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Abstract In this article, a quasi-linear semi-discrete analysis of shock captur-
ing schemes in two dimensional wavenumber space is proposed. Using the dis-
persion relation of the two dimensional advection and linearized Euler equations,
the spectral properties of a spatial scheme can be quantified in two dimensional
wavenumber space. A hybrid scheme (HYB-MDCD-TENO6) which combines the
merits of the Minimum Dispersion and Controllable Dissipation (MDCD) scheme
with the Targeted Essentially Non-Oscillatory (TENO) scheme was developed and
tested. Using the two dimensional analysis framework, the scheme was spectrally
optimized in such a way that the linear part of the scheme can be separately
optimized for its dispersion and dissipation properties. In order to compare its
performance against existing schemes, the proposed scheme as well as the baseline
schemes were tested against a series of benchmark test cases. It was found that the
HYB-MDCD-TENO6 scheme provides similar or better resolution as compared to
the baseline TENO6 schemes for the same grid size.

Keywords Non-Linear Spectral Analysis · Shock Capturing Finite Difference ·
WENO/TENO Schemes · Computational Gas Dynamics
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1 Introduction

Turbulent flows are usually characterised by a large range of length and time
scales. In order to obtain accurate results, a direct numerical simulation (DNS) of
such flows must resolve all these range of scales, especially the finest scales with
accuracy in both amplitude and phase. Hence, the dissipation and dispersion prop-
erties of a numerical scheme has direct relevance to its scale resolving abilities. Due
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to their superior spectral properties, spectral methods and compact schemes are
readily used. However, these methods are mainly limited to flows without discon-
tinuities in the solution (such as shockwaves) and are found to cause non-physical
oscillations when applied to flows with discontinuities. On the other hand, the use
of Essentially Non Oscillatory (ENO) and Weighted Essentially Non Oscillatory
(WENO) type schemes [14] are found to be robust for flows with discontinuities.
However, these schemes in their original form are found to be too dissipative for
turbulent flows. In addition, their dispersion properties may not be optimal. Re-
search efforts documented in the literature have concentrated on the development
of numerical schemes with high resolution and good shock capturing capabilities.

In order to develop and improve such schemes, it is important to have a framework
to analyse and characterise a non-linear scheme. For this purpose, the Approximate
Dispersion Relation (ADR) method was introduced in [17]. Subsequently, Li [12]
introduced a simplified form of non-linear spectral analysis method based on the
ADR method. The key idea of this method is to consider the semi-discretized one
dimensional advection equation and to use only the fundamental modes obtained
from a Fourier transform of the semi-discretized equation to deduce the modified
wavenumber. A further observation concerning such an analysis is that most of the
analysis technique are usually based on the semi-discretized dispersion relation of
the one dimensional advection equation. However, when one considers multi di-
mensional problems, schemes that are analysed and optimized in one dimensional
wavespace may not have isotropic behaviour. Therefore, the main advantage of a
multi dimensional wavenumber analysis and optimization technique is the ability
to quantify and reduce the amount of isotropic error. In this work, the method
outlined in [12] is used and then extended to two dimensional wavenumber analysis.

Recent development of low dissipation shock capturing schemes can be found in
[6], where Fu has developed a modified version of the WENO scheme (known as
the TENO scheme) based on the use of a cut-off parameter which completely re-
moves a sub schemes in its flux reconstruction when the normalized smoothness
indicator exceeds a certain value. As compared to the WENO scheme, the TENO
scheme is able to achieve better resolution. A natural choice to achieve better
resolution properties is to combine the TENO/WENO/ENO scheme with another
scheme which possesses spectral-like resolution to form a hybrid scheme. The de-
velopment of such hybrid schemes can be found in [1, 3, 16, 20]. Most of these
work concerns the hybridization of the WENO scheme with either a compact, cen-
tral or spectral scheme. One of the key issues with hybrid scheme concerns the
smooth transition from one scheme to another as the flow field changes from a
smooth to a region where the solution is discontinuous. Ren [18] improved the hy-
brid compact-WENO scheme of Pirozzoli [16] by designing a continuous weighting
function to avoid the abrupt transition from the compact to WENO scheme. A
key issue concerning hybrid scheme relates to the proper design of a hybridization
strategy which ensures the robustness of the numerical solver in one dimensional
and multi dimensional problems.

Other than the hybridization of schemes, another approach which can improve
the spectral properties of a shock capturing schemes is to use optimization tech-
nique. Optimization technique for explicit and implicit finite difference schemes

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Two Dimensional Analysis and Optimization of Hybrid MDCD-TENO Schemes 3

can be found in [7, 11, 19, 21, 22]. Most of these technique are usually based
on the pioneering work of Tam and Webb who devised the dispersion-relation-
preserving (DRP) schemes for computational acoustics. Within the context of a
non-linear shock capturing schemes, the methods used in [21, 26] are based on op-
timizing the weighting of each candidate stencils. In [7], the underlying linear sub
scheme of the Targeted Essentially Non Oscillatory (TENO) scheme is optimized
based on re-expressing the linear scheme into a separate set of finite difference
coefficients that govern the dispersion and dissipation property of the numerical
scheme separately. The dispersion properties are optimized by solving a set of
linear algebraic equation based on the condition that the integrated error across
the wavenumber range is minimized. No free parameter is involved. In this arti-
cle, the method used in [21] is further explored in connection with the Targeted
Essentially Non Oscillatory (TENO) scheme [6]. In [21], a class of finite difference
scheme with minimized dissipation and controllable dispersion (MDCD) was de-
veloped. The key concept of the MDCD scheme is that the coefficients of the finite
difference scheme can be expressed in terms of two free independent parameters
which allow for separate optimization of its dispersion and dissipation properties.
The concept of the MDCD scheme is then coupled with the TENO scheme to allow
for the weighting function of each candidate stencil to be expressed in term of two
free independent parameters. This leads to the development of the MDCD-TENO
scheme. This approach differs from the approach used in [7], where the coefficients
of the underlying linear sub scheme is being optimized instead. Since the non-
linear mechanism of the shock capturing scheme is needed only in the vicinity of
a discontinuity and that it can drastically worsen the spectral properties of the
scheme in smooth flow, a hybrid scheme which blends the linear MDCD scheme
with the non-linear MDCD-TENO scheme is proposed. A robust blending method
based on the inherent normalized smoothness indicator of the TENO scheme is
proposed. The hybrid MDCD-TENO scheme is then spectrally optimized in two
dimensional wavenumber space for its dispersion property.

Concerning the desired spectral properties of a finite difference schemes, it is gener-
ally accepted that the dispersion error should be minimized based on some chosen
criteria such as the dispersion relation of the one dimensional advection equation.
As for the dissipation of the numerical scheme, there exists no established guide-
lines for how the dissipation should be optimized. In practice, a scheme with too
much dissipation makes it unsuitable for DNS. On the other hand, the use of non
dissipative central difference scheme directly on the Navier Stokes equation can
lead to numerical instabilities associated with the aliasing error arising from the
non-linear advection terms [17]. As pointed out by Pirozzoli [17], a small amount
of dissipation is useful since there exists significant dispersion error in the high
wavenumber range and that it would be desirable to damp out the waves prop-
agating at an incorrect speed. The main dilemma concerning the optimization
of the dissipation is that the optimal dissipation is problem dependent. In this
work, the developed approach allow the user to adjust the numerical dissipation
through a free parameter. In the work of Fu [7], the choice of the leading finite
difference coefficient that govern the dissipation property has a direct effect on
numerical dissipation. However, the choice of the stencil length would impose ad-
ditional constraint on its value, such that it must fall within specified range that
satisfy the monotonicity condition to ensure that anti dissipation behaviour does
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4 Raynold Tan, Andrew Ooi.

not appear at intermediate wavenumber. A final note concerning the optimal dis-
sipation can be found in [8], where the authors have proposed an approximate
dispersion-dissipation relation for finite-difference schemes for estimating the dis-
sipation required to damp spurious high-wavenumber waves based on a relation
between the group velocity and the dissipation rate.

The paper is organized in the following manner. Firstly, a review of the exist-
ing WENO and TENO shock capturing schemes are presented. This is followed by
a review of one dimensional non-linear spectral analysis method [12] and the Min-
imum Dispersion and Controllable Dissipation (MDCD) scheme [21]. Thereafter,
the one dimensional non-linear spectral analysis method is extended to two di-
mensional wavenumber space. A hybrid scheme was then developed based on the
combination of the Minimum Dispersion and Controllable Dissipation (MDCD)
scheme and the Targeted Essentially Non Oscillatory (TENO) scheme. The two
dimensional wavenumber analysis framework was then used to optimize the disper-
sion property of the hybrid scheme in two dimensional wavenumber space. Finally,
the spectrally optimized hybrid schemes are compared against existing baseline
schemes through a series of benchmark test cases.

2 Key concepts of WENO and TENO schemes

In order to describe the WENO scheme, a general hyperbolic conservation law
in 1D is considered. The one dimensional conservation law can be described as
follows:

∂u

∂t
+
∂f(u)

∂x
= 0, (1)

u(x, t) is the conservative variable and f(u) is the flux function. By considering a
uniformly discretized space, equation (1) can be written in a semi-discrete form
using a conservative finite difference scheme:

∂ui
∂t

= −
f̂i+1/2 − f̂i−1/2

∆x
. (2)

In order to introduce the correct upwinding, the numerical flux at the cell interface
is generally split into two parts as follow; f̂i+1/2 = f̂+

i+1/2 + f̂−i+1/2. In this paper,

the flux vector splitting approach of Lax-Friedreich is used [9]. For the sake of
brevity, only the positive part of the split numerical flux is described below. The
stencils of the negative split numerical flux can be obtained through symmetry at
the cell interface, xi+1/2. The flux at the cell interface is interpolated with discrete
fi of the surrounding nodal values using a convex combination of r candidate-
stencil fluxes. Mathematically, the numerical flux, f̂i+1/2 can be expressed as:

f̂i+1/2 =

r−1∑
k=0

ωkf̂k,i+1/2. (3)

The non-linear weights in equation (3) are defined as:

ωk =
αk∑
i αi

, αk =
ck

(ε+ βk)p
. (4)
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Two Dimensional Analysis and Optimization of Hybrid MDCD-TENO Schemes 5

ε represents a small number to avoid division by zero. For illustration purposes,
the fifth order WENO scheme of Jiang and Shu [9] will be presented. r is equal
to 3 for the WENO5-JS scheme. ε is set to 1.0e-6 and p is set to 2.0. The linear
weights are given by c0 = 0.1, c1 = 0.6, c2 = 0.3. The sub schemes to be used in
equation (3) are given as:

f̂0,i+1/2 =
1

3
fi−2 −

7

6
fi−1 +

11

6
fi,

f̂1,i+1/2 = −1

6
fi−1 +

5

6
fi +

1

3
fi+1,

f̂2,i+1/2 =
1

3
fi +

5

6
fi+1 −

1

6
fi+2.

(5)

The smoothness indicator determines the weighting contribution of each sub schemes
towards the flux reconstruction at the cell interface. The smoothness indicators,
βi of the WENO5-JS scheme are given by:

β0 =
13

12
(fi−2 − 2fi−1 + fi)

2 +
1

4
(fi−2 − 4fi−1 + 3fi)

2,

β1 =
13

12
(fi−1 − 2fi + fi+1)2 +

1

4
(fi−1 − fi+1)2,

β2 =
13

12
(fi − 2fi+1 + fi+2)2 +

1

4
(3fi − 4fi+1 + fi+2)2.

(6)

Details of the 7th order WENO-JS scheme can be found in [9, 14].

Following this, the TENO5 and TENO6 scheme described in [4, 5] will be in-
troduced. The key differences between the TENO and WENO type schemes lies
in the use of a cut off parameter to remove a linear sub scheme if it crosses a
discontinuity. The other major difference between the WENO and TENO scheme
lies in the sub stencils used in the flux reconstruction. While the sub schemes
used within the WENO scheme has the same stencil width, the sub stencils within
the TENO schemes are constructed with incremental width. For example, the 7th
order WENO is compose of four 4 point stencils while the 7th order TENO is
compose of three 3 point stencils and two 4 point stencils. In the case of having
two closely located discontinuity at both end of the main scheme’s stencil width,
the TENO scheme is able to guarantee the ENO property since there exist one
centrally located sub scheme which can avoid crossing with discontinuities located
at either end of the main scheme stencil width. As for the WENO scheme, the sub
stencils are located chronologically from the most upwind biased location to the
most downwind biased location. This ensures that all WENO sub schemes crosses
with the discontinuities located at either end of the main scheme stencil width.
In this paper, only the TENO5 scheme is presented for completeness. Further de-
tails of the TENO6 scheme can be found in [5]. The numerical flux of the TENO
scheme is expressed similarly as equation (3), with the exception of the weighting
definition. The weighting of the TENO scheme is defined as:

ωk =
αk∑
i αi

, αk = ckδk, (7)

where δk represents a sharp cut off function and is defined as:
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6 Raynold Tan, Andrew Ooi.

δk =

{
0, if χk < CT .

1, otherwise.
(8)

CT is taken to be 10−6 and 10−7 for the TENO5 and TENO6 schemes respectively
in this paper. The normalised smoothness indicator, χk is defined as:

χk =
γk∑
k γk

, (9)

where

γk =

(
1.0 +

τk
βk + ε

)6

. (10)

βk is given as:

β0 =
1

4
(fi−1 − fi+1)2 +

13

12
(fi−1 − 2fi + fi+1)2,

β1 =
1

4
(fi+2 − 4fi+1 + 3fi)

2 +
13

12
(fi+2 − 2fi+1 + fi)

2,

β2 =
1

4
(3fi − 4fi−1 + fi−2)2 +

13

12
(fi − 2fi−1 + fi−2)2.

(11)

For the TENO5 scheme, the sixth order τ5 is given as:

τ5 =
1

5040
[5788f2

i−2 + fi−2(−45681fi−1 + 64843fi − 38947fi+1 + 8209fi+2)

+ fi−1(93483fi−1 − 275836fi + 173498fi+1 − 38947fi+2)

+ fi(210993fi − 275836fi+1 + 64843fi+2)

+ fi+1(93483fi+1 − 45681fi+2) + 5788f2
i+2].

(12)

The linear sub schemes of the TENO5 scheme are given:

f̂0,i+1/2 = −1

6
fi−1 +

5

6
fi +

2

6
fi+1,

f̂1,i+1/2 =
2

6
fi +

5

6
fi+1 −

1

6
fi+2,

f̂2,i+1/2 =
2

6
fi−2 −

7

6
fi−1 +

11

6
fi.

(13)

For the TENO5 scheme, c0,1,2 = [0.6, 0.3, 0.1]. For the TENO6 scheme, c0,1,2,3 =
[0.45, 0.3, 0.05, 0.2]. The key advantage of the TENO scheme lies in its much
reduced numerical dissipation at high reduced wavenumber as compared to the
WENO scheme. It offers marginal improvement in terms of its dispersion property
as compared to the WENO scheme of the same stencil width. This is primarily
because of the cut off parameter which removes the background linear scheme if
the smoothness indicator is below a specified value.
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3 1D non-linear spectral analysis and MDCD scheme

In this section, the WENO and TENO schemes introduced earlier will be analysed
using non-linear spectral analysis method. In addition, the concept of the Minimum
Dispersion and Controllable Dispersion (MDCD) scheme will be introduced. Before
presenting an analysis of these schemes, a short review of the non-linear spectral
analysis method is presented.

3.1 1D non-linear spectral analysis

Unlike a linear scheme, the modified wavenumber of a non-linear scheme cannot be
easily derived analytically and therefore a numerical approach was introduced to
deduce the spectral properties of the numerical scheme. One of the first non-linear
spectral analysis approach was the ADR method introduced in [17]. The essential
idea of ADR is based on the ratio of the spectra solution at time, τ of the primary
Fourier mode with respect to its initial complex amplitude of Fourier mode. For
a single mode initial condition, the solution spectra at time τ obtained through
the use of a non-linear shock capturing scheme contains multiple Fourier modes
instead of a single mode as in the case of a linear scheme. Furthermore, the different
Fourier modes may interact at later time stages which affect the evolution of each
Fourier mode. The framework of the ADR method may be further simplified by
neglecting the temporal discretization effect in the case of a very small time step
and performing a Fourier analysis of the semi-discretized system instead [12]. A
numerical flux, Fj at node j can be written in terms of its spatial derivative as:

F (xj) = ∆xf
′
(xj) = F (fj−p, ....., fj+q) (14)

In the context of a non-linear scheme, the flux function must contain the harmonic
modes in addition to the fundamental mode, eik0xj , that is

F (xj) = F̂k0
eik0xj +

kmax∑
k=k1

F̂ke
ikxj , (15)

where F̂k0,1,2...
is the complex amplitude of the Fourier modes. This is in contrast

to linear schemes, for which the flux function contains only the fundamental mode.
Similar to the ADR approach, a quasi linear analysis accounts for only the leading
order Fourier modes of the non-linear effects embodied within a shock capturing
scheme. Therefore, only the primary mode is considered for further analysis. The
complex amplitude of the leading order Fourier mode, F̂k0

can thus be obtained
through a Discrete Fourier Transform (DFT),

F̂k0
=

1

N

N−1∑
j=0

Fje
−ik0xj . (16)

Fj is the flux obtained numerically through the non-linear differentiation given in
equation (14). The real part of the modified wavenumber relates to the dispersion
property and the imaginary part relates to the dissipation property. Using an
initial condition, fj = eik0xj , which is a sinusoidal function with wavenumber k0

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 Raynold Tan, Andrew Ooi.

and only the leading order Fourier mode in equation (15), the numerical flux can
be expressed as:

F (xj) = F̂k0
eik0xj = ∆xf

′

j = ik∗0∆xe
ik0xj . (17)

Using equation (17), the modified wavenumber of the non-linear scheme can thus
be expressed in terms of the leading order complex Fourier amplitude. The real
and imaginary part of the modified wavenumber correponds to the dispersion and
dissipation property of the numerical scheme.

<(k∗0∆x) = <(−iF̂k0
), =(k∗0∆x) = =(−iF̂k0

). (18)

The leading order complex Fourier mode is obtained through equation (16). In
order to obtain the dispersion or dissipation curve along the entire wavenumber
spectrum, the wavenumber of the initial condition is varied for the entire spectrum
so as to produce a list of fundamental complex Fourier modes.

3.2 MDCD Scheme

The concept of the Minimum Dispersion and Controllable Dissipation (MDCD)
scheme can be traced back to [21] where the authors have introduced a novel ap-
proach for one dimensional optimization of linear finite difference schemes based
on two free parameter. It was shown that the dispersion and dissipation proper-
ties of the linear scheme can be separately controlled through two independent
parameters; γdisp and γdiss. As compared to existing optimization technique, the
main advantage of this technique lies in the modification of the dispersion and
dissipation property separately without affecting one another. The general form
of the MDCD schemes is given as [21]:

f
′
(x) = f

′

C + αf
′

L + βf
′

R, (19)

where

f
′

C =
1

∆x

r−1∑
m=−r+1

amfm

f
′

L =
1

∆x

r−1∑
m=−r

(−1)r−m−1

(
2r − 1

r −m− 1

)
fm

f
′

R =
1

∆x

r−1∑
m=−r+1

(−1)r−m
(

2r − 1

r −m

)
fm.

The binomial coefficient
(
n
k

)
is defined by

(
n
k

)
= n!

k!(n−k)! . γdisp = α+β and γdisp =
α − β are two independent parameters which can be used to separately optimize
the dispersion and dissipation property of the scheme separately. It was shown
mathematically that the dispersion and dissipation property of such a scheme can
be expressed as [21]:
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<(k∗∆x) = γdisp sin rk∆x+

r−1∑
m=1

[
2am + (−1)r−m−1γdisp

((
2r − 1

r −m− 1

)
−

(
2r − 1

r −m

))]
sinmk∆x,

=(k∗∆x)) = γdiss

[
cos rk∆x+ (−1)r

(
2r − 1

r

)
+

r−1∑
m=1

(−1)r−m cosmk∆x

(
2r

r −m

)]
,

(20)
which proves that γdisp and γdiss are two independent parameter. In order to
facilitate the construction of the MDCD scheme and the MDCD-TENO scheme
which will be introduced in later sections, the spectral properties of the MDCD
scheme will be studied in detail for the case of r = 3. When r = 3, the expanded
form of the fourth order MDCD scheme is given as [21]:

f
′
(x) = 1

∆x

 (−1
2γdisp −

1
2γdiss)fi−3 + (2γdisp + 3γdiss + 1

12 )fi−2

+(−5
2γdisp −

15
2 γdiss −

2
3 )fi−1 + 10γdispfi + (5

2γdisp −
15
2 γdiss + 2

3 )fi+1

+(−2γdisp + 3γdiss − 1
12 )fi+2 + (1

2γdisp −
1
2γdiss)fi+3

 .
(21)

The real and imaginary part of the modified wavenumber of equation (21) can be
written as:

<(k∗∆x) =

(
4

3
+ 5γdisp

)
sin k∆x+

(
− 1

6
− 4γdisp

)
sin 2k∆x+ γdisp sin 3k∆x,

=(k∗∆x) = γdiss

(
4(cos k∆x)3 − 12(cos k∆x)2 + 12(cos k∆x)− 4

)
.

(22)

3.3 Spectral properties of WENO, TENO and MDCD schemes

A comparison of the dispersion and dissipation property of the baseline WENO,
TENO and MDCD schemes are presented in figure 1. For the purpose of compar-
ison sake, various values of γdisp and γdiss are considered for the MDCD scheme.
It can be seen that the TENO schemes have slightly better dispersion and lower
dissipation as compared to WENO schemes having the same stencil width. For the
fourth order MDCD scheme, it can be seen that a value of γdisp = 0.0545 gives
the optimal dispersion property while a value of γdisp = 0.035 gives a less than
optimal dispersion property. The dissipation of the MDCD scheme is negative as
long as γdiss > 0. For a value of γdiss = 0, the MDCD scheme will have no nu-
merical dissipation. With the use of increasing positive value of γdiss, the amount
of numerical dissipation in the high wavenumber region increases.

4 2D semi discrete non-linear spectral analysis

In this section, one dimensional non-linear spectral analysis method is extended
to two dimensional wavenumber analysis. In order to assess the accuracy of the
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Fig. 1: Comparison of (a) dispersion, <(k∗x∆x) and (b) dissipation, =(k∗x∆x) prop-
erty of different schemes. The label WENOX−JS refers to the Xth order WENO
scheme proposed by Jiang and Shu [9].
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Fig. 2: Measure of phase (a) and amplitude (b) error of WENO5-JS scheme in two
dimensional wavenumber space based on the dispersion relation of the LEE

numerical schemes in two dimensional space, the semi-discretized numerical disper-
sion relation of the two dimensional Linearised Euler equations (LEE) belonging to
one of the acoustic modes are used [24, 25]. u, v and a are taken to be 1. Without
considering the acoustic term, the advection terms correspond to an entropy mode.
With the consideration of the acoustic term, the coupling of the spectral properties
of the numerical scheme in both spatial directions is taken into account [24, 25].
This acoustic mode (largest eigenvalue of the LEE) is also the critical mode having
the most dispersion and dissipation error at lower wavenumber when a coupled
spatial temporal analysis is considered [23]. The dispersion relation is expressed as:

ω∗semi = uk∗x + vk∗y︸ ︷︷ ︸
advection

+ a
√

(k∗x)2 + (k∗y)2︸ ︷︷ ︸
acoustic

. (23)

Considering a uniform grid spacing in both spatial directions; ∆x = ∆y = ∆, the
dispersion relation of the two dimensional Linearised Euler equations (LEE) can
be expressed as:

ω∗semi∆ = uk∗x∆+ vk∗y∆+ a
√

(k∗x∆)2 + (k∗y∆)2. (24)

Using the semi-discretized dispersion relation of the two dimensional advection
and linearized Euler equations, the non-linear schemes can be analysed in multi-
dimensional space. The phase and amplitude error of the numerical scheme can
be quantified using the real and imaginary component of the difference between
the semi-discretized and physical dispersion relation, (ω∗∆−ω∆). The dispersion
and dissipation property of the WENO5-JS, TENO5, TENO6 scheme is plotted
in figures 2, 3 and 4.
In figures 2, 3 and 4, the contour plots represent difference in values from the
physical dispersion value. The larger the deviation, the larger the dispersion or
dissipation error. <(ω∗∆ − ω∆) represents the phase error while =(ω∗∆ − ω∆)
represents the amplitude error of the spatial discretization scheme. At low reduced
wavenumber, the values are very close to zero since there is little dispersive or
dissipation error. The phase and amplitude error of the WENO5-JS, TENO5 and
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12 Raynold Tan, Andrew Ooi.

Fig. 3: Measure of phase (a) and amplitude (b) error of TENO5 scheme in two
dimensional wavenumber space based on the dispersion relation of the LEE

Fig. 4: Measure of phase (a) and amplitude (b) error of TENO6 scheme in two
dimensional wavenumber space based on the dispersion relation of the LEE

TENO6 scheme based on the dispersion relation of the 2D advection equation are
plotted in figures 5, 6 and 7).

The key difference between the use of the advection and linearized Euler equations
lies in the magnitude of the error especially at the intermediate and high reduced
wavenumber range. It can be seen that the errors are much larger in the case of the
two dimensional linearized Euler equations at the intermediate and high reduced
wavenumber range. At the low reduced wavenumber range, the errors are close to
zero for either the advection and linearized Euler equations.

5 Two dimensional optimization of non-linear schemes

In this part, we present a framework for which the non-linear scheme can be op-
timized in two dimensional wavenumber space based on the dispersion relation of
the two dimensional advection equations. The basic idea is to optimize the weight-
ing contribution of the linear part of the nonlinear scheme based on the dispersion
relation of the two dimensional advection equation equations. In particular, the
TENO scheme is split into a linear and nonlinear part from which the weighting
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Fig. 5: Measure of phase (a) and amplitude (b) error of WENO5-JS scheme in two
dimensional wavenumber space based on the dispersion relation of the advection
equation

Fig. 6: Measure of phase (a) and amplitude (b) error of TENO5 scheme in two
dimensional wavenumber space based on the dispersion relation of the advection
equation

Fig. 7: Measure of phase (a) and amplitude (b) error of TENO6 scheme in two
dimensional wavenumber space based on the dispersion relation of the advection
equation
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associated with the linear part of the TENO scheme can be expressed in terms of
the two free parameters of the MDCD schemes. Expressing the linear scheme in
terms of the weighting parameters allows for the specific tailoring of the dispersion
and dissipation property of the numerical scheme. The only drawback of such an
approach is that the schemes are optimized for their dissipation and dispersion
properties at the expense of their formal order of accuracy. Different from [21],
the cost function used in this optimization is the minimization of the integrated
sum of dispersive error, Edisp in two-dimensional wavenumber space. Since the
dispersion and dissipation property of the numerical scheme can be separately
optimized, the cost function only considers the dispersion error. The dispersion
error for every reduced wavenumber combination is multiplied by an exponential
term, eβ(2π−kx∆x−ky∆y) so as to ensure a larger weighting for error closer to the
lower wavenumber range. β is a parameter which controls the magnitude of the
weighting.

Edisp =
1

e2βπ

∫ r2π

r1π

∫ r2π

r1π

|<(ω∗scheme∆− ω∆)|eβ(2π−kx∆x−ky∆y) dkx∆x dky∆y

(25)

It should be noted that ∆ = ∆x = ∆y. r1 and r2 are set to 0.1 and 0.8 respectively.
They represent the considered wavenumber range for which the error is integrated
for the optimization process. The free parameters to be optimized in this context
is the values of γdisp and γdiss used in the weighting of the sub scheme of the
TENO6 scheme. The remaining parameters are kept the same as the original
TENO6 scheme. By weighting the integrated error more in the low wavenumber
range, the error in the low wavenumber range can be reduced more effectively
through the optimization procedure.

5.1 The MDCD-TENO scheme

The semi-discrete finite difference scheme in conservative form can be written as:

∂ui
∂t

= −
f̂i+1/2 − f̂i−1/2

∆x
(26)

where f̂i+1/2 is the numerical flux. The numerical flux of the TENO scheme can
be rewritten in terms of a combination of a linear and nonlinear part:

f̂i+1/2 =
r∑
k=0

Crk f̂
r
k,i+1/2︸ ︷︷ ︸

linear

+
r∑
k=0

(ωk − Crk)f̂rk,i+1/2,︸ ︷︷ ︸
nonlinear

(27)

where
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f̂0,i+1/2 = −1

6
fi−1 +

5

6
fi +

2

6
fi+1,

f̂1,i+1/2 =
2

6
fi +

5

6
fi+1 −

1

6
fi+2,

f̂2,i+1/2 =
2

6
fi−2 −

7

6
fi−1 +

11

6
fi,

f̂3,i+1/2 =
3

12
fi +

13

12
fi+1 −

5

12
fi+2 +

1

12
fi+3.

(28)

The linear part mainly affects the formal order of accuracy while the nonlinear
part is responsible for capturing the discontinuities. For the nonlinear part, ωk
is the weighting related to the relative smoothness of f on each set of candidate
stencils. It is defined similarly as the original TENO scheme given in equations
(7) to (10). For the linear part, Crk is the optimal weight which can be written in
terms of the free parameters. The optimal weights are derived by comparing the
expanded form of the linear part of equation (27) to the form of the minimized
dispersion and controllable dissipation (MDCD) schemes given in equation (19).
The resulting optimal weight is shown in table 1.

C0 C1 C2 C3
1
2
− 3

2
γdisp + 9

2
γdiss

1
2
− 6γdisp

3
2

(γdisp + γdiss) 6γdisp − 6γdiss

Table 1: Optimal weights Ck for MDCD-TENO6 scheme, r = 3

The key advantage of this framework is that this allow for specific tailoring of the
dispersion or dissipation of the nonlinear scheme based on the absolute value of
|γdisp| and |γdiss| respectively.

5.2 The hybrid scheme

Since the nonlinear mechanism of the shock capturing scheme may deteriorate the
spectral properties of the scheme even in the smooth region, a hybrid scheme which
combines the MDCD-TENO6 scheme with its linear counterpart is proposed. The
reason for the use of the fourth order MDCD scheme lies in the fact that the
stencil width of the linear MDCD scheme is the same as that of the TENO6
scheme. The hybridization strategy of the numerical flux is inherently based on
the smoothness indicator of the TENO6 scheme. The numerical flux of the hybrid
scheme is expressed as

f̂Hybridi+1/2 = σi+1/2f̂
MDCD
i+1/2 + (1− σi+1/2)f̂MDCD−TENO6

i+1/2 , (29)

where σi+1/2 is the blending factor. f̂MDCD
i+1/2 and f̂MDCD−TENO6

i+1/2 are the numer-
ical fluxes of the MDCD scheme and the MDCD-TENO6 scheme. The numerical
flux of the MDCD scheme is given by the linear part of equation (27) and the
optimal weighting is provided in table 1. The blending factor is given by
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σi+1/2 = min(1,
ri+1/2

rc
), (30)

where rc is a threshold parameter used to control the contribution of the linear
scheme to the overall spectral property. rc is set to 0.03 based on numerical ex-
periments and the optimal spectral properties desired. A lower value of rc would
imply that a higher percentage of the numerical flux would be computed by the
linear MDCD scheme. However, setting too low value of rc would lead to a loss
of shock capturing properties. ri+1/2 is the blending function computed from the
smoothness indicator, βk of the TENO scheme;

ri+1/2 = min(
|βk|∑3
k=0 |βk|

) k = 0, 1, 2, 3. (31)

The algorithm works as follows:

fHybridi+1/2 =

{
fMDCD
i+1/2 since σi+1/2 = 1, if |βk,max − βk,min| < ∆xn,

σi+1/2f̂
MDCD
i+1/2 + (1− σi+1/2)f̂MDCD−TENO6

i+1/2 , else.
(32)

n is set to 4 and 8 for one dimensional and multi-dimensional problems respectively.
In equation (32), σi+1/2 is taken to be 1 if |βk,max − βk,min| is less than ∆xn.

5.3 Spectral properties of the hybrid scheme

In this subsection, the spectral properties of the hybrid scheme with respect to
the original TENO6 scheme will be analysed in both one dimensional and two
dimensional wavenumber space. The proposed hybrid scheme will be denoted as the
HYB-MDCD-TENO6 here-after. Since the dispersion and dissipation properties
of the numerical scheme can be tailored separately, the value of γdisp will first be
optimized for its dispersion properties. In the following part, the integrated error,
Edisp is plotted as a function of γdisp for different β values considered. This is
shown in figure 8. After that, the spectral properties of the HYB-MDCD-TENO6
scheme for different values of γdisp is compared in figure 9.

β 1 2 3 4
γdisp 0.0827 0.0568 0.0413 0.0207

Table 2: Optimized values of γdisp for different values of β

Using the framework of the MDCD scheme ensures that both the dispersion and
dissipation property can be separately controlled through γdisp and γdiss respec-
tively. For stability reason, the dissipation should be non negative for all wavenum-
ber. It can be seen in figure 9 that an optimal γdisp value of 0.0568 gives the optimal
dispersion property for the hybrid scheme. In principle, the dissipation must be as
small as possible but sufficiently large to ensure the stability of the simulation and
the damping of the spurious numerical oscillation. Consequently, the optimal value
of dissipation is problem dependent. An advantage of using the MDCD scheme is
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Fig. 8: Comparison of normalized integrated dispersion error,
Edisp−(Edisp)min

(Edisp)max−(Edisp)min

as a function of γdiss for different β values

Fig. 9: Comparison of (a) dispersion, <(k∗x∆x) property and (b) phase error,
<(k∗x∆x− kx∆x) of hybrid and baseline schemes

Fig. 10: Comparison of dissipation, =(k∗x∆x) property of hybrid schemes with
different values of γdiss
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that this allows for the flexibility in adjusting the dissipation without affecting the
dispersion property. In the instance that there is no numerical stability issues or
spurious numerical oscillation, the dissipation of the hybrid scheme can be almost
eliminated by choosing a very small |γdiss|. The flexibility in adjusting the dissi-
pation makes it possible to develop a robust code for the simulation of problems
with discontinuities. In principle, γdiss can be chosen in an adaptive way. For the
purpose of comparison, the value of γdiss will be set to 0.0001 and 0.03. In two di-
mensional wavenumber space, the phase and amplitude error of the hybrid scheme
is illustrated in figures 11 and 12.

Fig. 11: Comparison of phase error of (a) hybrid scheme (γdisp = 0.0568) with
baseline (b) WENO5-JS and (c) TENO6 schemes in two dimensional wavenumber
space based on the dispersion relation of the two dimensional advection equation

6 Numerical tests

6.1 Numerical methods

In this section, numerical results for different canonical cases based on the one, two
and three dimensional Euler/Navier Stokes equation are discussed. For complete-
ness, the non dimensional form of the three dimensional Navier Stokes equations is
presented from which the viscous terms are neglected for cases based on the Euler
equation only. For the one and two dimensional test problems, the terms corre-
sponding to the higher dimension are neglected. The governing equation of the non
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Fig. 12: Comparison of dissipation error of (a) hybrid scheme (γdiss = 0.0001),
(b) hybrid scheme (γdiss = 0.03) with baseline (c) WENO5-JS and (d) TENO6
schemes in two dimensional wavenumber space based on the dispersion relation of
the two dimensional advection equation

dimensional form of the three dimensional compressible Navier-Stokes equations
for idea gas are given by:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
=

1

Re

∂F v

∂x
+

1

Re

∂Gv

∂y
+

1

Re

∂Hv

∂z
(33)

where the vectors U , F , G, H are expressed as:

U =


ρ
ρu
ρv
ρw
e

 F =


ρu

ρu2 + p
ρuv
ρuw

eu+ pu

 G =


ρv
ρuv

ρv2 + p
ρvw

ev + pv

 H =


ρw
ρuw
ρvw

ρw2 + p
ew + pw

 (34)

and the vectors F v, Gv and Hv are expressed as:
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F v =


0
τxx
τxy
τxz

uτxx + vτxy + wτxz + qx

 Gv =


0
τyx
τyy
τyz

uτyx + vτyy + wτyz + qy



Hv =


0
τzx
τzy
τzz

uτzx + vτzy + wτzz + qz


(35)

The viscous stress tensor and heat flux are given by:

τxx = µ

(
4

3

∂u

∂x
− 2

3

∂v

∂y
− 2

3

∂w

∂z

)
τyy = µ

(
4

3

∂v

∂y
− 2

3

∂u

∂x
− 2

3

∂w

∂z

)
τzz = µ

(
4

3

∂w

∂z
− 2

3

∂u

∂x
− 2

3

∂v

∂y

)
τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
τyz = τzy = µ

(
∂v

∂z
+
∂w

∂y

)
τxz = τzx = µ

(
∂w

∂x
+
∂u

∂z

)

(36)

qx = µ
1

(γ − 1)M2Pr

∂T

∂x
qy = µ

1

(γ − 1)M2Pr

∂T

∂y
qz = µ

1

(γ − 1)M2Pr

∂T

∂z
(37)

Other derived quantities can be calculated from the vector U as follows:

p = (e− 1

2
ρ(u2 + v2 + w2))(γ − 1) T =

γM2p

ρ
(38)

The viscosity is computed based on Sutherlaw law:

µ = T 1.5 1.0 + Tref
T + Tref

(39)

where Tref = 110.4
T∞

. T∞ is defined as the dimensional free stream temperature.
For these cases, the third order Total Variation Diminishing (TVD) RK3 scheme
is used for time advancement:
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u(1) = un +∆tL(un)

u(2) =
3

4
un +

1

4
u1 +

1

4
∆tL(u(1))

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2))

(40)

The spatial discretization methods employed for these cases are the WENO-JS,
TENO or the hybrid MDCD-TENO6 schemes for the convective terms. For the
use of the hybrid MDCD-TENO6 schemes, γdiss is set to 0.0001 for all numerical
tests. The viscous stress and heat fluxes are computed through a generic 4th order
central difference scheme. In order to avoid numerical oscillation, the local char-
acteristic decomposition method is employed. For the construction of the left and
right eigenvector, the Roe-averaged primitive variables are used. The constructed
eigenvectors of the Euler equations are then used to transform the numerical flux
from the physical to characteristic space and vice versa. Flux splitting and flux
reconstruction are performed in the characteristic space. Finally, the reconstructed
characteristic fluxes are then transformed back into physical space for the calcula-
tion of the derivatives. Further details can be found in [15, 21]. Numerical results
of the different schemes are compared with the original WENO5-JS scheme under
a coarse grid. A fine grid case based on the WENO5-JS scheme with uniform grid
in x and y is used for reference comparison. For each test cases, the boundary
conditions are imposed by specifying appropriate values at the ghost points and
the boundary nodes (if required) relevant to the specific boundary condition. With
the use of ghost points, numerical schemes of the same stencil width can be used
throughout the computational domain even at the boundary nodes. All two and
three dimensional computations are performed using a parallel hybrid MPI-OMP
Euler/Navier Stokes code while the one dimensional computations are performed
using a serial Euler code.

6.2 One dimensional cases

In this section, several numerical tests for the one dimensional Euler equations are
considered for the purpose of evaluating the performance of the non-linear scheme.
For the one dimensional Euler equation, local characteristic decomposition method
is employed, from which the eigenvectors at the cell interface are computed from
the Roe-averaged primitive variables. Numerical results are compared between the
WENO5-JS, WENO7-JS TENO5 and TENO6 and the hybrid MDCD-TENO6
schemes.

6.2.1 Sod problem

The initial condition of the Sod problem is given by:

(ρ, u, p) =

{
(1.0, 0, 1.0), if x ≤ 0,

(0.125, 0, 0.1), x > 0.
(41)
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Fig. 13: (a) Comparison of density profile at t = 0.14 for Sod problem, (b) Plot
of blending factor, σ(x, t) of first flux components at t = 0.14 for HYB-MDCD-
TENO6, γdisp = 0.0568 scheme.

The solutions are compared at t = 0.14. For the purpose of comparison, a uniform
grid of 200 points are used. The reference result is computed using the WENO5-JS
scheme with a fine grid of 1000 points. The computational domain is taken to be
[-0.5,0.5]. Dirichlet boundary conditions are imposed on both ends of the domain.

The results are plotted in figure 13. It can be seen that the results of the hybrid
scheme are closer to the reference results as compared to the baseline TENO6
scheme. Also, it can be seen that the both the TENO5 and TENO6 give closer
results to the reference case than the baseline WENO5-JS and WENO7-JS scheme.
As previously mentioned, the blending factor is a measure of the usage of the linear
MDCD scheme. It can be clearly seen that σ remain 1.0 when the flow region is
smooth and become less than 1.0 when the flow display a sharp change in gradient.
By utilizing only the linear MDCD scheme in the smooth region of the flow, better
spectral properties of the spatial discretization scheme can be obtained. In order
to have a fair comparison of the numerical schemes in terms of their efficiency, the
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performance metric used in [13] is adopted in this study. The efficiency metric is
defined as follows:

E∆ =
1

εT
,

where ε is a measure of the error metric and T is the CPU time needed for the
simulation to reach the solution at t = 0.14. The L1 error norm definition is used
for the error metric. The sum of the absolute difference between the reference
solution and the solution for each scheme across all grid points is considered.
Since E∆ is not a constant for different sets of ε and T combination, the error
metric is kept to a similar range of value for the different schemes by refining the
grid when necessary. For each scheme, the grid is successively refined until the L1

error is about 3.5× 10−1 and the results are summarized in table 3.

Spatial Scheme Grid Size L1 Norm (×10−1) CPU Time [sec] E∆
WENO5-JS 480 3.446 358.2 0.0081
WENO7-JS 280 3.36 190.45 0.0156
TENO5 240 3.69 160.3 0.0169
TENO6 228 3.39 173.7 0.0170
HYB-MDCD-TENO6 110 3.67 55.4 0.04914

Table 3: Efficiency comparison of the 1D Sod tube problem

In table 3, it can be seen that the HYB-MDCD-TENO6 scheme is the most effi-
cient scheme among the different spatial discretization schemes. The HYB-MDCD-
TENO6 scheme can achieve similar magnitude of L1 error with lesser grid points.

6.2.2 Lax problem

The initial condition of the Lax problem is given by:

(ρ, u, p) =

{
(0.445, 0.698, 3.528), if x ≤ 0,

(0.5, 0, 0.571), x > 0.
(42)

The solutions are compared at t = 0.13. For the purpose of comparison, a uniform
grid of 200 points are used. The reference result is computed using the WENO5-JS
scheme with a fine grid of 2000 points. The computational domain is taken to be
[-0.5,0.5]. Dirichlet boundary conditions are imposed on both ends of the domain.

The results are plotted in figure 14. It can be seen that the results of the hybrid
scheme are slightly closer to the reference results as compared to the baseline
TENO6 scheme. Also, it can be seen that the both the TENO5 and TENO6
schemes give better results than the baseline WENO5-JS and WENO7-JS scheme.
For the plot of the blending factor, it can be clearly seen that σ remain 1.0 when the
flow region is smooth and become less than 1.0 when the flow display a significant
change in gradient.
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Fig. 14: (a) Comparison of density profile at t = 0.13 for Lax problem, (b) Plot of
blending factor, σ(x, t) of first components at t = 0.13 for HYB-MDCD-TENO6,
γdisp = 0.0568 scheme.

6.2.3 Shu Osher problem

This test problem represents an interaction between a Mach 3 shockwave and a
sine entropy wave which generates a flow field with both small scale structures
and discontinuities. The initial condition of the Lax problem is given by:

(ρ, u, p) =

{
(0.445, 0.698, 3.528), if x < −4,

(1.0 + 1
5 sin(5x), 0, 1.0), x ≥ −4.

(43)

The solutions are compared at t = 1.8. For the purpose of comparison, a uniform
grid of 200 points are used. The reference result is computed using the WENO5-JS
scheme with a fine grid of 2000 points. The computational domain is taken to be
[-5.0,5.0]. Dirichlet boundary conditions are imposed on both ends of the domain.
This test measures the ability of the numerical scheme to resolve the waves with
short wavelength.
The results are plotted in figure 15. It can be seen that the results of the hybrid
scheme are slightly closer to the reference results as compared to the baseline
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Fig. 15: (a) Comparison of density profile at t = 1.8 for Shu-Osher problem, (b)
Plot of blending factor, σ(x, t) of first flux components at t = 1.8 for HYB-MDCD-
TENO6, γdisp = 0.0568 scheme.

TENO6 scheme. Also, it can be seen that the both the TENO5 and TENO6
schemes give better results than the baseline WENO5-JS and WENO7-JS scheme.
The plot of the blending factor display similar trends as compared to previous
cases. σ remain 1.0 when the flow region is smooth and become less than 1.0 when
the flow display a significant change in gradient.

6.3 Two dimensional cases

6.3.1 2D Double Mach Reflection of a strong shock

The double Mach reflection test is a close representation of planar shock reflection
in the air from a wedge. Instead of orientating the geometry to create an angled
surface, the shock is orientated at an angle and the wall is kept parallel to the
bottom domain. For this case, only the two dimensional Euler equation is consid-
ered. It is a widely used benchmark to test the ability of the numerical scheme to
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capture shock and resolve the small scale structures. For the present simulation,
the computational domain is taken to be [0,4] x [0,1]. From x >= 1

6 , the lower
boundary is set to be a reflecting free slip wall. At the initial state, a right moving
Mach 10 shock is placed at x = 1

6 with an incidence angle of 60◦ to the x-axis. For
the top boundary, the fluid variables are defined to exactly follow the evolution of
the Mach 10 shockwave. Mathematically the top boundary is defined as:

(ρ, u, v, p) =

{
(8.0, 8.25 sin(60),−8.25 cos(60), 116.5), if x < (1

6 + (1.0 + 10t/ sin(60))),

(1.4, 0, 0, 1), otherwise.

(44)
Inflow conditions are imposed fixed values based on the pre-shock condition while
the outflow values at the ghost points are linearly extrapolated from the interior
points. The initial condition is:

(ρ, u, v, p) =

{
(8.0, 8.25 sin(60),−8.25 cos(60), 116.5), if x < (1

6 + y
tan(60) ),

(1.4, 0, 0, 1), otherwise.

(45)
As the shock propagates from left to right, a self similar shock structure with two
triple points evolve. At the primary triple point, the incident shock, reflected shock
and Mach stem intersects. A secondary triple points is formed from the intersection
of the reflected shock, bowed Mach stem and a secondary reflected shock [10]. A
primary slip line emanates from both triple points. In figure 16, it can be seen that
the cases using the TENO5 and TENO6 scheme are able to produce finer scale
structure along the primary slip line (curled flow structure) as compared to the
baseline WENO5-JS scheme. As compared to the fine grid WENO5-JS case, both
the TENO5 and TENO6 cases are able to produce either similar or finer scale
structures despite using a coarser grid. The hybrid schemes are able to produce
even finer scale structures at the primary slip line as compared to the baseline
TENO6 scheme. A plot of the blending factor in the x and y direction for the
hybrid scheme is shown in figure 17. It can be seen that at region where there is
sharp change in the gradient of the flow, the blending factor approaches zero. At
region where the gradient of the flow is smooth, the blending factor approaches
one. At region of intermediate gradient, the blending factor lies between zero and
one.
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(a) WENO5-JS, ∆x = ∆y = 1
240

(b) WENO7-JS, ∆x = ∆y = 1
240

(c) TENO5 CT = 1e-6, ∆x = ∆y = 1
240

(d) TENO6 CT = 1e-7, ∆x = ∆y = 1
240
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(e) HYB-MDCD-TENO6 γdisp = 0.0568, ∆x = ∆y = 1
240

(f) WENO5-JS ∆x = ∆y = 1
480

Fig. 16: Comparison of density profile at t = 0.2 for double Mach reflection prob-
lem. Solid lines for ρ ranges from 1.4 to 11 with 20 equally separated levels

Fig. 17: Plot of the blending factor (a) σx(x, y, t) and (b) σy(x, y, t) of the first flux
component (F1, G1) in each spatial direction at t = 0.2 for HYB-MDCD-TENO6,
γdisp = 0.0568 scheme.
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6.3.2 2D Euler - Shock Vortex Interaction

This problem describes the interaction of a stationary shock and a vortex. Details
of the initial and boundary conditions were obtained from [15]. The computational
domain is set to [0,2] x [0,1]. A Mach 1.1 shock is positioned at x = 0.5 and normal
to the x− axis. Its left and right states are given as

(ρ, u, v, p) =

{
(1.0, 1.1

√
γ, 0, 1), if x < 0.5,

(1.1691, 1.1133, 0, 1.245), otherwise.
(46)

A small vortex is superposed on the left state region and its center is located at
(xc, yc) = (0.25, 0.5). The initial condition to the left of the normal shock is given
by:

ρ = (1− (γ − 1)
ε2

4αγ
e2α(1−r

2))
1

γ−1 ,

u = 1.1
√
γ + ετeα(1−r

2) (y − yc)
r

,

v = −ετeα(1−r
2) (x− xc)

r
,

p = ργ ,

(47)

where τ = r/rc and r =
√

(x− xc)2 + (y − yc)2. ε = 0.3 is a measure of the
strength of the vortex. α = 0.204 controls the decay rate of the vortex and rc = 0.05
is the critical radius at which the vortex has the maximum strength. A grid of
(Nx, Ny) = (250, 100) is used. The reference results is computed on a refined grid
of (Nx, Ny) = (1000, 400). Both inflow and outflow values at the ghost points are
linearly extrapolated from the interior points. Top and bottom sides are imposed
symmetry boundary condition.

The results are compared at t = 0.6 and they are illustrated in figure 18. Density
distribution of different results at y=0.5 are illustrated in figure 19. It can be seen
that the different spatial discretization methods give very similar results although
the TENO5, TENO6 and HYB-MDCD-TENO6 schemes has slightly more numer-
ical oscillation at region close to the normal shock. It can be seen that all methods
capture the shock and vortex well. It can be seen that the HYB-MDCD-TENO6
scheme is able to achieve sharper normal shock profile and lower vortex core den-
sity as compared to the baseline TENO6 schemes. This is because of the lower
numerical dissipation. Also, it can be seen that both the TENO5 and TENO6
cases give better results than the WENO5-JS and WENO7-JS cases at these re-
gions. A plot of the blending factor in the x and y direction for the hybrid scheme
is shown in figure 20.

It can be clearly seen that the blending factor approaches zero at location where the
normal shock and bow shock is present. At region where the vortex core is present,
the blending factor remain at values close to 1 where most of the linear scheme is
being utilized in the computation of the numerical flux. There exist region where
the blending factor can become lesser than 1.0 despite being a ’smooth’ region of
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(a) WENO5-JS, (Nx, Ny) = (250, 100)

(b) WENO7-JS, (Nx, Ny) = (250, 100)

(c) TENO5 CT = 1e-6, (Nx, Ny) = (250, 100)

(d) TENO6 CT = 1e-7, (Nx, Ny) = (250, 100)
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(e) HYB-MDCD-TENO6 γdisp = 0.0568, (Nx, Ny) = (250, 100)

(f) WENO5-JS fine grid, (Nx, Ny) = (1000, 400)

Fig. 18: Comparison of density contour at t = 0.6 for shock vortex interaction
problem. Solid lines for ρ ranges from 1.1 to 1.22 with 45 equally separated levels.

Fig. 19: Plot of density distribution at y = 0.5 for the different schemes at t = 0.6.
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Fig. 20: Plot of the blending factor, σx(x, y, t) and σy(x, y, t) of the first flux
components (F1, G1) in each spatial direction at t = 0.6 for HYB-MDCD-TENO6,
γdisp = 0.0568 scheme.

the flow. This is because of the presence of numerical ’noise’ propagating from the
discontinuous region of the flow to the smooth region of the flow.

6.3.3 2D Shockwave impingement on spatially evolving mixing layer

The impingement of a shockwave onto a spatially evolving mixing layer is designed
to test the resolution of a scheme when shockwaves interact with vortices. In this
setup, fluctuation is imposed onto the vertical component of the velocity at the
inlet so as to perturb the mixing layer. For this case, the two dimensional Navier
Stokes equations are solved. As the shear layer evolves spatially, an oblique shock
from the top boundary travels through the mixing layer, reflects from the free slip
wall at the lower boundary and passes through the mixing layer again. It is noted
that a free slip instead of a no slip wall is used at the bottom boundary in order
to avoid any boundary layer formation, which may complicate the reflection of the
oblique shock. For the present simulation, the computational domain is taken to
be [0,200] x [-20,20]. The inlet condition is given as u = 2.5 + 0.5 tanh(2y). The
initial condition is given as:

(ρ, u, v, p) =

{
(0.3626, 2.0, 0.0, 0.3327), if y < 0,

(1.6374, 3.0, 0.0, 0.3327), otherwise.
(48)

Post shock condition (ρ, u, v, p) = (2.1101, 2.9709,−0.1367, 0.4754) is imposed at
the top boundary and a free slip wall is imposed at the bottom boundary. The
freestream Mach number and Reynolds number is 0.6 and 500 respectively. The
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Prandtl number is set to 0.72 and the freestream temperature is set to 300K. The
vertical fluctuations imposed at the inlet are given by:

v
′

=
2∑
k=1

ak cos(2πkt/T + φk) exp(−y2/b)

b = 10 a1 = a2 = 0.05 φ1 = 0 φ2 = π/2

T =
λ

uc
λ = 30 uc = 2.68

(49)

(a) WENO5-JS, ∆x = ∆y = 0.4

(b) WENO7-JS, ∆x = ∆y = 0.4
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(c) TENO5 CT = 1e-6, ∆x = ∆y = 0.4

(d) TENO6 CT = 1e-7, ∆x = ∆y = 0.4

(e) HYB-MDCD-TENO6 γdisp = 0.0568, ∆x = ∆y = 0.4

(f) WENO5-JS, ∆x = ∆y = 0.1

Fig. 21: Comparison of density profile at t = 120 for shockwave mixing layer
problem. Solid lines for ρ ranges from 0.228 to 1.8 with 15 equally separated levels
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Fig. 22: Plot of the blending factor, σx(x, y, t) and σy(x, y, t) of the first flux
components (F1, G1) in each spatial direction at t = 120 for HYB-MDCD-TENO6,
γdisp = 0.0568 scheme.

An equally spaced grid of (Nx, Ny) = (500, 100) is used. The reference result is cal-
culated on a refined grid of (Nx, Ny) = (2000, 400). Density contours are shown in
figure 21 at t = 120. It can be observed that the WENO5-JS, TENO5, TENO6 and
HYB-MDCD-TENO6 cases obtain similar results which is very comparable to the
reference result. However, it should be noted that the self similar structure of the
downstream vortices of the reference case showcases smaller scale structure close
to its vortex core. As compared to the baseline TENO6 case, the HYB-MDCD-
TENO6 case showcases presence of smaller scale structure within its downstream
vortex core from X ' 160 onward. Also, the size of the downstream vortices are
comparatively larger. A plot of the blending factors, σx and σy of the first flux
component in each spatial directions is shown in figure 22. The slanted ’white line’
region where the blending factor is close to zero corresponds to the location of the
impinging oblique shock interacting with the mixing layer.

6.4 Three dimensional case

6.4.1 3D Inviscid Taylor Green Vortex

The inviscid Taylor Green Vortex is a test case used to assess the built in dissipa-
tion of the numerical method. This is quantitatively assessed through the volume
averaged kinetic energy and entrosphy. The computational domain is [0, 2π] x
[0, 2π] x [0, 2π]. The volume averaged kinetic energy and entrosphy are defined as:
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Ek(t) =
1

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

ρiuiui
2

dxdydz,

Ω(t) =
1

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

ωiωi
2

dxdydz

(50)

where ωi stands for the vorticity component. The initial condition taken from [2, 7]
is given as:

u(x, y, z, 0) = sin(x) cos(y) cos(z)

v(x, y, z, 0) = − cos(x) sin(y) cos(z)

w(x, y, z, 0) = 0

ρ(x, y, z, 0) = 1.0

p(z, y, z, 0) = 100 +
1

16
[(cos(2x) + cos(2y))(2 + cos(2z))− 2]

(51)

The pressure is defined such that to limit the Mach number to be less than 0.1.
A uniform grid of 643 and 1283 is used. A comparison of the normalized volume
averaged kinetic energy and the enstrophy for the different spatial discretization
schemes are presented in figures 23 and 24 for a grid size of 643 and 1283 re-
spectively. For the decay of the kinetic energy, it can be clearly seen that the
HYB-MDCD-TENO6 cases offer the smallest decay among the different spatial
discretization schemes. It is an indication that the hybrid scheme is less dissi-
pative for non linear simulations with broadband length-scales. Also, it can be
seen that the TENO6 scheme is less dissipative than the baseline WENO5-JS and
WENO7-JS schemes. A larger value of entrosphy implies the presence of more
vortical structures in the flow.
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Fig. 23: (a) Evolution of normalized kinetic energy, Ek(t)/Ek(0) (b) entrosphy,
Ω(t)/Ω(0) for different spatial discretization schemes. The grid size is 643.
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Fig. 24: (a) Evolution of normalized kinetic energy, Ek(t)/Ek(0) (b) entrosphy,
Ω(t)/Ω(0) for different spatial discretization schemes. The grid size is 1283.

7 Conclusions

In this work, a quasi-linear semi-discrete (wavenumber) analysis of shock capturing
schemes in two-dimensional wavenumber space is proposed. Using the dispersion
relation of the two dimensional advection and linearized Euler equations, the spec-
tral properties of a spatial scheme can be quantified in two dimensional wavenum-
ber space. A hybrid scheme which combines the merits of the Minimum Dispersion
and Controllable Dissipation (MDCD) scheme with the Targeted Essentially Non-
Oscillatory (TENO) scheme was developed and tested. The scheme was spectrally
optimized in such a way that the linear part of the scheme can be separately
optimized for its dispersion and dissipation properties. It is shown that the HYB-
MDCD-TENO6 scheme provides similar or better resolution as compared to the
baseline TENO6 scheme for the same grid size. In a quantitative comparison of the
efficiency of the schemes, it was also shown that the HYB-MDCD-TENO6 scheme
is more efficient than the baseline WENO and TENO schemes.
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