
University of Southampton Research 
Repository
Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are 

retained by the author and/or other copyright owners. A copy can be downloaded for personal 

non-commercial research or study, without prior permission or charge. This thesis and the 

accompanying data cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the copyright holder/s. The content of the thesis and accompanying 

research data (where applicable) must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the copyright holder/s. 

When referring to this thesis and any accompanying data, full bibliographic details must be given, 

e.g. 

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the 

University Faculty or School or Department, PhD Thesis, pagination. 





University of Southampton

Faculty of Social Sciences

Mathematical Sciences

Anomalies in Superconformal Field Theories

by

Georgios Katsianis

Supervisors: K. Skenderis, M. Taylor

A thesis submitted for the degree of Doctor of Philosophy

February 2021





University of Southampton

Faculty of Social Sciences

Mathematical Sciences

Anomalies in Superconformal Field Theories

by Georgios Katsianis

Abstract

This thesis presents work related to anomalies in superconformal field theories (SCFTs).
Recent holographic computations proved the existence of new supersymmetry anomalies
in N = 1 SCFTs with an anomalous R-symmetry. This was also confirmed in the context
of the Wess-Zumino (WZ) consistency conditions. Motivated by these results, we provide
a comprehensive analysis of the free and massless WZ model in perturbation theory.

The WZ model is classically invariant under the superconformal group SU(2, 2|1), but
some of these symmetries are broken by quantum anomalies. There are well known bosonic
anomalies associated with R-symmetry and scale invariance, as well as fermionic anomalies
associated with the gamma trace of the supercurrent (usually known as S-supersymmetry).
We provide the first rigorous loop computation which shows that Q-supersymmetry of
conformal supergravity is anomalous at the level of the 4-point correlators, confirming
the holographic and WZ consistency conditions computations. In particular, we focus
on the Ward identities of the 4-point correlator of two supercurrents and two R-currents
<QQ̄JJ >. The results are verified by two different regulators, namely the cut-off and
the Pauli-Villars regularization procedures. We also obtain all the standard anomalies of
the WZ model that is coupled to conformal supergravity.

Our results also show that the form of the anomalies and the part of the symme-
try they break depend on the multiplet of conserved currents one uses. In particular,
the conformal multiplet in the renormalized theory is necessarily anomalous in Q- and
S-supersymmetries, while in the Ferrara-Zumino (FZ) multiplet –the minimal massive
multiplet– there exists a manifestly non anomalous combination of Q- and S- supersym-
metries of the conformal multiplet. We give the counterterm that relates the two multiplets
in the correlation functions of interest.

Finally, in the context of the loop computation, we shed light on many subtle issues
on the regulators and the derivation of the Ward identities.
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CHAPTER 1

Introduction

Symmetries

Until the 20th century principles of symmetry played little role in theoretical physics.
Notions of symmetry such as Galilean invariance or equivalence of inertial frames existed
for example in Newton’s laws of mechanics. However, conservation laws such as momentum
and energy conservation were considered to be a consequence of the dynamical laws of
nature rather than the symmetries that underlay these laws.

This approach changed drastically with Einstein. In 1905 Einstein considered the
symmetry principle as the most fundamental feature in nature that put constrains on the
allowable dynamical laws. Under the assumptions of the principle of special relativity
– the requirement that the equations describing the laws of physics have the same form
in all inertial frames of reference – and the invariance of the speed of light in vacuum,
he was able to derive Lorentz transformations, which were first derived by Lorentz using
Maxwell’s equations for electromagnetism. Ten years later, generalizing the principle of
relativity, i.e. assuming that physical laws are the same in all reference frames – inertial
or non-inertial – Einstein constructed the theory of General Relativity which describes
the dynamics of gravity. Furthermore, with the development of quantum mechanics in the
1920s symmetry principles came to play an even more fundamental role.

Symmetries of classical theories are encoded by transformations of the dynamical vari-
ables that leave the action invariant. There exist discrete symmetries, such as time reversal
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2 Chapter 1. Introduction

invariance or mirror reflection, as well as continuous symmetries, namely symmetries which
are specified by parameters that can be varied continuously. Examples of such symmetries
are spacetime translations and spatial rotations. Symmetries can be global and hold at
all points in the spacetime under consideration, or local, which vary from point to point.
Local symmetries must be gauged. If ε(x) is the spacetime dependent parameter of the
symmetry transformation, for the invariance of the action we need to enrich the field con-
tent and introduce a gauge field Aµ(x) that transforms under the symmetry of interest as
δεAµ = g∂µε, where g is an appropriate constant.

Global vs local symmetries

Global and gauge symmetries are distinct. In particular, a gauge symmetry is not a real
symmetry; it can be thought as a redundancy in our description and all states related
by a gauge transformation are physically the same state. It is an artefact of the extra
degrees of freedom that we use in our theory, thus in principle, any gauge symmetry can
be eliminated by going to the classically equivalent description of the system with fewer
degrees of freedom. On the contrary, global symmetries are true symmetries of a theory.
They do not reduce the degrees of freedom. They are physical, in the sense that states
related by them may be considered ‘equivalent’, but these states are not the same. So the
key difference between a gauge and a global symmetry is that one is in our theoretical
description, while the other is a property of the system. For example, no manipulation
can make a point charge have less spherical symmetry (global rotation symmetry), but the
electromagnetic gauge symmetry can vanish if we consider the electric and magnetic fields
instead of the 4-potential. The price we pay is that Maxwell’s Lagrangian is no longer
written in a manifestly Lorentz covariant form.

A very important implication of global continuous symmetries is the existence of con-
servation laws (conserved currents) associated with them. For instance, spacetime transla-
tions lead to conservation of momentum and energy, while spatial rotations imply angular
momentum conservation. The connection between global continuous symmetries and con-
served currents was made in 1918 by Emmy Noether’s first theorem [1]. A nice review on
Noether’s theorem can be found in [2].

Anomalies

The discussion until now concerned symmetries in the context of classical theories. In the
quantum regime the situation is slightly more complicated. One quite often encounters
infinities in quantum computations. They arise in higher-order perturbative calculations
and typical examples are the electron’s self energy and zero point vacuum energy. To have a
well defined theory we need to find a consistent way to deal with these divergent quantities.
We do that by means of regularization and renormalization. Regularization consists of
introducing a new parameter in our theory that encodes all divergences. Common ways



3

to regularize a quantum field theory are to introduce a hard ultraviolet (UV) cut-off R at
the integration variable of the Feynman integrals, add in the Lagrangian fictitious massive
particles (Pauli-Villars (PV) regulator [3]) or promote the number of spacetime dimensions
to a complex number (dimensional regularization [4,5]). In cut-off regularization, the hard
cut-off parameter R automatically makes the Feynman integrals convergent. Instead of
integrating over all possible values of the loop momenta, we integrate till the value R. The
original theory is retrieved in the limit of R→∞. In the PV regularization, the massive
fictitious particles – which come with either opposite from the original fields statistics or
with wrong sign kinetic terms – contribute to the quantities of interest in such a way, that
they cancel the UV divergences for finite values of the PV masses. The original theory
is restored in the limit where the PV masses go to infinity and the fictitious PV fields
decouple. The PV mass is the regulator parameter. Moreover, the degree of divergence
of a Feynman integral depends on the number of spacetime dimensions we are working
on. Promoting the number of dimensions from let us say d = 4 to d = 4 − ε, makes the
integrals convergent. Now the regulator parameter is ε and the original theory is given in
the limit of ε→ 0. After we have found a way to encode all infinities using the regulator
parameters, we can introduce counterterms in the action to remove them. The last step
is called renormalization.

Generally, regulators tend to break some of the symmetries of the classical theory.
For example the PV regulator necessarily breaks classical conformal invariance, since the
PV mass introduces a scale to the theory, while the cut-off regulator breaks translation
invariance in momentum space. Depending on the computation under consideration some
regulators may be more useful than others.

Going back to the discussion of symmetries, the question that arises is how we can
generalize the notion of symmetry in quantum theories. The quantum counterparts of
Noether’s theorem are the Ward identities. These are relations among correlators that
involve well defined operators and conserved currents. There are different methods to
derive them. One common way is through the path integral formulation of quantum
theory, or alternatively we can introduce gauge fields that couple to the conserved currents
of the theory; then the Ward identities will be a consequence of the gauge invariance of
the action in the presence of these sources.

The Ward identities are still classical equations and one has to compute them in the
quantum theory (using Feynman diagrams for example) to verify them. To regulate diver-
gent correlators, as mentioned, we need to include a consistent regulator. If the regulator
used respects all symmetries of the classical action, then these symmetries are manifestly
satisfied in quantum theory. If the regulator classically violates some of these symmetries,
as the PV regulator breaks conformal invariance due to the presence of the PV mass, there
going to be some new breaking terms in the original classical Ward identities of interest.
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These extra terms have to be computed in the limit where the regulator vanishes (i.e. for
M → ∞ in PV regularization, for ε → 0 in dimensional regularization etc). In this limit
we expect to get the original theory, however, it turns out that sometimes these extra
terms have a non zero contribution. If there are no local counterterms that can be used
at the level of the action to remove them, then the original Ward identities receive local
contributions at the quantum level. We call the corresponding symmetries anomalous.
Thus, for a field transformation to be a symmetry in the quantum theory, leaving the
classical action invariant is a necessary but not a sufficient condition. At the same time,
there has to exist a regulator that respects this symmetry transformation, or at least there
should exist local counterterms to remove possible contributions of the regulators to the
classical Ward identities. If none of these are the case, then we have a quantum anomaly.

Computing correlation functions on a flat background and checking whether the Ward
identities are satisfied, was the first method that led to the original discovery of anomalies
via one-loop triangle diagrams [6, 7]. Anomalies also appear as lack of symmetry conser-
vation in the presence of background fields. These are two sides of the same coin. The
anomaly can also be shifted around to different symmetries by adding finite local terms
in the action. What is crucial is that there exist no counterterms that render all classical
symmetries non anomalous. The theories with or without a counterterm that shifts the
anomaly are physically distinct, as they preserve different symmetries.

Anomalies are a cornerstone of modern quantum field theories. If a global symmetry is
anomalous, classical selection rules are not respected in the quantum theory and classically
forbidden processes may occur. This is a feature of the theory and it is linked with
observable effects. For example, the axial anomaly explains the π0 decay and leads to
the resolution of the U(1) problem in QCD [6, 7]. On the other hand, anomalies in
local (gauge) symmetries lead to inconsistencies, such as lack of unitarity, and they must
be cancelled. An important corollary is that anomalous global symmetries cannot be
consistently coupled to corresponding local symmetries. The attempt to cancel gauge
anomalies, hence build theories consistent with gauge symmetries, often leads to extra
constraints on the theories. Reviews on anomalies in quantum field theories may be found
in [8–10].

Supersymmetry

Since its discovery in 1970s [11–14], supersymmetry has been a subject of extensive research
in the field of high energy physics. Supersymmetry, which relates elementary particles of
different quantum nature – bosons with an integer-valued spin and fermions with a half-
integer spin – was originally found as a non trivial extension of the Poincaré algebra. It was
met with high enthusiasm due to its many appealing features. On the phenomenological
side, it gives possible solutions to the hierarchy problem that afflicts the Standard Model,
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provides candidate particles for dark matter, explains the electroweak symmetry breaking
etc ... [15].

Even though there is still no experimental evidence for its existence in nature, super-
symmetry is also very useful from a theoretical point of view. If we make supersymmetry
local, then we need to introduce a gauge field, the gravitino with a spin 3/2, which is the
superpartner of the graviton. Local supersymmetry provides a supersymmetric version
of gravity [16–19]. Moreover, supersymmetric quantum field theories in general have a
better behaviour in the ultraviolet (UV) limit than their non supersymmetric versions,
since many UV divergences cancel between bosonic and fermionic degrees of freedom.
These results can be understood clearly in the superspace formalism, where various non-
renormalization theorems have been established [20]. As the amount of supersymmetry
increases, theories behave even better until we reach maximally supersymmetric ( N = 4)
Yang-Mills theory, the first 4-dimensional quantum field theory that is UV finite [21,22].

Extended supersymmetry helps us compute a lot of exact results, such the Seiberg-
Witten potential for N = 2 gauge theories [23, 24], the Novikov-Shifman-Vainshtein-
Zakharov exact beta functions [25, 26] and many more. Finally, supersymmetry is an
essential feature of superstring theory, the leading candidate for a theory of quantum
gravity.

Throughout this thesis it is assumed basic knowledge of supersymmetry which can be
found in the first chapters of books such as [18,27,28].

Anomalies in supersymmetry

Discussion of anomalies in 4d (super)conformal QFT has a long history. It has been known
since the 1970s [29,30] that the trace of the stress tensor T µµ is anomalous in the presence
of a curved background metric gµν and background source Aµ for a chiral current Jµ,
and the R-current is similarly anomalous. Moreover, there are generally mixed anomalies
involving two energy momentum tensors and a chiral current [31,32].

It has also been known since [33] that the currents sit in a supermultiplet, as do the
anomalies. In particular, the trace anomaly and the R-current anomaly are in the same
multiplet as the gamma trace of the supercurrent, γµQµ. The latter is an anomaly in
the conservation of the special supersymmetry current, xνγνQµ. It follows that special
supersymmetry (sometimes also called S-supersymmetry) is anomalous. It was believed
however that supersymmetry itself (sometimes called Q-supersymmetry) is preserved, i.e.
the conservation of Qµ is non-anomalous.

There have been extensive studies in the past regarding anomalies in supersymmetry.
As already mentioned, the existence of anomalies is intimately related to the regularization
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procedure. In the presence of a manifestly supersymmetric regulator, a theory is free of
supersymmetry anomalies. However, the existence of such a regulator is still a matter
of debate, especially in supersymmetric gauge theories [34]. Dimensional regularization
(DREG) [4, 5] is one of the most widely used regulators. It preserves gauge symmetry
and plays a key role in the consistency of the standard model. The prescription in DREG
is to promote the number of spacetime dimensions of the theory to a complex number
d, something that explicitly breaks supersymmetry. The degrees of freedom of a spinor
depend on the number of spacetime dimensions, thus an originally supersymmetric theory
in 4 dimensions (i.e. with the same number of bosonic and fermionic degrees of freedom) is
not supersymmetric anymore. Moreover, many algebraic manipulations needed to verify
supersymmetry invariance, such as Fierz identities, are specific only to 4 dimensions.
Another subtle issue is that there is no obvious definition of the Dirac matrix γ5 in d

dimensions. It is known that a totally anticommuting γ5

{γ5, γ
µ} = 0 (1.0.1)

is inconsistent and does not reproduce the standard chiral anomaly. An ad hoc solution
to this problem was given by ’t Hooft and Veltman by assuming that γ5 anticommutes
with the original 4-dimensional gamma matrices and commutes with everyone else, i.e.
the following prescription

{γ5, γ
µ} = 0 , µ = 0, 1, 2, 3

[γ5, γ
µ] = 0 , µ > 3, ..., d (1.0.2)

reproduces the usual chiral anomaly.

Initially, there were indications that DREG does not spoil supersymmetry at the quan-
tum level [35,36]. It was shown that the massless and massive Wess-Zumino model does not
have supersymmetry anomalies up to two-loop level. These results however, do not con-
tradict our conclusions about the supersymmetry anomalies of the massless Wess-Zumino
model. In their analysis, the authors of [35, 36] only considered supersymmetry Ward
identities of some 2- and 3-point correlators of elementary fields. On the contrary, we
are interested in anomalies that arise in correlators among conserved currents (composite
operators) that were not computed there. Moreover, another important technical issue is
that in [35, 36] it was assumed that the Dirac matrix γ5 anticommutes with all gamma
matrices in d dimensions in DREG. As we mentioned though, this prescription does not
reproduce the correct R-symmetry anomaly of the Wess-Zumino model, something essen-
tial in our analysis. Later calculations showed that DREG violates supersymmetry in the
quantum regime [37], as expected.

A modified version of DREG was proposed by Siegel [38] based on dimension reduction



7

(DRED). Siegel continued the spacetime dimensions from 4 to d, where d is less than 4.
The momenta are treated in d dimensions, while the gamma matrices and the elementary
fields are considered 4-dimensional. This approach avoids the explicit breaking of super-
symmetry that arises in DREG. However, as pointed out by Siegel later, the combination
of 4-dimensional gamma matrices and d-dimensional metric gµν leads to inconsistencies,
such as the following relation

0 = d(d− 1)(d− 2)(d− 3)(d− 4), (1.0.3)

which cannot be satisfied for non-integer values of d. DRED can be made mathematically
‘consistent’ by realising the 4-dimensional space that the gamma matrices live as a ‘quasi-4-
dimensional’ space. The ‘quasi-4-dimensional’ space retains essential 4-dimensional prop-
erties but at the same time is also infinite dimensional. This new approach though, makes
again the use of Fierz identities invalid. This introduces explicit breakings in supersym-
metry, like the case of DREG. Reviews about DRED and its different definitions can be
found in [34,39]. There are not many explicit checks of supersymmetry in DRED, however
the general belief is that for all practical purposes and for important phenomenological
cases there exist versions of DRED that preserve supersymmetry. We expect DRED to
violate supersymmetry in 4- and higher order loop computations [40].

It was realised early on [41–49] that one cannot maintain at the quantum level simul-
taneously ∂µQµ = 0 and γµQµ = 0 and, if the model is a gauge theory, gauge invariance;
one of the three conditions must be relaxed. The theory under consideration in this se-
ries of papers was the N = 1 supersymmetric Yang-Mills Lagrangian in four spacetime
dimensions, which reads as

L = −1
4F

a
µνF

aµν − 1
2 ψ̄

aγµDµψ
a + 1

2C
aCa, (1.0.4)

where
F aµν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.0.5)

a = 1, 2, 3 are colour indices, ψa is a massless Majorana spinor, Acµ is a gauge field and Ca

is an auxiliary field. The covariant derivative is given by

Dµψ
a = ∂µψ

a + gfabcAbµψ
c (1.0.6)

and the action corresponding to L is invariant under the following supersymmetry trans-
formations

δεA
a
ν = iε̄γνψ

a,

δεψ
a = i

2F
a
µνγ

µνε+ Caε,

δεC
a = ε̄γµDµψ

a. (1.0.7)
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One can compute the 3-point correlator

<Qµ(p1)ψ̄(p2)Aν(p3)>,

where Q is the supercurrent that corresponds to the above supersymmetry transforma-
tions. Q-supersymmetry, S-supersymmetry and gauge invariance imply the following clas-
sical equations

p1µ <Qµ(p1)ψ̄(p2)Aν(p3)>= 0,

γµ <Qµ(p1)ψ̄(p2)Aν(p3)>= 0,

p3ν <Qµ(p1)ψ̄(p2)Aν(p3)>= 0. (1.0.8)

As pointed out by the authors of [42], the < Qµ(p1)ψ̄(p2)Aν(p3) > correlator is lin-
early divergent at 1-loop level. Following the same approach with the original deriva-
tion of the chiral anomaly [6, 7], they showed that there is a loop momentum ambiguity
in <Qµ(p1)ψ̄(p2)Aν(p3)>; by shifting the loop momentum one can change the finite part
of the 3-point correlator (in subsection (3.2.2) we present this method for the case of the
chiral anomaly). It was shown that there is no choice of momentum routing such that all
the three above classical equations are satisfied at the same time in the quantum regime.
The same conclusion was reached by different people using various regularization proce-
dures such as point-splitting, DRED, DREG etc. Depending on the regulator one uses,
different symmetries are respected, however there is no choice of regulator that satisfies
gauge symmetry, Q- and S- supersymmetry simultaneously. One can shift the anomaly
between these symmetries with the appropriate counterterms in the action.

It is also interesting to mention the final conclusions of [49] and [48], where both
studies used DRED to analyse the Yang-Mills theory (1.0.4). In [49] they concluded that
∂µQµ = 0 and γµQµ 6= 0, which implies that Q-supersymmetry is respected , while the
authors of [48] found that ∂µQµ 6= 0 and γµQµ = 0, hence Q-supersymmetry seems to be
violated. The apparent contradiction is explained by the fact that the authors of the two
papers used different conventions for the gamma matrix algebra in the context of DRED.
Furthermore, there are more ambiguities in this regularization procedure since the final
result seems to depend on whether one performs the gamma matrix algebra before or
after the loop momentum integration. As pointed out by the authors of [49] who found
that Q-supersymmetry is conserved (∂µQµ = 0), the prescription they followed for DRED
gives inconsistent results for the usual chiral anomaly. Of course, ad hoc solutions to
reproduce the standard results were given in that paper, however, the main point we want
to emphasize here is that there are many subtle issues within DRED and one has to be
careful how to use it and interpret its results.

The common choice for the anomalies we just described, is to arrange for counterterms



9

such that gauge symmetry and Q-supersymmetry are satisfied. This gives the standard
superconformal anomaly and is distinct from the anomaly discussed in this thesis. In [43]
it was shown that after extending supersymmetry of the model and adding three N = 1
chiral multiplets to the Lagrangian (1.0.4), the superconformal anomaly vanishes at 1-
loop level. The resulting theory is the 4-dimensional N = 4 supersymmetric Yang-Mills
theory1, which is UV finite and free of anomalies.

Another set of studies, reviewed in [50], considers the quantum effective action for ele-
mentary fields and examines whether it is invariant under supersymmetry including loop
effects; it investigates the conservation of the supercurrent inside correlators of elementary
fields. The authors of these studies, rather than using a specific regulator they followed
a more formal renormalization program, similar to the BPHZ renormalization scheme.
After a systematic subtraction of momentum space integrals which respected fundamen-
tal postulates such as Lorentz invariance, unitarity and causality, they renormalized the
models under consideration and showed that there is no supersymmetry anomaly. Even
though their approach may not be very rigorous in the treatment of infrared divergences
(as mentioned by the same authors), the general consensus is that their conclusions should
be trusted. Again, this does not contradict the results we present regarding the existence
of supersymmetry anomalies: to find the anomaly one should either put the theory on a
non-trivial background or consider correlation functions of (classically) conserved currents
(composite operators) that were not considered there2.

Supersymmetry anomalies that have many technical similarities with the anomalies
presented in this thesis, were reported in [51–54]. Particularly relevant for us is [52], where
the theory under consideration is a chiral matter superfield coupled with a background
vector superfield. The analysis is performed in components in the Wess-Zumino gauge,
where all the unphysical degrees of freedom of the superfields were put to zero with a
supergauge transformation. The only surviving fields are the physical ones. This theory
contains the standard U(1) chiral anomalies, which means that the generating functional,
W , is non invariant under a U(1) transformation, i.e.

δθW 6= 0. (1.0.9)

The supersymmetry anomaly was computed through the Wess-Zumino consistency condi-
tions. Very schematically the procedure is the following (a more detailed example on the
WZ consistency conditions is given in subsection (4.4.1)): In the presence of anomalies we

1TheN = 4 vector multiplet, in theN = 1 language branches into three chiral and one vector multiplets.
2To illustrate this point, consider a free fermion in a complex representation in flat spacetime. This

theory has a standard axial anomaly originating from the 3-point function of the axial current. However,
if one only looks at correlators of elementary fields these are non-anomalous and the axial current inside
such correlators is conserved.
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have that
δiW =

∫
d4x e εiAi , (1.0.10)

where e ≡ det(eaµ), δi denotes the symmetry transformations of the theory under consid-
eration, εi are the (local) parameters of the transformations and Ai are the corresponding
anomalies. The variations form an algebra, [δi, δj ] = fkijδk, and after using this in (1.0.10)
we get the following condition∫

d4x
(
δi(e εjAj)− δj(e εiAi)− fkije εkAk

)
= 0 , (1.0.11)

namely the WZ consistency condition.

Going back to the analysis of [52], we denote by δε the supersymmetry transformation
of the theory in the WZ gauge. Supersymmetry commutes with U(1) symmetry, thus we
have

[δε, δθ]W = 0⇒ δθδεW = δεδθW . (1.0.12)

Since the supesymmetry variation of the chiral anomaly is non trivial, δεδθW 6= 0, we get
that

δεW 6= 0, (1.0.13)

i.e. supersymmetry is anomalous. The above WZ consistency condition can be seen as
an equation to determine the form of the supersymmetry anomaly. Arguments that the
anomaly cannot be removed with local counterterms can be made using the local algebra
that the symmetry variations, δi, satisfy. A similar analysis and conclusions were reported
in [54]. The key difference between the two studies, is that in [52] the fields of the vector
multiplet are non dynamical, hence the chiral symmetry is global and the corresponding
anomaly does not render the theory inconsistent. The supersymmetry anomaly induced by
the global chiral anomaly is ‘physical’, in the sense that potentially it can have observable
implications. On the contrary, the gauge field of the vector multiplet in [54] is dynamical
(propagating) and couples to the chiral current. For the theory to be consistent, the gauge
chiral anomaly needs to cancel; this will also make supersymmetry non-anomalous.

At first sight, the above results may seem to be in conflict with superspace calculations
which showed that all supersymmetry anomalies are cohomologically trivial [55]. More-
over, a non trivial result is that there exists in superspace a non-vanishing supersymmetric
version of the chiral anomaly [56–58]. These facts were often used to argue about the non
existence of supersymmetry anomalies. Consider for example the supersymmetry varia-
tion in the full superspace, which we denote by δζ , and the variation δΩ that gives rise to
the supersymmetric chiral anomaly. Now the WZ consistency conditions read as

[δζ , δΩ]W = 0⇒ δΩδζW = δζδΩW . (1.0.14)



11

Since the chiral anomaly is supersymmetric, the above rhs is zero. This means that
in contrast to (1.0.12), equation (1.0.14) admits a solution where the effective action is
invariant under supersymmetry, i.e.

δζW = 0, (1.0.15)

in accordance with the superspace results. So the existence of a supersymmetry anomaly
is not needed to satisfy the WZ consistency conditions. Note however, that superspace is
an enlarged space with many degrees of freedom and it is supersymmetric by construction.
If we want to examine a physical theory 3 that has a superspace formulation, we have to
gauge-away all unphysical degrees of freedom in order to match the number of degrees of
freedom of the microscopic model. The usual choice is the WZ gauge, where we keep only
the physical fields. The WZ gauge though violates supersymmetry explicitly, i.e. after a
supersymmetry transformation δζ , we get out of it. However, we can assign a compen-
sating gauge transformation that brings us back to the WZ gauge. The supersymmetry
transformation δε in the WZ gauge is given by

δε = δζ + δΩ(ζ), (1.0.16)

where δΩ(ζ) is the compensating gauge transformation, with the parameter fixed in such a
way that the WZ gauge is restored. The supersymmetry variation of W in the WZ gauge
is equal to

δεW = δΩ(ζ)W 6= 0. (1.0.17)

We see that the whole information about the supersymmetry anomalies of the physical
theories is encoded in the supersymmetric version of the chiral anomaly δΩW . In the
WZ gauge, which is a totally acceptable starting point to examine the properties of a
theory, the gauge anomaly of the superspace is transferred to the supersymmetry sector.
There is no contradiction anywhere. Superspace and the WZ gauge, is just another way
to understand the supersymmetry anomalies that one finds in physical theories.

We should also emphasize here, that if we want to investigate whether a physical
model is anomalous or not starting from the superspace results, we must be very careful
to gauge away all the non-physical degrees of freedom that can act as compensators for
the anomalies. There is always this choice to ‘hide’ an anomaly using compensating fields
(fields that can be put to zero using the gauge freedom). An example of how this can be
done is presented in section (3.3). As explained in [59], in N = 1 conformal supergravity
one can use a chiral multiplet as a compensator, to hide the anomalies of the R-symmetry,
S-supersymmetry and of the scale invariance. If one for example starts from the superspace

3By physical theory we mean a model that does not contain extra degrees of freedom which can be put
to zero with a gauge transformation.
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formalism and keeps this compensating chiral multiplet, the theory would naively look
non-anomalous. The anomalies would still be there though, and they would be visible
in the Ward identities of the physical theory. Using this compensating chiral multiplet,
one can construct the FZ multiplet of old minimal supergravity. The FZ multiplet has
more degrees of freedom than the conformal multiplet, so now the auxiliary field of the
chiral compensating multiplet cannot be put to zero by a gauge transformation, since it is
necessary for the off-shell closure of the supersymmetry algebra; it becomes part of the FZ
multiplet, hence it is no longer a compensator. In this case, as it was shown in [59], the
theory can be made consistent at the quantum level. This is in total agreement with the
loop computations presented in this thesis. Also relevant for us is the discussion in [60]
about compensators in supergravity.

A supersymmetry anomaly appears also in theories with gravitational anomalies [61–
63], as one may anticipate based on the fact that the energy momentum tensor and the
supercurrent are part of the same supermultiplet. Indeed this supersymmetry anomaly sits
in the same multiplet as the gravitational anomaly. However, since gravitational anomalies
arise only in 4n+ 2 dimensions, they are irrelevant for our analysis.

Finally, anomalies associated with correlation functions of conserved currents can be
analysed by coupling the currents to external sources, which in our case form an N = 1
superconformal multiplet. As such, the anomalies we discuss in this thesis could be related
to existing superspace results on anomaly candidates for D = 4, N = 1 supergravity
theories [55,64–67] (in particular, in type II anomalies in [66]), though we emphasise that
in our case the supergravity fields are external and thus non-dynamical (off-shell). We
should also stress that there has never been a loop computation (that we know about)
involving the anomalies that we consider.

Holographic anomalies

The anomaly we discuss here was first computed holographically [68]. In holography,
given a bulk action, one can use holographic renormalisation [69, 70] to compute the
Ward identities and anomalies of the dual QFT. AdS/CFT relates N = 1 SCFT in four
dimensions to N = 2 gauged supergravity in five dimensions. Starting from gauged
supergravity in an asymptotically locally AdS5 spacetime and turning on sources for all
superconformal currents one can compute the complete set of superconformal anomalies.
This computation is available for holographic CFTs, which in particular means that the
central charges should satisfy a = c as N → ∞ [69]. The anomaly for general a, c was
obtained in [71] by solving the WZ consistency conditions [72] under the assumption that
R-symmetry is only broken by the standard triangle anomaly.

Early attempts to compute the supertrace Ward identity can be found in [73, 74] but
these missed contributions to the anomaly involving the R-symmetry current and the Ricci
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tensor. Following the work of Pestun [75], there was renewed interest in supersymmetric
theories on curved spacetimes and their holographic duals. The holographic anomalies for
bosonic currents were computed in [76], reproducing (and correcting) known field theory
results [77]. The full superconformal anomalies for the N = 1 current multiplet were
computed holographically in [68], while [78] obtained the superconformal anomalies in the
presence of local supersymmetric scalar couplings. An analogous holographic computation
relevant to two-dimensional SCFTs was reported in [79].

Thesis outline

Motivated by the holographic results of [68] and the WZ consistency conditions in [71],
we analyse the rigid supersymmetry anomalies for the four dimensional massless Wess-
Zumino model in perturbation theory [14], the simplest N = 1 superconformal model.
Since this model is free, the 1-loop computation is exact. The supersymmetry anomaly
appears for first time in the 4-point function that involves two supercurrents and either
two R-symmetry currents or one R-symmetry current and one energy momentum tensor,
i.e.

∂µ <QµQ̄νJ κJ λ> +... = Aνκλ,

∂µ <QµQ̄νT ρσJ λ> +... = Aνρσλ, (1.0.18)

where Q, J , T are the supercurrent, R-symmetry current and energy momentum tensor
respectively. The dots denote standard lower order correlators in the supersymmetry Ward
identities and Aνκλ, Aνρσλ are the new anomalies. In this thesis we focus on <QQ̄JJ>.

Chapter 2 provides the proof of Noether’s theorem and its quantum analogue, the
Ward identity, both of which are consequences of the symmetries of a theory. In chapter
3 we discuss regulators and focus on the cut-off and Pauli-Villars regulators. We show
how the axial anomaly of the free Dirac fermion arises in both of these regularization
procedures. The main aim of chapters 2 and 3 is to provide the necessary technical tools
for the analysis of the anomalies of the WZ model.

In chapter 4 we review the massless WZ model. We describe its classical symmetries
and derive all the Ward identities of the correlators needed for the computation of the
supersymmetry anomalies of the 4-point function <QQ̄JJ>. We also provide consistency
condition arguments that show how the standard R-symmetry anomaly induces anomalies
in supersymmetry.

All correlators involved in the Ward identities of chapter 4 are divergent, so we need
to regulate our theory. A standard way to continue would be to regulate with DRED.
However, there exist various prescriptions on how we should handle the gamma matrices
within DRED, each one with its own advantages and disadvantages. We are interested
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in the Ward identities of 4-point correlators and our analysis demands extensive gamma
matrix algebra manipulations. We would like to avoid all the possible subtleties of DRED
that could arise in that context, thus we proceed using a PV regulator. We find that
all diagrams we compute are regulated using as PV fields three massive N = 1 chiral
multiplets, one with standard statistics and two with ‘wrong’ statistics, with masses ap-
propriately correlated. Chapters 5 and 6 provide the description of the aforementioned
PV regulator.

Since the regulated action we use is supersymmetric, one may wonder whether this
already shows that there is no supersymmetry anomaly. To establish the absence of a
supersymmetry anomaly we still need to couple the symmetry currents to sources super-
symmetrically. Since the PV fields form massive supermultiplets, they break conformal
symmetry, R-symmetry and S-supersymmetry and as such they cannot couple supersym-
metrically to conformal supergravity. Instead, one can consistently couple the regulated
theory to old minimal supergravity. The supersymmetry of old minimal supergravity can
be identified with a field dependent linear combination of the Q- and S-supersymmetry of
conformal supergravity. This means that in the presence of the PV regulator, the orig-
inal R-symmetry, Q- and S-supersymmetry Ward identities of the conformal WZ model
contain extra breaking terms that depend only on the PV masses.

In chapter 7 we find from a bottom up perspective (without invoking old minimal
supergravity, but using only path integral identities of the flat space theory) the regulated
version of the Ward identities of chapter 4. We identify the appropriate local counterterms
to restore, whenever possible, the symmetries broken by the regulator, and in the end we
confirm the anomalies derived through the WZ consistency conditions [71]. Of course,
the supersymmetry of old minimal supergravity is manifestly non anomalous, something
that we verify in chapter 8. In chapter 9 we use the cut-off regulator to confirm the
Q-supersymmetry anomaly of <QQ̄JJ>.

A series of appendices follow. In appendix A we give our conventions, while in ap-
pendix B we write the anomalies of N = 1 SCFTs in the presence of the background
sources (which we confirmed via a 1-loop computation). In appendix C we provide a
comprehensive analysis on the derivation of the Ward identities. Appendix D contains
the expressions of all regulated correlators that we use, and in appendix E we present the
explicit computation of integrals that comprise the potential anomalous terms in the clas-
sical symmetry Ward identities of the WZ model. Important results are also given in the
appendix F. There, we present the renormalized correlators among seagull operators and
conserved currents (up to the 3-point function level), which satisfy all their classical Ward
identities; we confirm via a 1-loop computation that seagull correlators are non anomalous
in the WZ model, as expected. In appendix G we briefly review the symmetries of old
minimal supergravity and in appendix H we give the expressions of the correlators in the
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cut-off regulator.

Most of the work presented in this thesis can be also found in [80,81].
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CHAPTER 2

Symmetries

Symmetries are a concept of great importance in physics. They implement constraints on
the structure of the theory and are commonly used to simplify calculations. In a classical
field theory, symmetry is defined as any continuous or discrete transformation that leaves
the action invariant. Reflection is an example of a discrete symmetry, where there exist
one or more than one lines such that, the first half of a physical system is a mirror
image of the second half. Examples of continuous symmetry transformations are time and
spatial translations, where the physical system has the same properties over a certain time
interval and after a change in location. These are part of the Poincaré symmetry group.
Another common continuous symmetry, is supersymmetry, which relates two basic classes
of elementary particles, bosons, which have an integer-valued spin, and fermions, which
have a half-integer spin.

Classical continuous symmetries, are associated with conservation laws according to
Noether’s theorem [1]. Time translation symmetry implies energy conservation, while
spatial translation symmetry implies momentum conservation. The question that arises,
is whether these classical symmetries survive in the full quantum theory. It is quite often
in quantum computations to encounter divergent quantities. Then, we need to introduce a
parameter which helps us deal with them, namely the regulator. For a classical symmetry
to survive in the quantum regime, it also needs to respect the regularization procedure.
As we will see in the next chapter, this is not always the case.

17
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2.1 Noether’s theorem

Let S be the action of an arbitrary classical field φ(x)

S =
∫
d4xL(φ, ∂φ, x). (2.1.1)

Suppose there is an infinitesimal continuous transformation of the field

δεφ(x) = ε∆(φ, ∂φ, x) (2.1.2)

that changes the Lagrangian density L by a total derivative

δεL = ε∂µΛ
µ (2.1.3)

or equivalently leaves the action invariant up to a boundary term

δεS = ε

∫
d4x∂µΛ

µ, (2.1.4)

where ε is a small constant parameter. The above continuous global (ε independent of x)
field transformation is called a symmetry transformation. The variation of L under this
symmetry transformation is given by:

δεL =
(
∂L
∂φ
− ∂µ

∂L
∂∂µφ

)
δεφ+ ∂µ

(
∂L
∂∂µφ

δεφ

)

= ε

(
∂L
∂φ
− ∂µ

∂L
∂∂µφ

)
∆ + ε∂µ

(
∂L
∂∂µφ

∆
)

(2.1.5)

If we consider the Euler-Lagrange equations of motion the first term of the above rhs side
vanishes. Using (2.1.3) we get

∂µj
µ ≡ ∂µ

(
∂L
∂∂µφ

∆− Λµ
)

= 0. (2.1.6)

The quantity jµ is conserved. We can summarize this proof into a theorem, known as
Noether’s theorem [1]:

Every continuous global transformation of the fields that leaves the action invariant up
to surface terms, gives rise to a corresponding conserved current jµ, such that

∂µj
µ = 0. (2.1.7)

As an example let us consider the action of a complex scalar field

S =
∫
d4x

(
−∂µφ∗∂µφ− V (|φ|2)

)
. (2.1.8)
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It is easy to check that the action is invariant under a global U(1) transformation φ′ → eiεφ

which in infinitesimal form is written as:

δεφ = iεφ, δεφ
∗ = −iεφ∗ (2.1.9)

Using (2.1.6) we find that the conserved current that corresponds to the U(1) global
symmetry is given by:

jµ = i (φ∗∂µφ− φ∂µφ∗) (2.1.10)

Alternatively, one could introduce a background (i.e. non dynamical) gauge field Aµ and
replace the partial derivative ∂µ with the gauge covariant derivative Dµ in (2.1.8)

S =
∫
d4x

(
−Dµφ

∗Dµφ− V (|φ|2)
)
, (2.1.11)

where
Dµφ = ∂µφ+ iAµφ , Dµφ

∗ = ∂µφ
∗ − iAµφ∗ . (2.1.12)

It is straightforward to show that the above action is invariant under the transformation
(2.1.9) with a local parameter ε(x), if at the same time we associate a U(1) transformation
of the gauge field of the following form

A′µ → Aµ − ∂µε . (2.1.13)

The Noether’s theorem now translates as the invariance of the action under the corre-
sponding local U(1) transformation that acts on the gauge field Aµ. We have that∫

d4xJ µδεAµ = 0⇒
∫
d4xJ µ(−∂µε) =

∫
d4x (∂µJ µ) ε = 0, (2.1.14)

where in the second equation we integrated by parts. Since ε is arbitrary, the integrand
of the last equation must be zero, i.e.

∂µJ µ = 0 . (2.1.15)

J µ is the U(1) conserved current in the presence of the background gauge field and is
defined as the functional derivative of the action with respect to Aµ

J µ ≡ δS[A]
δAµ

. (2.1.16)

Using (2.1.11) we find that

J µ = i (φ∗∂µφ− φ∂µφ∗)− 2Aµφ∗φ . (2.1.17)

In the limit where Aµ → 0, the two currents jµ and J µ coincide.
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2.2 Ward identities

The quantum counterparts to Noether’s theorem are the Ward identities. These are re-
lations between correlation functions that follow from global or gauge (local) symmetries
of the theory. A common way to derive them is through the path integral formulation of
quantum theory. A detailed analysis on the Ward identities can be found in [82–84]. Here,
we follow a similar procedure with Noether’s theorem proof.

Consider an action S[φ], where we make a transformation of the form φ′ → φ + εδφ

with a local parameter ε(x). The action changes as

δεS =
∫
d4x (−jµ∂µε(x) +A(x)ε(x)) . (2.2.1)

If A(x) is equal to zero, the transformation we performed is a symmetry of the action,
and jµ is the corresponding conserved current. Now consider some local bosonic operators
Oi[φ, ∂µφ] that transform as

Oi[φ′]→ Oi[φ+ εδφ] = Oi[φ] + δεOi, (2.2.2)

where to lowest order

δεOi = ∂Oi
∂φ

εδφ+ ∂Oi
∂(∂µφ)∂µ(εδφ)⇒

δεOi = ε

(
∂Oi
∂φ

δφ+ ∂Oi
∂(∂µφ)∂µδφ

)
+ ∂µε

∂Oi
∂(∂µφ)δφ ≡ εδOi + ∂µεδO

′µ
i . (2.2.3)

Our aim is to find a relation for the correlation functions of the operators Oi and the
current jµ. We have

∫
[dφ]eiS[φ]

n∏
i=1
Oi[φ(xi)] =

∫
[dφ′]eiS[φ′]

n∏
i=1
Oi[φ′(xi)]⇒

∫
[dφ]eiS[φ]

n∏
i=1
Oi(xi)

=
∫

[dφ]ei(S[φ]−
∫
d4x(jµ∂µε(x)−A(x)ε(x)))

 n∏
i=1
Oi(xi) +

n∑
i=1

δεOi(xi)
n∏
j 6=i
Oj(xj)

 (2.2.4)

where [dφ] is the path integral measure. The equation of the first line is trivial, since
we just relabelled the fields. In the second line we used (2.2.1), and the fact that the
path integral measure is invariant under the field transformation. Note however, that the
invariance of the path integral measure is just an assumption at this point. As we will see
in the following sections, at the quantum level this is not always the case. After Taylor
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expanding the exponential at the rhs of (2.2.4) we get to lowest order in ε

−i
∫
d4xε(x)

(
∂xµ <j

µ(x)
n∏
i=1
Oi(xi)> + <A(x)

n∏
i=1
Oi(xi)>

)
=

n∑
i=1

<δεOi(xi)
n∏
j 6=i
Oj(xj)>,

(2.2.5)
where we use the notation ∫

[dφ]Oi(xi)eiS[φ] ≡<Oi(xi)> . (2.2.6)

We write δεOi(xi) in the following form

δεOi(xi) =
∫
d4xδ(x− xi)

(
ε(x)δOi(x) + (∂xµε(x)δO′µi (x)

)
⇒

δεOi(xi) =
∫
d4xε(x)

(
δ(x− xi)δOi(xi)− ∂xµ

(
δ(x− xi)δO′µi (x)

))
. (2.2.7)

After substituting (2.2.7) to (2.2.5) we find

−i∂xµ <jµ(x)
n∏
i=1
Oi(xi)> −i <A(x)

n∏
i=1
Oi(xi)>=

n∑
i=1

δ(x− xi) <δOi(xi)
n∏
j 6=i
Oj(xj)>

−
n∑
i=1

∂xµ

δ(x− xi) <δO′µi (x)
n∏
j 6=i
Oj(xj)>

 .

(2.2.8)

This is the Ward identity that the operators Oi and the current jµ satisfy. Note here that
Oi are bosonic (commuting) operators. In case of fermionic (anticommuting) operators,
one has to take into account the extra minus signs that come from the change of order-
ing. In various steps of the above whole analysis we integrated by parts and ignored the
boundary terms. The <·> correlators are computed by the standard Wick contractions
of the elementary fields that are involved. In the special case where all Oi operators are
equal to one and A(x) = 0 (symmetry transformation) we get

∂µ <j
µ(x)>= 0, (2.2.9)

which is the conservation law of the classical Noether’s current.

Now let us see an example of how we can use (2.2.8) to find the Ward identity of the
3-point function <jµ(x)jκ(y)jλ(z)>. We are interested in the action (2.1.8) and the U(1)
symmetry transformation (2.1.9). The U(1) variation of the current is given by

δεj
κ = −2∂κε φ∗φ. (2.2.10)
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Taking into account that this is a symmetry transformation (i.e. A(x) = 0), (2.2.8) gives

− i∂xµ <jµ(x)jκ(y)jλ(z)>

+ 2∂xµ
(
δ(x− y)ηµκ <(φ∗φ)(x)jλ(z)> +δ(x− z)ηµλ <(φ∗φ)(x)jκ(y)>

)
= 0 . (2.2.11)

In the previous section we showed that an alternative way to derive Noether’s theo-
rem is to introduce background fields that couple to the conserved currents. The same
approach can be applied to the derivation of the Ward identities of correlation functions.
In the example under consideration, the appropriate action is again (2.1.11). The gauge
invariance of the action implies that

∂µ〈J µ〉s = 0 . (2.2.12)

This is the analogue of (2.1.15) but we consider it as a 1-point function now. The subscript
s denotes that we are in the presence of the background sources. After taking two more
functional derivatives with respect to the gauge field, we get

δ

δAλ(z)
δ

δAκ(y)∂
x
µ〈J µ(x)〉s = ∂xµ〈J µ(x)J κ(y)J λ(z)〉s = 0 (2.2.13)

and in the limit that the background fields go to zero (flat space limit)

∂xµ〈jµ(x)jκ(y)jλ(z)〉 = 0 . (2.2.14)

Notice that the Ward identities (2.2.14) and (2.2.11) are not the same. The apparent
contradiction comes from the different definitions of the correlators 〈·〉 and < ·>. They
differ by semilocal correlators that involve functional derivatives of the conserved current
with respect to the gauge field, i.e. δJ µ(x)

δAκ(y) . As already mentioned, the <·> correlators are
the ones computed using Wick contractions/Feynman diagrams. Using (2.1.17), (2.2.14)
can be written as

− i∂xµ <jµ(x)jκ(y)jλ(z)> +4ηκλδ(y − z)∂xµ <jµ(x)(φ∗φ)(y)>

+ 2∂xµ
(
δ(x− y)ηµκ <(φ∗φ)(x)jλ(z)> +δ(x− z)ηµλ <(φ∗φ)(x)jκ(y)>

)
= 0. (2.2.15)

The above equation is exactly the same with (2.2.11) besides the second term of the lhs.
This term satisfies its own classical Ward identity though, i.e.

∂xµ <j
µ(x)(φ∗φ)(y)>= 0 . (2.2.16)

We see that the Ward identities derived with functional differentiation and with the path
integral formalism coincide. In particular, the functional derivative Ward identities are
a linear combination of path integral Ward identities. These are the two most common
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ways to derive such identities. In particular, the path integral method is referred mainly
in textbooks and used in old field theory computations, while the functional derivative
method is mainly used in modern computations. In the appendix C we provide a more
detailed analysis on the difference between these two methods.

We should emphasize that even though we are talking about correlation functions,
all of the above manipulations are classical. The identities derived with both methods
are classical identities that arise because of classical (symmetry) transformations. In
the quantum regime when one calculates correlators, encounters infinite expressions that
need to be dealt with caution. Sometimes the quantization procedure fails to respect the
classical Ward identities.



24 Chapter 2. Symmetries



CHAPTER 3

Anomalies

3.1 Regularization

In quantum field theories, we encounter many apparent divergences. Physical quantities
though are finite, therefore in renormalizable theories divergences appear only at interme-
diate stages of calculations. In the end they get cancelled one or the other way. However,
these divergences pose technical problems in dealing with them. We need consistent meth-
ods to manipulate them and extract finite answers. For that we introduce a new parameter,
let us say ε, to the divergent quantity O. The quantity is now a function of ε, O(ε). For
finite values of the parameter ε, O(ε) is also finite, i.e. |O(ε)| <∞. Then we say that the
divergent quantity O is regularized by the regulator ε. At the end of the computation we
take the limit where the regulator vanishes and we recover the original theory.

One of the main issues of regularization is that a regulator tends to break certain
symmetries of the original theory. Its usefulness depends on what symmetries it retains,
how easy it is to deal with, how widely it can be used, etc. In quantum field theories, we
see cut-off regularization, Pauli–Villars regularization [3], dimensional regularization [4,5]
and many more. In the following subsections we elaborate on the cut-off and Pauli-Villars
regulators, which we use later for the analysis of the Wess-Zumino model.

25
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3.1.1 Cut-off regulator

Consider the following integral in Euclidean space

Σ =
∫ ∞

0
dkE

k3
E

(k2
E +m2)2 , (3.1.1)

which is a quite typical quantity that one would have to compute in simple quantum field
theories, such as the free boson in four dimensions. By power counting we see that the
above integral is logarithmically divergent, so we need to regulate it. The easiest and
most naive way to do this, is to introduce an ultraviolet cut-off in the loop momentum
kE , which we denote by the parameter R. The regulated integral will be written as

Σreg = lim
R→∞

∫ R

0
dkE

k3
E

(k2
E +m2)2 = lim

R→∞

1
2

(
− R2

m2 +R2 + log[m
2 +R2

m2 ]
)

= −1
2 + 1

2 lim
R→∞

log[m
2 +R2

m2 ]. (3.1.2)

The parameter R enables us to isolate the divergent part of the integral and remove it in
a consistent way so we can make predictions within our theory.

In practice, this type of brute force cut-off is not usually preferred, since it breaks
almost every symmetry of the original theory, such as translation invariance kE → kE + a

in momentum space. However, there are cases when this approach simplifies significantly
quantum computations, especially when we are interested in the difference between linearly
divergent integrals that are related by a shift of their integration variable.

Shifting the integration variable of a divergent integral is illegitimate and can produce
extra finite (or divergent) surface terms. In a Feynman diagram though, the choice of the
internal momentum that we are integrating over should not have any physical meaning.
Two Feynman diagrams that are related by a shift of the integration variable should
correspond to the same physical procedure. If the diagrams are convergent, the shift does
not have any effect. If they diverge, they differ by finite or even divergent terms (depending
on the degree of divergence). Let us explain how we can compute these extra terms and
give a few examples. A detailed analysis of divergent integrals in the cut-off regularization
can be found in [85].

Suppose we have the following divergent integral in Minkowski space

K =
∫
d4kf(k) . (3.1.3)

We are interested in the quantity

∆(a) =
∫
d4k[f(k + a)− f(k)]
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=
∫
d4k[aτ∂τf(k) + 1

2a
τaσ∂τ∂σf(k) + 1

6a
τaσaρ∂τ∂σ∂ρf(k) + ...], (3.1.4)

where a is a constant 4-vector and ∂τ ≡ ∂
∂kτ . In the second line we Taylor expanded

f(k + a). Each term of (3.1.4) can be computed by integrating over the surface kµ = Rµ

using Gauss’s theorem. For simplicity the integral is taken over the boundary S3 at
|R| → ∞. |R| is the radius of the hypersphere S3 and we consider it as the cut-off
regulator parameter. Suppose now that K is a superficially linearly divergent integral. All
but the first term in (3.1.4) vanish in the limit of |R| → ∞. For the case of four-dimensional
Minkowski space we have

∆(a) = aτ
∫
d4k∂τf(k) = 2iπ2aτ lim

R→∞
R2Rτf(R). (3.1.5)

If K was superficially quadratically divergent, we would also have a contribution to ∆(a)
from the second term of (3.1.4). Then, we would have to compute the partial derivative
of f(k) with respect to kσ and integrate using Gauss’s theorem, just like in (3.1.5). Let us
give now some examples of integrals that appear very often in the computations of chapter
9.

• aτ
∫
d4k∂τ ( 1

k2 )

The above integral is zero because of odd symmetry with respect to ∂τ .

• aτ
∫
d4k∂τ (kα

k4 )

aτ
∫
d4k∂τ (kα

k4 ) = 2iπ2aτ lim
R→∞

R2Rτ
Rα
R4 = 2iπ2aτ

1
4δατ (3.1.6)

For α 6= τ the integral is zero because of odd symmetry. So we replace RαRτ =
1
4δατR

2, where δατ is the Euclidean metric.

• aτ
∫
d4k∂τ ( kα

k2(k+q)2 )

After expanding 1
(k+q)2 = 1

k2 − 2kλqλ
k4 + ... we get

aτ
∫
d4k∂τ (kα

k4 −
2kλkαqλ
k6 + ...)

The second term of the above integral is convergent by power counting (it also
vanishes due to odd symmetry), hence it will have no contribution after we use
Gauss’s theorem. Only the first term survives so

aτ
∫
d4k∂τ ( kα

k2(k + q)2 ) = 2iπ2aτ
1
4δατ (3.1.7)
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• aτ
∫
d4k∂τ (kα

k2 )

aτ
∫
d4k∂τ (k

α

k2 ) = 2iπ2aτ lim
R→∞

R2Rτ
Rα
R2 = 2iπ2aτ lim

R→∞

1
4R

2δατ (3.1.8)

• aτaσ
∫
d4k∂τ∂σ(kαkρ

k4 )

aτaσ
∫
d4k∂τ∂σ(kαkρ

k4 ) = aτaσ
∫
d4k∂τ

(
δασkρ
k4 + δρσkα

k4 − 4kαkρkσ
k6

)
= 2iπ2aτaσ lim

R→∞
R2Rτ

(
δασRρ
R4 + δρσRα

R4 − 4RρRαRσ
R4

)
= 2iπ2aτaσ

1
4

(
δασδρτ + δρσδατ −

2
3 (δραδστ + δρσδατ + δρτδασ)

)
(3.1.9)

3.1.2 Pauli-Villars regulator

The Pauli-Villars regularization, consists of introducing fictitious massive fields to the
original theory. The new Pauli-Villars fields are chosen in such a way, that their con-
tribution cancels the divergent pieces of the physical quantity we need to regulate. One
usual prescription mentioned in literature, is to replace the original propagator with the
original propagator minus the massive PV propagator. In case of a bosonic propagator,
this prescription reads as follows

−i
k2 +m2 → ( −i

k2 +m2 −
−i

k2 +M2 ) = −i M2 −m2

(k2 +M2)(k2 +m2) , (3.1.10)

where m is the mass of the original field and M is the PV mass. It is straightforward to
see that the regulated propagator has a better UV behaviour. Moreover, since the PV
propagator comes with a relative minus sign compared to the original one, the PV field
has a wrong-sign kinetic term.

Another common prescription for the regularization of Feynman diagrams, is to add PV
fields of opposite statistics with respect to the fields of the original theory. The Feynman
diagrams associated with them, will come with an overall minus sign compared to the
original diagram, thus capable of cancelling its UV divergences.

In both prescriptions, the PV fields are unphysical since they can violate causality or
positivity of energy, thus making the regulated theory problematic. However, this is not
an issue. At the end of the calculations, after we have dealt with the divergent pieces, we
remove the regulator by sending the PV mass to infinity. There, the PV fields decouple
and we recover the initial theory. Moreover, it is quite common for people in literature
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to use both of these prescriptions without considering if they can actually follow from
a local Lagrangian. For a consistent computation it is crucial to make sure that this is
indeed the case. For example, the modification of the propagator (3.1.10) cannot arise in
a Lagrangian without interaction terms. In the rest of this thesis we follow the second
prescription, where we add/subtract whole diagrams to regulate divergent quantities. This
is the natural approach, since we only examine free theories.

Let us give now an example of how we can use PV regularization to regulate a 2-point
correlator. Consider the following action of a free, massive and commuting complex scalar
field φ,

S =
∫
d4x

(
−∂µφ∗∂µφ−m2φ∗φ

)
, (3.1.11)

where we are interested in the 2-point correlator <(φ∗φ)(q)(φ∗φ)(−q)>. In the limit of
q → 0, up to a prefactor the 2-point function is equal to Σ of (3.1.1), i.e.

<(φ∗φ)(0)(φ∗φ)(0)>= 2iπ2

(2π)4

∫ ∞
0

dkE
k3
E

(k2
E +m2)2 . (3.1.12)

The correlator cannot be computed since it diverges logarithmically. We now add in the
Lagrangian the anticommuting PV complex scalar field Φ with mass M . We find that the
regulated action is given by

Sreg =
∫
d4x

(
−∂µφ∗∂µφ−m2φ∗φ− ∂µΦ∗∂µΦ−M2Φ∗Φ

)
, (3.1.13)

while the operator we consider is modified as follows

(φ∗φ)reg = (φ∗φ) + (Φ∗Φ). (3.1.14)

The regulated 2-point function is equal to

<(φ∗φ)reg(0)(φ∗φ)reg(0)>≡<(φ∗φ)(0)(φ∗φ)(0)> + <(Φ∗Φ)(0)(Φ∗Φ)(0)>=
2iπ2

(2π)4

∫ ∞
0

dkE
k3
E

(k2
E +m2)2 −

2iπ2

(2π)4

∫ ∞
0

dkE
k3
E

(k2
E +M2)2 . (3.1.15)

The second integral comes with a minus sign as consequence of the anticommuting nature
of Φ. It is straightforward to verify this, after performing the Wick contractions. The
leading order logarithmic divergences of the above two integrals cancel. Evaluating (3.1.15)
for finite values of M we get

<(φ∗φ)reg(0)(φ∗φ)reg(0)>= 2iπ2

(2π)4
1
2 log(M

2

m2 ). (3.1.16)

In the limit where the PV regulator decouples (i.e. M → ∞), the parameter M encodes
the logarithmic divergence of the original correlator < (φ∗φ)(0)(φ∗φ)(0)>. It is easy to
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identify a suitable counterterm to remove this divergence and renormalize the 2-point
function.

Recall that in (3.1.2) we computed the integral of (3.1.12) in the cut-off regularization.
Comparing that result with (3.1.16) and taking into account the extra prefactor 2iπ2

(2π)4 , we
see that they do not match. This is not unexpected though. In quantum field theories,
it is quite common for various calculations to depend on the specific regulator one uses.
However, results obtained from different regulators must be related by local counterterms.

3.2 Chiral anomaly from Feynman diagrams

As explained in the previous section, regularization is an essential step towards a well
defined quantum theory. This means that the notion of symmetry should be modified at
the quantum level. Invariance of the action is a necessary, but not a sufficient condition for
a classical transformation to be a symmetry of the quantum theory. It also needs to respect
at the same time the regularization procedure. There are cases when classical symmetries
fail to do so. In particular, if there is no regularization procedure that respects a classical
symmetry, then this symmetry is violated in the full quantum theory, something that we
call an anomaly. Anomalies arise as extra local contributions to the classical symmetry
Ward identities.

To elaborate on the mechanisms that the anomalies arise, we examine the chiral
anomaly of a massless Dirac fermion. We do that using the two regulators we presented
in the previous section, namely, PV and cut-off regularization.

3.2.1 Pauli-Villars

Consider the action of a massless Dirac fermion

S =
∫
d4x

(
−ψ̄γµ∂µψ

)
. (3.2.1)

This classical action is invariant under the two following field transformations

ψ′(x)→ eiaψ(x), ψ′(x)→ eibγ5ψ(x). (3.2.2)

a and b are constant parameters and γ5 is the Dirac matrix. The first is a global U(1)
transformation that simply changes the phase of the field. The second is a global chiral
transformation that rotates the left-handed and right-handed components of the Dirac
field independently. The corresponding to these symmetries conservation laws are

∂µV
µ(x) ≡ ∂µ

(
iψ̄(x)γµψ(x)

)
= 0, ∂µJ

µ(x) ≡ ∂µ
(
iψ̄(x)γµγ5ψ(x)

)
= 0 (3.2.3)
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where V µ is the vector current and Jµ is the axial current. According to (2.2.8), the Ward
identities for the correlation function of two vector and one axial-vector currents are the
following:

∂xµ <V
µ(x)V ν(y)Jλ(z)>= 0, ∂zµ <V

µ(x)V ν(y)Jλ(z)>= 0 (3.2.4)

After Fourier transforming to momentum space we get

q1µ <V
µ(q1)V ν(q2)Jλ(q3)>= 0, q3λ <V

µ(q1)V ν(q2)Jλ(q3)>= 0 . (3.2.5)

We want to see whether these conservation laws survive in quantum theory. After substi-
tuting the expressions of the currents (3.2.3), we perform all possible Wick contractions
of the elementary fields. We find that there are two Feynman diagrams that contribute to
the above correlation function.

λ

q2

p− q1

p− q3
ν

µ
p

q3

q1

λ

q1

p− q2

p− q3 µ

νp

q3

q2

+

Figure 3.2.1: Feynman diagrams contribution to <V µ(q1)V ν(q2)Jλ(q3)>. The wave lines
represent the external axial-vector and vector currents. The straight lines in the loops are
fermionic propagators.

The sum of these diagrams is given by

<V µ(q1)V ν(q2)Jλ(q3)>≡ (2π)4 δ(q1 + q2 + q3)Tµνλ (3.2.6)

where

Tµνλ = i

∫
d4p

(2π)4 tr
(
−i
i/p
γλγ5

−i
i(/p+ /q3)γ

ν −i
i(/p− /q1)γ

µ

)
+
(
q1 ↔ q2

µ ↔ ν

)
. (3.2.7)

Using the relation
− /q3γ5 = γ5

(
/p+ /q3

)
+ /pγ5, (3.2.8)

we find that
q3λT

µνλ = Aµν +Bµν (3.2.9)

where

Aµν = i

∫
d4p

(2π)4 tr

−i
i/p
γ5γ

ν −i
i
(
/p− /q1

)γµ − −i
i
(
/p− /q2

)γ5γ
ν −i
i
(
/p+ /q3

)γµ
 , (3.2.10)
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Bµν = i

∫
d4p

(2π)4 tr

−i
i/p
γ5γ

µ −i
i
(
/p− /q2

)γν − −i
i
(
/p− /q1

)γ5γ
µ −i
i
(
/p+ /q3

)γν
 . (3.2.11)

Naively, both Aµν and Bµν vanish upon shifting the integration variable in their second
term from p to p+ q2 and from p to p+ q1 respectively. Thus, the second Ward identity of
(3.2.5) seems to be satisfied. However, as we showed in section (3.1.1), such a manipulation
is incorrect before regularizing the divergent integrals.

We proceed with Pauli-Villars regularization. We add in our model a massive ‘fermion’
with opposite statistics (thus missing the minus sign accompanying the fermion loop in
the Feynman diagrams). The regulated action will become

Sreg =
∫
d4x

(
−ψ̄γµ∂µψ − Ψ̄γµ∂µΨ−MΨ̄Ψ

)
. (3.2.12)

The Pauli-Villars field Ψ violates classically the chiral transformation of (3.2.2). On
the contrary the U(1) symmetry is satisfied. The new classical conservation laws of the
regulated action are the following

∂µV
µ
reg(x) ≡ ∂µ

(
iψ̄(x)γµψ(x) + iΨ̄(x)γµΨ(x)

)
= 0, (3.2.13)

∂µJ
µ
reg(x) ≡ ∂µ

(
iψ̄(x)γµγ5ψ(x) + iΨ̄(x)γµγ5Ψ(x)

)
= 2iMΨ̄γ5Ψ. (3.2.14)

Chiral symmetry

Since the regulator violates chiral symmetry, there is a possibility that this classical break-
ing leaves its trace in quantum theory too, even when we take the limit of the PV mass to
infinity. This is the limit where the PV fields decouple from our theory, hence the regula-
tor vanishes. To confirm this, one has to compute the regulated version of the correlator
Tµνλ. The extra contribution from the massive PV ‘fermion’ are two Feynman diagrams
similar to figure ( 3.2.1), but with an overall minus sign. Thus, we get

Tµνλreg = i

∫
d4p

(2π)4 tr
(
−i
i/p
γλγ5

−i
i(/p+ /q3)γ

ν −i
i(/p− /q1)γ

µ

)
+
(
q1 ↔ q2

µ ↔ ν

)

− i
∫

d4p

(2π)4 tr
(
−i

i/p+M
γλγ5

−i
i(/p+ /q3) +M

γν
−i

i(/p− /q1) +M
γµ
)

+
(
q1 ↔ q2

µ ↔ ν

)
.

(3.2.15)

Notice that for any finite M , Tµνλreg is convergent and well defined. This is quite straight-
forward to confirm by expanding Tµνλreg in the PV mass M

Tµνλreg = Tµνλ − Tµνλ +M2
∫
d4p fµνλ(p) + ... = M2

∫
d4p fµνλ(p) + ... (3.2.16)



3.2. Chiral anomaly from Feynman diagrams 33

∫
d4p fµνλ(p) is a convergent integral and ... denote higher order terms in M which are

also convergent. Because of the gamma matrix algebra there are no linear terms (or any
other odd power) in the PV mass in the above expansion.

Using now that

− i /q3γ5 = γ5
(
i(/p+ /q3) +M

)
+
(
i/p+M

)
γ5 − 2Mγ5, (3.2.17)

we get
q3λT

µνλ
reg = Cµν +Dµν + Eµν + Fµν +Gµν (3.2.18)

where

Cµν = i

∫
d4p

(2π)4 tr

−i
i/p
γ5γ

ν −i
i
(
/p− /q1

)γµ − −i
i/p+M

γ5γ
ν −i
i(/p− /q1) +M

γµ

 , (3.2.19)

Dµν = i

∫
d4p

(2π)4 tr

− −i
i
(
/p− /q2

)γ5γ
ν −i
i
(
/p+ /q3

)γµ+ −i
i(/p− /q2) +M

γ5γ
ν −i
i(/p+ /q3) +M

γµ
)
,

(3.2.20)

Eµν = i

∫
d4p

(2π)4 tr

−i
i/p
γ5γ

µ −i
i
(
/p− /q2

)γν − −i
i/p+M

γ5γ
µ −i
i(/p− /q2) +M

γν

 , (3.2.21)

Fµν = i

∫
d4p

(2π)4 tr

− −i
i
(
/p− /q1

)γ5γ
µ −i
i
(
/p+ /q3

)γν + −i
i(/p− /q1) +M

γ5γ
µ −i
i(/p+ /q3) +M

γν
)
,

(3.2.22)

Gµν =
∫

d4p

(2π)4 tr
(
−i

i/p+M
2iMγ5

−i
i(/p+ /q3) +M

γν
−i

i(/p− /q1) +M
γµ
)

+
(
q1 ↔ q2

µ ↔ ν

)
.

(3.2.23)
The quantities Cµν , Dµν , Eµν and Fµν converge. Thus, we are allowed to shift their
integration variable. By shifting p to p+ q2 in Dµν and p to p+ q1 in Fµν , we find that

Cµν +Dµν + Eµν + Fµν = 0. (3.2.24)
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The only thing that is left to compute is Gµν . Gµν captures the extra contribution
of the PV mass M to the chiral symmetry Ward identity of <V µ(q1)V ν(q2)Jλ(q3)>. In
particular, the broken chiral symmetry identity in the regulated theory is given by

q3λ <V
µ
reg(q1)V ν

reg(q2)Jλreg(q3)>= 2M <V µ
reg(q1)V ν

reg(q2)(Ψ̄γ5Ψ)(q3)>, (3.2.25)

where

2M <V µ
reg(q1)V ν

reg(q2)(Ψ̄γ5Ψ)(q3)>≡ (2π)4δ(q1 + q2 + q3)Gµν . (3.2.26)

What we did in the previous analysis was to see whether the regulated 3-point function
< V µ

reg(q1)V ν
reg(q2)Jλreg(q3)> satisfies its original chiral symmetry Ward identity (3.2.5).

Alternatively, we could have used the Ward identity of the regulated theory (which is
satisfied by construction, since all correlators involved in (3.2.25) are properly regulated
and convergent) and compute only the breaking term of the rhs, i.e. Gµν . Both approaches
are equivalent. In the latter is just easier to identify the breaking term.

Using that /p2 = p2 we get

Gµν =
∫

d4p

(2π)4 tr

−i/p+M

p2 +M2 2iMγ5
−i
(
/p+ /q3

)
+M

(p+ q3)2 +M2
γν
−i
(
/p− /q1

)
+M

(p− q1)2 +M2
γµ

+
(
q1 ↔ q2

µ ↔ ν

)
(3.2.27)

and after evaluating the Dirac traces

Gµν =
∫

d4p

(2π)4
8M2εµναβq2αq1β

(p2 +M2)
(
(p+ q3)2 +M2

) (
(p− q1)2 +M2

) +
(
q1 ↔ q2

µ ↔ ν

)
.

(3.2.28)
To calculate this convergent integral one has to combine the denominators using the stan-
dard Feynman parameters. However, in the end we are interested in the limit M → ∞,
so we only need the asymptotics of the integral for large M which is obtained by setting
p = Ml. We have

Gµν = 1
M2

∫
d4l

(2π)4
8M2εµναβq2αq1β

(l2 + 1)
((
l + q3

M

)2 + 1
) ((

l − q1
M

)2 + 1
) +

(
q1 ↔ q2

µ ↔ ν

)

= i

32π2M2 16M2εµναβq2αq1β. (3.2.29)

We expanded the above integrand in powers of q3
M and −q1

M and kept the non vanishing
terms in the limit M →∞. It turns out that only the leading (zeroth) term survives. The
extra i comes from the Wick rotation that we did to calculate the integral in Euclidean
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space. Thus, the final result for Gµν is

Gµν = i

2π2 ε
µναβq2αq1β. (3.2.30)

We see that after the removal of the regulator, the chiral Ward identity of (3.2.5) is
anomalous

q3λ <V
µ(q1)V ν(q2)Jλ(q3)>= (2π)4δ(q1 + q2 + q3) i

2π2 ε
µναβq2αq1β . (3.2.31)

An analogous computation shows that the 3-point function of three chiral currents is also
anomalous, with 1

3 the value of the above anomaly, i.e.

q3λ <J
µ(q1)Jν(q2)Jλ(q3)>= (2π)4δ(q1 + q2 + q3) i

6π2 ε
µναβq2αq1β . (3.2.32)

U(1) symmetry

The PV regulator respects the U(1) transformation (3.2.2), which means that we do not
expect any anomalies at the quantum level in the U(1) symmetry Ward identities. In
particular, the regulated identity is equal to

q1µ <V
µ
reg(q1)V ν

reg(q2)Jλreg(q3)>= 0 , (3.2.33)

where as we showed the 3-point function is a well defined convergent integral for finite
values of M . Since there is no explicit breaking term on the rhs there is nothing actually
to compute, the identity is satisfied for every M , so in the limit M → ∞ too. For
completeness though, let us compute the lhs to confirm it.

Using that

i /q1 =
(
i/p+M

)
−
(
i
(
/p− /q1

)
+M

)
=
(
i
(
/p− /q2

)
+M

)
−
(
i
(
/p+ /q3

)
+M

)
, (3.2.34)

we find
q1µT

µνλ
reg = Hνλ +Kνλ (3.2.35)

where

Hνλ = i

∫
d4p

(2π)4 tr

γλγ5
−i

i
(
/p+ /q3

)γν −i
i
(
/p− /q1

) .− γλγ5
−i

i
(
/p+ /q3

)
+M

γν
−i

i
(
/p− /q1

)
+M


(3.2.36)

and

Kνλ = −i
∫

d4p

(2π)4 tr

γλγ5
−i

i
(
/p− /q2

)γν−i
i/p
− γλγ5

−i
i
(
/p− /q2

)
+M

γν
−i

i/p+M

 . (3.2.37)
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Kνλ and Hνλ are convergent. By shifting p→ p+ q1 in Hνλ we see that

q1µT
µνλ
reg = 0. (3.2.38)

A similar computation shows that

q1µ <V
µ
reg(q1)V ν

reg(q2)V λ
reg(q3)>= 0 . (3.2.39)

The vector current Ward identities are satisfied, which means that the U(1) classical
symmetry is also a symmetry of the quantum theory, as expected.

If we introduce the background sources Aµ, Bµ that couple to the vector and chiral
currents respectively, the action of the free Dirac fermion will become

S =
∫
d4x

(
−ψ̄γµDµψ

)
(3.2.40)

where
Dµψ = (∂µ + iAµ + iγ5Bµ)ψ. (3.2.41)

The symmetry transformations of Aµ, Bµ are given by

A′µ → Aµ − ∂µa , B′µ → Bµ − ∂µb , (3.2.42)

where a, b are the U(1) and chiral symmetry parameters. One can easily show that in the
presence of the background sources the chiral current divergence is modified as

∂λ〈J λ〉s = − 1
(4π)2 ε

µνρσFµν(A)Fρσ(A)− 1
3 (4π)2 ε

µνρσFµν(B)Fρσ(B), (3.2.43)

where
Fµν(A) = ∂µAν − ∂νAµ , Fµν(B) = ∂µBν − ∂νBµ . (3.2.44)

After taking the appropriate functional derivatives with respect to the sources, the above
equation reproduces the anomalous <V V J > and <JJJ > correlators. (3.2.43) tells us
that the axial-vector current is not conserved, meaning that the U(1) axial symmetry
of the classical action, does not survive the regularization procedure. This is the U(1)
axial anomaly and was first obtained by Adler, Bell and Jackiw [6, 7]. Even though for
this computation we used Feynman diagrams (which is a perturbative method), the result
(3.2.43) is exact and does not receive corrections from higher order terms in interacting
theories [86].

These results could have been obtained using a different regularization procedure, such
as dimensional regularization or the hard cut-off method. A more elegant approach was
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given by Fujikawa [87], who interpreted the anomaly as a symptom of the non invariance
of the path integral measure under an axial transformation.

3.2.2 Momentum routing

In this section we derive the chiral anomaly of the free and massless Dirac fermion (3.2.1)
using another regulator, namely momentum cut-off. In particular, we want to confirm the
anomalous Ward identities of the correlators <V V J> and <JJJ>. The 3-point function
of the chiral currents is given by

<Jµ(q1)Jν(q2)Jλ(q3)>≡ (2π)4 δ(q1 + q2 + q3)T̃µνλ, (3.2.45)

where

T̃µνλ = i

∫
d4p

(2π)4 tr
(
−i
i/p
γλγ5

−i
i(/p+ /q3)γ

νγ5
−i

i(/p− /q1)γ
µγ5

)
+
(
q1 ↔ q2

µ ↔ ν

)
. (3.2.46)

Notice that using {γ5, γ
µ} = 0, T̃µνλ is equal to Tµνλ of (3.2.6), i.e.

<V µ(q1)V ν(q2)Jλ(q3)>=<Jµ(q1)Jν(q2)Jλ(q3)> . (3.2.47)

We now contract <V V J > with q1µ to examine its U(1) symmetry Ward identity. We
have

q1µT
µνλ = i

∫
d4p

(2π)4 tr

−i
i/p
γν

−i
i
(
/p+ /q2

)γλγ5 −
−i

i
(
/p+ /q3

)γν −i
i
(
/p− /q1

)γλγ5


+
(
q2 ↔ q3

ν ↔ λ

)
. (3.2.48)

Similarly with the previous section, we can naively cancel the two terms by shifting the
integration variable from p → p + q3 in the first term and use momentum conservation.
The integral is divergent though, so any formal manipulation is illegitimate. We regulate
it using a momentum hard cut-off R. Since we deal with integrands that are related by
a simple shift of the integration variable, it is more convenient to compute them using
Gauss’s theorem. By power counting the integral is quadratically divergent, but due to
the structure of the gamma matrices the leading order term vanishes. Thus, the integral
diverges linearly so we can use (3.1.5). We find that

q1µT
µνλ = i

π2 ε
ρσλνq3ρq2σ . (3.2.49)

Similarly, if we contract Tµνλ with q2ν and q3λ we get

q2νT
µνλ = i

2π2 ε
ρσλµq3ρq1σ (3.2.50)
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and
q3λT

µνλ = i

2π2 ε
ρσνµq2ρq1σ . (3.2.51)

From the above equations, we see that after regulating with cut-off all the Ward identities
of < V V J > are violated. However, we have not taken into account yet the fact that
<V V J > is linearly divergent. When we computed it, we chose a specific momentum
routing in the loop of the Feynman diagrams. We could have chosen another routing
which is related to the original one by a shift. From a physical point of view Feynman
diagrams related by a momentum shift are equivalent. Computationally though, they differ
by a finite term. Below we write the <V V J > correlator with an arbitrary momentum
routing

<V µ(q1)V ν(q2)Jλ(q3)>{ai}≡ (2π)4 δ(q1 + q2 + q3)Tµνλ(ai), (3.2.52)

where

Tµνλ(ai) = i

∫
d4p

(2π)4 tr
(
γµ

−i
i(/p+ /a1)γ

λγ5
−i

i(/p+ /a1 + /q3)γ
ν −i
i(/p+ /a1 − /q1)

)
+


q2 q3

ν ↔ λ

a1 a2

 .
(3.2.53)

We have that
Tµνλ(ai) = Tµνλ + δTµνλ(ai) (3.2.54)

where using again (3.1.5) we find

δTµνλ(ai) = i

2π2 ε
ρµλν (a1ρ − a2ρ) . (3.2.55)

The Ward identities of <V V J> will become

q1µT
µνλ(ai) = i

π2 ε
ρσλνq3ρq2σ + q1µδT

µνλ(ai), (3.2.56)

q2νT
µνλ(ai) = i

2π2 ε
ρσλµq3ρq1σ + q2νδT

µνλ(ai), (3.2.57)

q3λT
µνλ(ai) = i

2π2 ε
ρσνµq2ρq1σ + q3λδT

µνλ(ai). (3.2.58)

The arbitrary constants a1 and a2 will be given by a linear combination of the external
momenta q2 and q3. All that is left to do is find a way to fix them. Ideally we want to find
a choice of ai so that the rhs of all the above equations is zero at the same time, hence
confirm all the Ward identities. However, it is easy to see that there is no such choice.
The best we can do is make two of them zero simultaneously. We choose to maintain the
vector symmetry Ward identities and violate the chiral symmetry. For that we set

a1 = q3 − q2
2 = −a2 (3.2.59)
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and the final result that we get is

q1µ <V
µ(q1)V ν(q2)Jλ(q3)>= q2ν <V

µ(q1)V ν(q2)Jλ(q3)>= 0 (3.2.60)

and

q3λ <V
µ(q1)V ν(q2)Jλ(q3)>= (2π)4δ(q1 + q2 + q3) i

2π2 ε
ρσµνq3ρq2σ . (3.2.61)

Using momentum conservation, we see that (3.2.61) is equal to (3.2.31). Thus, choosing
the appropriate momentum routing so that the U(1) symmetry is satisfied, the cut-off
regulator reproduces the chiral anomaly that we found with PV regularization.

The computation of the <JJJ> is identical, since the correlators are the same as we
showed before. The chiral symmetry Ward identities of <JJJ> are

q1µT̃
µνλ(ai) = i

π2 ε
ρσλνq3ρq2σ + q1µδT̃

µνλ(ai), (3.2.62)

q2ν T̃
µνλ(ai) = i

2π2 ε
ρσλµq3ρq1σ + q2νδT̃

µνλ(ai), (3.2.63)

q3λT̃
µνλ(ai) = i

2π2 ε
ρσνµq2ρq1σ + q3λδT̃

µνλ(ai). (3.2.64)

Here we want to maintain Bose symmetry so we choose a1 and a2 so that the above rhs
give the same result. This happens for

a1 = q3 − q2
6 = −a2 (3.2.65)

and the final result that we get is

q3λ <J
µ(q1)Jν(q2)Jλ(q3)>= (2π)4δ(q1 + q2 + q3) i

6π2 ε
ρσµνq3ρq2σ . (3.2.66)

Again this result confirms the anomaly that we found with the PV regulator. In real space
the above equation can be written as

∂xµ <J
µ(x)Jν(y)Jλ(z)>= 1

6π2 ε
ρσνλ∂xρ δ(x− y)∂xσδ(x− z) . (3.2.67)

3.3 Anomaly shifting and compensators

Anomaly shifting

As we saw in the previous section, by assigning different momentum routings to the flat
space correlator <V V J> (3.2.52), we are able to shift the anomaly from the U(1) current
to the axial current and vice-versa. Shifting around an anomaly between different sym-
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metries of the theory is something that can be done with the use of local counterterms1.

To be more specific, let us give an example in the case of the free Dirac fermion (3.2.40).
Let Vµ and J µ be the vector and axial Noether currents in the presence of sources, and
Aµ, Bµ the corresponding sources. The partition function Z [A,B] is classically invariant
separately under the transformations (3.2.42), but at one loop order one cannot main-
tain both invariances. In the context of PV regularization, U(1) symmetry is manifestly
respected, while chiral symmetry is anomalous. This means that

Z [A− da,B] = Z [A,B], Z [A,B − db] = Z [A,B]ei
∫
d4xbA, (3.3.1)

where A ∼ εµνρσ(Fµν(A)Fρσ(A) + 1
3Fµν(B)Fρσ(B)) is the chiral anomaly and Fµν(A) =

∂µAν − ∂νAµ, Fµν(B) = ∂µBν − ∂νBµ. This results in the Ward identities

∂µ〈J µ〉s = A, ∂µ〈Vµ〉s = 0, (3.3.2)

where 〈·〉s denotes connected correlation functions in the presence of sources. Since the
anomaly is quadratic in the sources, (3.3.2) encodes the fact that triangle diagrams with
one or three axial currents are anomalous.

The anomaly can be shifted around by adding finite local terms in the action. For the
case of the massless fermion we could consider the partition function,

Z̃ [A,B] = Z [A,B] exp
(
iαc

∫
d4x εµνρσBµAνFρσ(A)

)
, (3.3.3)

where αc is a constant. By an appropriate choice of αc one may arrange for the axial-
vector-vector correlator to be conserved on the axial current but then the conservation
of the vector current would be anomalous, and the partition function (3.3.3) would be
invariant under neither vector nor axial transformations. The theories with or without the
counterterm are physically distinct, as they preserve different symmetries. The standard
choice is to keep the vector symmetry non-anomalous (in the original context [6, 7] the
vector symmetry was electromagnetism), but more generally depending on the physics
context one may work with either theory. In the context of the AdS/CFT correspondence,
the finite counterterms correspond to finite boundary terms that should be specified when
defining the bulk theory.

Compensators

Besides shifting the anomaly between symmetries using local counterterms, the anomaly
may be ‘hidden’ by introducing additional (background) fields. In the case of the axial
anomaly, for example, we may introduce an external scalar field Φ and modify the partition

1In the cut-off regularization, surface terms that arise from different momentum routings at the corre-
lators can always be written in the form of local counterterms.
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function as
Z ′[A,B,Φ] = Z [A,B] exp

(
i

∫
d4xΦA

)
. (3.3.4)

Assigning transformations
δaΦ = 0, δbΦ = −b, (3.3.5)

the partition function Z ′ is now gauge invariant under both vector and axial transforma-
tions

Z ′[A− da,B, Φ+ δaΦ] = Z ′[A,B,Φ], Z ′[A,B − db, Φ+ δbΦ] = Z ′[A,B,Φ]. (3.3.6)

This does not mean that the anomaly has disappeared; the triangle diagrams are not
affected by the new terms in (3.3.4).

One could also use the formulation with Φ to make the Ward identities look as if there
is no anomaly. To see this let us rewrite the coupling of Φ in (3.3.4) as

Z ′[A,B,Φ] = Z [A,B] exp
(
i

∫
d4xΦO

)
, (3.3.7)

where O = ∂µJ µ. In the classical theory O is proportional to field equations (it is a null
operator) and when we regulate the theory, say with Pauli-Villars regularization, 〈O〉s
becomes local (and equal to the anomaly, 〈O〉 = A) as the regulator is removed. Working
out the Ward identity starting from (3.3.7) one finds,

∂µ〈J µ〉s − 〈O〉s = 0. (3.3.8)

In this form the Ward identity appears non-anomalous and one may be tempted to con-
clude that the theory would be non-anomalous if we include the coupling to the null
operator O. Of course, this is just an illusion: (3.3.8) is equal to (3.3.2). The only thing
that happened was that we moved the anomaly from the rhs to the lhs and gave it a
different name.

Fields like Φ are called ‘compensators’ because they may be used to restore or com-
pensate for broken symmetries, or ‘gauge-away’ fields because one may set them to zero
using gauge transformations. Indeed one may use (3.3.5) to set Φ to zero (and thus also
establishing that Z ′ is equivalent to Z ). Invariance of the partition function under gauge
transformations does not by itself imply absence of anomalies, if gauge away fields are
present. One must first set to zero all gauge away fields and then check invariance of the
partition function. Similarly, one must set all compensators to zero prior to working out
the form of the Ward identities. The discussion of compensators is important in super-
symmetric theories. Often, supersymmetric Lagrangians have a superspace formulation.
Superspace though, is an enlarged space with more degrees of freedom, so if we wish to
retrieve the action of the microscopic theory we need to choose a specific gauge (a usual
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choice is the WZ gauge) by eliminating some of the gauge away fields. A superspace
analysis that shows no supersymmetry anomalies, does not automatically result in a non
anomalous supersymmetric microscopic (physical) theory. One has to be careful about
how the compensators may affect the result, similar to the above analysis.



CHAPTER 4

Free and massless Wess-Zumino model

4.1 Symmetries and the conformal multiplet of conserved
currents

In this chapter we consider the free and massless WZ model. We begin with a description
of the flat space theory and its classical symmetries, before discussing its coupling to
background conformal supergravity. We also derive the classical Ward identities for every
correlator involved in the computation of the Q-supersymmetry anomaly of the conformal
WZ model. In chapter 6 we will identify a suitable Pauli-Villars regulator, which we use
for regulating the 1-loop diagrams. In this chapter we follow closely the relevant discussion
of [81].

An off-shell N = 1 chiral multiplet consists of a complex scalar, φ, a Grassmann-valued
Majorana spinor, χ, and an auxiliary complex scalar, F . The free and massless WZ model
for a chiral multiplet in Minkowski space is described by the Lagrangian

L̂WZ = −∂µφ∗∂µφ−
1
2 χ̄
/∂χ+ F ∗F, (4.1.1)

where a hat ·̂ indicates quantities evaluated in a Minkowski background. It will be omitted
later on when referring to the corresponding quantities in the presence of background
supergravity fields.

43
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4.1.1 Propagators

The momentum space propagators following from the Lagrangian (4.1.1) are

φ(p)φ∗(p′) = φ∗(p′)φ(p) = (2π)4δ(p+ p′)Pφ(p),

χ(p)χ̄(p′) = −χ̄(p′)χ(p) = (2π)4δ(p+ p′)Pχ(p),

F (p)F ∗(p′) = F ∗(p′)F (p) = (2π)4δ(p+ p′)PF (p), (4.1.2)

where
Pφ(p) = − i

p2 , Pχ(p) = − /p

p2 , PF (p) = i. (4.1.3)

4.1.2 Symmetries

The free and massless Wess-Zumino model is classically invariant under the superconformal
group SU(2, 2|1) [88–91]. An infinitesimal SU(2, 2|1) transformation can be parameterized
as

δ̂ = aµPµ + `µνM
µν + bµKµ + λD + θ0R+ ε̄0Q+ η̄0S, (4.1.4)

where Pµ, Mµν , Kµ, D, R, Q and S are respectively the generators of spacetime trans-
lations, Lorentz, special conformal, scaling, R-symmetry, Q- and S-supersymmetry trans-
formations. The zero subscript indicates the flat space version of the parameters. The
action of these generators on the chiral multiplet fields is given in table 4.1.1.

Pµ δaφ = aµ∂µφ, δaχL = aµ∂µχL, δaF = aµ∂µF

Kµ δbφ = bµ
(
(2xµxν − ηµνx2)∂νφ+ 2xµφ

)
δbχL = bµ

(
(2xµxν − ηµνx2)∂νχL + 3xµχL + xνγ

µνχL
)

δbF = bµ
(
(2xµxν − ηµνx2)∂νF + 4xµF

)
Mµν δ`φ = `µνx

[µ∂ν]φ, δ`χL = `µν
(
x[µ∂ν]χL + 1

4γ
µνχL

)
, δ`F = `µνx

[µ∂ν]F

R δθ0φ = iqRθ0φ, δθ0χL = i(qR + 1)θ0χL, δθ0F = i(qR + 2)θ0F

D δλφ = λ(xµ∂µ + 1)φ, δλχL = λ
(
xµ∂µ + 3

2
)
χL, δλF = λ(xµ∂µ + 2)F

Q δε0φ =
√

2
2 ε̄0LχL, δε0χL =

√
2

2 (/∂φε0R + Fε0L), δε0F =
√

2
2 ε̄0R/∂χL

S δη0φ = −
√

2
2 x

µη̄0RγµχL, δη0χL =
√

2
2 (xµ/∂φγµη0L + xµFγµη0R + 2φη0L)

δη0F = −
√

2
2 x

µη̄0Lγµ/∂χL

Table 4.1.1: SU(2, 2|1) action on a chiral multiplet of R-charge qR. Superconformal in-
variance requires qR = −2

3 .
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4.1.3 Algebra

The SU(2, 2|1) generators satisfy the algebra

[D,Pµ] = −Pµ, [D,Kµ] = Kµ, [Pµ,Kν ] = 2(ηµνD − 2Mµν),

[Mµν , Pρ] = ησ[µην]ρP
σ, [Mµν ,Kρ] = ησ[µην]ρK

σ,

[Mµν ,Mρσ] = ηλ[µην]ρM
λ
σ − ηλ[µην]σM

λ
ρ,

{Qα, Q̄β} = 1
2(γµ)αβPµ, {Sα, S̄β} = −1

2(γµ)αβKµ,

{Qα, S̄β} = 1
2δ

α
βD −

1
2(γµν)αβMµν + 3i

4 (γ5)αβR,

[Pµ, S] = −γµQ, [Kµ, Q] = γµS, [Mµν , Q] = −1
4γµνQ, [Mµν , S] = −1

4γµνS,

[D,Q] = −1
2Q, [D,S] = 1

2S, [R,Q] = iγ5Q, [R,S] = −iγ5S. (4.1.5)

4.1.4 Noether currents and seagull operators

Noether’s theorem for SU(2, 2|1) invariance results in only three independent current op-
erators, corresponding to the conserved currents associated with translations, R-symmetry
and Q-supersymmetry transformations. They comprise the conformal current multiplet
of the massless WZ model and are given respectively by

T̂ µν = 2∂(µφ∗∂ν)φ+ 1
2 χ̄γ

µ∂νχ−
1
8∂ρ

(
χ̄γνγ

ρµχ+ χ̄γµγρνχ− χ̄γργµνχ
)

− 1
3
(
∂µ∂ν − ηµν ∂2)(φ∗φ)− ηµν

(
∂ρφ

∗∂ρφ+ 1
2 χ̄
/∂χ− F ∗F

)
,

Ĵ µ = 2i
3
(
φ∗∂µφ− φ∂µφ∗ + 1

4 χ̄γ
µγ5χ

)
,

Q̂µ =
√

2
2 (/∂φγµχR + /∂φ∗γµχL) +

√
2

3 γµν∂ν(φχR + φ∗χL). (4.1.6)

The currents (4.1.6) satisfy the on-shell conservation laws

∂µT̂ µν = 0, ∂µĴ µ = 0, ∂µQ̂µ = 0, (4.1.7)

while Lorentz, scale and S-supersymmetry invariance require that

T̂[µν] = 0, T̂ µµ = 0, γµQ̂µ = 0. (4.1.8)

The conventions that we follow for symmetrizing and antisymmetrizing the indices of a
tensor Ta1...an , i.e. T(a1...an) and T[a1...an] respectively, are given in (A.0.1).

The stress tensor and the supercurrent in (4.1.6) include suitable improvement terms
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that do not affect the conservation equations (4.1.7), but ensure that the algebraic con-
straints (4.1.8) hold on-shell [33]. In particular the divergenceless and traceless term
−1

8∂ρ
(
χ̄γνγ

ρµχ + χ̄γµγρνχ − χ̄γργµνχ
)
of the stress tensor is required for Lorentz in-

variance, while the divergenceless terms −1
3
(
∂µ∂ν − ηµν ∂2)(φ∗φ) of the stress tensor and

√
2

3 γ
µν∂ν(φχR + φ∗χL) of the supercurrent are required for scale and S-supersymmetry

invariance respectively.

It is convenient to introduce here some well defined operators of this theory, the ‘seagull
operators’,

ŝ(1|0) = φ∗φ, ŝµ(2|1) = χ̄γµγ5χ, ŝ(3| 12 ) = i(φ∗χL − φχR), ŝµ(4|1) = φ∂µφ∗.

(4.1.9)
As we will see later when we couple the WZ model to conformal background supergravity,
the functional derivatives of the conserved currents with respect to the background sources
can be expressed only in terms of these seagull operators (C.0.4). Moreover, we also need
the following ‘null operators’

n̂µν(1|2) = χ̄(γµν − ηµν)γ5/∂χ, n̂µν(2|2) = χ̄(γµν − ηµν)/∂χ, n̂(3| 12 ) = i(φ∗/∂χL − φ/∂χR),

n̂(4|0) = F ∗φ, n̂µ(5|1) = F ∗∂µφ, n̂(6| 12 ) = i(F ∗χL − FχR), (4.1.10)

which are proportional to the classical equations of motion. The first entry in the subscript
(·|·) simply labels the operator, while the second entry indicates its spin. Both seagull
and null operators are important in the derivation of the Ward identities with operator
insertions in the path integral formalism. The null operators, even though they vanish
on-shell, can give a non zero result when put inside correlators. This can be understood
heuristically as follows. Consider a null operator inside a 3-point function. This 3-point
function can be written in momentum space as a sum of non zero two-point functions,
since the terms (of the null operator) proportional to the equations of motion will cancel
one propagator in the triangle Feynman diagram. Formally one can find these expressions
using the Schwinger-Dyson equations [92, 93], which we present in more detail in the
appendix C.

4.1.5 Symmetry transformations of the Noether currents and seagull
operators

We are interested in the Ward identities of correlation functions derived using (2.2.8). So
we need to evaluate the transformations of the currents and seagull operators with respect
to the symmetries of table 4.1.1. In our analysis we only care about symmetries which
are explicitly broken by the PV regulator we use later. These are the original Q- and
S-supersymmetry of conformal supergravity and the R-symmetry. Note here that the PV
regulator satisfies by construction the Q+S supersymmetry of old minimal supergravity.
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All the other symmetries such as Lorentz symmetry and diffeomorphisms are manifestly
respected by the regulator, thus there is no need to examine them. We just have to
be careful to not violate them when we introduce counterterms to restore the broken
symmetries.

The R-symmetry transformations of the currents and seagull operators take the form

δθ0 T̂ µν = (ηµρησν + ηµσηρν − ηµν ηρσ)Ĵρ∂σθ0 −
i

6 χ̄γνγ5χ∂
µθ0,

δθ0Ĵ µ = 8
9φ
∗φ∂µθ0,

δθ0Q̂µ = iθ0γ5Q̂µ + i
√

2
3 ∂µθ0(φ∗χL − φχR),

δθ0 ŝ(3| 12 ) = iθ0γ5i (φ∗χL − φχR) , (4.1.11)

which can be written in terms of the seagull operators (4.1.9) as follows

δθ0 T̂ µν = (ηµρησν + ηµσηρν − ηµν ηρσ)Ĵρ∂σθ0 −
i

6 ŝν(2|1)∂
µθ0,

δθ0Ĵ µ = 8
9 ŝ(1|0) ∂

µθ0,

δθ0Q̂µ = iθ0γ5Q̂µ +
√

2
3 ∂µθ0 ŝ(3| 12 ),

δθ0 ŝ(3| 12 ) = iθ0γ5 ŝ(3| 12 ). (4.1.12)

Similarly, the Q-supersymmetry transformations of the operators we need are

δε0Ĵ µ = − iε̄0γ5Q̂µ +
√

2i
3 (φ∗χ̄L − φχ̄R)∂µε0 +

√
2i
3 ε̄0γ

µ(φ∗/∂χL − φ/∂χR)

+
√

2i
6 ε̄0γ

µ(F ∗χL − FχR),

δε0Q̂µ = 1
2 T̂

µ
νγ

νε0 + i

8∂ρ
[
Ĵσ(iεµνρσγ5 + 2ηµνηρσ − 2ηρνηµσ)γνγ5ε0

]
− 3

8ε
µνρσĴσγν∂ρε0

+ 1
8(χ̄γσγ5χ)γσγ5∂

µε0 + 1
6∂ρ(φφ

∗)(iεµνρσγ5 + ηµνηρσ − ηµρηνσ)γν∂σε0

+ 1
8
(
χ̄(γµν − ηµν)γ5/∂χ

)
γνγ5ε0 −

1
8
(
χ̄(γµν − ηµν)/∂χ

)
γνε0

+ 1
2(F ∗/∂φγµε0R + F /∂φ∗γµε0L) + 1

3γ
µν∂ν(φF ∗ε0R + φ∗Fε0L),

δε0 ŝ(1|0) = −i
√

2
2 ε̄0γ5i (φ∗χL − φχR)

δε0
ˆ̄s(3| 12 ) = ε̄0

(
−i
√

2
4 γσγ5∂σ(φ∗φ)− 3

√
2

8 γσĴ σ + i
3
√

2
16 γσχ̄γ

σγ5χ

)
. (4.1.13)
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Using the seagull and null operators we can write the above as

δε0Ĵ µ = − iε̄0γ5Q̂µ +
√

2
3

ˆ̄s(3| 12 )∂
µε0 +

√
2

3 ε̄0γ
µ n̂(3| 12 ) +

√
2

6 ε̄0γ
µ n̂(6| 12 ),

δε0Q̂µ = 1
2 T̂

µ
νγ

νε0 + i

8∂ρ
[
Ĵσ(iεµνρσγ5 + 2ηµνηρσ − 2ηρνηµσ)γνγ5ε0

]
− 3

8ε
µνρσĴσγν∂ρε0

+ 1
8 ŝσ(2|1)γ

σγ5∂
µε0 + 1

6∂ρ(ŝ(1|0))(iεµνρσγ5 + ηµνηρσ − ηµρηνσ)γν∂σε0

+ 1
8 n̂

µν
(1|2)γνγ5ε0 −

1
8 n̂

µν
(2|2)γνε0

+ 1
2(n̂ρ(5|1)γργ

µε0R + n̂ρ∗(5|1)γργ
µε0L) + 1

3γ
µν∂ν(n̂(4|0)ε0R + n̂∗(4|0)ε0L),

δε0 ŝ(1|0) = −i
√

2
2 ε̄0γ5 ŝ(3| 12 )

δε0
ˆ̄s(3| 12 ) = ε̄0

(
−i
√

2
4 γσγ5∂σ(ŝ(1|0))−

3
√

2
8 γσĴ σ + i

3
√

2
16 γσ ŝ

σ
(2|1)

)
. (4.1.14)

Let us make a comment here regarding the Q-supersymmetry transformation of the R-
current. The zero on-shell term (φ∗/∂χL − φ/∂χR) is proportional to the gamma trace of
the supercurrent, so the variation of the R-current can be written in the following form

δε0Ĵ µ = − iε̄0γ5Q̂µ +
√

2i
3 (φ∗χ̄L − φχ̄R)∂µε0 + i

3 ε̄0γ5γ
µγκQ̂κ +

√
2i
6 ε̄0γ

µ(F ∗χL − FχR).

(4.1.15)

According to (2.2.8), at the rhs of the Q-superymmetry Ward identity of the 4-point
function <QQ̄JJ > exist the correlators <δε0J Q̄J > and <δε0Q̄J J >. Depending on
which form we use for δε0Ĵ µ, i.e. (4.1.13) or (4.1.15), the correlators of the rhs will have
a different form. In particular, using (4.1.13), the Q-supersymmetry Ward identity will
take the schematic form

∂ <QQ̄JJ>=<δε0Q̄J J> + <δε0J Q̄J> ... ≡<NQJJ> + <NJQ̄J> +... (4.1.16)

while using (4.1.15) we get

∂ <QQ̄JJ>=<δε0Q̄J J> + <δε0J Q̄J> ... ≡<NQJJ> +γ <QQ̄J> +... (4.1.17)

NQ and NJ denote the zero on-shell terms of the Q-supersymmetry transformations of
the supercurrent and the R-current respectively, that do not depend on the auxiliary
field F. The dots ... denote correlators that are not important for the argument under
consideration. As we have already mentioned, correlators that include null (vanishing
on-shell) operators are proportional to lower order correlators according to the Schwinger-
Dyson equations (C.0.7). Thus, the 3-point functions <NQJJ > and <NJQ̄J > are
equal to a sum of 2-point functions. Similarly, γ <QQ̄J > of (4.1.17) is proportional
to a sum of 2-point correlators, as a consequence of the S-supersymmetry Ward identity
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of <QQ̄J >. Of course, from a computational point of view the rhs of the two above
equations are identical, we just grouped the integrals in a different way. The advantage
of the symmetry variations (4.1.13), hence (4.1.16), is that it makes easier to reproduce
the Q-supersymmetry identity of <QQ̄JJ > that we get from conformal supergravity
(4.2.16). In particular, the correlators <NQJJ > and <NJQ̄J > combine in a way
that help us distinguish the 2-point correlators of conserved currents from the 2-point
seagull correlators of (4.2.16). On the contrary, if one uses the form (4.1.17) it is not
straightforward how to group the 2-point functions in a way that the identity of conformal
supergravity is reproduced. The advantage of (4.1.15) though, is that it makes obvious
how the introduction of a massive regulator violates Q-supersymmetry. In the massless
theory, the term i

3 ε̄0γ5γ
µγκQ̂κ vanishes on-shell. As we will see in the next chapter, this

is not the case in the presence of a non zero mass.

Finally, the S-supersymmetry transformations of the R-current and of the supercurrent
are

δη0Ĵ µ = (δε0=xµγµη0 + δ̃η0)Ĵ µ, δη0Q̂µ = (δε0=xκγκη0 + δ̃η0)Q̂µ, (4.1.18)

where δε0=xκγκη0 denotes a Q-supersymmetry transformation with parameter ε0 = xκγκη0

and

δ̃η0Ĵ µ = i
√

2
3 η̄0γ

µ(φ∗χL − φχR),

δ̃η0Q̂µ = 2
3γ

µν∂ν(φ∗φη0) + (φ/∂φ∗γµη0L + φ∗/∂φγµη0R). (4.1.19)

4.2 Ward identities in momentum space

In this section we present the classical Ward identities for all correlators of interest. We
find it more convenient to write them in momentum space, since in the end we are going
to compute them using Feynman diagrams. One of the main goals is to show that the
original Q-supersymmetry Ward identity of the correlator <QQ̄JJ > in the conformal
WZ model is anomalous. In this Ward identity there exists a number of lower order
correlation functions, such as <QQ̄J >, <T JJ >, <JJ >. It is important to fix these
correlators in a way that satisfy all their standard identities and anomalies, before going
to <QQ̄JJ>.

To be more specific, for a consistent calculation one has to know the exact renor-
malization scheme that is used for the lower order correlators in the Ward identities of
<QQ̄JJ >. We want to make sure that a non anomalous Q-supersymmetry, does not
mean for example a < T JJ > correlator with an anomaly in diffeomorphisms. There
is always this risk, when we go straight away to the computation of Ward identities of
higher order correlators without having fixed the theory in the lower order correlators
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first. We will see one such example in chapter 9, where we confirm the Q-supersymmetry
anomaly of <QQ̄JJ> using momentum routing regularization. A naive approach shows
that Q-supersymmetry is non anomalous. However, after a more careful consideration
we see that in order to prove this we need to use a <JJJ > correlator that does not
respect Bose symmetry, hence it is non consistent. By Bose symmetry, we mean that
<J µ(p1)J κ(p2)J λ(p3)> must be invariant under the exchange of the external momenta
p1, p2, p3 and the spacetime indices µ, κ, λ. The non Bose-symmetric Feynman diagram
<J µ(p1)J κ(p2)J λ(p3)>, yields different results when contracted with p1µ, p2κ or p3λ,
thus it does not reproduce the standard R-symmetry anomaly.

Since we want to examine the massless WZ model as an example of N = 1 supercon-
formal field theory, the Ward identities we present in this section are identical to the ones
we get after coupling the WZ model to conformal supergravity. To compute them, one
has to use the Ward identities at the level of 1-point functions of N = 1 conformal super-
gravity (B.1.1) which were derived in [71] and then further differentiate with respect to
the background sources of the conserved currents in order to derive the identities of higher
order correlation functions. As already mentioned in section (2.2) and also explained in
more detail in the appendix C, the Ward identities of a specific correlator differ when de-
rived with functional differentiation in the presence of sources and when we use operator
insertions in the path integral formalism. The functional derivative identities are a sum of
path integral identities. In the Ward identities that we write below, from the lower order
correlators such as <JJ > until the 4-point function <QQ̄JJ >, we group the terms
that form their own path integral Ward identities using different colours. In order to do
that one has to use (2.2.8), the symmetry transformations of the operators written in the
previous section and then perform a Fourier transform to go to momentum space. For
example, in (4.2.4),(4.2.5) the (sum of) black, blue and red terms are independently equal
to zero as a consequence of the path integral R-symmetry identity.

The aforementioned distinction of the terms that form their own path integral identities
-identities which are verified at the quantum level using Feynman diagrams- is useful when
one introduces the regulator to deal with the divergent quantities of the theory. The
regulator may classically break some of the symmetries of the initial theory, like the Pauli-
Villars regulator we introduce in chapter 6 violates R-symmetry and conformal invariance.
Using (2.2.8) and the modified symmetry transformations of the operators in the presence
of the regulator, one can easily identify and compute the contribution of the regulator
to each one of the original classical path integral Ward identities. In fact, following this
bottom-up approach we can find all the classical breaking (and potentially anomalous)
terms that arise after regularization without the need to know how the regulated theory
couples to background supergravity. Of course, one can follow the equivalent approach of
first coupling the regulated theory to background supergravity (for the PV regulator in
our case that would be old minimal supergravity), then derive the Ward identities of the
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regulated theory at the 1-point function level, compare them with the original identities
of conformal supergravity and deduce the breaking terms. We explain this approach in
detail in [81].

Finally, we should also note that we do not include anywhere 1-point functions. As we
will show later in the PV regulated theory, the 1-point functions of the Noether currents
are zero (see appendix D.2). There are some seagull operators though with non vanishing
1-point functions, such as <ŝ(1|0)> (D.2.4). These do not play any role in the computation
of anomalies. The correlators inside Ward identities include divergent and finite pieces.
The Ward identities must be satisfied independently in both parts. The 1-point functions
can contribute only in the divergent parts, since they are tadpole diagrams with no external
momentum inside the loop. The only parameter in these diagrams is the regulator that
encodes the infinities. On the contrary, the analysis of anomalies cares only about the
finite pieces of the correlators.

In this section we are always referring to the flat space operators, but we omit the
hat ·̂ , to simplify the notation. We also introduce the following quantities to simplify the
expressions

pij = pi + pj , pijk = pi + pj + pk. (4.2.1)

4.2.1 2-point functions

<JJ >

The classical R-symmetry Ward identity for the 2-point function <JJ > in momentum
space is given by

p3κ <J κ(p3)J λ(p4)>= 0. (4.2.2)

<QQ̄>

The classical Q- and S-supersymmetry Ward identities for the 2-point function <QQ̄>
are given by

p1µ <Qµ(p1)Q̄ν(p2)>= 0 , γµ <Qµ(p1)Q̄ν(p2)>= 0. (4.2.3)

4.2.2 3-point functions

<T JJ >

The 3-point function <T JJ > must satisfy Ward identities associated with diffeomor-
phisms, Lorentz, conformal and R-symmetry. Here we are interested only in the conformal
and R-symmetry identities, since these are the ones that are classically violated by the
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PV regulator of chapter 6. Diffeomorphisms and Lorentz symmetry are manifestly re-
spected by the regulator, thus they are valid in the quantum theory too. Dνξλ

3R and Dκλ
3D

denote the seagull correlators of the R-symmetry and conformal symmetry Ward identities
respectively.

R-symmetry

p3κ <J κ(p3)J λ(p4)T νξ(p1)> +Dνξλ
3R = 0 (4.2.4)

where

Dνξλ
3R = ipλ3

8
9 <s(1|0)(p34)T νξ(p1)>

+ i(ηνρησξ + ηνσηρξ − ηνξηρσ)p3σ <Jρ(p13)J λ(p4)> +1
6p

ν
3 <s

ξ
(2|1)(p13)J λ(p4)>

+ i(ηνλησξ + ηνσηλξ − ηνξηλσ)p3κ <Jσ(p14)J κ(p3)> +1
6η

νλp3κ <s
ξ
(2|1)(p14)J κ(p3)> .

(4.2.5)

The black terms form the classical path integral R-symmetry identity of
< J κ(p3)J λ(p4)T νξ(p1) >, while the blue and red terms are also independently equal
to zero due to R-symmetry.

Conformal symmetry

<T νν (p1)J κ(p3)J λ(p4)> +Dκλ
3D = 0 (4.2.6)

where

Dκλ
3D = −2i <J κ(p13)J λ(p4)> −2i <J λ(p14)J κ(p3)>

+ 1
6 <sκ(2|1)(p13)J λ(p4)> +1

6 <sλ(2|1)(p14)J κ(p3)> +8i
9 η

κλ <T νν (p1)s(1|0)(p34)> .

(4.2.7)

Similarly, the black terms comprise the conformal symmetry identity of
<T νν (p1)J κ(p3)J λ(p4)>, while the seagull correlator <T νν (p1)s(1|0)(p34)> vanishes too,
as a consequence of scale invariance.

<JJJ >

The classical R-symmetry Ward identity for the 3-point function <JJJ> in momentum
space is given by

p3κ <J κ(p3)J λ(p4)J σ(p1)>= −8i
9 p

λ
3 <s(1|0)(p34)J σ(p1)> −8i

9 p
σ
3 <s(1|0)(p31)J λ(p4)>
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− 16i
9 ησλp3κ <J κ(p3)s(1|0)(p14)> . (4.2.8)

<QQ̄J >

There are three Ward identities associated with <QQ̄J>, the ones related to R-symmetry,
Q- and S-supersymmetry, which are given below. The quantities Cνκ3Q, C

µν
3R and Cνκ3S denote

the seagull correlators in the Q-supersymmetry, R-symmetry and S-supersymmetry Ward
identities respectively.

Q-supersymmetry

p1µ <Qµ(p1)Q̄ν(p2)J κ(p3)> +Cνκ3Q

= ip2µB
νµσ <Jσ(p12)J κ(p3)> −γξ2 <T νξ(p12)J κ(p3)> −iγ5 <Qκ(p13)Q̄ν(p2)> (4.2.9)

where

Cνκ3Q = p1µ

(3i
8 ε

νξµσγξ <Jσ(p12)J κ(p3)> + i

8η
µνγσγ5 <sσ(2|1)(p12)J κ(p3)>

+ iηµκ
√

2
3 <s(3| 12 )(p13)Q̄ν(p2)> +iηνκ

√
2

3 <Qµ(p1)s̄(3| 12 )(p23)>

−p12σ

(1
6η

σνγµ − 1
6η

σµγν + i
1
6ε

νξµσγξγ5

)
<s(1|0)(p12)J κ(p3)>

)
(4.2.10)

and
Bνµσ = 1

4

(
−1

2ε
νξµσγξ + iγ5γ

µηνσ − iγ5γ
νηµσ

)
. (4.2.11)

(4.2.9) is a sum of two Q-supersymmetry path integral Ward identities. The black terms
form their own path integral Ward identity, while the blue term contracted with p1µ is
also classically zero.

R-symmetry

Terms of separate colour below, form their own path integral Ward identities. The black
terms comprise the classical R-symmetry Ward identity of <Qµ(p1)Q̄ν(p2)J κ(p3)> de-
rived using (2.2.8). The blue term contracted with p3κ is the R-symmetry identity (4.2.2).
Similarly, the red and purple terms contracted with p3κ are also classically zero.

p3κ <Qµ(p1)Q̄ν(p2)J κ(p3)> +Cµν3R

= iγ5 <Qµ(p13)Q̄ν(p2)> +i <Qµ(p1)Q̄ν(p23)> γ5 (4.2.12)
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where

Cµν3R = p3κ

(
iηµκ
√

2
3 <s(3| 12 )(p13)Q̄ν(p2)> +iηνκ

√
2

3 <Qµ(p1)s̄(3| 12 )(p23)>

+ 3i
8 ε

νξµσγξ <Jσ(p12)J κ(p3)> + i

8η
µνγσγ5 <sσ(2|1)(p12)J κ(p3)>

−p12σ

(1
6η

σνγµ − 1
6η

σµγν + i
1
6ε

νξµσγξγ5

)
<s(1|0)(p12)J κ(p3)>

)
. (4.2.13)

S-supersymmetry

− iγµ <Qµ(p1)Q̄ν(p2)J κ(p3)> +Cνκ3S = −3i
4 γ5 <J ν(p12)J κ(p3)> (4.2.14)

where

Cνκ3S = −iγµ
(
iηµκ
√

2
3 <s(3| 12 )(p13)Q̄ν(p2)> +iηνκ

√
2

3 <Qµ(p1)s̄(3| 12 )(p23)>
)

+ i

2γ
νγσp12σ <s(1|0)(p12)J κ(p3)> −2i

3 γ
νσp2σ <s(1|0)(p12)J κ(p3)>

+ 1
8γ

νγσγ5 <s
σ
(2|1)(p12)J κ(p3)> −3i

4 γ
σνγ5 <Jσ(p12)J κ(p3)> . (4.2.15)

The black and blue terms comprise the S-supersymmetry identities of
<Qµ(p1)Q̄ν(p2)J κ(p3)> and <Qµ(p1)s̄(3| 12 )(p23)> respectively.

4.2.3 4-point function

<QQ̄JJ >

Similarly to <QQ̄J >, there are three identities that <QQ̄JJ > should satisfy. The
quantities Cνκλ4Q , Cµνλ4R and Cνκλ4S denote all the seagull correlators in the Q-supersymmetry,
R-symmetry and S-supersymmetry Ward identities respectively. Again, terms of separate
colour form their own identities. In particular, the black terms comprise the path integral
Ward identities (2.2.8) of the 4-point function <QQ̄JJ >, while the coloured terms are
the path integral Ward identities of the seagull correlators. To make the expressions below
as compact as possible, we have not included terms that involve the correlator <s(1,0)J>,
which turns out to be zero in the PV regulated theory due to odd symmetry arguments
(D.3.13).

Q-supersymmetry

p1µ <Qµ(p1)Q̄ν(p2)J κ(p3)J λ(p4)> +Cνκλ4Q

= ip2µB
νµσ <Jσ(p12)J κ(p3)J λ(p4)> −γξ2 <T νξ(p12)J κ(p3)J λ(p4)>
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− iγ5 <Qκ(p13)Q̄ν(p2)J λ(p4)> −iγ5 <Qλ(p14)Q̄ν(p2)J κ(p3)>

+ γ5B
νκσ <Jσ(p123)J λ(p4)> +γ5B

νλσ <Jσ(p124)J κ(p3)> (4.2.16)

where

Cνκλ4Q ≡ p1µ

(3i
8 ε

νξµσγξ <Jσ(p12)J κ(p3)J λ(p4)> + i

8η
µνγσγ5 <sσ(2|1)(p12)J κ(p3)J λ(p4)>

+ iηµκ
√

2
3 <s(3| 12 )(p13)Q̄ν(p2)J λ(p4)> +iηµλ

√
2

3 <s(3| 12 )(p14)Q̄ν(p2)J κ(p3)>

+ i
8
9η

κλ <s(1|0)(p34)Qµ(p1)Q̄ν(p2)> +iηνκ
√

2
3 <Qµ(p1)s̄(3| 12 )(p23)J λ(p4)>

+ iηνλ
√

2
3 <Qµ(p1)s̄(3| 12 )(p24)J κ(p3)> +iηµκηνλ 2

9 <s(3| 12 )(p13)s̄(3| 12 )(p24)>

+ iηµληνκ
2
9 <s(3| 12 )(p14)s̄(3| 12 )(p23)>

− p12σ

(1
6η

σνγµ − 1
6η

σµγν − i16ε
νξµσγξγ5

)
i
8
9η

κλ <s(1|0)(p12)s(1|0)(p34)>

−p12σ

(1
6η

σνγµ − 1
6η

σµγν − i16ε
νξµσγξγ5

)
<s(1|0)(p12)J κ(p3)J λ(p4)>

)
+ i

8
9η

κλγξ
2 <T νξ(p12)s(1|0)(p34)> −4

√
2

9 ηκλγ5 <s(3| 12 )(p134)Q̄ν(p2)>

− 2
√

2
9 ηκλγ5 <s(3| 12 )(p134)Q̄ν(p2)> −ηνλ

√
2

3 γ5 <Qκ(p13)s̄(3| 12 )(p24)>

− ηνκ
√

2
3 γ5 <Qλ(p14)s̄(3| 12 )(p23)> + 1

24η
νκγσ <sσ(2|1)(p123)J λ(p4)>

+ 1
24η

νλγσ <sσ(2|1)(p124)J κ(p3)>

+ 1
12η

νκγσ <sσ(2|1)(p123)J λ(p4)> + 1
12η

νλγσ <sσ(2|1)(p124)J κ(p3)>

− 1
6η

νκγσ <(s∗σ(4|1) − sσ(4|1))(p123)J λ(p4)> −1
6η

νλγσ <(s∗σ(4|1) − sσ(4|1))(p124)J κ(p3)>

− 1
6η

νκγσ <(s∗σ(4|1) − sσ(4|1))(p123)J λ(p4)> −1
6η

νλγσ <(s∗σ(4|1) − sσ(4|1))(p124)J κ(p3)>

−
(
−3

8γξγ5ε
σξνκ + i

2η
κσγν − i

2η
νσγκ

)
<Jσ(p123)J λ(p4)>

−
(
−3

8γξγ5ε
σξνλ + i

2η
λσγν − i

2η
νσγλ

)
<Jσ(p124)J κ(p3)> . (4.2.17)

R-symmetry

p3κ <Qµ(p1)Q̄ν(p2)J κ(p3)J λ(p4)> +Cµνλ4R

= iγ5 <Qµ(p13)Q̄ν(p2)J λ(p4)> +i <Qµ(p1)Q̄ν(p23)J λ(p4)> γ5 (4.2.18)

where

Cµνλ4R ≡ p3κ

(3i
8 ε

νξµσγξ <Jσ(p12)J κ(p3)J λ(p4)> + i

8η
µνγσγ5 <sσ(2|1)(p12)J κ(p3)J λ(p4)>
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+ iηµκ
√

2
3 <s(3| 12 )(p13)Q̄ν(p2)J λ(p4)> +iηµλ

√
2

3 <s(3| 12 )(p14)Q̄ν(p2)J κ(p3)>

+ i
8
9η

κλ <s(1|0)(p34)Qµ(p1)Q̄ν(p2)> +iηνκ
√

2
3 <Qµ(p1)s̄(3| 12 )(p23)J λ(p4)>

+ iηνλ
√

2
3 <Qµ(p1)s̄(3| 12 )(p24)J κ(p3)> +iηµκηνλ 2

9 <s(3| 12 )(p13)s̄(3| 12 )(p24)>

+ iηµληνκ
2
9 <s(3| 12 )(p14)s̄(3| 12 )(p23)>

− p12σ

(1
6η

σνγµ − 1
6η

σµγν − i16ε
νξµσγξγ5

)
i
8
9η

κλ <s(1|0)(p12)s(1|0)(p34)>

−p12σ

(1
6η

σνγµ − 1
6η

σµγν − i16ε
νξµσγξγ5

)
<s(1|0)(p12)J κ(p3)J λ(p4)>

)
+ ηνλγ5

√
2

3 <Qµ(p13)s̄(3| 12 )(p24)) + ηνλ
√

2
3 <Qµ(p1)s̄(3| 12 )(p234))γ5

+ ηµλγ5

√
2

3 <s(3| 12 )(p123)Q̄ν(p2)) + ηµλ
√

2
3 <s(3| 12 )(p14)Q̄ν(p23))γ5 (4.2.19)

S-supersymmetry

− iγµ <Qµ(p1)Q̄ν(p2)J κ(p3)J λ(p4)> +Cνκλ4S = −3i
4 γ5 <J ν(p12)J κ(p3)J λ(p4)>

(4.2.20)

where

Cνκλ4S = −iγµ
(3i

8 ε
νξµσγξ <Jσ(p12)J κ(p3)J λ(p4)> + i

8η
µνγσγ5 <sσ(2|1)(p12)J κ(p3)J λ(p4)>

+ iηµκ
√

2
3 <s(3| 12 )(p13)Q̄ν(p2)J λ(p4)> +iηµλ

√
2

3 <s(3| 12 )(p14)Q̄ν(p2)J κ(p3)>

+ i
8
9η

κλ <s(1|0)(p34)Qµ(p1)Q̄ν(p2)> +iηνκ
√

2
3 <Qµ(p1)s̄(3| 12 )(p23)J λ(p4)>

+ iηνλ
√

2
3 <Qµ(p1)s̄(3| 12 )(p24)J κ(p3)>

+ iηµκηνλ
2
9 <s(3| 12 )(p13)s̄(3| 12 )(p24)> +iηµληνκ 2

9 <s(3| 12 )(p14)s̄(3| 12 )(p23)>

− p12σ

(1
6η

σνγµ − 1
6η

σµγν − i16ε
νξµσγξγ5

)
i
8
9η

κλ <s(1|0)(p12)s(1|0)(p34)>

−p12σ

(1
6η

σνγµ − 1
6η

σµγν − i16ε
νξµσγξγ5

)
<s(1|0)(p12)J κ(p3)J λ(p4)>

)
(4.2.21)

4.3 Coupling to background conformal supergravity

Coupling a supersymmetric field theory to off-shell background supergravity allows for
a simpler and universal description of the global symmetries and their physical conse-
quences, without reference to a specific model. It also facilitates powerful computational
techniques, such as supersymmetric localization [94]. In order to couple a theory to back-
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ground supergravity we need to gauge the global symmetries by turning on appropriate
gauge fields – the supergravity fields – and suppressing their kinetic terms [95]. The local
symmetry transformations of off-shell supergravity are universal, which enables the gen-
eral derivation of the Ward identities and their quantum anomalies, by solving the WZ
consistency conditions.

Classically superconformal theories, such as the massless WZ model, can be coupled
to conformal supergravity, which facilitates an alternative, more efficient formulation of
the Noether procedure. For example, the conserved currents that couple to background
supergravity are those satisfying the algebraic constraints (4.1.8), and so this formulation
of the Noether procedure leads directly to the improved currents. However, massive theo-
ries cannot be consistently coupled to conformal supergravity. Thus, it is not possible to
quantize a classically superconformal theory on a conformal supergravity background re-
specting superconformal symmetry, since any regulator necessarily introduces a mass scale.
A suitable background supergravity for massive theories is old minimal supergravity [96],
which we will discuss briefly in the appendix G. In the remaining part of this section,
we review the coupling of the massless WZ model to background conformal supergravity,
focusing on the symmetries of the classical theory.

4.3.1 Symmetries of conformal supergravity

The field content of N = 1 conformal supergravity [97–100] consists of the vierbein, eaµ,
the graviphoton, Aµ, and the gravitino, ψµ. Its local symmetries are diffeomorphisms
with infinitesimal parameter ξµ(x), Weyl transformations σ(x), local Lorentz transforma-
tions λab(x), axial U(1) gauge transformations θ(x), as well as Q- and S-supersymmetry,
parametrized respectively by the local spinors ε(x) and η(x). These local symmetries act
on the fields of conformal supergravity as

δeaµ = ξλ∂λe
a
µ + eaλ∂µξ

λ − λabebµ + σeaµ −
1
2ψµγ

aε,

δψµ = ξλ∂λψµ + ψλ∂µξ
λ − 1

4λabγ
abψµ + 1

2σψµ +Dµε− γµη − iγ5θψµ,

δAµ = ξλ∂λAµ +Aλ∂µξ
λ + 3i

4 φµγ5ε−
3i
4 ψµγ5η + ∂µθ, (4.3.1)

where the covariant derivatives of the spinor parameters, ε and η, are given by

Dµε ≡
(
∂µ + 1

4ωµ
ab(e, ψ)γab + iγ5Aµ

)
ε ≡

(
Dµ + iγ5Aµ

)
ε,

Dµη ≡
(
∂µ + 1

2ωµ
ab(e, ψ)γab − iγ5Aµ

)
η ≡

(
Dµ − iγ5Aµ

)
η, (4.3.2)

and the spin connection, ωµab(e, ψ),

ωµab(e, ψ) ≡ ωµab(e) + 1
4
(
ψ̄aγµψb + ψ̄µγaψb − ψ̄µγbψa

)
. (4.3.3)
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ωµab(e) denotes the unique torsion-free part. These transformations close off-shell.

4.3.2 Wess-Zumino model coupled to conformal supergravity

Up to quadratic terms in the gravitino, the coupling of the massless WZ model to conformal
supergravity takes the form [88,101,102]

e−1LWZ = −Dµφ
∗Dµφ− 1

2 χ̄
/Dχ+ F ∗F − 1

6φ
∗φ R[ω(e)]

+
√

2
2 ψ̄µ(/∂φγµχR + /∂φ∗γµχL)−

√
2

3 (φχ̄R + φ∗χ̄L)γµνDµψν + i
√

2
3 Aµψ̄

µ(φχR − φ∗χL)

− 1
6∂

µ(φ∗φ)ψ̄νγνψµ −
i

6φ
∗φ εµνρσψ̄µγ5γνDρψσ (4.3.4)

+ i

8ε
µνρσψ̄µγνψρ

(
φ∗∂σφ− φ∂σφ∗ + 1

4 χ̄γσγ5χ
)
− 1

16(χ̄γ5γ
νχ)(ψ̄µγ5γνψ

µ) +O(ψ3),

where the covariant derivatives act on the chiral multiplet fields as

Dµφ =
(
∂µ + 2i

3 Aµ
)
φ, Dµχ =

(
∂µ + 1

4ωµ
ab(e, ψ)γab −

i

3γ5Aµ
)
χ. (4.3.5)

Under the local symmetries of N = 1 conformal supergravity, the WZ fields transform as

δφ = ξµ∂µφ− σφ−
2i
3 θφ+

√
2

2 ε̄LχL, (4.3.6)

δχL = ξµ∂µχL −
3
2σχL + i

3θχL −
1
4λabγ

abχL +
√

2
2
(
γµ
(
Dµφ−

√
2

2 ψ̄µLχL
)
εR + FεL + 2φηL

)
,

δF = ξµ∂µF − 2σF + 4i
3 θF + 1

2 ε̄Rγ
µ
(√

2DµχL − γν
(
Dνφ−

√
2

2 ψ̄νLχL
)
ψµR − FψµL − 2φφµL

)
,

where the gravitino fieldstrength, φµ is given by

φµ ≡
1
3γ

ν
(
Dνψµ −Dµψν −

i

2γ5ενµ
ρσDρψσ

)
= −1

6
(
4δ[ρ
µ δ

σ]
ν + iγ5εµν

ρσ)γνDρψσ. (4.3.7)

∇µ denotes the Levi-Civita connection, whileDµ stands for the spinor covariant derivative,
which acts on the gravitino and its fieldstrength as

Dµψν =
(
∂µ + 1

4ωµ
ab(e, ψ)γab + iγ5Aµ

)
ψν − Γρµνψρ ≡

(
Dµ + iγ5Aµ

)
ψν ,

Dµφν =
(
∂µ + 1

4ωµ
ab(e, ψ)γab − iγ5Aµ

)
φν − Γρµνφρ =

(
Dµ − iγ5Aµ

)
φν . (4.3.8)

Together with the transformations of the supergravity fields in (4.3.1), the above trans-
formations leave the Lagrangian (4.3.4) invariant, up to a total derivative term.

The variation of the WZ Lagrangian (4.3.4) with respect to the background supergrav-



4.3. Coupling to background conformal supergravity 59

ity fields determines the corresponding current operators. This gives

T µa = 2D(µφ∗Da)φ+ 1
2 χ̄γ

µDaχ−
1
8∇ρ

(
χ̄γaγ

ρµχ+ χ̄γµγρaχ− χ̄γργµaχ
)

+ 1
3e

ν
a

(
Rµν −∇µ∇ν + δµν�

)
(φφ∗)− eµa

(
Dνφ

∗Dνφ+ 1
2 χ̄

/Dχ− FF ∗ + 1
6φφ

∗R
)

+O(ψ),

J µ = 2i
3
(
φ∗Dµφ− φDµφ∗ + 1

4 χ̄γ
µγ5χ+

√
2

2 ψ̄µ(φχR − φ∗χL)
)
,

Qµ =
√

2
2 (/∂φγµχR + /∂φ∗γµχL) +

√
2

3 γµνDν(φχR + φ∗χL) + i
√

2
3 Aµ(φχR − φ∗χL)

− 1
3γ

[µψν∂
ν](φφ∗)− i

6ε
µνρσ(2φ∗φ γ5γνDρψσ + ∂ρ(φ∗φ)γ5γνψσ

)
+ i

4ε
µνρσγνψρ

(
φ∗∂σφ− φ∂σφ∗ + 1

4 χ̄γσγ5χ
)
− 1

8γ5γνψ
µ(χ̄γ5γ

νχ) +O(ψ2). (4.3.9)

Notice that the expression for the R-current is exact to all orders in the gravitino, since
the qubic and quartic terms in the gravitino in the WZ action do not involve the gauge
field, Aµ. The flat space limit of the currents (4.3.9) coincides with the improved Noether
currents (4.1.6).

Using now the equations of motion it can be shown that the currents (4.3.9) satisfy the
following classical equations

eaµ∇νT νa +∇ν(ψ̄µQν)− ψ̄ν
←−
DµQν − FµνJ ν = 0,

∇µJ µ + iψ̄µγ5Qµ = 0, DµQµ −
1
2γ

aψµT µa −
3i
4 γ5φµJ µ = 0,

eaµT µa + 1
2 ψ̄µQ

µ = 0, eµ[aT
µ
b] + 1

4 ψ̄µγabQ
µ = 0, γµQµ −

3i
4 γ5ψµJ µ = 0. (4.3.10)

These generalize the flat space conservation equations (4.1.7) and algebraic constraints
(4.1.8) to a general supergravity background.

If we now consider the above expressions as quantum equations, i.e. as 1-point functions
in the presence of background sources, we can easily compute the Ward identities of higher
order correlators by taking the appropriate functional derivatives. To find for example the
flat space R-symmetry Ward identity for the 〈T JJ 〉 correlator, we have to take two
derivatives in the first equation of the second line of (4.3.10), one with respect to the
vierbein eaµ, and one with respect to the gauge field Aµ. Then we take the limit where
the background sources go to zero. It is straightforward to show that the Ward identity
of 〈T JJ 〉 derived with functional differentiation coincides up to seagull correlators with
the one computed using operator insertions (4.2.4). Of course, both identities should
be exactly the same. In particular, the functional derivatives of the conserved currents
with respect to the sources, such as δJ µ

δAρ
, contain all the seagull terms of (4.2.4). In the

appendix C, we present a more detailed analysis on the difference between the identities
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derived through functional differentiation versus operator insertions.

4.4 Consistency conditions

In this section, we also omit the hat ·̂ in the flat space operators to simplify the notation.

4.4.1 Wess-Zumino consistency conditions

The structure of the Q-supersymmetry variation of the supercurrent (4.1.13), implies the
possibility of an anomalous Q-supersymmetry Ward identity for the correlator <QQ̄JJ>.
According to (2.2.8), on the rhs of the aforementioned identity exists the 3-point function
<δε0Q̄J J >, which among other contains the anomalous <JJJ > correlator (4.2.16).
Similarly we may anticipate anomalies in the identities of the <QQ̄T T > and <QQ̄T J>
correlators due to the anomalous <J T T > of the rhs, where T is the stress tensor. The
relevant Q-supersymmetry identities of these correlators can be written in a schematic
form as

∂ <QQ̄T J>=<δε0Q̄T J> +... ≡<T T J> + <J T J> +... (4.4.1)

and
∂ <QQ̄T T >=<δε0Q̄T T > +... ≡<T T T > + <J T T > +... (4.4.2)

One has to do the explicit loop computations to see whether the anomalous lower order
correlators affect the Q-supersymmetry identities of the 4-point functions. In this thesis we
focus only on the loop computation of <QQ̄JJ>. A complete and consistent analysis of
<QQ̄T T > and <QQ̄T J>, demands the regularization of very badly divergent correlators
such as <T T >. The Pauli-Villars regulator we are using is not enough to deal with them,
see appendix D. We need to include more regulating PV fields, which will make the
computation quite tedious.

The above heuristic arguments about how the R-symmetry anomaly of the WZ model
can induce an anomaly in supersymmetry, transform into a concrete proof when the theory
is coupled to conformal supergravity, namely the Wess-Zumino consistency conditions.

Let W [e,A, ψ] be the generating functional of connected graphs. In the presence of
anomalies

δiW =
∫
d4x e εiAi , (4.4.3)

where e ≡ det(eaµ), δi denotes the superconformal transformations, εi are the (local) pa-
rameters of the transformations and Ai are the corresponding anomalies. The variations
form an algebra, [δi, δj ] = fkijδk, and using this in (4.4.3) we obtain the WZ consistency
condition ∫

d4x
(
δi(e εjAj)− δj(e εiAi)− fkije εkAk

)
= 0 . (4.4.4)
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The local algebra they satisfy is derived in [71]. Below we state the two relevant non
vanishing commutators1

[δε, δε′ ] = δξ + δη + δθ , [δε, δη] = δσ + δη + δθ . (4.4.5)

Assuming the R-symmetry current has the standard triangle anomalies, the WZ consis-
tency conditions (4.4.4) may be viewed as equations to determine the remaining anomalies.
This computation is presented in [71] and the results are summarised in the appendix B.

Here we only discuss one of the WZ equations: the one obtained by considering the
(vanishing) commutator of R-symmetry (with parameter θ) with Q-supersymmetry (with
parameter ε): ∫

d4x
(
δε(e θAR)− δθ(e εAQ)

)
= 0 . (4.4.6)

Using the explicit form of AR (B.1.3), it is easy to see that δεAR 6= 0 and the WZ consis-
tency condition requires that AQ 6= 0. Considering only the part of AR that reproduces
the anomaly of the <JJJ> correlator, i.e.

AR = − 1
48

1
54π2 ε

µνρσFρσFµν (4.4.7)

we have that∫
d4xδε(e θAR) = − 1

48
1

54π2 ε
µνρσ

∫
d4xe θδε(FρσFµν) = − 4

48
1

54π2 ε
µνρσ

∫
d4xe θFµν∂ρδεAσ

= i

48
1

18π2 ε
µνρσ

∫
d4xe ∂ρθFµν ε̄γ5φσ 6= 0 . (4.4.8)

Using now the following form for AQ

AQ = i

48
1

18π2 ε
µνρσFµνAργ5φσ, (4.4.9)

we get∫
d4xδθ(e ε̄AQ) = i

48
1

18π2 ε
µνρσ

∫
d4xe ε̄δθ(FµνAργ5φσ) = i

48
1

18π2 ε
µνρσ

∫
d4xe ∂ρθFµν ε̄γ5φσ,

(4.4.10)

where we used that Fµν and φσ are invariant under the R-symmetry transformation. We
see that the non zero AQ (4.4.9) is such that the WZ consistency condition (4.4.6) is
satisfied. It is straightforward to show that after 3 functional derivatives in AQ, two with
respect to the gauge field Aµ and one with respect to the gravitino ψν , we get a non zero
result even in the flat space limit, i.e. in the limit where the supergravity background
sources become zero. Thus, the first non vanishing contribution of AQ in flat space, will

1The commutators of two diffeomorphisms and two local Lorentz transformations are also non zero and
they take a standard form.
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be in the Q-supersymmetry Ward identity of <QQ̄JJ>.

Note here that (4.4.9) is just a part of the total Q-supersymmetry anomaly. In the
above analysis we considered only the part of the R-anomaly that contributes to the
<JJJ> correlator. Had we taken into account the part that contributes to the anomaly
of <J T T >, we would have found the extra terms of AQ that would make <QQ̄T J >
anomalous. After three functional derivatives in AQ (B.1.3), with respect to the gravitino
ψν , the gauge field Aµ, and the vierbein eaµ, we get a non zero result in the flat space
limit. Lastly, recall that the naive argument we presented in the beginning of this section,
which was based on the Q-supersymmetry variation of the supercurrent, implied a possible
Q-supersymmetry anomaly in <QQ̄T T > (4.4.2). According to (B.1.3) though, we can
see that after three functional derivatives in AQ, one with respect to the gravitino and
two with respect to the vierbein, we get a zero contribution in the flat space limit.

A modified version of the above WZ consistency conditions was recently presented in
[103]. Relaxing the WZ gauge (in which gauge our analysis is done) and thus restoring the
gauge away fields, the authors of [103] showed that the commutator of R-symmetry with
Q-supersymmetry in this case is non zero, i.e. [δ̃θ, δ̃ε] 6= 0. δ̃ denotes the transformations
in the presence of the gauge away fields. This non zero commutator modifies the rhs of
(4.4.6) in such a way that the WZ consistency condition is satisfied for AQ=0, i.e. it
appears that there is no supersymmetry anomaly. However, the gauge away fields are
present and as explained in section (3.3), it is important to put them equal to zero before
examining the microscopic theory.

One may wonder whether this anomaly can be removed by adding a local counterterm
Wct to the action such that Wren = W + Wct is non-anomalous, i.e. δεWren = 0. Using the
commutator of two supersymmetry variations, [δε, δε′ ] we find

(δξ + δλ + δθ)Wren = 0 ⇒ (δξ + δλ)Wren 6= 0 , (4.4.11)

since δθWren = AR 6= 0. It follows that if one wishes to preserve supersymmetry, Wct must
break diffeomorphisms and/or local Lorentz transformations.2 However, this argument
refers to the original Q-supersymmetry of conformal supergravity. In chapter 8 we see that
there exists a specific linear combination of Q+S supersymmetry that is non anomalous in
the WZ model, and at the same time diffeomorphisms and Lorentz transformations remain
non anomalous. The price for that is to explicitly break R-symmetry and S-supersymmetry
Ward identities at the 3-point function level. This specific Q+S combination is the same
with the supersymmetry of old minimal supergravity (see appendix G).

2Note that since AR is a genuine anomaly it is not possible to set the rhs of the second equation in
(4.4.11) to zero using a local counterterm. This implies that there are no further local counterterms that
can restore diffeomorphisms and local Lorentz invariance.
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After coupling the massless WZ model to conformal supergravity we were able to prove
that the standard R-symmetry anomalies induce Q-supersymmetry anomalies in certain
correlators in flat space. In chapter 7 we confirm with a loop computation that <QQ̄JJ>
is indeed anomalous. The PV regulator we use, is not enough to regulate properly all
correlators needed for the analysis of <QQ̄T J>. However, we expect that a better suited
PV regulator will also confirm the Q-supersymmetry anomaly of <QQ̄T J>.

4.4.2 Consistency conditions using correlators

The question that arises is could we have predicted the existence of AQ without the insight
of background supergravity? Is there a way to make the naive arguments that depend
on the variation of the supercurrent into a solid proof? The answer is yes, one could use
a similar reasoning with the WZ consistency conditions, but now in terms of correlators.
To be more specific, we consider the classical R-symmetry (4.2.18) and Q-supersymmetry
(4.2.16) Ward identities of <QQ̄JJ>. We proceed by contracting both sides of (4.2.18)
and (4.2.16) with p1µ and p3κ respectively. Then we subtract the two identities. By
construction the 4-point functions cancel, so we get

p3κC
νκλ
4Q + iγ5p3κ <Qκ(p13)Q̄ν(p2)J λ(p4)> +iγ5p3κ <Qλ(p14)Q̄ν(p2)J κ(p3)>

+ γ5B
νκσp3κ <Jσ(p123)J λ(p4)> −p1µC

µνλ
4R

+ iγ5p1µ <Qµ(p13)Q̄ν(p2)J λ(p4)> +ip1µ <Qµ(p1)Q̄ν(p23)J λ(p4)> γ5

+ γξ
2 p3κ <T νξ(p12)J κ(p3)J λ(p4)> −γ5B

νλσp3κ <Jσ(p124)J κ(p3)>

= ip2µB
νµσp3κ <Jσ(p12)J κ(p3)J λ(p4)> . (4.4.12)

Classically, the above equation must be satisfied. Although straightforward, this is quite
tedious to prove. For that we need to use the R-symmetry and Q-supersymmetry Ward
identities for all the 3-point functions involved, including the seagull correlators. We
assume that our model has the standard bosonic anomalies. That is exactly the same as-
sumption we made in the analysis of the WZ consistency conditions. This means that the
only anomalous correlators in the above expression are <JJJ> and <T JJ>. <T JJ>
though, has only a trace and not an R-symmetry anomaly, so p3κ <T νξ(p12)J κ(p3)J λ(p4)>
can be substituted by its classical R-symmetry identity (4.2.4). It can be shown that the
lhs is classically zero. Since every correlator of the lhs is non anomalous in the symmetries
of interest (by assumption), the lhs must vanish in the quantum level too. So we get

0 = ip2µB
νµσp3κ <Jσ(p12)J κ(p3)J λ(p4)>≡ ip2µB

νµσ i

324π2 εσ
λκαp3κp4α (4.4.13)
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Had <JJJ > been non anomalous, the above expression would be an identity, 0 = 0,
as it is at the classical level. In the quantum regime though, this implies that either
the R-symmetry or the Q-supersymmetry Ward identity of <QQ̄JJ > (or both) are
anomalous.

We now allow for the existence of possible quantum anomalies Aνκλ4Q and Aµνλ4R in the
rhs of the identities (4.2.16) and (4.2.18) respectively, i.e.

p1µ <Qµ(p1)Q̄ν(p2)J κ(p3)J λ(p4)> +... = Aνκλ4Q

p3κ <Qµ(p1)Q̄ν(p2)J κ(p3)J λ(p4)> +... = Aµνλ4R , (4.4.14)

where ... denote the lower order correlators. Following the same procedure we find that

p1µA
µνλ
4R − p3κA

νκλ
4Q = ip2µB

νµσp3κ <Jσ(p12)J κ(p3)J λ(p4)> . (4.4.15)

Since we consider R-symmetry to only have bosonic triangle anomalies (as in the analysis
of the WZ conditions), we have that Aµνλ4R = 0, so

− p3κA
νκλ
4Q = ip2µB

νµσp3κ <Jσ(p12)J κ(p3)J λ(p4)>≡ ip2µB
νµσ i

324π2 εσ
λκαp3κp4α.

(4.4.16)
The above expression can be used as an equation to determine Aνκλ4Q . We find that

Aνκλ4Q = p2µB
νµσ 1

324π2 εσ
λκα(p4α − p3α). (4.4.17)

Following this alternative consistency condition, we confirm again that the R-symmetry
anomaly induces an anomaly in Q-supersymmetry. Aνκλ4Q is equal to the contribution of
(4.4.9) to the flat space correlator <QQ̄JJ>.

Since R-symmetry is already broken, one may wonder whether we could save super-
symmetry by introducing a new R-anomaly in <QQ̄JJ >, namely an Aνκλ4Q = 0 and a
non zero Aµνλ4R . Then, the consistency condition would be

p1µA
µνλ
4R = ip2µB

νµσ i

324π2 εσ
λκαp3κp4α. (4.4.18)

This equation though, cannot be solved. Aµνλ4R must be an analytic function in the external
momenta, which means that the above lhs is equal to zero in the limit p1 → 0. After some
gamma matrix algebra, one can show that the rhs is non zero in the same limit of p1. Thus,
we cannot restore Q-supersymmetry by only introducing a new R-anomaly in <QQ̄JJ>
and assuming the standard anomalies at the 3-point function level.

In practice, the above procedure is not very efficient. It is tedious and one has to
perform the same analysis to every correlator of interest. On the contrary, coupling the
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theory to background supergravity and using the WZ consistency conditions makes our life
quite easier. In a few lines we can find the possible quantum anomalies at the level of 1-
point correlators, written in a compact form as a function of the background supergravity
fields (B.1.3). Further differentiation with respect to the sources gives the anomalies of
higher order correlators. However, the main point we would like to make here, is that we
can arrive at the same results even from the flat space theory. One may think that we still
need the insight from conformal supergravity, since after all, we used the Ward identities
of section (4.2). These identities, contain the extra coloured seagull correlators that we get
after coupling the WZ model to background supergravity. One of the assumptions of the
analysis though, is that all seagull correlators are non anomalous and the anomalies exist
only in correlators among conserved currents. All coloured (seagull) correlators of section
(4.2) are irrelevant for the consistency conditions of this subsection, since they satisfy their
own classical path integral Ward identities that are valid in the quantum theory too (by
assumption)3. We only need the black terms, which are the ones we get from the flat space
theory and the path integral identities (2.2.8).

3In the appendix F, we verify that the PV regulated seagull correlators are indeed non anomalous.
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CHAPTER 5

Free and massive Wess-Zumino model

5.1 Symmetries and the Ferrara-Zumino current multiplet

Before introducing the Pauli-Villars regulator in the next chapter, we find it instructive
to discuss the standard massive WZ Lagrangian

L̂WZ = −∂µφ∗∂µφ−
1
2 χ̄
/∂χ+ F ∗F − m

2 χ̄χ+m(φF + φ∗F ∗), (5.1.1)

as a reference. Integrating out the auxiliary field F using its equation of motion, F =
−mφ∗, the massive WZ Lagrangian (5.1.1) becomes

L̂WZ = −∂µφ∗∂µφ−m2φ∗φ− 1
2 χ̄
/∂χ− m

2 χ̄χ. (5.1.2)

The above Lagrangian is invariant only under a subset of the superconformal symmetries in
table 4.1.1, in particular the Poincaré symmetries and Q-supersymmetry. After integrating
out the auxiliary field, Q-supersymmetry acts as

δε0φ =
√

2
2 ε̄0Lχ, δε0φ

∗ =
√

2
2 ε̄0Rχ,

δε0χ =
√

2
2
(
/∂φε0R + /∂φ∗ε0L −mφε0R −mφ∗ε0L

)
,

δε0χ̄ = −
√

2
2
(
ε̄0L/∂φ

∗ + ε̄0R/∂φ+mε̄0Rφ+mφ∗ε̄0L
)
. (5.1.3)

67
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Poincaré and Q-supersymmetry invariance results in a conserved and symmetric stress
tensor, ˆ̃T µν , and a conserved supercurrent, ˆ̃Qµ, i.e.

∂µ
ˆ̃T µν = 0, ˆ̃T [µν] = 0, ∂µ

ˆ̃Qµ = 0, (5.1.4)

where the tilde indicates that these are operators of a massive theory and, as in the
previous chapter, the hat denotes quantities evaluated in Minkowski space.

Although R-symmetry is no longer a symmetry of the massive WZ Lagrangian, there
still exists a non conserved R-current ˆ̃J µ. Moreover the complex scalar operator ˆ̃OM
and its complex conjugate ˆ̃OM∗ that we define below are part of the Ferrara-Zumino
(FZ) multiplet [33], the simplest multiplet that is used for coupling the massive theory to
supergravity.

For the massive WZ model (5.1.1), the FZ multiplet operators take the form

ˆ̃T µν = 2∂(µφ∗∂ν)φ+ 1
2 χ̄γ

µ∂νχ−
1
8∂ρ

(
χ̄γνγ

ρµχ+ χ̄γµγρνχ− χ̄γργµνχ
)

− 1
3
(
∂µ∂ν − ηµν ∂2)(φ∗φ)− ηµν

(
∂ρφ

∗∂ρφ+ 1
2 χ̄
/∂χ− F ∗F + m

2 χ̄χ−m(φF + φ∗F ∗)
)
,

ˆ̃J µ = 2i
3
(
φ∗∂µφ− φ∂µφ∗ + 1

4 χ̄γ
µγ5χ

)
,

ˆ̃Qµ =
√

2
2 (/∂φγµχR + /∂φ∗γµχL) +

√
2

3 γµν∂ν(φχR + φ∗χL) +
√

2
2 m(φγµχL + φ∗γµχR),

ˆ̃OM = m

2 φ
2,

ˆ̃OM∗ = m

2 φ
∗2. (5.1.5)

Using the equations of motion following from (5.1.1),

�φ = m2φ, /∂χ = −mχ, F = −mφ∗, (5.1.6)

it is straightforward to verify that the stress tensor and the supercurrent satisfy the iden-
tities (5.1.4). Moreover, we find that

ˆ̃T µµ = −m2 χ̄χ− 2m2φ∗φ, ∂µ
ˆ̃J µ = im

3 χ̄γ5χ, γµ
ˆ̃Qµ =

√
2m(φχL + φ∗χR), (5.1.7)

which reflect the explicit breaking of scale invariance, R-symmetry and S-supersymmetry
respectively.



5.2. Symmetry transformation of currents 69

5.2 Symmetry transformation of currents

Restoring the auxiliary field F we determine that the R-symmetry transformations of the
stress tensor and of the supercurrent are

δθ0
ˆ̃T µν = (ηµρησν + ηµσηρν − ηµν ηρσ)Ĵρ∂σθ0 −

i

6 χ̄γνγ5χ∂
µθ0 − θ0η

µ
ν

im

3 χ̄γ5χ,

δθ0
ˆ̃Qµ = iθ0γ5

ˆ̃Qµ − i

3θ0γ5γ
µ
√

2m(φχL + φ∗χR) + i
√

2
3 ∂µθ0(φ∗χL − φχR). (5.2.1)

Similarly, the off shell Q-supersymmetry transformations of the R-current and of the
supercurrent take respectively the form

δε0
ˆ̃J µ = − iε̄0γ5

ˆ̃Qµ + i
√

2
3 ε̄0γ5γ

µm(φχL + φ∗χR) +
√

2i
3 (φ∗χ̄L − φχ̄R)∂µε0

+
√

2i
3 ε̄0γ

µ(φ∗(/∂χL +mχR)− φ(/∂χR +mχL)
)

+
√

2i
6 ε̄0γ

µ((F ∗ +mφ)χL − (F +mφ∗)χR
)
,

δε0
ˆ̃Qµ = 1

2
ˆ̃T µνγνε0 + i

8∂ρ
[ ˆ̃J σ(iεµνρσγ5 + 2ηµνηρσ − 2ηρνηµσ)γνγ5ε0

]
− 3

8ε
µνρσ ˆ̃J σγν∂ρε0

+ 1
8(χ̄γσγ5χ)γσγ5∂

µε0 + 1
6∂ρ(φ

∗φ)(iεµνρσγ5 + ηµνηρσ − ηµρηνσ)γν∂σε0

+ 1
8
(
χ̄(γµν − ηµν)γ5(/∂ +m)χ

)
γνγ5ε0 −

1
8
(
χ̄(γµν − ηµν)(/∂ +m)χ

)
γνε0

+ 1
2((F ∗ +mφ)/∂φγµε0R + (F +mφ∗)/∂φ∗γµε0L)

+ 1
3γ

µν∂ν(φ(F ∗ +mφ)ε0R + φ∗(F +mφ∗)ε0L). (5.2.2)

The Q-supersymmetry variation of the R-current can be also written as

δε0
ˆ̃J µ = − iε̄0γ5

ˆ̃Qµ + i

3 ε̄0γ5γ
µγρ

ˆ̃Qρ +
√

2i
3 (φ∗χ̄L − φχ̄R)∂µε0

+
√

2i
6 ε̄0γ

µ((F ∗ +mφ)χL − (F +mφ∗)χR
)
. (5.2.3)

5.3 Massless vs Massive WZ model

In subsection (4.1.5), we derived all the necessary symmetry transformations of the Noether
currents and seagull operators that one needs to reproduce the classical path integral
Ward identities of section (4.2). The goal is to regulate the theory using an appropriate
Pauli-Villars regulator and see whether these identities hold at quantum level. The PV
Lagrangian we are using in the next chapter consists of a sum of massive WZ models,
with standard and ‘wrong’ statistics. We want to examine how the massive WZ model
classically violates some of the symmetries of the massless and conformal WZ model, thus
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giving the possibility for anomalous contributions. The main core of the arguments we
present here are still true even in the case of fields with ‘wrong’ statistics, since the form
of the equations (i.e. variation of currents and conservation laws) remain the same.

According to (2.2.8), in order to derive the Ward identities (that correspond to a specific
transformation of the elementary fields) for some local operators, we need the following:
The variation of the local operators with respect to the field transformation, and, we have
to know if this transformation is a symmetry of the theory, i.e. whether A(x) of (2.2.8) is
zero or not.

Comparing (4.1.7) and (4.1.8) with (5.1.7), it is obvious that the massive WZ model
breaks classically R-symmetry, S-supersymmetry and scale invariance. The corresponding
A(x) for these symmetries is non zero, something that generates new, possibly anomalous
terms in the classical Ward identities of the massless WZ model. Next, we have to see if
there are anomalous contributions that come from the symmetry variation of the operators.
In the previous section (5.2), we wrote the R-symmetry and Q-supersymmetry variations
of the current operators. We need to compare these, with the corresponding ones from
section (4.1.5). Note here, that variations of operators that are not included in (5.2),
remain the same in the massive theory.

We now compare the R-symmetry variation of the stress tensor and supercurrent of
(5.2.1) with (4.1.11). Notice that the term θ0η

µ
ν
im
3 χ̄γ5χ in the transformation of the stress

tensor, and the term i
3θ0γ5

√
2m(φχL + φ∗χR) in the transformation of the supercurrent

of (5.2.1), do not exist in (4.1.11). These terms give extra anomalous contributions to
the R-symmetry Ward identities of correlators that involve the supercurrent or the stress
tensor.

Let us consider Q-supersymmetry now. We claim that the original Q-supersymmetry
Ward identities of the conformal WZ model, are classically violated by the massive La-
grangian. This is a subtle point that was recently criticized [103,104]. The main reason for
that is that the massive WZ model is manifestly invariant under Q-supersymmetry, which
results in the conservation law of the supercurrent (5.1.4). However, as we emphasized,
one has to also examine whether the symmetry variations of the operators remain the same
in the massive theory. After comparing (5.2.2) with (4.1.13) we see that δε0

ˆ̃Qµ is of the
same form with δε0Q̂µ. There is an apparent difference in the null operators (i.e. operators
that vanish on shell). For example, operators of the form /∂χ in (4.1.13) are replaced by
(/∂ +m)χ in (5.2.2). This is of course expected, since in the massive theory the equations
of motion change. Both of these operators, /∂χ and (/∂ +m)χ, have the same effect in the
Feynman diagrams. They cancel massless and massive propagators respectively.

The Q-supersymmetry variation of the R-current though, differ in the two theories. No-
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tice the term i
√

2
3 ε̄0γ5γ

µm(φχL+φ∗χR) of (5.2.2) which is absent from (4.1.13). This term
that depends on the mass, violates the Q-supersymmetry Ward identities of correlators
that involve the R-current. In the case of the 4-point function <QQ̄JJ >, the massive
WZ Lagrangian will introduce an extra 3-point functions at the rhs, of the following form

i
√

2
3 γ5γ

λm <(φχL + φ∗χR) ˜̄QνJ̃ κ>. (5.3.1)

This term comprises the potential anomaly of Q-supersymmetry at the regulated level in
the 4-point function of interest, and we need to evaluate it.

Had we compared equations (5.2.3) with (4.1.15), we would see that the form of the Q-
supersymmetry variation of the R-current is the same in the massless and massive theory.
However, (5.2.3) and (4.1.15) would contribute the following 3-point correlator at the rhs
of the Q-supersymmetry identity of the 4-point function

i

3γ5γ
λγµ <Q̃µ ˜̄QνJ̃ κ>. (5.3.2)

This correlator is proportional to the gamma-trace of the supercurrent, so we need to
replace it using the S-supersymmetry Ward identity of <QQ̄J >. According to (5.1.7)
and (4.1.8), the gamma-trace of the supercurrent in the massive theory contains an extra
mass dependent term compared to the massless theory. This means that the term (5.3.2)
will have an anomalous contribution to Q-supersymmetry, equal to (5.3.1). As expected,
whether we use the form (5.2.2) or (5.2.3) for the variation of the R-current, we find that
Q-supersymmetry is classically violated with the same mass dependent term.
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CHAPTER 6

Pauli-Villars regularization

The 1-loop diagrams that determine the correlation functions of conserved currents in the
free and massless WZ model (4.1.1) suffer from UV divergences that must be regulated and
renormalized. In this chapter we present a supersymmetric Pauli-Villars (PV) regulator
that suffices for removing the 1-loop UV divergences from all correlation functions that
appear in the Ward identities we examine in section 4.2. We follow closely the relevant
discussion of [81].

6.1 Setup

Consistency of any PV regulator requires that its contributions to the 1-loop diagrams
follow from a local Lagrangian. A supersymmetric PV regulator further demands that
this Lagrangian preserves supersymmetry and hence must involve a number of N = 1
multiplets. The PV regulator we use consists of three massive chiral multiplets, one with
standard statistics and two with ‘wrong’ statistics. The corresponding PV Lagrangian
is a standard massive WZ model, except that terms involving the multiplets with wrong
statistics are appropriately modified. The PV Lagrangian we consider takes a similar form
to (5.1.2)

−L̂PV = ∂µϕ
∗
2∂

µϕ2 +m2
2ϕ
∗
2ϕ2 + 1

2 λ̄2/∂λ2 + m2
2 λ̄2λ2 (6.1.1)

+ ∂µϕ
∗
1∂

µϕ1 +m2
1ϕ
∗
1ϕ1 + ∂µϑ1∂

µϑ∗1 +m2
1ϑ1ϑ

∗
1 + λ1/∂λ1 +m1λ1λ1,
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where (ϕ2, λ2) is a standard massive WZ multiplet, consisting of a commuting complex
scalar, ϕ2, and an anticommuting Majorana spinor, λ2, while ϕ1, ϑ1 are anticommuting
complex scalars and λ1 is a commuting Dirac spinor. Here, we should emphasize the
distinction between the Dirac (e.g. λ1) and Majorana (e.g. λ̄2) conjugates of a spinor,
both of which are discussed in appendix A.

In fact, the fields (ϕ1, ϑ1, λ1) form two chiral multiplets with ‘wrong’ statistics. This
can be made manifest by means of the field redefinition

λ+ ≡
1
2(λ1 + λC1 ), λ− ≡

1
2i(λ1 − λC1 ), ϕ+ ≡

ϕ1 + ϑ1
2 , ϕ− ≡

ϕ1 − ϑ1
2i , (6.1.2)

where the Majorana conjugate, λC1 , is defined in (A.0.10), ϕ± are anticommuting complex
scalars and λ± are commuting Majorana spinors. The two chiral multiplets correspond to
(ϕ+, λ+) and (ϕ−, λ−). The advantage of this parameterization is that it greatly simplifies
the discussion of the symmetries preserved by the PV regulator. However, once expressed
in terms of the fields (6.1.2), the PV Lagrangian (6.1.1) contains non diagonal terms for
the fields of wrong statistics, namely

−L̂PV = ∂µϕ
∗
2∂

µϕ2 +m2
2ϕ
∗
2ϕ2 + 1

2 λ̄2/∂λ2 + m2
2 λ̄2λ2

+ 2i(∂µϕ∗+∂µϕ− − ∂µϕ∗−∂µϕ+) + 2im2
1(ϕ∗+ϕ− − ϕ∗−ϕ+)

+ i(λ̄+/∂λ− − λ̄−/∂λ+) + im1(λ̄+λ− − λ̄−λ+). (6.1.3)

Notice that the PV Lagrangian contains two independently supersymmetric parts, namely
the standard WZ action for the massive chiral multiplet with canonical statistics, and the
remaining terms for the two massive chiral multiplets of wrong statistics. The non diagonal
terms in (6.1.3) imply that the latter do not preserve supersymmetry independently – it
is not possible to write down a supersymmetric Lagrangian for a single massive chiral
multiplet of wrong statistics. Supersymmetry does not impose any relation between the
mass of the standard WZ multiplet and that of the two chiral multiplets with wrong
statistics. However, in appendix D we show that cancellation of the UV divergences
requires that m2

2 = 2m2
1. The regulator is removed when the mass parameter is sent to

infinity, where the PV fields decouple from the original theory.

Propagators

It is most convenient to express the propagators of the PV fields in diagonal form using
the parameterization (6.1.1). Paying attention to the statistics of the various fields, they
take the form

ϕ2(p)ϕ∗2(p′) = ϕ∗2(p′)ϕ2(p) = (2π)4δ(p+ p′)Pϕ2(p),

λ2(p)λ̄2(p′) = −λ̄2(p′)λ2(p) = (2π)4δ(p+ p′)Pλ2(p),
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ϕ1(p)ϕ∗1(p′) = −ϕ∗1(p′)ϕ1(p) = (2π)4δ(p+ p′)Pϕ1(p),

ϑ∗1(p)ϑ1(p′) = −ϑ1(p′)ϑ∗1(p) = (2π)4δ(p+ p′)Pϑ1(p),

λ1(p)λ1(p′) = λ1(p′)λ1(p) = (2π)4δ(p+ p′)Pλ1(p), (6.1.4)

where

Pϕ2(p) = − i

p2 +m2
2
, Pλ2(p) = −i

(−i/p+m2)
p2 +m2

2
,

Pϕ1(p) = − i

p2 +m2
1
, Pϑ1(p) = − i

p2 +m2
1
, Pλ1(p) = −i

(−i/p+m1)
p2 +m2

1
. (6.1.5)

6.2 Symmetries and conserved currents

Just like the standard massive WZ model (5.1.1), the PV Lagrangian (6.1.1) or (6.1.3) is
invariant only under Poincaré symmetries and Q-supersymmetry. Q-supersymmetry acts
on the PV fields as

δε0ϕ2 =
√

2
2 ε̄0Lλ2, δε0ϕ

∗
2 =
√

2
2 ε̄0Rλ2,

δε0λ2 =
√

2
2
(
/∂ϕ2ε0R + /∂ϕ∗2ε0L −m2ϕ2ε0R −m2ϕ

∗
2ε0L

)
,

δε0 λ̄2 = −
√

2
2
(
ε̄0L/∂ϕ

∗
2 + ε̄0R/∂ϕ2 +m2ε̄0Rϕ2 +m2ϕ

∗
2ε̄0L

)
,

δε0ϕ± =
√

2
2 ε̄0Lλ±, δε0ϕ

∗
± = −

√
2

2 ε̄0Rλ±,

δε0λ± =
√

2
2
(
/∂ϕ∗±ε0L − /∂ϕ±ε0R −m1ϕ

∗
±ε0L +m1ϕ±ε0R

)
, (6.2.1)

where any sign differences in the transformations of (ϕ±, λ±) relative to the standard
transformations of (ϕ2, λ2) are due to the different statistics.

Using the field redefinition (6.1.2), we find that the fields (ϕ1, ϑ1, λ1) transform as

δε0ϑ
∗
1 = −

√
2

2
ε0Lλ1 = −

√
2

2 ε̄0Rλ1, δε0ϑ1 = −
√

2
2 λ1ε0L =

√
2

2 ε̄0Lλ
C
1 ,

δε0ϕ1 =
√

2
2
ε0Rλ1 =

√
2

2 ε̄0Lλ1, δε0ϕ
∗
1 =
√

2
2 λ1ε0R = −

√
2

2 ε̄0Rλ
C
1 ,

δε0λ1 =
√

2
2
(
/∂ϑ∗1ε0L − /∂ϕ1ε0R −m1ϑ

∗
1ε0L +m1ϕ1ε0R

)
,

δε0λ1 = −
√

2
2
(
ε̄0R/∂ϑ1 − ε̄0L/∂ϕ

∗
1 +m1ε̄0Rϑ1 −m1ε̄0Lϕ

∗
1
)
. (6.2.2)

Once again, in these expressions one must be careful to distinguish between the Dirac
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and Majorana conjugates of a spinor. In particular, for a Majorana spinor, χ, the Dirac
conjugate, χ, and the Majorana conjugate, χ̄, coincide, i.e. χ = χ̄. Moreover, the Dirac
and Majorana conjugates of Weyl spinors are related as χL,R = χ̄R,L, while those of Dirac
spinors are unrelated. For example, using the decomposition of the Dirac spinor λ1 into
two Majorana spinors λ± as in (6.1.2), we have

λ1 = λ+ + iλ−, λ1 = λ+ − iλ− = λ̄+ − iλ̄−. (6.2.3)

The current operators of the PV Lagrangian are given by

ˆ̃T µν
∣∣
PV = 2∂(µϕ∗2∂ν)ϕ2 −

1
3
(
∂µ∂ν − ηµν ∂2)(ϕ∗2ϕ2)− ηµν

(
∂ρϕ

∗
2∂

ρϕ2 +m2
2ϕ
∗
2ϕ2

)
+ 1

2 λ̄2γ
µ∂νλ2 −

1
2η

µ
ν

(
λ̄2/∂λ2 +m2λ̄2λ2

)
− 1

8∂ρ
(
λ̄2γνγ

ρµλ2 + λ̄2γ
µγρνλ2 − λ̄2γ

ργµνλ2
)

+ 2∂(µϕ∗1∂ν)ϕ1 −
1
3
(
∂µ∂ν − ηµν ∂2)(ϕ∗1ϕ1)− ηµν

(
∂ρϕ

∗
1∂

ρϕ1 +m2
1ϕ
∗
1ϕ1

)
+ 2∂(µϑ1∂ν)ϑ

∗
1 −

1
3
(
∂µ∂ν − ηµν ∂2)(ϑ1ϑ

∗
1)− ηµν

(
∂ρϑ1∂

ρϑ∗1 +m2
1ϑ1ϑ

∗
1
)

+ λ1γ
µ∂νλ1 − ηµν

(
λ1/∂λ1 +m1λ1λ1

)
− 1

4∂ρ
(
λ1γνγ

ρµλ1 + λ1γ
µγρνλ1 − λ1γ

ργµνλ1
)
,

ˆ̃J µ
∣∣
PV = 2i

3
(
ϕ∗2
↔
∂µϕ2 + 1

4 λ̄2γ
µγ5λ2

)
+ 2i

3
(
ϕ∗1
↔
∂µϕ1 − ϑ∗1

↔
∂µϑ1 + 1

2λ1γ
µγ5λ1

)
,

ˆ̃Qµ
∣∣
PV =

√
2

2 (/∂ϕ2γ
µλ2R + /∂ϕ∗2γ

µλ2L) +
√

2
3 γµν∂ν(ϕ2λ2R + ϕ∗2λ2L) +

√
2

2 m2(ϕ2γ
µλ2L + ϕ∗2γ

µλ2R)

+
√

2
2 (/∂ϑ1γ

µλ1R − /∂ϕ∗1γµλ1L) +
√

2
3 γµν∂ν(ϑ1λ1R − ϕ∗1λ1L) +

√
2

2 m1(ϑ1γ
µλ1L − ϕ∗1γµλ1R)

+
√

2
2 (/∂ϑ∗1γµλC1L − /∂ϕ1γ

µλC1R) +
√

2
3 γµν∂ν(ϑ∗1λC1L − ϕ1λ

C
1R) +

√
2

2 m1(ϑ∗1γµλC1R − ϕ1γ
µλC1L),

ˆ̃OM
∣∣
PV = m2

2 ϕ2
2 +m1ϕ1ϑ1,

ˆ̃OM∗
∣∣
PV = m2

2 ϕ∗22 +m1ϑ
∗
1ϕ
∗
1. (6.2.4)

We emphasize that the supercurrent for the PV fields remains an anticommuting Majo-
rana fermion, which is essential for coupling the theory to background supergravity. Its
Majorana conjugate is

ˆ̃
Qµ
∣∣
PV =

√
2

2 (λ̄2Rγ
µ/∂ϕ2 + λ̄2Lγ

µ/∂ϕ∗2)−
√

2
3 ∂ν(ϕ2λ̄2R + ϕ∗2λ̄2L)γµν −

√
2

2 m2(ϕ2λ̄2L + ϕ∗2λ̄2R)γµ

+
√

2
2 λ

C

1 (PRγµ/∂ϑ1 − PLγµ/∂ϕ∗1)−
√

2
3 ∂ν(ϑ1λ

C

1 PR − ϕ∗1λ
C

1 PL)γµν −
√

2
2 m1λ

C

1 (ϑ1PL − ϕ∗1PR)γµ

+
√

2
2 λ1(PLγµ/∂ϑ∗1 − PRγµ/∂ϕ1)−

√
2

3 ∂ν(ϑ∗1λ1PL − ϕ1λ1PR)γµν −
√

2
2 m1λ1(ϑ∗1PR − ϕ1PL)γµ.

(6.2.5)

The FZ multiplet operators of the full theory, comprising the massless WZ model and
the PV fields, are the sum of the conformal currents (4.1.6) and the PV operators in
(6.2.4), and will be denoted by ˆ̃T µν , ˆ̃J µ, ˆ̃Qµ and ˆ̃OM in the following. The FZ multiplet
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operators satisfy the on-shell identities (5.1.4), while the explicit classical breaking of scale
invariance, R-symmetry and S-supersymmetry is reflected respectively in the relations

ˆ̃T µµ = − 2m2
2ϕ
∗
2ϕ2 −

m2
2 λ̄2λ2 − 2m2

1(ϕ∗1ϕ1 + ϑ1ϑ
∗
1)−m1λ1λ1 ≡ B̂W ,

∂µ
ˆ̃J µ = im2

3 λ̄2γ5λ2 + 2im1
3 λ1γ5λ1 ≡ B̂R,

γµ
ˆ̃Qµ =

√
2m2(ϕ2λ2L + ϕ∗2λ2R) +

√
2m1(ϑ1λ1L − ϕ∗1λ1R) +

√
2m1(ϑ∗1λC1R − ϕ1λ

C
1L) ≡ B̂S .

(6.2.6)

We have introduced the notation B̂W , B̂R and B̂S for the quantities on the rhs of these
identities for later convenience. Notice that these quantities, as well as the scalar operator
OM , receive contributions only from the PV fields. The potential anomalies of the classical
Ward identities –which arise due to the PV regulator– are given by correlators that involve
the operators B̂W , B̂R and B̂S . The analysis that shows that the correlation functions of
interest are properly regulated is given in the appendix D.
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CHAPTER 7

Anomalies of the Wess-Zumino model

In this chapter we evaluate the Ward identities of section (4.2) in the regulated theory.
The aim is to examine whether they are satisfied in the quantum regime or not. The first
step towards that was to identify a suitable regulator that removes all UV divergences
from the correlators of interest. We used the PV Lagrangian (6.1.1), and the analysis
of the regulated correlators is presented in the appendix D. If the regulator respects all
classical symmetries, then the form of the regulated Ward identities remains the same,
hence there are no anomalies. If the regulator violates some of the symmetries of the
classical theory, like the PV regulator breaks R-symmetry invariance, then there is a
possibility of anomalous contributions to the original Ward identities. In the latter case,
as already mentioned, there are two equivalent approaches.

The first one is to put the regulated correlators into the original classical identities and
after an explicit computation identify the terms that violate them. Then we calculate these
terms in the limit where the regulator is removed, and see whether they vanish or not.
In the second approach one has to compute the new classically broken Ward identities of
the regulated theory. These identities include some extra terms compared to the original
ones, that depend only on the regulator. The Ward identities of the regulated theory are
satisfied by construction, so we only need to evaluate the new extra terms in the limit
where the regulator vanishes. In both approaches the breaking terms that we find are
necessarily exactly the same.

79
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The advantage of the first approach is that we do not have to find the new Ward
identities of the regulated theory, while the advantage of the second approach is that
after computing the new Ward identities, we can immediately deduce the extra breaking
anomalous terms without further manipulations of the regulated correlators. In the case
of non vanishing breaking terms, one has to examine whether they can be removed by a
local counterterm in the action. We find the second approach much more convenient, so
we are going to follow it in the analysis of the next sections.

As we stressed before, the main goal is to examine the Q-supersymmetry Ward identity
of<QQ̄JJ>. However, if the PV Lagrangian (6.1.1) we are using is a consistent regulator,
it has to reproduce the standard Ward identities and anomalies of the correlators among
bosonic operators. After all, if we forget about supersymmetry, the original massless WZ
Lagrangian (4.1.1) we are considering, can be seen as the sum of a free fermion and a free
boson, which we already know contain trace and R-symmetry anomalies. In particular,
according to (B.1.3), the correlator <T JJ> has a trace anomaly, while <JJJ> has an
R-symmetry anomaly. We are going to confirm these in the following sections. There are
also anomalies in the Ward identities of <T T J> and <T T T >, however, these correlators
are not involved in the series of identities necessary for the analysis of <QQ̄JJ>, thus we
do not examine them. Moreover, we cannot compute <T T T >, since the PV Lagrangian
we are using is not sufficient to remove its logarithmic divergences. For that, one has to
include more PV fields.

In the following sections we drop the hat ·̂ from the flat space operators, to simplify
the notation.

7.1 Bosonic correlators

In this section we examine the bosonic correlators <JJ >, < T JJ > and <JJJ >.
Moreover, < T J > is equal to zero (D.3.14). Using the results from chapters 5 and
6, we compute the extra contributions of the PV regulator to the corresponding Ward
identities of section (4.2). Then, whenever possible we find local counterterms to restore
the broken by the regulator symmetries. Since we are interested in coupling the WZ model
to conformal supergravity, the counterterms we identify depend only on the background
sources of conformal supergravity, i.e. the gravitino ψµ, the gauge field Aµ and the vierbein
eaµ. The explicit computation of integrals is presented in the appendix E.

7.1.1 <JJ>

In the regulated theory, the presence of the PV masses introduce a new term at the rhs of
the classical R-symmetry Ward identity of <JJ> (4.2.2). Using (6.2.6), within the path
integral formalism one can find that the new (broken) R symmetry Ward identity is equal
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to
p3κ <J̃ κ(p3)J̃ λ(p4)>= −i <BR(p3)J̃ λ(p4)> . (7.1.1)

In order to restore R symmetry, this extra term has to vanish or be removed by a local
counterterm. In the limit that PV masses go to infinity we find that

− i <BR(p3)J̃ λ(p4)>= − 2iπ2

(2π)4 p
λ
3

(
4
9 m

2
1 log 2− p2

3
27

)
. (7.1.2)

If we renormalize the 2-point function as follows

<J̃ κ(p3)J̃ λ(p4)>ren=<J̃ κ(p3)J̃ λ(p4)> + 2iπ2

(2π)4 η
κλ

(
4
9 m

2
1 log 2− p2

3
27

)
(7.1.3)

we get that the R symmetry Ward identity is satisfied, i.e.

p3κ <J̃ κ(p3)J̃ λ(p4)>ren= 0 (7.1.4)

At the level of the action, the renormalization of the 2-point function <JJ > can be
achieved by the following counterterm,

Counterterm

IRR =
(

2iπ2

(2π)4
i

54A
ρ∇ξ∇ξAρ + 2iπ2

(2π)4
2i
9 m

2
1 log 2AρAρ

)
. (7.1.5)

Note here that in the above counterterm, instead of the Levi-Civita connection ∇ξ, we
could have just used the partial derivative ∂ξ. The contribution to the 2-point correlator
<JJ > would be the same. We choose though a covariant counterterm, in order to not
break diffeomorphisms.

Alternative approach

To examine the classical R-symmetry identity of <JJ >, we evaluated in the large PV
mass limit the breaking term at the rhs of the regulated Ward identity (7.1.1). We are
allowed to do that, since <JJ> is properly regulated (see appendix D). Now we are going
to compute this identity by following the alternative approach, i.e. first evaluate in the
large PV mass limit the <JJ> correlator, then contract it with the external momentum
p3κ and see whether it vanishes or not. The reason we do this, is first, to illustrate the
role of the 1-point functions, and secondly, to explain in more detail the renormalized
correlators, which may cause some confusion.

We mentioned that in the whole analysis we do not include any 1-point functions,
since they are irrelevant for the computation of anomalies. They only contribute at the
divergent parts of the Ward identities, i.e. terms that depend on the PV mass. We want
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to justify this by giving a simple example. Moreover, in (7.1.3) we renormalized <JJ >
so that the R-symmetry identity is satisfied. However, note that this renormalization does
not render the 2-point function finite. Usually in literature, the terminology ‘renormalized
correlator’ is used to denote correlators which are free of divergences. What we do in
(7.1.3), is a partial renormalization of <JJ>, that only suffices for restoring the broken
symmetry. < JJ > also contains logarithmic divergences that satisfy the classical R-
symmetry identity, thus there is no need to remove them. From now on, whenever we
write renormalized correlators, we will refer to the partially renormalized correlators we
just described, unless mentioned otherwise.

Now let us try to make the above discussion a bit more clear. Taking into account the
1-point functions, the classical R-symmetry Ward identity of <JJ> is given by

p3κ <J κ(p3)J λ(p4)> +8i
9 p

λ
3 <s(1|0)>= 0. (7.1.6)

We want to see if the above lhs is zero in the regulated theory. Using (D.3.9), in the large
PV mass limit we find that

<J̃ κ(p3)J̃ λ(p4)>= − 2iπ2

(2π)4
4
3η

κλm2
1 log 2 + 2iπ2

(2π)4
pλ3p

κ
3

27

− 2iπ2

(2π)4
1
9
(
pκ3p

λ
3 − p2

3η
κλ
)(

logm2
1 − log (2p2

3) + 8
3

)
(7.1.7)

Notice that the second line is proportional to the projection operator, hence it vanishes
when contracted with p3κ or p4λ (momentum conservation implies that p3 = −p4). We
see that the logarithmic divergence of <JJ > does not contribute to the classical R-
symmetry identity (7.1.6), so there is no need to remove it. Of course, if we wish to fully
renormalize the theory under consideration, we have to introduce local counterterms to
remove all divergences, the logarithmic ones as well. However, if we only care about the
validity of specific symmetry identities, we just have to include counterterms that remove
the breaking terms that arise due to regularization. Using now (D.2.4), we find that the
lhs of (7.1.6) in the regulated theory is equal to

p3κ <J̃ κ(p3)J̃ λ(p4)> +8i
9 p

λ
3 <s̃(1|0)>= − 2iπ2

(2π)4
4
9p

λ
3m

2
1 log 2 + 2iπ2

(2π)4
pλ3p

2
3

27 . (7.1.8)

As expected, after computing the 2-point function in the large PV mass limit and then
contracting it with the external momentum, we find that the classical R-symmetry Ward
identity (7.1.6) is not satisfied. In particular, notice that the above rhs is exactly the
same with the contribution of the breaking term (7.1.2). Effectively, what we did here
was to confirm the R-symmetry identity of the regulated theory (7.1.1). The contribution
of the 1-point function <s̃(1|0)> was crucial, so that lhs and rhs match at the divergent
pieces, i.e. the terms that depend on m2

1. These terms however, are not relevant for the
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computations of anomalies (which are finite), which is why we neglect from our analysis
all 1-point functions. The partially renormalized (but still divergent) correlator <JJ >
that satisfies the classical identity (7.1.6) is given by

<J̃ κ(p3)J̃ λ(p4)>ren= − 2iπ2

(2π)4
8
9η

κλm2
1 log 2 + 2iπ2

(2π)4
1
27(pλ3pκ3 − p2

3η
κλ)

− 2iπ2

(2π)4
1
9
(
pκ3p

λ
3 − p2

3η
κλ
)(

logm2
1 − log (2p2

3) + 8
3

)
(7.1.9)

Having obtained the explicit form of <JJ>, it is rather trivial to introduce countert-
erms to remove the logarithmic divergences. However, to find the explicit expressions for
the higher order correlators is extremely tedious. On the contrary, if we focus only on the
breaking terms of the classical Ward identities that are introduced by the PV regulator,
we greatly simplify the computation. This is the approach that we follow in the next
sections. We compute the breaking terms, and then introduce counterterms to restore
symmetries whenever possible. When we examine the Ward identities of higher order cor-
relators, we must be careful to take into account the contribution to these identities of the
counterterms that we used to restore symmetries in the lower order correlation functions.

7.1.2 <JJJ>

In the regulated theory, the classical R-symmetry Ward identity for the 3-point function
<JJJ> (4.2.8) becomes

p3κ <J̃ κ(p3)J̃ λ(p4)J̃ σ(p1)>= −i <BR(p3)J̃ λ(p4)J̃ σ(p1)> . (7.1.10)

We have used that the 2-point function <J s(1|0)> is zero (see appendix D). The term
on the rhs is the potential anomaly of the 3-point function, that arises due to the non
invariance of the PV Lagrangian (6.1.1) under an R-symmetry transformation. In the
large PV mass limit we find that

− i <BR(p3)J̃ λ(p4)J̃ σ(p1)>= i

324π2 ε
σλβαp3βp4α, (7.1.11)

hence,

p3κ <J̃ κ(p3)J̃ λ(p4)J̃ σ(p1)>= i

324π2 ε
σλβαp3βp4α. (7.1.12)

The R-symmetry Ward identity of <JJJ > is anomalous, since the breaking term does
not vanish when we remove the regulator. The anomaly cannot be cancelled by a local
and gauge invariant counterterm. This 1-loop computation confirms the R-anomaly of
(B.1.3) for the specific values c = 2a = 1

24 of the WZ model.
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7.1.3 <T JJ>

The following renormalized correlator <T JJ>, respects diffeomorphisms, Lorentz sym-
metry, R-symmetry and reproduces the standard trace anomaly of (B.1.3).

<T̃ νξ(p1)J̃ κ(p3)J̃λ(p4)>ren=<T̃ νξ(p1)J̃ κ(p3)J̃λ(p4)> − 2iπ2

(2π)4A
νξκλ
TJJ (p1, p3, p4) (7.1.13)

Due to the PV masses, there exist potential anomalous terms in the R-symmetry and
conformal symmetry Ward identities of the regulated correlator <T̃ νξ(p1)J̃ κ(p3)J̃λ(p4)>.
On the contrary, the PV regulator we are using respects diffeomorphisms and Lorentz
symmetry, which means that <T̃ νξ(p1)J̃ κ(p3)J̃λ(p4)> manifestly satisfies the Ward iden-
tities associated with these two symmetries. Thus, the term AνξκλTJJ (p1, p3, p4) we use to
renormalize <T JJ>, respects on its own Lorentz symmetry, i.e.

A
[ν,ξ]κλ
TJJ (p1, p3, p4) = 0 (7.1.14)

and diffeomorphisms. The latter is satisfied since AνξκλTJJ (p1, p3, p4) can arise from the
following covariant counterterm

Counterterm

ITJJ = e

(
2iπ2

(2π)4
i

54A
ρ∇ξ∇ξAρ + 2iπ2

(2π)4
2i
9 log 2m2

1A
ρAρ −

2iπ2

(2π)4
i

108g
αβRαβAρA

ρ

)
,

(7.1.15)
where

− 2iπ2

(2π)4A
νξκλ
TJJ (x, y, z) = i2

δ

δAλ(z)
δ

δAκ(y)
δ

δeνξ(x)ITJJ . (7.1.16)

Note here that AνξκλTJJ (p1, p3, p4) is a local polynomial in the external momenta, which
was initially derived after the loop computation that examined all symmetry identities
associated with <T JJ>. The exact expression of AνξκλTJJ (p1, p3, p4) is complicated so we
just state its real space version AνξκλTJJ (x, y, z), which is given by the above equation. Notice
that the last term of (7.1.15) does not contribute to the flat space correlator <JJ>, so
(7.1.15) has the same contribution to this correlator as the counterterm (7.1.5). Thus,
(7.1.15) can be used to renormalize at the same time < T JJ > and <JJ >. Taking
into account the difference in the normalization of the gauge fields, the same counterterm
with (7.1.15) was found in [105], where the trace Ward identity of the Weyl fermion was
examined using also a PV regulator.

Now let us take a closer look at the Ward identities that are classically violated by the
PV regulator, namely the R-symmetry and conformal symmetry identities.
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R-symmetry

Taking into account the renormalized correlators, the R-symmetry Ward identity which is
manifestly satisfied in the regulated theory is the following

p3κ <J̃ κ(p3)J̃ λ(p4)T̃ νξ(p1)>ren +D̃νξλ
3R

= −i <BR(p3)J̃ λ(p4)T̃ νξ(p1)> −ηνξ <BR(p13)J̃ λ(p4)>

− (ηνλησξ + ηνσηλξ − ηνξηλσ) <J̃σ(p14)BR(p3)> + i

6η
νλ <s̃ξ(2|1)(p14)BR(p3)>

− 2iπ2

(2π)4 p3κA
νξκλ
TJJ (p1, p3, p4). (7.1.17)

Comparing with the classical R-symmetry identity (4.2.4), we see that the above rhs
comprises the potential R-anomaly of <T JJ >. The black correlators are the breaking
terms in the R-symmetry path integral identity of <T JJ >. In particular, the 3-point
function <BRJ T > comes from the non conserved regulated R-current (6.2.6), while the
black <BRJ> is a consequence of the modified R-symmetry variation of the stress tensor
in the regulated theory (5.2.1). The coloured correlators, are the breaking terms in the
R-symmetry path integral identities of the corresponding coloured seagull correlators of
(4.2.4). AνξκλTJJ (p1, p3, p4) comes from the renormalization of <T JJ>.

In the large PV mass limit we find that the above rhs vanishes, thus the R-symmetry
identity is satisfied

p3κ <J̃ κ(p3)J̃ λ(p4)T̃ νξ(p1)>ren +D̃νξλ
3R = 0. (7.1.18)

Conformal symmetry

Similarly, the conformal symmetry identity of <T JJ> in the presence of the PV regulator
is given by

<T̃ νν (p1)J̃ κ(p3)J̃ λ(p4)>ren +D̃κλ
3D

=<BW (p1)J̃ κ(p3)J̃ λ(p4)> +8i
9 η

κλ <BW (p1)s̃(1|0)(p34)> − 2iπ2

(2π)4 ηνξA
νξκλ
TJJ (p1, p3, p4).

(7.1.19)

Comparing with (4.2.6) we find that the whole rhs is the potential conformal anomaly.
ηνξA

νξκλ
TJJ (p1, p3, p4) comes from the renormalization of <T JJ>, while the black and blue

correlators of the rhs are a consequence of the breaking of scale invariance (6.2.6) in the
Ward identities of <T JJ> and the blue <T s(1|0)> of (4.2.6) respectively.
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In the large PV mass limit we find that

<BW (p1)J̃ κ(p3)J̃ λ(p4)> +8i
9 η

κλ <BW (p1)s̃(1|0)(p34)> − 2iπ2

(2π)4 ηνξA
νξκλ
TJJ (p1, p3, p4)

= 1
36π2

(
pλ3p

κ
4 − p3 · p4η

κλ
)
, (7.1.20)

which exactly confirms the conformal anomaly of (B.1.3) for <T JJ>.

7.2 Fermionic correlators

In this section we examine correlation functions that include fermionic operators. We
compute the symmetry identities of <QQ̄>, <QQ̄J > and <QQ̄JJ > in the regulated
theory and confirm the anomalies (B.1.3) that were derived through the WZ consistency
conditions. In particular, we find that <QQ̄> is free of anomalies, <QQ̄J> respects Q-
supersymmetry and R-symmetry but is anomalous in S-supersymmetry, while <QQ̄JJ>
has Q- and S-supersymmetry anomalies but no R-symmetry anomaly.

7.2.1 <QQ̄>

In the regulated theory, the classical Q- and S-supersymmetry Ward identities (4.2.3) for
the 2-point function <QQ̄> become

p1µ <Q̃µ(p1) ˜̄Qν(p2)>= 0 , γµ <Q̃µ(p1) ˜̄Qν(p2)>=<BS(p1) ˜̄Qν(p2)> . (7.2.1)

Q-supersymmetry is preserved, while S-supersymmetry is broken by the PV masses (6.2.6).

In the large PV mass limit we find

<BS(p1) ˜̄Qν(p2)>= − 2iπ2

(2π)4γµγσγ5ε
νρµσp2ρ

(
1
6 m

2
1 log 2− p2

2
72

)
. (7.2.2)

After renormalizing the 2-point function as follows

<Q̃µ(p1) ˜̄Qν(p2)>ren=<Q̃µ(p1) ˜̄Qν(p2)> + 2iπ2

(2π)4γσγ5ε
νρµσp2ρ

(
1
6 m

2
1 log 2 − p2

2
72

)
,

(7.2.3)
we get that

p1µ <Q̃µ(p1) ˜̄Qν(p2)>ren= 0 , γµ <Q̃µ(p1) ˜̄Qν(p2)>ren= 0. (7.2.4)

The last term of (7.2.3) that we use to remove the S-supersymmetry anomaly, is zero when
contracted with p1µ or p2ν , thus it does not spoil the Q-supersymmetry identity. The 2-
point function <Q̃µ(p1) ˜̄Qν(p2)> is invariant under charge conjugation and the exchange
of µ↔ ν and p1 ↔ p2. Charge conjugation is defined as C(...)TC−1, where C is the charge
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conjugation matrix and T denotes the transpose matrix. So we have that

C(<Q̃µ(p1) ˜̄Qν(p2)>)TC−1 =<Q̃ν(p2) ˜̄Qµ(p1)> . (7.2.5)

The term we used in (7.2.3) for renormalizing <QQ̄> also respects this charge conjugation
symmetry. This is important so that the renormalized 2-point function is free of anomalies
also when contracted with γν , i.e. in the S-supersymmetry identity related with Q̄ν . Below
is the counterterm that we need to add to the action.

Counterterm

IQQ =
(
− 2iπ2

(2π)4
1

144ε
αβρσψ̄αγσγ5DρD

ξDξψβ −
2iπ2

(2π)4 ε
βρασ 1

12 m
2
1 log 2 ψ̄αγσγ5Dρψβ

)
(7.2.6)

Like (7.1.5), we use here the covariant derivative Dξ instead of a partial derivative, in
order to not break diffeomorphisms.

7.2.2 <QQ̄J>

If we renormalize the regulated 3-point function < QQ̄J > as follows, it satisfies the
classical Q-supersymmetry and R-symmetry Ward identities (4.2.9), (4.2.12), and the S-
supersymmetry anomaly of (B.1.3) is reproduced.

<Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)>ren=<Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)> − 2iπ2

(2π)4A
µνκ
QQJ(p1, p2, p3). (7.2.7)

AµνκQQJ(p1, p2, p3) must respect the same charge conjugation symmetry as
<Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)>, thus we have the following identity

C(AµνκQQJ(p1, p2, p3))TC−1 = AνµκQQJ(p2, p1, p3). (7.2.8)

In the next subsections we examine the Q- and S-supersymmetry identities of
< Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3) > related to the supercurrent Q̃µ. The identity (7.2.8) is im-
portant so that the same analysis is still valid in the supersymmetry identities related to˜̄Qν . The counterterm that we need to add to the action to get the above renormalization
is the following

Counterterm

IQQJ = 2iπ2

(2π)4
2

108A
ρ
(
∂[βψ̄α]γαγ5∂ρψβ + ∂[ρψ̄

α]γαγ5∂βψ
β + ∂[αψ̄β]γργ5∂βψα

+∂[αψ̄β]γαγ5∂βψρ + 2∂β∂[ρψ̄α]γαγ5ψβ
)

+ 2iπ2

(2π)4
i

108Aρ
(7

4ε
ρξαβ∂αψ̄

σγξ∂βψσ + 1
2ε

ρσξα∂αψ̄σγξ∂βψ
β + 7

2ε
ρσξα∂βψ̄σγξ∂αψ

β
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+ 7
4ε

ρξαβ∂σψ̄αγξ∂
σψβ + ερσξα∂β∂αψ̄σγξψ

β

−1
2ε

ρσαβ∂αψ̄σγξ∂βψ
ξ − 1

2ε
ρσαβ∂βψ̄σγξ∂

ξψα

)
, (7.2.9)

where we have that

− 2iπ2

(2π)4A
µνκ
QQJ(x1, x2, x3) = i2

δ

δAκ(x3)
δ

δψ̄µ(x1)
IQQJ

←−
δ

δψν(x2) . (7.2.10)

AµνκQQJ(p1, p2, p3) is a local polynomial in the external momenta and it was first computed
through the one loop calculation. Since it has a quite lengthy and complicated form,
we only write here its real space version AµνκQQJ(x1, x2, x3) which is given by the above
equation.

Now let us examine each one of the three Ward identities associated with <QQ̄J>.

Q-supersymmetry

The PV regulator modifies the classical Q-supersymmetry identity (4.2.9) of <QQ̄J> as
follows

p1µ <Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)>ren +C̃νκ3Q

= ip2µB
νµσ <J̃σ(p12)J̃ κ(p3)>ren −iγ5 <Q̃κ(p13) ˜̄Qν(p2)>ren

+ 2iπ2

(2π)4

(
Aνκ3Q(p1, p2, p3)− p1µA

µνκ
QQJ(p1, p2, p3)

)
− i

3γ
κγ5 <BS(p13) ˜̄Qν(p2)> (7.2.11)

where we used that <T J>= 0. The last term of (7.2.11) is the new breaking term that
we get since the Q-supersymmetry variation of the R-current is changed in the regulated
theory (5.2.2). The above identity is satisfied by construction at the regulated level.
Notice however that in (7.2.11) we have used the renormalized, and not the regulated
2-point functions. The reason for that is that we have already fixed our theory at the
level of the 2-point functions by adding courterterms that restore the symmetries broken
by the regulator. These counterterms contribute to the above identity, in particular,
Aνκ3Q is the consequence of the renormalization of <QQ̄> (7.2.6) and <JJ > (7.1.5).
p1µA

µνκ
QQJ(q1, q2, q3) comes from the renormalization of <QQ̄J>.

The last line of (7.2.11) is the potential Q-supersymmetry anomaly of <QQ̄J>. The
2-point function <BSQ̄> was computed in (7.2.2). One just needs to make the appropriate
changes in the external momenta and use the result in (7.2.11). In the limit where the PV
regulator is removed we find that

2iπ2

(2π)4

(
Aνκ3Q(p1, p2, p3)− p1µA

µνκ
QQJ(p1, p2, p3)

)
− i

3γ
κγ5 <BS(p13) ˜̄Qν(p2)>= 0, (7.2.12)
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thus, there is no Q-supersymmetry anomaly in <QQ̄J>.

R-symmetry

Taking into account the renormalized correlators, the R-symmetry Ward identity of
<QQ̄J> that is manifestly satisfied in the regulated theory is given by

p3κ <Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)>ren +C̃µν3R − iγ5 <Q̃µ(p13) ˜̄Qν(p2)>ren

− i <Q̃µ(p1) ˜̄Qν(p23)>ren γ5 = −i <Q̃µ(p1) ˜̄Qν(p2)BR(p3)> +3
8ε

νξµσγξ <J̃σ(p12)BR(p3)>

+ 1
8η

µνγσγ5 <s̃
σ
(2|1)(p12)BR(p3)> + i

3γ
µγ5 <BS(p13) ˜̄Qν(p2)> + i

3 <Q̃µ(p1)B̄S(p23)> γνγ5

+ 2iπ2

(2π)4

(
Aµν3R(p1, p2, p3)− p3κA

µνκ
QQJ(p1, p2, p3)

)
. (7.2.13)

Comparing this identity with (4.2.12), we see that the above rhs comprises the potential
R-symmetry anomaly of <QQ̄J>.

The 3-point function < QQ̄BR > is there due to the fact that the R-current is no
longer conserved in the presence of the PV masses (6.2.6). The 2-point functions that
contain BS arise because the R-symmetry variation of the supercurrent is modified in the
regulated theory (5.2.1), compared to the massless model (4.1.11). Finally the red and
blue terms are the contribution to the potential R-anomaly of the corresponding coloured
seagull correlators of (4.2.12). Recall that (4.2.12) is the R-symmetry identity one gets
from conformal supergravity. This identity is a linear combination of path integral Ward
identities of the 3-point function <QQ̄J > and other seagull correlators. The presence
of the PV mass classically violates the R-symmetry identities of the seagull correlators
too. Aµν3R is the contribution of the renormalized <QQ̄> correlators (7.2.6), while AµνκQQJ

is there because of the renormalized 3-point function <QQ̄J>.

In the large PV mass limit we find that the whole rhs vanishes, hence R-symmetry is
respected by <QQ̄J>, i.e.

p3κ <Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)>ren +C̃µν3R

− iγ5 <Q̃µ(p13) ˜̄Qν(p2)>ren −i <Q̃µ(p1) ˜̄Qν(p23)>ren γ5 = 0. (7.2.14)
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S-supersymmetry

Following the same procedure, we find the S-supersymmetry Ward identity of the regulated
theory

− iγµ <Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)>ren +C̃νκ3S + 3i
4 γ5 <J̃ ν(p12)J̃ κ(p3)>ren=

− i <BS(p1) ˜̄Qν(p2)J̃ κ(p3)> +
√

2
3 ηνκ <BS(p1)˜̄s(3| 12 )(p23)>

+ 2iπ2

(2π)4

(
Aνκ3S(p1, p2, p3) + iγµA

µνκ
QQJ(p1, p2, p3)

)
. (7.2.15)

The rhs of this identity is the potential S-supersymmetry anomaly of <QQ̄J >. The
second line is a consequence of the fact that the gamma trace of the supercurrent is not
zero in the regulated theory (6.2.6). In particular the 3-point function <BSQ̄J > is the
breaking term of the S-supersymmetry identity of <QQ̄J >, while the blue correlator is
the breaking term of the S-supersymmetry identity of the blue 2-point seagull correlator in
(4.2.14). Aνκ3S and AµνκQQJ are the contributions of the renormalized <JJ> and <QQ̄J>
correlators.

In the large PV mass limit, i.e. for m1 →∞ we find that

− i <BS(p1) ˜̄Qν(p2)J̃ κ(p3)> +
√

2
3 ηνκ <BS(p1)˜̄s(3| 12 )(p23)>

+ 2iπ2

(2π)4

(
Aνκ3S(p1, p2, p3) + iγµA

µνκ
QQJ(p1, p2, p3)

)
= 1

576π2

(
2iεκναβp1αp2β + 4γ5

(
pκ2p

ν
2 + pκ2p

ν
1 − ηκνp1 · p2 − ηκνp2

2

)
+ γαβ

(
iηκνεαβρσp1ρp2σ − ipν1εκαβρp2ρ + ipκ2ε

ναβρp1ρ + ip1 · p2ε
κναβ

+ip2
2ε
κναβ − ipν2εκαβρp2ρ + ipκ2ε

ναβρp2ρ
))
, (7.2.16)

which exactly confirms the S-supersymmetry anomaly (B.1.3) of <QQ̄J> in the massless
and classically conformal WZ model.

7.2.3 <QQ̄JJ>

The renormalized 4-point function<QQ̄JJ> that reproduces the Q- and S-supersymmetry
anomalies (B.1.3) and at the same time is free of R-symmetry anomalies is given by

<Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>ren

=<Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)> − 2iπ2

(2π)4A
µνκλ
QQJJ(p1, p2, p3, p4). (7.2.17)

AµνκλQQJJ(p1, p2, p3, p4) is a local polynomial in the external momenta and it was derived by
the loop computation. It respects the same charge conjugation symmetry with
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<Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)> and is invariant under the exchange of κ↔ λ and p3 ↔ p4,
like the 4-point function. We have that

C(AµνκλQQJJ(p1, p2, p3, p4))TC−1 = AνµκλQQJJ(p2, p1, p3, p4) (7.2.18)

and
AµνκλQQJJ(p1, p2, p3, p4) = AµνλκQQJJ(p1, p2, p4, p3). (7.2.19)

The counterterm we need in order to get the above renormalized 4-point correlator is the
following

Counterterm

IQQJJ = (−i)
(
− 2iπ2

(2π)4

( 1
162AαA

β∂ξψ̄
αγξψβ −

5
648AβA

β∂ξψ̄
αγξψα + 1

108∂αA
ξAβψ̄αγξψβ

+ 1
162AαA

βψ̄αγξ∂βψξ −
1

216AβA
β∂αψ̄

αγξψξ −
5

648AβA
βψ̄αγξ∂αψξ

− 1
108∂ξAαAβψ̄

αγξψβ − 1
54A

ξAα∂αψ̄
βγξψβ + 1

54A
ξAβ∂αψ̄

αγξψβ + 1
36∂αA

βAξψ̄αγξψβ

)
− 2iπ2

(2π)4

( 5i
1296AξAσε

σαβτ ψ̄αγ
ξγ5∂τψβ + i

216∂βAσAτ ε
σαξτ ψ̄αγξγ5ψ

β

+ 23i
1296A

σAτ ε
ταβξ∂σψ̄αγξγ5ψβ + i

432∂βAσAτ ε
τσξβψ̄αγξγ5ψ

α

− 5i
1296A

σAτ ε
ταξβ∂βψ̄αγξγ5ψσ −

23i
1296AτAσε

ταξβψ̄αγξγ5∂βψ
σ
))

, (7.2.20)

where we have that

− 2iπ2

(2π)4A
µνκλ
QQJJ(x1, x2, x3, x4) = i3

δ

δAλ(x4)
δ

δAκ(x3)
δ

δψ̄µ(x1)
IQQJJ

←−
δ

δψν(x2) . (7.2.21)

AµνκλQQJJ(p1, p2, p3, p4) is the momentum space version of AµνκλQQJJ(x1, x2, x3, x4). Next we
examine the symmetry identities associated with <QQ̄JJ >. In particular, we analyse
the R-symmetry and the supersymmetry identities that correspond to the currents J̃ κ

and Q̃µ respectively.

Q-Supersymmetry

In the regulated theory the classical Q-supersymmetry Ward identity (4.2.16) is modified
as follows

p1µ <Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>ren +C̃νκλ4Q

= ip2µB
νµσ <J̃σ(p12)J̃ κ(p3)J̃ λ(p4)> −γξ2 <T̃ νξ(p12)J̃ κ(p3)J̃ λ(p4)>ren

− iγ5 <Q̃κ(p13) ˜̄Qν(p2)J̃ λ(p4)>ren −iγ5 <Q̃λ(p14) ˜̄Qν(p2)J̃ κ(p3)>ren

+ γ5B
νκσ <J̃σ(p123)J̃ λ(p4)>ren +γ5B

νλσ <J̃σ(p124)J̃ κ(p3)>ren
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− i

3γ
κγ5 <BS(p13) ˜̄Qν(p2)J̃ λ(p4)> − i3γ

λγ5 <BS(p14) ˜̄Qν(p2)J̃ κ(p3)>

+ ηνλ
√

2
9 γκγ5 <BS(p13)s̄(3| 12 )(p24)> +ηνκ

√
2

9 γλγ5 <BS(p14)s̄(3| 12 )(p23)>

+ 2iπ2

(2π)4

(
Aνκλ4Q (p1, p2, p3, p4)− p1µA

µνκλ
QQJJ(p1, p2, p3, p4)

)
. (7.2.22)

The last three lines of the above rhs form the potential Q-supersymmetry anomaly. The
presence of the correlators that involve the operator BS is a consequence of the modified
Q-supersymmetry variation of the R-current in the regulated theory (5.2.2). In particular,
the 3-point correlators <BSQ̄J> comprise the breaking terms of the path integral Ward
identity of <QQ̄JJ >, while the coloured 2-point functions are the breaking terms in
the path integral Q-supersymmetry Ward identities of the corresponding coloured seagull
correlators of (4.2.16). Aνκλ4Q is the contribution of the renormalized lower order corre-
lators of the rhs. We have already computed the 3-point function < BSQ̄J > in the
regulated S-supersymmetry identity of <QQ̄J >. For large PV masses we confirm the
Q-supersymmetry anomaly (B.1.3) of <QQ̄JJ>, i.e.

− i

3γ
κγ5 <BS(p13) ˜̄Qν(p2)J̃ λ(p4)> − i3γ

λγ5 <BS(p14) ˜̄Qν(p2)J̃ κ(p3)>

+ ηνλ
√

2
9 γκγ5 <BS(p13)s̄(3| 12 )(p24)> +ηνκ

√
2

9 γλγ5 <BS(p14)s̄(3| 12 )(p23)>

+ 2iπ2

(2π)4

(
Aνκλ4Q (p1, p2, p3, p4)− p1µA

µνκλ
QQJJ(p1, p2, p3, p4)

)
= 2iπ2

(2π)4
−2i
81 ερκλσ(p4ρ − p3ρ)p2µ

(
−1

8ε
νξµσγξ + i

4γ5γ
µηνσ − i

4γ5γ
νηµσ

)
. (7.2.23)

R-symmetry

The R-symmetry identity at the regulated level is given by

p3κ <Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>ren +C̃µνλ4R

− iγ5 <Q̃µ(p13) ˜̄Qν(p2)J̃ λ(p4)>ren −i <Q̃µ(p1) ˜̄Qν(p23)J̃ λ(p4)>ren γ5 =

− i <Q̃µ(p1) ˜̄Qν(p2)BR(p3)J̃ λ(p4)> + 2iπ2

(2π)4

(
Aµνλ4R (p1, p2, p3, p4)− p3κA

µνκλ
QQJJ(p1, p2, p3, p4)

)
+ i

3γ
µγ5 <BS(p13) ˜̄Qν(p2)J̃ λ(p4)> + i

3 <Q̃µ(p1)B̄S(p23)J̃ λ(p4)> γνγ5

+ 3
8ε

νξµσγξ <J̃σ(p12)BR(p3)J̃ λ(p4)> +1
8η

µνγσγ5 <s̃
σ
(2|1)(p12)BR(p3)J̃ λ(p4)>

+ ηµλ
√

2
3 <s̃(3| 12 )(p14) ˜̄Qν(p2)BR(p3)> −ηµλ

√
2

9 <s̃(3| 12 )(p14)B̄S(p23)> γνγ5

+ ηνλ
√

2
3 <Q̃µ(p1)˜̄s(3| 12 )(p24)BR(p3)> −ηνλ

√
2

9 γµγ5 <BS(p13)˜̄s(3| 12 )(p24)> (7.2.24)
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The whole rhs is the potential R-symmetry anomaly. Correlators that involve BR are
a consequence of the non conserved regulated R-current (6.2.6), while correlators that
involve BS arise because the R-symmetry variation of the supercurrent is modified in the
regulated theory. The black correlators of the rhs, form the breaking terms of the path
integral identity of <QQ̄JJ >, while the coloured correlators are the breaking terms of
the path integral R-symmetry identities of the corresponding coloured seagull correlators
of (4.2.18). Aµνλ4R is the contribution of the renormalized correlator <QQ̄J >. In the
large PV mass limit we get that the rhs vanishes, hence the R-symmetry Ward identity of
<QQ̄JJ> is satisfied

p3κ <Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>ren +C̃µνλ4R

− iγ5 <Q̃µ(p13) ˜̄Qν(p2)J̃ λ(p4)>ren −i <Q̃µ(p1) ˜̄Qν(p23)J̃ λ(p4)>ren γ5 = 0. (7.2.25)

S-supersymmetry

The S-supersymmetry identity of <QQ̄JJ> that is manifestly satisfied in the regulated
theory is given by

− iγµ <Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>ren +C̃νκλ4S + 3i
4 γ5 <J̃ ν(p12)J̃ κ(p3)J̃ λ(p4)>

= 2iπ2

(2π)4 iγµA
µνκλ
QQJJ(p1, p2, p3, p4)− i <BS(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>

+ ηνκ
√

2
3 <BS(p1)˜̄s(3| 12 )(p23)J̃ λ(p4)> +ηνλ

√
2

3 <BS(p1)˜̄s(3| 12 )(p24)J̃ κ(p3)>

+ 8
9η

κλ <s̃(1|0)(p34)BS(p1) ˜̄Qν(p2)> . (7.2.26)

The rhs is the potential S-supersymmetry anomaly. Correlators that contain BS are there,
since the gamma trace of the supercurrent is no longer zero (6.2.6). The coloured cor-
relators are the breaking terms in the S-supersymmetry identities of the coloured seagull
correlators of (4.2.20). In the limit where the regulator vanishes and the PV fields decouple
from the original massless model, we find that

2iπ2

(2π)4 iγµA
µνκλ
QQJJ(p1, p2, p3, p4)− i <BS(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>

+ ηνκ
√

2
3 <BS(p1)˜̄s(3| 12 )(p23)J̃ λ(p4)> +ηνλ

√
2

3 <BS(p1)˜̄s(3| 12 )(p24)J̃ κ(p3)>

+ 8
9η

κλ <s̃(1|0)(p34)BS(p1) ˜̄Qν(p2)>

= 1
288π2

(
−iγναp3αη

κλ + iγλαp3αη
κν + iγκλpν3 − iγκνpλ3 + 2iηκνpλ3 − 2iηκλpν3 + γ5ε

κλνα p3α
3

)

+
(
p3 ↔ p4

κ ↔ λ

)
. (7.2.27)
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This results confirms the S-supersymmetry anomaly (B.1.3) of <QQ̄JJ>.

7.3 Total counterterm

The total counterterm that we need to add in the PV regulated theory to retrieve the sym-
metry identities and anomalies of conformal supergravity in the correlators we analysed,
is the following:

I = Idiv + Ifin, (7.3.1)

where Idiv denotes the divergent part

Idiv = 2iπ2

(2π)4

(2i
9 m

2
1 log 2AρAρ − εβρασ

1
12 m

2
1 log 2 ψ̄αγσγ5Dρψβ

)
(7.3.2)

and Ifin denotes the finite part

Ifin = − 2iπ2

(2π)4
1

144ε
αβρσψ̄αγσγ5DρD

ξDξψβ + 2iπ2

(2π)4
i

54A
ρ∇µ∇µAρ −

2iπ2

(2π)4
i

108g
αβRαβAρA

ρ

+ 2iπ2

(2π)4
2

108A
ρ
(
∂[βψ̄α]γαγ5∂ρψβ + ∂[ρψ̄

α]γαγ5∂βψ
β + ∂[αψ̄β]γργ5∂βψα

+∂[αψ̄β]γαγ5∂βψρ + 2∂β∂[ρψ̄α]γαγ5ψβ
)

+ 2iπ2

(2π)4
i

108Aρ
(7

4ε
ρξαβ∂αψ̄

σγξ∂βψσ + 1
2ε

ρσξα∂αψ̄σγξ∂βψ
β + 7

2ε
ρσξα∂βψ̄σγξ∂αψ

β

+ 7
4ε

ρξαβ∂σψ̄αγξ∂
σψβ + ερσξα∂β∂αψ̄σγξψ

β

−1
2ε

ρσαβ∂αψ̄σγξ∂βψ
ξ − 1

2ε
ρσαβ∂βψ̄σγξ∂

ξψα

)
− i

(
− 2iπ2

(2π)4

( 1
162AαA

β∂ξψ̄
αγξψβ −

5
648AβA

β∂ξψ̄
αγξψα + 1

108∂αA
ξAβψ̄αγξψβ

+ 1
162AαA

βψ̄αγξ∂βψξ −
1

216AβA
β∂αψ̄

αγξψξ −
5

648AβA
βψ̄αγξ∂αψξ

− 1
108∂ξAαAβψ̄

αγξψβ − 1
54A

ξAα∂αψ̄
βγξψβ + 1

54A
ξAβ∂αψ̄

αγξψβ + 1
36∂αA

βAξψ̄αγξψβ

)
− 2iπ2

(2π)4

( 5i
1296AξAσε

σαβτ ψ̄αγ
ξγ5∂τψβ + i

216∂βAσAτ ε
σαξτ ψ̄αγξγ5ψ

β

+ 23i
1296A

σAτ ε
ταβξ∂σψ̄αγξγ5ψβ + i

432∂βAσAτ ε
τσξβψ̄αγξγ5ψ

α

− 5i
1296A

σAτ ε
ταξβ∂βψ̄αγξγ5ψσ −

23i
1296AτAσε

ταξβψ̄αγξγ5∂βψ
σ
))

. (7.3.3)

Since I was deduced through a loop computation, it is a subset of the complete coun-
terterm that relates the FZ multiplet to the superconformal one. In principle, performing
a similar analysis involving (a suitable set of) other correlators one should be able to
construct the full counterterm, though this would be tedious in practice. In the countert-
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erm I we use partial derivatives, something that will introduce diffeomorphism anomalies
in higher order correlation functions. We can always covariantize the above expression
to remove the explicit breaking in diffeomorphisms. This will not affect the correlation
functions we analysed in this chapter.
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CHAPTER 8

Non anomalous Q+S supersymmetry

Using the PV Lagrangian (6.1.1), we regularized the massless and conformal WZ model
(4.1.1). The classical symmetry Ward identities of section (4.2) were modified in the reg-
ulated theory and contained extra breaking terms depending on the PV regulator. These
terms do not vanish, even in the limit where the PV masses are sent to infinity and the
regulator decouples from the original model. By adding the local counterterm (7.3.1), we
can restore some of the broken symmetries by the regulator, and reproduce the anomalies
(B.1.3) of conformal supergravity that were derived through the WZ consistency condi-
tions. In particular, the counterterm (7.3.1) renders all 2-point functions non anomalous,
and it contributes so that <QQ̄J > has only an S-supersymmetry anomaly, <QQ̄JJ >
has Q-and S-supersymmetry anomalies, while <T JJ> has the standard trace anomaly.

In chapter 4, based on the commutator of two supersymmetry variations (4.4.11) and
the presence of the genuine R-symmetry anomaly, we argued that one cannot remove the
Q-supersymmetry anomaly of conformal supergravity without breaking diffeomorphisms
and/or Lorentz symmetry. Although this is true, there still exists a manifestly non anoma-
lous linear combination of the Q- and S-supersymmetry of conformal supergravity. It is
straightforward to find this combination using the results and Ward identities of the pre-
vious chapter. As we will see in the appendix G, the non anomalous combination of Q+S
supersymmetry we state here, is the supersymmetry of old minimal supergravity.

97
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2- and 3-point functions

At the 2-point function level, according to (7.2.1) there is a non anomalous supersymmetry
in the regulated theory, which coincides with Q-supersymmetry of conformal supergravity.
At the 3-point function level now, we are considering the Q-supersymmetry Ward identity
(7.2.11) of <QQ̄J> and the S-supersymmetry identity (7.2.1) of <QQ̄>. Note however,
that we are considering these only at the regulated level, i.e. we do not renormalize
the correlators, thus Aνκ3Q and AµνκQQJ are absent from (7.2.11). (7.2.11) and (7.2.1) are
manifestly satisfied and both of them contain the breaking correlators < BSQ̄ >. We
can combine these two identities in a way that the breaking terms cancel between each
other. The manifestly non anomalous (i.e. with no breaking terms that depend on the
PV regulator) identity that we get is the following

p1µ <Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)> +C̃νκ3Q = ip2µB
νµσ <J̃σ(p12)J̃ κ(p3)> −iγ5 <Q̃κ(p13) ˜̄Qν(p2)>

− i

3γ
κγ5γµ <Q̃µ(p13) ˜̄Qν(p2)>, (8.0.1)

where C̃νκ3Q is the regulated version of Cνκ3Q (4.2.10) and Bνµσ is given by (4.2.11).

4-point function

Similarly, at the 4-point function level we can use the Q-supersymmetry identity (7.2.22)
of <QQ̄JJ > and the S-supersymmetry identity (7.2.15) of <QQ̄J >. Again we are
considering these identities at the regulated level only. We do not renormalize any corre-
lators. Combining (7.2.22) and (7.2.15) so that their breaking correlators cancel, we find
the non anomalous identity

p1µ <Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)> +C̃νκλ4Q

= ip2µB
νµσ <J̃σ(p12)J̃ κ(p3)J̃ λ(p4)> −γξ2 <T̃ νξ(p12)J̃ κ(p3)J̃ λ(p4)>

− iγ5 <Q̃κ(p13) ˜̄Qν(p2)J̃ λ(p4)> −iγ5 <Q̃λ(p14) ˜̄Qν(p2)J̃ κ(p3)>

+ γ5B
νκσ <J̃σ(p123)J̃ λ(p4)> +γ5B

νλσ <J̃σ(p124)J̃ κ(p3)>

+ 1
3γ

λγ5

(
−iγµ <Q̃µ(p14) ˜̄Qν(p2)J̃ κ(p3)> +C̃νκ3S + 3i

4 γ5 <J̃ ν(p124)J̃ κ(p3)>
)

+ 1
3γ

κγ5

(
−iγµ <Q̃µ(p13) ˜̄Qν(p2)J̃ λ(p4)> +C̃νλ3S + 3i

4 γ5 <J̃ ν(p123)J̃ λ(p4)>
)
, (8.0.2)

where C̃νκλ4Q , C̃νκ3S are the regulated versions of Cνκλ4Q (4.2.17) and Cνκ3S (4.2.15) respectively.

The fact that there exists a manifestly non anomalous combination of Q+S supersym-
metry (at least at the correlation functions we are considering), and that combination is
exactly the supersymmetry of old minimal supergravity (see appendix G), means that the
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regulated theory has a non anomalous supercurrent. This supercurrent though, belongs
to the Ferrara-Zumino supermultiplet (which couples to old minimal supergravity), rather
than to the superconformal current multiplet. After sending the PV mass to infinity in
order to retrieve conformal supergravity, Q-supersymmetry is necessarily anomalous.
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CHAPTER 9

Q-supersymmetry anomaly with momentum routing

In the previous chapters we provided a thorough analysis of the Ward identities and anoma-
lies in the free and massless WZ model. We regularized the theory with the PV Lagrangian
(6.1.1) that classically violates R-symmetry, Q- and S-supersymmetry of conformal super-
gravity. After removing the regulator and adding the local counterterm (7.3.1), we were
able to reproduce for the correlation functions of interest the superconformal anomalies
(B.1.3) which were derived through the WZ consistency conditions.

We could, however, follow another approach for regularizing the classical Ward identi-
ties of section (4.2). The simplest and most naive way to do that would be to introduce
a hard cut-off in the integration variable of the Feynman integrals. We briefly sketched
this regularization procedure in subsection (3.1.1). Even though we use another regula-
tor here, the strategy to compute the Q-supersymmetry anomaly of the 4-point function
<QQ̄JJ> remains the same. We first need to fix the theory at the lower order correla-
tors, in a way that they satisfy their standard symmetry identities and anomalies. When
we obtain all the partially renormalized 2- and 3-point functions that are involved in the
Q-supersymmetry identity (4.2.16), only then we should examine the possibility of a Q-
supersymmetry anomaly in <QQ̄JJ >. The results of the analysis in this chapter were
presented in [80].

The computation with momentum cut-off, is significantly more complicated and te-
dious than the corresponding calculation with PV regularization. In the latter, the result

101
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that we get after computing a correlator is unambiguous. All Feynman integrals in PV
regularization are properly defined. Different choices of momentum routing at the Feyn-
man diagrams (or equivalently translations at the integration variable in the Feynman
integrals) yield the same result. The only thing we can do to renormalize a correlator is
to add the appropriate counterterms in the Lagrangian. In cut-off regularization though,
besides the counterterms, one has the freedom to choose an arbitrary momentum routing
for the Feynman diagrams that correspond to the correlator under consideration. See
the analysis of (3.2.2). Divergent correlators with different momentum routing, differ by
finite (or even divergent) surface terms. This greatly complicates the analysis of the Ward
identities. If we want to examine whether a potential anomalous term can be removed, we
have to take into account at the same time, the combination of the allowable counterterms
and the extra terms that arise after an arbitrary shift at the momentum routing of the
Feynman diagrams. The number of equations one has to solve, makes it almost impossible
to fix the theory up to the 4-point function level.

Below we present the analysis for the Q-supersymmetry identity of <QQ̄>. The aim is
to show how one can start fixing the theory from the 2-point function level using cut-off.
This is done for completeness though, and the calculations regarding <QQ̄> will not
play any role in the analysis of the Q-supersymmetry anomaly of <QQ̄JJ >, which we
compute next. We also want to elaborate on what happens if one naively computes Ward
identities of higher order correlators without having first fixed the lower order correlators.

9.1 Q-supersymmetry of <QQ̄>

We are interested in the classical Q-supersymmetry Ward identity of <QQ̄>, i.e.

p1µ <Qµ(p1)Q̄ν(p2)>= 0. (9.1.1)

After performing the Wick contractions, we find that

<Qµ(p1)Q̄ν(p2)>=
∫

d4q

(2π)4
1
2C

µ
0 (q) −i

i(/p1 − /q)
Aν0(−q)−i

q2 , (9.1.2)

where

Cµ0 (q) = i/qγ
µ + i

3 [γµ, γρ] q1ρ , Aν0(q) = iγν/q −
i

3 [γν , γρ] q2ρ . (9.1.3)

The above integral is by power counting cubically divergent, so we regulate with a momen-
tum cut-off. The correlation function that we examine has also the following symmetry

<Qν(p2)Q̄µ(p1)>= C(<Qµ(p1)Q̄ν(p2)>)TC−1 , (9.1.4)
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where C is the charge conjugation matrix and T denotes the transpose matrix. After
a small and straightforward computation it is easy to see that the choice of momentum
routing that we made in (9.1.2) respects the aforementioned symmetry.

We now contract the 2-point function with one of the external momenta and get

p1µ <Qµ(p1)Q̄ν(p2)>=
∫

d4q

(2π)4
1
2 (gν(q − p1)− gν(q)) , (9.1.5)

where

gν(q) = iγα

(−6qαqν − 3qαpν1 + (q · p1)ηνα − qνpα1
3q2

)
+ γσγ5

(
εσαβνqαp1β

3q2

)
. (9.1.6)

Had the integral in (9.1.5) been convergent, the Q-supersymmetry Ward identity for the
2-point function would have been satisfied after a simple shift at the integration variable
of the term gν(q− p1). As we explained in subsection (3.1.1), these kind of shifts produce
surface terms in divergent integrals in the cut-off regularization. We need to Taylor expand
gν(q − p1) for small p1 and compute with Gauss’s theorem all the relevant terms that do
not vanish. The cut-off parameter that we use is the radius of the hypersphere where we
perform Gauss’s theorem. Using all the identities and integrals of the subsection (3.1.1)
we find that

p1µ <Qµ(p1)Q̄ν(p2)>= 1
2304π2 p

2
1

(
4pα1 pν1 − p2

1η
αν
)
γα . (9.1.7)

Since the 2-point function (9.1.2) is very badly divergent, one would expect that the
contraction with p1µ would have not only finite but also divergent contributions. It turns
out that all divergent parts are proportional to projection operators and vanish identically
when contracted with the external momenta. The finite rhs of (9.1.7) does not imply the
existence of a Q-supersymmetry anomaly, since we can find a local counterterm to remove
it. The counterterm will take the following covariant form

JQQ = 1
2304π2

(
Dαψ̄

αγρD2ψρ −
5
2Dαψ̄

α /DDρψ
ρ
)
, (9.1.8)

where ψ is the gravitino, the supercurrent’s background source. This counterterm is
only relevant for removing the finite parts of the 2-point function that violate the Q-
supersymmetry identity. It does not render <QQ̄> finite. If we had chosen a different
routing in (9.1.5), for example q → q + p1, then the rhs of (9.1.7) would be different, and
that would also affect the counterterm that we used. So if we need to use this 2-point
function in the Ward identities of higher order correlators, we have to use the specific choice
of momentum routing of (9.1.5) along with the contribution of the counterterm (9.1.8).
A different choice of routing means that we need to change accordingly the counterterm
(9.1.8).
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9.2 Q-supersymmetry of <QQ̄JJ >

The classical path integral Q-supersymmetry identity of <QQ̄JJ> is given by

p1µ <Qµ(p1)Q̄ν(p2)J κ(p3)J λ(p4)>{ai} +Ωνκλ
{bi}

= ip2µB
νµσ <Jσ(p12)J κ(p3)J λ(p4)>{ci} −

γξ
2 <T νξ(p12)J κ(p3)J λ(p4)>{di}

− iγ5 <Qκ(p13)Q̄ν(p2)J λ(p4)>{ei} −iγ5 <Qλ(p14)Q̄ν(p2)J κ(p3)>{fi}
+ γ5B

νκσ <Jσ(p123)J λ(p4)>{gi} +γ5B
νλσ <Jσ(p124)J κ(p3)>{hi}, (9.2.1)

where

Ωνκλ ≡ p1µ

(3i
8 ε

νξµσγξ <Jσ(p12)J κ(p3)J λ(p4)> + i

8η
µνγσγ5 <sσ(2|1)(p12)J κ(p3)J λ(p4)>

+ iηµκ
√

2
3 <s(3| 12 )(p13)Q̄ν(p2)J λ(p4)> +iηµλ

√
2

3 <s(3| 12 )(p14)Q̄ν(p2)J κ(p3)>

−p12σ

(1
6η

σνγµ − 1
6η

σµγν − i16ε
νξµσγξγ5

)
<s(1|0)(p12)J κ(p3)J λ(p4)>

)
− 2
√

2
9 ηκλγ5 <s(3| 12 )(p134)Q̄ν(p2)> + 1

24η
νκγσ <sσ(2|1)(p123)J λ(p4)>

+ 1
24η

νλγσ <sσ(2|1)(p124)J κ(p3)>

− 1
6η

νκγσ <(s∗σ(4|1) − sσ(4|1))(p123)J λ(p4)> −1
6η

νλγσ <(s∗σ(4|1) − sσ(4|1))(p124)J κ(p3)>

−
(
−3

8γξγ5ε
σξνκ + i

2η
κσγν − i

2η
νσγκ

)
<Jσ(p123)J λ(p4)>

−
(
−3

8γξγ5ε
σξνλ + i

2η
λσγν − i

2η
νσγλ

)
<Jσ(p124)J κ(p3)>, (9.2.2)

and Bνµσ is given by (4.2.11).

+

p2p1

p4 p3
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p3 p4

q − p2 + a2
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κ

µ ν

λ

+ · · ·

Figure 9.2.1: Part of the Feynman diagrams that contribute to
< Qµ(p1)Q̄ν(p2)J κ(p3)J λ(p4) >{ai}. The wave lines represent the external super-
currents and the zig-zag lines denote the external R-currents. Straight and dashed
lines in the loop denote fermionic and bosonic propagators respectively. pi are the
external momenta while q is the loop momentum. {ai} denotes collectively the arbitrary
momentum routing parameters. For generality we assign a different parameter to each
Feynman diagram that corresponds to a correlator.
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The subscripts {ai}, ... {hi} denote the arbitrary choice of momentum routing that we
made in the Feynman integrals of the correlators. The correlators involved in (9.2.1) are
given in the appendix H. Now let us make a few comments here.

First, note that in all seagull correlators Ωνκλ, we assigned for simplicity the same
parameters {bi}. Of course, we could have chosen the more general case where the routing
of every correlator in Ωνκλ is independent from the others. This however, would not change
the core of the argument we want to make. Secondly, notice that the Q-supersymmetry
identity we examine in this section is not the same with (4.2.16). Recall that (4.2.16)
is a sum of path integral identities, and is equivalent to the Q-supersymmetry identity
of <QQ̄JJ > that we find from the coupling to background conformal supergravity.
Here on the other hand, we are interested in the bottom-up approach. If one wanted
to examine about possible quantum anomalies in the Ward identities of <QQ̄JJ >

with no insight from background supergravity, then (9.2.1) would be the natural identity
to compute. After all, the coloured seagull correlators of (4.2.16) form their own path
integral Q-supersymmetry identities and they can be calculated separately. Moreover, we
do not expect any anomalies in the aforementioned identities, since they do not include
any known anomalous correlators. In the appendix F we verify this claim with a PV
regulator. On the contrary, (9.2.1) contains the anomalous <JJJ> diagram, so if there
is a Q-supersymmetry anomaly, it has to exist in the classical path integral identity of
<QQ̄JJ >. Of course, if we want to couple the regularized with cut-off WZ model to
background supergravity, the analysis of the identities of the coloured seagull correlators
is unavoidable. This however, will not change the final result about the existence or not
of a Q-supersymmetry anomaly.

Now let us return to the calculation of (9.2.1). This identity is at the regulated level,
and we have not renormalized/fixed the lower order correlation functions that contains.
After a long and tedious computation we can show that (9.2.1) is satisfied for the following
values of the arbitrary constants

ai = bi = ci = di = ei = fi = gi = hi = 0. (9.2.3)

The original choice of routing that we made in the integrals of the appendix H (i.e. putting
the arbitrary constants equal to zero) is such that (9.2.1) is satisfied. To prove this we
only need to use Fierz identities and that

p1µC
µ
0 (q) = −i/q + q2−i(/p1 − /q)

(p1 − q)2 . (9.2.4)

We do not need to perform any illegitimate manipulations in the divergent integrals, such
as shift of the integration variable. Therefore, what we show is that Q-supersymmetry is
non anomalous at least at the level of the 4-point correlator <QQ̄JJ >. However, we
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have not examined at all what happens at the lower order correlators of (9.2.1). It would
be totally naive to argue at this point and with this information, that there exists a free,
massless and at the same time consistent WZ model with no anomaly in Q-supersymmetry.
Maybe the choice of routing that we made in the <T JJ > correlator is not compatible
with diffeomorphisms or Lorentz symmetry. One has to do the explicit computation, and
examine all the symmetry identities for every correlator involved in (9.2.1), including the
seagull correlators. After all, from a bottom-up perspective the notion of a seagull operator
does not have much significance. In (9.2.1) there are correlators of well defined operators
and one needs to compute all of them. So, a non anomalous Q-supersymmetry, may mean
a non consistent WZ model with anomalies in diffeomorphisms and in Lorentz symmetry.

Here, we show that the specific choice (9.2.3) that we made to satisfy (9.2.1), makes
the 3-point correlator <JJJ > inconsistent. In particular <Jσ(p12)J κ(p3)J λ(p4)>0

does not respect Bose symmetry, hence it does not reproduce the standard R-symmetry
anomaly of (B.1.3). The values of {ci} that make < JJJ > consistent (i.e. Bose
symmetric and with the correct R-symmetry anomaly) are the following

c1 = −p4 − p3
6 , c2 = p4 − p3

6 . (9.2.5)

If we use in (9.2.1) the consistent <JJJ> correlator instead, the previously non anoma-
lous Q-supersymmetry identity will acquire a new contribution at the rhs equal to

ip2µB
νµσ(− <Jσ(p12)J κ(p3)J λ(p4)>0 + <Jσ(p12)J κ(p3)J λ(p4)>{ci}) =

2iπ2

(2π)4 (−2i
81 )ερκλσ(p4ρ − p3ρ)p2µ

(
−1

8ε
νξµσγξ + i

4γ5γ
µηνσ − i

4γ5γ
νηµσ

)
. (9.2.6)

We computed the above lhs using (3.1.5). This is exactly the same anomaly that we found
using the PV regulator (7.2.23), which confirms the results (B.1.3).

The above analysis is the proof for the existence of a Q-supersymmetry anomaly in
the conformal WZ model. As we stressed before, a more rigorous approach would be to
actually compute all the lower order correlators of (9.2.1). It could happen for example,
that the <T JJ> correlator we use in (9.2.1) has a diffeomorphism anomaly, and after we
include an appropriate counterterm to remove it, this counterterm at the same time cancels
the term (9.2.6) and renders (9.2.1) non anomalous again. Of course, we expect this not
to be the case, since that would contradict the results of the WZ consistency conditions
(B.1.3). We expect that the choice of routing that we made for the other correlators in
(9.2.1) is such, that every one of their symmetry identities is satisfied. Probably for that
we also need to include appropriate counterterms, but these will be Q-supersymmetric,
thus not affecting the anomalous term (9.2.6). We should also note, that the anomaly
(9.2.6) is non zero in the limit of p1 → 0, thus it cannot be removed by a different choice
at the routing of the Feynman diagrams of the 4-point function <QQ̄JJ>.
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Although the analysis with the PV regulator in the previous chapters is the most
rigorous one, since there we actually computed all correlators involved in the symmetry
identities we were interested in, the cut-off regulator provides an alternative and indepen-
dent proof for the Q-supersymmetry anomaly of the 4-point function <QQ̄JJ >. An
interesting point of the cut-off approach, is that the Q-supersymmetry anomaly is only a
consequence of the ambiguous surface terms of the <JJJ > diagram that give rise to
the R-symmetry anomaly, which is what happens in the analysis of the WZ consistency
conditions.
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CHAPTER 10

Discussion

In this thesis we presented a comprehensive analysis of the free and massless WZ model
in perturbation theory. As for any N = 1 SCFT in four dimensions, the renormalized
theory admits both a conformal and a Ferrara-Zumino multiplet of currents, with the
latter inherited from the regulated theory.1 The two multiplets are related by a set of
local counterterms that shift the anomalies between different symmetries. The conformal
multiplet possesses the standard superconformal anomalies of N = 1 SCFTs. In partic-
ular, R-symmetry is anomalous because of the standard triangle diagram, but both Q-
and S-supersymmetry are necessarily also anomalous. On the contrary, the Poincaré su-
persymmetry of the FZ multiplet (which corresponds to a specific field-dependent linear
combination of the Q- and S-supersymmetry of the conformal multiplet) is non anomalous,
but R-symmetry and S-supersymmetry are explicitly broken.

We verified the above statements with a loop computation using a supersymmetric PV
regulator. Our analysis focused on the 4-point correlator <QQ̄JJ>, which is the minimal
one receiving a contribution from the Q-supersymmetry anomaly in flat space. We also
examined all the lower order correlators necessary for the analysis of the 4-point function.
Furthermore, using a cut-off regulator we confirmed the existence of a Q-supersymmetry
anomaly in <QQ̄JJ>. The counterterm (7.3.1) that we found, is a subset of the complete

1Other multiplets such as the R- and S-multiplets are also admissible but were not considered here.
The supersymmetry anomaly of the R-multiplet was studied recently in [106, 107]. See also [59]. Like the
FZ multiplet, the S-multiplet does not suffer from a supersymmetry anomaly.
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counterterm that relates the conformal and FZ multiplets.

The FZ multiplet is more natural if one wishes to view the massless model as the zero
mass limit of a massive WZ model, while the conformal multiplet is more natural if one
wishes to view the massless WZ model as an example of an N = 1 SCFT. Indeed, in the
context of the AdS/CFT correspondence only the conformal multiplet is available and it
is in this context that the anomaly was first discovered [68].

The presence of a supersymmetry anomaly in the conformal and R-multiplet [106,107] is
an important caveat one should keep in mind in the context of supersymmetric localisation,
especially when the results are compared with holographic computations, as noted in
[68,71,78,79] in relation to the analysis of [108]. In particular, in the presence of anomalies
physical observables depend on the choice of current multiplet and one should make sure
that only results specific to a given multiplet are compared. Given that different multiplets
are often used for field theory and holographic computations, failing to do so may result in
a superficial mismatch. We anticipate that a local counterterm analogous to that relating
the conformal and FZ multiplets interpolates between the R-multiplet, which couples
to new minimal supergravity, and the S-multiplet, corresponding to 16+16 supergravity,
enabling one to remove the supersymmetry anomaly of the R-multiplet. Determining this
counterterm would be particularly interesting for supersymmetric localization applications.

Since current multiplets describing SCFTs are related by finite local counterterms, such
counterterms can be used to match the computation of physical observables using different
multiplets. Indeed, it was through the identification of a non-covariant local counterterm
(specific to a class of rigid supersymmetric backgrounds) that the authors of [108] managed
to reconcile their holographic computation with the expected field theory result. Under-
standing the general structure of supersymmetry anomalies in different multiplets allows
one to explicitly determine the local counterterms that interpolate between them. Of
course, such counterterms are not unique since it is always possible to add further ‘trivial’
local counterterms that preserve all the symmetries. In particular, the local counterterms
interpolating between the conformal and FZ multiplets that we determined here through
the 1-loop computation may agree with the superspace results in [104] up to such trivial
terms.

Another interesting computation would be the complete analysis of the <QQ̄T J> cor-
relator and the confirmation of its Q-supersymmetry anomaly in the conformal multiplet.
For that, one needs to include more regulating PV fields in order to cancel the divergences
of correlators such as < T T >, < T T T > etc. Such a regulator would be sufficient to
properly regulate all possible FZ and conformal multiplet correlators. The analysis of
<QQ̄T J > would also help us construct the full counterterm that interpolates between
conformal and old minimal supergravity. However, if one is interested in the general form
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of this counterterm, the most efficient way to deduce it would be from the structure of the
solution of the WZ consistency conditions.

Our loop calculation with Pauli-Villars and cut-off regulators, along with the analysis
of the WZ consistency conditions, established without a doubt the existence of anomalies
in the Q-supersymmetry Ward identities of conformal supergravity. Knowing this result,
it would be quite interesting to perform the same analysis using dimensional reduction
(DRED) as a regularization procedure, and see which one of the different prescriptions of
DRED reproduces the correct Q-supersymmetry anomaly. DRED is supposed to respect
supersymmetry in all practical applications, thus explaining how and why the anomaly
arises in this context, it could provide us with a better understanding on supersymmetric
regularization.

It would also be interesting to investigate the existence of such an anomaly in other
dimensions and/or extended supersymmetry. In the case of extended supersymmetry,
there is more freedom and more possible combinations for the anomalies to cancel. We
expect similar cancellations with the case of supersymmetric Yang-Mills theories, where the
S-supersymmetry anomaly of the N = 1 model vanishes in the maximally supersymmetric
N = 4 theory [43]. Supersymmetry anomalies in gauge theories in dimensions different
than four have been examined for example in [52, 54]. In particular, in [52] there were
given expressions for d = 6. Based on the WZ consistency conditions argument (4.4.6), the
supersymmetry anomaly is a consequence of the R-symmetry anomaly. However, taking
into account our whole analysis and the discussion of the conformal and FZ multiplets,
(classical) conformal symmetry is also an essential condition for the existence of the Q-
supersymmetry anomaly in d = 4. Having the explicit form of the abelian and non-abelian
chiral anomalies in 2n-dimensional spacetimes [109], in principle, one can use the WZ
consistency conditions to compute the supersymmetry anomalies in d 6= 4. If conformal
symmetry is in general a necessary condition, then we can have an analogue to our result
only up to d = 6 (this is what we expect). If for d 6= 4, R-anomaly is capable of inducing
a Q-supersymmetry anomaly in models which are not classically conformal, then we can
have supersymmetry anomalies up to d = 10. Recall that the R-anomaly can be also
present in massive theories, such as the free massive Dirac fermion 2.

Moreover, in this thesis supergravity was viewed as non-dynamical and it would be in-
teresting to extend the analysis to include dynamical supergravity. Our results imply that
only the FZ multiplet can be consistently coupled to (old minimal) dynamical supergrav-
ity, since the Poincaré supersymmetry of old minimal supergravity is non anomalous. This
is in line with earlier work [59] where it was argued that quantum anomalies in the matter
sector require the use of old minimal supergravity. However, the conformal multiplet that

2The R-symmetry anomaly arises from the UV behaviour of Feynman diagrams and a small finite Dirac
mass is irrelevant at this limit.
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suffers from a supersymmetry anomaly may still be coupled to dynamical supergravity in
the context of effective field theory [110–114]. In that context, the anomalies are cancelled
either by fields with a mass above the cut-off through a generalized Green-Schwarz mech-
anism, or more generally by supersymmetric anomaly inflow. It would be very interesting
to examine the exact mechanisms of such cancellations.

Finally, in the context of loop calculations, the whole analysis and methods presented in
this thesis could be used for the computation of anomalies in different theories. Recently,
there has been a debate about the existence of CP-odd terms in the trace anomaly of Weyl
fermions, whose coefficients are purely imaginary [105,115–119]. This anomaly cannot be
present in the massless WZ model (4.1.1), since we use a Majorana fermion there, which
is symmetric under charge conjugation. However, the massless WZ Lagrangian can also
be written using Weyl fermions as follows

LWZ = −∂µφ∗∂µφ− χL/∂χL. (10.0.1)

According to [116], the first correlator that receives a contribution from the parity-odd
trace anomaly in the flat space is < T T T >, where T is the stress tensor of the Weyl
fermion. It would be interesting to regulate the Lagrangian (10.0.1) and apply our methods
to see if <T T T > has a parity-odd trace anomaly or not. In case of a positive answer,
one could examine whether this has implications on supersymmetry.
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APPENDIX A

Spinor conventions and identities

We largely follow the spinor conventions of [18]. We use the Minkowski metric η =
diag (−1, 1, 1, 1) and the Levi-Civita symbol εµνρσ = ±1 satisfies ε0123 = 1. This is
related to the Levi-Civita tensor as εµνρσ = √−g εµνρσ = e εµνρσ, where e ≡ det(eaµ) is
the determinant of the vierbein. We also use the convention that complex conjugation
reverses the order of Grassmann fields (spinors or scalars), e.g. (AB)∗ ≡ B∗A∗. The
symmetrization and antisymmetrization of a tensor Ta1...an with respect to its indices is
given respectively by

T(a1...an) = 1
n!
∑
p

Tap(1)...ap(n) , T[a1...an] = 1
n!
∑
p

δpTap(1)...ap(n) , (A.0.1)

where the sum is taken over all permutations, p, of 1, ..., n and δp is +1 for even permu-
tations and −1 for odd permutations.

Gamma matrices The gamma matrices satisfy the Hermiticity properties

γµ† = γ0γµγ0, γ†5 = γ5, (A.0.2)

where the chirality matrix in four dimensions is given by

γ5 = iγ0γ1γ2γ3. (A.0.3)
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The antisymmetrized products of gamma matrices are defined as

γµ1µ2...µn ≡ γ[µ1γµ2 · · · γµn]. (A.0.4)

The following is a list of identities in d dimensions that the antisymmetrized products of
gamma matrices satisfy, several of which we use repeatedly in this thesis (see also section
3 of [18]):

γµνρ = 1
2{γ

µ, γνρ},

γµνρσ = 1
2[γµ, γνρσ],

γµνγρσ = γµνρσ + 4γ[µ
[σδ

ν]
ρ] + 2δ[µ

[σδ
ν]
ρ],

γµγ
ν1...νp = γµ

ν1...νp + pδ[ν1
µ γν2...νp],

γν1...νpγµ = γν1...νp
µ + pγ[ν1...νp−1δνp]

µ ,

γµνργστ = γµνρστ + 6γ[µν
[τδ

ρ]
σ] + 6γ[µδν [τδ

ρ]
σ],

γµνρσγτλ = γµνρστλ + 8γ[µνρ
[λδ

σ]
τ ] + 12γ[µνδρ[λδ

σ]
τ ],

γµνργστλ = γµνρστλ + 9γ[µν
[τλδ

ρ]
σ] + 18γ[µ

[λδ
ν
τδ
ρ]
σ] + 6δ[µ

[λδ
ν
τδ
ρ]
σ],

γµ1...µrν1...νsγνs...ν1 = (d− r)!
(d− r − s)!γ

µ1...µr ,

γµργρν = (d− 2)γµν + (d− 1)δµν ,

γµνργρσ = (d− 3)γµνσ + 2(d− 2)γ[µδν]
σ,

γµνγ
νρσ = (d− 3)γµρσ + 2(d− 2)δ[ρ

µ γ
σ],

γµνλγλρσ = (d− 4)γµνρσ + 4(d− 3)γ[µ
[σδ

ν]
ρ] + 2(d− 2)δ[µ

[σδ
ν]
ρ],

γµργ
ρστγτν = (d− 4)2γµ

σ
ν + (d− 4)(d− 3)

(
γµδ

σ
ν − γσgµν

)
+ (d− 3)(d− 2)δσµγν − (d− 3)γσγµν ,

γργ
µ1µ2...µpγρ = (−1)p(d− 2p)γµ1µ2...µp . (A.0.5)

For d = 4 specifically, we have the gamma matrix identities

γργµγσ + γσγµγρ = 2(gµργσ + gµσγρ − gρσγµ),

γργµγσ − γσγµγρ = 2γρµσ,

γργµγσ = gµργσ + gµσγρ − gρσγµ + γρµσ

γµργσ = γµρσ + γµgρσ − γρgµσ

γ[µγρσγ
ν] = −iεµνρσγ5 + 2g[µ

ρ g
ν]
σ ,

γµνρσ = −iεµνρσγ5,

γµρσ = iεµρσνγνγ5,

γµν = i

2ε
µνρσγρσγ5, (A.0.6)
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as well as the trace relations

tr (any odd number of gamma matrices) = 0,

tr (γµγνγ5) = 0,

tr (γµγν) = 4ηµν ,

tr (γµγνγργσ) = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ),

tr (γµγνγργσγ5) = −4iεµνρσ. (A.0.7)

Dirac conjugate The Dirac conjugate of a Dirac spinor, χ, is defined as

χ≡ iχ†γ0, (A.0.8)

and is denoted with a thick overbar in order to distinguish it from the Majorana conjugate.

Majorana conjugate and spinors The Majorana conjugate of a Dirac spinor, χ, is
defined as

χ̄ ≡ χTC, (A.0.9)

where C is the charge conjugation matrix (see section 3.1.8 of [18]). A spinor χ is said to
be Majorana if it equals its charge conjugate, or equivalently, if its Dirac and Majorana
conjugates coincide, i.e.

χC ≡ B−1χ∗ = χ ⇔ χ= χ̄, (A.0.10)

where the unitary matrix B is related to the charge conjugation matrix, C, as in eq. (3.47)
of [18].

Dirac spinor bilinears involving Majorana conjugation in four dimensions satisfy the
identity

λ̄γµ1γµ2 · · · γµpχ = (−1)pχ̄γµp · · · γµ2γµ1λ, [eq. (3.53) in [18]]. (A.0.11)

which also implies that

λ̄γµ1γµ2 · · · γµpγ5χ = (−1)pχ̄γ5γ
µp · · · γµ2γµ1λ = χ̄γµp · · · γµ2γµ1γ5λ. (A.0.12)

Majorana fermion bilinears possess in addition the reality property

(χ̄γµ1...µrλ)∗ = χ̄γµ1...µrλ, [eq. (3.82) in [18]]. (A.0.13)
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Chirality projectors and Weyl spinors The Weyl projections of a generic Dirac
spinor, χ, are defined as

χL ≡ PLχ ≡
1
2(1 + γ5)χ, χR ≡ PRχ ≡

1
2(1− γ5)χ. (A.0.14)

Notice that, since there are no Majorana-Weyl spinors in four dimensions, the Weyl projec-
tion of a Majorana spinor is Weyl but not Majorana. Another potential source of confusion
we should emphasize is the following relation between the Dirac and Majorana conjugates
of Weyl spinors:

χL ≡ iχ†Lγ
0 = iχ†P †Lγ

0 = χPR = χ̄R. (A.0.15)

Fierz identities Finally, we make extensive use of the following Fierz relations in four
dimensions

χLλ̄L = − 1
2PL(λ̄χL) + 1

8PLγ
µν(λ̄γµνχL),

χLλ̄R = − 1
2PLγ

µ(λ̄γµχL). (A.0.16)
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Conformal multiplet Ward identities and anomalies

The superconformal Ward identities can be formulated independently of any specific SCFT
in terms of the a and c anomaly coefficients, whose values depend on the specific theory.
The current multiplet of N = 1 superconformal theories consists of the stress tensor,
T µa , the R-current, J µ, and the supercurrent, Qµ, which is a Majorana spinor in our
conventions. These couple respectively to the vierbein, eaµ, the graviphoton, Aµ, and the
gravitino, ψµ, which comprise the field content of N = 1 conformal supergravity [97–100],
which we briefly review in section (4.3). The consistent (as opposed to the covariant [120])
current operators are defined accordingly as

〈T µa 〉s ≡ e−1 δW

δeaµ
, 〈J µ〉s ≡ e−1 δW

δAµ
, 〈Qµ〉s ≡ e−1 δW

δψ̄µ
, (B.0.1)

where e ≡ det(eaµ), W [e,A, ψ] is the generating function of renormalized connected current
correlators, and the notation 〈·〉s denotes connected correlation functions in the presence
of sources. In particular, further derivatives of these one-point functions result in higher-
point functions.

The current operators (B.0.1) are defined independently of whether there exists a La-
grangian description of the theory. If a Lagrangian description exists, W [e,A, ψ] is given
by

W [e,A, ψ] = −i log Z [e,A, ψ], (B.0.2)
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where Z [e,A, ψ] is obtained from the path integral

Z [e,A, ψ] =
∫

[d{Φ}]eiS[{Φ};e,A,ψ]
∣∣∣
ren
, (B.0.3)

over the microscopic fields {Φ}, after renormalization.

B.1 Ward identities for 1-point functions with arbitrary
sources

The superconformal Ward identities and anomalies for arbitrary N = 1 SCFTs in four di-
mensions were derived in [71], using the local symmetries of N = 1 conformal supergravity
and the associated WZ consistency conditions. They take the form

eaµ∇ν〈T νa 〉s +∇ν(ψ̄µ〈Qν〉s)− ψ̄ν
←−
Dµ〈Qν〉s − Fµν〈J ν〉s

+Aµ
(
∇ν〈J ν〉s + iψ̄νγ5〈Qν〉s

)
− ωµab

(
eν[a〈T νb] 〉s + 1

4 ψ̄νγab〈Q
ν〉s
)

= 0,

eaµ〈T µa 〉s + 1
2 ψ̄µ〈Q

µ〉s = AW ,

eµ[a〈T
µ
b] 〉s + 1

4 ψ̄µγab〈Q
µ〉s = 0,

∇µ〈J µ〉s + iψ̄µγ5〈Qµ〉s = AR,

Dµ〈Qµ〉s −
1
2γ

aψµ〈T µa 〉s −
3i
4 γ5φµ〈J µ〉s = AQ,

γµ〈Qµ〉s −
3i
4 γ5ψµ〈J µ〉s = AS . (B.1.1)

The spin connection is given by (4.3.3) while the gravitino fieldstrength, φµ by (4.3.7).

Since the gravitino and the supercurrent have opposite R-charge, the covariant deriva-
tive acts on the supercurrent as

Dµ〈Qν〉 =
(
∂µ + 1

4ωµ
ab(e, ψ)γab − iγ5Aµ

)
〈Qν〉+ ΓνµρQρ ≡

(
Dµ − iγ5Aµ

)
〈Qν〉. (B.1.2)

The superconformal anomalies on the rhs of the Ward identities (B.1.1) are local func-
tions of the background conformal supergravity fields and take the form

AW = c

16π2

(
W 2 − 8

3F
2
)
− a

16π2E +O(ψ2),

AR =(5a− 3c)
27π2 F̃F + (c− a)

24π2 P,

AQ =− (5a− 3c)i
9π2 F̃µνAµγ5φν + (a− c)

6π2 ∇µ
(
AρR̃

ρσµν)γ(νψσ) −
(a− c)
24π2 FµνR̃

µνρσγρψσ +O(ψ3),

AS =(5a− 3c)
6π2 F̃µν

(
Dµ −

2i
3 Aµγ5

)
ψν + ic

6π2F
µν(γµ[σδρ]

ν − δ[σ
µ δ

ρ]
ν

)
γ5Dρψσ
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+ 3(2a− c)
4π2 Pµνg

µ[νγρσ]Dρψσ + (a− c)
8π2

(
Rµνρσγµν −

1
2Rgµνg

µ[νγρσ]
)
Dρψσ +O(ψ3).

(B.1.3)

The antisymmetric tensor Fµν = 2∂[µAν] denotes the fieldstrength of the graviphoton,
while the dual fieldstrength, F̃µν , is given by

F̃µν ≡
1
2εµν

ρσFρσ. (B.1.4)

These are the building blocks of the two independent quadratic curvature invariants

F 2 ≡ FµνFµν , F F̃ ≡ 1
2ε

µνρσFµνFρσ. (B.1.5)

The geometric curvature invariants are built out of the Riemann tensor and its dual

R̃µνρσ ≡
1
2εµν

κλRκλρσ, (B.1.6)

(which is not symmetric under exchange of the first and second pair of indices) as well as
the Schouten tensor, Pµν , which in four dimensions is given by

Pµν ≡
1
2
(
Rµν −

1
6Rgµν

)
. (B.1.7)

The independent quadratic curvature invariants are the square of the Weyl tensor, W 2,
the Euler density, E, and the Pontryagin density, P, defined respectively as

W 2 ≡WµνρσW
µνρσ = RµνρσR

µνρσ − 2RµνRµν + 1
3R

2,

E = RµνρσR
µνρσ − 4RµνRµν +R2,

P ≡ 1
2ε

κλµνRκλρσRµν
ρσ = R̃µνρσRµνρσ. (B.1.8)

Finally, the anomaly coefficients a and c are normalized as in [77], so that for Nχ free
chiral multiplets and Nv free vector multiplets they take the form

a = 1
48(Nχ + 9Nv), c = 1

24(Nχ + 3Nv). (B.1.9)

In particular, for the WZ model we have

c = 2a = 1
24 . (B.1.10)
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APPENDIX C

Functional differentiation versus operator insertions

In this appendix we discuss the relation between correlation functions defined through
functional differentiation and those obtained by path integral operator insertions. To em-
phasise the difference we use different notation for the two types of correlator. Throughout
this thesis correlation functions defined through functional differentiation are denoted by
wide brackets, 〈·〉, while those involving operator insertions by <·>.

Let J denote the source for an operatorO. Then the two definitions of n-point functions
are

〈O(x1) · · · O(xn)〉 = δ

δJ(x1) · · ·
δ

δJ(xn)W [J ]
∣∣∣∣
J=0

, (C.0.1)

< O(x1) · · · O(xn) > = 1
Z

∫
[d{Φ}]O(x1) · · · O(xn)eiS[{Φ}], (C.0.2)

where {Φ} denotes collectively all elementary fields and W [J ] = −i log Z [J ]. The func-
tional derivatives defining the wide bracket correlators in (C.0.1) are taken with the oper-
ators kept fixed. In contrast, in the correlators defined in (C.0.2) one takes the functional
derivatives in the path integral keeping fixed the operator at J = 0. The chain rule in this
case produces additional semi-local correlators involving δO(xi)/δJ(xj) – the so-called
‘seagull terms’. We should emphasize that this dependence of the operator O on the
source J that arises through the classical coupling of the theory to background sources
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is local and should not be confused with the generically non-local dependence of the 1-
point function 〈O〉J that is obtained by performing the path integral in the presence of
sources. The seagull terms are theory dependent and their contribution drops out when
all insertions are at separated points. However, since our purpose is to discuss anomalies,
which are local contributions to the Ward identities, we cannot ignore the contribution
of seagull terms. The distinction between the two definitions of correlators is important,
because the structure of ultraviolet divergences is different in the two cases. In particular,
only the ultraviolet divergences of current multiplet correlators defined through functional
differentiation can be cancelled by counterterms that depend on the background super-
gravity fields. We should also mention that Feynman diagram computations, which we
use for evaluating the Ward identities at the quantum level, result in correlation functions
involving operator insertions.

From (C.0.1) and (C.0.2), it follows that the two definitions of current multiplet corre-
lation functions of the conformal WZ model that are relevant for our analysis are related
as

〈J µ(x)J ν(y)〉 = i <J µ(x)J ν(y)> + <
δJ µ(x)
δAν(y)>,

〈J µ(x)J ν(y)J κ(z)〉 = i2 <J µ(x)J ν(y)J κ(z)>

+ i <
δJ µ(x)
δAκ(z) J

ν(y)> +i <J µ(x)δJ
ν(y)

δAκ(z)> +i <δJ
µ(x)

δAν(y) J
κ(z)>,

〈T µν (x)J ρ(y)〉 = i <T µν (x)J ρ(y)> + <
δT µν (x)
δAρ(y)>,

〈T µν (x)J ρ(y)J σ(z)〉 = i2 <T µν (x)J ρ(y)J σ(z)>

+ i <
δT µν (x)
δAρ(y)J

σ(z)> +i <δT
µ
ν (x)

δAσ(z)J
ρ(y)> +i <T µν (x)δJ

ρ(y)
δAσ(z)> + <

δ2T µν (x)
δAρ(y)δAσ(z)>,

〈Qµ(x)Q̄ν(y)〉 = i <Qµ(x)Q̄ν(y)> + <
δQµ(x)
δψν(y) >,

〈Qµ(x)Q̄ν(y)J ρ(z)〉 = i2 <Qµ(x)Q̄ν(y)J ρ(z)>

+ i <
δQµ(x)
δψν(y) J

ρ(z)> +i <δQ
µ(x)

δAρ(z)
Q̄ν(y)> +i <Qµ(x)δQ̄

ν(y)
δAρ(z)

>,

〈Qµ(x)Q̄ν(y)J ρ(z)J σ(w)〉 = i3 <Qµ(x)Q̄ν(y)J ρ(z)J σ(w)>

+ i2 <
δQµ(x)
δψν(y) J

ρ(z)J σ(w)> +i2 <δQ
µ(x)

δAρ(z)
Q̄ν(y)J σ(w)> +i2 <δQ

µ(x)
δAσ(w)Q̄

ν(y)J ρ(z)>

+ i <
δQµ(x)
δψν(y)

δJ ρ(z)
δAσ(w)> +i <δQ

µ(x)
δAρ(z)

δQ̄ν(y)
Aσ(w) > +i < δQ

µ(x)
δAσ(w)

δQ̄ν(y)
δAρ(z)

>
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+ i2 <Qµ(x)δQ̄
ν(y)

δAρ(z)
J σ(w)> +i2 <Qµ(x) δQ̄

ν(y)
δAσ(w)J

ρ(z)> +i2 <Qµ(x)Q̄ν(y) J
ρ(z)

δAσ(w)> .

(C.0.3)

Analogous expressions can be derived for any other current multiplet correlator. For the
conformal current multiplet correlators of the massless WZ model we discuss in chapter 4,
the relation between these two definitions simplifies because several operator derivatives
vanish. In particular, using the form of the currents in (4.1.6) and (4.3.9) when the theory
is coupled to background supergravity, we determine that the only non zero operator
derivatives are

δT µν(x)
δAρ(y) = − (ηµρηνσ + ηµσηνρ − ηµνηρσ)δ(x, y)Jσ + i

6η
µρδ(x, y)ŝν(2|1),

δT µν(x)
δAρ(y)δAσ(z) = 8

9(ηµρηνσ + ηµσηνρ − ηµνηρσ)δ(x, y)δ(x, z)ŝ(1|0),

δJ µ(x)
δAν(y) = − 8

9η
µνδ(x, y)ŝ(1|0),

δJ µ(x)
δψ̄ν(y)

= δQµ(x)
δAν(y) = −

√
2

3 ηµνδ(x, y)ŝ(3| 12 ), (C.0.4)

δQµ(x)
δψν(y) = 3

8ε
µνρσĴ ργσδ(x, y) + 1

8 ŝ
ρ
(2|1)γ5γρη

µνδ(x, y)

+ 1
6∂

ρŝ(1|0)
(
2η[µ
ρ η

ν]
σ + iεµνρσγ5

)
γσδ(x, y) + i

3ε
µνρσ ŝ(1|0)γ5γσ∂

x
ρ δ(x, y).

Clearly, the difference between correlation functions defined via functional differentia-
tion and operator insertions affects the form of the Ward identities. In section (4.2) we
present the Ward identities in terms of correlators defined using operator insertions, while
in (4.3.10) we present the corresponding identities at the 1-point function level, in terms
of correlation functions defined through functional differentiation. The latter form of the
Ward identities is universal and follows directly from the symmetries of the background
supergravity the current multiplet couples to. To derive the Ward identities of higher or-
der correlators we need to further differentiate with respect to the appropriate background
sources. When expressed in terms of correlators defined through operator insertions, how-
ever, these identities contain the additional seagull terms which can be seen explicitly in
the path integral Ward identities of section (4.2). In fact, as already mentioned in sec-
tion (2.2), the universal form of the Ward identities in terms of correlators obtained by
functional differentiation can be expressed as a linear combination of path integral Ward
identities involving operator insertions.

To illustrate this point, let us consider the R-symmetry Ward identity of the 3-point
correlator <QQ̄J>. We compute this identity by taking two functional derivatives with
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respect to the gravitini in the R-symmetry Ward identity that one finds after coupling the
WZ model to conformal supergravity (4.3.10). We find that

∇κ〈J κ(z)Qµ(x)Q̄ν(y)〉+ δ(z − x)iγ5〈Qµ(z)Q̄ν(y)〉+ δ(z − y)i〈Qµ(x)Q̄ν(z)〉γ5 = 0.
(C.0.5)

Using now the relations between the correlators (C.0.3) and the explicit expressions for
the derivatives of the currents (C.0.4) in the massless WZ model, we find that the above
identity in momentum space and in the flat space limit is modified as follows

p3κ <Qµ(p1)Q̄ν(p2)J κ(p3)>

+ p3κ

(
iηµκ
√

2
3 <s(3| 12 )(p13)Q̄ν(p2)> +iηνκ

√
2

3 <Qµ(p1)s̄(3| 12 )(p23)>

+ 3i
8 ε

νξµσγξ <Jσ(p12)J κ(p3)> + i

8η
µνγσγ5 <sσ(2|1)(p12)J κ(p3)>

−p12σ

(1
6η

σνγµ − 1
6η

σµγν + i
1
6ε

νξµσγξγ5

)
<s(1|0)(p12)J κ(p3)>

)
= iγ5 <Qµ(p13)Q̄ν(p2)> +i <Qµ(p1)Q̄ν(p23)> γ5. (C.0.6)

We can easily see that this expression is identical to the Ward identity (4.2.12), which as
explained there, is a linear combination of path integral Ward identities. In particular,
using the symmetry variations of the currents and seagull operators written in subsection
(4.1.5) and the path integral Ward identities (2.2.8), it is straightforward to show that
terms of the same colour in (C.0.6) form their own path integral Ward identities. Here
we also justify the claim that we made in section (4.2), that the Ward identities presented
there are the same with the ones we get after coupling the theory to background conformal
supergravity.

Schwinger–Dyson equations

The Ward identity is a relation between correlation functions that involve conserved cur-
rents and follow from global symmetries of the theory. Using the path integral formalism,
we derived its general form (2.2.8). One can find similar identities for operators that
vanish on-shell (i.e. operators proportional to equations of motion), such as χ̄/∂χ in the
massless WZ model (4.1.1), where the equations of motion imply that /∂χ = 0.

Consider the action S[φ], and the normal ordered composite operators O[φ], G[φ] δS[φ]
δφ ,

where φ is an elementary field of the theory and δS[φ]
δφ give the equations of motion.

G[φ] δS[φ]
δφ is the vanishing on-shell operator we are interested in. For example, in the case

of χ̄/∂χ, we identify G[φ]→ χ̄ and δS[φ]
δφ → −/∂χ. We have

∫
[dφ]G(x) δS

δφ(x)O(x1) · · · O(xn)eiS =
∫

[dφ]G(x) δeiS

iδφ(x)O(x1) · · · O(xn)
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= i

∫
[dφ]G(x)δO(x1)

δφ(x) · · · O(xn)eiS + i

∫
[dφ]O(x1) · · ·G(x)δO(xn)

δφ(x) e
iS

⇒ −i <G(x) δS

δφ(x)O(x1) · · · O(xn)>=<G(x)δO(x1)
δφ(x) · · · O(xn)> + <O(x1) · · ·G(x)δO(xn)

δφ(x) > .

(C.0.7)

To go from the first to second line we integrated by parts in the field space. (C.0.7) is the
Schwinger–Dyson equation for correlators that involve zero on-shell operators. Notice that
the (n + 1)-point correlator of the lhs is given by a sum of n-point functions. To derive
the Schwinger–Dyson equation, first we need to identify the G(x) part of the vanishing
operator under consideration, and then compute the normal ordered operators G(x) δO(xn)

δφ(x) .

The Schwinger–Dyson equations are important, if one wishes to match the
Q-supersymmetry Ward identities derived through the path integral formalism (2.2.8),
with the corresponding ones from conformal supergravity. In particular, consider the Q-
supersymmetry identity of <QQ̄JJ >. According to (2.2.8), since at the lhs we have a
4-point correlator, at the rhs we are going to have only 3-point functions. Notice how-
ever, that in the Q-supersymmetry identity of conformal supergravity (4.2.16), there exist
a number of 2-point correlators at the rhs. This can be explained by the fact that the
Q-supersymmetry variations of the supercurrent and the R-current (4.1.13) contain zero
on-shell terms. As we explained schematically in (4.1.16), there exist some 3-point cor-
relators at the rhs of the Q-supersymmetry identity, that involve these vanishing on-shell
operators. One can substitute them using the Schwinger–Dyson equations (C.0.7), and
retrieve in this way the 2-point correlators of the conformal supergravity identity (4.2.16).
However, since we already had the conformal supergravity Ward identities, there was no
need to use the Schwinger–Dyson equations in our analysis for the anomalies of the WZ
model.
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APPENDIX D

Correlators

D.1 Regularization

In this appendix we write all correlation functions necessary for the analysis of the Ward
identities of the 4-point function <QQ̄JJ >. These correlators receive contributions
from the original massless WZ model (4.1.1) and the PV Lagrangian (6.1.1). Although
the contribution from each Lagrangian does not converge separately, the total sum is free
from UV divergences, if the following condition on PV masses is met

m2 =
√

2m1. (D.1.1)

All n-point correlators of the following sections, which after suppressing the spacetime
indices we denote here by <n>, can be written in the following form

<n>=
∑
i

diN(mi) ≡ N(0) +N(m2)− 2N(m1), (D.1.2)

where i = 0, 1, 2, d0 = 1, d2 = 1, d1 = −2 and m0 = 0. N(0) is the contribution
to the correlator of the original WZ model (4.1.1), N(m2) is the contribution of the
PV fields (ϕ2, λ2) that comprise a standard massive chiral multiplet, and −2N(m1) is
the contribution of the fields (ϕ1, ϑ1, λ1). The factor of 2 in front of N(m1) is to be
expected, since the fields (ϕ1, ϑ1, λ1) form two chiral multiplets with wrong statistics. For
the regularization of <n>, it is crucial that the contribution of (ϕ1, ϑ1, λ1) comes with

129
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a relative minus sign with respect to the original fields. It is quite common in literature
to assume that fields of opposite statistics contribute to the correlation functions with a
relative minus sign compared to the fields with standard statistics. However, this is not
always so obvious. Here we have confirmed that this is indeed true, after performing all
possible Wick contractions of the elementary fields.

The quantities N(mi) are divergent integrals. The degree of divergence depends on
the specific correlator we are examining. The most badly divergent correlators by power
counting, are the 2-point functions <QQ̄> (D.3.6) and <T J > (D.3.14) which diverge
cubically, i.e. in the large momentum limit they behave as ∼

∫∞
0 dqq2. Higher order

correlators have a better behaviour in the UV limit due to the increased number of prop-
agators that lower the superficial degree of divergence. For example, the 3-point function
<QQ̄J> (D.4.1) is quadratically divergent while the 4-point function <QQ̄JJ> (D.5.1)
diverges linearly. Our aim is to show that the rhs of (D.1.2) is well defined and convergent.
For that we Taylor expand N(mi) in powers of mi. We get

N(mi) = N(0) +m2
iN2 +m4

iN4 + ... (D.1.3)

where the dots ... denote higher order terms. Notice that in the above expansion there
are no odd powers in the mass mi. It can be shown, after an explicit computation using
the expressions for the correlators written in this appendix, that all these terms vanish
due to the structure of the gamma matrices. In particular, the correlators where fermionic
operators are involved, such as <QQ̄> (D.3.6), take the form PR(...)PL, where PR and PL
are the projection operators (A.0.14). This means that in the dots (...), only terms with
an odd number of gamma matrices survive. Similarly, the odd powers of the mass mi in
the correlators of bosonic operators, such as <JJ> (D.3.9), vanish after using the trace
identities.

If the integral N(0) has a superficial degree of divergence d 1, then the corresponding
degree of divergence of the quantities N2 and N4 will be d−2 and d−4 respectively. Using
(D.1.3) in (D.1.2) we get

<n>= (N(0) +N(0)−N(0)−N(0)) + (m2
2 − 2m2

1)N2 + (m4
2 − 2m4

1)N4 + ... (D.1.4)

Taking into account that the most badly divergent correlators we are interested in have a
d = 3, we see that N2 is at most linearly divergent (d = 1), while N4 is always convergent
(d = −1). All the other higher order terms in the above expansion are of course convergent.
Using the condition (D.1.1) we find that the two leading order pieces of (D.1.4) vanish, so

<n>= 2m4
1N4 + ... (D.1.5)

1A negative d denotes a convergent integral, d = 0 and d = 1 denote logarithmically and linearly
divergent integrals etc.
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We have proven that the PV Lagrangian (6.1.1) suffices for removing all the UV diver-
gences from the correlation functions necessary for the analysis of <QQ̄JJ >. The two
main technical elements for this proof were the fact that the most divergent correlators
were cubically divergent, and that there were no odd powers in the PV mass expansion of
the correlators. The first can be seen after examining the superficial degree of divergence
of the correlators and the second after explicit computations using the expressions for the
correlators.

According to the anomalies (B.1.3) derived using the WZ consistency conditions, the
4-point function <QQ̄T J > has a Q-supersymmetry anomaly too. We made the claim
in chapter 4 that our PV regulator is not appropriate for the analysis of the aforemen-
tioned correlator. One of the reasons for that, is that among others, we need to use the
2-point function <T T > which cannot be regulated by the Lagrangian (6.1.1). <T T > is
quartically divergent by power counting (d = 4), hence N4 is superficially logarithmically
divergent. After an explicit computation, one can show that in the corresponding expres-
sion (D.1.5) for <T T >, there exists indeed a non regulated logarithmic divergence which
needs more PV fields in order to be cancelled.

D.2 1-point functions

The 1-point functions of the supercurrent and of the scalar operators OM , OM∗ vanish
trivially due to the absence of possible self contractions. The R-current 1-point function
is given by

<J̃ µ(p)>= 2i
3

∫
d4q

(2π)4

(
2iqµ

(
Pφ(q) + Pϕ2(q)− Pϕ1(q)− Pϑ1(q)

)
− 1

4tr
[
γµγ5

(
Pχ(q) + Pλ2(q)− 2Pλ1(q)

)])
= 0, (D.2.1)

where the first line vanishes due to parity and in the second line we have used the trace
identities (A.0.7).

It is straightforward to show that the stress tensor 1-point function vanishes too. We
have

<T̃ µν(p)>=
∫

d4q

(2π)4

(
2qµqν

(
Pφ(q) + Pϕ2(q)− Pϕ1(q)− Pϑ1(q)

)
+ iηµν(1 + 1− 1− 1)

− 1
2q

νtr
[
iγµ
(
Pχ(q) + Pλ2(q)− 2Pλ1(q)

)]
− i

2η
µνtr (1 + 1− 2)

)
= 0,

(D.2.2)
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where the last equality follows from the relation between the scalar and spinor propagators

Pχ(p) = −i/pPφ(p), Pλ1(p) = (−i/p+m1)Pϕ1(p), Pλ2(p) = (−i/p+m2)Pϕ2(p),
(D.2.3)

and the trace identities (A.0.7).

Lastly, the non zero 1-point function of the seagull operator s(1|0) is given by

<s̃(1|0)(p)>=
∫

d4q

(2π)4
(
Pφ(q) + Pϕ2(q)− Pϕ1(q)− Pϑ1(q)

)
= 1

8π2m
2
1 log 2. (D.2.4)

Here we have used the relation m2 =
√

2m1 between the two masses of the PV regulator.

D.3 2-point functions

In this and in the following two sections, we write the exact expressions that one gets
for every correlation function, after performing all possible Wick contractions of the ele-
mentary fields. We have not made any other manipulations in the integrals below. Every
correlator is a sum of three integrals, one that comes from the original WZ model, one
that comes from the massive chiral multiplet of (6.1.1) with standard statistics, and there
is one contribution from the two chiral multiplets of opposite statistics of (6.1.1). The i
is summed over the values i = 0, 1, 2, and di take the values d0 = 1, d1 = −2 and d2 = 1.
To simplify the expressions we also define the following quantities:

λ0 ≡ χ , ϕ0 ≡ φ, (D.3.1)

pij = pi + pj , (D.3.2)

Cµi (k) = i/kγµ +miγ
µ + i

3 [γµ, γν ] q1ν , (D.3.3)

Aνi (k) = iγν/k −miγ
ν − i

3 [γν , γρ] q2ρ, (D.3.4)

Gµνi = (q1 − k)µkν + (q1 − k)νkµ − ηµν(q1 − k) · k + 1
3
(
ηµνq2

1 − qν1q
µ
1

)
+m2

i η
µν , (D.3.5)

where m0 = 0.

The cubically divergent 2-point function <QQ̄>, linearly divergent <s(3| 12 )s̄(3| 12 )> and
quadratically divergent <Qs̄(3| 12 )> are given by:

<Q̃µ(p1) ˜̄Qν(p2)>=
2∑
i=0

∫
d4q

(2π)4
di
2 PRC

µ
i (q)Pλi(p1 − q)Aνi (−q)PLPϕi(q) + (PR ↔ PL) ,

(D.3.6)
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<s̃(3| 12 )(p1)˜̄s(3| 12 )(p2)>= −
2∑
i=0

∫
d4q

(2π)4diγ5PRPλi(p1 − q)PLγ5Pϕi(q) + (PR ↔ PL) ,

(D.3.7)

<Q̃µ(p1)˜̄s(3| 12 )(p2)>=
2∑
i=0

∫
d4q

(2π)4di
i
√

2
2 PRC

µ
i (q)Pλi(p1 − q)PLγ5Pϕi(q) + (PR ↔ PL) .

(D.3.8)

The quadratically divergent bosonic correlators <JJ >, <J s(2|1)>, <s(2|1)s(2|1)> and
<T s(1|0)> take the form

<J̃ κ(p3)J̃ λ(p4)>=
2∑
i=0

∫
d4q

(2π)4 di
4
9(2q + p3)κ(2q + p3)λPϕi(q)Pϕi(q + p3)

+
2∑
i=0

∫
d4q

(2π)4 di
1
18tr

(
γκγ5Pλi(q)γλγ5Pλi(q + p4)

)
, (D.3.9)

− 6i <s̃κ(2|1)(p3)J̃ λ(p4)>=<s̃κ(2|1)(p3)s̃λ(2|1)(p4)>

= −
2∑
i=0

∫
d4q

(2π)4 2 di tr
(
γκγ5Pλi(q)γλγ5Pλi(q + p4)

)
, (D.3.10)

and

<T̃ µν(p1)s̃(1|0)(p3)>= −
2∑
i=0

∫
d4q

(2π)4diG
µν
i (q)Pϕi(q)Pϕi(q + p3), (D.3.11)

while the logarithmically divergent <s(1|0)s(1|0)> is equal to

<s̃(1|0)(p3)s̃(1|0)(p4)>=
2∑
i=0

∫
d4q

(2π)4 di Pϕi(q)Pϕi(q + p3). (D.3.12)

The following two correlators, <J s(1|0)> and <T J>, turn out to be zero, i.e.

<J̃ κ(p3)s̃(1|0)(p4)>=
2∑
i=0

∫
d4q

(2π)4 di
2
3(2q + p3)κPϕi(q)Pϕi(q + p3) = 0, (D.3.13)

<T̃ µν(p1)J̃ λ(p4)>=
2∑
i=0

∫
d4q

(2π)4di

(−i
6 tr

(
γσPλi(q)γλγ5Pλi(q + p4)

)
(iqνηµσ − iqσηµν)

−−i6 tr
(
Pλi(q)γλγ5Pλi(q + p4)

)
Miη

µν
)
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+
2∑
i=0

∫
d4q

(2π)4di
1
24tr

(
γσγ5Pλi(q)γλγ5Pλi(q + p4)

)
εµνρσip1ρ = 0. (D.3.14)

It is straightforward to show that (D.3.13) vanishes, after the transformation q → −q− p3

at the integration variable. In (D.3.14) we have not included the integrals that come from
the Wick contractions of the elementary fields φ, ϕ2, ϕ1, ϑ1 and their complex conjugates,
since they are identically zero due to odd symmetry. Moreover, in the large PV mass limit,
the two sums of integrals in (D.3.14) cancel each other.

Finally, in order to justify our claim that the PV Lagrangian (6.1.1) is not enough to
regulate <T T > (which is important for the complete analysis of <QQ̄T J >), we write
the 2-point function <BWBW>, which is necessary for the analysis of the Ward identities
of <T T >. Using (6.2.6) we find that

<BW (p1)BW (p2)>=
∫

d4q

(2π)4

(
4m4

2Pϕ2(q)Pϕ2(q + p2)− 8m4
1Pϕ1(q)Pϕ1(q + p2)

)
+
∫

d4q

(2π)4

(
−m

2
2

2 tr (Pλ2(q)Pλ2(q + p2)) +m2
1tr (Pλ1(q)Pλ1(q + p2))

)
. (D.3.15)

Using the relation of the PV masses (D.1.1), we find that in the above first line there
exists a logarithmic divergence which is equal to − 2iπ2

(2π)4 8m4
1
∫ dq

q . This divergence is not
cancelled by the divergent terms of the integral of the second line. Thus, we see the failure
of the PV Lagrangian (6.1.1) to regulate <BWBW>.

D.4 3-point functions

The fermionic 3-point correlators that we are interested in are the quadratically divergent
<QQ̄J> and the linearly divergent <Qs̄(3| 12 )J>, <QQ̄s(1|0)>. They take the following
form:

<Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)>=
2∑
i=0

∫
d4q

(2π)4 di

(
i

6Pϕi(q)PRC
µ
i (q)Pλi(p1 − q)γκγ5Pλi(−q − p2)Aνi (−q)PL

+1
3(2q + p3)κPϕi(q)Pϕi(q + p3)PRγ5C

µ
i (q)Pλi(p1 − q)Aνi (−q − p3)PL

)
+ (PR ↔ PL),

(D.4.1)

<Q̃µ(p1)˜̄s(3| 12 )(p2)J̃ κ(p3)>=
2∑
i=0

∫
d4q

(2π)4 di

(
−
√

2
6 Pϕi(q)PRC

µ
i (q)Pλi(p1 − q)γκγ5Pλi(−q − p2)PLγ5



D.5. 4-point function 135

+
√

2i
3 (2q + p3)κPϕi(q)Pϕi(q + p3)PRγ5C

µ
i (q)Pλi(p1 − q)PLγ5

)
+ (PR ↔ PL), (D.4.2)

<Q̃µ(p1) ˜̄Qν(p2)s̃(1|0)(p3)>=
2∑
i=0

∫
d4q

(2π)4 di
1
2Pϕi(q)Pϕi(q + p3)PRCµi (q)Pλi(p1 − q)Aνi (−q − p3)PL + (PR ↔ PL).

(D.4.3)

Similarly, the bosonic 3-point correlators relative for our analysis are the quadratically
divergent <T JJ> and the linearly divergent <JJJ>. They are given below:

<T̃ µν(p1)J̃ κ(p3)J̃ λ(p4)>=
2∑
i=0

∫
d4q

(2π)4di
−4
9 Gµνi (q)(2q + p4 − p1)κ(2q + p4)λ

Pϕi(q − p1)Pϕi(q)Pϕi(q + p4) +
(
p3 ↔ p4

κ ↔ λ

)

+
2∑
i=0

∫
d4q

(2π)4di

( 1
18tr

(
γσPλi(q)γλγ5Pλi(q + p4)γκγ5Pλi(q − p1)

)
(iqνηµσ − iqσηµν)

− 1
18tr

(
Pλi(q)γλγ5Pλi(q + p4)γκγ5Pλi(q − p1)

)
Miη

µν
)

+
(
p3 ↔ p4

κ ↔ λ

)

+
2∑
i=0

∫
d4q

(2π)4di
i

72tr
(
γσγ5Pλi(q)γλγ5Pλi(q + p4)γκγ5Pλi(q − p1)

)
εµνρσip1ρ +

(
p3 ↔ p4

κ ↔ λ

)
,

(D.4.4)

<J̃ µ(p1)J̃ κ(p3)J̃ λ(p4)>=
2∑
i=0

∫
d4q

(2π)4di
i

54tr
(
γµγ5Pλi(q)γλγ5Pλi(q + p4)γκγ5Pλi(q − p1)

)
+
(
p3 ↔ p4

κ ↔ λ

)
.

(D.4.5)

D.5 4-point function

The linearly divergent 4-point function <QQ̄JJ> is given by

<Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>=
2∑
i=0

∫
d4q

(2π)4 di(
− 1

18Pϕi(q)PRC
µ
i (q)Pλi(p1 − q)γκγ5Pλi(−q − p24)γλγ5Pλi(−q − p2)Aνi (−q)PL

+ 2
9(2q + p3)κ(2q + 2p3 + p4)λPϕi(q)Pϕi(q + p3)P (q + p34)PRCµi (q)Pλi(p1 − q)Aνi (−q − p34)PL

+ 2i
18(2q + p3)κPϕi(q)Pϕi(q + p3)γ5PRC

µ
i (q)Pλi(p1 − q)γλγ5Pλi(−q − p23)Aνi (−q − p3)PL

)
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+ (PR ↔ PL) +
(
p3 ↔ p4

κ ↔ λ

)
. (D.5.1)



APPENDIX E

Correlators with insertions of BW , BR and BS

In this appendix we evaluate all 1-loop correlators that involve the symmetry breaking
operators BW , BR and BS and constitute the potential anomalies in the symmetry Ward
identities of chapter 7. Since these operators depend on the PV fields only, all such
correlators are pure contact terms once the PV masses are sent to infinity.

The aim of this appendix is to follow the analysis and structure of chapter 7, and
provide all the intermediate steps that lead to the final results presented there. We also
define the following quantities to simplify the expressions of the correlators:

∆(1)
i (p) = mi + p2(1− y)y

∆(2)
i (p, q) = mi + p2y + q2z − (py − qz)2

∆(3)
i (p, q, k) = mi + p2y + q2z + k2t− (py − qz − kt)2. (E.0.1)

In the following, we only state the finite pieces of the correlators after the PV mass is sent
to infinity, which are the relevant ones for the computation of the anomalies.
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E.1 Bosonic correlators

E.1.1 <JJ>

Below we compute the PV contribution to the R-symmetry Ward identity of <JJ>. We
have

− i <BR(p3)J̃ λ(p4)>=
∫

d4q

(2π)4

(−i
9 m2 tr

(
γ5Pλ2(q)γλγ5Pλ2(q − p3)

)
− −2i

9 m1 tr
(
γ5Pλ1(q)γλγ5Pλ1(q − p3)

) )
. (E.1.1)

After using the Feynman parameters, we set `µ = qµ − pµ3 y and ignore terms with odd
power of `

− i <BR(p3)J̃ λ(p4)>=
∫ 1

0
dy

∫
d`E

2iπ2

(2π)4
8
9m

2
1p
λ
3(

`3E(
`2E + 2m2

1 + p2
3(y − y2)

)2 − `3E(
`2E +m2

1 + p2
3(y − y2)

)2
)

(E.1.2)

For large PV masses we find that

− i <BR(p3)J̃ λ(p4)>= − 2iπ2

(2π)4 p
λ
3

(
4
9m

2
1 log 2 − p2

3
27

)
. (E.1.3)

E.1.2 <JJJ>

The PV contribution to the R-symmetry Ward identity of < JJJ > is given by the
following correlator

− i <BR(p3)J̃ λ(p4)J̃ σ(p1)>=
∫

d4q

(2π)4

( 1
27m2tr

(
γσγ5Pλ2(q)γλγ5Pλ2(q + p4)γ5Pλ2(q − p1)

)
+ 1

27m2tr
(
γσγ5Pλ2(q)γ5Pλ2(q + p3)γλγ5Pλ2(q − p1)

)
− 2

27m1tr
(
γσγ5Pλ1(q)γλγ5Pλ1(q + p4)γ5Pλ1(q − p1)

)
− 2

27m1tr
(
γσγ5Pλ1(q)γ5Pλ1(q + p3)γλγ5Pλ1(q − p1)

))
. (E.1.4)

After using Feynman parameters and trace identities we get

− i <BR(p3)J̃ λ(p4)J̃ σ(p1)>=

+ 2iπ2

(2π)4

∫
d`E

∫
dydz

−4i
27 m2

1

(
`3E

(`2E + ∆(2)
2 (p4, p1))3

− `3E

(`2E + ∆(2)
1 (p4, p1))3

)
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tr
(
γσγαγλγβγ5

)
(2p4 y − 2p1 z + p4)αp3β

+ 2iπ2

(2π)4

∫
d`E

∫
dydz

−4i
27 m2

1

(
`3E

(`2E + ∆(2)
2 (p3, p1))3

− `3E

(`2E + ∆(2)
1 (p3, p1))3

)

tr
(
γσγαγβγλγ5

)
(2p3 y − 2p1 z − p1)αp3β. (E.1.5)

We integrate over `E and find

− i <BR(p3)J̃ λ(p4)J̃ σ(p1)>=

+ 2iπ2

(2π)4

∫
dydz

−i
27m

2
1

(
1

∆(2)
2 (p4, p1)

− 1
∆(2)

1 (p4, p1)

)
tr
(
γσγαγλγβγ5

)
(2p4 y − 2p1 z + p4)αp3β

+ 2iπ2

(2π)4

∫
dydz

−i
27m

2
1

(
1

∆(2)
2 (p3, p1)

− 1
∆(2)

1 (p3, p1)

)
tr
(
γσγαγβγλγ5

)
(2p3 y − 2p1 z − p1)αp3β.

(E.1.6)

In the limit where the PV mass m1 goes to infinity we have that

lim
m1→∞

m2
1

(
1

∆(2)
2 (p4, p1)

− 1
∆(2)

1 (p4, p1)

)

= lim
m1→∞

m2
1

(
1

∆(2)
2 (p3, p1)

− 1
∆(2)

1 (p3, p1)

)
= −1

2 , (E.1.7)

so we get

− i <BR(p3)J̃ λ(p4)J̃ σ(p1)>=
2iπ2

(2π)4

∫
dydz

i

54tr
(
γσγαγλγβγ5

)
p3β(2p4 y − 2p1 z + p4 − 2p3 y + 2p1 z + p1)α

= 2iπ2

(2π)4

∫
dydz

2i
54tr

(
γσγαγλγβγ5

)
p3βp4α y = i

324π2 ε
σλβαp3βp4α. (E.1.8)

This is the standard R-symmetry anomaly of the 3-point function <JJJ>.

E.1.3 <T JJ>

R-symmetry

The PV contribution to the potential R-symmetry anomaly of <T JJ > is given by the
following sum of correlators

− i <BR(p3)J̃ λ(p4)T̃ νξ(p1)> −ηνξ <BR(p13)J̃ λ(p4)>

− (ηνλησξ + ηνσηλξ − ηνξηλσ) <J̃σ(p14)BR(p3)> + i

6η
νλ <s̃ξ(2|1)(p14)BR(p3)> . (E.1.9)
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We have that
i

6 <s̃ξ(2|1)(p14)BR(p3)>=<J̃ ξ(p14)BR(p3)> (E.1.10)

and since the 2-point correlator < JBR > was computed in (E.1.3), we only need to
compute the 3-point function <BRJ T >. We have

− i <BR(p3)J̃ λ(p4)T̃ νξ(p1)>=
∫

d4q

(2π)4
1
9m2

(
ηνσqξ − qσηνξ

)
[
tr
(
γσPλ2(q)γλγ5Pλ2(q + p4)γ5Pλ2(q − p1)

)
+ tr

(
γσPλ2(q)γ5Pλ2(q + p3)γλγ5Pλ2(q − p1)

) ]
+
∫

d4q

(2π)4
i

9m
2
2η
νξ
[
tr
(
Pλ2(q)γλγ5Pλ2(q + p4)γ5Pλ2(q − p1)

)
+ tr

(
Pλ2(q)γ5Pλ2(q + p3)γλγ5Pλ2(q − p1)

) ]
+
∫

d4q

(2π)4
i

36m2ε
νξρσp1ρ[

tr
(
γσγ5Pλ2(q)γλγ5Pλ2(q + p4)γ5Pλ2(q − p1)

)
+ tr

(
γσγ5Pλ2(q)γ5Pλ2(q + p3)γλγ5Pλ2(q − p1)

) ]
+
∫

d4q

(2π)4
−2
9 m1

(
ηνσqξ − qσηνξ

)
[
tr
(
γσPλ1(q)γλγ5Pλ1(q + p4)γ5Pλ1(q − p1)

)
+ tr

(
γσPλ1(q)γ5Pλ1(q + p3)γλγ5Pλ1(q − p1)

) ]
+
∫

d4q

(2π)4
−2i

9 m2
1η
νξ
[
tr
(
Pλ1(q)γλγ5Pλ1(q + p4)γ5Pλ1(q − p1)

)
+ tr

(
Pλ1(q)γ5Pλ1(q + p3)γλγ5Pλ1(q − p1)

) ]
+
∫

d4q

(2π)4
−2i
36 m1ε

νξρσp1ρ[
tr
(
γσγ5Pλ1(q)γλγ5Pλ1(q + p4)γ5Pλ1(q − p1)

)
+ tr

(
γσγ5Pλ1(q)γ5Pλ1(q + p3)γλγ5Pλ1(q − p1)

) ]
.

(E.1.11)

Following the standard procedure with the Feynman parameters, in the large PV mass
limit we find that

− i <BR(p3)J̃ λ(p4)T̃ νξ(p1)>= 2iπ2

(2π)4
i

27
(
p2

4p
ξ
3η
λν − p2

3p
ξ
4η
λν − p2

4p
λ
3η

ξν

+ p3 · p4p
ξ
3η
λν − p3 · p4p

λ
3η

ξν − p3 · p4p
ξ
4η
λν + p2

3p
ξ
3η
λν − pλ4pν3p

ξ
3 + pλ3p

ν
3p
ξ
4

+pλ4pν3p
ξ
4 + pλ3p

ν
4p
ξ
4 + 1

2p1ρp3κp4αεβ
λκαενξρβ

)
. (E.1.12)

Conformal symmetry

The PV contribution to the trace anomaly of <T JJ > is given by the following sum of
correlators

<BW (p1)J̃ κ(p3)J̃ λ(p4)> +8i
9 η

κλ <BW (p1)s̃(1|0)(p34)> . (E.1.13)
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We have that

<BW (p1)J̃ κ(p3)J̃ λ(p4)>=∫
d4q

(2π)4

(−8
9 m2

2(2q + p4)λ(2q + p4 − p1)κPϕ2(q)Pϕ2(q + p4)Pϕ2(q − p1)

+ 16
9 m

2
1(2q + p4)λ(2q + p4 − p1)κPϕ1(q)Pϕ1(q + p4)Pϕ1(q − p1)

)
+
(
p3 ↔ p4

κ ↔ λ

)

+
∫

d4q

(2π)4

(−m2
18 tr

(
Pλ2(q)γλγ5Pλ2(q + p4)γκγ5Pλ2(q − p1)

)
+m1

9 tr
(
Pλ1(q)γλγ5Pλ1(q + p4)γκγ5Pλ1(q − p1)

))
+
(
p3 ↔ p4

κ ↔ λ

)
. (E.1.14)

In the limit where the PV masses are sent to infinity we find

<BW (p1)J̃ κ(p3)J̃ λ(p4)>= 1
108π2

(
3p2

1η
κλ + pκ3p

λ
4 + 2pκ4pλ3 − 3ηκλp3 · p4

)
. (E.1.15)

We now compute the 2-point correlator. Similarly, in the large PV mass limit we have

<BW (p1)s̃(1|0)(p34)>=
∫

d4q

(2π)4

(
−2m2

2Pϕ2(q)Pϕ2(q − p1) + 4m2
1Pϕ1(q)Pϕ1(q − p1)

)
= 2iπ2

(2π)4

∫
d`E

∫ 1

0
dy 4m2

1

(
`3E

(`2E + ∆(1)
2 (p1))2

− `3E

(`2E + ∆(1)
1 (p1))2

)

= 2iπ2

(2π)4
p2

1
6 . (E.1.16)

E.2 Fermionic correlators

E.2.1 <QQ̄>

The potential S-supersymmetry anomaly of <QQ̄> is given by

<BS(p1) ˜̄Qν(p2)>=
∫

d4q

(2π)4 (−2PLm1Pλ1(p1 − q)Pϕ1(q)Aν1(−q)PL

+ PLm2Pλ2(p1 − q)Pϕ2(q)Aν2(−q)PL) + (PR ↔ PL) . (E.2.1)

We use Feynman parameters, set `µ = qµ − pµ1 y, ignore terms with odd power of ` and
find

<BS(p1) ˜̄Qν(p2)>=
∫ 1

0
dy

∫
d`E

2iπ2

(2π)4 2m2
1

(
−iγν/p1 y + i(/p1 − /p1 y)γν − i

3 [γν , γρ] p2ρ

)
(

`3E(
`2E +m2

1 + p2
1(y − y2)

)2 − `3E(
`2E + 2m2

1 + p2
1(y − y2)

)2
)
. (E.2.2)
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For large PV masses we get that

<BS(p1) ˜̄Qν(p2)>= − 2iπ2

(2π)4γµγσγ5ε
νρµσp2ρ

(
1
6 m

2
1 log 2 − p2

2
72

)
. (E.2.3)

E.2.2 <QQ̄J>

R-symmetry

The contribution of the PV fields to the R-symmetry Ward identity of <QQ̄J> is given
by the following sum of correlators

− i <Q̃µ(p1) ˜̄Qν(p2)BR(p3)> +3
8ε

νξµσγξ <J̃σ(p12)BR(p3)>

+ 1
8η

µνγσγ5 <s̃
σ
(2|1)(p12)BR(p3)> + i

3γ
µγ5 <BS(p13) ˜̄Qν(p2)> + i

3 <Q̃µ(p1)B̄S(p23)> γνγ5.

(E.2.4)

Since we have already computed < BS(p1) ˜̄Qν(p2)> in the previous subsection, we can
easily find i

3γ
µγ5 <BS(p13) ˜̄Qν(p2)> after we make the appropriate changes in the external

momenta. Moreover, if we take its charge conjugate (i.e. C(...)TC−1) and change p1 ↔ p2

and µ↔ ν we get the third term of the second line of (E.2.4).

We also have that

i

6 <s̃σ(2|1)(p12)BR(p3)>=<J̃ σ(p12)BR(p3)>, (E.2.5)

and since the 2-point function < J̃ BR> has already been computed in (E.1.3), we only
need to compute the following

− i <Q̃µ(p1) ˜̄Qν(p2)BR(p3)>

=
∫

d4q

(2π)4

(
m2
3 PRC

µ
2 (q)Pλ2(p1 − q)γ5Pλ2(−p2 − q)Aν2(−q)PLPϕ2(q)

−2m1
3 PRC

µ
1 (k)Pλ1(p1 − q)γ5Pλ1(−p2 − q)Aν1(−q)PLPϕ1(q)

)
+ (PR ↔ PL) . (E.2.6)

After using Feynman parameters we find that

− i <Q̃µ(p1) ˜̄Qν(p2)BR(p3)>= 2iπ2

(2π)4

∫
d`E

∫ 1

0
dy
−2
3 m2

1

(
`3E

(`2E + ∆(1)
2 (p2))2

− `3E

(`2E + ∆(1)
1 (p2))2

)
(
γ5/cγ

µγν − γ5γ
µγν/c + γ5γ

µ [γν , γρ] p2ρ
3 − γ5 [γµ, γσ] γν p1σ

3

)
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+ 2iπ2

(2π)4

∫
d`E

∫
dy dz

4
3m

2
1

(
`5E

(`2E + ∆(2)
2 (p2, p1))3

− `5E

(`2E + ∆(2)
1 (p2, p1))3

)
(
−γ5γ

ξγµγξγ
κγν + γ5γ

ξγµγκγνγξ + γ5γ
µγξγκγνγξ

) p3κ
4

+ 2iπ2

(2π)4

∫
d`E

∫
dy dz

4
3m

2
1

(
`3E

(`2E + ∆(2)
2 (p2, p1))3

− `3E

(`2E + ∆(2)
1 (p2, p1))3

)
(
−γ5/aγ

µ(/p1 + /a)/p3γ
ν + γ5/aγ

µ
/p3γ

ν/a− γ5/aγ
µ
/p3 [γν , γρ] p2ρ

3
+ γ5γ

µ(/p1 + /a)/p3γ
ν/a− γ5γ

µ(/p1 + /a)/p3 [γν , γρ] p2ρ
3

+ γ5 [γµ, γσ] (/p1 + /a)/p3γ
ν p1σ

3 − γ5 [γµ, γσ] /p3γ
ν/a
p1σ
3 +γ5 [γµ, γσ] /p3 [γν , γρ] p1σ p2ρ

9

)
+ 2iπ2

(2π)4

∫
d`E

∫
dy dz

4
3m

4
1γ5γ

µ
/p3γ

ν

(
2`3E

(`2E + ∆(2)
2 (p2, p1))3

− `3E

(`2E + ∆(2)
1 (p2, p1))3

)
,

(E.2.7)

where

c = p2 y , a = p2 y − p1 z. (E.2.8)

Note that we also used symmetric integration, i.e. we substituted in the integrand lαlβ →
l2 η

αβ

4 . Finally, we find that

<Q̃µ(p1) ˜̄Qν(p2)BR(p3)>

= − 2iπ2

(2π)4

(
γκ

( 1
36ε

µκρσp1ρp2σp
ν
1 −

1
108ε

νκρσp1ρp2σp
µ
1 + 1

54ε
νκρσp1ρp2σp

µ
2

+ 1
108ε

µνκρp1ρp
2
2 + 1

54ε
µνκρp2ρp

2
1 −

1
108ε

µνκρp1ρ p2 · p1 + 1
108ε

µνκρp1ρp
2
1 + 1

108ε
µνκρp2ρp

2
2

)
− /p1γ5

(
i

36η
µνp1 · p2 + i

54η
µνp2

1 + i

54η
µνp2

2 + i

108p
µ
2p

ν
1 −

i

108p
µ
1p

ν
2 −

i

54p
µ
1p

ν
1

)
− /p2γ5

(
i

36η
µνp1 · p2 + i

54η
µνp2

1 + i

54η
µνp2

2 + i

108p
µ
2p

ν
1 −

i

108p
µ
1p

ν
2 −

i

54p
µ
2p

ν
2

)
− γµγ5

(
i

108p
2
1p
ν
2 + i

108p
2
2p
ν
1 + i

54p1 · p2p
ν
1 + i

36p
2
1p
ν
1

)
−γνγ5

(
i

108p
2
2p
µ
1 + i

108p
2
1p
µ
2 + i

54p2 · p1p
µ
2 + i

36p
2
2p
µ
2

)
− 1

108/p1ε
µνρσp1ρp2σ

)
. (E.2.9)

S-supersymmetry

The PV breaking terms in the S-supersymmetry identity are the following

− i <BS(p1) ˜̄Qν(p2)J̃ κ(p3)> +
√

2
3 ηνκ <BS(p1)˜̄s(3| 12 )(p23)> . (E.2.10)
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We begin by computing the 3-point correlator. We have

− i <BS(p1) ˜̄Qν(p2)J̃ κ(p3)>=∫
d4q

(2π)4

(
m2
3 Pϕ2(q)PLPλ2(p1 − q)γκγ5Pλ2(−q − p2)Aν2(−q)PL

+ 2im2
3 (2q + p3)κPϕ2(q)Pϕ2(q + p3)PLγ5Pλ2(p1 − q)Aν2(−q − p3)PL

− 2m1
3 Pϕ1(q)PLPλ1(p1 − q)γκγ5Pλ1(−q − p2)Aν1(−q)PL

−4im1
3 (2q + p3)κPϕ1(q)Pϕ1(q + p3)PLγ5Pλ1(p1 − q)Aν1(−q − p3)PL

)
+ (PR ↔ PL). (E.2.11)

The above can be written as

− i <BS(p1) ˜̄Qν(p2)J̃ κ(p3)>=

+ 2iπ2

(2π)4

∫
d`E

∫
dydz

i

3m
2
1

(
`5E

(`2E + ∆(2)
2 (p2, p1))3

− `5E

(`2E + ∆(2)
1 (p2, p1))3

)
(γαγκγ5γαγ

ν + γαγκγ5γ
νγα + γκγ5γ

αγνγα)

+ 2iπ2

(2π)4

∫
d`E

∫
dydz

8i
6 m

2
1

(
`3E

(`2E + ∆(2)
2 (p2, p1))3

− `3E

(`2E + ∆(2)
1 (p2, p1))3

)
(
γαγκγ5γ

βγν(a+ p1)α(a− p2)β + γαγκγ5γ
νγβ(a+ p1)αaβ − γαγκγ5 [γν , γρ] (a+ p1)α

p2ρ
3

−γκγ5γ
α [γν , γρ] (a− p2)α

p2ρ
3 + γκγ5γ

βγνγα(a− p2)βaα
)

+ 2iπ2

(2π)4

∫
d`E

∫
dydz

8i
6 m

4
1

(
2`3E

(`2E + ∆(2)
2 (p2, p1))3

− `3E

(`2E + ∆(2)
1 (p2, p1))3

)
γ5γ

κγν

+ 2iπ2

(2π)4

∫
d`E

∫
dydz

8i
3 m

2
1

(
`5E

(`2E + ∆(2)
2 (p3, p1))3

− `5E

(`2E + ∆(2)
1 (p3, p1))3

)
γ5η

νκ

+ 2iπ2

(2π)4

∫
d`E

∫
dydz

−8i
3 m2

1

(
`3E

(`2E + ∆(2)
2 (p3, p1))3

− `3E

(`2E + ∆(2)
1 (p3, p1))3

)
(
γ5γ

αγν(−2b+ p3)κ(p1 + b)α + γ5γ
νγα(−2b+ p3)κ(−p3 + b)α + 1

3(2b− p3)κp2ρ [γν , γρ] γ5

)
,

(E.2.12)

where
a = p2 y − p1 z , b = p3 y − p1 z. (E.2.13)

Finally we find

<BS(p1) ˜̄Qµ(p2)J̃ ν(p3)>= − 2iπ2

(2π)4

(
iγκλ

( 1
216η

µνεκλρσp1ρp2σ −
1

432ε
κλµρp1ρp

ν
2 + 1

432ε
κλµρp2ρp

ν
1
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+ 1
144ε

κλνρp1ρp
µ
2 + 1

432ε
κλνρp2ρp

µ
1 + 1

108ε
κλµνp1 · p2

+ 1
108ε

κλµνp2
2 −

1
54ε

κλµρp2ρp
ν
2 + 1

108ε
κλνρp2ρp

µ
2

)
− iγµκ

1
54ε

νκρσp1ρp2σ + iγκ
σ 1

216ε
µνκρp1ρp2σ + iγκ

σ 1
72ε

µνκρp2ρp1σ −
i

108ε
µνρσp1ρp2σ

+ γ5

( 5
108η

µνp1 · p2 + 1
12η

µνp2
1 + 7

108η
µνp2

2 + 1
36p

µ
2p

ν
1 + 1

108p
µ
1p

ν
2 + 1

18p
µ
1p

ν
1 −

1
27p

µ
2p

ν
2

))
.

(E.2.14)

We now compute 2
3η

νκ <BS(p1)˜̄s(3| 12 )(p23)>. We have

√
2

3 ηνκ <BS(p1)˜̄s(3| 12 )(p23)>

=
∫

d4q

(2π)4

(2i
3 m

2
2η
νκγ5Pϕ2(q)Pϕ2(p1 − q)−

4i
3 m

2
1η
νκγ5Pϕ1(q)Pϕ1(p1 − q)

)
= 2iπ2

(2π)4

∫
d`E

∫ 1

0
dy
−4i

3 ηνκm2
1γ5

(
`3E

(`2E + ∆(1)
2 (p1))2

− `3E

(`2E + ∆(1)
1 (p1))2

)

= − 2iπ2

(2π)4 η
νκiγ5

p2
1

18 (E.2.15)

E.2.3 <QQ̄JJ>

R-symmetry

The PV contribution to the potential R-symmetry anomaly of <QQ̄JJ> is given by the
following sum of correlators

− i <Q̃µ(p1) ˜̄Qν(p2)BR(p3)J̃ λ(p4)>

+ i

3γ
µγ5 <BS(p13) ˜̄Qν(p2)J̃ λ(p4)> + i

3 <Q̃µ(p1)B̄S(p23)J̃ λ(p4)> γνγ5

+ 3
8ε

νξµσγξ <J̃σ(p12)BR(p3)J̃ λ(p4)> +1
8η

µνγσγ5 <s̃
σ
(2|1)(p12)BR(p3)J̃ λ(p4)>

+ ηµλ
√

2
3 <s̃(3| 12 )(p14) ˜̄Qν(p2)BR(p3)> −ηµλ

√
2

9 <s̃(3| 12 )(p14)B̄S(p23)> γνγ5

+ ηνλ
√

2
3 <Q̃µ(p1)˜̄s(3| 12 )(p24)BR(p3)> −ηνλ

√
2

9 γµγ5 <BS(p13)˜̄s(3| 12 )(p24)> . (E.2.16)

In the second line the two terms are related by charge conjugation (i.e. C(...)TC−1 )and
the exchange µ ↔ ν and p1 ↔ p2. We have already computed the correlator <BSQ̄J >
in the previous subsection. In the third line we have that <JBRJ >= i

6 <s(2|1)BRJ >
and we have already computed these correlators in (E.1.8). The last two lines are re-
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lated with charge conjugation and the exchange µ ↔ ν and p1 ↔ p2. So we need
to compute ηνλ

√
2

3 < Q̃µ(p1)˜̄s(3| 12 )(p24)BR(p3)> −ηνλ
√

2
9 γ

µγ5 <BS(p13)˜̄s(3| 12 )(p24)> and

−i <Q̃µ(p1) ˜̄Qν(p2)BR(p3)J̃ λ(p4)>. We have
√

2
3 <Q̃µ(p1)˜̄s(3| 12 )(p24)BR(p3)>=∫
d4q

(2π)4

(−2
9 m2Pϕ2(q)PRCµ2 (q)Pλ2(p1 − q)γ5Pλ2(−q − p24)PLγ5

−−4
9 m1Pϕ1(q)PRCµ1 (q)Pλ1(p1 − q)γ5Pλ1(−q − p24)PLγ5

)
+ (PR ↔ PL) (E.2.17)

and

−
√

2
9 γµγ5 <BS(p13)˜̄s(3| 12 )(p24)>=

∫
d4q

(2π)4

(
−γµ 2i

9 m
2
2Pϕ2(q)Pϕ2(p13 − q)

+γµ 4i
9 m

2
1Pϕ1(q)Pϕ1(p13 − q)

)
. (E.2.18)

Using that

Pλ2(p1 − q)γ5Pλ2(−q − p24) = −iPϕ2(q + p24)γ5 + Pϕ2(q + p24)Pλ2(p1 − q)i/p3γ5

(E.2.19)

We get
√

2
3 <Q̃µ(p1)˜̄s(3| 12 )(p24)BR(p3)> −

√
2

9 γµγ5 <BS(p13)˜̄s(3| 12 )(p24)>=∫
d4q

(2π)4

(−2i
9 m2Pϕ2(q)Pϕ2(q + p24)PRCµ2 (q)Pλ2(p1 − q)/p3PL

− −4i
9 m1Pϕ1(q)Pϕ1(q + p24)PRCµ1 (q)Pλ1(p1 − q)/p3PL

)
+ (PR ↔ PL)

= 2iπ2

(2π)4

∫
d`E

∫
dydz

8i
9 m

2
1

(
`3E

(`2E + ∆(2)
2 (p24, p1))3

− `3E

(`2E + ∆(2)
1 (p24, p1))3

)
(
−γαγµ/p3(p24 y − p1 z)α − γµγα/p3(p24 y − p1 z + p1)α + 1

3 [γµ, γσ] /p3p1σ

)
. (E.2.20)

After integrating over `E and then taking the limit of m1 to infinity we find
√

2
3 <Q̃µ(p1)˜̄s(3| 12 )(p24)BR(p3)> −

√
2

9 γµγ5 <BS(p13)˜̄s(3| 12 )(p24)>
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= 2iπ2

(2π)4

∫
dydz

−i
9

(
−γαγµ/p3(p24 y − p1 z)α − γµγα/p3(p24 y − p1 z + p1)α + 1

3 [γµ, γσ] /p3p1σ

)
.

(E.2.21)

Integrating over the Feynman parameters we get
√

2
3 <Q̃µ(p1)˜̄s(3| 12 )(−p1 − p3)BR(p3)> −

√
2

9 γµγ5 <BS(p1 + p3)˜̄s(3| 12 )(−p1 − p3)>

= − 2iπ2

(2π)4

( 1
54γνγ5ε

µνρσp1ρp3σ −
i

54γ
µp1 · p3 + i

54/p1p
µ
3 + i

54p
µ
1/p3 + i

27p
µ
3/p3

)
. (E.2.22)

Next we compute the contribution to the potential R-anomaly that comes from the
4-point function:

− i <Q̃µ(p1) ˜̄Qν(p2)BR(p3)J̃ λ(p4)>=
2∑
j=1

∫
d4q

(2π)4
i

9 djmjPϕj (q)

PRC
µ
j (q)Pλj (p1 − q)γ5Pλj (−q − p24)γλγ5Pλj (−q − p2)Aνj (−q)PL

+
2∑
j=1

∫
d4q

(2π)4
i

9 djmjPϕj (q)

PRC
µ
j (q)Pλj (p1 − q)γλγ5Pλj (−q − p23)γ5Pλj (−q − p2)Aνj (−q)PL

+
2∑
j=1

∫
d4q

(2π)4
2
9 djmj(2q + p4)λPϕj (q)Pϕj (q + p4)

γ5PRC
µ
j (q)Pλj (p1 − q)γ5Pλj (−q − p24)Aνj (−q − p4)PL

+ (PR ↔ PL), (E.2.23)

where j = 1, 2 and d1 = −2, d2 = 1. The above 4-point function is a sum of three sums
of integrals. The first and second sums of integrals are related by charge conjugation (i.e.
C(...)TC−1) and the exchange µ↔ ν , p1 ↔ p2. Using again

Pλ2(p1 − q)γ5Pλ2(−q − p24) = −iPϕ2(q + p24)γ5 + Pϕ2(q + p24)Pλ2(p1 − q)i/p3γ5

(E.2.24)

and following the usual procedure with the Feynman parameters and shifting of the inte-
gration variable we find

− i <Q̃µ(p1) ˜̄Qν(p2)BR(p3)J̃ λ(p4)>= (Ξµνλ1 + Ch.C.) + (Ξµνλ2 + Ch.C.) + Θµνλ
1 + Θµνλ

2 ,

(E.2.25)
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where

Θµνλ
1 = 2iπ2

(2π)4

∫
dydz

−4i
9 m2

1

∫
d`E

(
`5E

(`2E + ∆(2)
2 (p4, p13))3

− `5E

(`2E + ∆(2)
1 (p4, p13))3

)
(
γλγµγν − γµγνγλ

)
+ 2iπ2

(2π)4

∫
dydz

−8i
9 m2

1

∫
d`E

(
`3E

(`2E + ∆(2)
2 (p4, p13))3

− `3E

(`2E + ∆(2)
1 (p4, p13))3

)
(
γαγµγν(2w − p4)λwα − γµγνγα(2w − p4)λ(w − p4)α

+γµ [γν , γρ] p2ρ
3 (2w − p4)λ − [γµ, γσ] γν p1σ

3 (2w − p4)λ
)
, (E.2.26)

Θµνλ
2 = 2iπ2

(2π)4

∫
dydzdt

−24i
9 m4

1

∫
d`E

(
2`3E

(`2E + ∆(3)
2 (p4, p1, p13))4

− `3E

(`2E + ∆(3)
1 (p4, p1, p13))4

)
γµ/p3γ

ν(−2e+ p4)λ

+ 2iπ2

(2π)4

∫
dydzdt

−24i
9 m2

1

∫
d`E

(
`5E

(`2E + ∆(3)
2 (p4, p1, p13))4

− `5E

(`2E + ∆(3)
1 (p4, p1, p13))4

)
(
−γβγµγα/p3γ

ν
(
−1

2η
λαeβ − 1

2η
λβ(e+ p1)α + 1

4η
αβ(−2e+ p4)λ

)
+γαγµ/p3γ

νγβ

(
−1

2η
λα(e− p4)β − 1

2η
λβeα + 1

4η
αβ(−2e+ p4)λ

)
+ γµγα/p3γ

νγβ

(
−1

2η
λα(e− p4)β − 1

2η
λβ(e+ p1)α + 1

4η
αβ(−2e+ p4)λ

)
+γλγµ/p3 [γν , γρ] p2ρ

6 + γµγλ/p3 [γν , γρ] p2ρ
6 − [γµ, γσ] γλ/p3γ

ν p1σ
6 + [γµ, γσ] /p3γ

νγλ
p1σ
6

)
,

(E.2.27)

Ξµνλ1 = 2iπ2

(2π)4

∫
dydz

−4i
9 m2

1

∫
d`E

(
`5E

(`2E + ∆(2)
2 (p2, p13))3

− `5E

(`2E + ∆(2)
1 (p2, p13))3

)
(
γληµν − γµηλν

)
+ 2iπ2

(2π)4

∫
dydz

−4i
9 m2

1

∫
d`E

(
`3E

(`2E + ∆(2)
2 (p2, p13))3

− `3E

(`2E + ∆(2)
1 (p2, p13))3

)
(
/nγµγλ(/n− /p2)γν + /nγµγλγν/n− /nγµγλ [γν , γρ] p2ρ

3 + γµγλ(/n− /p2)γν/n

+γµγλ(−/n+ /p2) [γν , γρ] p2ρ
3 + [γµ, γσ] γλ(−/n+ /p2)γν p1σ

3 − [γµ, γσ] γλγν/n
p1σ
3

+ [γµ, γσ] γλ [γν , γρ] p2ρp1σ
9

)
+ 2iπ2

(2π)4

∫
dydz

−4i
9 m4

1

∫
d`E

(
2`3E

(`2E + ∆(2)
2 (p2, p13))3

− `3E

(`2E + ∆(2)
1 (p2, p13))3

)(
−γµγλγν

)
,

(E.2.28)
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Ξµνλ2 = 2iπ2

(2π)4

∫
dydzdt

12i
9 m4

1

∫
d`E

(
2`3E

(`2E + ∆(3)
2 (p2, p1, p13))4

− `3E

(`2E + ∆(3)
1 (p2, p1, p13))4

)
(
/uγµ/p3γ

λγν + γµ(/p1 + /u)/p3γ
λγν − γµ/p3γ

λ(/p2 − /u)γν + γµ/p3γ
λγν/u

−γµ/p3γ
λ [γν , γρ] p2ρ

3 − [γµ, γσ] /p3γ
λγν

p1σ
3

)
+ 2iπ2

(2π)4

∫
dydzdt

3i
9 m

2
1

∫
d`E

(
`5E

(`2E + ∆(3)
2 (p2, p1, p13))4

− `5E

(`2E + ∆(3)
1 (p2, p1, p13))4

)
(
γαγµγα/p3γ

λ(−/u+ /p2)γν + γαγµ(−/u− /p1)/p3γ
λγαγ

ν − /uγµγα/p3γ
λγαγ

ν − γαγµγα/p3γ
λγν/u

+ γαγµ(−/u− /p1)/p3γ
λγνγα − /uγµγα/p3γ

λγνγα + γαγµγα/p3γ
λ [γν , γρ] p2ρ

3 − γ
αγµ/p3γ

λγαγ
ν/u

+ γαγµ/p3γ
λ(−/u+ /p2)γνγα − /uγµ/p3γ

λγαγνγα + γαγµ/p3γ
λγα [γν , γρ] p2ρ

3 − γ
µγα/p3γ

λγαγ
ν/u

+ γµγα/p3γ
λγα [γν , γρ] p2ρ

3 + [γµ, γσ] γα/p3γ
λγαγ

ν p1σ
3 + γµγα/p3γ

λ(−/u+ /p2)γνγα

+γµ(−/u− /p1)/p3γ
λγαγνγα + [γµ, γσ] γα/p3γ

λγνγα
p1σ
3 + [γµ, γσ] /p3γ

λγαγνγα
p1σ
3

)
,

(E.2.29)

and

w = p4y − p13z , n = p2y − p13z , e = p4y − p13t− p1z , u = p2y − p13t− p1z.

(E.2.30)

Note here that we have not included in the above expressions integrals that vanish in the
large PVmass limit, such as integrals of the form

∫
d`E

(
m2

1`
3
E

(`2E+∆(3)
2 (p4,p1,p13))4

− m2
1`

3
E

(`2E+∆(3)
1 (p4,p1,p13))4

)
.

Finally, we find that

<Q̃µ(p1) ˜̄Qν(p2)BR(p3)J̃ λ(p4)>= i× 2iπ2

(2π)4

(
i/p3

(
− 1

81p
ν
1η
λµ − 1

36p
ν
2η
λµ − 1

18p
ν
3η
λµ

+ 1
36p

µ
1η

λν + 1
81p

µ
2η

λν + 1
18p

µ
3η

λν + 1
81p

λ
1η

νµ − 1
81p

λ
2η

νµ
)

+ i/p2

( 1
108p

ν
1η
λµ + 1

162p
ν
2η
λµ − 1

108p
ν
3η
λµ − 1

324p
µ
1η

λν − 1
162p

µ
3η

λν − 1
81p

λ
2η

µν − 1
108p

λ
3η

νµ
)

− i/p1

( 1
108p

µ
2η

λν + 1
162p

µ
1η

λν − 1
108p

µ
3η

λν − 1
324p

ν
2η
λµ − 1

162p
ν
3η
λµ − 1

81p
λ
1η

µν − 1
108p

λ
3η

νµ
)

+ iγλ
( 1

162p
µ
1p

ν
1 + 5

162p
µ
3p

ν
1 −

1
162p

µ
2p

ν
2 + 1

54p
µ
3p

ν
2 −

1
54p

µ
1p

ν
3 −

5
162p

µ
2p

ν
3 −

1
162p

2
1η
µν

− 1
81p1 · p3η

µν + 1
162p

2
2η
µν + 1

81p2 · p3η
µν
)

+ iγν
( 1

81p
µ
1p

λ
1 −

1
162p

λ
2p
µ
1 + 1

108p
µ
1p

λ
3 −

1
162p

µ
2p

λ
2 + 1

108p
µ
2p

λ
3 + 1

162p
µ
3p

λ
1 −

1
81p

λ
2p
µ
3

− 7
324p

2
1η
µλ − 1

36p2 · p1η
µλ − 2

81p3 · p1η
µλ − 5

108p2 · p3η
µλ − 11

324p
2
2η
µλ − 1

36p
2
3η
µλ
)

− iγµ
( 1

81p
ν
2p
λ
2 −

1
162p

λ
1p
ν
2 + 1

108p
ν
2p
λ
3 −

1
162p

ν
1p
λ
1 + 1

108p
ν
1p
λ
3 + 1

162p
ν
3p
λ
2 −

1
81p

λ
1p
ν
3
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− 7
324p

2
2η
νλ − 1

36p1 · p2η
νλ − 2

81p3 · p2η
νλ − 5

108p1 · p3η
νλ − 11

324p
2
1η
νλ − 1

36p
2
3η
νλ
)

+ γνγ5

( 1
162ε

λµρσp2ρp3σ −
11
648ε

λµρσp1ρp3σ

)
+ γµγ5

( 1
27ε

λνρσp1ρp3σ −
7

648ε
λνρσp2ρp3σ

)
+ γλγ5

( 13
1296ε

µνρσp2ρp3σ −
5

1296ε
µνρσp1ρp3σ

)
+ /p3γ5

( 5
1296ε

λµνρp2ρ −
13

1296ε
λµνρp1ρ

)
+ /p1γ5

1
81ε

λµνρp3ρ − /p2γ5
1

162ε
λµνρp3ρ + γκγ5

( 1
162ε

λµνκp2
1 + 1

1296ε
λµνκp1 · p3

− 1
162ε

λµνκp2
2 −

1
1296ε

λµνκp2 · p3 −
11
648η

µνελκρσp1ρp3σ + 5
648η

µνελκρσp2ρp3σ

+ 7
1296η

λνεµκρσp1ρp3σ + 1
432η

λνεµκρσp2ρp3σ + 17
432η

λµενκρσp1ρp3σ + 23
1296η

λµενκρσp2ρp3σ

− 1
324ε

λµκρp1ρp
ν
2 −

17
1296ε

λµκρp1ρp
ν
3 −

1
108ε

λµκρp2ρp
ν
1 −

1
162ε

λµκρp2ρp
ν
2 −

1
1296ε

λµκρp2ρp
ν
3

− 7
648ε

λµκρp3ρp
ν
1 −

1
162ε

λνκρp1ρp
µ
1 −

1
108ε

λνκρp1ρp
µ
2 + 31

1296ε
λνκρp1ρp

µ
3 −

1
324ε

λνκρp2ρp
µ
1

− 17
1296ε

λνκρp2ρp
µ
3 −

2
81ε

λνκρp3ρp
µ
1 −

7
648ε

λνκρp3ρp
µ
2 + 1

81ε
µνκρp1ρp

λ
1 + 1

162ε
µνκρp1ρp

λ
3

− 1
81ε

µνκρp2ρp
λ
2 + 1

162ε
µνκρp2ρp

λ
3 −

19
1296ε

µνκρp3ρp
λ
1 + 1

432ε
µνκρp3ρp

λ
2

))
. (E.2.31)

S-supersymmetry

The PV contribution to the S-supersymmetry identity is given by the sum of the following
correlators

− i <BS(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>

+ ηνκ
√

2
3 <BS(p1)˜̄s(3| 12 )(p23)J̃ λ(p4)> +ηνλ

√
2

3 <BS(p1)˜̄s(3| 12 )(p24)J̃ κ(p3)>

+ 8
9η

κλ <s̃(1|0)(p34)BS(p1) ˜̄Qν(p2)> . (E.2.32)

We start by computing the 4-point function. We have

− i <BS(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>=
2∑
j=1

∫
d4q

(2π)4 djmj(
i

9Pϕj (q)PLPλj (p1 − q)γκγ5Pλj (−q − p24)γλγ5Pλj (−q − p2)Aνj (−q)PL

+ −4i
9 (2q + p3)κ(2q + 2p3 + p4)λPϕj (q)Pϕj (q + p3)Pϕj (q + p34)

PLPλj (p1 − q)Aνj (−q − p34)PL

+−2
9 (2q + p3)κPϕj (q)Pϕj (q + p3)γ5PRPλj (p1 − q)γλγ5Pλj (−q − p23)Aνj (−q − p3)PL

)

+ (PR ↔ PL) +
(
p3 ↔ p4

κ ↔ λ

)
(E.2.33)



E.2. Fermionic correlators 151

where j = 1, 2 and d1 = −2 , d2 = 1. Using the Feynman parameters we can rewrite it as

− i <BS(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>=

+ 2iπ2

(2π)4
−48

9 m2
1

∫
dydzdt

∫
d`E

(
`5E

(`2E + ∆(3)
2 (p34,−p3, p1))4

− `5E

(`2E + ∆(3)
1 (p34,−p3, p1))4

)
((

ηκλ(−a− p1)β + ηκβ

2 (−2a+ 2p3 + p4)λ + ηλβ

2 (−2a+ p3)κ
)
γβγ

ν

+
(
ηκλ(−a+ p34)β + ηκβ

2 (−2a+ 2p3 + p4)λ + ηλβ

2 (−2a+ p3)κ
)
γνγβ

+ ηκλ
p2ρ
3 [γν , γρ]

)
+ 2iπ2

(2π)4
−24

9 m2
1

∫
dydzdt

∫
d`E

(
`5E

(`2E + ∆(3)
2 (p4, p13, p1))4

− `5E

(`2E + ∆(3)
1 (p4, p13, p1))4

)
((

ηλα

2 (−b− p13)β + ηλβ

2 (−b− p1)α + ηαβ

4 (−2b+ p4)λ
)
γαγ

κγβγ
ν

+
(
ηλα

2 (−b+ p4)β + ηλβ

2 (−b− p1)α + ηαβ

4 (−2b+ p4)λ
)
γαγ

κγνγβ

+ ηλα

2
p2ρ
3 γαγ

κ [γν , γρ]− ηλα

2
p2ρ
3 γκγα [γν , γρ]

−
(
ηλα

2 (−b+ p4)β + ηλβ

2 (−b− p13)α + ηαβ

4 (−2b+ p4)λ
)
γκγαγ

νγβ

)

+ 2iπ2

(2π)4
−24

9 m4
1

∫
dydzdt

∫
d`E

(
2`3E

(`2E + ∆(3)
2 (p4, p13, p1))4

− `3E

(`2E + ∆(3)
1 (p4, p13, p1))4

)
(−2b+ p4)λγκγν

+ 2iπ2

(2π)4
12
9

1
4m

2
1

∫
dydzdt

∫
d`E

(
`5E

(`2E + ∆(3)
2 (p2, p13, p1))4

− `5E

(`2E + ∆(3)
1 (p2, p13, p1))4

)
(
−
(
ηαβ(−c+ p2)ξ + ηβξ(−c− p1)α + ηαξ(−c− p13)β

)
γαγ

κγβγ
λγξγ

ν

−
(
−ηαβcξ + ηβξ(−c− p1)α + ηαξ(−c− p13)β

)
γαγ

κγβγ
λγνγξ

+
(
−ηαβcξ + ηβξ(−c− p1)α + ηαξ(−c+ p2)β

)
γαγ

κγλγβγ
νγξ

−
(
−ηαβcξ + ηβξ(−c− p13)α + ηαξ(−c+ p2)β

)
γκγαγ

λγβγ
νγξ

−ηαβ p2ρ
3 γαγ

κγβγ
λ [γν , γρ] + ηαβ

p2ρ
3 γαγ

κγλγβ [γν , γρ]− ηαβ p2ρ
3 γκγαγ

λγβ [γν , γρ]
)

+ 2iπ2

(2π)4
12
9 m

4
1

∫
dydzdt

∫
d`E

(
2`3E

(`2E + ∆(3)
2 (p2, p13, p1))4

− `3E

(`2E + ∆(3)
1 (p2, p13, p1))4

)
(
(c+ p1)αγαγκγλγν + (−c− p13)αγκγαγλγν

+(c− p2)αγκγλγαγν + cαγκγλγνγα −
p2ρ
3 γκγλ [γν , γρ]

)

+
(
p3 ↔ p4

κ ↔ λ

)
, (E.2.34)
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where

a = p34y + p3z − p1t , b = p4y − p13z − p1t , c = p2y − p13z − p1t. (E.2.35)

Note that again we do not include in the above expression integrals that vanish in the
large PV mass limit. In the end we find that

<BS(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)>= i× 2iπ2

(2π)4

( 11
162γ

νρηκλp1ρ + 1
27γ

λρηκνp1ρ + 1
27γ

κρηλνp1ρ

+ 25
324γ

νρηκλ (p3ρ + p4ρ) + γλν
1
54 (pκ1 + pκ3) + γκν

1
54
(
pλ1 + pλ4

)
+ γκλ

1
36 (pν3 − pν4)

+ γ5

(
i

108ε
κλνρp4ρ −

i

108ε
κλνρp3ρ

)
− 1

9p
ν
1η
κλ + 1

9p
λ
1η

κν + 1
9p

κ
1η

νλ + 1
18p

ν
3η
κλ + 1

27p
λ
3η

κν

+1
9p

κ
3η

νλ + 1
18p

ν
4η
κλ + 1

27p
κ
4η

λν + 1
9p

λ
4η

νκ
)
. (E.2.36)

Now we compute the two following quantities:
√

2
3 <BS(p1)˜̄s(3| 12 )(p24)J̃ κ(p3)>=
2∑
j=1

∫
d4q

(2π)4 djmj

(−2
9 Pϕj (q)PLPλj (p1 − q)γκγ5Pλj (−q − p24)PLγ5

+−4i
9 (2q + p3)κPϕj (q)Pϕj (q + p3)PLγ5Pλj (p1 − q)PLγ5

)
+ (PR ↔ PL) (E.2.37)

and

<s̃(1|0)(p34)BS(p1) ˜̄Qν(p2)>=
2∑
j=1

∫
d4q

(2π)4 djmjPϕj (q)Pϕj (q + p34)PLPλj (p1 − q)Aνj (−q − p34)PL

+ (PR ↔ PL). (E.2.38)

We can rewrite the above as
√

2
3 <BS(p1)˜̄s(3| 12 )(p24)J̃ κ(p3)>=

2iπ2

(2π)4
−8
9 m2

1

∫
dydz

∫
d`E

(
`3E

(`2E + ∆(2)
2 (p1, p24))2

− `3E

(`2E + ∆(2)
1 (p1, p24))2

)
(γαγκ(p1 + d)α + γκγα(p24 − d)α)

+ 2iπ2

(2π)4
16
9 m

2
1

∫
dydz

∫
d`E

(
`3E

(`2E + ∆(2)
2 (p1, p3))2

− `3E

(`2E + ∆(2)
1 (p1, p3))2

)
(−2f + p3)κ

(E.2.39)
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and

<s̃(1|0)(p34)BS(p1) ˜̄Qν(p2)>=
2iπ2

(2π)4
−8
2 m2

1

∫
dydz

∫
d`E

(
`3E

(`2E + ∆(2)
2 (p1, p43))2

− `3E

(`2E + ∆(2)
1 (p1, p43))2

)
(
γαγν(p1 + e)α + γνγα(e− p34)α −

p2ρ
3 [γν , γρ]

)
, (E.2.40)

where

d = p24z − p1y , f = p3z − p1y , e = p43z − p1y. (E.2.41)

In the large PV mass limit we get

<BS(p1)˜̄s(3| 12 )(−p1 − p3)J̃ κ(p3)>= − 2iπ2

(2π)4

√
2
(1

9p
κ
1 + 5

36p
κ
3 + 1

18γ
κρp1ρ + 1

36γ
κρp3ρ

)
(E.2.42)

and

<BS(p1) ˜̄Qν(p2)s̃(1|0)(−p1 − p2)>= 2iπ2

(2π)4

(1
6p

ν
1 + 1

12p
ν
2 + 1

12γ
νρp2ρ

)
. (E.2.43)
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APPENDIX F

Ward identities of seagull correlators

In this thesis we examined the Ward identities of correlators that involve conserved cur-
rents, namely, the stress tensor, the R-current and the supercurrent. One of the main
goals was to see whether Q-supersymmetry was anomalous or not. The reason we focused
on correlators of conserved currents and not of seagull operators, was that only the former
couple to the background sources of conformal supergravity. Of course in the identities
that we calculated there were seagull correlators too, but the main correlators which their
symmetries we were examining, contained only conserved currents. From a bottom up
perspective though, if one wishes to look for supersymmetry anomalies in the massless
WZ model, there is no reason not to consider correlators that involve seagull operators.
In this appendix we present up to the 3-point function level, the renormalized seagull
correlators that satisfy their classical Ward identities.

The method we followed to derive them was similar to the analysis of chapters 4 and 7.
First, we had to find the classical path integral identities of the seagull correlators using
the symmetry variations of the subsection (4.1.5). Then, we identified the PV breaking
terms in the classical Ward identities and calculated them in the limit of large PV masses.
Finally, we partially renormalized the seagull correlators in momentum space to restore
the broken symmetries. We do not present the explicit computation of integrals here,
since we have already done a thorough analysis on similar integrals in the appendix E. We
only state the final results for the partially renormalized correlators in momentum space.
As expected, we confirm that there are no anomalies associated with these correlators. If
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one wishes to renormalize the seagull correlators at the level of the action, then additional
sources must be introduced. The fact that the finite renormalizations in this appendix are
all analytic functions in the external momenta, ensures that in principle this can be done.

F.1 2-point functions

F.1.1 <s(2|1)J>

<s̃κ(2|1)(p3)J̃ λ(p4)>ren=<s̃κ(2|1)(p3)J̃ λ(p4)> + 2iπ2

(2π)4
6i
27η

κλp2
3. (F.1.1)

The renormalized correlator satisfies the following classical R-symmetry identity

p4λ <s̃
κ
(2|1)(p3)J̃ λ(p4)>ren= 0 (F.1.2)

F.1.2 <Qs̄(3| 12 )>

<Q̃µ(p1)˜̄s(3| 12 )(p2)>ren=<Q̃µ(p1)˜̄s(3| 12 )(p2)> − 2iπ2

(2π)4
i3
√

2
108

(
γ5γ

µp2
1 − γ5/p1p

µ
1

)
(F.1.3)

The renormalized correlator satisfies the classical Q- and S-supersymmetry Ward iden-
tities

p1µ <Q̃µ(p1)˜̄s(3| 12 )(p2)>ren= 0 , γµ <Q̃µ(p1)˜̄s(3| 12 )(p2)>ren= 0. (F.1.4)

F.1.3 <T s(1|0)>

<T̃ νξ(p1)s̃(1|0)(p2)>ren=<T̃ νξ(p1)s̃(1|0)(p2)> − 2iπ2

(2π)4
1
18
(
ηνξp2

1 − pν1p
ξ
1

)
(F.1.5)

The renormalized < T s(1|0)> satisfies the following diffeomorphisms, scale and Lorentz
symmetry Ward identities

p1ν <T̃ νξ(p1)s̃(1|0)(p2)>ren= 0 , ηνξ <T̃ νξ(p1)s̃(1|0)(p2)>ren= 0 , <T̃ [ν,ξ](p1)s̃(1|0)(p2)>ren= 0.
(F.1.6)
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F.2 3-point functions

F.2.1 <QQ̄s(1|0)>

<Q̃µ(p1) ˜̄Qν(p2)s̃(1|0)(p3)>ren=<Q̃µ(p1) ˜̄Qν(p2)s̃(1|0)(p3)>

− 2iπ2

(2π)4
1
36
(
ηµν(/q2 − /q1) + γµ (2pν1 + pν2)− γν (2pµ2 + pµ1 )

)
(F.2.1)

The renormalized 3-point function satisfies its classical Q- and S-supersymmetry Ward
identities. Note here that in the following identities we use the renormalized lower order
correlators, and also we do not include the 2-point function <J s(1|0)> which is zero in
the regulated theory.

Q-supersymmetry

p1µ <Q̃µ(p1) ˜̄Qν(p2)s̃(1|0)(p3)>ren

− p1µp12σ

(1
6η

σνγµ − 1
6η

σµγν − i

6ε
νξµσγξγ5

)
<(s̃(1|0)(p12)s̃(1|0)(p3)>

= −γξ2 <T̃ νξ(p12)s̃(1|0)(p3)>ren −iγ5

√
2

2 <s̃(3| 12 )(p13) ˜̄Qν(p2)>ren (F.2.2)

S-supersymmetry

γµ <Q̃µ(p1) ˜̄Qν(p2)s̃(1|0)(p3)>ren −
1
2γ

νγσp12σ <s̃(1|0)(p12))s̃(1|0)(p3)>= 0 (F.2.3)

F.2.2 <Qs̄(3| 12 )J>

<Q̃µ(p1)˜̄s(3| 12 )(p2)J̃ κ(p3)>ren=<Q̃µ(p1)˜̄s(3| 12 )(p2)J̃ κ(p3)>

− 2iπ2

(2π)4
3
√

2
2

(
− 1

54γ
µ(pκ1 + pκ3)− 1

54η
κµ
/q3 + i

54γξγ5ε
κµξρp1ρ

)
. (F.2.4)

Similarly, the above renormalized correlator satisfies all of its classical symmetry Ward
identities. In the following we do not include <J s(1|0)> and we use the renormalized
lower order correlators.
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Q-supersymmetry

p1µ

(
<Q̃µ(p1)˜̄s(3| 12 )(p2)J̃ κ(p3)>ren +iηµκ

√
2

3 <s̃(3| 12 )(p13)˜̄s(3| 12 )(p2)>
)

= −3
√

2
8 γσ <J̃ σ(p12)J̃ κ(p3)>ren + i3

√
2

16 γσ <s̃
σ
(2|1)(p12)J̃ κ(p3)>ren

− iγ5 <Q̃κ(p13)˜̄s(3| 12 )(p2)>ren (F.2.5)

R-symmetry

p3κ

(
<Q̃µ(p1)˜̄s(3| 12 )(p2)J̃ κ(p3)>ren +iηµκ

√
2

3 <s̃(3| 12 )(p13)˜̄s(3| 12 )(p2)>
)

= iγ5 <Q̃µ(p13)˜̄s(3| 12 )(p2)>ren +i <Q̃µ(p1)˜̄s(3| 12 )(p23)>ren γ5 (F.2.6)

S-supersymmetry

γµ

(
<Q̃µ(p1)˜̄s(3| 12 )(p2)J̃ κ(p3)>ren +iηµκ

√
2

3 <s̃(3| 12 )(p13)˜̄s(3| 12 )(p2)>
)

= 0 (F.2.7)



APPENDIX G

Symmetries of old minimal supergravity

In this appendix, we discuss the symmetries of old minimal supergravity. The main
aim is to find its supersymmetry Ward identities and show that they are manifestly non
anomalous at the quantum level. We follow closely the relevant discussion of [81].

The off-shell supergravity that sources the FZ multiplet is old minimal supergravity [96,
121,122]. It can be obtained fromN = 1 conformal supergravity by adding a compensating
superconformal chiral multiplet, (φ̃, χ̃, F̃ ), and suitable gauge fixing [101, 123, 124]. The
compensating chiral multiplet sources a subset of operators in the FZ multiplet [33, 125]
that form a chiral multiplet. This chiral multiplet comprises a complex scalar operator
(x in the notation of [125]) that is sourced by F̃ , the gamma trace of the supercurrent
sourced by χ̃, and the trace of the stress tensor and the divergence of the R-current, which
are sourced by the real and imaginary parts of the complex scalar φ̃.

The local symmetry transformations of the compensating multiplet are exactly those
of the chiral multiplet in (4.3.6), namely

δφ̃ = ξµ∂µφ̃− σφ̃−
2i
3 θφ̃+

√
2

2 ε̄Lχ̃L, (G.0.1)

δχ̃L = ξµ∂µχ̃L −
3
2σχ̃L + i

3θχ̃L −
1
4λabγ

abχ̃L +
√

2
2
(
γµ
(
Dµφ̃−

√
2

2 ψ̄µLχ̃L
)
εR + F̃ εL + 2φ̃ηL

)
,

δF̃ = ξµ∂µF̃ − 2σF̃ + 4i
3 θF̃ + 1

2 ε̄Rγ
µ
(√

2Dµχ̃L − γν
(
Dν φ̃−

√
2

2 ψ̄νLχL
)
ψµR − F̃ψµL − 2φ̃ φµL

)
.
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The compensating multiplet allows us to redefine the supergravity fields so that they
are invariant under Weyl, S-supersymmetry and axial gauge transformations. Using the
conformal supergravity transformations in (4.3.1), it is straightforward to verify that the
redefined fields

e′aµ = |φ̃|eaµ, ψ′µ = 1
|φ̃|
(
φ̃PR + φ̃∗PL

)3/2
ψµ +

√
2

2|φ̃|
γµ
(
φ̃PL + φ̃∗PR

)1/2
χ̃,

A′µ = Aµ −
3i
4 |φ̃|

−2
(
φ̃∗∂µφ̃− φ̃∂µφ̃∗ + 1

4
¯̃χγµχ̃−

√
2

2 ψ̄µ(φ̃∗χ̃L − φ̃χ̃R)
)
. (G.0.2)

do not transform under Weyl, S-supersymmetry and axial gauge transformations [101].
Having defined the invariant supergravity fields (e′aµ , ψ′µ, A′µ), we fix the gauge by setting

φ̃ = 1, χ̃ = 0. (G.0.3)

This gauge choice eliminates the sources of the gamma trace of the supercurrent, the
trace of the stress tensor and the divergence of the R-current in the FZ multiplet, all of
which are redundant. In this gauge, the field redefinition (G.0.2) reduces to the identity,
so that (e′aµ , ψ′µ, A′µ) = (eaµ, ψµ, Aµ). However, only a subset of the local transformations
of conformal supergravity preserve this gauge. From the transformations (G.0.1) of the
compensator multiplet we see that the gauge (G.0.3) is preserved if and only if the local
symmetry parameters satisfy the conditions

σ = 0, θ = 0, η = i

3
/Aε− 1

2(F̃ εL + F̃ ∗εR). (G.0.4)

The surviving local symmetries are those of old minimal Poincaré supergravity with

δom
ε = δε + δη(ε), η(ε) = i

3
/Aε− 1

2(F̃ εL + F̃ ∗εR), (G.0.5)

where δε, δη are the Q- and S-supersymmetry transformations of N = 1 conformal super-
gravity.

The field content of old minimal supergravity, therefore, consists of that of N = 1
conformal supergravity, as well as the auxiliary complex scalar, F̃ , of the compensator
multiplet, which is not fixed by the gauge fixing conditions (G.0.3). Adopting standard
notation [28], we denote this field by M in the following.1 The supersymmetry transfor-

1In fact, M here is related to MWB in [28] as M = −3M∗
WB.
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mations of old minimal supergravity are

δom
ε eaµ = − 1

2ψµγ
aε,

δom
ε ψµ = Dµε− γµ

( i
3
/Aε− 1

2(MεL +M∗εR)
)
,

δom
ε Aµ = 3i

4 φµε−
3i
4 ψµ

( i
3
/Aε− 1

2(MεL +M∗εR)
)
,

δom
ε M =− ε̄Rγµ

( i
3
/AψµR + 1

2MψµL + φµL
)
. (G.0.6)

Ward identities

Given the field content and local symmetry transformations of old minimal supergravity,
we can define the corresponding current multiplet operators and determine the Ward
identities they satisfy. A variation of the generating function of (regulated) connected
correlation functions takes the form

δW̃ [e,A, ψ,M ] =
∫
d4x e

(
〈T̃ µa 〉sδeaµ + 〈J̃ µ〉sδAµ + δψ̄µ〈Q̃µ〉s + 〈ÕM 〉sδM + 〈ÕM∗〉sδM∗

)
,

(G.0.7)
where the local operators defined by

〈T̃ µa 〉s = e−1 δW̃

δeaµ
, 〈J̃ µ〉s = e−1 δW̃

δAµ
, 〈Q̃µ〉s = e−1 δW̃

δψ̄µ
,

〈ÕM 〉s = e−1 δW̃

δM
, 〈ÕM∗〉s = e−1 δW̃

δM∗
, (G.0.8)

comprise the FZ current multiplet [33,125]. Like the currents (B.0.1) defined from confor-
mal supergravity, this definition of the FZ multiplet is independent of the specific theory
and applies even to non Lagrangian theories.

The local symmetries of old minimal supergravity consist of diffeomorphisms, local
frame rotations, as well as the local supersymmetry transformations (G.0.6). The alge-
bra of these transformations closes off-shell [96, 121]. Since there exist no gravitational
or Lorentz anomalies in four dimensions, diffeomorphisms and local frame rotations are
preserved at the quantum level. Whether the old minimal supersymmetry transformations
(G.0.6) are anomalous can be determined using the associated WZ consistency conditions.
We will not perform such an analysis here, but we will show that the four-point functions
of currents in the free and massless WZ model are compatible with a non anomalous old
minimal supersymmetry.2

Inserting the local symmetry transformations of old minimal supergravity in the varia-
2The claim that there exists no supersymmetry anomaly in old minimal supergravity is implicit in

[55, 65–67, 126]. However, these works concern the superspace formulation of old minimal supergravity,
which contains additional fields that may act as compensators.
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tion (G.0.7) and invoking the invariance of W̃ [e,A, ψ,M ] leads to the three Ward identities

eaµ∇ν〈T̃ νa 〉s +∇ν(ψ̄µ〈Q̃ν〉s)− ψ̄ν
←−
Dµ〈Q̃ν〉s − Fµν〈J̃ ν〉s − ∂µM〈ÕM 〉s − ∂µM∗〈ÕM∗〉s

+Aµ
(
∇ν〈J̃ ν〉s + iψ̄ν〈Q̃ν〉s

)
− ωµab

(
eν[a〈T̃ νb] 〉s + 1

4 ψ̄νγab〈Q̃
ν〉s
)

= 0,

eµ[a〈T̃
µ
b] 〉s + 1

4 ψ̄µγab〈Q̃
µ〉s = 0,

Dµ〈Q̃µ〉s −
1
2γ

aψµ〈T̃ µa 〉s −
3i
4 φµ〈J̃

µ〉s

+ 1
2
(
MPL +M∗PR −

2i
3
/A
)(
γµ〈Q̃µ〉s −

3i
4 ψµ〈J̃

µ〉s
)

(G.0.9)

+ γµ
( i

3
/AψµR + 1

2MψµL + φµL
)
〈ÕM 〉s + γµ

(
− i

3
/AψµL + 1

2M
∗ψµR + φµR

)
〈ÕM∗〉s = 0.

Since diffeomorphisms and local frame rotations are preserved at the quantum level,
the first two Ward identities hold also in the quantum theory.

Now let us examine the third Ward identity, which is associated with supersymmetry.
In particular, we are interested in the supersymmetry identities of 〈Q̃ ˜̄Q〉, 〈Q̃ ˜̄QJ̃ 〉 and
〈Q̃ ˜̄QJ̃ J̃ 〉. After taking the appropriate functional derivatives, we go to the flat space
limit and find the following in momentum space:

2-point function

p1µ〈Q̃µ(p1) ˜̄Qν(p2)〉 = 0, (G.0.10)

3-point function

p1µ〈Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)〉 = ip2µB
νµσ〈J̃σ(p12)J̃ κ(p3)〉 − iγ5〈Q̃κ(p13) ˜̄Qν(p2)〉

− i

3γ
κγ5γµ〈Q̃µ(p13) ˜̄Qν(p2)〉, (G.0.11)

4-point function

p1µ〈Q̃µ(p1) ˜̄Qν(p2)J̃ κ(p3)J̃ λ(p4)〉

= ip2µB
νµσ〈J̃σ(p12)J̃ κ(p3)J̃ λ(p4)〉 − γξ

2 〈T̃
νξ(p12)J̃ κ(p3)J̃ λ(p4)〉

− iγ5〈Q̃κ(p13) ˜̄Qν(p2)J̃ λ(p4)〉 − iγ5〈Q̃λ(p14) ˜̄Qν(p2)J̃ κ(p3)〉

+ γ5B
νκσ〈J̃σ(p123)J̃ λ(p4)〉+ γ5B

νλσ〈J̃σ(p124)J̃ κ(p3)〉
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+ 1
3γ

λγ5

(
−iγµ〈Q̃µ(p14) ˜̄Qν(p2)J̃ κ(p3)〉+ 3i

4 γ5〈J̃ ν(p124)J̃ κ(p3)〉
)

+ 1
3γ

κγ5

(
−iγµ〈Q̃µ(p13) ˜̄Qν(p2)J̃ λ(p4)〉+ 3i

4 γ5〈J̃ ν(p123)J̃ λ(p4)〉
)
. (G.0.12)

The above are the supersymmetry Ward identities of the aforementioned correlators in the
old minimal supergravity. As usual, we have not included the 1-point functions. Moreover,
we omitted correlators involving the operators OM∗ , OM , since they vanish trivially due
to the absence of non zero Wick contractions. If one wishes to compute these identities
for the WZ model using Feynman diagrams, it is necessary to couple the WZ model to
old minimal supergravity, in order to find the theory dependent seagull correlators. We
will not perform this analysis here.

After comparing the current correlators of (G.0.11) and (G.0.12) with (8.0.1) and
(8.0.2), we find that they match exactly. As we proved, the Q+S supersymmetry identities
of chapter 8, are manifestly satisfied in the quantum regime. These identities are identical
with the supersymmetry identities of old minimal supergravity, up to seagull correlators.
This means that the old minimal supergravity is non anomalous, as we claimed. The
coupling of the WZ model to old minimal supergravity and the complete analysis which
shows that the mentioned identities are the same including the seagull correlators is given
in [81].
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APPENDIX H

Correlators with arbitrary momentum routing

In this appendix, we write the explicit form of the correlators we use in the path integral
Q-supersymmetry identity (9.2.1) of < QQ̄JJ >. Since we are working with cut-off
regularization, the momentum routing we choose for the integrals that correspond to a
correlator is important. In general, one has to choose a specific routing for the Feynman
diagrams of the correlators, and then introduce an extra parameter that encodes the
freedom that we have for an arbitrary shift in the loop momentum. From a physical
point of view, every choice of routing should correspond to the same physical procedure.
For convergent correlators, this is indeed true. In divergent correlators though, different
choices of routing result in integrals that differ by surface terms. Then, one has to fix
these surface terms (using a different routing, or counterterms) so that the correlator
under consideration is consistent and satisfies its classical symmetries.

In principle, a correlator is given by a sum of Feynman diagrams/integrals. For gener-
ality, we assign a different routing parameter for every one of the integrals that comprise
the correlator. This is what the index i represents in the parameters {ai}, ... {hi}. For
example, the 4-point correlator <QQ̄JJ> consists of six integrals (H.0.1), thus we have
six different routing parameters a1, ... a6.

The initial choice of routing that we made in the following correlators (i.e. when the
routing parameters are equal to zero) is such, that the symmetry identity (9.2.1) is satisfied
without any illegitimate manipulations at the integrals. This choice however, as mentioned
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in chapter 9, renders the 3-point correlator <JJJ > inconsistent. In particular, it does
not respect Bose symmetry, thus it does not reproduce the standard R-symmetry anomaly.

<QQ̄JJ>

The linearly divergent 4-point function <QQ̄JJ> is given by:

<Qµ(p1)Q̄ν(p2)J κ (p3)J λ (p4)>{ai}=
∫

d4q

(2π)4

{[2
9(2q + p4 + 2a1)κ

(2q − p3 + 2a1)λPφ(q + p3 + p4
2 + a1)Pφ(q − p3 + p4

2 + a1)Pφ(q + p4 − p3
2 + a1)

Cµ0 (−q − p3 + p4
2 − a1)Pχ(q − p2 −

p3 + p4
2 + a1)Aν0(q − p3 + p4

2 + a1)
]

+


p3 ←→ p4

κ ←→ λ

a1 ←→ a2




+
∫

d4q

(2π)4

{[ 2i
18(2q + 2a3)κ

Pφ(q + p3
2 + a3)Pφ(q − p3

2 + a3)Cµ0 (−q − p3
2 − a3)Pχ(q − p2 − p4 −

p3
2 + a3)

γλγ5Pχ(q − p2 −
p3
2 + a3)Aν0(q − p3

2 + a3)
]

+


p3 ←→ p4

κ ←→ λ

a3 ←→ a4




+
∫

d4q

(2π)4

{[
− 1

18Pφ(q + p2 − p1
2 + a5)

Cµ0 (−q − p2 − p1
2 − a5)Pχ(q + p2 + p1

2 + a5)γλγ5Pχ(q − p2 + p1
2 − p3 + a5)

γκγ5Pχ(q − p2 + p1
2 + a5)Aν0(q + p2 − p1

2 + a5)
]

+


p3 ←→ p4

κ ←→ λ

a5 ←→ a6



(H.0.1)

where Cµ0 (q), Aν0(q) are given in (9.1.3).
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<T JJ>

The quadratically divergent <T JJ> is given by

<T µν(p1 + p2)J κ(p3)J λ(p4)>{di}=
∫

d4q

(2π)4

{[−4
9 Gµν0 (q + d1 −

p3 + p4
2 )

(2q + p4 + 2d1)κ(2q − p3 + 2d1)λPφ(q + p3 + p4
2 + d1)

Pφ(q − p3 + p4
2 + d1)Pφ(q + p4 − p3

2 + d1)
]

+


p3 ←→ p4

κ ←→ λ

d1 ←→ d2




+
∫

d4q

(2π)4

{[ i
18 tr

(
γσPχ(q + p2 + p1

2 + d3)γλγ5Pχ(q + p2 + p1
2 + p4 + d3)γκγ5

Pχ(q − p2 + p1
2 + d3)

)
(

(q + p1 + p2
2 + d3)νηµσ − (q + p1 + p2

2 + d3)σηνµ
) ]

+


p3 ←→ p4

κ ←→ λ

d3 ←→ d4




+
∫

d4q

(2π)4

{[ i
72 tr

(
γσγ5Pχ(q + p2 + p1

2 + d5)γλγ5Pχ(q + p2 + p1
2 + p4 + d5)γκγ5

Pχ(q − p2 + p1
2 + d5)

)
εµνρσip1ρ

]

+


p3 ←→ p4

κ ←→ λ

d5 ←→ d6


 .

(H.0.2)

<QQ̄J>

The quadratically divergent <QQ̄J> is equal to

<Qκ(p1 + p3)Q̄ν(p2)J λ(p4)>{ei}=
∫

d4q

(2π)4

{[ i
6Pφ(q + p2 − p1

2 + e1)

Cκ0 (−q − p2 − p1
2 − e1)Pχ(q + p3 + p2 + p1

2 + e1)γλγ5

Pχ(q − p2 + p1
2 + e1)Aν0(q + p2 − p1

2 + e1)
]

+
∫

d4q

(2π)4

{[1
3 (−2q − 2e2 + p1 − p2 + p4)λ Pφ(q + p2 − p1

2 + e2)

Pφ(q + p2 − p1
2 − p4 + e2)γ5C

κ
0 (−q − p2 − p1

2 − e2)

Pχ(q + p2 − p1
2 + e2)Aν0(q + p2 + p1

2 + p3 + e2 − p4)
]
.

(H.0.3)
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The 3-point function <Qλ(p1 + p4)Q̄ν(p2)J κ(p3)>{fi} is given by (H.0.3) after we make
the exchanges (κ , p3 , ei)↔ (λ , p4 , fi) .

<JJJ>

The linearly divergent <JJJ> is given by

<Jσ(p1 + p2)J κ(p3)J λ(p4)>{ci}=∫
d4q

(2π)4
i

54

{
tr
(
γσγ5Pχ(q + p2 + p1

2 + c1)γλγ5Pχ(q + p2 + p1
2 + p4 + c1)γκγ5Pχ(q − p2 + p1

2 + c1)
)

+


p3 ←→ p4

κ ←→ λ

c1 ←→ c2


 .

(H.0.4)
<JJJ> respects Bose symmetry for

c1 = −p4 − p3
6 , c2 = p4 − p3

6 . (H.0.5)

<JJ>

The quadratically divergent 2-point correlator <JJ> has the following form

<J σ(−p4)J λ(p4)>{gi}=
∫

d4q

(2π)4
4
9(2q − p4 + 2g1)σ(2q − p4 + 2g1)λPφ(q + g1)Pφ(q − p4 + g1)

+
∫

d4q

(2π)4
1
18tr

(
γσγ5Pχ(q + g2)γλγ5Pχ(q + p4 + g2)

)
. (H.0.6)

Ωνκλ

We now give the expressions for the seagull correlators Ωνκλ (9.2.2).

<Qµ(p1)s̄(3| 12 )(p2 + p4)J κ(p3)>{bi}=∫
d4q

(2π)4

(
−
√

2
6 Pφ(q + p2 + p4 − p1

2 + b1)

Cµ0 (q + p2 + p4 − p1
2 + b1)Pχ(p1 − q −

p2 + p4 − p1
2 − b1)γκγ5Pχ(−q − p2 − p4 −

p2 + p4 − p1
2 − b1)γ5

+
√

2i
3 (2q − 2p1 + 2b2)κPφ(q + p2 + p4 − p1

2 + b2)Pφ(q + p2 + p4 − p1
2 + b2 + p3)

γ5C
µ
0 (q + p2 + p4 − p1

2 + b2)Pχ(p1 − q −
p2 + p4 − p1

2 − b2)γ5

)
, (H.0.7)
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<s(1|0)(p1 + p2)J κ(p3)J λ(p4)>{bi}=
∫

d4q

(2π)4 {[4
9(2q + p4 + 2b1)κ(2q − p3 + 2b1)λPφ(q + p3 + p4

2 + b1)Pφ(q − p3 + p4
2 + b1)Pφ(q + p4 − p3

2 + b1)
]

+


p3 ←→ p4

κ ←→ λ

b1 ←→ b2


 ,

(H.0.8)

<Qµ(−p2)s̄(3| 12 )(p2)>{bi}=
∫

d4q

(2π)4
i
√

2
2 Cµ0 (q + b1)Pχ(−p2 − q − b1)γ5Pφ(q + b1),

(H.0.9)

<(s∗σ(4|1) − sσ(4|1))(−p4)J λ(p4)>{bi}=

−
∫

d4q

(2π)4
4
9(2q − p4 + 2b1)σ(2q − p4 + 2b1)λPφ(q + b1)Pφ(q − p4 + b1), (H.0.10)

and

<sσ(2|1)(−p4)J λ(p4)>{bi}=
∫

d4q

(2π)4
−i
3 tr

(
γσγ5Pχ(q + b1)γλγ5Pχ(q + p4 + b1)

)
.

(H.0.11)

Every other correlator in Ωνκλ (9.2.2) can be deduced from the above integrals and some
symmetry arguments.
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