAPCSi− PCSSlep and set zi =
z
q for the z options with largest

EAPCSi − PCSSlep and set zj = 0 for the others.

• Run zi additional observations for option i.

• For all i with zi > 0, update ni = ni + zi, the sample statistics x̄i and σ̂2

and order statistics so that x̄(1) < < x̄(N).

5. Select the option with the best estimated mean.

For more details on the calculation of some of the statistics mentioned below we
refer the readers to (Chen, 1995).

The algorithms described above are very popular methods used in sequential
R&S, for simulation optimization. However, in order to investigate further how
the problem of R&S can be solved in online fashion we choose to move towards

2.2. Multi-armed bandit algorithms 11

methods used in machine learning to solve similar problems. A category of algo-
rithms in machine learning used to solve the problem of finding the best option
amongst a range of suboptimal candidates is known as Multi-armed bandits.

2.2 Multi-armed bandit algorithms

Multi-armed bandit (MAB) algorithms aim to balance the trade-off between collect-
ing new information (exploration) and maximizing rewards (exploitation), when
there is limited initial information about the performance of the different options
we are comparing. The objective is to find the optimal/best option and maximize
rewards over a given time horizon. Within the MAB framework, the options we
are choosing between are the arms and we use the terms arm and option inter-
changeably in what follows.

Even though the short term reward is maximized by choosing the arm that has
performed well in the past, long term reward is maximized by sufficient explo-
ration of all arms in order to find the optimal. At each iteration of a MAB experi-
ment, the algorithm chooses which arm a ∈ {1, 2, ..N} to “pull”, i.e. which option
to test during the next period and it receives its reward rat(t), while the rewards
that could have been obtained from the other arms remain unknown. The MAB
algorithm will then use all the information collected so far about the performance
of the options, to determine which option to choose in the next time period.

The main objective of a MAB algorithm is to maximize the total reward over a
fixed time horizon T, ∑T

t=1 rat(t), where rat(t) is the reward of arm a at time t. This
is equivalent to minimizing total regret, where regret is defined as the difference
between the reward of an oracle strategy that selects the best arm at each time step
and the reward of the chosen arm. It is given by the following equation:

E[R(T)] = E[
T

∑
t=1

(ra∗t − rat(t))], (2.1)

where ra∗ is the expected reward of the best arm at time t, given by a∗t = argmaxE[rat]
a=1,2,..,N

.

Due to the limited initial knowledge about the options, the uncertainty at the be-
ginning of the experiment is expected to be very high. The time horizon T is very
important because, as Li et al. (2010b) point out, the algorithm may have a huge
regret in the short term since we “play” suboptimal arms more often, while in the
long run regret stops increasing since our decisions are based on collected infor-
mation about arms that have previously performed well.

12 Chapter 2. Literature review

The main characteristics of a typical MAB problem are the constant number of
arms, the unknown but fixed reward distribution of each arm, the reduction in the
uncertainty after each pull and finally the fact that, at each time step, only the re-
ward of the selected arm is observed. The fact that we get only partial information
for the problem is the main difference between MAB and other machine learning
procedures (Burtini, Loeppky, and Lawrence, 2015).

The most commonly used MAB algorithms are ε-greedy, UCB (Auer, Cesa-
Bianchi, and Fischer, 2002) and Thompson Sampling (Thompson, 1933). Boltz-
mann Exploration/SoftMax (Sutton and Barto, 1998), Pursuit Algorithm (Thathachar,
1984) and Gittins index (Gittins, 1979) are also popular heuristics used for the same
purpose. A description of the most popular algorithms follows this brief introduc-
tion to the general problem.

2.2.1 ε-greedy

The algorithm makes a random selection of any of the options with probability ε

and chooses the best option with probability 1− ε; therefore, on average we would
expect it to spend εT of the time on exploration and (1− ε)T on exploitation (Ver-
morel and Mohri, 2005). The probability of exploration, specified by the parameter
ε, is in the interval [0,1] and defined by the user at the outset. Consequently, if ε = 1
we have pure exploration while in the case where ε = 0 we have pure exploitation.

White (2012) showed that the performance of ε-greedy depends first on the
value of ε and then on the time we look at our results. After running simulations
for different values of ε, he showed that when ε is high the algorithm finds the best
arm more quickly since there is much more exploration taking place but at the
end of the experiment the probability of selecting the best arm is not high enough
because the algorithm is exploring without sufficient exploitation. On the other
hand, as ε gets smaller the algorithm finds the best arm much later but the proba-
bility of selecting the best arm at the end reaches a higher value. He also obtained
similar results when he compared the average reward and the cumulative reward
at each point in time for the different ε values. Thus, the choice of ε is very impor-
tant and its optimal value depends on the length of the time horizon we intend to
leave an ε-greedy algorithm to run (White, 2012).

The fact that the value of ε is chosen at the beginning means that in many cases
the algorithm may keep exploring even after the optimal option has been found
and computational time is wasted in the exploration of non-optimal options while
at the same time we keep missing the opportunity to apply the best option. This is
why a new modified algorithm, called ε-decreasing, which decreases the amount

2.2. Multi-armed bandit algorithms 13

of exploration, is sometimes used (Vermorel and Mohri, 2005). In ε-decreasing,
εt = min

{
1, ε0

t
}

, where ε0 > 0 so that ε → 0 as t → T . The value of parameter
ε0 is chosen at the beginning and it is very important. Similar to ε-greedy, a small
value for ε0 will lead to insufficient exploration while a large ε0 will lead to high
cumulative regret due to a delayed convergence. However, the algorithm is still
wasteful since even with a decreasing value of ε the exploration is still based on
simple random sampling (Scott, 2010).

A particular example of ε-greedy strategy is known as ε-first. ε-first strategy
is the simplest variant of ε-greedy. In comparison with standard ε-greedy, where
exploration takes place at the same time as the exploitation phase, in ε-first the ex-
ploitation comes only after all the exploration is done. A major drawback of ε-first
is that since all learning takes place upfront, in the case of a non-stationary reward
distribution the algorithm does not inform the user about these new changes. On
the other hand, ε-first may work well enough in the case of short-terms exper-
iments because in this case even when inferior strategies are not explored, the
consequences are not so important (White, 2012).

Moreover, A/B testing is a variant of the simple ε-first algorithm and it is used
for the comparison of usually two options. It is also known as split test, and is the
benchmark method used for controlled experiments, in website optimization, to
measure clicks and conversion of website visitors. The idea behind A/B testing is
that the traffic of a website is split into two, some users of the website are shown
the existing version of the website, called the control version, and some users are
shown the new version that needs to be evaluated, called treatment. This method
is similar to ε-greedy in a way that exploration, defined by ε, is dictated by the pro-
portion of traffic sent to the treatment option. For an overview of A/B controlled
experiments go to Kohavi et al. (2009).

2.2.2 Upper confidence bound

One of the most popular algorithms with various practical applications, intro-
duced by Lai and Robbins (1985), is Upper Confidence Bound (UCB) which is
based on the idea of optimism in the face of uncertainty. UCB can be characterized
as an optimistic exploration algorithm since it may continue to explore all arms,
even though some of them do not perform very well at the beginning (Agrawal
and Goyal, 2012). While other algorithms would under-explore these arms, UCB
will keep exploring them. Thus, the main difference between UCB and other well
known algorithms is that instead of playing the arm with the highest reward, each

14 Chapter 2. Literature review

arm is assigned an UCB for its mean reward, and the arm with the largest bound
is played (Scott, 2010).

One of the most commonly used versions of UCB is UCB1 for cases where the
reward of each arm is in [0, 1] (Auer, Cesa-Bianchi, and Fischer, 2002). Firstly, each
arm is played once. Then the algorithm picks the arm j at time t such that

j(t) := argmax
a=1,2,..,N

(
r̂a +

√
2 ln(t)

ka

)
, (2.2)

where r̂a is the average expected payoff of arm a, over the previous t − 1 itera-
tions, and ka is the number of times arm a has been played (Burtini, Loeppky, and
Lawrence, 2015; Kuleshov and Precup, 2014). What makes UCB so interesting and
easy to understand is the absence of parameters chosen by the user before the im-
plementation of the algorithm (White, 2012). At time t, the expected regret of the
UCB1 algorithm is bounded by

8
N
∑

a=1

ln(t)
∆a

+ (1 + π2

3)
N
∑

a=1
∆a,

where ∆a = r∗ − ra with r∗ being the reward of the best arm (Auer, Cesa-Bianchi,
and Fischer, 2002). So UCB1 achieves the optimal regret up to a multiplicative
constant.

There are various UCB methods that use different functions to calculate the
bounds for the regret and they all perform very well in cases where the number of
arms is small and the reward variances are high but their performance gets worse
as the number of arms gets larger (Kuleshov and Precup, 2014). They also return
good results when the rewards are independent and have no shared parameters.
One reported practical application of UCB is website optimization, where Yahoo!
uses it to optimize the articles shown on the Yahoo! front page (Li et al., 2010a).

2.2.3 Thompson Sampling

Thompson Sampling, also known as randomized Bayesian heuristic, is one of
the earliest heuristics developed to handle the exploration/exploitation problem
(Thompson, 1933; Scott, 2010). The idea is to first assume a prior distribution on
the parameters of the reward distribution of each arm. After each time step, the
prior distribution for the reward of the arm that has been played is updated to
give a posterior distribution. Which arm to play is chosen by random sampling
of the posterior distribution of each of the arms, where the arm with the highest
sampled reward is the one that is played. This is what distinguishes the algorithm

2.2. Multi-armed bandit algorithms 15

from other MAB techniques such as ε-greedy where the decision made is based on
the expectation of the reward (Russo et al., 2018). Another term used very often in
the literature is the probability matching technique which describes the matching
between the probability to choose an arm and the probability that this arm has the
highest reward (Scott, 2015).

In this process conjugate priors are usually used for computational purposes.
This means that for a certain likelihood, the posterior probability distribution and
the prior probability distribution are in the same family. Arms are more likely to be
played if their posterior distribution has either a high centre point, which implies a
high average reward, or a high variance, which implies limited information about
their performance. Therefore, the algorithm is more likely to choose arms that
have performed well in the past or arms that have not been chosen enough times
in the past to learn about their performance. Hence, the fact that the algorithm
stops exploring inferior arms leads to greater sample sizes for the superior ones.

The main steps are listed in Algorithm 1. Note here that initially we take a
random sample from the prior distribution, then based on the reward obtained
from the chosen arm we calculate the posterior distribution which then becomes
the new prior in the next iteration.

Algorithm 1 Thompson Sampling

for t=1,2,..,T do
Set the initial hyperparameters
Take a random sample r̃a from the prior of arm a for all a ∈ {1, 2, ..N}
Select the arm with the highest sample value at = argmaxr̃a

a=1,2,..,N
and observe its

reward
Update the hyperparameters of arm at and calculate its posterior distribu-

tion. This posterior becomes the new prior used in the sampling process in the
next iteration
end for

Thompson Sampling has been shown to work well in practical applications
(Scott, 2010; Chapelle and Li, 2011) but theoretical results have only become avail-
able relatively recently. The first theoretical analysis of the algorithm comes from
Kaufmann, Korda, and Munos (2012) who defined a problem-dependent regret
bound for bernoulli bandits i.e. binary/binomial reward distribution. Their asymp-
totically optimal regret bound for N arms and time T is given by the following

16 Chapter 2. Literature review

equation.

R(T) ≤ (1 + ε) ∑
a∈N:µa 6=µ∗

∆a(ln(T) + ln ln(T))
D(µa ‖ µ∗)

+ c(ε, µ1, ..., µN), (2.3)

where µ∗ is the mean reward of the best arm, ε > 0, c(ε, µ1, ..., µN) is a problem
dependent constant and D(µa ‖ µ∗) is the Kullback-Leibler divergence between
µa and µ∗ given by

D(µa ‖ µ∗) = µa ln
(

µa
µ∗

)
+ (1− µa) ln

(
1−µa
1−µ∗

)
,

They managed to reach the lower bound for regret, that Lai and Robbins (1985)
have proven for any stochastic MAB problem. Until then, UCB was the only MAB
algorithm satisfying this bound and thus their work played an important role in
making Thompson Sampling comparable to the most commonly used algorithm
at the time. Note here that the lower bound on regret for UCB is

E[R(T)] ≥
[N

∑
a=2

∆a

D(µa ‖ µ∗)
+ o(1)

]
ln T. (2.4)

Agrawal and Goyal (2012) continued the work on the theoretical analysis of the
Bayesian algorithm and they obtained the following results for a 2-armed Bernoulli
bandit problem

E[R(T)] = O
(ln T

∆
+

1
∆3

)
, (2.5)

where ∆ = µ∗ − µ2 provided that µ∗ = µ1. For the case of N Bernoulli arms

E[R(T)] ≤ O
(
(

N

∑
a=2

1
∆2

a
)2 ln T

)
. (2.6)

A year later, Agrawal and Goyal (2013a) attempted an extension of this work on
Bernoulli bandits to the case of Gaussian rewards. Following the general lower
bound of O(

√
NT) for any MAB problem, they obtained a general near-optimal

problem-independent bound of O
(√

NT ln T
)

and a problem-independent bound
of O

(√
NT ln N

)
for Gaussian priors with rewards in the range [0, 1]. At this point

we should mention that even though in our algorithms cumulative regret stops
increasing and convergences to a certain value, the regret bounds defined above
for Bernoulli bandits do not hold since we concentrate on Normal reward distribu-
tion. Nonetheless, with the right set up there is a chance that the algorithms would
follow the convergence rates given by Agrawal and Goyal (2013a) but this has not
been tested in our work on stationary MAB problems. In the case of seasonality,

2.2. Multi-armed bandit algorithms 17

developing convergence is likely to be much more difficult due to the additional
complexity of seasonality.

Even though Thompson Sampling is a flexible heuristic that can be used with
various reward distributions (Scott, 2015), the most common example used in the
literature is the case of binomial rewards, where the prior assigned to the parame-
ters is its conjugate beta prior. Examples of real-life situations that can be described
by this model of binary rewards are the clicks/no clicks for a website advertise-
ment or a buy/no buy model (Scott, 2010; Chapelle and Li, 2011; Agrawal and
Goyal, 2012). Other authors have considered different reward distributions; e.g
Honda and Takemura (2014) studied the case where the reward distribution is
normal.

The choice of priors is very important and it represents the prior knowledge
about the performance of the different arms. When we take knowledge into ac-
count, the algorithm spends less time in exploration and thus it has more time
to exploit superior arms. Thus, in cases where prior knowledge from empirical
data is ignored, we face the situation of large losses, due to too much exploration
(Russo et al., 2018).

When empirically compared to UCB in particular, Thompson Sampling has
shown more robustness in a situation with delayed feedback (Chapelle and Li,
2011). Delayed feedback is defined by Agrawal and Goyal (2012) as the situation
where even though we want to make a quick decision about which arm to play
next, the result of playing an arm becomes available only after some time delay.
This property of Thompson Sampling makes it the most suitable algorithm in the
area of display advertisement where there is a time delay between the time a user
sees an advertisement and the time they click on it (Chapelle and Li, 2011). A pos-
sible explanation for this robustness of the algorithm, is the fact that the heuristic
is randomized. This means that it splits the traffic into different arms in propor-
tion to their performance while the system is waiting for new updates, when other
non-randomized algorithms end up with greater variance in their rewards since
they keep pulling the same arm during this delay (Scott, 2015). Other practical
applications of this Bayesian online learning algorithm include Microsoft’s Bing
Search where the decision is made between different advertisements to be placed
on their website (Graepel et al., 2010).

An important assumption made for any standard MAB algorithm is the station-
arity of the reward distributions. However, this assumption is very often violated,
since in many real-world applications assuming that all arms follow a stationary
distribution over time is not feasible. Thus, in the following section we take a

18 Chapter 2. Literature review

closer look to a number of algorithms from the literature that handle non- station-
ary problems.

2.3 Time-dependent bandits

Detecting changes in the reward distributions is more difficult for online learning
algorithms than in offline situations where all of the data are available in advance.
Thus, making suitable changes to the algorithms is crucial in order to first capture
these changes and then adapt the procedure of finding the best alternative by using
these information.

Whittle (1988) introduces the term “restless bandits” to describe the situation
where the characteristics of the different arms change continuously, even for those
arms that are not played. To describe the problem in terms of MAB, he introduces
the terms active and passive arms to define whether an arm is played or not, re-
spectively. Thus, the basic assumption for the case of restless bandits is that even
in the passive phase, i.e. some of the arms are not played, their characteristics
are changing. It has been shown that for a non-stationary problem, an algorithm
based on stationarity assumptions performs almost as badly as the random choice
of options (Bouneffouf and Feraud, 2016). In particular, in the case of Thompson
Sampling with binary rewards, the standard formulation of the algorithm becomes
less effective in time, while Thompson Sampling that tries to capture the underly-
ing changes of the system performs better. However, it is worth mentioning that
in non-stationary situations, regret may not vanish completely by the end of the
experiment (Russo et al., 2018).

The proposed solutions for non-stationary problems fall within two main cat-
egories. First are the methods that forget some of the historical observations and
use only the most recent ones in the process of decision making and second are the
methods that aim to track the changes in the time-varying parameters in order to
find the underlying model that describes the performance of the different options
over time. We split the non-stationary problems into three main categories based
on how these changes occur: Brownian motion, switching environment and drift-
ing environment. Subsequently, we explain some of the existing methodologies
used to solve problem within these three categories.

1. Brownian motion: This is the case where the changes in the reward distribu-
tion are completely random and can be described only by Brownian motion
(Slivkins and Upfal, 2008).

2.3. Time-dependent bandits 19

2. Switching behaviour: Switching behaviour involves a sudden change in the
reward distribution of the arms. This implies that the reward distributions
of the different options remain constant for some periods of time and experi-
ence sudden changes at unknown times. Sudden changes are very common
in various domains such as the financial sector where unexpected failures
may happen.

A further distinction in switching behaviour is made between situations where,
when a switch happens, all arms are affected (global switching) and situa-
tions where the change happens independently for the different arms (Per
Arm Switching). In the case of switching behaviour, either Global or Per
Arm Switching, the optimal adaptation is for the algorithm to forget some
of the rewards observed in the past in order to take into account only re-
cent information that is probably more relevant (Hartland et al., 2007). Two
algorithms that build on this idea are modifications of the UCB algorithms
and are known as discounted UCB (Kocsis and Szepesvári, 2006) and Slid-
ing UCB (Garivier and Moulines, 2011). In a simulation study, Garivier
and Moulines (2011) study the problem of having three different Bernoulli
variables and the probability of success for one of the arms changes at two
time steps. From their results, it is clear that Sliding Window UCB performs
slightly better that Discounted-UCB and much better than UCB1. Moreover,
it is suggested that the algorithms that build on UCB1, which performs a log-
arithmic regret in the stationary case, can reach a regret of order t/log(T) in
a switching environment. In the example of two arms, where the one arm
changes periodically, the two algorithms perform almost the same.

Mellor and Shapiro (2013) combine Thompson Sampling with a change-point
detection algorithm and test it in both environments; global and per arm.
Since they do not know when the last switching event occurred in their
Global Change-Point Thompson Sampling algorithm, they define the pos-
terior distribution they need to sample from, P(θ | Dt−1), as the product of
the posterior of model, given the data and the probability of run length rt

since a switching event occurred. Hence,

P(θ | Dt−1) = P(θ | Dt−1, rt)P(rt | Dt−1).

Thus, in order to use Thompson Sampling, they first sample the run length
since last change occurred, in order to understand how much data from the
past they can use. Then they sample individually for each arm, from the

20 Chapter 2. Literature review

posterior distribution of the arms, given the run length, and they pull the
arm for which the sample from the posterior distribution is highest.

3. Drifting behaviour: These cases are characterized by continuous changes
to the reward distributions. In this category of problems, Bouneffouf and
Feraud (2016) study the problem of multi-armed bandits with known trend,
which implies that the reward distribution of each arm is known but the
environment is changing. They assume that the distributions of the arms
change based on some known functions. For the formulation of their prob-
lem, they define the non-stationary reward function z(t) = rat(t)D(nat(t)),
where D(nat) is the known function for trend , nat(t) is the number of times
arm a is played and rat(t) is the stationary reward of arm a.

2.4 Contextual bandits

The algorithms that use additional information in the process of decision making
to improve their overall performance are known as contextual bandits, a subcate-
gory of MAB algorithms. In many settings, contextual information can be treated
as extra information that can reveal the current state of the environment. The algo-
rithm will then take the context into account when recommending the next arm to
pull. For example, seasonality in demand can be treated as contextual information
in the situation where the price of a product must be frequently adjusted in order
to maximize revenue.

In this project, our interest mainly revolves around stochastic contextual ban-
dits. This class of algorithms is based on stochastic data generation models and the
rewards of the arms are drawn from unknown reward distributions. Most of the
existing work carried out in the framework of stochastic contextual bandit prob-
lems introduce a new vector ct which includes the context up to time t. Then the
user for every new observation uses the vectors (ct, at, rat(t)), form all the previous
time steps until t− 1, to decide which arm to play next (Li et al., 2010a; Chapelle
and Li, 2011).

Recent development in the area is driven by contextual advertising (Li et al.,
2010b), personalized web search (Li et al., 2010a), personalized recommendation
systems (Wang et al., 2014) and web page organization (Agarwal, Chen, and Elango,
2009). In those examples, contextual information may include information about
the user, the different arms and perhaps some information about the environment.

2.4. Contextual bandits 21

In the particular case of contextual advertising, the aim is to find the most prof-
itable advertisements to place on a website based on some side information about
the content of the site, the user and his recent behaviour and the advertisements
(arms) (Madani and DeCoste, 2005). In all of the above cases the most common
measure of success is the Click Through Rate (CTR) which is defined as the num-
ber of users that click on a website divided by the total number of users that have
visited the page.

A popular algorithm in website optimization, developed to handle the problem
of personalized recommendations was developed by Yahoo!, one of the biggest
portal sites. Their aim is to increase their users’ satisfaction by presenting them
with news articles that fit better with their interests and place the best article on
the story position (i.e top position) on Yahoo! Front Page. The algorithm they use
for this purpose is based on the idea of confidence bounds and is called LinUCB.
Using this algorithm, which assumes a linear relationship between ct and rat , they
rank the remaining stories based firstly on their users interests and also on the pop-
ularity of each article, by comparing the individual CTRs (Li et al., 2010a). Their
methodology builds on the idea of Agarwal et al. (2009) which involves two sep-
arate buckets to which they send different amount of traffic. They use a “learning
bucket”, to which they send only a small amount of traffic in order to learn the CTR
of each article and the “deployment bucket” that serves the users using the infor-
mation obtained by the “learning bucket”. In the “deployment bucket” the article
with the highest CTR is chosen for the users but this CTR changes with time ac-
cording to the information obtained in the “learning bucket”. In their study they
compared the performance of the random exploration algorithm, ε-greedy with
their proposed algorithm and they found out that LinUCB outperforms the simple
ε-greedy algorithm.

In contextual advertising, some modifications to the simple ε-greedy algorithm
are made in order to handle additional complications arising in the area. A main
complication is the fact that the arms are no longer independent, since some ad-
vertisement topics may be related, and getting information about one of the arms
may give us information about others as well. Thus, in order to make the algo-
rithm work in the contextual advertising setting, Li et al. (2010b) keep changing
the value of parameter ε dynamically and then they try to change the randomness
of the algorithm by choosing only possible superior arms.

In the framework of Thompson sampling with arbitrary contexts and stochastic
rewards, the main algorithm uses the history set Ht−1 = {(aτ, raτ(τ), cτ) | 0 ≤ τ ≤
t− 1}. Thompson Sampling with contextual information has also been studied by

22 Chapter 2. Literature review

Porter et al. (2016) and Agrawal and Goyal (2013b) with important practical and
theoretical results, respectively. The main steps of the algorithm are then adjusted
and the formulation is given below(Chapelle and Li, 2011):

Algorithm 2 Contextual Thompson Sampling

H = ∅
for t=1,2,..,T do

Receive context ct

Draw θt from P(θ | H)

Select arm at = argmaxE[r | ct, a, θt]
a=1,2,..,N

Observe reward rat

H = H ∪ (ct, at, rat)

end for

Lloyd and Leslie (2013) solved the problem of animals adaptation in different
environments by using contextual bandits, based on Thompson Sampling. In this
case, their main model consists of the generative model, the inference model and
the choice model. The generative model is used to identify whether there is a
change in the context (environment) or not. There is a probability π that the con-
text switches and it either switches to a previously seen context or to a new context.
In the inference model the animal learns the characteristics of each context in or-
der to identify which one is currently active. Thompson Sampling is then used
in the choice model in order for the animal to decide which action to take. Thus,
each context-action pair has its own hyperparameters and at each time step the
algorithm calculates the posterior for each context-action pair after it has decided
whether there was a change in the context. More details on their work, which is
based on Normal likelihood with a Normal-Inverse Gamma prior are included in
Chapter 3.

An important assumption for contextual bandits is that the reward distribution
stays the same under the same context. Very recently, Zeng et al. (2016) described
a new variation of the contextual bandits where even though the context stays
the same, the reward distribution of the arms changes. Their work combines con-
textual bandits with non-stationarity for the reward distribution of the different
arms. Using the standard formulation of Thompson Sampling for normally dis-
tributed arms with unknown variance, they incorporate an additional drift factor
to capture the change in the reward distribution. So given the model where the
estimated reward of arm a at time t is given as a linear combination of context X

2.5. Concluding remarks 23

and the coefficient vector θα,t they define

θα,t = cθα,t + δθα,t , (2.7)

where cθα,t is the stationary component of the coefficient vector and δθα,t the drift
component. This work could be useful in a situation with both seasonality and
trend in the reward distribution of the different arms.

2.5 Concluding remarks

In conclusion, the problem of decision making in an uncertain environment has
been studied extensively in the literature, in different areas. Our literature review
revolves around methodologies developed in two particular frameworks: rank-
ing and selection and multi-armed bandits, with more attention given to the latter,
which accounts for the impact of earning while earning. The algorithms explained
build on different ideas and interestingly, even though there are settings and situ-
ations that justify the use of certain algorithms (Agrawal and Goyal, 2012), there
is not a single algorithm that performs well in all settings.

In recent years, similar algorithms have also been developed in the popular
area of Operational Research, dynamic programming. Two categories of algo-
rithms within the area of dynamic programming that have been developed in
order to handle real-time problems are the Adaptive Real-Time dynamic program-
ming and the Real-time dynamic programming (Barto, Bradtke, and Singh, 1995;
Barto, 2010; Sanner et al., 2009). Their difference is that the first one is a heuris-
tic that learns a model from data collected during agent-environment interaction
while the later one does not have the model learning component.These learning
algorithms that are based on dynamic programming aim to improve the computa-
tional efficacy for conventional dynamic programming algorithms.

From the literature it became apparent that the biggest research gaps lie within
the practical implementation of the algorithms. Firstly, there is only limited work
on how the properties of the candidate options affect the performance of MAB
algorithms (Kuleshov and Precup, 2014). Secondly, all comparisons between two
or more algorithms in the literature are based on their performance on particu-
lar datasets, without any statistical significance (Chapelle and Li, 2011; May et
al., 2012). Thus, with our work in the first two chapters we aim to shed some light
upon the factors that have an impact on the performance of some MAB algorithms,
by carrying out benchmarking tests in which we implement them with different

24 Chapter 2. Literature review

parameter values on a number of artificial datasets, and perform a consistent sta-
tistical comparison between different algorithms.

We choose to build our studies, in both stationary and seasonal environments,
on Thompson Sampling, the Bayesian exploration algorithm whose performance
has been very good in many real-world applications (Scott, 2010; Chapelle and Li,
2011). In both settings, we choose to modify the standard formulation of the al-
gorithm in order to examine possible advantages over the standard formulation.
Additionally, since most of the practical work on Thompson Sampling is on bi-
nomial reward distributions we choose to extend its main formulation into cases
where the reward follows a continuous distribution, specifically the normal distri-
bution.

25

Chapter 3

Stationary case

In this chapter, we consider the problem of finding the best option amongst a range
of suboptimal candidates in an uncertain but stationary environment. The decision
at each time step is made on the fly which means that, in the process of decision
making, the information collected so far about the performance of the different
options is being used. Three important conditions of the problem studied in this
chapter constitute the main characteristics of any standard multi-armed bandit
problem, where the term arms refers to the different candidate options we are
comparing: constant number of arms, reduction in the uncertainty after each pull
and each arm being characterized by an unknown but fixed reward distribution.

Any of the algorithms described in Section 2.2 can be implemented for the solu-
tion. We present algorithms and results using Thompson Sampling and ε-greedy
for the solution of this stationary problem. ε-greedy is one of the simplest algo-
rithms in the family of MAB and thus it is very popular in industry despite its
non-optimal results in many cases. The simple idea behind it and its lack of as-
sumptions make it easy to use in a wide range of applications which is its main
advantage over other MAB techniques. Hence, it serves as a useful benchmark
against which to compare other more sophisticated methods. Secondly, Thomp-
son Sampling is included due to its good empirical performance when compared
to other popular bandit techniques (Chapelle and Li, 2011). Following the imple-
mentation of the two standard algorithms, we introduce a new methodology we
developed that combines the two ideas and is based on a widely used idea in the
area of website optimization.

To empirically validate the empirical performance of each of these methods, we
consider the problem setting of a major online travel agency that aims to find the
most profitable version for their website. For this practical application, we study
how the choice of different parameters affects the performance of the algorithms
in order to assess how the three algorithms perform. Then we proceed with a more
comprehensive study of the algorithms in a range of different settings by applying

26 Chapter 3. Stationary case

them to a large number of artificial datasets and compare their performance using
benchmarking tests, used in parts of the machine learning literature.

The structure of this chapter is as follows: In Sections 3.1 to 3.4, we give some
important background information involved in the algorithms we implement, we
describe the problem we are trying to solve and explain in more detail two stan-
dard techniques from MAB: ε-greedy and Thompson Sampling. In Section 3.5,
we introduce a new methodology, based on bucketing, and then we proceed with
some experimentation on the three algorithms using two real-world datasets in
Section 3.6. This is followed by Section 3.7, where we explain the set-up we use to
create additional artificial datasets and the results obtained by applying the three
algorithms on these datasets. In the same section, we perform a fair comparison
between the three algorithms using techniques from the area of benchmarking
classification methods and we discuss the differences in their performance when
tested on the large number of artificial datasets. Finally, Section 3.8 concludes the
chapter and highlights the main outcomes and the most important results obtained
for the stationary environment problem.

3.1 Background information

Some of the algorithms described throughout the thesis are based on important
statistical theorems/rules in a Bayesian framework. In Bayesian updating, prior
knowledge is treated as a random variable and expressed formally by a prior dis-
tribution, while sample data are expressed by the likelihood function. Bayes rule
describes the relation between prior distribution and likelihood in order to obtain
the posterior distribution. This relation is given by the following equation (West
and Harrison, 2006):

p(θ|y) = p(θ, y)
p(y)

=
p(θ)p(y|θ)

p(y)
, (3.1)

where p(y) = ∑θ p(θ)p(y|θ), p(θ|y) is the posterior distribution of some parame-
ters θ given some data y and p(y|θ) is the likelihood. Since p(y) is independent of
θ we can omit it from Equation 3.1 and obtain Bayes rule in the following form

p(θ|y) ∝ p(y|θ)p(θ), (3.2)

where p(θ) is the prior distribution. Moreover, the distribution of the unknown
but observable y, also known as prior predictive distribution is∫

p(y, θ)dθ =
∫

p(θ)p(y|θ)dθ.

3.2. Problem formulation 27

Given a certain likelihood, if the posterior probability distribution and the prior
probability distribution are in the same family then the two are called conjugate
distributions and the prior probability distribution is called the conjugate prior of
the given likelihood (Raiffa and Schlaifer, 1961). Some commonly used pairs of
likelihood-prior probability distributions are given in Table 3.1. Note here that the
pair of likelihood-prior probability distributions incorporated in the algorithms
explained in the following chapters are not included in the table.

Likelihood Parameters
Conjugate prior

distribution
Prior hyper
parameters

Normal with known variance σ2 µ Normal µ, σ

Normal with known precision λ µ Normal µ, λ

Normal with known mean µ σ2 Inverse Gamma α, β(scale)

Normal with known mean µ λ Gamma α, β(rate)

Bernoulli p(probability) Beta α, β

TABLE 3.1: List of some likelihood functions with their conjugate
prior distributions and prior hyperparameters

3.2 Problem formulation

We want to compare N different options, such that a ∈ {1, 2, ..., N}, when we
have very limited prior information about their performance. A common industry
problem that falls in this category is the problem of website optimization where
the different options compared are different candidate versions of a website and
each visitor decides either to click on a link or not. The rewards in this case come
from a binomial reward distribution (click or no click) which is why most of the
existing work on Thompson Sampling in this context assumes binomial reward
distribution (Scott, 2015). However, in our work, we consider the case of normal
likelihood N(ma, s2

a) for each option with unknown mean ma and standard de-
viation sa (sa = 1

λa
, where λa is precision), in order to account for a variety of

real-world situations where the reward of the options comes from a continuous
distribution. For example, in the same setting of website optimization, it might
be possible that the aim is to increase the total revenue that results from the to-
tal number of clicks on a website rather than the number of clicks itself (click or
no-click). Note here that the most common term used in the multi-armed bandits
literature that refers to the options is “arms”, thus we keep using this term when

28 Chapter 3. Stationary case

describing any methodology in this category of algorithms while we choose to use
the term option when we are in a more general context.

At each time step t ∈ [0, T], the algorithm decides which arm at to choose and it
receives its reward rat(t) while the rewards of non-chosen arms remain unknown.
Using this reward rat(t), the algorithm updates its beliefs about the chosen arm
and the criteria involved in the process of selecting the best arm, repeating the
same procedure until the end of the experiment. The two main measures of per-
formance for the algorithms are cumulative regret and percentage of optimal selec-
tion. Regret indicates how much the algorithm loses due to exploration while the
percentage of optimal selection describes the proportion of time spent in choosing
the best option, the one with the highest expected reward.

3.3 Stationary Thompson Sampling

3.3.1 Bayesian analysis

The choice of normal reward distribution with unknown mean and variance is
very limited in the literature with most of the existing work being on the binary
reward distribution (Scott, 2010; Chapelle and Li, 2011; Agrawal and Goyal, 2012).
The equations used in the Bayesian Updating part of the algorithm are analogous
with those used by Lloyd and Leslie (2013), to model changes in animal behaviour
based on some contextual information about the environment the animals live in,
with their rewards following by normal distribution with unknown mean and
variance. Note here that, for the stationary case, we do not use any contextual
information.

In the case of normal likelihood with both mean µ and precision λ unknown,
we use the following conjugate prior:

λ ∼ Ga(α0, β0)

µ|λ ∼ N(µ0,
1

κ0λ
)

(3.3)

where µ0 and κ0 are the hyperparameters of the prior distribution of µ given λ

while α0 and β0 are the hyperparameters of λ. Thus, the prior of µ and λ is the
Normal-Gamma distribution, NG(µ, λ; µ0, κ0, α0, β0).

In order to obtain the expression for the Normal-Gamma prior we multiply the
prior normal distribution for µ given λ with the hyperparameters µ0 and 1

κ0λ by
the gamma prior distribution for λ with parameters α0 and β0, where λ = 1/σ2 .

3.3. Stationary Thompson Sampling 29

Thus,

NG(µ, λ; µ0,
1

κ0λ
, α0, β0) = N(µ; µ0,

1
κ0λ

)Ga(λ; α0, β0)

=
1√
2π
κ0λ

exp
{−(µ− µ0)

2

2
κ0λ

}βα0
0 λα0−1e−λβ0

Γ(α0)

=
κ1/2

0 λ1/2
√

2π
exp

{κ0λ

2
(µ− µ0)

2
}βα0

0 λα0−1e−λβ0

Γ(α0)

=
κ1/2

0 λα0−1/2βα0
0 exp

{
−κ0λ

2 (µ− µ0)
2 − λβ0

}
√

2πΓ(α0)

=

√
κ0λα0−1/2βα0

0√
2πΓ(α0)

exp
{−λ

2
[
κ0(µ− µ0)

2 + 2β0
]}

Moreover, the posterior distribution can be written as

p(µ, λ | y) = p(y|µ, λ)p(µ, λ)

= p(y | µ, λ)p(λ)p(µ | λ)

= N(y | µ, λ)Ga(λ; α0, β0)N(µ; µ0,
1

κ0λ
)

= N(y | µ, λ)NG(µ, λ; µ0, κ0, α0, β0)

where p(y | µ, λ) is the normal likelihood of data y. We can write the posterior
distribution as

p(µ, λ | y) = NG(µ, λ; µn, κn, αn, βn),

where
µn =

κ0µ0 + nȳ
κ0 + n

κn = κ0 + n

αn = α0 +
n
2

βn = β0 +
1
2

n

∑
i=1

(yi − ȳ)2 +
κ0n(ȳ− µ0)

2

2(κ0 + n)

(3.4)

Note that n is the number of times an option has been tested, ȳ the sample mean
and ∑n

i=1(yi − ȳ)2 is the sample sum of squares. Thus, the following are true:

λ | y ∼ Ga(αn, βn)

µ|λ, y ∼ N(µn,
1

λκn
)

(3.5)

30 Chapter 3. Stationary case

This means that in order to sample from the joint posterior we first draw λ from its
marginal posterior distribution Ga(λ; αn, βn) and then draw µ from N(µ, 1/λκn).

As we are most interested in the reward of each arm we integrate the prior
p(µ, λ) with respect to λ to find the prior marginal on µ, p(µ), such that

p(µ) ∝
∫ ∞

0
p(µ, λ)dλ

=
∫ ∞

0
NG(µ, λ; µ0, κ0, α0, β0)dλ

=
∫ ∞

0
λα0+1/2−1 exp

{
− λ

[
β0 +

κ0(µ− µ0)
2

2
]}

dλ

This is the unnormalized gamma distribution with parameters a = α0 +
1
2 and

b = β0 +
κ0(µ−µ0)

2

2 . So,

p(µ) ∝
Γ(a)

ba

∝ b−a
(3.6)

Substituting in the values for a and b we get

p(µ) =
(

β0 +
κ0(µ− µ0)

2

2

)−α0−1/2

=

(
1 +

1
2α0

α0κ0(µ− µ0)
2

β0

)−(2α0+1)/2
(3.7)

This is a student t-distribution with 2α0 degrees of freedom, location µ0 and scale
β0

α0κ0
. So, the marginal prior on µ and its marginal posterior are

p(µ) ∼ t2α0(µ; µ0,
β0

α0κ0
)

p(µ|y) ∼ t2αn(µ; µn,
βn

αnκn
)

(3.8)

respectively. Moreover, the marginal prior and marginal posterior on λ are

p(λ) ∼ Ga(λ; α0, β0)

p(λ|y) ∼ Ga(λ; αn, βn)
(3.9)

3.3.2 Algorithm

In this section we describe the main steps of Thompson Sampling when the re-
wards of the different arms follows a normal distribution. At the beginning, we

3.4. Stationary ε-greedy 31

have only limited information about the arms and we choose the same initial prior
distribution, NG(µ0, κ0, α0, β0), for all arms. The main steps are explained in Al-
gorithm 3.

Algorithm 3 Thompson Sampling for normal likelihood with unknown mean and
variance

for each τ ∈ {1, 2, ..., T} do
for each arm a ∈ {1, ..., N} do

Sample reward r̃a,τ from the t-distribution t2αn(µ; µn, βn
αnκn

)

end for
Play arm aτ = argmaxr̃a,τ

a=1,2,...,N
and get its real reward raτ(τ)

Calculate regret Rτ = ma∗ − maτ where ma∗ is the expected reward of the
empirically best option a∗ and maτ the expected reward of option aτ.
Update the hyperparameters of arm aτ using Equations 3.4 where n is the

number of times arm aτ has been played and ȳ is the mean reward of arm aτ

calculated as ȳ = 1
n ∑τ

i=1 rai(i)
end for

3.4 Stationary ε-greedy

In the ε-greedy algorithm, ε ∈ [0, 1] defines the amount of time spent in explo-
ration. The algorithm chooses at random whether it will explore or exploit, with
probability of exploration ε and probability of exploitation 1− ε. Thus, for an ex-
periment with total duration T, εT time is spent on exploration and (1− ε)T of time
is spent on exploitation. Note that in the exploitation phase the algorithm chooses
the arm with the highest observed mean reward, while in the exploration phase
the choice of the arm is completely random. The choice of arm is also random at
the first time step when the algorithm has no information about the performance
of any of the candidate arms. The main steps of the algorithm are given in Algo-
rithm 4.

32 Chapter 3. Stationary case

Algorithm 4 ε-greedy algorithm

Define average reward ȳa = 0 and number of times an arm has been chosen
c̃a = 0 ∀ a ∈ {1, 2, ..., N}
Set a value for ε such that ε < 1
for each τ ∈ {1, 2, ..., T} do

if τ = 1 then
Exploration Phase: Choose a random arm aτ

else
Generate a random number ϕτ ∈ [0, 1]
if ϕτ > ε then

Exploitation Phase: Choose arm aτ = argmaxȳa
a=1,2,..,N

else
Exploration Phase: Choose a random arm aτ

end if
end if
Receive reward raτ(τ) from the chosen arm
Update the number of times arm aτ has been chosen, c̃aτ = c̃aτ + 1
Update the weighted average of the chosen arm, ȳaτ = c̃aτ−1

c̃aτ
ȳaτ +

1
c̃aτ

raτ(τ)

Calculate regret, Rτ = ma∗ −maτ , where a∗ is the empirically best arm
end for

3.5 Learning and deployment buckets

In this section, we introduce a new algorithm we developed that combines ideas
from the two standard algorithms explained above. This new algorithm can be
used in website optimization where a company aims to find the most profitable
version for their website in terms of revenue earned. It can also be applied to
solve problems with similar characteristics, such as stationary reward distribution
and constant number of options. In the context of website optimization, the idea
is to split the traffic of users that get any of the candidate options into two buck-
ets, deployment and learning, with p and 1− p proportion of traffic sent to each
respectively.

The purpose of the learning bucket is to learn about the performance of the
different options while in the deployment bucket the same option is being shown
(the one with the highest mean observed reward) until a new one becomes the
best. The option shown in the deployment bucket changes only when the mean

3.5. Learning and deployment buckets 33

observed reward of a different option gets higher than the mean observed reward
of the current option. This may be considered as a modification of the simplistic
ε-greedy algorithm, explained earlier, with the amount of exploration being heav-
ily dependent on the proportion of traffic 1− p sent to the learning bucket, instead
of it being defined by probability of exploration ε as it happens in ε-greedy. How-
ever, in this method we apply a more sophisticated MAB algorithm, Thompson
Sampling in the learning bucket in order to get enough information about the per-
formance of the different options and at the same time minimize the regret caused
in the learning phase of the algorithm. The main steps of the algorithm are shown
in Figure 3.1 and explained in more detail in Algorithm 5. Note that ma∗ is the
expected reward of the best arm a∗ and maτ,l and maτ,d are the expected reward of
the arm chosen at time τ, in the learning or deployment bucket respectively. The
update equations used are different and explained in Section 3.5.1.

This new methodology mirrors common practice in industry where a company,
while experimenting on different versions of a website, chooses a known good per-
former to display to a portion of traffic for safety and to avoid a sudden drop in
revenues caused by the full experimentation. A similar idea of splitting the traffic
into two buckets was considered by Agarwal et al. (2009) who named their learn-
ing and deployment buckets random and serving buckets respectively. However,
the algorithm used in the random bucket was a simple algorithm very close to
ε-greedy. Our aim is to observe whether this idea of splitting the traffic into two
buckets can benefit from the implementation of Thompson Sampling.

34 Chapter 3. Stationary case

Start

Set initial hyperparameters

t < T Stop

Split the traffic

Sample from the marginal
prior of all options

Choose the option with
the highest sample value

Calculate mean
reward of all options

Choose the option
with the highest

mean reward

Get real reward of
the selected option

Update posterior

No

Yes
Learning Bucket (1− p) Deployment Bucket (p)

FIGURE 3.1: Flowchart of the main steps of the learning and deploy-
ment buckets algorithm

3.5.1 Bayesian analysis

Since Thompson Sampling, which is employed in the learning bucket, uses the
information collected from both buckets, it is important to adapt the update equa-
tions in order to take into account the reward obtained at each time step from each
bucket accounting for the proportion of traffic sent to each bucket. For the imple-
mentation of the algorithm, we use the idea of pooled variances in order to make
the necessary amendments to the equations for the update of the hyperparameters.

We collect data on the total revenue, X, obtained by a website each day. This
follows a normal distribution with mean µ and variance σ2. If we split the traffic
into two buckets, a deployment bucket and a learning bucket, then we can define
two new random variables xd and xl, respectively. Thus, the total revenue is xd +

3.5. Learning and deployment buckets 35

xl. We assume that we send a proportion p of the traffic to the deployment bucket
and 1− p to the learning bucket.

In order to simulate the output appropriately for xd and xl, we use the follow-
ing:

xd + xl ∼ N(µ, σ2).

If we assume that xd and xl are independent, then xd ∼ N(pµ, pσ2) and xl ∼
N((1− p)µ, (1− p)σ2). This follows the argument of pooled variances.

Moreover, using λ = 1
σ2 the likelihood is given by

L =
d

∏
i=1

√
λ

2πp
exp

[
−λ

2p
(xi − pµ)2

] l

∏
j=1

√
λ

2π(1− p)
exp

[
−λ

2(1− p)
(yj − (1− p)µ)2

]

where x are the data obtained from the deployment bucket and y the data obtained
from the learning bucket ∀i ∈ 1, 2, ..d and ∀j ∈ 1, 2, ..l respectively. The prior is:

p(µ, λ) =

√
κ0λ

2π
exp

[
−κ0λ

2
(µ− µ0)

2
]

βα0
0 λα0−1e−λβ0

Γ(α0)
.

Multiplying these together and taking logs, we get the following expression for
posterior, where [consts] is made up of terms that do not involve λ or µ:

Log p(µ, λ|x, y) = [consts] +
1
2

ln(λ)− κ0λ

2
(µ− µ0)

2 + (α0 − 1) ln λ− λβ0

+
d

∑
i=1

[
1
2

ln λ− λ

2p
(xi − pµ)2

]
+

l

∑
j=1

[
1
2

ln λ− λ

2(1− p)
(yj − (1− p)µ)2

]
.

In the next step we expand the sums and match similar terms before completing
the square in order to write down the updated parameters based on the d obser-
vations of the deployment bucket to which a proportion p of the traffic is sent and
the l observations of the learning bucket to which a proportion 1− p of the traffic
is sent.

We find that
µ̃ =

κ0µ0 + dx̄ + lȳ
κ0 + dp + l(1− p)

κ̃ = κ0 + dp + l(1− p)

α̃ = α0 + (d + l − 1)/2

(3.10)

36 Chapter 3. Stationary case

where x̄ is the mean reward observed in the deployment bucket and ȳ the mean
reward in the deployment bucket. In order to find β̃ we make use of the fact that

d2x̄2 − d
d

∑
i=1

x2
i = −d

d

∑
i=1

(xi − x̄)2

(and similar for y). Then, we can simplify the expression to the following.

β̃ = β0 +
d ∑d

i=1(xi − x̄)2 + l ∑l
j=1(yj − ȳ)2 + l(1−p)

p ∑n
i=1 x2

i +
dp

1−p ∑l
j=1 y2

j − 2dlx̄ȳ

2(dp + l(1− p))

+
κ0(dp + l(1− p))

2(κ0 + dp + l(1− p))

(
µ0 −

dx̄ + lȳ
dp + l(1− p)

)2

.

We can take this one step further by focusing on the top line of this equation. We
expand the brackets again using

d

∑
i=1

(xi − x̄)2 =
d

∑
i=1

x2
i − dx̄2.

This allows us, after some manipulation to write

d ∑n
i=1(xi − x̄)2 + l ∑l

j=1(yj − ȳ)2 + l(1−p)
p ∑n

i=1 x2
i +

dp
1−p ∑l

j=1 y2
j − 2dlx̄ȳ

2(dp + l(1− p))
=

(1/2) ∗
[

1
p

d

∑
i=1

x2
i +

1
1− p

l

∑
j=1

y2
j −

(dx̄− lȳ)2

dp + l(1− p)

]
.

Let’s call the expression above A for convenience. Then,

2A =
1
p

d

∑
i=1

x2
i +

1
1− p

l

∑
j=1

y2
j +

(dp + l(1− p))(dx̄ + lȳ)2

(dp + l(1− p))2 − 2
(dx̄ + lȳ)2

(dp + l(1− p)

= p
d

∑
i=1

(
xi

p
− dx̄ + lȳ

dp + l(1− p)

)2

+ (1− p)
l

∑
j=1

(
yj

1− p
− dx̄ + lȳ

dp + l(1− p)

)2

.

This final expression gives us the weighted sum of the squared differences be-
tween the observations in each of the buckets and the weighted sum of the means
from the two buckets. An alternative representation takes out a factor of 1/p2 or
1/(1− p)2 respectively, to give

2A =
1
p

d

∑
i=1

(
xi −

p(dx̄ + lȳ)
dp + l(1− p)

)2

+
1

(1− p)

l

∑
j=1

(
yj −

(1− p)(dx̄ + lȳ)
dp + l(1− p)

)2

.

3.5. Learning and deployment buckets 37

So,

β̃ = β0 +
1
2

[
1
p

d

∑
i=1

(
xi −

p(dx̄ + lȳ)
dp + l(1− p)

)2

+
1

(1− p)

l

∑
j=1

(
yj −

(1− p)(dx̄ + lȳ)
dp + l(1− p)

)2
]

+
κ0(dp + l(1− p))

2(κ0 + dp + l(1− p))

(
µ0 −

dx̄ + lȳ
dp + l(1− p)

)2

.

(3.11)

3.5.2 Algorithm

Below we explain the main step of the learning and deployment buckets method:

Algorithm 5 Learning and deployment buckets

Set initial values of hyperparameters µ0, κ0, α0 and β0

Set 1− p the amount of traffic sent to the learning bucket where we get l obser-
vations and p the amount of traffic sent to the deployment bucket where we get
d observations.
for each τ ∈ {1, 2, ..., T} do

Learning bucket:
Sample reward r̃a,τ from the t-distribution t2α̃(µ; µ̃, β̃

α̃κ̃) for all arms
Play arm aτ,l = argmax(r̃a,τ)

a=1,2,..,N
and get its real reward raτ,l(τ)

Calculate regret Rτ,l = (ma∗ −maτ,l)(1− p)
Deployment Bucket:
Calculate mean reward of all arms r̄a,τ ∀a ∈ 1, ...N .
Choose arm with the highest mean reward aτ,d = argmaxr̄aτ

a=1,2,3,...N
Receive real reward raτ,d(τ) of the chosen arm
Calculate regret Rτ,d = (ma∗ −maτ,d)p
Calculate total regret Rτ = Rτ,l + Rτ,d

Update the hyperparameters of arm aτ,l using the new update Equations
3.10, 3.11
end for

38 Chapter 3. Stationary case

3.6 Numerical experiments on real-world datasets

The case study uses simulated data generated by an online travel agency to mimic
real data for the case of seven candidate options that correspond to different ver-
sions of their website. In the first dataset the mean performance of the seven op-
tions is very similar, while in the second dataset there is a “clear winner” between
the options. The real mean value m and standard deviation s for the options in
the two different datasets are presented in the tables below. In Table 3.2, Option 3
appears as the best option, since it has the highest mean value, but the differences
between the means of all options are relatively small. However, in Table 3.3, it is
clear that the best option is Option 2 with m2 being much greater than the mean
value of the other options. Note here that even though m2 is the largest mean
value, s2 is also very large which means that in practice the reward varies more
from one time step to the next, making it even harder for the algorithm to decide
which option is best.

Testing the algorithms on two different datasets will give us enough informa-
tion in order to make some first initial conclusions about their performance and
how this is affected by several parameters. For example, it has been suggested
that in Thompson Sampling, the choice of priors is very important and can cause
significant changes to the performance of the algorithm (Honda and Takemura,
2014; Russo et al., 2018; Griffin and Brown, 2010). For example, when Chapelle
and Li (2011) studied the problem of binary likelihood they used the conjugate
Beta distribution as prior and they examined posterior reshaping by changing the
parameters of the posterior Beta(a, b) distribution into Beta(a

α , b
α) in order to favour

either exploration or exploitation. In particular, they discuss that depending on
the value of α, a wider posterior results in more exploration while a tighter poste-
rior causes more exploitation. In the case of ε-greedy, it has also been noted that its
performance depends a lot on the value of ε which defines the amount of explo-
ration (White, 2012). In our case, our focus is on determining the impact that the
values of the prior hyperparameters µ0, κ0, α0, β0 have on the performance of the
Thompson Sampling algorithm and comparing these results with those obtained
using an ε-greedy algorithm. In order to examine this dependence, we conducted
similar experiments on the two different real-world datasets.

First, we present the results obtained from the first dataset where the seven
options have similar performance and then the algorithms are tested in the second
dataset where there is a clear winner. For each example different parameters are
being tested in order to get the optimal possible results from each algorithm and

3.6. Numerical experiments on real-world datasets 39

a comparison between the two methods is made. As measures of performance
we use the percentage of optimal selection and cumulative regret. The results are
based on 100 independent runs for each algorithm.

Dataset 1

a 1 2 3 4 5 6 7

ma 1040 1946 2176 1752 1957 1494 1922
sa 328 1129 239 553 720 586 501

TABLE 3.2: Mean ma and standard deviation sa for the “real system”
when N = 7 in Dataset 1

Dataset 2

a 1 2 3 4 5 6 7

ma 2111 6024 1049 1381 1841 1470 1704
sa 1230 3781 832 743 1023 1380 1194

TABLE 3.3: Mean ma and standard deviation sa of the “real system”
when N = 7 in Dataset 2

3.6.1 Results for Dataset 1

First, we apply ε-greedy and we test its performance against parameter ε, which
is basically the percentage of exploration, when the performance of the different
options in the “real system” are very similar. Figure 3.2a and Figure 3.2b illus-
trate how the two measures of performance are affected by ε. Note here that even
though the optimal selection reaches a higher final percentage when ε = 0.1, it
takes more time for the algorithm to reach a constant amount of optimal selection
when compared to higher values of ε. On the other hand, when ε = 0.4, even
though the percentage of optimal selection reaches 65% relatively early, it stays at
the same level for the rest of the experiment. Consequently, its cumulative regret
keeps increasing linearly for the whole time of the experiment. These results indi-
cate that with a high percentage of exploration the algorithm finds the best option
quickly but afterwards it keeps loosing rewards due to unnecessary exploration.

40 Chapter 3. Stationary case

(A) (B)

FIGURE 3.2: Impact of varying ε on percentage of optimal selection
and cumulative regret in the stationary case when N = 7 i Dataset 1.

The curves are averages over 100 runs.

Percentage of optimal selection

t = 1000 t = 2000 t = 3000 t = 4000

ε = 0.1 40% 60% 82% 90%
ε = 0.2 70% 80% 82% 82%
ε = 0.3 70% 75% 75% 75%
ε = 0.4 60% 65% 65% 65%

TABLE 3.4: Percentage of optimal selection at different time steps t
using ε-greedy with different ε

In Figures 3.3, we show the performance of Thompson Sampling under differ-
ent values of µ0, i.e.the initial estimate of the mean reward, when κ0, α0, β0 are
equal to 1. Both measures of performance are heavily dependent on µ0 with the
percentage of optimal selection reaching almost 100% when µ0 = 2000 at t = 400
while in the case of µ0 = 5000 it increases with a much smaller rate. This is also
supported by Figure 3.3b which shows that µ0 = 2000 and µ0 = 1000 cause very
similar rate of increase in the cumulative regret which reaches a constant value at
t = 200 and t = 500 respectively, while µ0 = 0 and µ0 = 5000 have much higher
cumulative regret. Then we proceed with varying parameter α0, i.e. the degrees of
freedom for the variance, with κ0 = 1 and β0 = 1 when µ0 has the two best values
as shown earlier.

3.6. Numerical experiments on real-world datasets 41

(A) (B)

FIGURE 3.3: Impact of varying µ0 when κ0, α0, β0 are equal to 1 on
percentage of optimal selection and cumulative regret in the station-
ary case when N = 7 in Dataset 1. The curves are averages over 100

runs.

Figure 3.4a shows that percentage of optimal selection is not very sensitive to
the value of α0. However, a smaller value of α0 when µ0 = 1000 causes greater
regret, while in the case of µ0 = 2000 cumulative regret is not affected that much
by the value of α0. Note that in all cases percentage of optimal selection reaches
almost 100% before t = 1000, while in the case where µ0 = 2000 it reaches 100% at
around t = 500.

As a final step of the sensitivity analysis, we tried different κ0 and β0 to test the
dependence of the performance on the parameters. From Figure 3.5b, it is clear
that a greater value of κ0 causes a large increase in the regret while a change in β0

does not affect the results. Figure 3.6 shows the decisions made at each time step
and illustrates how exploration and exploitation are distributed over the total time
of the experiment.

42 Chapter 3. Stationary case

(A) (B)

FIGURE 3.4: Impact of varying µ0 and α0 when κ0 and β0 are equal
to 1 on the percentage of optimal selection and cumulative regret in
the stationary case when N = 7 in Dataset 1. The curves are averages

over 100 runs.

(A) (B)

FIGURE 3.5: Impact of varying κ0 and β0 when µ0 = 2000 and α0 = 1
on the percentage of optimal selection and cumulative regret in the
stationary case when N = 7 in Dataset 1. The curves are averages

over 100 runs.

3.6. Numerical experiments on real-world datasets 43

(A)

(B)

(C)

FIGURE 3.6: The decisions made by the algorithm on a single run
when κ0 = 1, α0 = 1, β0 = 1. The dots indicate the option chosen
at each time step t when (a) µ0 = 2000: The algorithm spends just
7% of the time in exploration and 93% in exploitation. (b) µ0 = 0:
The algorithm spends 31% in exploration and 69% in exploitation.
(c) µ0 = 5000: The algorithm spends 51% in exploration and 49% in

exploitation.

Figure 3.7 shows the performance of ε-greedy against Thompson Sampling on
the same dataset. In order to make a fair comparison we tested the algorithms
using the best parameters found in the experiments above; ε-greedy with ε = 0.2

44 Chapter 3. Stationary case

is compared with Thompson Sampling with µ0 = 2000, κ0 = 1, α0 = 1 and β0 =

1. In terms of both measures of performance it is clear that Thompson Sampling
performs much better than ε-greedy.

(A) (B)

FIGURE 3.7: Comparison between ε-greedy with ε = 0.2 and Thomp-
son Sampling with µ0 = 2000, κ0 = 1, α0 = 1 and β0 = 1 in the
stationary case when N = 7 in Dataset 1. The curves are averages

over 100 runs.

Finally, in order to observe the effect that the proportion of traffic sent to each
bucket has on the performance of the learning and deployment buckets algorithm,
in Figure 3.8 we study its performance for different values of p. Looking at the
percentage of optimal selection we observe that as p increases, the final percentage
of optimal selection decreases with p = 10% reaching the highest percentage of
optimal selection. Its cumulative regret is also the lowest but very close to the
cumulative regret when p = 90% that never reaches a 100% of optimal selection.

3.6. Numerical experiments on real-world datasets 45

(A) (B)

FIGURE 3.8: Performance of learning and deployment buckets algo-
rithm when µ0 = 2000, κ0 = 1, α0 = 1 and β0 = 1 for different
percentages of p, when N = 7 in Dataset 1. The curves are averages

over 100 runs.

3.6.2 Results for Dataset 2

In this section, we perform similar experiments on a situation where there is a clear
winner between the candidate options but greatest variance. Figure 3.9 shows that,
for all values of ε, the algorithm reaches a constant amount for optimal selection
almost at the same time, with ε = 0.4 and ε = 0.1 reaching a final rate of 65%
and 91%, respectively. For all values of ε, cumulative regret starts increasing lin-
early very early in the experiment. This is because it never converges to a 100% of
optimal selection and settles at a lower percentage very quickly.

(A) (B)

FIGURE 3.9: Impact of varying ε on the percentage of optimal se-
lection and cumulative regret in the stationary case when N = 7 in

Dataset 2. The curves are averages over 100 runs.

46 Chapter 3. Stationary case

Then, similarly to Section 3.6.1, we perform some experimentation on the ini-
tial hyperparameters of Thompson Sampling in Dataset 2. In Figure 3.10 we try
different µ0 to test its impact on the results. We can see that the results agree with
those for Dataset 1. The best performance for both percentage of optimal selection
and regret is when µ0 = 2000, i.e.closer to the true mean. The algorithm converges
towards 100% of optimal selection at t = 500 with the cumulative regret reaching
stability.

Based on the results obtained for Dataset 1, we know that α0 does not affect the
performance of the algorithm. So, in the next test, we try different values for β0 and
κ0 when µ0 = 2000 and α0 = 1. From Figures 3.11, we see once again that β0 does
not affect the results. At the same time, a larger value for κ0 makes the algorithm
settle on the optimal option later, resulting in greater cumulative regret at the end
of the experiment. Thus, a good choice of initial hyperparameters is the same as
in Example 1: µ0 = 2000, κ0 = 1 , α0 = 1, β0 = 1. Then, we perform a comparison
between ε-greedy with ε = 0.1 and Thompson Sampling withµ0 = 2000, κ0 = 1 ,
α0 = 1, β0 = 1. In Figures 3.12, it is clear the Thompson Sampling again performs
much better that ε-greedy over the course of the full experiment. However, we
note that for t < 150 ε-greedy chooses the best option more often than Thompson
Sampling and as a consequence, until t = 500 ε greedy has smaller cumulative
regret.

(A) (B)

FIGURE 3.10: Impact of varying µ0 on percentage of optimal selection
and cumulative regret when κ0 = 1, α0 = 1, β0 = 1 in the stationary
case when N = 7 in Dataset 2. The curves are averages over 100 runs.

3.6. Numerical experiments on real-world datasets 47

(A) (B)

FIGURE 3.11: Impact of varying β0 and κ0 when µ0 = 2000 and α0 = 1
on percentage of optimal selection and cumulative regret in the sta-
tionary case when N = 7 in Dataset 2. The curves are averages over

100 runs.

(A) (B)

FIGURE 3.12: Comparison between ε-greedy with ε = 0.1 and
Thompson Sampling with µ0 = 2000, κ0 = 1, α0 = 1 and β0 = 1
in the stationary case when N = 7 in Dataset 2. The curves are aver-

ages over 100 runs.

Finally, in Figure 3.13 we show the performance of learning and deployment
buckets algorithm for different values of p. Once again, we observe that the al-
gorithm does not manage to reach a 100% optimal selection for any value of p%
greater than 10%.

48 Chapter 3. Stationary case

(A) (B)

FIGURE 3.13: Performance of learning and deployment buckets al-
gorithm when µ0 = 2000, κ0 = 1, α0 = 1 and β0 = 1 for different
percentages of p, when N = 7 in Dataset 2. The curves are averages

over 100 runs.

3.6.3 Discussion

In the results presented above, it is clear that the performance of ε-greedy is heav-
ily dependent on the value of ε. This is one of the major drawbacks of the method
since defining ε at the beginning of the experiment means that we set the amount
of exploration before we have enough information about the options we are com-
paring. For this reason ε- decreasing, with εt = min

{
1, ε0

t
}

, where ε0 > 0, so that
ε → 0 as t → T, is sometimes used instead (Vermorel and Mohri, 2005). This is
meant to avoid wasting time in exploring options that have performed badly in
the past. However, even with this algorithm, we still need to set an initial ε0.

One important conclusion we can draw about the performance of the ε-greedy
algorithm, is that, in the case where the rewards of the different options are very
similar, the time T over which we can run the experiment is also very important.
If ε is high, this means that we allow the algorithm to do more exploration which
leads to smaller percentage of optimal selection and consequently to a greater in-
crease in the cumulative regret. For the first dataset, ε = 0.1 makes the algorithm
choose randomly for around 10% of time T and it reaches a final 90% of optimal
selection after 3000 time steps. However, if ε is set to be 0.2 the algorithm reaches
a 70% of optimal selection much earlier (at t = 1000) leading to less cumulative
regret. Note here that, due to its design, the algorithm will never reach a 100%
optimal selection. Consequently, even though the rate of increase in cumulative
regret gets smaller, it never stops increasing. This is also true for the case where
there is a clear winner in the system (i.e. Dataset 2). Since the mean value of the

3.6. Numerical experiments on real-world datasets 49

best of option is much higher than the rest, with the same amount of exploration
(i.e same ε), the algorithm reaches a higher percentage of optimal selection much
earlier, when compared to the first example, but it again never reaches 100%.

In the case of Thompson Sampling, µ0 is an estimation of the true mean value
of the options, κ0 is the uncertainty about µ0, α0 is the degrees of freedom for the
variance and β0 is the scale of variance. After the sensitivity analysis performed in
the last section on Dataset 1 and Dataset 2, we conclude that a good choice of initial
hyperparameters for both situations is µ0 = 2000, κ0 = 1, α0 = 1 and β0 = 1. With
µ0 very close to the true mean of the options as given in Table 3.2 and Table 3.3,
the algorithm needs less time to estimate the true mean of the options. This is also
supported by the calculation of β in equations 3.4. From the third term, we can see
that the difference between the mean value of our samples and µ0, (ȳ− µ0) plays
an important role in the whole Bayesian updating procedure. A large difference
implies that our initial estimation of the mean is far away from the real one and
this results in larger β and consequently larger variance for σ2.

Similar tests on the other hyperparameters suggest that changes caused by
different α0 and β0 were insignificant. However, a higher value of κ0 implies
greater uncertainty about the initial estimate of the mean performance and con-
sequently more time is needed for the algorithm to find the best option. This
is again explained by the update equations since κ0 is the factor which is mul-
tiplied by (µ − µ0) in the expression for the marginal prior of µ (Equation 3.6).
So a combination of bad choices for µ0 and κ0 can severely reduce the efficiency
of the algorithm. A choice of hyperparameters close to the true values implies
more knowledge about the performance of the different options which reduces the
learning part of the algorithm and consequently its overall performance (Russo et
al., 2018). In the results presented we observed that a µ0 greater than the mean
of the observed rewards caused a greater increase in the amount of exploration in
both examples and this affected its performance negatively.

Finally, a comparison between ε-greedy and Thompson Sampling shows clearly
that even with a good choice for ε, Thompson Sampling outperforms the simple
ε-greedy whose decisions made in the exploration phase are made completely at
random. Motivated by the results obtained when testing the algorithms on two
real-world datasets, we will attempt to test the impact that the characteristics of
the data have on the performance of the algorithm further, by creating artificial
datasets and performing controlled experiments. For the learning and deployment
buckets algorithm we choose to test values for p that are less than 50% because in

50 Chapter 3. Stationary case

the experiments presented in this chapter, it is clear that as p increases the final per-
centage of optimal selection decreases and consequently cumulative regret keeps
increasing.

3.7 Numerical experiments on artificial datasets

3.7.1 Setting up the artificial datasets

This section aims to investigate further the performance of the algorithms ex-
plained earlier, compare them and examine their dependence on the environment
they are tested on. For this reason, we create a number of artificial datasets in order
to test the algorithms on a wide range of different situations that satisfy our ba-
sic underlying assumptions, i.e. stationary and normal reward distributions with
unknown mean and variance. To our knowledge, most of the practical implemen-
tations of both ε-greedy and Thompson Sampling present results obtained using
specific examples and parameter values for the representation of the real perfor-
mance of the different options (Koulouriotis and Xanthopoulos, 2008; Chapelle
and Li, 2011) and there is not enough research on the effect that the real system
has on the performance of the MAB algorithms.

What we are most interested in is how the variability of rewards for the differ-
ent options affects the overall performance of the algorithms. This is because we
noticed that this was the most important factor that affected the results of the ex-
periments we did using the real-world datasets. As we did in the previous section,
we continue to consider an example in which we compare the rewards obtained
from seven arms. We admit that the choice of seven is somewhat arbitrary but is
within the likely range of options being considered and is not too large nor too
small.

To get the parameters, m and s, that represent the real mean and the real stan-
dard deviation for the seven options, respectively, we sample from a Uniform dis-
tribution. For the real mean of the seven options, we sample seven values from
U(10, 40), while for their real standard deviation, we create three different sce-
narios represented by three different sets of parameters for the Uniform distribu-
tion,representing low, moderate and high variability respectively. First, for the
case of low variability in the rewards, we sample seven values for the standard
deviation from U(0.25, 0.75); we call this Scenario 1. For moderate variability, we
sample seven values from U(2.5, 7.5) (Scenario 2) and finally, for a high variability

3.7. Numerical experiments on artificial datasets 51

in the rewards, we sample seven values from U(25, 75) (Scenario 3). This proce-
dure is repeated ten times so that we get ten different sets for the m parameters of
the seven arms and ten different sets that represent the s parameters of the seven
arms for each scenario. An overview of how we create the artificial datasets is
presented in Table 3.14. Each m is paired with each s from each Scenario to create
a total of 300 different datasets. Each algorithm is tested on 100 different datasets
for each scenario, resulting in a total of 300 different examples.

Scenario 1 Scenario 2 Scenario 3

1 𝒎~⋃(10,40) s~⋃(0.25,0.75) s~⋃(2.5,7.5) s~⋃(25,75)

2 𝒎~⋃(10,40) s~⋃(0.25,0.75) s~⋃(2.5,7.5) s~⋃(25,75)

3 𝒎~⋃(10,40) s~⋃(0.25,0.75) s~⋃(2.5,7.5) s~⋃(25,75)

10 𝒎~⋃(10,40) s~⋃(0.25,0.75) s~⋃(2.5,7.5) s~⋃(25,75)

FIGURE 3.14: Overview of setting up the artificial datasets. m and s
are sets with seven values representing the real mean and the stan-
dard deviation respectively for each of the seven options. Each m is
paired with each s from each Scenario to create a total of 300 different

datasets.

3.7.2 Experimental framework

Firstly, we present the results obtained from the implementation of Thompson
Sampling, ε-greedy and the learning and deployment buckets algorithm at the
end of the experiment, t = 2000. The parameters to be tested for the learning and
deployment buckets algorithm are the value of µ0 and the proportion of traffic
sent to the deployment bucket, p. For both Thompson Sampling and learning and
deployment buckets algorithm we do not experiment on the other three hyper-
parameters since µ0 had the greatest impact on the performance of the algorithm
when tested on the two real-world datasets. We keep the rest of the hyperparam-
eters the same; κ0 = 1, α0 = 1, β0 = 1. The choice of µ0 values was based on the
parameters used when creating the artificial datasets as described above. The three
values tested are the min, mean and max values for U(10, 40) used when defining
the real mean reward of the different options, representing pessimistic, neutral
and optimistic initial guesses. Additionally, the values that represent the percent-
age of traffic in the deployment bucket, p, we test vary from 10% to 50%. Values

52 Chapter 3. Stationary case

higher than 50% were rejected after some initial experimentation that showed that
a learning percentage, 1 − p, less than 50% has a very bad impact on the final
percentage of optimal selection of the algorithm which contributes toward a con-
tinuous increase of cumulative regret (See Figures 3.8 3.13). For the different sets
of parameters we capture the value of the two measures of performance, percent-
age of optimal selection and cumulative regret, for each scenario, at different time
steps in the experiment. We do 200 runs for each dataset and the values presented
are averaged over all runs for the 100 datasets form each scenario.

Then, we compare the results obtained when applying the three algorithms to
the 300 artificial datasets. We compare the results of the algorithms in different sce-
narios using cumulative regret as the measure of performance when conducting
the different tests, based on the assumption that most companies are more inter-
ested in minimizing their losses. We capture the results at four different time steps,
t = 100, t = 500, t = 1500 and t = 2000 and use the cumulative regret obtained for
the 100 different datasets in the three different scenarios separately. We treat each
algorithm that uses different parameter values as a different one which results in
23 different algorithms.

3.7.3 Comparison of algorithms over multiple datasets

In order to evaluate the performance of the algorithms, a method recommended
by Demšar (Demšar, 2006) for the comparison of multiple classifiers over multi-
ple datasets is implemented. The proposed non-parametric method, the Friedman
test (Friedman, 1937), was recommended by Demšar after a thorough review of
benchmarking classification, a common problem in the area of machine learning.
The aim was to avoid the well-known ANOVA test, which makes various assump-
tions, such as normality, an assumption that, in cases where the sample size is not
big enough, may be violated. The goal is to test whether the differences in the
two measures of performance for the different algorithms are significant. If they
are significant, it means that the differences in performance are not random and
we can proceed with a post hoc test. Below are the main steps of the Friedman
test, which relies on the ranked performance of the different algorithms instead
of their real performance, when there are L algorithms and K data sets such that
l = 1, 2, 3, ..., L and k = 1, 2, 3, ..., K, where L = 23 and K = 100.

1. Rank all algorithms in ascending order according to their performance for
each data set. In our case this is averaged over the 100 runs. Let Rl

k be the
rank of algorithm l in the data set k

3.7. Numerical experiments on artificial datasets 53

2. Calculate the mean rank of algorithm l, MRl across all data sets such that
MRl =

1
K ∑K

k=1 Rl
k

3. Calculate the test statistic of the Friedman test

χ2
F =

12K
L(L + 1)

[
L

∑
l=1

MR2
l −

L(L + 1)2

4

]
(3.12)

which is distributed according to the Chi-squared distribution with L− 1 de-
grees of freedom. Additionally, Iman and Davenport (1980) propose a more
powerful different statistic defined as

FF =
(K− 1)χ2

F
k(K− 1)− χ2

F
(3.13)

which is distributed according to the F-distribution with L − 1 and (L −
1)(K − 1) degrees of freedom. The null hypothesis is that the algorithms
are all equivalent and their mean ranks are equal. Check the value of the test
statistics and if they are larger than the critical values, reject the null hypoth-
esis

4. If the null hypothesis is rejected, proceed to a post hoc test which tests the
null hypothesis for each pair of algorithms. According to the Nemenyi test
(Nemenyi, 1962), the null hypothesis is rejected if the difference between
their mean ranks exceeds the critical difference D which is defined as:

D = qα,∞,L

√
L(L + 1)

12K
(3.14)

where the value of qα,∞,L is based on the studentized range statistic.

Some other post hoc tests that can be used are Shaffer static procedure, Bergmann-
Hommel’s procedure and Holm procedure. According to Garcia and Herrera
(2008) the most powerful post hoc test is Bergmann-Hommel’s procedure but it
is the most difficult one and computationally expensive. Moreover, the authors
emphasize the advantage of Holm procedure when there is a large number of data
sets but, based on their experimental results, they encourage the use of Shaffer
static procedure. Even though in their work they prove that Nemenyi’s test is very
conservative, we choose to use this test since it is very simple and we are more
interested in the relative performance of all algorithms and not in the comparison
of all algorithms against a control.

54 Chapter 3. Stationary case

3.7.4 Results

In Tables 3.5, 3.6, 3.7, we observe that the best parameter setting for the learning
and deployment buckets algorithm, in all scenarios, is when µ0 = 40 and p = 10%
since it reaches the highest final percentage of optimal selection . This algorithm is
the closest to the standard version of Thompson Sampling since most of the traffic
(90%) is sent to the learning bucket where the Bayesian exploration algorithm is
implemented. When the variability of rewards is small and moderate (i.e. Scenar-
ios 1 and 2), the parameters that optimize either percentage of optimal selection
and cumulative regret are the same. However, in Scenario 3, the highest percent-
age of optimal selection is reached when µ0 = 40 and p = 10% but the lowest
regret is obtained when µ0 = 40 and p = 50%. This indicates that the algorithm
that maximizes percentage of optimal selection does not necessarily minimize re-
gret. In cases with small and moderate variability in rewards, an algorithm similar
to standard Thompson Sampling, i.e. learning and deployment buckets algorithm
with small p, and standard Thompson Sampling itself have a very good perfor-
mance . The performance of standard Thompson Sampling is better compared
to the learning and deployment buckets algorithms and the introduction of the
deployment buckets does not improve the performance of standard Thompson
Sampling. However, in the case of high variability in rewards, an algorithm that
sends a significant amount of traffic to the option with the best observed perfor-
mance manages to minimize regret. When µ0 = 25 and µ0 = 40, the learning and
deployment buckets methodology performs better than Thompson Sampling in
term of the final cumulative regret.

3.7. Numerical experiments on artificial datasets 55

Algorithm-Parameters Optimal selection(%) Cumulative regret
ε-greedy(ε = 0.1) 77.12 4846.93
ε-greedy(ε = 0.2) 69.84 5508.48
ε-greedy(ε = 0.3) 71.44 8291.14
ε-greedy(ε = 0.4) 63.56 8976.16
ε-greedy(ε = 0.5) 54.43 12776.19

Thompson Samp. (µ0 = 10) 90.40 2464.91
Thompson Samp. (µ0 = 25) 99.83 384.66
Thompson Samp. (µ0 = 40) 99.70 480.30

µ0 = 10, p = 50% 77.23 3319
µ0 = 10, p = 40% 82.72 4303
µ0 = 10, p = 30% 83.93 3020
µ0 = 10, p = 20% 87.19 2848
µ0 = 10, p = 10% 87.37 2737
µ0 = 25, p = 50% 93.27 2284
µ0 = 25, p = 40% 93.71 2227
µ0 = 25, p = 30% 95.36 1785
µ0 = 25, p = 20% 96.97 1168
µ0 = 25, p = 10% 98.68 792
µ0 = 40, p = 50% 93.26 2380
µ0 = 40, p = 40% 96.78 2070
µ0 = 40, p = 30% 98.16 1666
µ0 = 40, p = 20% 98.94 1208
µ0 = 40, p = 10% 99.66 747

TABLE 3.5: Cumulative regret and percentage of optimal selection for
the learning and deployment buckets algorithm, standard Thompson
Sampling and ε-greedy with different parameter values in Scenario
1 at t = 2000. The values are averaged over 100 × 200 runs. We

underline the best parameter setting for each algorithm.

Algorithm-Parameters Optimal selection(%) Cumulative regret
ε-greedy(ε = 0.1) 76.50 4953.07
ε-greedy(ε = 0.2) 68.58 5627.92
ε-greedy(ε = 0.3) 69.51 8405.04
ε-greedy(ε = 0.4) 63.12 9072.22
ε-greedy(ε = 0.5) 52.97 12825

Thompson Samp. (µ0 = 10) 88.62 2518.00
Thompson Samp. (µ0 = 25) 98.48 556.57
Thompson Samp. (µ0 = 40) 95.90 3764.08

µ0 = 10, p = 50% 75.40 3152
µ0 = 10, p = 40% 83.43 4176
µ0 = 10, p = 30% 81.23 2954
µ0 = 10, p = 20% 82.08 2794
µ0 = 10, p = 10% 84.50 2749
µ0 = 25, p = 50% 85.47 2036
µ0 = 25, p = 40% 89.59 2081
µ0 = 25, p = 30% 91.71 1675
µ0 = 25, p = 20% 92.27 1164
µ0 = 25, p = 10% 97.06 866
µ0 = 40, p = 50% 89.84 2193
µ0 = 40, p = 40% 91.92 1884
µ0 = 40, p = 30% 96.81 1498
µ0 = 40, p = 20% 96.80 1146
µ0 = 40, p = 10% 98.25 785

TABLE 3.6: Cumulative regret and percentage of optimal selection for
the learning and deployment buckets algorithm, standard Thompson
Sampling and ε-greedy with different parameter values in Scenario
2 at t = 2000. The values are averaged over 100 × 200 runs. We

underline the best parameter setting for each algorithm.

56 Chapter 3. Stationary case

Algorithm-Parameters Optimal selection(%) Cumulative regret
ε-greedy(ε = 0.1) 57.92 8278.79
ε-greedy(ε = 0.2) 52.84 8469.57
ε-greedy(ε = 0.3) 50.18 10887.64
ε-greedy(ε = 0.4) 45.57 11316.49
ε-greedy(ε = 0.5) 42.43 14480.87

Thompson Samp. (µ0 = 10) 58.79 6136.35
Thompson Samp. (µ0 = 25) 68.22 5722.30
Thompson Samp. (µ0 = 40) 57.98 5783.08

µ0 = 10, p = 50% 53.22 4404
µ0 = 10, p = 40% 65.71 5259
µ0 = 10, p = 30% 56.50 4675
µ0 = 10, p = 20% 63.73 4560
µ0 = 10, p = 10% 57.70 5235
µ0 = 25, p = 50% 67.08 3982
µ0 = 25, p = 40% 66.22 4374
µ0 = 25, p = 30% 62.40 3858
µ0 = 25, p = 20% 57.01 3887
µ0 = 25, p = 10% 57.63 4569
µ0 = 40, p = 50% 63.60 3654
µ0 = 40, p = 40% 71.50 4286
µ0 = 40, p = 30% 70.56 4787
µ0 = 40, p = 20% 74.27 5251
µ0 = 40, p = 10% 76.34 4921

TABLE 3.7: Cumulative regret and percentage of optimal selection for
the learning and deployment buckets algorithm, standard Thompson
Sampling and ε-greedy with different parameter values in Scenario
3 at t = 2000. The values are averaged over 100 × 200 runs. We

underline the best parameter setting for each algorithm.

In order to investigate further the performance of the different algorithms with
different parameter values, we are going to look at just the cumulative regret as a
measure of performance, at different times, and use benchmarking tests to assess
the results. For brevity we apply the tests at four different time steps: t = 100,
t = 500, t = 1500 and t = 2000. In Tables 3.9, 3.10, 3.11 and 3.12 we present
the average ranking of the 23 different algorithms for Scenario 1, Scenario 2 and
Scenario 3 at t = 100, t = 500, t = 1500 and t = 2000 respectively. For each
scenario the average ranking is calculated using the the ranking of each algorithm
in all the 100 datasets in the scenario.

In our case, the critical values from the chi-squared distribution and from the
F-distribution are 33.92 and 1.57 respectively. Based on Friedman test (Friedman,
1937), as explained by Demšar (Demšar, 2006), we calculate the test statistics χ2

F

and FF in order to assess the null hypothesis that all algorithms with the different
parameter values are equivalent and their mean ranks are equal. Table 3.8 shows
the test statistics, when α = 0.05, for all the the 12 tests performed for the dif-
ferent scenarios at different times. We observe that for all tests the test statistics

3.7. Numerical experiments on artificial datasets 57

are greater than the critical values. Thus, we can reject the null hypotheses and
proceed with a post hoc technique for pairwise comparisons.

Scenario 1 Scenario 2 Scenario 3

χ2
F FF χ2

F FF χ2
F FF

t = 100 1336.65 153.27 1362.72 161.13 529.03 31.34
t = 500 1727.57 362.02 1750.97 386.05 941.65 74.08
t = 1500 1907.87 646.58 1919.56 677.66 1255.54 131.61
t = 2000 1943.97 751.71 1955.84 793.04 1307.04 144.90

TABLE 3.8: Test statistics for the different algorithms at different time
steps and in different scenarios

The family of hypotheses for all pairwise comparisons, in all 12 tests, are tested us-
ing Nemeneyi test. In Appendix A, we present the 253 pairwise comparisons with
their p-value when α = 0.05, in Scenario 1, at t = 100. For brevity we present only
one of the tables and explain the results. The 253 pairwise comparisons are split
into two groups; the pairs whose p-value is less than the p-value of the Nemeneyi
test and the pairs whose p-values is higher than the p-value used in the Nemeneyi
test. We also highlight the pairs in which the best performing algorithm, under-
lined in Table 3.9, performs significantly better. We observe that the best perform-
ing algorithm at this time step and in this scenario, standard Thompson Sampling
with µ0 = 25 is significantly different from all the versions of ε-greedy and most of
the versions of the newly developed algorithm, learning and deployment buckets
algorithm. However, the p-value does not allow us to reject the null hypothe-
sis, that 2 algorithms have equal performance, when the algorithm is compared
against the learning and deployment buckets algorithm with µ0 = 25, p = 10%
and µ0 = 25, p = 20% and against standard Thompson Sampling with µ0 = 40.
As noted by Lessmann et al. (2008) by failing to reject the null hypothesis does not
mean that it is true, since Nemeneyi test is not very powerful.

58 Chapter 3. Stationary case

Algorithm Av.Ranking(Scenario 1) Av. Ranking(Scenario 2) Av. Ranking (Scenario 3)
ε-greedy(ε = 0.1) 19.23 19.30 15.12
ε-greedy(ε = 0.2) 15.44 15.74 (16) 13.37
ε-greedy(ε = 0.3) 17.20 17.37 (20) 16.48
ε-greedy(ε = 0.4) 16.98 17.25 15.73
ε-greedy(ε = 0.5) 19.65 20.02 19.59

Thompson Samp. (µ0 = 10) 11.54 11.12 9.88
Thompson Samp. (µ0 = 25) 2.10 2.21 12.29
Thompson Samp. (µ0 = 40) 4.19 5.74 13.27
Buckets (µ0 = 10, p=50%) 10.97 10.82 7.34
Buckets (µ0 = 10, p=40%) 16.57 16.22 11.89
Buckets (µ0 = 10, p=30%) 11.30 11.07 7.42
Buckets (µ0 = 10, p=20%) 13.42 13.19 10.46
Buckets (µ0 = 10, p=10%) 12.86 12.57 11.43
Buckets (µ0 = 25, p=50%) 8.78 8.14 9.92
Buckets (µ0 = 25, p=40%) 8.62 8.54 11.89
Buckets (µ0 = 25, p=30%) 6.43 5.52 9.04
Buckets (µ0 = 25, p=20%) 4.61 4.35 6.38
Buckets (µ0 = 25, p=10%) 2.97 2.93 7.00
Buckets (µ0 = 40, p=50%) 15.04 15.96 12.31
Buckets (µ0 = 40, p=40%) 17.54 17.60 14.90
Buckets (µ0 = 40, p=30%) 15.40 15.47 11.63
Buckets (µ0 = 40, p=20%) 15.31 14.90 14.28
Buckets (µ0 = 40, p=10%) 9.75 9.91 14.31

TABLE 3.9: Average Rankings for the three algorithms, with different
parameter settings, in Scenario 1, Scenario 2, Scenario 3 based on cu-
mulative regret at t = 100. We underline the best parameter setting
for each algorithm. The results are averaged over 100× 200 runs in

each scenario.

Moreover, with a closer look at the rankings in Table 3.9,3.10, 3.11 and 3.12 we
observe that the performance rankings are very similar at the different time steps.
One important result is that at any time step the best algorithm for Scenario 1 and
Scenario 2 is standard Thompson Sampling with µ0 = 25, followed by some of
the learning and deployment buckets algorithms with high proportion of traffic
sent to the learning bucket. However, when there is high variability in rewards
(Scenario 3), the performance of Thompson Sampling is worse than the learning
and deployment buckets algorithm with µ0 = 25 and p = 20% being the best at
the beginning of the experiment, and learning and deployment buckets algorithm
with µ0 = 40 and p = 50% being the best at the latest steps of the experiment.
Additionally, it is clear once again that the value of µ0 has a big impact on the
performance of standard Thompson Sampling, with µ0 = 10 being a very bad
choice.

3.7. Numerical experiments on artificial datasets 59

Algorithm Av.Ranking (Scenario 1) Av.Ranking (Scenario 2) Av.Ranking (Scenario 3)
ε-greedy(ε = 0.1) 18.17 18.54 16.78
ε-greedy(ε = 0.2) 17.24 17.77 15.95
ε-greedy(ε = 0.3) 20.13 20.17 18.56
ε-greedy(ε = 0.4) 20.57 20.72 19.93
ε-greedy(ε = 0.5) 22.63 22.62 22.15

Thompson Samp. (µ0 = 10) 11.82 12.08 12.03
Thompson Samp. (µ0 = 25) 1.48 1.44 13.50
Thompson Samp. (µ0 = 40) 1.90 2.32 14.36
Buckets (µ0 = 10, p=50%) 14.53 14.51 7.52
Buckets (µ0 = 10, p=40%) 17.37 17.26 11.70
Buckets (µ0 = 10, p=30%) 13.32 13.28 7.82
Buckets (µ0 = 10, p=20%) 13.98 14.03 10.01
Buckets (µ0 = 10, p=10%) 12.50 12.64 10.38
Buckets (µ0 = 25, p=50%) 10.81 10.30 8.13
Buckets (µ0 = 25, p=40%) 11.52 11.80 9.57
Buckets (µ0 = 25, p=30%) 8.41 8.66 7.09
Buckets (µ0 = 25, p=20%) 5.38 5.29 5.44
Buckets (µ0 = 25, p=10%) 3.74 3.65 7.69
Buckets (µ0 = 40, p=50%) 14.23 14.47 7.52
Buckets (µ0 = 40, p=40%) 14.17 13.22 10.80
Buckets (µ0 = 40, p=30%) 10.53 10.03 11.60
Buckets (µ0 = 40, p=20%) 7.47 7.14 14.09
Buckets (µ0 = 40, p=10%) 4.00 3.94 13.26

TABLE 3.10: Average Rankings for the three algorithms, with differ-
ent parameter settings, in Scenario 1, Scenario 2, Scenario 3 based on
cumulative regret at t = 500. We underline the best parameter setting
for each algorithm. The results are averaged over 100× 200 runs in

each scenario.

60 Chapter 3. Stationary case

Algorithm Av.Ranking(Scenario 1) Av. Ranking(Scenario 2) Av. Ranking (Scenario 3)
ε-greedy(ε = 0.1) 18.50 18.67 18.54
ε-greedy(ε = 0.2) 19.0 19.09 18.02
ε-greedy(ε = 0.3) 20.71 20.79 20.68
ε-greedy(ε = 0.4) 21.79 21.78 21.37
ε-greedy(ε = 0.5) 22.80 22.80 22.56

Thompson Samp. (µ0 = 10) 11.53 11.82 14.10
Thompson Samp. (µ0 = 25) 1.45 1.47 13.75
Thompson Samp. (µ0 = 40) 1.74 2.15 13.70
Buckets (µ0 = 10, p=50%) 15.43 15.57 8.21
Buckets (µ0 = 10, p=40%) 17.45 17.30 11.75
Buckets (µ0 = 10, p=30%) 14.10 14.11 9.37
Buckets (µ0 = 10, p=20%) 13.48 13.69 9.15
Buckets (µ0 = 10, p=10%) 12.47 12.93 10.52
Buckets (µ0 = 25, p=50%) 12.29 11.60 6.71
Buckets (µ0 = 25, p=40%) 12.29 12.11 8.30
Buckets (µ0 = 25, p=30%) 8.79 9.08 6.12
Buckets (µ0 = 25, p=20%) 5.84 6.08 5.98
Buckets (µ0 = 25, p=10%) 3.77 3.63 8.84
Buckets (µ0 = 40, p=50%) 12.90 13.01 5.55
Buckets (µ0 = 40, p=40%) 11.19 10.66 8.17
Buckets (µ0 = 40, p=30%) 8.58 8.32 10.27
Buckets (µ0 = 40, p=20%) 6.21 5.88 12.68
Buckets (µ0 = 40, p=10%) 3.60 3.37 11.51

TABLE 3.11: Average Rankings for the three algorithms, with differ-
ent parameter settings, in Scenario 1, Scenario 2, Scenario 3 based on
cumulative regret at t = 1500. We underline the best parameter set-
ting for each algorithm. The results are averaged over 100× 200 runs

in each scenario.

Using the average rankings of all algorithms presented in Tables 3.9, 3.10, 3.11,
3.12, we see that, at any time step, the best algorithm in terms of cumulative re-
gret when there is small and moderate variability in the rewards of the different
options, is standard Thompson Sampling with µ0 = 25. However, the perfor-
mance of this algorithm deteriorates when there is high variability in the rewards
(Scenario 3). In this case, the best algorithm becomes one of the learning and de-
ployment buckets algorithms. At t = 100 and t = 500, the best one is learning and
deployment buckets algorithm with µ = 25 and 80% of traffic sent to the learning
bucket, while at t = 1500 and t = 2000 this algorithm gets second and third respec-
tively with the optimal one being the learning and deployment buckets algorithm
with µ0 = 40 and 50% of traffic sent to the learning bucket. Thus, a further investi-
gation on the performance of these three algorithms, in terms of cumulative regret
is performed. In particular, we are interested in the variability in cumulative regret
for the different datasets in each scenario.

3.7. Numerical experiments on artificial datasets 61

Algorithm Av. Ranking (Scenario 1) Av. Ranking (Scenario 2) Av. Ranking (Scenario 3)
ε-greedy(ε = 0.1) 18.68 18.88 18.79
ε-greedy(ε = 0.2) 19.50 19.49 18.59
ε-greedy(ε = 0.3) 21.00 21.04 20.88
ε-greedy(ε = 0.4) 21.80 21.80 21.53
ε-greedy(ε = 0.5) 22.80 22.80 22.60

Thompson Samp. (µ0 = 10) 11.33 11.72 14.44
Thompson Samp. (µ0 = 25) 1.45 1.48 13.72
Thompson Samp. (µ0 = 40) 1.74 2.18 13.55
Buckets (µ0 = 10, p=50%) 15.60 15.69 8.32
Buckets (µ0 = 10, p=40%) 17.29 17.22 11.69
Buckets (µ0 = 10, p=30%) 14.11 14.17 9.91
Buckets (µ0 = 10, p=20%) 13.35 13.53 8.87
Buckets (µ0 = 10, p=10%) 12.41 12.97 10.85
Buckets (µ0 = 25, p=50%) 12.24 11.65 6.56
Buckets (µ0 = 25, p=40%) 12.31 12.06 8.32
Buckets (µ0 = 25, p=30%) 8.81 9.08 5.97
Buckets (µ0 = 25, p=20%) 5.90 6.12 6.08
Buckets (µ0 = 25, p=10%) 3.77 3.64 9.07
Buckets (µ0 = 40, p=50%) 12.77 12.77 5.26
Buckets (µ0 = 40, p=40%) 10.92 10.47 8.03
Buckets (µ0 = 40, p=30%) 8.45 8.12 9.94
Buckets (µ0 = 40, p=20%) 6.05 5.76 11.99
Buckets (µ0 = 40, p=10%) 3.60 3.28 10.87

TABLE 3.12: Average Rankings for the three algorithms, with differ-
ent parameter settings, in Scenario 1, Scenario 2, Scenario 3 based on
cumulative regret at t = 2000. We underline the best parameter set-
ting for each algorithm. The results are averaged over 100× 200 runs

in each scenario.

Figures 3.15, 3.16, 3.17 show the cumulative regret for each of the 100 different
datasets, in the three different scenarios, for Thompson Sampling with µ0 = 25,
learning and deployment buckets algorithm with µ0 = 25 and p = 20% and learn-
ing and deployment buckets algorithm with µ0 = 40 and p = 50% respectively.
Each line is the cumulative regret for each individual dataset, averaged over the
200 runs and the red line shows the mean cumulative regret over all the 100 differ-
ent datasets, in each scenario.

In Scenario 1, standard Thompson Sampling converges very quickly while at
the same time it also has a very small variability in the results. In contrast, the
learning and deployment buckets algorithm that starts with an initial estimate of
40 for the mean reward and just 50% of traffic sent to the learning bucket gets
much higher cumulative regret. Even though standard Thompson Sampling has
the best performance during the whole time of the experiment in Scenarios 1 and 2,
the results in Scenario 2 have a high variability while the variability for the same
scenario in the two settings of the learning and deployment buckets algorithms

62 Chapter 3. Stationary case

examined is much smaller. However, both learning and deployment buckets al-
gorithms with the two sets of parameters converge at much higher values of cu-
mulative regret and even the upper bound for standard Thompson Sampling is
less than the mean and in some cases the lower bound of cumulative regret for the
other two algorithms. Finally, in Scenario 3 cumulative regret for standard Thomp-
son Sampling increases almost linearly while the two settings of the learning and
deployment buckets algorithms that get much less regret perform very similarly.

0 250 500 750 1000 1250 1500 1750 2000
0

500

1000

1500

2000

Sc
en

ar
io

 1

0 250 500 750 1000 1250 1500 1750 2000
0

200

400

600

800

1000

Sc
en

ar
io

 2

0 250 500 750 1000 1250 1500 1750 2000
time

0

2000

4000

6000

8000

Sc
en

ar
io

 3

FIGURE 3.15: Cumulative regret over time for 100 different datasets
in each scenario for standard Thompson Sampling with µ0 = 25. The
red curve shows the mean cumulative regret over all datasets in each

scenario. Each curved is averaged over 200 runs.

3.7. Numerical experiments on artificial datasets 63

0 250 500 750 1000 1250 1500 1750 2000
0

500

1000

1500

2000

Sc
en

ar
io

 1

0 250 500 750 1000 1250 1500 1750 2000
0

250

500

750

1000

1250

1500

Sc
en

ar
io

 2

0 250 500 750 1000 1250 1500 1750 2000
time

0

1000

2000

3000

4000

5000

6000

Sc
en

ar
io

 3

FIGURE 3.16: Cumulative regret over time for 100 different datasets
in each scenario for learning and deployment buckets with µ0 = 25
and 80% of learning. The red curve shows the mean cumulative re-
gret over all datasets in each scenario. Each curved is averaged over

200 runs.

64 Chapter 3. Stationary case

0 250 500 750 1000 1250 1500 1750 2000
0

500

1000

1500

2000

2500

Sc
en

ar
io

 1

0 250 500 750 1000 1250 1500 1750 2000
0

500

1000

1500

2000

2500

Sc
en

ar
io

 2

0 250 500 750 1000 1250 1500 1750 2000
time

0
1000
2000
3000
4000
5000
6000
7000

Sc
en

ar
io

 3

FIGURE 3.17: Cumulative regret over time for 100 different datasets
in each scenario for learning and deployment buckets with µ0 = 40
and 50% of learning. The red curve shows the mean cumulative re-
gret over all datasets in each scenario. Each curved is averaged over

200 runs.

3.7.5 Discussion

To sum up, testing the MAB algorithms on different datasets that represent the
real system shows that the variability in the reward distribution of the different
options has a big impact on the performance of all algorithms. Various exist-
ing experimental results emphasize the superiority of Thompson Sampling with
not enough attention given to the environment that was used to test its perfor-
mance. Motivated by the results obtained when testing the algorithms on two

3.8. Concluding remarks 65

real-world datasets we attempted to test the impact of this by creating various
artificial datasets and perform controlled experiments. Firstly, the well known al-
gorithms from the area of MAB, ε-greedy and Thompson Sampling were tested on
these different datasets followed by some experimental results on a new proposed
methodology that builds on the idea of different buckets by Agarwal et al. (2009).

The learning and deployment buckets algorithm is developed to test whether
showing the best performing option so far to some amount of traffic improves the
performance of standard Thompson Sampling. Even though the definition of the
algorithm is tailored to the needs of a website optimization problem, the idea of
splitting the traffic can be applied in any company that uses online experimen-
tation. With our experimental results we show how important the choice of ini-
tial hyperparameters for standard Thompson Sampling is, while at the same time
we are able to detect changes in its performance in different environments. Even
though its performance is in general very good, when there is high variability in
the rewards of the different options, the algorithm is not able to cope well enough
with this high variability. In this situation, it is clear that one will benefit from an
algorithm that sends some amount of traffic to the option that has been the best in
the past. Thus, it is very important to use wisely any prior knowledge about the
environment and about the options we are comparing in order to make the right
decision about the most appropriate values for the initial hyperparameters and the
most suitable algorithm that we can use.

3.8 Concluding remarks

This chapter considers an example from website optimisation in which rewards
follow a normal distribution and are stationary with respect to time. We described
three different algorithms within the chapter, two being well-known (epsilon-greedy
and Thompson sampling) and the third, learning and deployment buckets, an al-
gorithm that we developed. Comparisons were made initially on two real-world
datasets but a full benchmarking test was also carried out to provide a more rigor-
ous test of the different algorithms.

We find throughout that Thompson Sampling performs better than epsilon-
greedy and that the learning and deployment buckets algorithm can improve upon
Thompson Sampling where there is high variability in the rewards of the differ-
ent options. When a small proportion of traffic is sent to the deployment bucket,
the learning and deployment buckets algorithm performs very well too. Thus,
in cases where there is some initial information that the variability in rewards of

66 Chapter 3. Stationary case

the different options is high, it might be beneficial to implement the learning and
deployment buckets algorithm instead of the standard Thompson Sampling.

The benchmarking test also provides some interesting insights into how prior
parameters should be set within Thompson sampling and how some character-
istics of the datasets, like the variability in the rewards of the candidate options,
affect its performance. To the best of our knowledge there have been no bench-
marking tests of different MAB algorithms made previous to this study.

67

Chapter 4

Seasonal case

In this chapter, we study the problem of choosing the best option out of a num-
ber of candidate options when there is seasonality in their reward distribution, a
common problem in many real-world applications. For example, in revenue man-
agement the demand for certain products varies for different seasons and hence
it depends heavily on seasonality. Motivated by the problem of an online travel
agency, where the reward obtained by the selected website on a certain day of the
week depends both on its real mean performance and on the day that website was
shown to the users, we aim to develop a methodology that manages to separate
the option and the day effect.

The best option remains the same during the experiment. But in order for it to
be correctly identified, the methodology needs to identify the effect that seasonal-
ity has on the reward obtained by each chosen option at each time step. What we
are interested in is how quickly the algorithm can adapt to the changing environ-
ment, learn the underlying seasonality and be able to distinguish the seasonal and
the option effect. This formulation allows us to separate the impact of seasonality
from the impact of the option being played.

Initially, we implement Thompson Sampling in the framework of contextual
bandits in order to handle the case of seasonality in the reward distribution of the
different options. The algorithm combines Thompson Sampling with linear re-
gression and is the same method used by Scott (2010) and more recently by Porter
et al. (2016). After some experimentation on the hyperparameters involved in the
standard contextual Thompson Sampling methodology, we proceed with the de-
scription of a new methodology that combines contextual Thompson Sampling
with statistical model selection. In our knowledge, this is the first algorithm that
solves the problem of MAB in an environment with seasonality by combining the
Bayesian exploration algorithm with a statistical model selection method.

We perform experiments on different variations of contextual Thompson Sam-
pling against standard Thompson Sampling and the new proposed method on

68 Chapter 4. Seasonal case

a number of artificial datasets. Contextual Thompson Sampling is implemented
on the two real-world datasets introduced in Chapter 3 to which we add daily
additive seasonality that has the same impact on all options. Then, the artificial
datasets we create combine different variabilities in the reward distribution of the
different options with different levels and periods of seasonality that may affect
the performance of the different options.

We organize the rest of this chapter as follows. Initially, in Section 4.1, 4.2 and
4.3 we explain the problem formulation and describe the main steps of contextual
Thompson Sampling where seasonality is treated as contextual information. In
Section 4.4 we present results from the experimentation on the hyperparameters
involved when the algorithm is applied to the two real-world datasets introduced
in the previous chapter with added daily seasonality affecting the performance of
the different options. Section 4.5 describes the general idea of the new methodol-
ogy we developed along with details about its practical implementation. Section
4.6 describes properties of the artificial datasets we created and presents the results
obtained when testing the developed methodology on the artificial datasets. We
finally conclude this chapter with Section 4.7 that highlights our main findings.

4.1 Problem formulation

Suppose we have N different options that we want to compare, such that a ∈
{1, 2, ..., N}, and at each time step t, we choose option at and receive its reward
rat(t). We still assume normal likelihood with unknown mean and variance but in
addition, we assume that rewards are affected by one level of seasonality and that
the seasonality effect is additive. This means that for each time step, we choose
an option and an additive factor zt ∈ Z is added to the expected reward of each
option, depending on the current season, where Z is a vector with all the sea-
sonal factors. Thus, the reward of at, rat(t) satisfies rat(t) ∼ N(mat + zt, s2

at
) and

the expected reward of arm at is E[rat(t)] = mat + zt. The seasonal factors are
assumed the same for all options so even though there is seasonality in our re-
wards, the best option remains the same for all “seasons”. We keep using the
term seasons in the remaining chapter, when referring to the level of seasonal-
ity. For the seasonal case with F seasons we introduce F − 1 dummy variables
such that matrix X has t rows and K = (F − 1) + N columns where the first
(F − 1) correspond to the season and the remaining N to the options. Thus,

4.2. Bayesian linear regression models 69

xt,a =
(

x1 x2 . . . xF−1 x(F−1)+1 xF+1 . . . xK−1 xK

)
is the tth row of ma-

trix X, filled with binary values that represent the season and the option chosen at
time t.

4.2 Bayesian linear regression models

We assume the following linear regression model

Y = Xθ+ ε, (4.1)

where Y is the n-dimensional vector of observations i.e. the rewards earned over
the different time periods, X is the n × K matrix where xi is the ith row of the
matrix with k elements and assumed fixed, showing the option chosen at each time
step, θ is the k-dimensional coefficient vector and ε is the n-dimensional normally
distributed error vector. Using Bayes theorem we know that

P(θ, σ2 | Y) ∝ P(Y | θ, σ2)P(θ, σ2), (4.2)

where P(Y | θ, σ2) is the normal likelihood and P(θ, σ2) the joint prior. We assume
a Normal-Inverse Gamma prior distribution as this is a conjugate prior distribu-
tion for the regression model, allowing a closed form expression to be obtained
for the posterior distribution of the parameters. The Inverse Gamma (IG) prior
density function is for σ2 and the normal prior density function is for θ given σ2.
Thus,

P(θ, σ2) = P(θ | σ2)P(σ2)

= N(θ; µ, σ2V)IG(σ2; α, β)

∝ (
1
σ2)

α+k/2+1 × exp
[
−1
σ2

{
β +

1
2
(θ− µ)TV−1(θ− µ)

}]
= NIG(µ, V, α, β)

(4.3)

where µ is the k-dimensional mean vector, V is the k × k dimensional covariance
matrix and α, β are the scalar hyper parameters of σ2.

The likelihood at the beginning is given as

P(Y | θ, σ2) = N(Xθ, σ2I)

= (
1

2πσ2)
n/2exp

{
−1
2σ2 (Y− Xθ)T(Y− Xθ)

} (4.4)

70 Chapter 4. Seasonal case

Since we use conjugate priors, after the update the posterior has the same distri-
bution as the prior but with different parameter values. Using equation 4.2 we
calculate the posterior

P(θ, σ2 | Y) ∝ (
1
σ2)

α+(n+κ)/2+1 × exp
{
−1
σ2

[
β∗ +

1
2
(θ− µ∗)TV∗−1(θ− µ∗)

]}
= NIG(µ∗, V∗, α∗, β∗)

(4.5)
where

µ∗ = (V−1 + XTX)−1(V−1µ + XTY)

V∗ = (V−1 + XTX)−1

α∗ = α + n/2

β∗ = β +
1
2

[
µTV−1µ + YTY− µ∗TV∗−1µ∗

] (4.6)

The same set of equations are used in Porter et al. (2016)
The marginal posterior of Y is calculated by integrating out θ and σ2 from

P(θ, σ2|Y). So

p(Y) =
∫ ∞

0
P(Y | θ, σ2)P(θ, σ2)dθdσ2

=
∫ ∞

0
N(Xθ, σ2 Im)NIG(µ, V, α, β)dθdσ2

= MVSt2α

(
Xµ,

β

α
(I + XVXT)

)
Following the last result, the posterior predictive distribution is

P(Ỹ|Y) = MVSt2α∗

(
X̃µ∗,

β∗

α∗
(I + X̃VX̃T)

)
(4.7)

where X̃ is a new m×K matrix and Ỹ is the vector with m predicted values. In this
posterior predictive distribution, there exist two sources of uncertainty; one is due
to σ2, the fundamental source of variability which is unaccounted for by X̃θ. The
second comes from the uncertainty in θ and σ2 caused by their estimation using a
finite sample Y. To calculate the marginal posterior of θ, we integrate out σ2 from

4.3. Algorithm 71

the NIG joint posterior as follows:

p(θ|Y) =
∫ ∞

0
p(θ, σ2|Y)dσ2

= NIG(µ∗, V∗, α∗, β∗)dθdσ2

∝
(

1
σ2

)α∗+1

exp
{
−1
σ2

[
β∗ +

1
2
(θ− µ∗)TV∗−1(θ− µ∗)

]}
∝
[

1 +
(θ− µ∗)TV∗−1(θ− µ∗)

2β∗

]α∗+k/2

This is the multivariate t-distribution with 2α∗ degrees of freedom, location µ∗ and
scale (β∗

α∗)V
∗.

4.3 Algorithm

At each time step t ∈ [0, T], the algorithm decides which option at to choose
based on the estimated rewards for all of the options. This estimated reward
is sampled from the linear regression model ỹt,a = xT

t,aθt + ε, where ỹt,a is the
estimated reward of arm a at time t, xT

t,a is the transpose of the K-dimensional
vector containing information about the current “season” and the option cho-
sen, θt is the K-dimensional coefficient vector. The option with the highest sam-
pled reward at = argmax(xT

t,aθt
a=1,2,..,N

) is chosen and its real reward rat(t) is revealed,

while the rewards of the non chosen options remain unknown. A history set
Ht−1 = {(xτ,a, raτ(τ), aτ) : 1 ≤ τ ≤ t − 1} is incorporated into the likelihood
function and once an option is chosen we update the history set by adding a new
triplet (xt,a, rat(t), at). The history set is introduced in cases where Thompson Sam-
pling is used for the solution of contextual bandits (Li et al., 2010a; Chapelle and
Li, 2011)

We assume normal likelihood with unknown mean µ and variance σ2. In order
to estimate the coefficients θt =

(
θ1, θ2, . . . θK−1, θK

)
, we assign a Normal-

Inverse Gamma prior distribution with the initial hyperparameters µ, V, α, β so
that σ2 | Ht−1 ∼ IG(α∗, β∗) and θt|σ2, Ht−1 ∼ MVN(µ∗, σ2(s)V∗) where µ∗, V∗, α∗,
β∗ are the updated hyperparameters computed with Bayes Rule at each iteration
as described in Section 4.2. We describe the steps of the algorithm in Algorithm 6.

72 Chapter 4. Seasonal case

Algorithm 6 Contextual Thompson Sampling for the seasonal case

Set µ0, V0, α0, β0

Define a vector S with the seasonal factors such that S ∈ R(F−1)

for each τ ∈ {1, 2, ..., T} do
if τ = 1 then

µ∗ = µ0, V∗ = V0, α∗ = α0, β∗ = β0

end if
Find the “season” d, d ∈ {1, ...F}
Sample θτ ∼ MVT2α∗

(
µ∗, α∗

β∗V
∗
)

, where θτ ∈ RK

Choose option aτ = argmax(xT
t,aθt)

k=F+1,..,K
and receive its real reward raτ(τ)

Update µ∗, V∗, α∗ and β∗ using Equations 4.6
end for

4.4 Numerical experiments on real-world datasets

After performing time series analysis on data from a major online travel agency,
we observed that there is daily seasonality in the data. Table 4.1 shows the daily
additive factors with Monday being the base day. The seasonal effect is assumed
the same for all options so even though there is seasonality in our rewards, the
best option remains the same for all days.

Daily Factors Z
Day (d) Mon. Tues. Wed. Thur. Fri. Sat. Sun.

Daily Factor (zd) 0 74 714 -305 -879 -1205 -674

TABLE 4.1: Additive factors for each day of the week

In the following sections, we present the results obtained by using Algorithm
6. We test the algorithm on the two different datasets we introduced for the sta-
tionary case, using the same reward data for the seven candidate options, but with
the seven daily factors now also added. First, we present the results obtained in
an environment where the performance of the different options is very similar, de-
scribed by the parameters in Table 3.2, and test the performance of the algorithm
for different values of the four hyperparameters. Then we proceed with tests on
the performance of the algorithm in an environment where there is a clear win-
ner between the different options and the real performance of the seven options
is characterized by the parameters in Table 3.3. For the latter dataset, we note
again that even though the mean value of the best option is much higher than its

4.4. Numerical experiments on real-world datasets 73

competitors, its variance is also very high. For both datasets, we then add the
same daily factors from Table 4.1. In the experiments, we study the dependence
on the choice of prior hyperparameters and compare the effectiveness of Algo-
rithm 6 which accounts for seasonality, with results obtained using Algorithm 3
which ignores any seasonal effects. This allows us to test whether accounting for
seasonality indeed improves the convergence.

4.4.1 Results for Dataset 1

An assumption made is that days and options are independent. We therefore
define V0, the initial covariance matrix, to be a diagonal matrix and initially we
choose the value of 1000 in the diagonal, representing the variance of the days and
the options. First, we examine the dependence on the prior estimate of µ0. At the
beginning we assume that a reasonable value for the the first parameter of the nor-
mal prior distribution is 0 for the days and 2000 for the different options. Then, as
we did in the stationary case, we set α0 = 1 and β0 = 1.

(A) (B)

FIGURE 4.1: Percentage of optimal selection and cumulative regret
for different µ0 when σ2 = 1000, α0 = 1, β0 = 1. The curves are

averages over 100 runs.

Surprisingly, we observe that varying µ0 values has less impact on the per-
formance of the algorithm than in the stationary case. In Figure 4.1, we can see
that there is just a small improvement in the final cumulative regret when µ0 =

(0, 0, 0....2000, 2000) compared to when µ0 = (0, 0, ..., 0). Thus, we proceed with
the test of these two mean values, combined with different values placed in the
diagonal of V0. We will denote the values in the diagonal by σ2. Interestingly,
Figure 4.2 highlights different points where regret converges for µ0 = (0, 0, ..., 0).
Large variance (σ2 = 1000 and σ2 = 2000) causes cumulative regret to converge

74 Chapter 4. Seasonal case

(A) (B)

FIGURE 4.2: Percentage of optimal selection and cumulative regret
for different µ0 and σ2 when α0 = 1, β0 = 1. The curves are averages

over 100 runs.

(A) (B)

FIGURE 4.3: Percentage of optimal selection and cumulative regret
for different α0 and β0 when µ0 = (0, 0, .., 00) and σ2 = 2000. The

curves are averages over 100 runs.

at around t = 500 whereas with σ2 = 1 this is not the case and cumulative regret
keeps increasing. From the obtained results, we see that even though the differ-
ences in percentage of optimal selection are relatively small, the best performance
of the algorithm is obtained when σ2 = 2000 and µ0 = (0, 0, ..., 0). A final test on
α0 and β0 in Figures 4.3 shows that, as α0 gets larger, the performance improves,
while changes in β0 do not affect the result. Thus, a good choice for the prior
hyperparameters is µ0 = (0, 0, ..., 0), σ2 = 2000, α0 = 20 and β0 = 1.

Moreover, in order to study possible advantages of contextual Thompson Sam-
pling in the same seasonal environment, we plot the two measures of performance
with the optimal set of prior hyperparameters for both standard Thompson Sam-
pling and contextual Thompson Sampling. Figure 4.8 shows the performance of

4.4. Numerical experiments on real-world datasets 75

the algorithm when µ0 = (0, 0, ..., 0, 0), σ2 = 2000, α0 = 20 and β0 = 1 against
the performance of the standard Thompson Sampling when µ0 = 2000, κ0 = 1,
α0 = 1, β0 = 1. From this, it is evident that contextual Thompson Sampling out-
performs dramatically standard Thompson Sampling, both in terms of percentage
of optimal selection and cumulative regret.

(A) (B)

FIGURE 4.4: Comparison between the standard Thompson Sampling
algorithm and contextual Thompson Sampling in the seasonal case

for Dataset 1. The curves are averages over 100 runs.

4.4.2 Results for Dataset 2

First, in Figure 4.5, we examine the dependence on the choice of µ0. We can see
that for all values of µ0, the algorithm starts with 75% of optimal selection and
at t = 500 all curves reach a percentage of optimal selection of 95− 97% which
stays the same until the end of the experiment at T = 2000. Cumulative regret
keeps increasing with a rate that gets smaller after t = 500. We observe that
the best cumulative regret is reached when µ0 = (2000, 2000, ..., 2000, 2000) and
µ0 = (0, 0, ..., 0, 0). Then we proceed with different values of σ2 for these two
starting vectors for µ0. Figure 4.6 shows that, for most of the combinations tried,
cumulative regret continues to increase until the end of the experiment. However,
when µ0 = (2000, 2000, ..., 2000, 2000) and σ2 = 1 and when µ0 = (0, 0, ..., 0, 0)
and σ2 = 2000, the rate of increase of cumulative regret gets much smaller and
for both cases percentage of optimal selection reaches almost 99%, while for the
rest the maximum percentage reached is 96%. This is what causes the continuous
increase in cumulative regret. Finally, when testing different α0 and β0 values, the
algorithm performs better when α0 = 20 and β0 = 10.

In Figure 4.8, we make a comparison between contextual Thompson Sampling
with hyperparameters σ2 = 1, µ0 = (2000, 2000, ..., 2000, 2000), α0 = 20, β0 = 10

76 Chapter 4. Seasonal case

(A) (B)

FIGURE 4.5: Percentage of optimal selection and cumulative regret
for different µ0 when σ2 = 1000, α0 = 1, β0 = 1. The curves are

averages over 100 runs.

(A) (B)

FIGURE 4.6: Percentage of optimal selection and cumulative regret
for different µ0 and σ2 when α0 = 1, β0 = 1. The curves are averages

over 100 runs.

and standard Thompson Sampling with the optimal set of hyperparameters as
they were stated in Section 3.6.2. We observe that contextual Thompson Sampling
starts with a very high initial 80% of optimal selection while Thompson Sampling,
which ignores seasonality, starts with just a 35% of optimal selection. This is what
causes the large difference between their initial cumulative regret, which subse-
quently forces standard Thompson Sampling to make up for the huge regret it
accumulates at the beginning. However, an interesting result is that, even though
contextual Thompson Sampling starts with a much higher percentage of optimal
selection, on average, it converges towards 100% much later compared to the stan-
dard Thompson Sampling which ignores seasonality. A further analysis of the
results was carried out in order to investigate possible factors that caused this be-
haviour.

4.4. Numerical experiments on real-world datasets 77

(A) (B)

FIGURE 4.7: Percentage of optimal selection and cumulative regret
for different α0 and β0 when µ0 = (2000, 2000, .., 2000) and σ2 = 1.

The curves are averages over 100 runs.

(A) (B)

FIGURE 4.8: Comparison between the standard Thompson Sampling
algorithm and contextual Thompson Sampling in the seasonal case

for Dataset 2. The curves are averages over 100 runs.

We investigate the results obtained from the percentage of optimal selection, at
each single run, when T = 2000 and make a plot showing the fraction of runs in
which each option was chosen. From Figure 4.9, we can see that even though in
most of the simulation runs, the algorithm manages to reach either 99% or 100%
of optimal selection by t = 2000, there are runs where the algorithm is choosing
suboptimal arms throughout the experiment. This is what makes the average per-
centage over the 200 runs at the end of the experiment be less than the optimal
100%. A possible explanation for this could be the high variance of the best op-
tion. From Table 3.3, we can see that even though the true mean, m2 of option 2 is
much higher, its standard deviation, s2 is also very high and this is probably what
causes the delay in the convergence of contextual Thompson Sampling. Thus, a
thorough exploration of their performance under high variance is recommended.

78 Chapter 4. Seasonal case

FIGURE 4.9: Percentage of runs in which contextual Thompson Sam-
pling selects each option for Dataset 2 in the seasonal case (Option 2

is the best option).

4.4.3 Discussion

After a number of experiments performed on Thompson Sampling which uses the
day of the week as contextual information, we observed that in the case where the
performance of the different options are very similar, there is a very small depen-
dence on the choice of prior hyperparameters. Moreover, the algorithm manages
to find the best option and reach 100% of optimal selection at around the same
time as it does for the stationary case. It is able to make a good estimate of how
the mean value of the arms changes daily.

In Example 2, we observed that contextual Thompson Sampling needed a sub-
stantial number of iterations to reach 100% of optimal selection. Even though it
exhibited with a high initial percentage of optimal selection, it reached a percent-
age of 95% quickly and stabilized for a significant amount of time before reaching
the maximum of 100%. This is supported by the work of Russo et al. (2018) who
suggest that in non stationary situations regret may not vanish completely by the
end of the experiment, as we observe for T = 2000. Significantly higher values of
T are needed to obtain 100% convergence, most likely due to the high variance of
the best option. This increases significantly the cumulative regret obtained by the
end of the experiment.

Only when we increased significantly the value of T we managed to reached

4.5. Multi-armed bandits for unknown seasonality 79

a 100% and consequently minimize the regret. A possible explanation for this be-
haviour could be the high variance of the best option, which increases the uncer-
tainty of the algorithm about whether the option that appears to be the best is in-
deed the best. So the increased variability results in the algorithm spending longer
on exploration. This assumption is supported by an investigation of the fraction
of simulations in which the optimal decision was made. Even though in most of
the simulation runs the optimal 100% of optimal selection is reached, there are a
few runs where there is only exploration and insufficient exploitation. This is in
line with other previous empirical results (Amirizadeh and Mandava, 2015) which
suggest that other MAB algorithms such as ε-greedy, softmax and UCB-Tuned are
also dependent on the variance of the rewards.

Finally, in all of the examples described earlier, it is clear that when the algo-
rithm uses the day of the week as contextual information in an environment with
daily seasonality, the cumulative regret is less than the cumulative regret of the al-
gorithm which ignores seasonality for the duration of the experiment. Bouneffouf
and Feraud (2016) agree that for a non stationary problem an algorithm that as-
sumes stationarity performs almost as badly as the random choice of options. Even
in the case where the algorithm carries out more exploration in order to be certain
about the best option, cumulative regret is always less than the cumulative regret
of standard Thompson Sampling, mainly because contextual Thompson Sampling
starts with a higher percentage of optimal selection.

4.5 Multi-armed bandits for unknown seasonality

We now consider the case where we have an initial belief that there is seasonality
in the rewards but we know neither the period nor the level of the seasonality. As
before, we are using the algorithm to identify the best option among a range of
suboptimal candidates. The algorithm we developed fits different models to the
data (rewards obtained from the chosen option), and at each time step, it firsts de-
cides which model fits the data best, based on Akaike Information Criteria (AIC)
(Akaike, 1974) and based on this model, it uses the respective version of Thomp-
son Sampling in order to decide which option to choose. Thus, in addition to the
option selection step that is fundamental for any MAB methodology, the algorithm
has one additional step: the model selection step. Based on the method used for
the model selection, we name the algorithm AIC-TS and we assume that, for each
period, there are a finite number of options.

80 Chapter 4. Seasonal case

The two main methodologies we use for the online learning and option selec-
tion are the standard formulation of the Bayesian algorithm and the contextual
Thompson Sampling explained earlier in Section 4.3, with the number of binary
variables varying in order to represent daily, monthly and both daily and monthly
seasonality. A similar idea was used in one of the pricing policies presented by
Geer et al. (2018) when trying to solve a dynamic pricing problem with unknown
demand. In this context in order to capture the right demand function and at the
same time find a price that maximizes revenue at each time step, the different arms
are four different demand models and, depending on the demand model that was
chosen at each time step, a decision about the best price was made.

In our case, as an initialization stage, we choose each option once to get some
initial information about their performance. When a decision is made about which
option to choose at each time step τ, we update the four hyperparameters of the
models of seasonality using the information obtained so far about the performance
of the different options. In the case where the different options follow a stationary
reward distribution, the update equations used are Equations 3.4 whereas in the
remaining models where the reward distribution of the different options follow
some seasonality, the update equations used are Equations 4.6 with y being a vec-
tor with τ entries representing the rewards obtained up to time τ. Algorithm 7
presents the mains steps of the methodology, which we call AIC-TS, in the case of
four different models for seasonality, which are explained below:

4.5.1 Reward models

The four different models represent different initial assumptions about changes in
the reward distribution of the different options.

• Model 1
The reward of the seven different options follows a stationary normal distri-
bution with unknown mean and variance and standard Thompson Sampling
is used to decide which option to choose at each time step.

• Model 2
The reward of the seven options exhibits seasonality with a period of one
week and the methodology used is based on contextual Thompson Sampling
with six variables representing the day of the week in which an option is
chosen and seven variables representing the seven candidate options.

4.5. Multi-armed bandits for unknown seasonality 81

• Model 3
The reward of the seven options exhibits seasonality with a period of one
year and based on contextual Thompson Sampling, we introduce 11 vari-
ables to represent the month of the year that an option was chosen and seven
variables representing the seven candidate options.

• Model 4
The reward of the seven options exhibits two levels of seasonality with pe-
riods of one week and one year respectively and based again on contextual
Thompson Sampling we introduce 17 variables that represent the day of the
week (six variables) and the month of the year (11 variables) that an option
was chosen and seven variables representing the seven candidate options.

82 Chapter 4. Seasonal case

Algorithm 7 AIC-TS

for each τ ∈ {1, 2, ..., T} do
Find day and month
if 1 ≤ τ ≤ 7 then

Initialization:
if τ = 1 then

Set the initial values of the prior hyperparameters of the different
models

end if
Choose a random option and get its real reward rτ

else if τ = 8 then
Select a random model M

else
Select the model such that M = argminM=1,2,3,4AICM

if M=1 (no seasonality) then
Select the best option based on Algorithm 3

else if M=2 (daily seasonality) then
Select the best option using the model with daily seasonality based on

Algorithm 6
else if M=3 (monthly seasonality) then

Select the best option using the model with monthly seasonality based
on Algorithm 6

else if M=4 (daily and monthly seasonality) then
Select the best option using the model with both daily and monthly

seasonality based on Algorithm 6
end if

end if
Get the real reward of the best option and calculate regret
Update the hyperparameters of the 4 models
Update the AICs values of the 4 models

end for

4.5.2 Model selection

For model selection, the algorithm uses the Akaike Information Criterion (Akaike,
1974), at each time step, which is calculated as AIC = −2ln(L̂) + 2k where L̂ is the
maximum value of the likelihood function for the model and k is the number of

4.5. Multi-armed bandits for unknown seasonality 83

parameters. The AIC was chosen to account for the number of parameters when
judging the quality of the model fit. When comparing different models, the best
model is the one with the minimum AIC value.

In the stationary case, i.e. when M = 1, the equation of the maximum log like-
lihood is:

LL =
−n
2

ln(2π)− 1
2

N

∑
a=1

na ln(σ̂2
a)−

N

∑
a=1

na

∑
i=1

(ri − µ̂a)2

2σ̂2
a

, (4.8)

where ri is the ith reward of option a, na is the sample size of option a and n is the
total sample size. We note that µ̂a and σ̂2

a are the mean and variance of option a
that maximize the log likelihood calculated as:

µ̂a =
1
na

∑na
i=1 ri

σ̂2
a = 1

na
∑na

i=1(ri − µ̂a)2

Moreover, for linear regression, i.e. when M = 2, 3 or 4 the maximum log likeli-
hood is:

LL =
−n
2

ln(2π)− n
2

ln(σ̂2)− 1
2σ̂2 (r− Xµ̂)T(r− Xµ̂) (4.9)

where X is the design matrix with binary variables representing the history of sea-
sonal factors and options chosen so far and r is a vector with the rewards obtained.
The mean and variance that maximize the log likelihood are:

µ̂ = (XXT)−1XTr

σ̂2 = 1
n (r− Xµ̂)T(r− Xµ̂)

The dimensions of X depend on the number of observations obtained so far and
the time those observations were made. Since for the first seven time steps, which
account for seven days of the week, all candidate options were chosen once, in
Model 2, the number of columns for X is the same as the number of columns of
X used in the update of the reward model (13 columns). However, in the case of
Model 3 and Model 4, matrix X has a different number of columns for τ < 365
since in this period of time there are months with no observations. For τ < 365,
X in Model 3 initially has seven columns for the seven options and a column is
added to the matrix once an observation from a new month is obtained. Thus,
when τ = 365, X ends up having 18 columns which stay the same until the end of
the experiment; 11 for the months with January being the base month and seven
for the candidate options. The same idea holds for Model 4 where X has initially

84 Chapter 4. Seasonal case

13 columns (six for the days of the week and seven for the candidate options)
and for τ > 365 it has 24 columns (six for the days, 11 for the months and seven
for the options). This mechanism is used to guarantee the right calculation of the
maximum log likelihood used when calculating the AIC.

Below we describe the update of the parameters for each model:

• Model 1 - Stationary reward distribution. In this model, ȳ is the mean reward
observed so far and n is the total sample size.

• Model 2 - Reward distribution with daily seasonality. In this case, µ is a
13-element vector and V is a 13 × 13 matrix. We update the model with
daily seasonality using Equations 4.6 where X is a τ× 13 matrix with binary
entries such that the first six columns represent the day of the week and the
remaining seven columns represent the seven candidate options.

• Model 3 - Reward distribution with monthly seasonality. In this case, µ is
a 18-element vector and V is 18 × 18 matrix. We update the model with
monthly seasonality using Equations 4.6 where X is τ × 18 columns with
binary entries such that the first 11 columns represent the month of the year
and the remaining seven columns represent the seven candidate options.

• Model 4 - Reward distribution with monthly and daily seasonality. In this
case, µ is a 24 element vector and V is a 24× 24 matrix. We update the model
with both daily and monthly seasonality using Equations 4.6 where X is τ×
24 columns with binary entries such that the first six columns represent the
day of the week, the following 11 columns represent the month of the year
and the remaining seven columns represent the seven candidate options.

4.6 Numerical experiments on artificial datasets

4.6.1 Setting up the artificial datasets

Artificial datasets were created to test the performance of AIC-TS, the different ver-
sions of contextual Thompson Sampling and the standard formulation of Thomp-
son Sampling. In order to do that, first we create a total of 150 different pairs of
values that represent the real mean and standard deviation of the seven candidate
options we are comparing. Following the idea we previously used for the creation
of the artificial datasets in the stationary case, we sample 10 different sets for the
expected reward of the seven options from the uniform distribution U(10, 40). In

4.6. Numerical experiments on artificial datasets 85

order to account for different variability in the reward of the different options we
create five different sets of standard deviation for each set of mean values. Thus,
for Scenario 1 s ∼ U(0.25, 0.75), for Scenario 2 s ∼ U(2.5, 7.5) and for Scenario 3
s ∼ U(25, 75). The aim of AIC-TS that combines ideas from MAB and statistical
model selection is twofold. First, the algorithm needs to be able to find what the
right seasonality is and at the same time minimize regret.

For each of the three scenarios of variability in rewards, we test the algorithms
in three different seasonal environments: daily seasonality, monthly seasonality,
both daily and monthly seasonality. For each environment, we consider two lev-
els for seasonality, low and high. In the case of low seasonality, Z ∼ U(−5, 5)
and in the case of high seasonality, Z ∼ U(−20, 20), where Z is a set of seven
seasonal additive factors for each of the seven options. For each combination of
m and s, there exists a distinct set of seasonal factors, which is different for each
period and level of seasonality. Thus, for each level-period of seasonality a total
of 150 sets of seasonal factors are created in order to match every combination
of m and s for all the three scenarios. Table 4.10 shows the mechanisms used to
create the 50 different datasets for each level-period of seasonality for Scenario 1.
The same mechanism is also used for Scenario 2 and Scenario 3 to create a total of
150 datasets. The results presented are averaged over 100 independent individual
runs for each combination of parameters and seasonal additive factors.

86 Chapter 4. Seasonal case

FIGURE 4.10: Overview of setting up the artificial datasets for Sce-
nario 1. m and s are sets with seven values representing the real
mean and the standard deviation respectively for each of the seven
options. Each m is paired with each s to create a total of 50 different
datasets and then matched with a different Z, a set with seven values
representing the seasonal factors for each level-period of seasonality

4.6.2 Results

The initial hyperparameters used in the experiments are the following:
Model 1: µ0 = 25, κ0 = 1, α0 = 1 and β0 = 1
Model 2,3,4: µ0 = (0, 0, 0, .., 25, 25, 25), V0 is a diagonal matrix with the value 25 in
the main diagonal, α0 = 1 and β0 = 1. Model 2 is the model that assumes daily
seasonality, Model 3 is the model that assumes monthly seasonality and Model 4
is the model that assumes both daily and monthly seasonality.

The first table summarizes the results of all algorithms for cumulative regret at
the end of the experiment (t = 2000). We split the results into different categories
based on the different seasonality and the variability in rewards between the seven

4.6. Numerical experiments on artificial datasets 87

candidate options we are comparing. We observe that the results are consistent for
daily and monthly seasonality. In both cases, when the seasonality is either low
or high, the new methodology achieves the lowest regret in most of the situations.
However, this does not hold when the variability between the different options
is moderate. In this case, when the seasonality is low, the contextual Thompson
Sampling that assumes the right seasonality becomes the new best and when the
seasonality is high, the contextual Thompson Sampling that assumes both daily
and monthly seasonality performs the best. Similar results are obtained for en-
vironments in which both monthly and daily seasonality are present. The only
exception is for the high seasonality and the high variability in the environment
with monthly and daily seasonality.

In order to explore further the factors that affect the performance of the differ-
ent algorithms, we make separate graphs for cumulative regret at t=2000 for the
different seasonal environments and for the different scenarios. On the x-axis we
have the difference in the expected reward between the first and the second best
options as they were generated in the simulations (ma∗ −ma∗(2)). From the graphs
it is clear that the cumulative regret of the new methodology is not affected sig-
nificantly by this difference and even when the difference between the expected
reward of the two best options is very small, in most cases the new methodology
maintains the lowest regret. This is because even though the percentage of optimal
selection might be very low, the option that it chooses very often is the second best
and this does not cause a big increase in the regret.

88 Chapter 4. Seasonal case

Seasonality Var. in rewards Standard TS Daily Cont. Monthly Cont. Both Cont. AIC-TS

Low Daily Low 354.03 161.67 133.91 157.71 98.34

Moderate 496.54 281.54 300.85 281.97 408.85

High 5840.64 5798.55 5824.11 5832.97 4916.86

High Daily Low 927.95 116.84 595.79 116.66 107.64

Moderate 989.26 293.39 715.42 287.65 447.05

High 5835.26 5824.89 5933.83 5833.44 5295.27

Low Monthly Low 373.65 176.37 174.27 172.09 96.23

Moderate 514.33 314.21 279.94 288.49 415.59

High 5738.81 5836.58 5830.62 5907.18 4942.20

High Monthly Low 1111.18 912.08 137.09 138.09 97.40

Moderate 1326.91 1004.00 283.98 281.27 454.79

High 5995.48 5928.24 5831.87 5875.40 5583.22

Low Mix Low 397.02 166.21 128.94 167.37 99.59

Moderate 537.86 317.14 309.66 288.86 437.94

High 5777.24 5797.86 5829.51 5827.58 5076.26

High Mix Low 1636.49 1039.77 603.84 124.24 109.17

Moderate 1647.17 975.61 744.45 289.76 494.31

High 6000.22 5887.10 5937.40 5856.14 6057.74

TABLE 4.2: Cumulative regret at t = 2000 for standard Thomp-
son Sampling,for contextual Thompson Sampling that assumes daily,
monthly, both daily and monthly seasonality and for the new

methodology. We highlight the smallest value for each row.

We note that in many cases there is a sudden peak when the difference is 3.67.
With a further look at the artificial datasets we can see that for these datasets the
difference between the expected reward of the best and the second best is in fact
very close to the difference between the second and the third best option. Thus,
it is possible that the algorithm spends a significant amount of time in the explo-
ration of suboptimal options which in fact have very similar performance. This
peak is even more obvious in situations with low seasonality. These results give
us a very useful insight into how the difference between the observed performance
of the different options affect each of the algorithms. It is clear that in any seasonal
environment (daily, monthly, both daily and monthly), when there is high vari-
ability in the rewards of the different options, as ma∗ − ma∗(2) increases, the final

4.6. Numerical experiments on artificial datasets 89

cumulative regret increases for all algorithms. This is because the algorithm rarely
reached 100% of optimal selection.

0

100

200

300

400

500

600

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

(A
T

 T
=

2
0

0
0

)

Standard TS Daily Contextual Monthly Contextual

Mix Contextual New Methodology

𝑚𝑎∗−𝑚𝑎∗(2)

(A) Low daily seasonality-Scenario 1

0

200

400

600

800

1000

1200

1400

1600

1800

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

Standard TS Daily Contextual Monthly Contextual

Mix Contextual New Methodology

𝑚𝑎∗−𝑚𝑎∗(2)

(B) High daily seasonality-Scenario 1

0

100

200

300

400

500

600

700

800

900

1000

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

(A
T

 T
=

2
0

0
0

)

𝑚𝑎∗−𝑚𝑎∗(2)

(C) Low daily seasonality-Scenario 2

0

200

400

600

800

1000

1200

1400

1600

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

𝑚𝑎∗−𝑚𝑎∗(2)

(D) High daily seasonality-Scenario 2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

(A
T

 T
=

2
0

0
0

)

𝑚𝑎∗−𝑚𝑎∗(2)

(E) Low daily seasonality-Scenario 3

0

1000

2000

3000

4000

5000

6000

7000

8000

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

𝑚𝑎∗−𝑚𝑎∗(2)

(F) High daily seasonality-Scenario 3

FIGURE 4.11: Cumulative regret for the different algorithms against
the difference between the expected value of the best and the second
best option when there is daily seasonality. The first column is for
low seasonality and second column is the high seasonality. A-B, C-D,

E-F are for Scenario 1, Scenario 2, and Scenario 3 respectively

90 Chapter 4. Seasonal case

0

100

200

300

400

500

600

700

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

Standard TS Daily Contextual Monthly Contextual

Mix Contextual New Methodology

𝑚𝑎∗−𝑚𝑎∗(2)

(A) Low monthly seasonality-Scenario 1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

Standard TS Daily Contextual Monthly Contextual

Mix Contextual New Methodology

𝑚𝑎∗−𝑚𝑎∗(2)

(B) High monthly seasonality-Scenario 1

0

100

200

300

400

500

600

700

800

900

1000

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

𝑚𝑎∗−𝑚𝑎∗(2)

(C) Low monthly seasonality-Scenario 2

0

500

1000

1500

2000

2500

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

𝑚𝑎∗−𝑚𝑎∗(2)

(D) High monthly seasonality-Scenario 2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

𝑚𝑎∗−𝑚𝑎∗(2)

(E) Low monthly seasonality-Scenario 3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

𝑚𝑎∗−𝑚𝑎∗(2)

(F) High monthly seasonality-Scenario 3

FIGURE 4.12: Cumulative regret for the different algorithms against
the difference between the expected value of the best and the second
best option when there is monthly seasonality. The first column is for
low seasonality and second column is the high seasonality. A-B, C-D,

E-F are for Scenario 1, Scenario 2, and Scenario 3 respectively

4.6. Numerical experiments on artificial datasets 91

0

100

200

300

400

500

600

700

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

Standard TS Daily Contextual Monthly Contextual

Mix Contextual New Methodology

𝑚𝑎∗−𝑚𝑎∗(2)

(A) Low daily and monthly seasonality-
Scenario 1

0

500

1000

1500

2000

2500

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

Standard TS Daily Contextual Monthly Contextual

Mix Contextual New Methodology

𝑚𝑎∗−𝑚𝑎∗(2)

(B) High daily and monthly seasonality-
Scenario 1

0

100

200

300

400

500

600

700

800

900

1000

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

 T
=

2
0

0
0

)

𝑚𝑎∗−𝑚𝑎∗(2)

(C) Low daily and monthly seasonality-
Scenario 2

0

500

1000

1500

2000

2500

3000

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

𝑚𝑎∗−𝑚𝑎∗(2)

(D) High daily and monthly seasonality-
Scenario 2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

𝑚𝑎∗−𝑚𝑎∗(2)

(E) Low daily and monthly seasonality-
Scenario 3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 . 0 4 0 0 . 4 4 1 0 . 4 7 1 0 . 5 8 9 3 . 6 7 9 5 . 9 0 3 6 . 0 9 7 7 . 1 8 3 1 0 . 5 0 4 1 1 . 9 6 4

C
U

M
U

LA
T

IV
E

 R
E

G
R

E
T

 (
A

T
 T

=
2

0
0

0
)

𝑚𝑎∗−𝑚𝑎∗(2)

(F) High daily and monthly seasonality-
Scenario 3

FIGURE 4.13: Cumulative regret for the different algorithms against
the difference between the expected value of the best and the second
best option when there is daily and monthly seasonality. The first
column is for low seasonality and second column is the high season-
ality. A-B, C-D, E-F are for Scenario 1, Scenario 2, and Scenario 3

respectively

In Figure 4.14, we can have a closer look at the model selection of AIC-TS in
the different seasonal environments. It shows on average over the 200 runs how
many times in the 2000 time steps the algorithm chooses each of the different mod-
els. It is clear that for Scenarios 1 and 2 it usually chooses the right model. In the
case of low seasonality, the algorithm manages to choose much more often the
right model in Scenario 1 and Scenario 2. However, in Scenario 3 due to the high

92 Chapter 4. Seasonal case

variability in the rewards obtained in an environment with high seasonality, the
algorithm selects the stationary model more often. This suggests that when the
variability is high, it masks the seasonal variation. Similar results are obtained for
the case of high seasonality with the difference that, even in Scenario 3, the algo-
rithm now manages to choose the correct model a large number of times - close to
the number of times it chooses the stationary model. Combining the results from
Figures 4.11, 4.12, 4.13 and Figure 4.14, we see that there is no obvious correla-
tion between model selection and regret. Even in situations where the algorithm
does not choose the right model more often, cumulative regret does not increase
significantly.

4.6. Numerical experiments on artificial datasets 93

1
.0

0
2

2

9
2

.3
1

8
6

1
8

6
0

.1
5

2
2

1
9

0
8

.9
3

2
2

1
8

2
8

.0
5

2
8

1
0

6
.5

4
9

8

0
.6

2
3

0
.9

7
8

6

2
2

.7
1

6
8

8
2

.4
4

2
6

7
1

.6
5

3
.5

8
1

2

S C E N A R I O 1 S C E N A R I O 2 S C E N A R I O 3

M
O

D
E

L
S

E
LE

C
T

IO
N

Model 1 Model 2 Model 3 Model 4

(A) Low daily seasonality
Correct model: Model 2

1
.0

0
1

2
.3

8
6

9
9

7
.5

0
9

4

1
9

0
9

.4
7

3
2

1
9

0
8

.2
5

0
8

9
5

0
.4

9
9

4

0
.2

2
1

0
.0

9
7

4

9
.1

1
2

2

8
2

.3
0

4
8

8
2

.2
6

5
8

3
5

.8
7

9

S C E N A R I O 1 S C E N A R I O 2 S C E N A R I O 3

M
O

D
E

L
S

E
LE

C
T

IO
N

Model 1 Model 2 Model 3 Model 4

(B) High daily seasonality
Correct model: Model 2

1
.1

3
7

6

1
0

2
.7

5
6

4

1
8

7
8

.1
6

2
2

1
0

.0
3

5

1
1

.5
9

5
2

4
8

.6
9

8
8

1
8

3
1

.1
1

9
6

1
7

4
0

.6
8

3
6

6
1

.2
2

6
4

1
5

0
.7

0
7

8

1
3

7
.9

6
4

8

4
.9

1
2

6

S C E N A R I O 1 S C E N A R I O 2 S C E N A R I O 3

M
O

D
E

L
S

E
LE

C
T

IO
N

(C) Low monthly seasonality
Correct model: Model 3

1
.1

3
9

6

2
5

.4
7

7

9
4

5
.9

7
7

6

9
.7

4
3

6

1
0

.8
4

6
8

1
4

.9
6

6
8

1
8

3
0

.8
8

3

1
8

1
2

.9
6

5
8

9
5

6
.5

1
3

8

1
5

1
.2

3
3

8

1
4

3
.7

1
0

4

7
5

.5
4

1
8

S C E N A R I O 1 S C E N A R I O 2 S C E N A R I O 3

M
O

D
E

L
S

E
LE

C
T

IO
N

(D) High monthly seasonality
Correct model: Model 3

1
.0

0
2

8

4
1

.5
0

5
8

1
8

3
2

.2
4

0
8

2
4

.7
5

9
8

2
8

.6
3

1
2

1
0

0
.2

2
2

4

0
.7

2
2

5
.1

8
0

6

4
2

.5
5

4
8

1
9

6
6

.5
1

5
4

1
9

1
7

.6
8

2
4

1
7

.9
8

2

S C E N A R I O 1 S C E N A R I O 2 S C E N A R I O 3

M
O

D
E

L
S

E
LE

C
T

IO
N

(E) Low daily and monthly seasonality
Correct model: Model 4

1
.0

0
1

1
.7

8
7

4

6
1

5
.6

3
7

2

2
4

.2
2

4
4

2
4

.7
0

7
6

8
2

.7
5

9
4

0
.2

2
0

8

0
.0

8
0

6

4
7

.4
7

8
8

1
9

6
7

.5
5

3
8

1
9

6
6

.4
2

4
4

1
2

4
7

.1
2

4
6

S C E N A R I O 1 S C E N A R I O 2 S C E N A R I O 3

M
O

D
E

L
S

E
LE

C
T

IO
N

(F) High daily and monthly seasonality
Correct model: Model 4

FIGURE 4.14: Model selection of the new methodology in 2000 time
steps. The results are averaged over 200 individual runs

4.6.3 Discussion

The purpose of the above study is twofold. Firstly, we wanted, as we did in he
previous chapter, to study how the real performance of the candidate options af-
fects the performance of the algorithms when there is some seasonality in their
reward distribution. For this reason, we tested standard TS, AIC-TS and contex-
tual TS under different seasonality assumptions on our artificial datasets and on
different seasonal environments. Secondly, we wanted to examine whether select-
ing the right model (the one closest to the true model) leads to better decisions and

94 Chapter 4. Seasonal case

maximization of rewards (or minimization of regret).
Firstly, from the results it is clear that our algorithm (AIC-TS) performs very

well, especially in cases with low and high variability in the rewards of the dif-
ferent options. In cases where its performance is not the best one, it is very often
close to the version of the algorithm that knows the exact seasonality structure.
Additionally, the results are in agreement with the main outcomes of Besbes and
Zeevi (2015) who suggested that wrong models can lead to good and in some cases
better decisions. Based on the results obtained for the cumulative regret combined
with the results for the models selection for AIC-TS, it becomes apparent that the
right model selection does not always lead to the lowest cumulative regret. Also,
there are cases (low seasonality-Scenario 3) where even though AIC-TS selects a
wrong model more often, its performance is not negatively affected .

4.7 Concluding remarks

This chapter considered examples in which rewards exhibit seasonality, a typical
characteristic of reward data from website optimization applications. Two real-
world datasets were considered initially before moving onto more rigorous tests
on a large number of datasets. To account for seasonality, we implemented a con-
textual Thompson Sampling algorithm and a more advanced algorithm, AIC-TS,
that aims to detect seasonality within the rewards.

Then based on the assumption that, when there is seasonality in the rewards
of the different options, contextual Thompson Sampling performs better than stan-
dard Thompson Sampling that assumes stationarity, we wanted to observe whether
the initial assumption about the period of seasonality affects the performance of
contextual Thompson Sampling. Hence, we created a number of artificial datasets
to test the standard formulation of contextual Thompson Sampling under different
assumptions about the underlying seasonality. The artificial datasets created are
for different period and level of seasonality. The results showed that the perfor-
mance of the algorithms depends on both the period-level of seasonality and the
variability in rewards of the different candidate options and the initial assumption
about the period of seasonality does have an impact on the outcome.

In order to overcome the possibility of a wrong initial assumption on seasonal-
ity, we developed AIC-TS, an algorithm that combines contextual Thompson Sam-
pling with statistical model selection. Its performance is definitely better than con-
textual Thompson Sampling with a wrong initial assumption and in some cases
it is better than the one with the right assumption. This suggests that the correct

4.7. Concluding remarks 95

model selection does not necessarily mean superiority in performance. Addition-
ally, contextual Thompson Sampling with different initial assumptions was tested
against standard Thompson Sampling and AIC-TS and it was clear that an addi-
tional factor that has an impact on their performance is the difference in the mean
performance of the best and the second best option.

97

Chapter 5

Dynamic pricing application

This chapter introduces an application of multi-armed bandits to an area of par-
ticular interest, where the trade-off between exploration and exploitation is ap-
plied to maximize long-term revenue. We consider a situation where prices can be
frequently adjusted throughout the selling season, making this a dynamic pricing
or optimal pricing problem (Boer, 2015). Developing methods that simultaneously
learn about the market and optimize prices is a growing area of research in revenue
management. This has come about through the extensive development of online
stores that give retailers the opportunity to change prices more frequently and the
large range of products on sale, which means that stores need to automate price
decisions. For more particular applications of pricing and revenue management,
we refer the reader to Özer, Ozer, and Phillips (2012) and Talluri and Van Ryzin
(2006).

It has been established that frequent price changes can be beneficial for any
company that has the capacity to make changes to the price assigned to any prod-
uct (Elmaghraby and Keskinocak, 2003; Quantifying the benefits of dynamic pricing in
the mass market). Hence, online learning algorithms that aim to balance the trade-
off between exploration and exploitation are used to estimate the underlying de-
mand curve of a product, detect any seasonal changes that may affect the demand
and change the price accordingly in order to maximize total revenue. Exploration
phase can be defined as the period of time during which the retailers collect infor-
mation about the demand of each candidate price while exploitation is the phase
where they choose the most profitable price in order to maximize revenue.

The work in this chapter is motivated by the Dynamic Pricing Challenge, held
on the occasion of the 17th INFORMS Revenue Management and Pricing Section
Conference on June 29-30, 2017 (Geer et al., 2018). The aim was to develop a dy-
namic pricing algorithm for a single product with no capacity constraints in order
to evaluate the performance of different strategies in a competitive market envi-
ronment with incomplete information. Based on the results and the managerial

98 Chapter 5. Dynamic pricing application

insights of three of the algorithms submitted, which are loosely based on MAB,
we develop a new pricing strategy. In this new algorithm, we use Thompson Sam-
pling and apply some of the recommended improvements in order to achieve high
revenue and good performance against other competitors in the market.

In Section 5.1, we give an overview of the existing literature on revenue man-
agement and dynamic pricing, which is followed by the problem definition and
the description of the demand mechanism we use to generate the demand in our
experiments along with the experimental design, in Sections 5.2, 5.2.1 and 5.3 re-
spectively. In Section 5.4, we describe the pricing strategy we have developed
and then in Section 5.5, we give a brief overview of three other pricing strategies
from the literature. Section 5.6 presents the results when running just our pricing
strategy without any other competitors in the market, in a monopoly, and when
running our algorithm against the other three competitors in two different set-
tings: oligopoly where the four algorithms are run all together against each other
and duopoly where the four algorithms compete in a round-robin setup. Lastly,
Section 5.7 concludes the chapter.

5.1 Related literature

In a dynamic pricing problem without inventory constraints, the retailer has to
choose real-time prices for different products in order to maximize revenue. A fre-
quent assumption that reflects the complexity of the problem in many real-life sit-
uations, is that the demand function is unknown and stochastic; i.e we may have
some prior information but we do not know the exact relationship between the
price of a product and the demand earned and the realised demand is stochastic.
This situation was first formulated as a problem of learning and earning in the area
of economics by Rothschild (1974), who introduced the idea of price experimenta-
tion in order to learn the underlying demand function. Until then, the majority of
firms were assuming a known demand function based on previous observations of
the market. A vast amount of literature exists on such learning and earning prob-
lems (Besbes and Zeevi, 2009; Keskin and Zeevi, 2014; Ferreira, Simchi-Levi, and
Wang, 2018; Besbes and Zeevi, 2015; Misra, Schwartz, and Abernethy, 2019a; Ban
and Keskin, 2018; Boer and Keskin, 2017). A review paper by Boer (2015) provides
a good overview of the area, along with additional limitations and modifications
of the standard problem that exist in different environments.

5.1. Related literature 99

Surprisingly, an important study by Besbes and Zeevi (2015) shows that in the
case of an unknown demand function, even if the model assumed at the begin-
ning of the learning procedure is incorrect, it may lead to correct pricing decisions
under fairly general assumptions. In their study, they conclude that since mis-
specification of the demand model does not significantly harm the revenue earned
by the pricing policy, using a simple linear model can be a good strategy that can
perform well in a range of scenarios.

In the framework of MAB, this problem consists of two phases: the demand
learning phase, which represents the exploration phase and the maximizing rev-
enue phase, which represents the exploitation phase. The different arms are the
different prices that the retailer can offer for each product and regret is defined as
the difference between the optimal cumulative revenues when we know the de-
mand distribution and the cumulative revenues of the firm’s policy. (Besbes and
Muharremoglu, 2013). Intuitively, this can be thought of as the lost profits due
to experimentation (Misra, Schwartz, and Abernethy, 2019b). Thus, the decision
maker can choose either exploitation by selecting the price that minimizes regret
at the current time step, based on current information, or exploration, in order to
earn more information that will be used in the future.

A MAB methodology is incorporated in the dynamic pricing policy of Misra,
Schwartz, and Abernethy (2019b) in order to maximize revenue when the retailer
has to decide between a number of different prices for a product and has limited
information about the demand model. They solve the problem as a dynamic opti-
mization problem and their suggested policy is based on UCB (Upper Confidence
Bound). All of the above methods are designed to work in a monopoly market en-
vironment where the retailer aims to develop a pricing strategy that maximizes his
own revenue when there are no other competitors in the market. A recent study
(Geer et al., 2018) shows numerical results for a number of different algorithms
developed to solve a dynamic pricing problem in an oligopoly setting where all
competitors are compared against each other simultaneously and in a duopoly
setting where the competitors compete in a round-robin setup. An important con-
clusion they draw is that taking into account competitors’ decisions in the process
of decision making significantly increases the revenue gained when compared to
pricing strategies that ignore competitors’ behaviour. This is even clearer in situa-
tions where there is a large number of competitors and/or the price sensitivity of
the customers is high.

Many real life examples of dynamic pricing can be formulated as contextual
bandit problems. The additional contextual information that the retailer is able to

100 Chapter 5. Dynamic pricing application

use can be competitor prices (Ferreira, Simchi-Levi, and Wang, 2018) or informa-
tion about individual customers and their preferences. Ferreira, Simchi-Levi, and
Wang (2018) present simulation results for the case where contextual information
consists of competitors’ selling prices. In their approach they use regression for
every contextual information-purchase decision pair and they examine two differ-
ent cases for the contextual information: the case where competitors’ prices come
from a uniform distribution and the case where they follow a Bernoulli distribu-
tion. Then, for each of the two cases, they compare the performance of the algo-
rithm when they use contextual information and when they use only the Thomp-
son Sampling- update algorithm. Between the two distributions, they concluded
that Bernoulli context requires fewer samples and thus the performance in terms
of percentage of correct selection is better compared to the Uniform distribution.

5.2 Problem definition

We study the same problem described by Geer et al. (2018). The aim is to develop
a pricing strategy for a single product without inventory constraints under an un-
known demand mechanism. The only information given about possible prices
for the product is that “it seems unlikely that posting prices higher than 100 is
optimal”. The experiment consists of 1000 time steps and it is assumed that at
each time step the algorithm can observe its own sales and the prices of the other
competitors in the market and it is not able to see the sales figures for other com-
petitors. The algorithm uses this information to set a price to charge in the next
time period.

We begin by presenting results for a monopoly, where there are no other com-
petitors in the market. This allows us to observe what impact some of the pa-
rameters involved in the methodology have on the sales and consequently on the
total revenue earned. We then incorporate some of the competitors described in
Geer et al. (2018) in the market, run our algorithm against these competitors and
examine its performance in two different settings: oligopoly and duopoly. In the
oligopoly setting, all competitors compete simultaneously with each other while in
the duopoly setting, each competitor competes with all the other competitors in a
round-robin setup. More details about the demand mechanism we use to simulate
the customers’ reaction to the different prices are included in Section 5.2.1.

5.2. Problem definition 101

5.2.1 Demand mechanism

The demand mechanism we use is the same demand mechanism explained in Geer
et al. (2018). The idea behind the demand mechanism is that there is a competitive
market environment with heterogeneous customer base. Its main characteristics
are a Poisson arrival process of the customers with mean arrivals per time period
equal to λi in simulation i, where λi ∼ U(50, 150) and time independence of de-
mand within a single simulation. At this point we highlight once again that none
of the participants in this competition were aware of any of the assumptions re-
garding the market structure and they could not see the revenue earned by the
other competitors in the market.

There are three customer segments: shoppers, loyal customers and scientists
whose shares are denoted as ζsho

i , ζ
loy
i , ζsci

i respectively, in simulation i. The sci-
entists segment consists of PhDs and professors and their respective shares are
γ

phd
i , γ

pro f
i . Additionally, the number of shoppers, loyals and scientists are de-

noted as msho, mloy, msci respectively. Thus, the total number of arriving customers
is msho + mloy + msci and the number of arriving scientists is mphd + mpro f . Below
we describe the arrival process for each simulation in more detail.

Algorithm 8 Arrival process

for i ∈ {1, ...1000} do
Sample arrival rate λi ∼ U(50, 150)
Sample segment shares ζsho

i , ζ
loy
i , ζsci

i
Sample subsegment shares γ

phd
i , γ

pro f
i

for t ∈ 1, ...1000 do
Sample arrivals m ∼ Poisson(λi)

Sample segment arrivals msho, mloy, msci ∼ Multinom(m, (ζsho
i , ζ

loy
i , ζsci

i))

Sample subsegment arrivals mphd, mpro f ∼ Multinom(msci, (γphd
i , γ

pro f
i))

end for
end for

Below we describe the three customer segments in more detail:

• Shoppers: The willingness to pay (WTP) is exponentially distributed with
different parameters. In each period in simulation i, we sample a WTP for
each arriving shopper from the exponential distribution with mean βsho

i and
compare these WTPs to the lowest price offered in the market. In an environ-
ment with more than one competitor in the market, if the WTP of a shopper

102 Chapter 5. Dynamic pricing application

is higher than the lowest price offered then the shopper buys from the com-
petitor that offers the lowest price. Otherwise, the shopper leaves without
buying. Ties are broken randomly.

• Loyal customers: Each loyal customer is randomly assigned to a competitor.
For each loyal customer we assume their willingness to pay is exponentially
distributed with mean β

loyal
i = uβsho

i , where U ∼ U(1.5, 2.0). If the WTP of
the loyal customer is higher than the price offered by the competitor assigned
to him then he buys. Otherwise the loyal customer leaves without making a
purchase.

• Scientists: Scientists are split into two categories: professors and PhDs. Their
demand follows a finite mixture logit model or latent class logit model, where
the mixture comprises professors and PhDs. We make sure that the op-
timal price for the PhDs is within 50% of the optimal price for the shop-
pers.Additionally, the optimal price in a market that consists of only profes-
sors would be higher than in a market that consists solely of PhDs.

In summary, in each simulation i ∈ {1, ...1000}, in each period we see in ex-
pectation λiζ

sho
i arriving shoppers, λiζ

loy
i arriving loyals, λiζ

sci
i γ

phd
i arriving PhDs

and λiζ
sci
i γ

pro f
i arriving professors. Each of these customers chooses according to

its own parameterized demand function as described above.
In a monopoly, we make the necessary adaptations of the above demand mech-

anism in order to account for a single competitor in the market.

5.3 Experimental design

We run f simulations, each consisting of 1000 time steps. At every time step t, the
competitors choose what price to charge at t + 1 and, based on the undisclosed
demand mechanism, the sales of each competitor are generated. Thus, the com-
petitors learn how much revenue they earn from the price they have charged.

In a monopoly setting we use the total revenue earned as a performance mea-
sure while in the case of competitive market environment we choose to use rev-
enue share as a measure of the performance of each individual strategy against
the other competitors in the market. The competitive environment consists of two
settings: an oligopoly including all z competitors and a duopoly made up of (z

2)

duopoly competitions. In each simulation we calculate the competitors’ share of
total revenue in the oligopoly and their share of total revenue in the duopoly com-
petitions and then calculate the average share in the two environments in order to

5.4. Algorithm 103

determine the overall revenue share of each competitor. Below we describe how
we calculate the revenue share of z competitors in f simulations with ui,j being the
revenue earned by competitor j in oligopoly in simulation i of the oligopoly and
vijk being the revenue earned by competitor j against competitor k in simulation i
of the duopoly.

Oligopoly:

uij =
uij

∑z
k=1 uik

Duopoly:

vij =
∑z

k=1 vijk

∑z
u=1 ∑z

k=1 viuk

Thus, the overall score of competitor j is :

1
f

f

∑
i=1

1
2
(uij + vij)

5.4 Algorithm

Our pricing strategy combines standard Thompson Sampling with a racing ma-
chine learning algorithm, Hoeffding races (Maron and Moore, 1994). Due to the
very limited information about the possible prices and the continuous nature of
the prices we are allowed to charge in the interval (0, 100], we choose to split the
interval into Z different buckets. For illustrative purposes in the rest of the chap-
ter we have Z = 5. Each of the price buckets pertains to an arm and choosing
a specific arm means posting a randomly sampled price from the corresponding
price bucket. Even though a significant amount of literature on MAB with an in-
finite number of arms exists (Agrawal, 1995; Auer, Ortner, and Szepesvári, 2007),
we choose to use traditional MAB techniques with a finite number of arms. This
makes the algorithm applicable in many situations in industry where the choice
of candidate prices is much more restricted than the choice in the current problem
(Ferreira, Simchi-Levi, and Wang, 2018).

When the process starts, we have limited information about the buckets and
as we proceed we use information we have collected about the performance of
prices in the different buckets in order to decide which bucket to select at the next
time step. Note here that we use the same formulation we used in Chapter 3 for

104 Chapter 5. Dynamic pricing application

Thompson Sampling (see Equations 3.4). The normality assumption in this algo-
rithm stands only for the distribution used in the random sampling, standard part
of Thompson Sampling and it does not reflect any assumption regarding the de-
mand distribution. Hoeffding races is used at each time step to decide whether
there is a price bucket that may be eliminated in order to suppress the price in-
tervals we are allowed to choose a price from. When enough observations from a
poorly performing bucket have been collected to be confident it does not include
the best price we stop charging a price from this bucket. The bucket with the high-
est mean revenue so far is then split into two new buckets in order to maintain
a constant number of buckets and shrink the price interval of the best bucket in
order to concentrate the “learning” in the best performing prices.

Figure 5.1 illustrates the mechanism used for the restructuring of price buckets
when a price bucket is eliminated. In Figure 5.1, we see that at t = 14, Hoeffding
test decides to eliminate price bucket B2,14. Thus, the mean revenue earned by all
price buckets is calculated and the price bucket with the highest mean revenue
earned so far is B1,14. So this bucket is then split into two new price buckets that
will constitute, along with the remaining ones, the candidate price buckets that
will be considered at t = 15. New price buckets are created only when there is
a bucket rejection following the implementation of Hoeffding races. When new
price buckets are created, we revisit the prices charged so far and allocate each of
them to one of the new price buckets, in order to recalculate the hyperparameters
of the newly formed price buckets.

The idea of dividing the price interval into a number of equally spaced intervals
that are shrinking was implemented by Wang, Deng, and Ye (2014) when solving a
dynamic pricing problem with inventory constraints. However, to the best of our
knowledge this is the first work that combines Thompson Sampling methodology
with the racing machine learning method. Hoeffding races is explained in more
detail in a general context in Section 5.4.1, in order to get a better understanding
of how certain price buckets are eliminated. Algorithm 10 summarises the main
steps of the pricing algorithm.

5.4. Algorithm 105

FIGURE 5.1: Illustration of the case where at t = 14 the worst bucket
was B2,14 and the best bucket was B1,14

5.4.1 Hoeffding races

The idea of Hoeffding races (Maron and Moore, 1994) is the same as any other
racing algorithm: discard bad systems in order to concentrate the computational
effort on the differentiation between the better ones. In our problem each system
corresponds to a different price bucket and we will be using the term price bucket
for the description of this racing algorithm.

The algorithm uses the samples from all price buckets so far and calculates the
error bounds. The estimated error bound for each price bucket is calculated using
the following equation.

ε(n) =
√

R2 log(2/δ)
2n

where R bounds the greatest possible revenue that a price bucket can make, n is
the number of points we have tested so far and δ is a confidence parameter. If Etrue

is the true error then the following condition follows from Hoeffding’s inequality
(Hoeffding, 1963).

P(| Etrue − Eest |> ε) < δ, δ = 2e
−2nε2

R2

When calculating the error bounds for the mean performance of the different
buckets, the price bucket whose upper bound is lower than the lower bound of

106 Chapter 5. Dynamic pricing application

the best bucket is rejected. If this is the case for more than one price bucket we
choose to reject the price bucket with the lowest mean revenue. As n gets larger,
the ε bound becomes smaller and bad buckets are eliminated. The algorithm stops
either when we are left with just one price bucket or when Eest has reached a cer-
tain threshold (Maron and Moore, 1994; Yeh and Gallagher, 2005). It is important
to note that if the value of R is chosen to be too small, we end up discarding price
buckets very quickly, but often the wrong ones, whereas if R is too big, it takes
the algorithm a long time to identify price buckets that have a poor performance.
Thus, a further experimentation on the R parameter is performed in the implemen-
tation of the proposed methodology. Algorithm 9 describes the steps of Hoeffding
races applied at each time step of the main pricing algorithm which is described
as Algorithm 10.

FIGURE 5.2: An example of case where there are 5 buckets in com-
parison. Bucket 1 is discarded because the upper bound of its mean
performance is lower than the lower bound of the best bucket 4 and

its mean is lower than the mean of Bucket 3

5.4. Algorithm 107

Algorithm 9 Hoeffding races

Define δ = 0.05 and R. Pτ to be the set with the upper bound of each bucket at
time τ

for each arm a ∈ Pτ do

Calculate error bound εa =
√

R2 ln(2/δ)
2n

Calculate mean revenue Reva

Calculate upper and lower bound LBa = Reva − εa and UBa = Reva + εa

end for
Find the best price bucket a∗ = argmaxReva

a∈Pτ

for each arm a ∈ Pτ do
if UBa < LBa∗ then

Reject bucket arej = a
end if

end for

Algorithm 10 Thompson Sampling with Hoeffding races (TS-HR)

Define Z price buckets as the Z “arms” such that Bi,0∀i ∈ {1, 2, .., Z} represent
the Z price buckets
Define P as the set with the upper bound for each bucket
Define initial prior hyperparameters µ0, κ0, α0, β0

for each τ ∈ {1, 2, ..., T} do
for each arm a ∈ Pτ do

Sample reward r̃a,τ from the t-distribution t2αn(µ; µn, βn
αnκn

)

end for
Choose bucket aτ = argmaxr̃a,τ

aτ∈Pτ

Charge a random price pτ ∈ aτ

Get the demand d(pτ) and calculate revenue d(pτ) ∗ pτ

Update the hyper parameters of price bucket aτ

Use Hoeffding races to decide if there is any price bucket to eliminate and
update Pτ and Bi,τ∀i ∈ {1, 2, .., Z}-Do Algorithm 9

if a bucket is rejected then
Update the hyperparameters of arej and a∗

end if
end for

108 Chapter 5. Dynamic pricing application

5.5 Competitor algorithms

We choose three pricing strategies as competitors, to form the competitive market
environment, as described in Geer et al. (2018): logit, WLS and greedy. Logit and
WLS are chosen due to their superiority in oligopoly and duopoly respectively.
Greedy is included in the competition in order to examine whether such a simple
algorithm can win against other more complicated algorithms. Its overall perfor-
mance in Geer et al. (2018) suggests that even though the methodology is simple, it
still achieves a total revenue share that places it second out of seven competitors,
with more complicated algorithms, in the original competition. Below is a brief
description of these pricing strategies and their main features.

• Logit: The algorithm uses a finite mixture logit model where the mixture is
taken over the number of possible customer arrivals. In the first 100 time
periods it tries to estimate the maximum number of arriving customers in
a single period. After that it uses an Expectation-Maximization algorithm
to estimate a probability distribution over the number of arrivals and the
parameters of the multinomial logit models. Regarding competitors’ prices,
the algorithm assumes that they follow a multivariate normal distribution
and at each time step it predicts competitors’ prices for the next time step.

• WLS: The algorithm aims to maximize its own revenue minus the revenue of
the competitor that earns the maximum revenue. The algorithm assumes a
demand function of the form d(x, y) = a+ bx + c ∑z−1

k=1 yk and the parameters
a, b, and c are estimated using weighted least squares (WLS). The price of
competitor k in the next time step is predicted based on the median of the
historical prices over some time window. This window’s length is chosen so
that it minimizes the Median Absolute Error of historical prices predictions.

• Greedy: This is a very simple strategy that does not try to estimate what
price the competitors will charge in the next time period. The simple idea
behind it is that it charges the minimum price observed in the previous time
step. In order to maintain high enough prices the algorithm does the follow-
ing check: if the minimum price observed in the last time step is lower than
10% percentile of the observed prices in the last 30 time steps then the price
it chooses for the next time step is the maximum of this percentile and 5.

5.6. Results 109

5.6 Results

5.6.1 Monopoly

Initially, we perform some experimentation on the parameters involved in the new
methodology, denoted as TS-HR . We try different values for the initial estimate of
the mean revenue in each bucket (µ0) while keeping the rest of the hyperparame-
ters equal to 1 and trying different values for R, which is the range parameter in
Hoeffding races. Then, for the different values we report the total revenue earned
along with the number of times there is a bucket elimination in the 1000 time steps
of each individual simulation. The results presented are averaged over 1000 inde-
pendent simulation runs.

Figure 5.3 shows the average total revenue over the 1000 runs. We observe that
for values of R from 50 to 300 the total revenue is high with just small fluctuations
for the different values while for values greater than 300 there is a continuous de-
crease in revenue with the least total revenue earned when R = 500. Additionally,
the highest revenue for any value of R is earned when µ0 = 1000. In Figure 5.4 it
is clear that for values of R from 50 to 300, the average number of bucket elimina-
tions in a time period of 1000 time steps decreases, with a sharp decrease between
the value of 50 and 100 and stays small and constant for any value of R greater
than 300. This is in line with the results presented by Yeh and Gallagher (2005).
They observe that an increase in the value of R results in an increase in the number
of iterations needed before an option is discarded.

FIGURE 5.3: Average total revenue earned in 1000 time steps for 4
different values of µ0 when κ0 = 1, α0 = 1, β0 = 1, for different
values of Range (R). The results are averaged over 1000 independent

simulation runs

110 Chapter 5. Dynamic pricing application

FIGURE 5.4: Average number of bucket eliminations in each run with
1000 time steps for 4 different values of µ0 when κ0 = 1, α0 = 1,
β0 = 1, for different values of Range (R). The results are averaged

over 1000 independent simulation runs

In order to examine further the performance of the new proposed methodol-
ogy we present a comparison between Thompson Sampling with 5 price buckets
that remain the same throughout the experiment and Algorithm 10 that uses Ho-
effding races in order to eliminate buckets that have not performed well in the
past and shrink the price interval of the bucket that has been the best so far in the
manner described in Figure 5.1. For consistency, we use the same values for the
hyperparameters involved in the main steps of the Bayesian methodology, in both
algorithms. In Figures 5.5 and 5.6 cumulative revenue and historical total demand
of TS-HR are both higher at any time step. Even though the demand earned by
standard Thompson Sampling increases over time, the new algorithm manages to
earn high demand very early and keep it high for the rest of the experiment.

Additionally, the total revenue of standard Thompson Sampling averaged over
the 1000 individual runs is 355,391.4 against TS-HR with R = 100 which is 653,231.4.
Even when R = 500, the average total revenue of TS-HR is 627,311.2 which is still
much higher than standard TS that does not use Hoeffding races at all.

5.6. Results 111

0 200 400 600 800 1000
Time

0

100000

200000

300000

400000

500000

600000

Cu
m

ul
at

ive
 re

ve
nu

e

Standard TS
TS with Hoeffding races

FIGURE 5.5: Comparison of cumulative revenue for standard Thomp-
son Sampling and Thompson Sampling that uses Hoeffding races
for bucket eliminations (TS-HR) with R = 100. In both algorithms

µ0 = 700, κ0 = 1, α0 = 1, β0 = 1.

0 200 400 600 800 1000
Time

15

20

25

30

35

40

45

50

55

His
tor

ica
l to

tal
 de

ma
nd

Standard TS
TS with Hoeffding races

FIGURE 5.6: Comparison of demand for standard Thompson Sam-
pling and Thompson Sampling that uses Hoeffding races for bucket
eliminations (TS-HR) with R = 100. In both algorithms µ0 = 700,

κ0 = 1, α0 = 1, β0 = 1.

Figure 5.7 shows the prices charged (line) and the revenue earned at each time
step (dots) in a single individual run of standard Thompson Sampling (Figure 5.7a)
and Algorithm 10 (Figure 5.7b). The red straight line shows the optimal price for
each run as it is calculated using golden-section search. The golden-section search
algorithm (Kiefer, 1953) is applied in order to understand whether in single runs,
the algorithms manage to converge to what is estimated as the optimal price, in
this particular run. For more details of the optimization method see Appendix B.

112 Chapter 5. Dynamic pricing application

(A) Standard TS-run 900 (B) TS with Hoeffding races-run 900

FIGURE 5.7: Prices charged and revenue earned by standard TS with
µ0 = 700, κ0 = 1, α0 = 1, β0 = 1 and Thompson Sampling that uses
Hoeffding races for bucket eliminations with R = 100. The graphs

are from simulation 900.

5.6.1.1 Discussion

Some initial analysis on the newly developed algorithm that combines the stan-
dard formulation of Thompson Sampling with Hoeffding races was performed in
order to observe how the parameters involved in the methodology affect its per-
formance. It is important to see how R affects the decision made about whether a
bucket should be eliminated and whether the number of bucket eliminations has
an impact on revenue. Our results show that from a certain value of R, as its value
increases the total revenue decreases. Combining this with the results about the
effect that the value of R has on the number of bucket eliminations it is clear that
this reduction in total revenue is related to the reduction in the number of bucket
eliminations that exist in each run. The values of R that result in a decrease in
the number of bucket eliminations and consequently in the number of times the
buckets get to shrink, reduce the total revenue over the time horizon. Thus, total
revenue is inversely proportional to the total number of bucket eliminations.

A comparison between the algorithm that uses Hoeffding races and an algo-
rithm that keeps the price intervals in the buckets the same throughout the exper-
iment shows the clear advantage that the incorporation of Hoeffding races offers.
When observing results from the individual runs we observe that the increased ex-
ploration of Thompson Sampling with no bucket eliminations is what causes big
losses in both demand and total revenue.

5.6. Results 113

5.6.2 Competitive market environment

In this section we examine the performance of our algorithm in an environment
with competition. The aim is to study the advantages and disadvantages of our
algorithm against other pricing strategies in two different settings: oligopoly and
duopoly.

5.6.2.1 Oligopoly

Figure 5.8a shows the revenue share, calculated for 500 simulation runs, when in
each simulation run the four strategies are competing all together. In these ex-
periments the parameter values for our algorithm, TS-HR, are µ0 = 800, κ0 = 1,
α0 = 1, β0 = 1 and R = 100. It is clear that logit and greedy earn the highest
revenue share with a median revenue share 0.2905 and 0.2891 respectively, mak-
ing it hard to distinguish between the two. TS-HR comes third and WLS last. On
the other hand, in Figure 5.8b we observe that in the duopoly competition TS-HR
earns the highest revenue share against the other three competitor with greedy
coming second, logit third and WLS last. The overall revenue share of the three
competitors is presented in Figure 5.8c. Greedy comes first in the overall revenue
share and logit follows with very small difference. Even though TS-HR comes
first in the duopoly competition we observe that it still remains behind logit and
greedy whose overall revenue share is dominated by the revenue share earned in
the oligopoly stage. However, TS-HR’s overall revenue share is very close to the
first two competitors making it a good competitor compared to WLS who comes
last in both oligopoly and duopoly.

Some preliminary results from experimentation on the R and µ0 parameters,
when the algorithm is tested in oligopoly are included in Appendix C. The param-
eter values of TS-HR that we use throughout the chapter are the ones that optimize
its performance in monopoly and oligopoly, based on the results presented in Sec-
tion 5.6.1 and the indicative results in Appendix C respectively.

114 Chapter 5. Dynamic pricing application

(A) Revenue share in oligopoly (B) Revenue share in duopoly

(C) Revenue share in full competition

FIGURE 5.8: Revenue share for the four competitors in oligopoly, in
duopoly and their overall revenue share. The results are the from 500

simulations.

In Figure 5.9 we show the prices each competitor charges. Out of a total of 500
simulation runs × 1000 time steps we take 50 simulation runs × 1000 time steps
and observe that TS-HR charges significantly higher prices than the other three
competitors that charge very low prices. Figure 5.10 shows the prices charged in
50 simulation runs × 500 time steps, where 500 refers to the last 500 time steps in
a single simulation. This can give us an idea of whether the competitors converge
to a certain price after some time of the simulation has passed. The absence of
outliers for greedy and its small interquartile range indicate that from t = 500 to
t = 1000 it converges to very low prices. On the contrary, TS-HR keeps charging a
wide range of prices for the whole duration of the simulation.

5.6. Results 115

FIGURE 5.9: Boxplot based on the prices charged in 50× 1000 ran-
domly chosen time steps out of the total of 500(number of simula-

tions) × 1000 (number of time steps) time steps.

FIGURE 5.10: Boxplot based on the prices charged in 50× 500 ran-
domly chosen time steps out of the total of 500(number of simula-
tions) × 1000 (number of time steps). 500 refers to the 500 last times

steps in each simulation.

The mean demand for each time step for the four competitors split out for the
three customers segments is shown in Figure 5.11. An interesting result is that
WLS gets more total demand than TS-HR even though its revenue share in the
oligopoly is the smallest, as illustrated in Figure 5.8a. This shows that low prices
may attract more customers but this does not guarantee high revenue. Also, WLS
does not attract almost any shoppers, which is in line with the results presented
in Geer et al. (2018), where WLS does not get any shoppers even when there are
more competitors in the competition.

Finally, in Figure 5.12 and Figure 5.13 we present the prices charged and the
respective revenue for the four competitors in two different random simulations.

116 Chapter 5. Dynamic pricing application

FIGURE 5.11: Mean demand for each time step split out over the three
customer segments

The red line shows the prices charged and the black dots the revenue earned at
each time step while the number in the brackets is the total revenue earned in
this single simulation. These figures illustrate how the competitors behave in two
different situations. In Figure 5.12a TS-HR converges to a small range of prices and
stops charging prices from other buckets quite early. This limitation in the prices it
charges leads to the highest total revenue against the other competitors in the same
simulation. On the other side, in Figure 5.13a where TS-HR charges prices from
all buckets, shown by the large fluctuations of the red line, until almost t = 500, it
gets the lowest total revenue compared to the other competitors. The other three
competitors behave similarly in both simulations and it is clear that they converge
very early to very low prices.

5.6. Results 117

(A) TS-HR (B) Logit

(C) WLS (D) greedy

FIGURE 5.12: Revenue and prices charged for each competitor indi-
vidually. These results are just for illustrative purposes from a ran-
dom simulation, simulation 100. In the brackets it is the total revenue
earned by the competitors in the same simulation. In this particular

simulation TS-HR earns the highest total revenue.

118 Chapter 5. Dynamic pricing application

(A) TS-HR (B) Logit

(C) WLS (D) greedy

FIGURE 5.13: Revenue and prices charged for each competitor indi-
vidually. These results are just for illustrative purposes from a ran-
dom simulation, simulation 303. The number in brackets is the total
revenue earned by the competitors in the same simulation. In this
simulation logit earns the highest total revenue and TS-HR the low-

est total revenue.

5.6.2.2 Duopoly

In Table 5.1, each row shows the mean revenue, at each time step, over 500 simu-
lation runs, earned by the competitors, whose names are listed on the first column
of the table, against the competitors in the other columns in a round-robin setup.
For example, TS-HR gets a mean revenue 245.44, at each time step, against logit
while logit gets a revenue of 255.44 against TS-HR. We underline the competitor
that gets the highest mean revenue in each duopoly competition. The last column
shows the average mean revenue each competitor gets in all duopoly competitions
and the final row shows the average mean revenue the other competitors get when
run in a duopoly with the competitor listed at the top of the column.

Even though WLS wins in all duopoly competitions, its average mean revenue
in the pairwise competitions is smaller than the average mean revenue earned by

5.6. Results 119

TS-HR and greedy from all duopoly competitions. Also, despite the fact that TS-
HR wins only in the duopoly competition against greedy, it manages to get the
highest average mean revenue.

Mean revenue per time step

TS-HR logit WLS greedy Average

TS-HR 245.44 186.83 266.56 232.94
logit 255.44 96.17 261.97 164.28
WLS 260.83 152.70 136.11 183.24
greedy 261.39 257.58 122.44 213.80

Average 259.22 218.57 135.15 221.55

TABLE 5.1: Mean revenue at each time step for each competitor
against each of the other competitors in all duopolies. Each row
shows the mean revenue of the competitor in the first column against

each of the other competitors in duopoly.

Some further analysis of the prices charged by the competitors in each duopoly
competition, presented in Table 5.2, reveals the effect that prices charged have
on the revenue earned in duopoly. In Table 5.2 each row represents the mean
price the competitor in the first column charges against each competitor in the
next four columns, for each time step. For example, TS-HR charges a mean price
of 10.08 in the duopoly against logit, while the mean price logit charges in the
duopoly against TS-HR is 10.04. Additionally, the average mean price TS-HR
charges against all competitors in the duopoly stage is 9.81 while the average mean
price all competitors charge against TS-HR is 9.53. It is clear that WLS forces the
prices to stay quite low in all duopoly competitions (around 5) and this is what
causes the small average mean revenue shown in Table 5.1 and consequently make
its revenue share in duopoly the lowest, as shown in Figure 5.8b

120 Chapter 5. Dynamic pricing application

Mean price charged per time step

TS-HR logit WLS greedy Average

TS-HR 10.08 9.38 9.98 9.81
logit 10.04 4.56 10.91 8.50
WLS 8.39 3.53 4.15 5.36
greedy 10.16 10.96 4.57 8.56

Average 9.53 8.19 6.17 8.34

TABLE 5.2: Mean price charged at each time step for each competi-
tor against each of the other competitors in all duopoly competitions.
Each row shows the mean price of the competitor in the first column

against each of the other competitors in duopoly.

Finally, in Figure 5.14 we present the prices charged (line) and the cumulative
revenue (dotted line) earned by TS-HR in all duopoly competitions for a random
simulation, simulation 369. We can see that in this single simulation TS-HR wins
against logit and WLS and get almost the same revenue as greedy.

(A) TS-HR VS logit (B) TS-HR VS WLS

(C) TS-HR VS greedy

FIGURE 5.14: Revenue and prices charged by TS-HR in three differ-
ent duopolies with the three competitors. These results are just for

illustrative purposes from a random simulation, simulation 369.

5.7. Concluding remarks 121

5.6.2.3 Discussion

In the oligopoly setting, TS-HR obtains a lower revenue share than both logit and
greedy, which appears to be due to the fact that it does not converge and continues
to charge high prices. When observing the prices charged, we see that TS-HR
charges much higher prices than its competitors during the whole selling period
and does not converge. This suggests that the method of Hoeffding races does
not contribute significantly to the convergence towards the most profitable prices.
Some additional experimentation shows that varying the range parameter in the
Hoeffding races section of the algorithm does not result in any significant increase
in the revenue share in oligopoly (See Appendix C).

Individual simulations confirm that converging to either a single price or a
small range of prices, contributes to a high revenue share. Since TS-HR does not
take into account what competitors charge, it appears to carry out too much explo-
ration in some of the simulations. In these simulations the algorithm loses a lot of
customers due to the high prices it charges, compared to the other competitors in
the market.

The results are different in the duopoly competition when there is only one
competitor against TS-HR. In this case, TS-HR has more limited exploration, pos-
sibly due to the variability in the revenue obtained for different price buckets being
lower for a duopoly than for an oligopoly. For all competitors the average mean
prices they charge against each other are very close, indicating that in a duopoly
both algorithms tend to follow each other’s prices in order to be competitive in
the market. Regardless of the algorithm TS-HR is competing with, it forces the
prices charged to be relatively high and this contributes to its high revenue share
in duopoly. Finally, if an algorithm beats a large number of competitors in the mar-
ket in the duopoly stage, it does not imply that it will get a high total revenue share
from all duopoly competitions. This observation is mentioned by Geer et al. (2018)
as well and it reveals the complexity involved in evaluating learning algorithms.

5.7 Concluding remarks

To conclude, in this chapter we considered dynamic pricing, a particular appli-
cation of learning versus earning methodologies, and how Thompson Sampling
can be used for the development of a pricing strategy. Motivated by algorithms
described in Geer et al. (2018), we used the concept of price buckets as a method
of discretisation of a continuous range of prices that can be chosen, in order to

122 Chapter 5. Dynamic pricing application

apply the MAB technique with a finite number of “arms”. Developing the idea
further, we added a racing algorithm, Hoeffding races, in order to help Thompson
Sampling eliminate bad performing prices (i.e. prices that return low revenues)
and concentrate the sampling on the best-performing region of the price-space.
Our experiments incorporated a monopoly, an oligopoly and a duopoly and we
observed that a good performance in oligopoly does not guarantee good results in
duopoly, as the winner in the two settings was different.

A pricing policy based on Thompson Sampling and price buckets benefits from
the use of Hoeffding races for reducing the range of prices to experiment over. A
possible modification we suggest as future work is instead of checking which price
bucket should be eliminated, it may be better to have an algorithm that keeps all
of the price buckets available but splits the best performing bucket into two new
smaller price buckets. We understand though that this implies a different number
of price buckets and consequently extra care must be taken when calculating the
hyperparameters of the two buckets.

It is important to note that the results presented along with some additional
tests, illustrate that the competitors in the market have a significant impact on
the revenue earned by each of the competitors. Some tests we performed using
different combinations of competitors in the market showed that there is not a
single competitor that performs well in all situations. This, however, depends
a lot on the demand mechanism used. We want to emphasize that all the tests
were performed using the specific underlying demand mechanism introduced in
Geer et al. (2018) and consequently we cannot guarantee the same results under a
different demand mechanism. A further modification of the demand mechanism
used in the simulations could involve costs, in order to avoid a race to the bottom,
that has a big impact on the results, in this example.

Contextual bandits that use competitors prices as context were used in order to
increase the revenue share of TS-HR but the results did not improve. In some pre-
liminary tests we used a modification of the formulation of Algorithm 6, presented
in Chapter 4 to check whether there are any improvements when competitors’
prices are incorporated as context. For our experiments the context at t was the
minimum price charged by all competitors at t− 1 (See Appendix D for more de-
tails). Surprisingly, we did not observe any significant difference in the behaviour
of the algorithm. We believe that a reason that the contextual algorithm did not
work is because in these experiments all competitors were converging to a cer-
tain price and consequently using competitors prices as context did not offer more
significant information to the algorithm. However, against different competitors,

5.7. Concluding remarks 123

and under a different demand mechanism we believe that our pricing strategy will
benefit from the incorporation of competitors’ prices as context.

125

Chapter 6

Conclusions and future work

This chapter reviews the main contributions of this thesis and indicates directions
for future research.

We presented several practical contributions to earning while learning meth-
ods, mainly based on the Bayesian exploration algorithm, Thompson Sampling.
As motivated in Chapter 1, our goal was three-fold: the development of a new
algorithm that finds the best option quickly in a stationary environment and the
study of its performance on different scenarios; the development of a new algo-
rithm that accounts for seasonality in the rewards of the different candidate op-
tions; and the study of dynamic pricing in the framework of earning while learn-
ing, through the development of a pricing strategy. To achieve the first two ob-
jectives the algorithms presented were tested on different examples arising in the
problem of website optimisation and explained in this context.

6.1 Contributions

The contributions regarding learning algorithms in the stationary case, as pre-
sented in Chapter 1, include the development of the learning and deployment
buckets algorithm and its implementation on a large number of artificial datasets.
Benchmarking tests show that our algorithm benefits from the splitting of traffic
into two buckets in the case where there is high variability in the rewards of the
different options. However, our results show that continuously showing the same
option to some proportion of traffic, a widely used approach in website optimisa-
tion, does not offer significant improvements when variability is moderate to low.
Standard Thompson Sampling is superior in these situations.

To the best of our knowledge, there are no other examples in the literature that
use benchmarking tests on Thompson Sampling. These tests helped us identify
the impact that the prior hyperparameters have on the performance of the differ-
ent algorithms and at the same time they were a key tool for the comparison of

126 Chapter 6. Conclusions and future work

the different algorithms. Additionally, deploying the newly developed algorithm,
Thompson Sampling and ε- greedy on a large number of artificial datasets gave
us the opportunity to study their dependence on particular features of the dataset.
The results obtained indicate that the variability in the rewards of the different
options have a big impact on the performance of all algorithms and should be
considered when examining the performance of any MAB algorithm.

The contributions to earning while learning algorithms for cases where there is
some seasonality in the rewards of the different options were presented in Chap-
ter 4. Namely, we presented a new algorithm that combines Thompson Sampling
with a statistical model selection method, Akaike Information Criterion, which we
compared against standard contextual Thompson Sampling under different sea-
sonality assumptions. The methods were tested on a number of artificial datasets
with different variability in the rewards of the different options and different pe-
riod (daily, monthly etc) and level (low, high) of seasonality. The results show
that our algorithm performs well in many cases, mostly when the variability of
rewards is either low or high. Additionally, the results suggest that good perfor-
mance does not require the selection of the correct model for seasonality. This is in
line with some recent work suggesting that wrong models can lead to good and in
some cases better decisions (Besbes and Zeevi, 2015).

Chapter 5 is devoted to the contribution on dynamic pricing. We developed
a dynamic pricing strategy, TS-HR, that combines Thompson Sampling with Ho-
effding races, to decide what price to charge from the range (0, 100] for a single
product. In order to formulate the problem in a MAB context we decided to split
the price interval (0, 100] into five different price buckets so that each of the price
buckets pertains to an arm and choosing a specific arm means posting a randomly
sampled price from the corresponding price bucket. Empirical results of TS-HR
in a monopoly setting show that a pricing algorithm that discretises a big price
range in this manner can benefit from further discretisation of the best perform-
ing bucket. In our pricing strategy, Thompson Sampling with a discrete number
of price buckets is combined with Hoeffding races which contributes to the elim-
ination of poorly performing buckets that fail a statistical test. Our algorithm is
then tested in a competitive market environment, in oligopoly and in duopoly set-
tings using the demand mechanism used by the organisers of the dynamic pricing
challenge held on the occasion of INFORMS Revenue Management and Pricing
Section Conference in 2017. When TS-HR competes in a competitive market envi-
ronment against other pricing strategies from the literature in an oligopoly setting
we observe the phenomenon of race to the bottom. Our algorithm is not able to

6.1. Contributions 127

converge to a single price while other strategies converge to very low prices very
quickly. Even though this results in a low revenue share in oligopoly, in duopoly
it contributes towards the highest revenue share against the other competitors in
the market.

6.1.1 Contributions to practice

This thesis provides experimental results on the performance of MAB algorithms
in common industrial problems where results are collected in finite time. This
contrasts with theoretical studies which generally aim to develop proofs of con-
vergence. The results provide insights to practitioners whose main objective is to
find the best option amongst a range of candidate options. The first example we
consider from website optimization shows that Thompson Sampling works well
in this case and can be used to find the best version of a website. Our modification
to Thompson Sampling, in which a small proportion of the traffic is always sent
to the current best-performing option and the remainder is offered an option sug-
gested by the Thompson Sampling algorithm performs well in situations where
the variability in the rewards is high. Based on the benchmarking tests that we
carried out our recommendation to practitioners is to always take into considera-
tion the known characteristics of the options they compare in order to decide what
method to use and decide on the values of the prior hyperparameters since these
can represent the current knowledge about their performance. The same is also
true for the case of seasonality in the rewards of the different options. Addition-
ally our method, AIC-TS, can constitute a good algorithm for the case where there
is unknown seasonality in their reward distribution.

An important area in both retail and revenue management applications is dy-
namics pricing. In this area, our algorithm determines a good dynamic pricing
strategy when the seller has limited initial information about the performance of
the different candidate prices. In particular, we showed that when there is a big
price range that the retailer is allowed to charge, our method of discretizing the
state space can be very effective in terms of revenue earned. Additionally, our tests
in a competitive market environment demonstrated the complexity of the dynamic
pricing problem and gave some insights on the factors that play an important role
in this setting.

128 Chapter 6. Conclusions and future work

6.2 Future work

One direction for future work in the stationary environment could include the de-
velopment of a new algorithm that builds on a different MAB algorithm, instead
of Thompson Sampling. Kuleshov and Precup (2014) suggest that UCB methods
perform well in cases with high variance in rewards, indicating that UCB could
be a good base to build a new algorithm on. Hence, incorporating a new algo-
rithm that builds on UCB into the benchmarking exercise would determine how
it compares with the other algorithms we have tested, especially in the situation
where there is high variability in the rewards of the different options. Addition-
ally, in the learning and deployment buckets algorithm, it would be interesting
to study whether replacing Thompson Sampling with IZ in the learning bucket,
could improve its overall performance. As explained in Chapter 2, IZ is a ranking
and selection algorithm that also builds on the idea of screening out options that
have performed badly in the past.

An extension of our work in the seasonal environment could include further
study of contextual Thompson Sampling on datasets with high variability in the
rewards of the different options in order to observe what causes the percentage of
optimal selection to fall short of 100%. From some initial experimentation, we ob-
served that when there is high variability, the algorithm explores too much but it
may be the case that the algorithm keeps choosing a non-optimal option. Hence, a
further study on the effect that variance has on the percentage of optimal selection
of contextual Thompson Sampling could lead to some useful insights on its per-
formance under these circumstances. Additionally, it will be interesting to study
what happens in an environment where there is both seasonality and trend. In this
case restless bandits will be of great importance, combined again with contextual
bandits.

The work presented in Chapter 5 suggests several future work directions. Firstly,
the phenomenon of race to the bottom in oligopoly represents a good starting point
for developing a new simulation for the demand mechanism. In a real-life situa-
tion where the objective is the maximization of profits, a strategy that charges very
low prices, during the whole selling period, is unlikely to be optimal. Thus, pos-
sible modifications of the current simulation used for the demand mechanism can
be the incorporation of costs, limited capacity and perhaps the addition of differ-
ent customer segments whose decision whether to buy the product is guided by
additional criteria. The study of MAB methods with varying number of arms is
also an appealing subject for further research. This will allow us to keep shrinking

6.2. Future work 129

the price intervals of the best performing buckets without eliminating any buck-
ets, leaving the MAB algorithm to instead reduce the probability of selection more
gradually. Finally, work presented in Chapter 5 demonstrates the complexity of
dynamic pricing and the significant impact that other competitors in the mar-
ket have on a pricing strategy. Thus, we suggest that a modification of TS-HR
that takes into account competitors’ prices in the framework of contextual bandits
might improve its performance in an oligopoly.

131

Appendix A

Nemeneyi test for cumulative regret
at t = 100 for Scenario1

p-value for Nemeneyi test: 1.976284584980237E-4

i algorithms z = (R0 − Ri)/SE p
253 ε-greedy(ε = 0.5) vs. Thompson Samp.(µ0 = 25) 18.286714112805473 1.0559130610224399E-74
252 ε-greedy(ε = 0.1) vs. Thompson Samp.(µ0 = 25) 17.84883384328562 2.9513498164864983E-71
251 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 25,p = 10%) 17.39010213236005 9.805935596829731E-68
250 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 25,p = 10%) 16.952221862840197 1.853160707073979E-64
249 ε-greedy(ε = 0.5) vs. Thompson Samp.(µ0 = 40) 16.107738485909046 2.2510729004371506E-58
248 Thompson Samp.(µ0 = 25) vs. Buckets(µ0 = 40,p = 40%) 16.086887044503317 3.152969312877084E-58
247 ε-greedy(ε = 0.3) vs. Thompson Samp.(µ0 = 25) 15.742838261309139 7.691494043821277E-56
246 ε-greedy(ε = 0.1) vs. Thompson Samp.(µ0 = 40) 15.669858216389196 2.4312111909384934E-55
245 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 25,p = 20%) 15.669858216389185 2.43121119093891E-55
244 ε-greedy(ε = 0.4) vs. Thompson Samp.(µ0 = 25) 15.503046685143524 3.308254019269771E-54
243 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 25,p = 20%) 15.231977946869334 2.1692809418027856E-52
242 Buckets(µ0 = 25,p = 10%) vs. Buckets(µ0 = 40,p = 40%) 15.190275064057893 4.1019479856438465E-52
241 Thompson Samp.(µ0 = 25) vs. Buckets(µ0 = 10,p = 40%) 15.075592136326506 2.3440486665249816E-51
240 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 25,p = 10%) 14.846226280863714 7.359658628102465E-50
239 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 25,p = 10%) 14.6064347046981 2.5554544390211622E-48
238 Buckets(µ0 = 10,p = 40%) vs. Buckets(µ0 = 25,p = 10%) 14.178980155881082 1.2363017239854643E-45
237 Thompson Samp.(µ0 = 40) vs. Buckets(µ0 = 40,p = 40%) 13.90791141760689 5.67114047112845E-44
236 ε-greedy(ε = 0.2) vs. Thompson Samp.(µ0 = 25) 13.907911417606883 5.671140471129016E-44
235 Thompson Samp.(µ0 = 25) vs. Buckets(µ0 = 40,p = 30%) 13.855782814092633 1.1737028951435159E-43
234 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 25,p = 30%) 13.772377048469806 3.737113801217601E-43
233 Thompson Samp.(µ0 = 25) vs. Buckets(µ0 = 40,p = 20%) 13.772377048469783 3.737113801218829E-43
232 ε-greedy(ε = 0.3) vs. Thompson Samp.(µ0 = 40) 13.563862634412711 6.558915072019568E-42
231 Thompson Samp.(µ0 = 25) vs. Buckets(µ0 = 40,p = 50%) 13.480456868789885 2.0384069660859712E-41
230 Buckets(µ0 = 25,p = 20%) vs. Buckets(µ0 = 40,p = 40%) 13.47003114808703 2.347669496651625E-41
229 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 25,p = 30%) 13.334496778949955 1.4583544605146428E-40
228 ε-greedy(ε = 0.4) vs. Thompson Samp.(µ0 = 40) 13.324071058247096 1.6770724925889579E-40
227 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 25,p = 20%) 13.12598236489285 2.3373197868840922E-39
226 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 25,p = 10%) 13.011299437161458 1.0553214293208362E-38
225 Buckets(µ0 = 25,p = 10%) vs. Buckets(µ0 = 40,p = 30%) 12.95917083364721 2.0848893008185924E-38

132 Appendix A. Nemeneyi test for cumulative regret at t = 100 for Scenario1

224 Thompson Samp.(µ0 = 40) vs. Buckets(µ0 = 10,p = 40%) 12.896616509430078 4.702968417925444E-38
223 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 25,p = 20%) 12.886190788727236 5.383804840602658E-38
222 Buckets(µ0 = 25,p = 10%) vs. Buckets(µ0 = 40,p = 20%) 12.87576506802436 6.162538187277599E-38
221 Buckets(µ0 = 25,p = 10%) vs. Buckets(µ0 = 40,p = 50%) 12.583844888344462 2.591051540879812E-36
220 Buckets(µ0 = 10,p = 40%) vs. Buckets(µ0 = 25,p = 20%) 12.458736239910218 1.2534109757641041E-35
219 Thompson Samp.(µ0 = 25) vs. buckets(µ0 = 10, p = 20%) 11.79149011492758 4.3183211368847794E-32
218 ε-greedy(ε = 0.2) vs. Thompson Samp.(µ0 = 40) 11.728935790710455 9.05904545623011E-32
217 Thompson Samp.(µ0 = 40) vs. Buckets(µ0 = 40,p = 30%) 11.676807187196204 1.674684130134816E-31
216 Thompson Samp.(µ0 = 40) vs. Buckets(µ0 = 40,p = 20%) 11.593401421573354 4.450986001045039E-31
215 Buckets(µ0 = 25,p = 30%) vs. Buckets(µ0 = 40,p = 40%) 11.57254998016765 5.676992924079856E-31
214 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 25,p = 40%) 11.499569935247685 1.3257433811801057E-30
213 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 25,p = 50%) 11.32233268329918 1.0172841716721872E-29
212 Thompson Samp.(µ0 = 40) vs. Buckets(µ0 = 40,p = 50%) 11.301481241893455 1.2902314711974518E-29
211 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 25,p = 20%) 11.291055521190595 1.4528140244261846E-29
210 Buckets(µ0 = 25,p = 20%) vs. Buckets(µ0 = 40,p = 30%) 11.238926917676345 2.6255435051018E-29
209 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 25,p = 30%) 11.228501196973472 2.954476288529082E-29
208 Thompson Samp.(µ0 = 25) vs. Buckets(µ0 = 10,p = 10%) 11.207649755567784 3.7399220002007805E-29
207 Buckets(µ0 = 25,p = 20%) vs. Buckets(µ0 = 40,p = 20%) 11.155521152053495 6.72973283653746E-29
206 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 25,p = 40%) 11.061689665727833 1.9243772948781077E-28
205 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 25,p = 30%) 10.988709620807857 4.330732601543832E-28
204 buckets(µ0 = 10, p = 20%) vs. Buckets(µ0 = 25,p = 10%) 10.894878134482155 1.2192968657632054E-27
203 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 25,p = 50%) 10.88445241377933 1.3671781240241934E-27
202 Buckets(µ0 = 25,p = 20%) vs. Buckets(µ0 = 40,p = 50%) 10.863600972373597 1.718366941134078E-27
201 Buckets(µ0 = 10,p = 40%) vs. Buckets(µ0 = 25,p = 30%) 10.56125507199084 4.505963728419582E-26
200 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 40,p = 10%) 10.311037775122374 6.2819269707091065E-25
199 Buckets(µ0 = 10,p = 10%) vs. Buckets(µ0 = 25,p = 10%) 10.311037775122362 6.2819269707099165E-25
198 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 40,p = 10%) 9.873157505602522 5.442391548757642E-23
197 Thompson Samp.(µ0 = 10) vs. Thompson Samp.(µ0 = 25) 9.831454622791075 8.241957933542039E-23
196 Thompson Samp.(µ0 = 40) vs. buckets(µ0 = 10, p = 20%) 9.612514488031152 7.079853949666559E-22
195 Thompson Samp.(µ0 = 25) vs. Buckets(µ0 = 10,p = 30%) 9.58123732592259 9.588919490552445E-22
194 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 25,p = 30%) 9.393574353271216 5.799790399826588E-21
193 Buckets(µ0 = 25,p = 30%) vs. Buckets(µ0 = 40,p = 30%) 9.341445749756964 9.502754290456807E-21
192 Buckets(µ0 = 25,p = 40%) vs. Buckets(µ0 = 40,p = 40%) 9.299742866945529 1.407857417187936E-20
191 Buckets(µ0 = 25,p = 30%) vs. Buckets(µ0 = 40,p = 20%) 9.258039984134115 2.082191797762626E-20
190 Thompson Samp.(µ0 = 25) vs. buckets(µ0 = 10, p = 50%) 9.247614263431263 2.2955910203595312E-20
189 buckets(µ0 = 10, p = 20%) vs. Buckets(µ0 = 25,p = 20%) 9.174634218511292 4.5311013891657136E-20
188 Buckets(µ0 = 25,p = 50%) vs. Buckets(µ0 = 40,p = 40%) 9.122505614997024 7.34071730452348E-20
187 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 10,p = 50%) 9.03909984937421 1.579672150996389E-19
186 Thompson Samp.(µ0 = 40) vs. Buckets(µ0 = 10,p = 10%) 9.028674128671355 1.7376428076609652E-19
185 Buckets(µ0 = 25,p = 30%) vs. Buckets(µ0 = 40,p = 50%) 8.966119804454216 3.071438635265404E-19
184 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 25,p = 40%) 8.95569408375135 3.376049097147247E-19
183 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 25,p = 10%) 8.93484264234565 4.077581075387171E-19
182 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 25,p = 50%) 8.778456831802846 1.65732871990391E-18
181 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 25,p = 40%) 8.715902507585735 2.8845146165383647E-18
180 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 10,p = 30%) 8.705476786882883 3.1624248706035613E-18

Appendix A. Nemeneyi test for cumulative regret at t = 100 for Scenario1 133

179 Buckets(µ0 = 10,p = 30%) vs. Buckets(µ0 = 25,p = 10%) 8.684625345477166 3.799927241414275E-18
178 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 10,p = 50%) 8.60121957985436 7.88734147563797E-18
177 Buckets(µ0 = 10,p = 10%) vs. Buckets(µ0 = 25,p = 20%) 8.590793859151496 8.63704704152427E-18
176 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 25,p = 50%) 8.53866525563723 1.3578109966101285E-17
175 ε-greedy(ε = 0.5) vs. Thompson Samp.(µ0 = 10) 8.455259490014399 2.784673740314272E-17
174 Buckets(µ0 = 10,p = 50%) vs. Buckets(µ0 = 25,p = 10%) 8.351002282985839 6.768611216058646E-17
173 Buckets(µ0 = 10,p = 40%) vs. Buckets(µ0 = 25,p = 40%) 8.288447958768717 1.1473574269365524E-16
172 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 10,p = 30%) 8.267596517363032 1.366865735239047E-16
171 Buckets(µ0 = 40,p = 40%) vs. Buckets(µ0 = 40,p = 10%) 8.111210706820216 5.011785994340329E-16
170 Buckets(µ0 = 10,p = 40%) vs. Buckets(µ0 = 25,p = 50%) 8.111210706820213 5.011785994340474E-16
169 ε-greedy(ε = 0.1) vs. Thompson Samp.(µ0 = 10) 8.017379220494547 1.0802521666742243E-15
168 Thompson Samp.(µ0 = 25) vs. Buckets(µ0 = 40,p = 10%) 7.9756763376831 1.5154861029881357E-15
167 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 40,p = 10%) 7.767161923626038 8.02642092596593E-15
166 Thompson Samp.(µ0 = 10) vs. Thompson Samp.(µ0 = 40) 7.652478995894646 1.9714131576164583E-14
165 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 40,p = 10%) 7.527370347460423 5.1772372619834606E-14
164 Thompson Samp.(µ0 = 40) vs. Buckets(µ0 = 10,p = 30%) 7.402261699026162 1.3388431393765108E-13
163 buckets(µ0 = 10, p = 20%) vs. Buckets(µ0 = 25,p = 30%) 7.277153050591912 3.409383908180852E-13
162 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 25,p = 20%) 7.214598726374787 5.409324982950799E-13
161 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 25,p = 40%) 7.120767240049093 1.0732791164702322E-12
160 Buckets(µ0 = 10,p = 40%) vs. Buckets(µ0 = 40,p = 10%) 7.099915798643405 1.2483292077176807E-12
159 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 10,p = 10%) 7.079064357237689 1.4513097828808012E-12
158 Buckets(µ0 = 25,p = 10%) vs. Buckets(µ0 = 40,p = 10%) 7.079064357237677 1.4513097828809325E-12
157 Buckets(µ0 = 25,p = 40%) vs. Buckets(µ0 = 40,p = 30%) 7.068638636534844 1.564609915248057E-12
156 Thompson Samp.(µ0 = 40) vs. buckets(µ0 = 10, p = 50%) 7.068638636534835 1.5646099152481705E-12
155 Buckets(µ0 = 25,p = 40%) vs. Buckets(µ0 = 40,p = 20%) 6.985232870911994 2.843838765122819E-12
154 Buckets(µ0 = 10,p = 30%) vs. Buckets(µ0 = 25,p = 20%) 6.964381429506302 3.2984981215509108E-12
153 Thompson Samp.(µ0 = 25) vs. Buckets(µ0 = 25,p = 50%) 6.964381429506293 3.2984981215511135E-12
152 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 25,p = 50%) 6.94352998810059 3.82421383769864E-12
151 Buckets(µ0 = 25,p = 50%) vs. Buckets(µ0 = 40,p = 30%) 6.891401384586341 5.524541402050541E-12
150 Buckets(µ0 = 10,p = 50%) vs. Buckets(µ0 = 40,p = 40%) 6.839272781072054 7.959619624016424E-12
149 Buckets(µ0 = 25,p = 50%) vs. Buckets(µ0 = 40,p = 20%) 6.80799561896349 9.896787772324926E-12
148 Thompson Samp.(µ0 = 25) vs. Buckets(µ0 = 25,p = 40%) 6.7871441775577885 1.143748971198273E-11
147 Buckets(µ0 = 10,p = 10%) vs. Buckets(µ0 = 25,p = 30%) 6.6933126912321175 2.1817424466660878E-11
146 Buckets(µ0 = 25,p = 40%) vs. Buckets(µ0 = 40,p = 50%) 6.693312691232096 2.1817424466664048E-11
145 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 10,p = 10%) 6.641184087717837 3.11173101278676E-11
144 Buckets(µ0 = 10,p = 50%) vs. Buckets(µ0 = 25,p = 20%) 6.630758367014975 3.3396655351355166E-11
143 Buckets(µ0 = 25,p = 50%) vs. Buckets(µ0 = 40,p = 50%) 6.516075439283592 7.217068890206595E-11
142 Buckets(µ0 = 10,p = 30%) vs. Buckets(µ0 = 40,p = 40%) 6.505649718580727 7.735829363362602E-11
141 ε-greedy(ε = 0.5) vs. buckets(µ0 = 10, p = 20%) 6.495223997877894 8.290995677060107E-11
140 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 10,p = 50%) 6.495223997877876 8.290995677061131E-11
139 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 10,p = 50%) 6.255432421712261 3.9641597112652544E-10
138 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 40,p = 40%) 6.255432421712243 3.964159711265731E-10
137 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 10,p = 30%) 6.161600935386548 7.201314563831752E-10
136 Buckets(µ0 = 25,p = 50%) vs. Buckets(µ0 = 25,p = 10%) 6.06776944906087 1.2969890615906653E-9
135 ε-greedy(ε = 0.1) vs. buckets(µ0 = 10, p = 20%) 6.057343728358043 1.3838767296312335E-9

134 Appendix A. Nemeneyi test for cumulative regret at t = 100 for Scenario1

134 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 40,p = 10%) 5.932235079923782 2.9883833247771147E-9
133 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 10,p = 30%) 5.9218093592209335 3.1841862663277764E-9
132 ε-greedy(ε = 0.3) vs. Thompson Samp.(µ0 = 10) 5.911383638518064 3.3924587675842374E-9
131 Buckets(µ0 = 25,p = 40%) vs. Buckets(µ0 = 25,p = 10%) 5.890532197112365 3.849538573161694E-9
130 Buckets(µ0 = 40,p = 30%) vs. Buckets(µ0 = 40,p = 10%) 5.880106476409533 4.100026536832547E-9
129 Buckets(µ0 = 10,p = 50%) vs. Buckets(µ0 = 10,p = 40%) 5.827977872895243 5.610301507547337E-9
128 Buckets(µ0 = 40,p = 20%) vs. Buckets(µ0 = 40,p = 10%) 5.796700710786682 6.7632230840113315E-9
127 Thompson Samp.(µ0 = 40) vs. Buckets(µ0 = 40,p = 10%) 5.796700710786673 6.763223084011725E-9
126 ε-greedy(ε = 0.4) vs. Thompson Samp.(µ0 = 10) 5.67159206235245 1.4147653943436176E-8
125 Buckets(µ0 = 40,p = 50%) vs. Buckets(µ0 = 40,p = 10%) 5.504780531106784 3.6962844415833006E-8
124 Buckets(µ0 = 10,p = 40%) vs. Buckets(µ0 = 10,p = 30%) 5.494354810403916 3.9214138652927804E-8
123 Buckets(µ0 = 25,p = 20%) vs. Buckets(µ0 = 40,p = 10%) 5.358820441266813 8.376705642635159E-8
122 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 25,p = 30%) 5.317117558455407 1.0542396021530812E-7
121 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 10,p = 40%) 5.244137513535431 1.570150656362451E-7
120 Buckets(µ0 = 10,p = 30%) vs. Buckets(µ0 = 25,p = 30%) 5.066900261586922 4.04346005929267E-7
119 buckets(µ0 = 10, p = 20%) vs. Buckets(µ0 = 25,p = 40%) 5.004345937369791 5.6052019219704E-7
118 Buckets(µ0 = 10,p = 10%) vs. Buckets(µ0 = 40,p = 40%) 4.879237288935532 1.0649687416562254E-6
117 buckets(µ0 = 10, p = 20%) vs. Buckets(µ0 = 25,p = 50%) 4.827108685421287 1.385295285295501E-6
116 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 40,p = 50%) 4.8062572440155895 1.5378200588743428E-6
115 Thompson Samp.(µ0 = 40) vs. Buckets(µ0 = 25,p = 50%) 4.785405802609865 1.7064220395791745E-6
114 buckets(µ0 = 10, p = 50%) vs. Buckets(µ0 = 25,p = 30%) 4.733277199095595 2.2092344592582423E-6
113 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 10,p = 50%) 4.66029715417562 3.157532013103586E-6
112 Buckets(µ0 = 10,p = 50%) vs. Buckets(µ0 = 40,p = 30%) 4.608168550661371 4.062313039212939E-6
111 Thompson Samp.(µ0 = 40) vs. Buckets(µ0 = 25,p = 40%) 4.60816855066136 4.0623130392131495E-6
110 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 10,p = 10%) 4.5351885057413535 5.755205974989636E-6
109 Buckets(µ0 = 10,p = 50%) vs. Buckets(µ0 = 40,p = 20%) 4.52476278503852 6.046328386166638E-6
108 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 40,p = 20%) 4.514337064335691 6.351513133273166E-6
107 Thompson Samp.(µ0 = 25) vs. Buckets(µ0 = 25,p = 30%) 4.514337064335669 6.351513133273825E-6
106 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 40,p = 30%) 4.43093129871284 9.382698117206424E-6
105 Buckets(µ0 = 10,p = 10%) vs. Buckets(µ0 = 25,p = 40%) 4.420505578009996 9.847024368645032E-6
104 ε-greedy(ε = 0.2) vs. ε-greedy(ε = 0.5) 4.378802695198591 1.193331081545521E-5
103 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 40,p = 50%) 4.368376974495738 1.2517329620068423E-5
102 Buckets(µ0 = 25,p = 50%) vs. Buckets(µ0 = 25,p = 20%) 4.347525533090005 1.3768204671970711E-5
101 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 10,p = 30%) 4.326674091684293 1.5137768393700672E-5
100 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 10,p = 10%) 4.295396929575739 1.74381043212871E-5
99 buckets(µ0 = 10, p = 20%) vs. Buckets(µ0 = 40,p = 40%) 4.2953969295757375 1.7438104321287226E-5
98 Buckets(µ0 = 10,p = 30%) vs. Buckets(µ0 = 40,p = 30%) 4.274545488170043 1.9152760115834308E-5
97 Buckets(µ0 = 10,p = 10%) vs. Buckets(µ0 = 25,p = 50%) 4.243268326061492 2.202877762977228E-5
96 Buckets(µ0 = 10,p = 50%) vs. Buckets(µ0 = 40,p = 50%) 4.232842605358622 2.3075600326673513E-5
95 Buckets(µ0 = 10,p = 30%) vs. Buckets(µ0 = 40,p = 20%) 4.191139722547193 2.7755665829004007E-5
94 Buckets(µ0 = 25,p = 40%) vs. Buckets(µ0 = 25,p = 20%) 4.1702882811415005 3.042145654735582E-5
93 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 40,p = 20%) 4.076456794815839 4.572714721363635E-5
92 ε-greedy(ε = 0.2) vs. Thompson Samp.(µ0 = 10) 4.076456794815808 4.572714721364244E-5
91 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 40,p = 30%) 4.024328191301559 5.713818954618785E-5
90 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 40,p = 30%) 3.9930510291929893 6.522852390441114E-5

Appendix A. Nemeneyi test for cumulative regret at t = 100 for Scenario1 135

89 ε-greedy(ε = 0.3) vs. buckets(µ0 = 10, p = 20%) 3.9513481463815583 7.771217621451557E-5
88 ε-greedy(ε = 0.1) vs. ε-greedy(ε = 0.2) 3.94092242567874 8.116887481214492E-5
87 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 40,p = 20%) 3.9409224256787083 8.116887481215561E-5
86 Buckets(µ0 = 10,p = 30%) vs. Buckets(µ0 = 40,p = 50%) 3.8992195428672947 9.650324455641392E-5
85 Buckets(µ0 = 10,p = 40%) vs. Buckets(µ0 = 10,p = 10%) 3.8679423807587208 1.0975759026689523E-4
84 buckets(µ0 = 10, p = 20%) vs. Buckets(µ0 = 40,p = 10%) 3.8158137772444793 1.3573484712640343E-4
83 ε-greedy(ε = 0.4) vs. buckets(µ0 = 10, p = 20%) 3.711556570215944 2.0598861803955984E-4
82 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 40,p = 50%) 3.64900224599881 2.632608027034708E-4
81 Buckets(µ0 = 25,p = 30%) vs. Buckets(µ0 = 25,p = 10%) 3.617725083890244 2.9720383551039357E-4
80 Buckets(µ0 = 25,p = 30%) vs. Buckets(µ0 = 40,p = 10%) 3.461339273347433 5.374949645234997E-4
79 Buckets(µ0 = 10,p = 40%) vs. buckets(µ0 = 10, p = 20%) 3.284102021398926 0.0010230787988017604
78 Buckets(µ0 = 10,p = 10%) vs. Buckets(µ0 = 40,p = 10%) 3.231973417884684 0.0012293849189447686
77 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 10,p = 40%) 3.211121976478968 0.0013221780028460843
76 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 25,p = 40%) 3.0443104452332856 0.0023321434546417167
75 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 25,p = 50%) 2.8670731932847815 0.0041428718667235855
74 Buckets(µ0 = 10,p = 30%) vs. Buckets(µ0 = 25,p = 40%) 2.7940931483648015 0.005204548483616971
73 ε-greedy(ε = 0.4) vs. ε-greedy(ε = 0.5) 2.7836674276619497 0.005374811413704696
72 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 10,p = 40%) 2.7732417069591166 0.00555008802570923
71 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 10,p = 10%) 2.7002616620390976 0.006928496006008277
70 Buckets(µ0 = 10,p = 10%) vs. Buckets(µ0 = 40,p = 30%) 2.6481330585248486 0.008093766191962181
69 Buckets(µ0 = 10,p = 30%) vs. Buckets(µ0 = 25,p = 50%) 2.6168558964162973 0.008874379742771499
68 Thompson Samp.(µ0 = 25) vs. Buckets(µ0 = 25,p = 20%) 2.6168558964162885 0.008874379742771735
67 Buckets(µ0 = 40,p = 50%) vs. Buckets(µ0 = 40,p = 40%) 2.6064301757134327 0.009149147579593791
66 Buckets(µ0 = 10,p = 10%) vs. Buckets(µ0 = 40,p = 20%) 2.564727292901998 0.010325692499780142
65 ε-greedy(ε = 0.3) vs. ε-greedy(ε = 0.5) 2.5438758514963355 0.010963004173647326
64 buckets(µ0 = 10, p = 50%) vs. buckets(µ0 = 10, p = 20%) 2.543875851496317 0.01096300417364791
63 Buckets(µ0 = 10,p = 50%) vs. Buckets(µ0 = 25,p = 40%) 2.460470085873474 0.01387551387166986
62 Buckets(µ0 = 25,p = 50%) vs. Buckets(µ0 = 25,p = 30%) 2.4500443651706254 0.014283861390976047
61 ε-greedy(ε = 0.1) vs. ε-greedy(ε = 0.4) 2.3457871581420986 0.018986946459597885
60 Thompson Samp.(µ0 = 40) vs. Buckets(µ0 = 25,p = 30%) 2.3353614374392393 0.01952454715565609
59 Buckets(µ0 = 40,p = 40%) vs. Buckets(µ0 = 40,p = 20%) 2.314509996033534 0.020639763576319466
58 Buckets(µ0 = 10,p = 50%) vs. Buckets(µ0 = 25,p = 50%) 2.28323283392497 0.022416657012725626
57 Buckets(µ0 = 25,p = 40%) vs. Buckets(µ0 = 25,p = 30%) 2.2728071132221213 0.02303780620434418
56 Buckets(µ0 = 10,p = 10%) vs. Buckets(µ0 = 40,p = 50%) 2.2728071132221 0.02303780620434547
55 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 40,p = 50%) 2.2623813925192535 0.023673849562855113
54 Buckets(µ0 = 40,p = 40%) vs. Buckets(µ0 = 40,p = 30%) 2.2311042304106836 0.025674225602204108
53 Buckets(µ0 = 10,p = 30%) vs. buckets(µ0 = 10, p = 20%) 2.21025278900499 0.027087623161060368
52 ε-greedy(ε = 0.5) vs. Buckets(µ0 = 40,p = 40%) 2.199827068302157 0.027819166724312457
51 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 40,p = 40%) 2.1789756268964346 0.029333478882314287
50 Thompson Samp.(µ0 = 25) vs. Thompson Samp.(µ0 = 40) 2.178975626896429 0.029333478882314717
49 ε-greedy(ε = 0.2) vs. buckets(µ0 = 10, p = 20%) 2.1164213026793024 0.03430899186806513
48 ε-greedy(ε = 0.1) vs. ε-greedy(ε = 0.3) 2.1059955819764844 0.03520473611880302
47 buckets(µ0 = 10, p = 20%) vs. Buckets(µ0 = 40,p = 30%) 2.0642926991650534 0.03898997282365532
46 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 40,p = 50%) 2.0225898163536393 0.04311545500316793
45 buckets(µ0 = 10, p = 20%) vs. Buckets(µ0 = 40,p = 20%) 1.9808869335422032 0.047603954727872336

136 Appendix A. Nemeneyi test for cumulative regret at t = 100 for Scenario1

44 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 40,p = 20%) 1.9704612128393553 0.04878553608198774
43 Buckets(µ0 = 10,p = 50%) vs. Buckets(µ0 = 10,p = 10%) 1.960035492136522 0.04999164205277938
42 Thompson Samp.(µ0 = 10) vs. buckets(µ0 = 10, p = 20%) 1.9600354921365053 0.049991642052781324
41 Buckets(µ0 = 25,p = 30%) vs. Buckets(µ0 = 25,p = 20%) 1.8974811679193797 0.05776446195402968
40 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 40,p = 30%) 1.8870554472165049 0.05915286827634361
39 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 40,p = 10%) 1.8557782851079738 0.06348516695506146
38 ε-greedy(ε = 0.2) vs. ε-greedy(ε = 0.3) 1.834926843702256 0.06651652965727775
37 ε-greedy(ε = 0.1) vs. Buckets(µ0 = 40,p = 40%) 1.7619467987823052 0.07807828659974222
36 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 40,p = 20%) 1.730669636673741 0.08351070370789908
35 Buckets(µ0 = 25,p = 20%) vs. Buckets(µ0 = 25,p = 10%) 1.7202439159708642 0.08538811331093744
34 buckets(µ0 = 10, p = 20%) vs. Buckets(µ0 = 40,p = 50%) 1.6889667538623048 0.09122580132655143
33 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 40,p = 30%) 1.6472638710508907 0.09950382054487006
32 Buckets(µ0 = 10,p = 30%) vs. Buckets(µ0 = 10,p = 10%) 1.6264124296451947 0.10386194842612831
31 Buckets(µ0 = 10,p = 30%) vs. Buckets(µ0 = 40,p = 10%) 1.6055609882394895 0.10837040284968448
30 ε-greedy(ε = 0.2) vs. ε-greedy(ε = 0.4) 1.5951352675366417 0.11068199042334662
29 Buckets(µ0 = 10,p = 40%) vs. Buckets(µ0 = 40,p = 50%) 1.5951352675366213 0.1106819904233512
28 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 10,p = 10%) 1.3761951327767104 0.16876122858514425
27 Buckets(µ0 = 10,p = 40%) vs. Buckets(µ0 = 40,p = 20%) 1.3032150878567228 0.1925013405215716
26 Thompson Samp.(µ0 = 40) vs. Buckets(µ0 = 25,p = 10%) 1.2823636464510046 0.19971511061364636
25 Buckets(µ0 = 10,p = 50%) vs. Buckets(µ0 = 40,p = 10%) 1.2719379257481622 0.20339517532957962
24 Buckets(µ0 = 10,p = 40%) vs. Buckets(µ0 = 40,p = 30%) 1.2198093222338724 0.22253716663534534
23 Buckets(µ0 = 25,p = 40%) vs. Buckets(µ0 = 40,p = 10%) 1.1885321601253118 0.2346238172437917
22 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 10,p = 40%) 1.1676807187196234 0.24293557709463853
21 Buckets(µ0 = 10,p = 40%) vs. Buckets(µ0 = 40,p = 40%) 1.0112949081768114 0.311875302381461
20 Buckets(µ0 = 25,p = 50%) vs. Buckets(µ0 = 40,p = 10%) 1.0112949081768077 0.31187530238146277
19 Thompson Samp.(µ0 = 25) vs. Buckets(µ0 = 25,p = 10%) 0.8966119804454241 0.369926002967919
18 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 10,p = 40%) 0.6672461249826324 0.504614933006498
17 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 10,p = 50%) 0.5838403593598117 0.5593277219593547
16 buckets(µ0 = 10, p = 20%) vs. Buckets(µ0 = 10,p = 10%) 0.5838403593597951 0.5593277219593659
15 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 40,p = 40%) 0.5838403593597932 0.559327721959367
14 Thompson Samp.(µ0 = 40) vs. Buckets(µ0 = 25,p = 20%) 0.4378802695198597 0.6614730790423407
13 ε-greedy(ε = 0.1) vs. ε-greedy(ε = 0.5) 0.4378802695198514 0.6614730790423468
12 ε-greedy(ε = 0.4) vs. Buckets(µ0 = 10,p = 40%) 0.4274545488170182 0.6690482833337136
11 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 40,p = 50%) 0.42745454881699785 0.6690482833337283
10 Buckets(µ0 = 40,p = 50%) vs. Buckets(µ0 = 40,p = 30%) 0.37532594530274876 0.707418072630695
9 ε-greedy(ε = 0.3) vs. Buckets(µ0 = 40,p = 40%) 0.344048783194179 0.7308095992509926
8 Buckets(µ0 = 10,p = 50%) vs. Buckets(µ0 = 10,p = 30%) 0.33362306249132734 0.7386640130762037
7 Buckets(µ0 = 40,p = 50%) vs. Buckets(µ0 = 40,p = 20%) 0.2919201796798984 0.7703476540230126
6 Thompson Samp.(µ0 = 10) vs. Buckets(µ0 = 10,p = 30%) 0.2502172968684844 0.8024193096579612
5 ε-greedy(ε = 0.3) vs. ε-greedy(ε = 0.4) 0.2397915761656142 0.8104918377268797
4 Buckets(µ0 = 25,p = 50%) vs. Buckets(µ0 = 25,p = 40%) 0.1772372519485042 0.8593220360066377
3 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 40,p = 20%) 0.1355343691370994 0.8921893923076426
2 Buckets(µ0 = 40,p = 30%) vs. Buckets(µ0 = 40,p = 20%) 0.08340576562285035 0.933528904183899
1 ε-greedy(ε = 0.2) vs. Buckets(µ0 = 40,p = 30%) 0.052128603514249056 0.9584262216358782

Appendix A. Nemeneyi test for cumulative regret at t = 100 for Scenario1 137

TABLE A.1: Nemeneyi test for α = 0.05. The horizontal line shows
the pairs whose p-value allows as to reject the Null hypothesis. We
highlight the pairs in which the performance of standard Thompson
Sampling is significantly different than the algorithm is compared

against

139

Appendix B

Golden-section search algorithm

The golden-section search method is used to find the maximum or minimum of a
unimodal function f . i.e. a function that contains only one minimum or max-
imum in the interval [a, b]. Let say we have three points xu, xv, xw such that
xu < xv < xw with corresponding values f (xu), f (xv), f (xw). If f (xv) > f (xu)

and f (xv) > f (xw) the maximum lies between xv and xw. A fourth point x′ is cho-
sen to be between the larger of the two intervals of [xu, xv] and [xv, xw]. If [xu, xv] is
larger than [xv, xw] we would choose [xu, xv] as the interval in which x′ is chosen.
Otherwise we would choose [xv, xw] as the interval in which x′ is chosen.

If f (x′) > f (xv) then the new three points would be xu < x′ <. If f (x′) < f (xv)

then the three new points would be x′ < xv < xw. The process is continued until
the distance between the outer points is sufficiently small. In other words, in order
to find the maximum of a point we follow the steps below:

1. Define the points xu and xw that contain the maximum of the function f (x).

2. Determine two intermediate points xv and x′ such that xv = xu + d and
x′ = xw − d, where d =

√
5−1
2 (xw − xu)

3. if f (xv) > f (x′), then determine new xu, xv, x′ and xw using: xu = x′, x′ = xv,
xw = xw, xv = xu +

√
5−1
2 (xw − xu)

if f (xv) < f (x′), then determine new xu, xv, x′ and xw using: xu = xu,
xw = xv, xv = x′, x′ = xu +

√
5−1
2 (xw − xu)

4. If xw − xu, ε, then the max point occurs at xw+xu
2 and stop iterating.

141

Appendix C

Revenue share in oligopoly for
different parameter values

FIGURE C.1: Revenue share for the four competitors in oligopoly
when R = 50, in TS-HR. The results are averaged over 10 indepen-

dent simulation runs

FIGURE C.2: Revenue share for the four competitors in oligopoly
when R = 400, in TS-HR. The results are averaged over 10 indepen-

dent simulation runs

142 Appendix C. Revenue share in oligopoly for different parameter values

FIGURE C.3: Revenue share for the four competitors in oligopoly
when µ0 = 400, in TS-HR. The results are averaged over 10 inde-

pendent simulation runs

143

Appendix D

Contextual TS-HR

We developed a new pricing strategy based on contextual Thompson Sampling.
The assumed context in our algorithm is dictated by the competitors’ prices in
the previous time step. Based on some preliminary results, we consider only the
minimum price offered by the competitors at t− 1 as context.

We split the price interval we are allowed to charge into u buckets, where in
the current example u = 5. Competitors’ bucket chosen at time t is defined as B′i,t
while the price bucket we choose at time t is defined as Bi,t, where i = 1, 2, .., u.
In the case where u = 5 there are 25 context-action pairs. Each of these context-
action pairs has an associated Normal reward distribution with unknown mean
and variance. At each time step t, we update the reward distribution correspond-
ing to the context-action pair (B′i,t, Bi,t). However, our buckets and competitors’
buckets change and this make the task of updating the reward distribution of each
pair even more challenging. Below we describe the main parts of the pricing strat-
egy.
Update of competitors’ buckets
We define n equally spaced buckets. Every j time steps we do the following:

• Order p′(t) in non-decreasing order of the values in p′(t).

• Set the bucket limits of B′i,t, ∀i = 1, 2, .., 5 so that each bucket contains the
same number of observations.

Update of our buckets
For the update of our buckets we use the same mechanism which is based on
Hoeffding races, as we did in TS-HR. We use only the revenue obtained by our
own price buckets we have chosen so far and ignore context.

• Apply Hoeffding races to decide if there is sufficient information to eliminate
any of the u buckets.

144 Appendix D. Contextual TS-HR

• If a bucket is eliminated we find the bucket with the highest mean revenue
obtained so far and split it into two new equally spaced buckets.

Recalculate bucket distributions
Every time either the competitors’ buckets or our buckets change, we recalculate
the reward distribution for each (B′i , Bi) pair.

• Identify which observations correspond to (B′i,t, Bi,t) and update b′(t) and
b(t) where b′(t) is the set with competitors’ buckets up to t − 1 and b(t) is
the set with our buckets up to t− 1.

145

Bibliography

Agarwal, Deepak, Bee-Chung Chen, and Pradheep Elango (2009). “Explore/exploit
schemes for web content optimization”. In: 2009 Ninth IEEE International Con-
ference on Data Mining (ICDM). IEEE, pp. 1–10.

Agarwal, Deepak, Bee-Chung Chen, Pradheep Elango, Nitin Motgi, Seung-Taek
Park, Raghu Ramakrishnan, Scott Roy, and Joe Zachariah (2009). “Online mod-
els for content optimization”. In: Advances in Neural Information Processing Sys-
tems, pp. 17–24.

Agrawal, Rajeev (1995). “The continuum-armed bandit problem”. In: SIAM journal
on control and optimization 33.6, pp. 1926–1951.

Agrawal, Shipra and Navin Goyal (2012). “Analysis of Thompson Sampling for
the Multi-armed Bandit Problem”. In: Conference On Learning Theory (COLT),
pp. 39–1.

Agrawal, Shipra and Navin Goyal (2013a). “Further Optimal Regret Bounds for
Thompson Sampling”. In: International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 99–107.

Agrawal, Shipra and Navin Goyal (2013b). “Thompson Sampling for Contextual
Bandits with Linear Payoffs”. In: International Conference on Machine Learning
(ICML), pp. 127–135.

Akaike, Hirotugu (1974). “A new look at the statistical model identification”. In:
IEEE transactions on automatic control 19.6, pp. 716–723.

Amirizadeh, Khosrow and Rajeswari Mandava (2015). “Accelerated-Greedy Multi
Armed Bandit Algorithm for Online Sequential-Selections Applications”. In:
Journal of Software 10.3, pp. 239–249.

Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer (2002). “Finite-time analysis of
the multiarmed bandit problem”. In: Machine learning 47.2-3, pp. 235–256.

Auer, Peter, Ronald Ortner, and Csaba Szepesvári (2007). “Improved rates for the
stochastic continuum-armed bandit problem”. In: International Conference on
Computational Learning Theory (COLT). Springer, pp. 454–468.

Ban, Gah-Yi and N Bora Keskin (2018). “Personalized dynamic pricing with ma-
chine learning”. In: Available at SSRN 2972985.

146 Bibliography

Barto, Andrew G (2010). “Adaptive Real-Time Dynamic Programming”. In: Ency-
clopedia of Machine Learning. Springer US, pp. 19–22.

Barto, Andrew G, Steven J Bradtke, and Satinder P Singh (1995). “Learning to act
using real-time dynamic programming”. In: Artificial intelligence 72.1-2, pp. 81–
138.

Bechhofer, Robert E (1954). “A single-sample multiple decision procedure for rank-
ing means of normal populations with known variances”. In: The Annals of
Mathematical Statistics, pp. 16–39.

Besbes, Omar and Alp Muharremoglu (2013). “On implications of demand censor-
ing in the newsvendor problem”. In: Management Science 59.6, pp. 1407–1424.

Besbes, Omar and Assaf Zeevi (2009). “Dynamic pricing without knowing the de-
mand function: Risk bounds and near-optimal algorithms”. In: Operations Re-
search 57.6, pp. 1407–1420.

Besbes, Omar and Assaf Zeevi (2015). “On the (surprising) sufficiency of linear
models for dynamic pricing with demand learning”. In: Management Science
61.4, pp. 723–739.

Boer, Arnoud den and N Bora Keskin (2017). “Dynamic Pricing with Demand
Learning and Reference Effects”. In: Available at SSRN 3092745.

Boer, Arnoud V den (2015). “Dynamic pricing and learning: historical origins, cur-
rent research, and new directions”. In: Surveys in operations research and manage-
ment science 20.1, pp. 1–18.

Boesel, Justin, Barry L Nelson, and Seong-Hee Kim (2003). “Using ranking and
selection to “clean up” after simulation optimization”. In: Operations Research
51.5, pp. 814–825.

Bouneffouf, Djallel and Raphael Feraud (2016). “Multi-armed bandit problem with
known trend”. In: Neurocomputing 205, pp. 16–21.

Branke, Jürgen, Stephen E Chick, and Christian Schmidt (2007). “Selecting a selec-
tion procedure”. In: Management Science 53.12, pp. 1916–1932.

Burtini, G., J. Loeppky, and R. Lawrence (2015). “A Survey of Online Experiment
Design with the Stochastic Multi-Armed Bandit”. In: arXiv preprint arXiv:1510.00757.

Chapelle, Olivier and Lihong Li (2011). “An empirical evaluation of thompson
sampling”. In: Advances in neural information processing systems, pp. 2249–2257.

Chau, Marie, Michael C Fu, Huashuai Qu, and Ilya O Ryzhov (2014). “Simulation
optimization: a tutorial overview and recent developments in gradient-based
methods”. In: Proceedings of the 2014 Winter Simulation Conference (WSC). IEEE
Press, pp. 21–35.

Bibliography 147

Chen, Chun-Hung (1995). “An effective approach to smartly allocate computing
budget for discrete event simulation”. In: Proceedings of the 34th IEEE Conference
on Decision and Control (CDC). Vol. 3. IEEE, pp. 2598–2603.

Demšar, Janez (2006). “Statistical comparisons of classifiers over multiple data
sets”. In: Journal of Machine learning research, pp. 1–30.

Elmaghraby, Wedad and Pınar Keskinocak (2003). “Dynamic pricing in the pres-
ence of inventory considerations: Research overview, current practices, and fu-
ture directions”. In: Management science 49.10, pp. 1287–1309.

Faruqui, Ahmad and Lisa Wood. Quantifying the benefits of dynamic pricing in the
mass market. Tech. rep.

Ferreira, Kris Johnson, David Simchi-Levi, and He Wang (2018). “Online network
revenue management using thompson sampling”. In: Operations research 66.6,
pp. 1586–1602.

Friedman, Milton (1937). “The use of ranks to avoid the assumption of normality
implicit in the analysis of variance”. In: Journal of the american statistical associa-
tion 32.200, pp. 675–701.

Fu, Michael C et al. (2015). Handbook of Simulation Optimization. Vol. 216. Springer.
Garcia, Salvador and Francisco Herrera (2008). “An extension on“statistical com-

parisons of classifiers over multiple data sets”for all pairwise comparisons”. In:
Journal of Machine Learning Research 9, pp. 2677–2694.

Garivier, Aurélien and Eric Moulines (2011). “On upper-confidence bound poli-
cies for switching bandit problems”. In: International Conference on Algorithmic
Learning Theory (ALT). Springer, pp. 174–188.

Geer, Ruben van de et al. (2018). “Dynamic pricing and learning with competition:
Insights from the dynamic pricing challenge at the 2017 informs rm & pricing
conference”. In: Journal of Revenue and Pricing Management, pp. 1–19.

Gittins, John C (1979). “Bandit processes and dynamic allocation indices”. In: Jour-
nal of the Royal Statistical Society. Series B (Methodological), pp. 148–177.

Graepel, Thore, Joaquin Q Candela, Thomas Borchert, and Ralf Herbrich (2010).
“Web-scale bayesian click-through rate prediction for sponsored search adver-
tising in microsoft’s bing search engine”. In: Proceedings of the 27th international
conference on machine learning (ICML), pp. 13–20.

Griffin, Jim E, Philip J Brown, et al. (2010). “Inference with normal-gamma prior
distributions in regression problems”. In: Bayesian Analysis 5.1, pp. 171–188.

Hartland, Cédric, Nicolas Baskiotis, Sylvain Gelly, Michele Sebag, and Olivier Tey-
taud (2007). “Change point detection and meta-bandits for online learning in

148 Bibliography

dynamic environments”. In: Conférence Francophone sur l’apprentissage automa-
tique, Cepadues (CAp), pp. 237–250.

Hoeffding, Wassily (1963). “Probability inequalities for sums of bounded random
variables”. In: Journal of the American statistical association 58.301, pp. 13–30.

Honda, Junya and Akimichi Takemura (2014). “Optimality of Thompson Sampling
for Gaussian Bandits Depends on Priors”. In: International Conference on Artifi-
cial Intelligence and Statistics(AISTATS), pp. 375–383.

Iman, Ronald L and James M Davenport (1980). “Approximations of the critical re-
gion of the Friedman statistic”. In: Communications in Statistics-Theory and Meth-
ods 9.6, pp. 571–595.

Kaufmann, Emilie, Nathaniel Korda, and Rémi Munos (2012). “Thompson sam-
pling: An asymptotically optimal finite-time analysis”. In: International Confer-
ence on Algorithmic Learning Theory (ALT). Springer, pp. 199–213.

Keskin, N Bora and Assaf Zeevi (2014). “Dynamic pricing with an unknown de-
mand model: Asymptotically optimal semi-myopic policies”. In: Operations Re-
search 62.5, pp. 1142–1167.

Kiefer, Jack (1953). “Sequential minimax search for a maximum”. In: Proceedings of
the American mathematical society 4.3, pp. 502–506.

Kim, Seong-Hee and AB Dieker (2011). “Selecting the best by comparing simu-
lated systems in a group of three”. In: Proceedings of the 2011 Winter Simulation
Conference (WSC). IEEE, pp. 3987–3997.

Kim, Seong-Hee and Barry L Nelson (2006a). “On the asymptotic validity of fully
sequential selection procedures for steady-state simulation”. In: Operations Re-
search 54.3, pp. 475–488.

Kim, Seong-Hee and Barry L Nelson (2006b). “Selecting the best system”. In: Hand-
books in operations research and management science 13, pp. 501–534.

Kocsis, Levente and Csaba Szepesvári (2006). “Discounted UCB”. In: 2nd PASCAL
Challenges Workshop, pp. 784–791.

Kohavi, Ron, Roger Longbotham, Dan Sommerfield, and Randal M Henne (2009).
“Controlled experiments on the web: survey and practical guide”. In: Data min-
ing and knowledge discovery 18.1, pp. 140–181.

Koulouriotis, Dimitris E and A Xanthopoulos (2008). “Reinforcement learning and
evolutionary algorithms for non-stationary multi-armed bandit problems”. In:
Applied Mathematics and Computation 196.2, pp. 913–922.

Kuleshov, Volodymyr and Doina Precup (2014). “Algorithms for multi-armed ban-
dit problems”. In: Journal of Machine Learning Research.

Bibliography 149

Lai, Tze Leung and Herbert Robbins (1985). “Asymptotically efficient adaptive
allocation rules”. In: Advances in applied mathematics 6.1, pp. 4–22.

Lessmann, Stefan, Bart Baesens, Christophe Mues, and Swantje Pietsch (2008).
“Benchmarking classification models for software defect prediction: A pro-
posed framework and novel findings”. In: IEEE Transactions on Software En-
gineering 34.4, pp. 485–496.

Li, Lihong, Wei Chu, John Langford, and Robert E Schapire (2010a). “A contextual-
bandit approach to personalized news article recommendation”. In: Proceedings
of the 19th international conference on World wide web. ACM, pp. 661–670.

Li, Wei, Xuerui Wang, Ruofei Zhang, Ying Cui, Jianchang Mao, and Rong Jin (2010b).
“Exploitation and exploration in a performance based contextual advertising
system”. In: Proceedings of the 16th ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD). ACM, pp. 27–36.

Lloyd, Kevin and David S Leslie (2013). “Context-dependent decision-making: a
simple Bayesian model”. In: Journal of The Royal Society Interface 10.82, p. 20130069.

Madani, Omid and Dennis DeCoste (2005). “Contextual recommender problems”.
In: Proceedings of the 1st international workshop on Utility-based data mining. ACM,
pp. 86–89.

Maron, Oded and Andrew W Moore (1994). “Hoeffding races: Accelerating model
selection search for classification and function approximation”. In: Advances in
neural information processing systems, pp. 59–66.

May, Benedict C, Nathan Korda, Anthony Lee, and David S Leslie (2012). “Opti-
mistic Bayesian sampling in contextual-bandit problems”. In: Journal of Machine
Learning Research 13, pp. 2069–2106.

Mellor, Joseph and Jonathan Shapiro (2013). “Thompson sampling in switching
environments with Bayesian online change detection”. In: Proceedings of the 16th
International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 442–
450.

Misra, Kanishka, Eric M Schwartz, and Jacob Abernethy (2019a). “Dynamic On-
line Pricing with Incomplete Information Using Multi-Armed Bandit Experi-
ments”. In: Marketing Science 38.2, pp. 226–252.

Misra, Kanishka, Eric M Schwartz, and Jacob Abernethy (2019b). “Dynamic On-
line Pricing with Incomplete Information Using Multi-Armed Bandit Experi-
ments”. In: Marketing Science 38.2, pp. 226–252.

Nemenyi, Peter (1962). “Distribution-free multiple comparisons”. In: Biometrics.
Vol. 18. 2, p. 263.

150 Bibliography

Özer, Özalp, Ozalp Ozer, and Robert Phillips (2012). The Oxford handbook of pricing
management. Oxford University Press.

Porter, Barry, Matthew Grieves, Roberto Rodrigues Filho, and David Leslie (2016).
“{REX}: A Development Platform and Online Learning Approach for Runtime
Emergent Software Systems”. In: 12th Symposium on Operating Systems Design
and Implementation (OSDI), pp. 333–348.

Raiffa, Howard and Robert Schlaifer (1961). Applied statistical decision theory. Divi-
sion of Research, Graduate School of Business Adminitration, Harvard . . .

Rinott, Yosef (1978). “On two-stage selection procedures and related probability-
inequalities”. In: Communications in Statistics-Theory and methods 7.8, pp. 799–
811.

Rothschild, Michael (1974). “A two-armed bandit theory of market pricing”. In:
Journal of Economic Theory 9.2, pp. 185–202.

Russo, Daniel J, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen,
et al. (2018). “A Tutorial on Thompson Sampling”. In: Foundations and Trends in
Machine Learning 11.1, pp. 1–96.

Sanner, Scott, Robby Goetschalckx, Kurt Driessens, and Guy Shani (2009). “Bayesian
real-time dynamic programming”. In: Twenty-First International Joint Conference
on Artificial Intelligence.

Scott, Steven L (2010). “A modern Bayesian look at the multi-armed bandit”. In:
Applied Stochastic Models in Business and Industry 26.6, pp. 639–658.

Scott, Steven L (2015). “Multi-armed bandit experiments in the online service econ-
omy”. In: Applied Stochastic Models in Business and Industry 31.1, pp. 37–45.

Slivkins, Aleksandrs and Eli Upfal (2008). “Adapting to a Changing Environment:
the Brownian Restless Bandits”. In: Computational Learning Theory (COLT), pp. 343–
354.

Sutton, Richard S and Andrew G Barto (1998). Reinforcement learning: An introduc-
tion. Vol. 1. 1. MIT press Cambridge.

Talluri, Kalyan T and Garrett J Van Ryzin (2006). The theory and practice of revenue
management. Vol. 68. Springer Science & Business Media.

Thathachar, MAL (1984). “A class of rapidly converging algorithms for learning
automata”. In: IEEE International Conference on Cybernetics and Society, pp. 602–
606.

Thompson, William R (1933). “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples”. In: Biometrika 25.3/4,
pp. 285–294.

Bibliography 151

Vermorel, Joannes and Mehryar Mohri (2005). “Multi-armed bandit algorithms
and empirical evaluation”. In: European Conference on Machine Learning (ECML),
pp. 437–448.

Wang, Xinxi, Yi Wang, David Hsu, and Ye Wang (2014). “Exploration in interactive
personalized music recommendation: a reinforcement learning approach”. In:
ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM) 11.1, p. 7.

Wang, Zizhuo, Shiming Deng, and Yinyu Ye (2014). “Close the gaps: A learning-
while-doing algorithm for single-product revenue management problems”. In:
Operations Research 62.2, pp. 318–331.

West, Mike and Jeff Harrison (2006). Bayesian forecasting and dynamic models. Springer
Science & Business Media.

White, Tohn Myles (2012). Bandit Algorithms for Website Optimization Developing,
Deploying, and Debugging. O’Reilly Media.

Whittle, Peter (1988). “Restless bandits: Activity allocation in a changing world”.
In: Journal of applied probability 25.A, pp. 287–298.

Yeh, Flora Yu-Hui and Marcus Gallagher (2005). “An empirical study of hoeffd-
ing racing for model selection in k-nearest neighbor classification”. In: Interna-
tional Conference on Intelligent Data Engineering and Automated Learning (IDEAL).
Springer, pp. 220–227.

Zeng, Chunqiu, Qing Wang, Shekoofeh Mokhtari, and Tao Li (2016). “Online Context-
Aware Recommendation with Time Varying Multi-Armed Bandit”. In: Proceed-
ings of the 22nd ACM International Conference on Knowledge Discovery and Data
Mining (SIGKDD). ACM, pp. 2025–2034.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Contributions
	Thesis outline

	Literature review
	Ranking and selection algorithms
	Indifference-zone method
	Optimal computing budget allocation

	Multi-armed bandit algorithms
	-greedy
	Upper confidence bound
	Thompson Sampling

	Time-dependent bandits
	Contextual bandits
	Concluding remarks

	Stationary case
	Background information
	Problem formulation
	Stationary Thompson Sampling
	Bayesian analysis
	Algorithm

	Stationary -greedy
	Learning and deployment buckets
	Bayesian analysis
	Algorithm

	Numerical experiments on real-world datasets
	Results for Dataset 1
	Results for Dataset 2
	Discussion

	Numerical experiments on artificial datasets
	Setting up the artificial datasets
	Experimental framework
	Comparison of algorithms over multiple datasets
	Results
	Discussion

	Concluding remarks

	Seasonal case
	Problem formulation
	Bayesian linear regression models
	Algorithm
	Numerical experiments on real-world datasets
	Results for Dataset 1
	Results for Dataset 2
	Discussion

	Multi-armed bandits for unknown seasonality
	Reward models
	Model selection

	Numerical experiments on artificial datasets
	Setting up the artificial datasets
	Results
	Discussion

	Concluding remarks

	Dynamic pricing application
	Related literature
	Problem definition
	Demand mechanism

	Experimental design
	Algorithm
	Hoeffding races

	Competitor algorithms
	Results
	Monopoly
	Discussion

	Competitive market environment
	Oligopoly
	Duopoly
	Discussion

	Concluding remarks

	Conclusions and future work
	Contributions
	Contributions to practice

	Future work

	Nemeneyi test for cumulative regret at t=100 for Scenario1
	Golden-section search algorithm
	Revenue share in oligopoly for different parameter values
	Contextual TS-HR

