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This is a ‘three paper thesis’, the main body of which consists of the following papers:

[1] S. Hughes, Cohomology of Fuchsian groups and non-Euclidean crystallographic
groups, preprint, available at arXiv:1910.00519 [math.GRJ, 2019.

[2] S. Hughes, On the equivariant K- and KO-homology of some special linear groups,
to appear in Algebraic and Geometric topology. Available at arXiv:2004.08199
[math.KT], 2020.

[3] I. Chatterji, S. Hughes and P. Kropholler, Groups acting on trees and the first £>-Betti
number, to appear in Proceedings of the Edinburgh Mathematical Society. Available
at arXiv:2004.08199 [math.GR], 2020.

[4] S. Hughes, Graphs and complezes of lattices, preprint, available at arXiv:2104.13728
[math.GR]|, 2021.

[5] S. Hughes, Hierarchically hyperbolic groups, products of CAT(—1) spaces, and virtual
torsion-freeness, preprint, available at arXiv:2105.02847 [math.GR/|, 2021.

In [1], we compute the cohomology groups of a number of low dimensional linear groups.
In particular, for each geometrically finite 2-dimensional non-Euclidean crystallographic
group (NEC group), we compute the cohomology groups. In the case where the group

is a Fuchsian group, we also determine the ring structure of the cohomology.

In [2], we study K-theoretic properties of arithmetic groups in relation to the Baum-—
Connes Conjecture. Specifically, we compute the equivariant K O-homology of the clas-
sifying space for proper actions of SL3(Z), and the Bredon homology and equivariant
K-homology of the classifying spaces for proper actions of SLQ(Z[%]) for each prime p.
Finally, we prove the Unstable Gromov-Lawson-Rosenberg Conjecture on positive scalar
curvature for a large class of groups whose maximal finite subgroups are odd order and

have periodic cohomology.

In [3]|, we generalise results of Thomas, Allcock, Thom-Petersen, and Kar-Niblo to the
first £2-Betti number of quotients of certain groups acting on trees by subgroups with

free actions on the edge sets of the graphs.
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In [4], we study lattices acting on CAT(0) spaces via their commensurated subgroups.
To do this we introduce the notions of a graph of lattices and a complex of lattices giving
graph and complex of group splittings of CAT(0) lattices. Using this framework we
characterise irreducible uniform (Isom(E™) x T')-lattices by C*-simplicity and the failure
of virtual fibring and biautomaticity. We construct non-residually finite uniform lattices
acting on arbitrary products of right angled buildings and non-biautomatic lattices acting
on the product of E™ and a right-angled building. We investigate the residual finiteness,
L?-cohomology, and C*-simplicity of CAT(0) lattices more generally. Along the way we
prove that many right angled Artin groups with rank 2 centre are not quasi-isometrically

rigid.

In [5], we prove that a group acting geometrically on a product of proper minimal
CAT(—1) spaces without permuting isometric factors is a hierarchically hyperbolic group.
As an application we construct, what to the author’s knowledge are, the first examples

of hierarchically hyperbolic groups which are not virtually torsion-free.
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Chapter A

Introduction

We will refer to the papers as Paper 1 [Hugl9|, Paper 2 [CHK20|, Paper 3 [Hug20],
Paper 4 [Hug21al, and Paper 5 [Hug21b|. Papers 1, 3, 4, and 5 are single-author papers.
Paper 2 is joint work with Indira Chatterji and Peter Kropholler. The paper was based
on an unfinished project of of Peter and Indira, specifically, they had proved the main
result (Theorem 2.A) for graphs of finite groups. Peter suggested that I take a look
at the project and I found a strategy to extend the result to the class of groups C and
proved the additional computations (Theorem 2.E).

Note that Section B.4 contains a brief summary of joint work with Pierre-Emmanuel
Caprace in which we present a sketch of a proof fixing a gap in the main theorem of
“Regular elements of CAT(0) groups” by Pierre-Emmanuel Caprace and Gasper Zadnik
[CZ13].

Other papers and preprints completed by the author during his PhD studies may be
found here [GH21| and [HMPSSn21].

In Paper 1 we compute the group cohomology of lattices in PGLy(R) using the equivariant
spectral sequence for a I'-space. The paper is self contained, however, it is expected the
reader is familiar with group homology and cohomology. An excellent reference for this
is [Bro94].

In Paper 2 we investigate the L2-cohomology of certain graphs of groups. The techniques
rely on basic properties of the L?-cohomology theory and are developed in the paper. For
additional background the reader could consult [Liic02|. The paper also heavily relies on

groups acting on trees, the relevant background here is given in the Section B.1.

In Paper 3 we turn our attention to the equivariant cohomology theory of Bredon and its
connection with various conjectures in K-theory. We perform a number of explicit com-
putations of K-groups of arithmetic groups, and prove the Unstable Gromov—Lawson—

Rosenberg Conjecture for a large class of groups (Theorem 3.E). Again the paper is
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essentially self contained, however, the computations of K. (EI') for I' = PSLQ(Z[%])
use the Bruhat-Tits’ tree for I'. We provide background on the Bruhat-Tits” tree for

PSLy(Z[3]) in Section B.1.2.3.

In Paper 4 we study lattices in more general products of CAT(0) spaces. We introduce the
notions of a graph and a complex of lattices and use this to deduce a number of structural
properties of lattices in mixed products of either a tree or CAT(0) polyhedral complex
and a fairly arbitrary CAT(0) space. The paper relies and builds on work of Caprace—
Monod [CM09b] [CM09a] [CM19| and Leary-Minasyan [LM19]|. An introduction to
CAT(0) groups and spaces is given in Section B.2, an introduction to Leary—Minasyan
groups is given in Section B.1.2.2. Finally, the background on CAT(0) lattices in given

in Section B.3

In Paper 5 we construct a hierarchically hyperbolic group which is not virtually torsion-
free answering a well known folklore question. The paper uses elementary methods and
is essentially self contained. However, many of the proofs are streamlined by results in
Paper 4 - we highlight the relevant parts in the body of the paper. Indeed, it was whilst

writing Paper 4 that the author came up with the ideas for this example.

Finally, I would like to include a few words about how these projects fit together. As
the title suggests the overarching theme is “equivariant cohomology, lattices, and trees”
- all but one of the papers (Paper 5) features some cohomology calculation, all but one
of the papers features lattices acting on CAT(0) spaces (Paper 2), and all of the papers
feature groups acting on trees. The project which spurred this was to construct a variant
of Leary and Minasyan’s groups LM(A) that acted on the real hyperbolic plane RH?,

we hoped that this group would be a counterexample to the Flat Closing Conjecture.

The project required an understanding of NEC groups. At some point I realised the
cohomology of these NEC groups had not be computed and so Paper 1 was born. [
figured that the calculation was profitable, not just because it was interesting in its own
right, but because it could be used to give a deeper understanding of the cohomology of
these “hyperbolic Leary-Minasyan groups”. Once this was computed I became interested
in other cohomology theories (L? and Bredon) which led to Paper 3 and the joint paper
with Indira Chatterji and Peter Kropholler (Paper 2). Paper 3 originally began life as
an attempt to compute the Bredon cohomology of all lattices in PSLa(R) x T4 1, where
p is a prime and Tp4q is the automorphism group of (p + 1)-regular tree. This was a
far too broad problem to tackle, however, the special case of PSLa (Z[%]) was tractable
(Theorem 3.C). After learning more about the isomorphism conjectures in K-theory and

reading [DP03] I then proved the result on the Unstable Gromov-Lawson-Rosenberg
Conjecture (Theorem 3.E).

Returning to the “hyperbolic Leary—Minasyan groups” I soon realised that the struc-
ture theory of Caprace-Monod could be extended using more combinatorial methods,

this gave rise to Paper 4 and Paper 5. Although “hyperbolic Leary—Minasyan groups”
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are not counterexamples to the Flat Closing Conjecture by a result of CapracefZadnik
[CZ13|. However, it transpired that the main result of this paper contains an error (the
statement still applies for the above application and we give an ammended statement in
Section B.4). This ultimately led to the work with Pierre-Emmanuel Caprace where we

hope to fix the paper for the general case.






Chapter B
Background

This chapter provides some background on the papers included in this thesis. The
papers are largely self contained, however, we take the opportunity to provide additional
information about some of the groups which will appear in this thesis. The cohomology
theories we study (ordinary group cohomology, L?-cohomology, and Bredon cohomology)
will be introduced in the relevant papers. However, the reader may wish to consult
[Bro94] for a background on group cohomology, [Liic02] or [Kam19] for a background on
L?-cohomology, and [MV03] for Bredon cohomology.

This entire chapter contains no original content except in Section B.4 where we present

a sketch of a proof fixing a gap in the main theorem of [CZ13].

B.1 Groups acting on trees

We shall state some of the definitions and results of Bass-Serre theory. In particular, the
action will be on the right. We follow the treatment of Bass [Bas93]. Throughout a graph
A= (VA /EA,. 1) should be understood as it is defined by Serre [Ser03], with edges in
oriented pairs indicated by €, and maps ¢(e) and 7(e) from each edge to its initial and
terminal vertices. We will, however, often talk about the geometric realisation of a graph
as a metric space. In this case the graph should be assumed to be simplicial (possibly
after subdividing) and should have exactly one undirected edge e for each pair (e,€). We

will often not distinguish between the combinatorial and metric notions.

A tree T is a connected non-empty graph without circuits. Let m and n be cardinals. A
tree is n-reqular if each vertex has valence of cardinality n. A tree T is (n, m)-biregular
if the vertices of 7 admits a 2-colouring, the vertices of the same colour are not adjacent,
vertices of the first colour have valence m, and vertices of the second colour have valence

n.
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FIGURE B.1: A 4-regular tree.

B.1.1 Graphs of groups

A graph of groups (A, A) consists of a graph A together with some extra data A4 =
(VA EA, ®A). This data consists of vertex groups A, € VA for each vertex v, edge
groups A, = Az € EA for each (oriented) edge e, and monomorphisms (a, : A, —
A e)) € @ for every oriented edge in A. We will often refer to the vertex and edge groups

as local groups and the monomorphisms as structure maps.

The path group m(A) has generators the vertex groups A, and elements ¢, for each edge
e € F A along with the relations:

The relations in the groups A,,
te =t
teaz(g)t;! = ae(g) for alle e FA and g € A, = Az

We will often abuse notation and write A for a graph of groups. The fundamental group of
a graph of groups can be defined in two ways. Firstly, considering reduced loops based at
a vertex v in the graph of groups, in this case the fundamental group is denoted 71 (A, v)
(see |Bas93, Definition 1.15]). Secondly, with respect to a maximal or spanning tree of

the graph. Let X be a spanning tree for A, we define m1 (A, X) to be the group generated
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by the vertex groups A, and elements t. for each edge e € EA with the relations:

The relations in the groups A,
tz =t ! for each (oriented) edge e,
teae(g)ts ! = ae(g) for all g € A,
te = 1 if e is an edge in X.

Note that the definitions are independent of the choice of basepoint v and spanning tree
X and both definitions yield isomorphic groups so we can talk about the fundamental
group of A, denoted m1(A).

Let G be the fundamental group corresponding to the spanning tree X. For every vertex
v and edge e, A, and A, can be identified with their images in G. We define a tree with
vertices the disjoint union of all coset spaces G/A, and edges the disjoint union of all
coset spaces G/A, respectively. We call this graph the Bass-Serre tree of A and note

that the action of G admits X as a fundamental domain.

Given a group G acting on a tree 7T, there is a quotient graph of groups formed by
taking the quotient graph from the action and assigning edge and vertex groups as the
stabilisers of a representative of each orbit. Edge monomorphisms are then the inclusions,

after conjugating appropriately if incompatible representatives were chosen.

Theorem B.1.1. [Bas93| Up to isomorphism of the structures concerned, the processes
of constructing the quotient graph of groups, and of constructing the fundamental group

and Bass-Serre tree are mutually inverse. L]

B.1.2 Examples

We will detail a number of examples groups acting on trees, these will appear in several

of the papers later in the thesis.

B.1.2.1 Amalgamated free products and SLy(Z)

Given groups A, B, and C, and monomorphisms ag : C' — A and ap : C — B, we
may form the amalgamated free product I' = A *¢c B. To do this we take the free
product A = B and then identify a4(C) with ap(C). A corresponding graph of groups
for this construction is given as follows: Take a single directed edge e from a vertex v
to a vertex w. Assign the vertex group A to v, B to w and the edge group C to e.
Now, the monomorphism « 4 is assigned to e and the monomorphism «ap is assigned to
€. This is illustrated in Figure B.2 with monomorphisms omitted. It is easy to see that
the Bass-Serre tree for the amalgamated free product I is the (JA : C|,|B : C|)-biregular

tree.
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A C B
— e
v € w

FIGURE B.2: A graph of groups for an amalgamated free product A xc B

Example B.1 (SL2(Z)). [Ser03, Page 35| The group SLa(Z) acts on the real hyperbolic
plane RH? by linear fractional transforms. Consider the circular arc e in the upper half
plane model starting at w = €3 and terminating at v = i contained in the circle of
radius 1 in C with origin 0 (this is illustrated in Figure B.3). The SL2(Z) orbit of the
edge e defines an embedding of the (2, 3)-biregular tree into RH2. It is easy to check
that the stabiliser of v is isomorphic to Z,4, the stabiliser of w is isomorphic to Zg and
the stabiliser of e is the central subgroup isomorphic to Zy. In particular, SLo(Z) splits

as an amalgamated free product Zy *z, Zg.

0 ORH?
FIGURE B.3: The tree for SLy(Z) embedded into RH2.

B.1.2.2 HNN extensions, Baumslag—Solitar groups, and Leary—Minasyan

groups

Given groups H and A and monomorphisms i,j : A — H, the HNN extension H#4 of
H over A is the group defined by the presentation

(H,t | rel(H), ti(a)t™" = j(a) Ya € A).

HNN extensions arise as the fundamental group of a graph of groups consisting of a
single vertex and edge. Here the vertex group is H, the edge group is A, and the edge
monomorphisms are i and j. The Bass-Serre tree is the (|H : i(A)| + |H : j(A)|)-regular

tree.

A

£

H

FI1GURE B.4: A graph of groups for an HNN extension H 4.
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Example B.2 (Baumslag—Solitar groups). The following groups were introduced in
[BS62] by Baumslag and Solitar as the first examples of non-Hopfian one-relator groups.

Let ¢ and p denote non-zero integers and define the Baumslag—Solitar group
BS(p,q) := {a,t | taPt™1 = a?).

The group splits as an HNN-extension Zs,7 where the edge groups are pZ = (aP) and
qZ = {a%). The Bass-Serre tree for BS(2, 3) is depicted in Figure B.5.

FIGURE B.5: The Bass-Serre tree for BS(2, 3) and the vertex stabilisers.

Example B.3 (Leary—Minasyan groups). The following groups were introduced in [LM19)]
by Leary and Minasyan as a class of groups containing the first examples of CAT(0) but
not biautomatic groups, they were classified up to isomorphism by Valiunas [Val20]. In
fact they are not subgroups of any biautomatic group [Val21|. Let n = 0, let A € GL,,(Q),
and let L < Z™ n A~Y(Z") be a finite index subgroup. The group LM(A, L) is defined
by the presentation

LM(A,L) ={zx1,...,xn,t | [25,25] =1 for 1 <i<j< n,txVt™t = xA for v e L),

where we write xV := z{" - - 2% for w = (w1, ..., wy) € Z". If L is the largest subgroup
of Z™ such that AL is also a subgroup of Z", then we denote LM(A, L) by LM(A). We
refer to the groups LM(A, L) and LM(A) as Leary—Minasyan groups. The group clearly

splits as an HNN extension Z™#,.

The Leary—Minasyan groups are in some sense a generalisation of Baumslag-Solitar
groups since for n = 1, if L = rZ and A = s/r € GL1(Q) for some non-zero integers r
and s, then LM(A, L) = (x,t | ta"t~! = 2%) = BS(r, ).
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As a concrete example, take
e '3/5 —4/5] .
4/5 3/5
—1]12
11 2

Note that L is index 5 in Z? and so must be a maximal subgroup. It follows that

LM(A, L) = LM(A) = {a,b,t | [a,b], ta®b" 1t = a®b, tab®t™' = o 10?).

Recall that a group G is restdually finite if for every non-trivial g € G there exists a
finite group F,; and a homomorphism ¢ : G — F, such that ¢(g) # 1. Equivalently, the
intersection of every finite-index subgroup of G is equal to {1}. Indeed, since for each
1 # g € G we have ¢(g) # 1, there exists a finite-index normal subgroup N < G with
g ¢ N. In particular, the intersection of all finite-index normal subgroups, and hence the

intersection of all finite-index subgroups is equal to {1}. The converse is immediate.

Proposition B.1.2. [LM19, Proposition 10.4] Let A € GL,,(Q) and L < Z", then the
group LM(A, L) is residually finite if and only if either L = Z", AL = 7", or A is
conjugate in GL,(Q) to a matriz in GL,(Z). O

The Leary—Minasyan groups come equipped with a representation into AGL, (R) = R™ %
GL,,(R), here each generator z; is sent to a basis vector of R” identified with L ® R and
the element ¢ is sent to the matrix A in GL,(R). Using this Leary—Minaysan show the

following.

Proposition B.1.3. [LM19, Proposition 7.1| Each group LM(A, L) is free-by-abelian-
by-cyclic. L]

B.1.2.3 The Bruhat-Tits tree for SLQ(Z[%])

First we will fix some notation. Our treatment will follow [Ser03, Chapter II|. Let F
denote a field with a discrete valuation v : F' — Z, that is, v is a homorphism F* — Z

such that for all z,y € F we have
v(z +y) = Inf(v(z), v(y))

and the convention v(0) = . Let O denote the valuation ring of F' and choose 7 € F
such that v(m) = 1. Note that all ideals in O are two-sided and let k = O/7O. Let V

be a 2-dimensional F-vector space.
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A lattice of V is any finitely generated O-submodule of V' which generates V' as an F-
vector space. The group F'* acts on the set of lattices 7 by right multiplication. We call
the elements of 7 /F* the classes of lattices and say that two lattices in the same class

are equivalent.

Let L and L' be two lattices of V. It follows from the Invariant Factor Theorem for
modules over a PID that there is a O-basis {e1,e2} of L and integers a,b such that
{e17m?, eam®} is a O-basis for L. Note that {a, b} does not depend on the choice of basis
for L. Moreover, the integer d(L, L) := |a — b| only depends on the classes A and A’ of
L and L'. Thus, we may denote this number by d(A,A’). We say two classes A, A" in T
are adjacent if d(A,A’) = 1. This endows 7 with the structure of a graph.

Theorem B.1.4. [Ser03, Page 70, (Theorem 1)| With notation as established in this
section, the graph T is a tree. ]

The group GL(V') acts on the tree T and we will refer to 7 as the Bruhat-Tits tree of
GL(V). We will primarily interested in the groups SL(V') and PSL(V). Here SL(V)
is the kernel of the Dieudonné determinant GL(V) — F*/(F*,F*) and PSL(V) :=
SL(V)/Z(SL(V)). Clearly, SL(V) acts on T by restricting the action of GL(V'). The
kernel of the action of SL(V) on T is Z(SL(V)). In particular, PSL(V') also acts on 7.

By [Ser03, Page 78, (Theorem 2)|, SL(V') acts on 7 with fundamental domain a single
edge and two distinct vertices. Let L and L’ be lattices corresponding to two adjacent
vertices in 7. Clearly, the stabilisers of these vertices can be identified with conjugates

of SLy(O). Computing their intersection yields the following theorem.

Theorem B.1.5 (Thara’s Theorem). [Ser03, Page 79, (Corollary 1)| The group SLa(F)
splits as an amalgamated free product SLa(O) #r SL2(O) where

I:= {[a Z] :c=0 (mod 71')} < SL2(0).

Let A be a dense subgroup of F, then the group SLa(A) is a dense subgroup of SLa(F)
and we obtain an analogous amalgam splitting. Applying this to the case where F' = Q,

v is the p-adic valuation, A = Z[%] and A n O = Z we obtain the following result.

Corollary B.1.6. If p is a prime number one has SLQ(Z[%]) = SL2(Z) #p,(p) SLa2(Z)
where

To(p) := {[Z Z] :c=0 (mod p)} < SLa(Z).
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%
o

FIGURE B.6: The Bruhat-Tits tree for PSLy(Z[3]).

%%

B.2 CAT(0) spaces and their isometries

In this section we will introduce CAT(0) spaces and their groups of isometries. The main

reference for this section is [BH99|.

B.2.1 CAT(0) spaces

A geodesic metric space X is CAT(0) if for every geodesic triangle P = A(p,q,7) € X
and comparison triangle P = A(p,q,7) in E? with the same side lengths as P such that

for each pair of points z,y € 0P and corresponding pair of points Z,7 € P we have

dX (‘/L‘a y) < dEQ (§7 y)

r

FIGURE B.7: An illustration of the CAT(0) inequality.

Examples B.4. The following spaces are CAT(0).

(i) E", that is, Euclidean n-space with the £2-metric.
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(ii) A locally finite tree. This is easily seen since all geodesic triangles are tripods.

(iii) The real hyperbolic plane RH2. More generally, any symmetric space of non-
compact type [BH99, Theorem I1.10.58|.

(iv) Euclidean and hyperbolic buildings [Dav98]|.
(v) The Davis complex of a right-angled Coxeter group and the Salvetti complex of a
right-angled Artin group.
We record a number of properties of generic CAT(0) spaces.

Theorem B.2.1. Let X and Y be CAT(0) spaces, then

(a) [BH99, Proposition I1.1.4(1)] there is a unique geodesic between every two points of
X;

(b) [BH99, Corollary I1.1.5] X is contractible;
(c) [BH99, Example 11.1.15(3)] X x Y equipped with the £2 metric is a CAT(0) space;

(d) [BH99, Proposition I1.2.7| Suppose X is complete. If C = X is a bounded subset of
radius r, then there exists a unique point ¢ € X, called the centre of C, such that
C < B,(c). O

A metric space X is non-positively curved if it is locally CAT(0), that is, for each x € X
there exists 7, > 0 such that the ball B, (z) endowed with the induced metric is a
CAT(0) space. The following theorem shows the relationship between non-positively

curved metric spaces and CAT(0).

Theorem B.2.2 (The Cartan-Hadamard Theorem). [BH99, Theorem I1.4.1| Let X be
a complete connected non-positively curved metric space, then the universal cover X isa

CAT(0) space. O

B.2.2 Isometries of CAT(0) spaces

Let X be a metric space and ~ an isometry of X. The displacement function of ~ is
the function dy : X — Ry defined by d,(x) = d(yx,z). The translation length of v,
denoted ||, is the infinimum of the image of d,. The subset of X where d, attains
its infinimum will be denoted by Min(y). For a set of isometries I' of X, we define
Min(T") := (),cr Min(y). An isometry v of X is called

(i) elliptic if v has a fixed point;

(ii) hyperbolic if d. attains a strictly positive minimum;
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(ili) parabolic if d, does not attain its minimum;

(iv)

semi-simple if Min(~y) is non-empty.

Similarly, a group of isometries I is elliptic/hyperbolic/parabolic/ semi-simple if all of its

elements are elliptic/hyperbolic/parabolic/semi-simple respectively.

Examples B.5. We will detail three examples.

(a)

(b)

Let T be a locally finite tree. We will investigate the min-sets of semi-simple

1sometries.

(i) Let «y be an elliptic isometry of T, then Min(~) is the fixed point set of 7. We
claim this is a connected subtree of 7. Indeed, if v fixes two vertices in T,
then « must fix a geodesic between them, but geodesic segments in a tree are

unique so we conclude that the fix point set is connected.

(ii) Let v be a hyperbolic isometry of 7, then Min(y) is a unique embedded
line which we call the axis of . Indeed, consider a tripod with vertices =z,
vz, ¥?z and crux v. Let m be the midpoint of the geodesic segment [z, yz]
and note that if d(m,z) = d(v,z), then v fixes m. This contradicts the
fact v is hyperbolic. Therefore, d(v,z) > d(m,z). If for any point y € T
we have d(y,v%y) = 2d(y,~yy) then the y-translates on [y,yy] will form a
y-invariant line. Thus, it suffices to show that d(m,~?>m) = 2d(m,ym), and

since v € [m,ym] we need to show that d(v,~yv) = 2d(v,ym). But,
d(v,yv) = d(yz,7*z)—2d(v, yz) = d(x,v2)—d(2,y2)—2d(v,yM) = 2d(0,ymM)

as required.

Consider the Euclidean n-space E™. The isometry group Isom(E™) splits as a semi-
direct product R™ x O(n). By [BH99, Proposition I1.6.5| every isometry of E" is
semi-simple. Either an isometry < is elliptic, or there is an integer 0 < k£ < n such
that Min(y) is an affine subspace E of dimension k. Moreover, if kK < n, then
is the product of a non-trivial translation on E and an elliptic isometry on the

orthogonal complement E=.

Let RH? denote the real hyperbolic plane. The orientation preserving isometry
group of RH? is isomorphic to PSLy(R). Here an element g can be classified as
elliptic, hyperbolic, or parabolic by the trace of a representative lift g € SLo(R). If
tr(g) < 2 then g is elliptic, if tr(g) > 2 then g is hyperbolic, and if tr(g) = 2, then g
is parabolic (see for instance [Kat92]). It is easy to see that PSLa(Z) =~ SLa(Z)/Z2

is generated by elliptic elements and contains parabolic elements.

Many of the results in the previous examples hold more generally. We highlight some

important ones here.
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Proposition B.2.3. Let X be a metric space, let v be an isometry of X, and let I be a
groups of isometries of X.
(a) [BH99, Proposition I1.6.2] Min(y) is 7y invariant and Min(T") is T’ invariant.

(b) [BH99, Proposition 11.6.2] If a is an isometry of X, then |y| = |aya~!|, and
Min(aya™t) = aMin(y). In particular, if & commutes with vy, then it leaves Min(T")

invariant. if N <T', then Min(N) is I'-invariant.
Suppose in addition X is a CAT(0) space.

(c¢) |BH99, Proposition I1.6.2] d is convexr. Hence, Min(7y) is a closed convez set.

(d) [BH99, Theorem I1.6.8| v is hyperbolic if and only if there is a geodesic line ¢ : E —
X (i.e. an axis) which is translated non-trivially by ~v. The union of the azxes of

equals Min(y)
Suppose further that X is a complete CAT(0) space.

(e) [BH99, Proposition 11.6.7] v is elliptic if and only if v has a bounded orbit.

(f) [BH99, Proposition I1.6.7] If 4™ is elliptic for some non-zero integer n then -~ is
elliptic.

(9) |BH99, Theorem I1.6.8| If v™ is hyperbolic for some non-zero integer n then =y is
hyperbolic. O

B.2.3 CAT(0) groups

In this section we will state some well known results about groups acting “geometrically”
on CAT(0) space, before we can do this we recall some notions about group actions. Let

I" be a group acting by isometries on a metric space X, the action is

(i) proper if for each x € X there exists a number r > 0 such that {y e I' | vB,(z) n
B, (x) # } is finite;

(ii) cocompact if there exists a compact subset K € X such that 'K = X.
Suppose a discrete group I' acts properly cocompactly by isometries on a CAT(0) space

X, then we say T" is a CAT(0) group. In this case we say that X is a space realising a
CAT(0) structure on I.

Theorem B.2.4. If a group I acts properly cocompactly on a CAT(0) space X, then
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(a) [BH99, Theorem IIL.T.1.1] T is finitely presented;

(b) [BH99, Proposition 11.6.10(2)| Every element of T is semi-simple;

(c) |BH99, Theorem IIL.T.1.1| T has finitely many conjugacy classes of finite subgroups;

(d) |BH99, Theorem IIL.T".1.1] Every solvable subgroup of T is virtually abelian;

(e) |BH99, Theorem III.T".1.1| Every abelian subgroup of T' is finitely generated;

(f) |BH99, Theorem IIL.I".1.4| T has solvable word and conjugacy problems. O
Next we will state the Flat Torus Theorem, we will make use of this theorem in Paper 4,
a proof of the theorem can be found in [BH99, Chapter I11.7]. An addendum to the

theorem was proven by Leary—Minasyan in [LM19, Theorem 6.4], the statement we give

combines both versions.

Recall that a torsor for an abelian group is a non-empty set on which it acts freely and
transitively. An affine space is naturally a torsor for its vector space of translations. By
[LM19, Remark 6.2], given a free abelian group L, we may define an inner product {-, )1,
on L ® R as follows

b, eyp, = = (d((b+ o)z, x)? — d(z,bx)? — d(z, c:r)2) :

DN | —

We are now ready to state the Flat Torus Theorem. Note that items (a), (b), (c), (e), and
(g) are from [BH99, Theorem I1.7.1], and items (d) and (f) are from [LM19, Theorem 6.4].

Theorem B.2.5 (The Flat Torus Theorem). [BH99, Theorem II.7.1], [LM19, Theo-
rem 6.4] Let L be a free abelian group of rank n acting properly by semi-simple isometries
on a CAT(0) space X. Then:

(a) The min set M for L is non-empty and M =Y x E".

(b) Every C € L leaves M invariant, respects the product decomposition, and acts

trivially on' 'Y and by translation on E™.
(c) ForyeY, the quotient ({y} x E™)/L is an n-torus.

(d) For each y €Y, the subspace {y} x E" is a torsor for LQR under affine extension
of the action of L.

(e) If an isometry of X mnormalises L, then it preserves M and the direct product

decomposition.

(f) For any isometry ¢ of X that commensurates L, the image of ¢ in GL(L® Q) <
GL(L ® R) preserves the inner product {-,)r,.
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(9) If a group T of isometries of X normalises L, then a finite-index subgroup of I' cen-
tralises L. If T is finitely generated, then I'L has a finite-index subgroup containing
L as a direct factor. O

The theorem has an important corollary. The rank of a CAT(0) space X, denoted

rank(X), is the maximal n such that E™ isometrically embeds into X.

Corollary B.2.6. Let X be a CAT(0) space, then the rank of any free abelian group

acting properly by semi-simple isometries on X, is at most rank(X). ]

It immediately follows that any abelian subgroup of CAT(0) group I', has rank bounded
by the rank of the CAT(0) space X realising the CAT(0) structure. The converse to this
observation is a famous open problem known as the Flat Closing Conjecture we will give

a more detailed discussion in Section B.4.

Another related result is the Algebraic Flat Torus Theorem which states that abelian
subgroups of CAT(0) groups are undistorted. The result is actually true for the more

general class of semihyperbolic groups, however, this class will not feature in this thesis.

Theorem B.2.7. [BH99, Theorem III.T".4.10] IfT" is a CAT(0) group and A is a finitely
generated abelian subgroup, then every monomorphism ¢ : A — I is a quasi-isometric

embedding. [l

B.3 Lattices in non-positive curvature

When studying groups geometrically, that is, studying groups acting properly cocom-
pactly by isometries on some metric space X, it is often convenient to study all groups
acting geometrically and faithfully on X simultaneously. To do this, we study lattices
in the full isometry group Isom(X). If X is CAT(0) then the structure of Isom(X) has
a rich theory which is reflected by the space X itself. In Section B.3.1 we will recall
the definition of a lattice in a locally compact group. In Section B.3.2 we will outline
Caprace-Monod’s structure theory for the isometry group of a CAT(0) space X. In
Section B.3.3 we will look at various notions of irreducibility for lattices acting on prod-
ucts of CAT(0) spaces. Finally, in Section B.3.4 we will detail a number of examples of
CAT(0) lattices. The results stated throughout this section will be repeatedly used in
Paper 4.

B.3.1 Generalities on lattices

The following definitions may be found in [BLO1, Section 1.1]. Let H be a locally-compact

group and let u be a choice of right Haar measure on H. For a measurable subset U ¢ H
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and for all h € H we have u(Uh) = p(U) and p(hU) = w(U)=(h), where =: H — R* is

the modular character of H. We say H is unimodular if Z = 1.

Let T' be a discrete subgroup of H. As explained in [BLO1, Section 1.2], H/T' has an
induced measure p and the projection H — H/T' is locally measure preserving. If

w(H/T') < o (so I' has finite covolume), then = = 1 and H is unimodular.

A discrete subgroup I' < H is a lattice if the covolume u(H/T') is finite. A lattice is
uniform if H/T' is compact and non-uniform otherwise. Let S be a right H-set such
that for all s € .9, the stabilisers Hg are compact and open, then if I' < H is discrete the
stabilisers are finite (see [BLO1, Section 1.5]).

Let X be a locally finite, connected, simply connected simplicial complex. The group
H = Aut(X) of simplicial automorphisms of X naturally has the structure of a locally
compact topological group, where the topology is given by uniform convergence on com-

pacta.

Theorem B.3.1 (Serre’s covolume formula [Ser71]). Let X be a locally finite simply-
connected simplicial complex. Let I' < H be a lattice with fundamental domain A, then
there is a nomalisation of the Harr measure u on H, depending only on X, such that for

each discrete subgroup I' < H we have

p(H/T) = Vol(X/T) := )’

veA(0) |FU’

B.3.2 Structure theory

We will be primarily interested in lattices in the isometry groups of CAT(0) spaces, we
will call these groups CAT(0) lattices (note that a uniform CAT(0) lattice is a CAT(0)
group). We begin by recording several facts about the structure and isometry groups of
general CAT(0) spaces. The definitions and results here are largely due to Caprace and
Monod [CMO09b] [CM09a| [CM19].

An isometric action of a group H on a CAT(0) space X is minimal if there is no non-
empty H-invariant closed convex subset X' < X, the space X is minimal if Isom(X)
acts minimally on X. Note that by [CM09b, Proposition 1.5, if X is cocompact and
geodesically complete, then it is minimal. The amenable radical of a locally compact

group H is the largest amenable normal subgroup.

Theorem B.3.2. [CM09b, Theorem 1.6] Let X be a proper CAT(0) space with finite
dimensional Tits boundary and assume Isom(X) has no global fized point in 0X. There is
a canonical closed, convex, Isom(X)-stable subset X' < X such that G = Isom(X’) has a

finite index, open, characteristic subgroup H < G that admits a canonical decomposition

H =~ Isom(E") x Sy x -+ x S, x Dy x --+ x Dy,
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for some n,p,q = 0, where each S; is an almost connected simple Lie group with triv-
ial centre and each Dj is a totally disconnected irreducible group with trivial amenable
radical. O

Theorem B.3.3. [CM09b, Addendum 1.8] Let X’ and H be as above, then
X’;E"xXlx-'-xprle'an;Z

where each X; 1s an irreducible symmetric space and each Y; is an irreducible minimal
CAT(0)-space. O

Lemma B.3.4. [CM09a, Lemma 3.4] Let A = R" x O(n) and S be a semisimple Lie
group without compact factors. Every lattice I' < A x S has a finite index subgroup A
which splits as a direct product Ay x A, where T 4 := T'n(Ax{1}) is a lattice in (A x {1})
and N is a lattice in S. O

The following result from [CM19] is the corrected version of [CM09a, Proposition 3.6],
we will make frequent use of this result throughout Paper 4. Recall that G virtually

normalises a subgroup N if NV is a normal subgroup of a finite index subgroup G.

Theorem B.3.5. [CM19, Theorem 2| Let X be a proper CAT(0) space, H < Isom(X)
a closed subgroup acting cocompactly and minimally, and I' a lattice in H. Let E = E™
be the Fuclidean de Rham factor of X, where n = 0.

(a) There exists a free abelian subgroup A =~ Z™ of T', commensurated by T, and n is
the largest such rank. Moreover, any commensurated abelian subgroup of I' acts

properly on E.
We now assume I is finitely generated.

(b) If T wirtually normalises a free abelian subgroup of rank k, then T virtually splits as
ZF x T'. Moreover, there is a corresponding invariant decomposition X =~ EF x X'

and the projection of ZF (resp. T') to Isom(X') is trivial (resp. discrete).

(c) If the projection of T' to Isom(E™) is virtually abelian, then T wirtually splits as
7" x 1.

(d) If T is residually finite then T' virtually splits as Z™ x T, O
B.3.3 Irreducibility
Let X = X3 x -+ x X,, be a product of irreducible proper CAT(0) spaces and let I be a

lattice in H = Hy x---x Hy, :=Isom(X7) x- - - xIsom(X,,), with each H; non-discrete and

acting minimally. There are several possible notions of irreducibility for a lattice in H,
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moreover, in the general setting of CAT(0) groups, they are not necessarily equivalent.
In the interest of clarity, we recount each of these and summarise their implications, we
follow the treatment in [CM12] [CLB19].

(Irrl) For every ¥ c {1,...,n}, the projection 7y, : I' — Hy has dense image. Here we

say I' is topologically irreducible or an irreducible lattice.
(Irr2) The projection to each factor H; is injective.

(Irr3) For every ¥ < {1,...,n}, the projection 75, : I' — Hy has non-discrete image.

Here we say I' is weakly irreducible or a weakly irreducible lattice.

(Irr4) T has no finite index subgroup which splits as a direct product of two infinite

subgroups. Here we say I is algebraically irreducible.

Firstly, if each H; is a centre-free semisimple algebraic group without compact factors
then each of the definitions are equivalent [Mar91]. When each H; is a non-discrete,
compactly generated, tdlc group, then [CLB19, Theorem H| summarises all possible
implications. Returning to the setting described above we have that (Irr2) = (Irr3) =
(Irr4) and if T is finitely generated, then by Theorem B.3.6 we have (Irr4) = (Irr3).
Note that in general (Irr4) = (Irr2) fails, unless I' is residually finite. The following
theorem from [CM09a| shows the equivalence of (Irr3) and (Irr4) for many CAT(0)

lattices.

Theorem B.3.6. [CM09a, Theorem 4.2] Let X be a proper CAT(0) space, H < Isom(X)

a closed subgroup acting cocompactly on X, and I' < H a finitely generated lattice.

(i) If T is irreducible as an abstract group, then for for finite index subgroup Ty < T'
and any T'g-equivariant splitting X = X1 x Xo with X1 and Xo non-compact, the
projection of Tg to both Isom(X7) and Isom(X3) is non-discrete.

(ii) If in addition the H-action is minimal, then the converse holds. O

B.3.4 Examples

In this section we will detail a number of examples of CAT(0) lattices. We will pay
particular attention to the case of Isom(E™)-lattice, tree lattices, lattices in products of
trees, and Leary—Minasyan groups. The motivation for this is that in Paper 4 we will
introduce a framework for studying lattices in products with a tree factor. In light of the
Leary—Minasyan groups a lot of the work Paper 4 will focus on lattices in Isom(E™) x T

where T is the automorphism group of a locally-finite tree.
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B.3.4.1 Crystallographic groups

In this section we will investigate crystallographic groups, that is, lattices in Isom(E"™).

The main reference for this section is [Szc12].

Theorem B.3.7 (Bieberbach’s First Theorem!). [Zas48], [Szc12, Theorem 2.1(1)] Any
Isom(E"™)-lattice T' contains a finite index normal subgroup A isomorphic to Z™ and the
quotient P =T/A is finite.

Bieberbach’s Second Theorem [Szc12, Theorem 2.1(2)] states that there are only finitely
many isomorphism classes of Isom(E™)-lattices for each n. However, the number of these

grows dramatically (Table B.1).

Dimension || 1 | 2 3 4 5 6
Number 2117 | 219 | 4783 | 222,018 | 28,927,922

TABLE B.1: The number of crystallographic groups in low dimensions (data copied
from [CSO1]).

We deduce the following well known corollary.

Corollary B.3.8. Every Isom(E")-lattice is uniform, CAT(0), virtually free abelian, and

form = 2 reducible.

Proof. That the lattice I' is uniform and virtually abelian follows from the previous the-
orem. That the lattice is CAT(0) follows from the fact that I" acts properly cocompactly
on the quintessential CAT(0) space E™. Finally, if n > 2 then T" is virtually Z" and so

virtually splits as a direct product of two infinite groups. O

B.3.4.2 Arithmetic groups

Arithmetic groups have already appeared a number of times in this chapter (e.g. PSLy (Z[%])
or SLg(Z)). They will play a small but significant role in Paper 4 and are the main exam-
ples of lattices acting on symmetric spaces of non-compact type. In this section we will
give a very brief overview of the main construction of arithmetic groups. An introductory
text can be found here [Morl5| and an in depth study can be found here [Mar91]. We
will not survey any structural results about arithmetic groups, instead we remark there

are some incredibly deep theorems due to Margulis and refer the reader to [Mar91].

Let k be a number field with ring of integers O. Let H be a connected non-commutative
absolutely simple adjoint k-group. Let V' be a set of all inequivalent places of k, denote
the subset of Archimedean places by V* and the remaining finite places by V", For

!Bieberbach was a disgraced German mathematician and Nazi.
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each v € V we denote by k, the completion of k with respect to v. Let S < V be a finite

subset of places such that for every v € S, H is k,-isotropic.

For v € V let HY(k,) < H(k,) denote the finite index normal subgroup defined in
[BFS19, Section 6]. If v € V® then HT(k,) is the identity component of the real Lie
group H(k,). Define

H = HH+ ») and Hig:= HH(kv)

veS veS

Note that the quotient HkS/H,": g is finite. The reduction theory of Borel and Harish-
Chandra (see for instance [Bor19]) then realises the group H(O[S]) as a lattice in Hy, g
via the diagonal embedding.

Note that Hy g = Hp g x Hj, gan is the splitting of Hy g into a semisimple real Lie

group and a totally disconnected locally compact group.

We call any group commensurable in Hy, ¢ with H(O[S]) an arithmetic lattice. These
groups were studied in the seminal work of Margulis [Mar91]. Along with crystallographic
groups they are the quintessential examples of CAT(0) lattices. The CAT(0) structure
is inherited from the natural action of Hj g on a product of symmetric spaces of non-
compact type and appropriately chosen geometric realisations of Euclidean Bruhat-Tits’

buildings [CM09b] [CM09a| (see also [BH99, Chapter 11.10]).

We will briefly remark a couple of famous deep results eliciting the structure of arithmetic
groups. Firstly, we note that if H := Hy, g is not locally-isomorphic SO(n, 1) or SU(n, 1)
then every lattice in H is arithmetic [Mar91]. Secondly, a lattice I' in H is arithmetic
if and only if Commp (I") is dense in H [Mar91|. Thirdly, if H is a real semisimple Lie
group, then every (non-uniform) lattice in H is finitely presented [GR69].

Example B.6. Concretely, consider SLa(Z[v/2]), this embeds diagonally as an irre-
ducible non-uniform arithmetic lattice into SLga(R) x SLgo(R), this is an example of a
Hilbert modular group. This group acts properly with finite covolume on RH? x RH?, a
product of real hyperbolic planes. One could also consider SLQ(Z[%]) as an irreducible
non-uniform arithmetic lattice in SLa(R) x SLy(Qp). This group acts properly with finite

covolume on RH? x Tp1.

B.3.4.3 Tree lattices

In this section we introduce tree lattices and edge indexed graphs. The main reference
for the content here is the book “Tree lattices” by Bass and Lubotzky [BLO1|.

Definition B.3.9. Let G be a graph of groups. For each oriented edge e € EG set
i(e) = [Gre) © beo(Ge)] € Z v {0}. We call the pair (G,i) the edge-indexed graph
associated to Q For an edge e we set d(e) = i(e)/i(e) and A(y) = d(e1)...0(ep) for a
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path (e1,...,e,) in G. We say that (G, i) has bounded denominators if for some (hence
every) v € VG the set

A
{(7) | e EG, ~ a path from v to L(e)}

i(e)
has bounded denominators. Finally, we say (G, ) is unimodular whenever A(y) = 1 for

all closed paths . Note that bounded denominators implies unimodularity.

¢ RE

FIGURE B.8: Two edge labelled graphs. The loop (left) is unimodular if and only if
m = n. The two vertices joined by an edge (right) is unimodular for all choices of
positive integers p and ¢

Let T be a locally finite tree and T' = Aut(7). The group T is a totally disconnected

locally compact group with compact open profinite vertex stabilisers. Indeed,

T, = lim Ty, 1)

r

where B, (r) is the ball of radius r. A subgroup I' of T is discrete if T, is finite for every

vertex in 7. Using the volume formula we define

Vol(T/T) :== )

)
veVT/T ‘Fv’

and we say I is a T-lattice if this is finite.

Theorem B.3.10. [BK90| For a faithful finite graph of finite groups G with Bass-Serre
tree T, the group T' = 71(G) is a tree lattice if and only if (G,i) is unimodular and
Vol(T/T') is finite. O

Theorem B.3.11. [BLO1, Appendix BCR| Let T' be the automorphism group of a locally-
finite tree T and let H be a closed subgroup of T'. There exists an H-lattice if and only
if H is unimodular and u(T//H) < .

Example B.7. Recall in Example B.1 we showed that SLo(Z) acts on the (2, 3)-biregular
tree Ta,3. Indeed, SLy(Z) =~ Z4+yz, Zs. However, the kernel of the action of SLy(Z) on Tz.3
is the central cyclic group Zs. It follows that SLa(Z) is not a T3 := Aut(7>3)-lattice.
Now, taking the quotient of SLy(Z) by the centre gives the group PSLo(Z) ~ Zo = Zg
which acts faithfully on 73 3. In particular, PSLy(Z) is a T 3-lattice.

The automorphism group of a tree can also admit non-uniform lattices, these lattices

are necessarily infinitely generated and exhibit a wide range of behaviour. Some are
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arithmetic groups, some are non-residually finite, and some are even simple groups. For
a detailed survey see [BLO1].

Example B.8 (Nagao rays). This construction is adapted from [BK90, Page 10|. There
are non-uniform tree lattices with fundamental domain a ray. The stabilisers are defined
as follows, for n > 1, let I';, be a strictly increasing sequence of finite groups I'y < I'y <
T's <...,let Far be a finite group and let 'y < Fa“ N T'1 such that Ty < I‘ar. The graph
of groups A is shown in Figure B.9 and m(A) = I'§ #p, Unso T'n- We call such a lattice
a lattice of Nagao type and the ray a Nagao ray.

Fa_ I Iy I's
@ L @ L ---
Ty Iy Ty

F1GURE B.9: A Nagao ray and its stabilisers.

In some cases this construction has an arithmetic interpretation. Let p be a prime, d a
positive integer, and ¢ = p?. The Bruhat-Tits tree of H = PSLy(F,(t)) is the (g + 1)-
regular tree and I' = PSLy(F,[t]) is a non-uniform lattice of Nago type. The local groups
are given as follows, I'y = PSLz(q) and

a b
r, = {[0 al] |aeFy, degt<b><n},

such that | J,5o'n = Fg[t] x (F;/{£1}). This splitting was first proved by Nagao
[Nagh9] and was generalised by Serre to give a description of the structure of PSLg over

the coordinate ring of a projective curve [Ser(03].

Existence theorems for non-uniform tree lattices are discussed in [BLO1| [Car04|. Farb—
Hruska investigated the commensurability classes of non-uniform lattices in T, ,, the

full automorphism group of a biregular tree 7 for m,n > 3.

Theorem B.3.12. [FHO6] For each real number r > 0, there exist uncountably many

commensurability classes of non-uniform lattices in Ty, n,, each having covolume r.

B.3.4.4 Lattices in products of trees

The study of lattices in products of trees was initiated by Burger and Mozes [BM97|
[BM00a] [BMOOb]|. The authors studied the local actions of the projections of a lattice
on each tree and constructed torsion-free simple groups. In Paper 4 we will study lat-
tices acting on products of trees and other CAT(0) spaces. In Paper 5 we modify a
Burger-Mozes simple group to obtain the first example of a non-virtually torsion-free
hierarchically hyperbolic group. In this section we will provide some background on

lattices in products of trees.
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Proposition B.3.13. [BM00b, Proposition 1.2] Let Ty, Ty be the automorphism groups
of locally finite trees T1 and Ta. For a uniform lattice I' < T7 x Ty the following are

equivalent:

(i) There exists i € {1,2} such that mr,(I") is discrete;

(ii) I'y ;=T n T, resp. Ty :=T n Ty, are lattices in T1, resp. To, and T'y x 'y is a
finite index subgroup of T'. O

The following example is adapted from [BMZ09, Example 1.1.1].

Example B.9. Let p # ¢ be odd primes such that p,q = 1 (mod 4), let H(Q) denote
the Hamilton quaternion algebra over Q with basis {1,4, j, k} and define

Q:={xe H(Z): |z| = p"¢", a,beN, z=1 (mod 2)}.

Let Q, denote the p-adic integers. Fix ¢, € Q,, ¢, € Q; with 6120 = 62 = —1. Let I'y 4
denote the image of the homomorphism ¢ : Q — PGL2(Q,) x PGL2(Q,) by

+ + + +
zo + lei I .rgj i xgk L Zo T1€p T2 T3€p o T1€q T2 T3€q '
—I2 + T3€p To — T1€p —T2 + T3€q To — T1€q
The group I'y, ; < Tp41 % Ty41 is a uniform lattice. Indeed, I'y 4 is an irreducible uniform
arithmetic lattice in PGL2(Q)) x PGL2(Qq). Moreover, PGL2(Q)) — T}+1 because Tpi1
can be identified with the Bruhat-Tits’ tree for PGL2(Q)) (similarly for PGL2(Qy)).

Example B.10. [Rad20, Theorem 5.2] Radu constructed a number of concrete examples
of torsion-free simple groups acting on a product of trees. We reproduce one such example
here. Define

—1 -1 —1 —1
. albgalbg, a1b3 a1b3 y agbgazbg, a2b3 a3b3 s
I:= a17a27a37b17b27b3 ’

—1;—1 -1 -1
a3b1a3 bl ) agbgagbg, a3b2 a362

then I' is uniform lattice in Tg x Ti. Moreover, I' has an index 4 subgroup which is

simple. Note that in Radu’s notation the group I' is I'g 6.1.

B.3.4.5 Leary—Minasyan groups

Many Leary-Minasyan groups are actually uniform CAT(0) lattices in the product of
their Bass-Serre tree 7 and E™. A characterisation of this property was given in terms
of the matrix A.

Theorem B.3.14. [LM19, Theorem 7.2| The group LM(A, L) is a CAT(0) group if and

only if the matriz A is conjugate in GLy,(R) to an orthogonal matriz. O
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A much more remarkable fact is that many of the CAT(0) Leary—Minasyan groups are
actually weakly irreducible lattices in the product of Isom(E™) and Aut(7). There
appears to be some confusion in the literature regarding this property; in particular,
[CM09a] claims no such lattices exist. This has been rectified in [CM19].

Theorem B.3.15. [LM19, Theorem 7.5| Suppose that A has infinite order and is con-
jugate in GL,(R) to an orthogonal matriz. Then LM(A, L) is a lattice in Isom(E™) x
Aut(T) whose projections to the factors are not discrete. In particular, it is weakly

1rreducible. O

We will detail the action on E? in the case of the Leary-Minasyan group defined in

Example B.3 with presentation
I ={a,b,t|[a,b], ta’b~1t71 = @%b, tab?t™! = a0,

The group I has a representation 7 to Isom(E") given by w(a) = [1,0], n(b) = [0,1]T,
and 7(t) = A. The matrix A is a rotation by the irrational amount cos™!(3/5) and so
has infinite order. In particular, I is weakly irreducible. Note that the action of I on E?

is pictured in Figure B.10.

Leary and Minasyan proved another remarkable theorem about their groups, namely,
that the group LM(A) is biautomatic if and only if A has finite order. In particular, they
constructed the first examples of CAT(0) but not biautomatic groups.

In Paper 4 we will study all weakly irreducible (Isom(E™) x T')-lattices (for arbitrary
locally-finite trees) simultaneously. We will characterise them in terms of the topology
(non-discrete projections), algebraically (abstractly irreducible), geometrically (the ac-
tion of 7T is faithful), analytically (the lattice is C*-simple), homologically (the lattice
does not virtually fibre), and we extend the biautomaticity results of Leary—Minasyan

to the whole class.
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FIGURE B.10: The action of LM(A) on the Euclidean plane. The blue dots represent
elements of Z2. The green and blue squares represent the finite index subgroups L and
L’ of Z2. The action of the stable letter rotates the blue squares to the green squares.

B.4 The Flat Closing Conjecture

One of the most well known and long-standing conjectures regarding CAT(0) groups is

the flat closing conjecture [Gro93, Section 6.Bs].

The Flat Closing Conjecture. Let X be a proper CAT(0) space and T a discrete group
acting properly and cocompactly by isometries on X. If X contains a d-dimensional flat,

then T contains a copy of Z°.

The main result of [CZ13], which proves a special case of the flat closing conjecture, is
affected by the error in [CM09a|. The next theorem provides a corrected statement of
the main result of [CZ13].

Theorem B.4.1. [CZ13, Corollary 1] Let X be a proper geodesically complete CAT(0)
space and let I' be a discrete group acting properly cocompactly by isometries on X.

Suppose in addition that X is a product of d irreducible factors. If the projection of T’
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to the isometry group of the Fuclidean de Rham factor is discrete, then I' contains a

subgroup isomorphic to Z.2. L]
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Paper 1

COHOMOLOGY OF FUCHSIAN GROUPS AND
NON-EUCLIDEAN CRYSTALLOGRAPHIC GROUPS

SAM HUGHES

ABSTRACT. For each geometrically finite 2-dimensional non-Euclidean crystallographic
group (NEC group), we compute the cohomology groups. In the case where the group

is a Fuchsian group, we also determine the ring structure of the cohomology.

1.1 Introduction

Let " be a geometrically finite non-Euclidean crystallographic group (NEC group), i.e.
a discrete subgroup of PGLy(R) with a finite sided fundamental domain for the action
of I' on the hyperbolic plane RH?. Throughout we let A(T") denote the limit set of T.
In this paper, we will calculate the cohomology of I'. In the case where I' is a Fuchsian
group, i.e. I' is contained in PSLy(R), we will also calculate the cohomology ring. Our
proof will involve finding a suitable fundamental domain for the action of the group on

RH? U A(T") and then applying a Cartan-Leray type spectral sequence.

Since RH? U A(T') is contractible, the sequence converges to the cohomology of I'. Using
knowledge of the abelianization of I', it is easy to compute with the spectral sequence.
We will now set the convention that an omission of coefficients in the (co)homology

functors should be read as having coefficients in the trivial module Z.

Definition 1.1.1. Let mq,...,m, be a set of positive integers each greater than 2. For
j=1,...,r—1,let fj be the greatest common divisor of the set of products of my,...,m,
taken j at a time. Then, let t; = ¢; and for j = 2,...,7 — 1 let tj = fj/fj_l. We define
wj for j = 1,...,7 — 1 by the same process except for we perform the procedure to
2my, mq, ..., m, and discard products containing 2mim;. Finally, we define w, to be

equal to 2mimg ... m,/w,_1.

Theorem 1.A. Let I" be an NEC group of signature

(9,8, [ma,....,mp ], {(n11,- - sn1,6)s ooy (M 1y s, ), ()5 OF),

where the number of empty cycles equals d. Let Cr denote the number of even n;; and

let Co denote the number of period cycles for which every n;; is odd.

33
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(a) Ife=+ andd =k = s =0 (i.e. I' is a cocompact Fuchsian group) then

-

Z q=0,
2% @ (@)1 2y, ) a1
H,(T)=% 7 qg=2,
(—B;Zl Lo, q=2l+1, wherel > 1,
0 otherwise.

(b) Ife=—andd =k =s =0 then

Z q=0,

Hyry = 2 (@)1 2,) =1
q D'y o, qg=2l+1, wherel > 1,
0 otherwise.

(c) Ife=+ and d+ k + s > 0 then

B/ q=0,
2 k+d—1 Cr+Co+d
p20+s+h+d=1 gy 7Cp+Cotd g (@;:1 ij) qg=1,
1
ZQQqCE-‘rCo-i-d q= 2p < 0,

Lg=1)Cg+Co+d .
Hq(r) = 3 Z22(q JCetco S (@f:l ?zl Zni,l)

@ (@)5:1 zmj) ¢g=3 (mod 4),

1
Z3 (Q+1)CE+CO+d® (@;Zl ij> qg>1and
¢g=1 (mod 4).

(d) If e = — and d+ k + s > 0 then

-

Z q = 0’

zorsrkrdl @ 7{etCotl g (), 7, ) g=1,
1

ZZQqCEJrCOer q = 2p > 07

L(g—1)Cg+Co+d )
Hy(T) = < Zf(q JCp+Co ®<@f:1 ;;1Zni,l>

® (D)1 Zm, ) ¢=3 (mod 4),

1
73 (¢+1)Ce+Co+d @ <®;:1 ij) ¢>1 and
g=1 (mod 4).

In the case where I' is a Fuchsian group we also compute the ring structure (Theo-

rem 1.B).

Definition 1.1.2. We will write ®_; Zm; = (@;: Zs;) @ (@ _, Z,,), where the
@2;:1 Zg, term is decomposed via the invariant factor decomposition of finite abelian

groups. We write H* (X) for the reduced cohomology of X, that is the kernel of the map
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induced by the inclusion of the basepoint. Recall that H*(Z,) = Z[x]/(qx) where z has
degree 2. Define R, to be the subring of H* (Z,) generated by x? and z°.

Theorem 1.B. Let I' be a Fuchsian group of signature [g, s;mq, ..., m.].

(a) If s =0 then H*(I) ~ ﬁ*(zg) &) ((—B;: fNI*(th)) @ ((—D;:l Ry, ).

(b) If s > 0 then H*(T') =~ ﬁ*(Fgg+s_1) &) ((—B;:l ﬁ*(ZmJ)) where Fogis—1 is a free
group of rank 2g + s — 1.

We remark that some of the results have appeared in the literature before. The case
where I' is a cocompact Fuchsian group, so € = + and d = k = s = 0, was considered by
Majumdar [15], however, our computation of the ring structure is new. The case € = +
and d = k = 0 is a corollary of a result of Huebschmann [11] and the case ¢ = — and
d = k = s = 0 was considered by Akhter and Majumdar [1|. Each of these previous

results used different methods to the ideas here.

Other interpretations of the cohomology of Fuchsian groups have appeared in the liter-
ature. These have primarily dealt with lifting phenomena [16], with Eichler cohomology
[5] [6] or with K-theory in relation to the Baum-Connes conjecture [2]| [12] [13].

The paper is structured as follows. In Section 1.2 we define the signature of an NEC
group. In Section 1.3 we introduce the Cartan Leray type spectral sequence for a I'-space.

Finally, in Section 1.4 we prove Theorem 1.A and Theorem 1.B.
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1.2 Non-Euclidean crystallographic groups

We will first describe Wilkie and Macbeath’s NEC signatures [18] [14], then the associated
fundamental domain in RH? U A(T), and finally we will give a presentation for an NEC
group in terms of its signature. For further information on NEC groups the reader should

consult [4].

An NEC signature consists of a sign € = +, and several sequences of integers grouped in

the following manner:
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(i) Two integers g,s = 0.

(i1) An ordered set of integer periods [my, ..., m;].

(iv) A further d empty period cycles (),..., ().

The sequences and sign are then combined into the NEC signature, which is written as

(9,8, 6 [ma,...,mp ], {(n1a, - 1)y Mty s Mes ), () - oo, OF)-

We let Cr denote the number of even n;; and we let Cp denote the number of C; for

which every n;; is odd.

Associated to each NEC signature is a surface symbol describing a fundamental domain
for the associated NEC group. The surface symbol is a list of edges travelling around
the polygon clockwise. Two edges paired orientably will be indicated by the same letter
and a prime. Two edges paired non-orientably will be indicated by the same letter and

an asterisk. When € = +, we have the surface symbol

18 G V0 V51 €1€2 - €V - - - s Vi €SI BT - - ozgﬂ;a;ﬁ;.

When € = —, we have the surface symbol
E181 - & s&ry s€1V10 -+ s V1,51 €1€2 - - - ERVR0 - - - > Vhysp ERQALOT - .. Qg
g
For j =1,...,r, the period m; is attached to the vertex v; common to the edges §; and

f}. For 1 <7<k and 1 <[ < s; the cycle period n;; is associated with the vertex wj;
common to the edges 7; ;-1 and ~;;. The vertices v; for j = r+1,...,7 + s lie on the
boundary 0RH?. For i = 1,...,d + k we label the vertex common to the edges ¢; and
7,0 or to the edges 7; 5, and €; by w;o. Finally, we label all other vertices vy. Several

examples of fundamental domains are given in Figure 1.1.

For an NEC group I' we may take the quotient © = RH2/T". The quotient comes with a
natural orbifold structure and many of the geometric-toplogical features of the quotient
are reflected in the signature. Indeed, if ¢ = + then O is a genus g surface with the
disjoint union of s points and d + k open disks removed. We refer to the removed points
as the cusps of O and to the boundary of the open disks as the boundary components of O.
There are r cone or orbifold points in the interior O. For the ith boundary component,
for 1 < @ < k, there are s; cone or orbifold points on the boundary. The remaining d
boundary components do not have any cone points. If ¢ = — the situation is identical

except we begin with a sphere with g cross-caps attached.
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U3

U3

(b) (c)

FIGURE 1.1: In (a) we have a fundamental domain for an NEC group of signature
(1,0, +,[],{(m,n),()}). The topological quotient of RH? is homeomorphic to a torus
with two open discs removed. In the orbifold structure of the quotient we have two
cone points on one of the two boundary components. In (b) we have a fundamental
domain for a Fuchsian triangle group of signature (0,0, +, [p, q, 7], {}) = [0, 0; p, g, r] for
p~ ! +q¢ ' +r~! < 1. The topological quotient is homeomorphic to a sphere. In the
orbifold structure we have three cone points. In (¢) we have a fundamental domain an
Fuchsian NEC group of signature (0,1, +, [m, n], {}) = [0,1;m,n] for m + n > 4. The
topological quotient is homeomorphic to a punctured sphere. In the orbifold structure
we have two cone points in the interior of the punctured sphere.

Under the action of the associated NEC group, for 1 < j < r the stabiliser of the vertex
vj; is a cyclic group of order m; acting on RH? via rotations. This corresponds exactly
to a maximal elliptic subgroup of I' fixing the point v; in RH?. If v; lies on ORH?, that
is when r + 1 < j < r + s, then the stabiliser is isomorphic to Z. This corresponds to a

maximal parabolic subgroup of I' stabilising a cusp.

The stabiliser of the edge v;; for 1 <i<kand0<I< s orfork+1<i<k+dand

[ = 0 is a reflection group Zs. The reflection corresponds to a non-trivial reflection in
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I" reflecting RH? through the geodesic line containing vii- In the quotient these edges
correspond to the edges in the boundary components. The stabiliser of the vertex w;
for1 <i< kand 1l <1 < s is a dihedral group Do, of order 2n;;, note the w;; lies
in the ith boundary component. The stabiliser of the vertex w;; for 1 < i < k +d and
[ = 0 is a reflection group Zs. No other points of the polygon are fixed points of the
NEC group.

Recall that the rational Euler characteristic of a group I' of type VF' is defined to be
xo(T') = x(I')/|T : T| where I" is a finite index subgroup of type F. Let I' be an NEC

group of signature

(9,8, [ma,....,mp ], {(n11,. s n16)s ooy (Me1s oy Ms,), (), os ),

if € = + then

xo(l')=2—-29g—s—r—d— k—stz—i-ZE 722

i=1j5=1

N4

and if € = — then

T Si

1 1
XQ(F):2—Q—S—7’— k‘—*ZSwL"F E 222_:1”1

If xo(I') < 0 then there exists an NEC group with the corresponding signature, except
when € = — and s > 0 where there is no known classification. By the Gauss-Bonnet
Theorem we see that the hyperbolic area of a fundamental domain for the NEC group
is equal to —2mxq(I") [17] (see also [4, Theorem 1.1.8]).

For the above equations, there are 17 solutions to xg(I') = 0, these exactly correspond
to the 17 Euclidean wallpaper groups [14, Section 8]. We can now give a presentation
for an NEC group. Due to the large number of generators and relations, we detail this
in Table 1.1.

H Signature element ‘ Generator(s) ‘ Relation(s) H
Period m; for 1 < j <r xj :c;”j =1
=TI
Cycle (ni1,...,nigs,) for e; Cis; = €; Ci0€
1<i<kand0<I<s; Ci0---Cis; szl—l = c?l = (ci,l,1c7;7l)2 =1
Cycle (for k+1<i<k+d|e cp C?O =1, cip= 6;1617061'
S Tpyooo, Tpas See g +
b b r+s k+d . g b _ 1

9+ ay, by, .. ag,b | TT 5y 25 11z ea [ Tima fan, be] =

+ k‘+d
9~ ai, ..., 0qg H;i ai [y el af =1

TABLE 1.1: Generators and relations for an NEC group.
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If d =k =0 and € = +, then we write the signature of I" as [g, s;m1,...,m,] and we
refer to I' a Fuchsian group (i.e. a discrete subgroup of PSLo(R). If s = 0, we say that

I' is cocompact.

1.3 A Cartan-Leray type spectral sequence

For a more thorough treatment on I'-equivariant cohomology and related spectral se-
quences the reader should consult for example |3, Chapter VII]. We will just summarise

the theory we need.

Let T" be a discrete group, X a I'-complex (in the sense of Brown [3, Chapter 1.4]) and
M a I'module. We define the I'-equivariant homology of X with coefficients in M to be

Hy(X; M) := Hy(I'; Co (X) @ M)
with diagonal I'-action on Cy(X) ® M.

Let Q(p) be a set of representatives of I'-orbits of p-cells in X and let ', denote the
stabiliser of the cell 0. We have a I';-module Z, on which T, acts on via x, : I'; — {£1}.
Note that the action is trivial if I', fixes o pointwise. Define M, := Z, ® M, it follows
M, is a I'y;-module additively isomorphic to M but with the I';-action twisted by x..

One of the main computational tools is the following spectral sequence.

Theorem 1.3.1. |3, Chapter VII (7.10)] Let X be a I'-complex, then there is a spectral
sequence

Ep = @ Hy(Te;Zo) = H), o (X;Z).

p+q
o€Q(p)

A description of dzl),* : EII)’* — Ezl,fl,*
it here. Let o be a p-cell of X and 7 a (p — 1)-cell. Write 0, : M, — M, for the
(o, 7)-boundary component of Cp(X) ® M — Cp_1(X) ® M. Let Qp = {7 : dpr # 0}

and note that this is a I's-invariant set of (p — 1)-cells. Let 'y = 'y n T'; and let

is given in [3, Chapter VIIL.8], we will summarise

tor : H(FU; MO’) - H(FUT; Mo)

denote the transfer map arising from the fact I, : T'y,| is finite. Now, 0y, is a I'yr-map

and ¢ is a '-map, thus we have a map
Uor * H*(FO"T;MO') - H*(FT; MT)

induced by 'y — I'; and 0. Let 1y be a I'-orbit representative in X and choose g € T’
such that g(7) = 79. The action of g on Cp,—1 (X )®M induces an isomorphism M, — M,

which is compatible with the conjugation isomorphism I'; — I';, induced by g. It follows
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there is an isomorphism
Ur . H*(PT; MT) - H*(FTO§MTO)-
Finally, by [3, Chapter VII (8.1)] up to sign we have

1
dp,*’H* To;Ms) = Z VrlUgrtor.
TeQ(p—1)

1.4 Cohomology

1.4.1 The cocompact Fuchsian case

We will calculate the cohomology of cocompact Fuchsian groups. We note that the proof
here is new, except for we calculate the abelianization using Smith normal form in the

same way as Majumdar [15].

Proof of Theorem 1.A(a). We will use Theorem 1.3.1. In this case X = RH? endowed
with the induced cell structure from the Wilkie-Macbeath polygon. To set up the spectral
sequence we observe for each m; there is a I'-orbit of 0-cells, where each cell has stabiliser
Ln;. Now, by Theorem 1.3.1 the E'-page of the spectral sequence has the form given
by Figure 1.2.

3 D1 Zm, 0 0 0
2 0 0 0 0
1 D1 Zm, 0 0 0
0 Lt —— 729" 7 0

0 1 2 3

FIGURE 1.2: The E'-page of the spectral sequence for a Fuchsian group.

The only non-trivial differentials are along the bottom row. Slightly abusing notation
we fix a basis for the chain groups by labelling the chains by the equivariant cells which

afford them. Thus, we have a sequence

1

dl
0<;<007"'7'U7”>&<ai718i7€17"‘7§7"|,i:17"'7g> 20 <7>< O

We have di g(a;) = dio(8;) = vo—wo = 0 for 1 < i < g, dio(&) = vj — vo for
1<j<rand,dj,=0. In particular, Im(dio) =7, Ker(dio) ~ 729, Im(d%yo) =0 and

Ker(dé’o) ~ 7. From this calculation we deduce the E? page is as in Figure 1.3.
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3 @D Zm, O 0 0
2 0 0 0 0
1 ®;:1 ij (O\ 0 0
0 Z 7Z» 7 0

0 1 2 3

FIGURE 1.3: The E2%-page of the spectral sequence for a Fuchsian group.

The only non-trivial differential is the map drawn in Figure 1.3. Moreover, the spectral
sequence clearly collapses after the computation of this differential. We can easily deduce
what this differential is using the knowledge of H;(I"). We will compute the abelianization

using the same method as Majumdar [15].

To compute the abelianization we write out the presentation matrix M of I' and then

compute the Smith normal form.

my 0 - -+ 0 0 --- 0
0 . .
M =
. 0 O 0
0O -+ -+ 0 m 0
1 - -1 1 0 -+ 0 |

We find H1(T) = Z*9 ® (@;;} th). The constants t; (Definition 1.1.1) come from
Theorem 6 in Ferrar’s book ‘Finite Matrices’ [8]. In particular, 1_[?:1 tj is equal to the

greatest common divisor of the p-rowed minors of M.

It follows from the calculation of the abelianization of I' that the map d%,o is a surjection
onto the factor @k_, Z, from the decomposition D1 Zm,; = (@;;% Ly, )@ _, Zy,).

The result now follows from the fact all extension problems are trivial. O
Corollary 1.4.1. LetT" be a cocompact Fuchsian group of signature [g;m1, ..., m,], then
W/ q=0,
ZZg q= ]-7
HIT)={ Z® (@;;} th> ¢=2,
D’y Zim, q = 2l, wherel > 2,
0 otherwise.

Y



42 Paper 1 — Cohomology of NEC groups

1.4.2 Non-orientable NEC groups with no cusps or boundary compo-

nents

Proof of Theorem 1.A(b). Let X = RH? and let I' be an NEC group with signature
(9,0, —,[m1,...,m:],{}). In this case our E'-page has the form given in Figure 1.2.
The only non-trivial differentials are along the ¢ = 0 row. Keeping the same notation as

before we now have a sequence

dl 1
0<;<’U0,...,U7-><i<0517...,0497£1,...,€7-> 2 <’Y> 0

We have dj g(ci) = vo —vo = 0 for 1 < i < g, dig(&) = vj —wo for 1 < j <7
and, d%p(f) = >Y_120;. In particular, Im(dj o) = Z", Ker(dj,) = 7%, Im(dj,) =
27 and Ker(dio) = 0. It follows that E&O = 4, Eio = 79" ® Zy and E%,o = 0,
the remaining entries are unchanged. Thus, by dimension considerations the spectral

sequence collapses.

The result now follows from resolving the extension problem in H;(I'). Instead we

compute the abelianization of I' from the presentation matrix

m 0 - -« 0 0 --- 0 my 0 - o 0 0
0o . N ; 0
M = ~ :M/
: 0O 0 --- 0 ; .0 0
o -+ -+ 0 my 0 --- 0 0O -+ -+ 0 m, 0
| 1 1 2 ... 2_ | om0 omp oMy 2m1_

We find Hi(T) = Z9 ' ® <@;=1 ij). The constants w; (Definition 1.1.1) come from

P
J
greatest common divisor of the p-rowed minors of M’. O

Theorem 6 in Ferrar’s book ‘Finite Matrices’ [8|. In particular, [ [Y_; w; is equal to the

Corollary 1.4.2. IfT is an NEC group with signature (g,0, —, [m1,...,m;],{}) then,

Z for q =0,
7 forq=1,
HAT) =4 Do L, for q =2,
@§=1 Lo for q = 2l, wherel = 2,
0 otherwise.

\
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1.4.3 Orientable NEC groups with at least one cusp or boundary com-

ponent

The remaining proofs will use the homology of finite dihedral groups. We record them

here for the convenience of the reader.

Theorem 1.4.3. [10]| Let Dy, denote a dihedral group of order 2n. In the case n is odd
we have

Z q=0,

Zo ¢g=1 (mod 4),

Lo, g=3 (mod4),

0 otherwise.

Hy(Doy; Z2) = Zg for q = 0.

In the case n is even we have

Z q=0,
1
73 (a+3) g=1 (mod 4),
Hq(DQn;Z) = L, )
73 q > 0 is even,
1
QQ(QH) @®Z, q=3 (mod4).

Hy(Dap; Zg) = ZE for ¢ = 0.

We will now compute the cohomology of an NEC group with orientable quotient space

with at least one boundary component or cusp.

Proof of Theorem 1.A(c). First, assume that k + d = 0, so s > 0. In this case it is easy
to see that we can rearrange the presentation of I' so that I' = Fy_y % Zy, % -+ % Zy,,
where Fs_1 is a free group of rank s — 1. The result now follows from a straightforward

application of the homology Mayer-Vietoris sequence.

We now treat the case with boundary, let k,d, s > 0 such that £k + d > 0 and let ¢ = +.
We will use Theorem 1.3.1; here our space X is RH? U A(T") endowed with the induced
cell structure from the Wilkie-Macbeath polygon. To set up the sequence, observe that
the stabiliser of a marked point v; in the interior of the quotient space is a cyclic group
L. 1f the vertex v; lies on ORH? then the stabiliser is Z. The stabiliser of a marked
point w;; on the boundary of the quotient space is a dihedral group Day,, ,, and edges
along the boundary are stabilised by reflection groups isomorphic to Zs. Since the face
stabilisers are trivial, vertices have a canonical orientation, and the edges being stabilised
by Zo are fixed pointwise, all of the orientation characters are trivial. It follows that the

E'-page consists of modules with trivial I'-action and has the form given in Figure 1.4.
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We will first deal with the differentials di,(y By slightly abusing notation and labelling
our basis elements for each chain group by the equivariant cells which afford them, we

have a sequence

1<t<2g,
0<j<r+s .
d%,o 1<5<r+s
0« Vi, W; [ 1<i<k+d — 04t75ta§j,%‘,la€i .
1<i<k+d,
0<l<s,~

Computing the image of the differential d%,o on the Z-basis element f, we obtain that up

to sign
k s
[ 2 Z Vil
i=11=0

So, we find Im(dé,o) = 7 and E%,o = 0. In light of the description of the fundamental

domain in Section 1.2, for d%,o we have the following

ar +— vg—1v9=0 for 1 <t < 2g;
By + wo—vg=0 for 1 <t < 2g;
& — vi—o for1<j<r+s;
Yig 7 W41 (mod s;)) — Wil for1<i<k, and 0 <1 < sy
Yio > wip—wio =0 fork+1<i<k+d;
€ — W0 — Vo for1<i<k+d.

In particular, we have Im(dj o) = Zr+s+h+¥iisi and Ker(di ;) = Z*9F*+d It then
follows that Eio — 729tk+d=1 anq Eg,o = Z. At this point, it is easy to see that the

spectral sequence will collapse trivially once we have computed the differentials di*.

We will begin with the differential diq where ¢ =1 (mod 4). Since the edges connected
to the vertices corresponding to the Z,,, summands have trivial stabilisers, the Z,,
summands will survive to the E2-page. In the case ¢ = 1, the Z summands also survive

by the same reasoning.

We now draw our focus to the other summands. Let each Dy, be generated by a
reflection r;; and a rotation ¢;; of order n;;. We have that Hl(Dgn“) is generated by
Tz‘l,b til, the images of ¢;; and 7;; under the abelianization map. For ¢ > 1 there will be
extra generators whenever an n;; is even; we will suppress this from the notation. Note

that ¢!, = 0 if n is odd. For each ¢ = 1 (mod 4) we now have a sequence (modulo the
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extra classes arising from dihedral groups where n;; is even and when ¢ > 1)

1< k
I<s > <’7,1a7p0
<d

We will break the map diq into several cases depending on the adjacent edges in the

&7

1
1
1

N //\ //\

1
0
1

q q
0 — <wi,0? W0 zl’tzl
b

fundamental domain and the cycle type of the boundary component. First, we will
consider each ‘end’ of the ith boundary component with a non-empty period of cycles

(i.e. 1 <14 < k), the reader should keep Figure 1.1(a) in mind. Here we have

(i,0)q : Hy((ri)) = Hy(Dan,,) @ Hy(Z2) by v}y = ti; —wi,
and
(Yis;)q + Hy(Cris;tis;)) = Hy(Z2) @ Hy(Dap,,) by 7o = wig —t],, —ri..
For the intermediary edges we have
(Vig)q : Ho((rigtin)) = Hq(Danyyyy) © Ho(Dan,,) by 7o = tf0 — ], — 1.

In each case we are suppressing from the image a possible sum of order 2 classes (distinct
from t;{l and Tg,l) arising from even dihedral groups. The reason for this is that provided
at least one of the m;; are even, the images of the maps v;; for 0 <[ < s; are already
linearly independent. Of course if all of the n;; for 0 < I < s; are odd, then the classes

do not exist.

If the boundary component 7 only contains odd cycles, then ~} o = = >0 fy so we have

3,0
an order 2 element in the kernel of di ¢ I the boundary component has an empty period
of cycles, then we have exactly one edge v; o with vertex w; o at each end. In particular

) _ Zgo+d

vy > wi, —wl, = 0. From this analysis we deduce that Ker(d%’q and

E oo
I]rn(cl1 @) = Zk+2i:1 =€ 1t then follows from a simple calculation that Eiq = Z200+d

and qu ~ Zz(qr+1)CE+Co+d69 (@; . ) for g =1 (mod 4), ¢ > 1. When s > 0 we

have an additional Z* summand in E? ;.

An alternative way of considering these maps is as follows. Let C'g, denote the number
of even periods in the ith period cycle. Observe that each period cycle contributes
2(q+1)Cp, —1 summands of Zs to an. The Cp summands of Zy contained in Ker(diq)
cause an additional Cp summands of Zy to survive to Eg’q. From, above we then have
that

1 1 1
k+2(2(q+1)CEi—1>+CO:]<Z+2((]+1)CE—]€+CO:2(q+1)CE+Co.
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We now need to compute the maps diq for ¢ = 3 (mod 4). We have essentially the same
cases and proof as when ¢ = 1 (mod 4) except that Coker(diq) contains a summand

L, for each n; ;.

Claim For ¢ = 3 (mod4), 1 <4 < kand 1 <[ < s; the term Ef = Coker(d} )

contains a summand Z,,, ;.

Proof of claim: When n;; is odd this is immediate. Let n := n;; be even and consider
H*(Dy,;Z) where ¢ = 3 (mod 4). There is an element of order n in H9"!(Dy,;7Z)
that corresponds to a power of the second Chern class of the faithful 2-dimensional linear
representation p of Dy, = (r,t). Restricting p to the subgroup (rt) gives the regular
representation of Zgo =~ (rt). Now, the total Chern class of Zs is equal to 0 in degree
4. Tt follows that the map H9"'(Da,;7Z) — H9"({rt)) has kernel containing a Z,
summand. Dualizing back to homology, it follows the map Hy({rt)) — Hy(D2,) has

cokernel containing a Z, summand. This yields the claim. ¢

We conclude the description of E? as follows. First, when ¢ = 3 (mod 4) we have
k Pap—
Ker(diq) ~ Z§O+d and Im(diq) ~ ZngZi:lsl “0 1t follows E%,q ~ 7+ and Eg’q ~
1g_
VA (e=1)Ce+Co +d@ (@le ) Zni,l) @ (@?:1 ij> . Every other entry on the E2-page
is 0 trivially.

The theorem follows from resolving the extension problems 0 — E%,q—l — H,(T) —
E&q — 0, where ¢ > 0 is even. To resolve the extension problems, we will compute
the homology of I with Zy coefficients and then compare the Zg-rank of H,(I'; Z2) with
the Zy-rank of (Ef, | ® Ej ) ® Zy ® Tor(E§,, 1, Z2). Note that the latter is equal to
(¢ + 1)Cg + 2Co + 2d. If the ranks are equal, then the extension will split.

Recall that H,(Zg;Z9) = Zo for n = 0. Combining this with the Zs-homology groups
of the Dihedral groups (Theorem 1.4.3) and the I'-equivariant spectral sequence (Theo-
rem 1.3.1), we can set up a spectral sequence calculation. To simplify things, note we

are only interested in the maps diq for ¢ > 0.

Let ¢ > 0 and let Cp denote the number of odd cycles, so Cp + Cg = Zle s;. We then
have a sequence

dl

(q-i—l)CE-‘rCT-‘rd-‘rk 1,9 Cp+Cr+d+k
ZQ

0 «—— Z, +— 0.

By essentially using the same calculations as above we have that Im(diq) ~ ZQCE+CT+k_CO.

From this we conclude that an = quH)CE TCo* 4nd that Eiq = Zgoer. This gives a

Zg-rank of (¢ + 1)Cg + 2Cp + 2d. Thus, the extension splits. O

Corollary 1.4.4. Letd+ k + s> 0. If " is an NEC group with signature

(g,S, +, [ml, c ,mr], {(77,171,. . .,nLSl),. R (nk,l, ... ,nk’sk), (), ce ()})
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then,
K q=0,
Z2g+s+k+d71 _
1
Z;QCE-FCO-}-d &) (@;:1 ij) q= 2 (mod 4)7
HIT) = Lo
(T) 7@ s +Co+a oyt where o 1
1gCp+Co+d & .
7390+ Cotd g (@izl 5 ZW)
® <®§=1 ij) gq>0and g=0 (mod4).

1.4.4 Non-orientable NEC groups with at least one cusp or boundary

component

We will now compute the cohomology of an NEC group with non-orientable quotient
space and at least one cusp or boundary component. The proof is almost exactly the
same as the proof of Theorem 1.A(c) so we will only provide a brief sketch and highlight

the differences.

Proof of Theorem 1.A(d) (sketch). First assume that k + d > 0. The key differences
between the orientable (Figure 1.4) and non-orientable cases is the E1170 term and the
map d%,o- The Eio now contains a ZJ summand instead of a Z?9 summand. The map
d%,o now sends the generator to the sum of boundary components plus 2 times each
generator of the aforementioned Z9 summand. More precisely (with the same notation

as in the proof of Theorem 1.A(c)) we have,

9

ks
f'—’ZZ%,l+22at
1=110=0

t=1

= 79tk+d—1

In particular, Eio . The proof goes through identically from here.

Now assume g > 0 and & +d = 0, so s > 0. We still have that Ell’0 contains a Z9

summand instead of a Z29 summand. However, with notation as before,
) g
dao(f) =2 Z .
t=1

In particular, Eio = 7971 @ Zy. The remainder of the proof is identical, except we now

have an extension problem to determine H;(I'). We instead resolve this by computing
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the abelianisation from the presentation matrix

my O -+ -+ 0 0 -+ 00 -+ 0
0
M =
. 0 0
0O -+ -+ 0 m 0 -+ 0
| 1 1 1 )

Clearly, M can be reduced to an (r + 1) x (r + g + s) matrix with the only non-zero

entries equal to mq,...,m,,1 on the leading diagonal. The result follows.

The final case when g = k = d = 0 and s > 0 follows an almost identical argument to

the case k =d =0, s > 0 and € = 4, so we will not recreate it here.

Corollary 1.4.5. Letd+ k+ s> 0. IfT" is an NEC group of signature

(g,8,—, [m1,....me ], {(n11,- -, n1s1)seoos (Mie1y s hesy)s (Ose oo OF)

then
( Z q= 0’
79+s+k+d—1 q=1,
Z§E+Co+d @ <®;:1 ij) q=2,
g
HYT) = < 73\ 1o q=2p+1 wherep =1,
L4Cr+Co+d ;
Z;q S (@f:l o1 Z”i,l)
@<@§:1ij) gq>0andg=0 (mod4),
1
\ Z;QCE+CO+d<_B (@;:1 ij> ¢>2andg=2 (mod 4).

1.4.5 The ring structure

We will now deal with the computation of the ring structure. Recall from Definition 1.1.2
that R, is the subring of H* (Zg) generated by x2 and 23, where z is the degree 2 generator
of H*(Zg).

Proof of Theorem 1.B. We first prove the result when s > 0. Let I' be a Fuchsian group
of signature [g, s;mq,..., m,| such that s > 0. We may rearrange the presentation of I
so that I' @ Fs_1 % Zy,, * - -+ % Zy,, where Fs_1 is a free group of rank s — 1. The result

is now an easy application of the Mayer-Vietoris sequence for cohomology.
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3 D)1 Zm, 0 0 0
2 0 0 0 0
1 2 & (@21 Zm,) 0 0 0
0 Zr+s+1 Z2g+7"+s — 7 0

FIGURE 1.5: The E2-page of the cohomological spectral sequence for a cocompact
Fuchsian group. Here the element z; is additive torsion of order m;.

Now, let T" be a Fuchsian group of signature [g,s;m,...,m,] such that s = 0. We
instead consider the equivariant cohomology spectral sequence for I'. Armed with our
calculation for homology, it is clear that E2-page has the form given in Figure 1.5 (here
mjx; = 0). Now, there is an extension problem for H?(T') which we resolved when
computing the homology of I". Dualising to cohomology via the universal coefficient
theorem we see that, up to a change of basis of the x;s, the extension problem kills a
subset of this new basis which generate an abelian group isomorphic to @2:1 Zg, - Since

the spectral sequence preserves cup products the result follows. O

1.5 Closing remarks

We end with three remarks. Firstly, the author was asked by Professor Gareth Jones
whether the same results hold for the 17 wallpaper groups if one takes X to be the
Euclidean plane. We confirm here it does, however the cohomology computations of
these groups are well known so we will not elaborate on this. Secondly, the results in this
paper are consistent with Gaboriau’s result that L?-Betti numbers of lattices in a Lie
group are proportional to their covolume [9]. As such one deduces the well known result
that for an NEC group I the first L2-Betti number b§2) (T') = —xo(T) and all other L?-
Betti numbers vanish. Finally, Fuchsian groups are not determined by their cohomology.
Indeed, the groups with signatures [g, s;3,10] and [g, s; 5, 6] have isomorphic cohomology

rings but the groups are not isomorphic.
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Paper 2
THE FIRST (-BETTI NUMBER AND GRAPHS OF GROUPS

INDIRA CHATTERJI, PETER KROPHOLLER, AND SAM HUGHES

ABSTRACT. We generalise results of Thomas, Allcock, Thom—Petersen, Kar—Niblo on
presentations to the first £2-Betti number of quotients of certain graphs of groups by

subgroups with free actions on the edge sets of the graphs.

2.1 Introduction

The ¢2-Betti numbers were introduced by Atiyah as dimensions of heat kernels of certain
operators on Riemannian manifolds. The modern formulation assigns ¢2-Betti numbers
p2

.~ (G) to arbitrary groups G. We refer the reader to Liick’s account where the history
can be found in the introduction of [11]. Technical results about ¢2-Betti numbers that
we need can be found in chapters 6 and 8 of loc. cit. The ¢2-Euler characteristic x(?)(QG)
is defined to be the alternating sum of these Betti numbers when this series is absolutely

convergent. Let C denote the class of groups F such that
* Diso bl@)(G) is finite (this being the condition for absolute convergence),
o 8(F) =P (F) =0, and
e cither Y (F) = 0 or F is finite.

Note that that C contains all £2-acyclic groups (i.e. the groups for which bz@) = 0 for

all i > 0) and in particular it contains all amenable groups. Relevant background on

(?-cohomology is included in Section 2.2. In this note we prove the following theorem.

Theorem 2.A. Let F' be a group acting simplicially and cocompactly on a simplicial
tree, with vertex and edge stabilisers in C, let N be a subgroup normally generated by
m elements, intersecting the vertex stabilisers trivially, and let G denote F/N. Then
Y@ (F) is defined and setting k := x® (F') + m the following conclusions hold:

(i) If k <0, then G is infinite.
(i) Ifk <0, then b?(G) = —k > 0.
(ili) If G is finite, then k >0 and |G| > 1.

Note that the hypotheses of this theorem guarantee that N acts freely on the specified

tree and in particular N is necessarily a free group. Note also that, according to |2,

93
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Corollary 1.4], if ng)(G) > (0 then G has no commensurated infinite amenable subgroup
and according to [4, Corollary 6] does not have property (T). If we also have bgz) (G) =0,
then G is in the class Dy by [14, Lemma 2.8]. We refer the reader to [3] for background
on property (T) and to [14, Definition 2.6| for the definition of the class Dyeg. Acylindri-
cally hyperbolic groups form a large class of groups admitting coarsely proper actions on
hyperbolic metric spaces. The class is a generalisation of relative hyperbolicity including
many Artin groups, mapping class groups, and Out(F},). The main result of Osin’s pa-
per [12] states that indicable groups with positive first £2-Betti number are acylindrically

hyperbolic. In particular, we have the following corollary.

Corollary 2.B. Let G, F and N be as in Theorem 2.A. Assume that G is finitely pre-
sented, (virtually) indicable and that x®) (F)+m < 0. Then G is (virtually) acylindrically
hyperbolic.

The simplest way in which the indicability hypothesis may arise is through stable letters:
Let T denote the F-tree of Theorem 2.A. Let K denote the (necessarily normal) subgroup
generated by the vertex stabilisers. Then there is a subgroup E < F' that complements
K and all such subgroups are free of uniquely determined rank. Such a subgroup may
be referred to as a subgroup of stable letters of the action. The group G has an infinite
cyclic quotient when N n E has infinite index in F, in other words when there is a stable

letter that is faithfully represented in GG, and in this case G is indicable.

Recall that a group G is C*-simple if the reduced group C*-algebra, denoted C;(G),
has exactly two norm closed 2-sided ideals, 0, and the algebra C}(G) itself. By |5,
Corollary 6.7] we obtain the following.

Corollary 2.C. With G, F and N as before, G is C*-simple if and only if it has trivial

amenable radical.

Theorem 2.A has some historical pedigree. It originally began life as a result about
quotients of free groups due to Thomas (see Theorem 2.D((i))) and was proved using
combinatorial methods [15]. The result was generalised by Allcock to incorporate a
bound on the rank of the abelianisation of the quotient group [1]. The introduction of
¢%-cohomology came when Peterson—Thom [13, Theorem 3.6] and Kar-Niblo [10] inde-
pendently linked the inequality of Thomas to the first £2-Betti number. These discoveries

are summarized in the following result.

Theorem 2.D (Thomas [15], Allcock [1]|, Peterson-Thom [13], Kar-Niblo [10]). Let G

be a group with a presentation
k1 k
(x1y .o x| Tyt e

in which the elements r; have order k; when interpreted in G.
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(i) Ifn—3", k% > 1 then G is infinite.
(ii) If G is finite then |G| = m

(iii) Ifn—3", k% > 1 then G is non-amenable.

Deduction of Theorem 2.D from Theorem 2.A. Let G be a group with a presentation

k m
G ={x,... x| .k,
Adding m fresh generators yi, ..., ym, we can give the following alternative presentation
of the same group:
k km -1 _
G =T, s Ty Yl s Ym| Ui sy iy Py

Let F' be the group with presentation

k m
F=<x1,...,wn,y1,...,ym\ y117"'1y7k;1>

and let N be the subgroup of F normally generated by rlyl_l, ey Tm¥Ymt. Then Fis a
free product of cyclic groups: in particular it is virtually free and has Euler characteristic
x(F) = >, k% —n —m + 1. The condition that the r; have order k; in the original
presentation ensures that N does not meet any of the finite subgroups of F' and so
is torsion-free. Applying Theorem 2.A with these choices of F', N, G yields Theorem
2.D. O

Throughout this paper for a group or subgroup G we will adopt the convention that |—1|

be interpreted as zero if G is infinite.

Finally, we also provide a computation of the first £2-Betti number for certain groups
acting on trees. This generalises a result of Liick |7], which covers the case of an amal-
gamated free product, and a result of Tsouvalas [16, Corollary 3.7]. Tsouvalas assumes
the vertex stabilisers are either residually finite or virtually torsion-free and the edge
stabilisers are finite. Here we replace both of these assumptions with Liick’s less restric-
tive assumption that the first £2-Betti numbers of the edge stabilisers vanish. So, for

example, the theorem applies to fundamental groups of graphs of C-groups.

Theorem 2.E. Let F be a group acting simplicially on a simplicial tree and let V and
E denote sets of representatives of F'-orbits of vertices and edges. Assume for each e € B
that b?) (F.) =0, then we have



56 Paper 2 — The first £?>-Betti number and graphs of groups

Acknowledgements

The second author wishes to thank Ian Leary for his tireless and good humoured role
as thesis adviser. The second author was supported by the Engineering and Physical
Sciences Research Council grant number 2127970. We are also indebted to Kevin Li and

to the anonymous referee for a number of helpful comments and corrections.

2.2 Background on /?>-homology

Let G be a group. Then both G and the complex group algebra CG act by left mul-
tiplication on the Hilbert space ¢?G of square-summable sequences. The group von
Neumann algebra NG is the ring of G-equivariant bounded operators on /2G. The reg-
ular elements of NG form an Ore set and the Ore localization of NG can be identified
with the ring of affiliated operators, and is denoted by UG. One has the inclusions
CG € NG € G € UG and it is also known that UG is a self-injective ring which is
flat over NG. For more details concerning these constructions we refer the reader to [11]
and especially to Theorem 8.22 of §8.2.3 therein. The von Neumann dimension and the
basic properties we need can be found in [11, §8.3]. Now let Y be a G-CW complex as
defined! in [11, Definition 1.25 of §1.2]. The £2.-homology groups of Y are then defined
to be the equivariant homology groups HE (Y;UG), and we have

b (V) = dimyg HE (Y;UG).

(2

The ¢2-Betti numbers of a group G are then defined to be the £2-Betti numbers of EG,

that is to say
B (G) = b (EG). (2.1)

By [11, Theorem 6.54(8)], the zeroeth ¢2-Betti number of G is equal to 1/|G|. Moreover,
if G is finite then bg)(G) =0forn>1.

Let Cy(Y;UG) denote the standard cellular chain complex of Y with coefficients in UG.

We have the formula )
dimye C;(Y;UG) =) e

where o runs through a set of orbit representatives of i-dimensional cells in Y. Suppose
that the ¢2-Euler characteristic of Y is defined. Standard arguments of homological
algebra give the connection between two Euler characteristic computations (for the details
see |11, Lemma 6.80(1)]):

! -2

(0 = YT 0) = Y dimue CUYUG) = P11

IThis is the usual definition.
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We will need the following lemma for the proofs in the next section. One should think

of it as a mild generalisation of Theorem 6.54(2) in [11]

Lemma 2.2.1 (Comparison with the Borel construction up to rank). Let X be a G-CW
complex. Suppose for all x € X the isotropy group G4 is finite or b:gQ)(Gx) =0 for all
0 <p<n, then

b (X) = bP(BEG x X) for0<p<n.
Proof. It suffices to prove that the von Neumann dimensions of the kernel and cokernel

of the map
pr, : HY(EG x X;UG) — HY (X;UG)

induced by the projection EG x X — X are zero for 0 < p < n. Here EG x X carries
the diagonal action of G. By an identical argument to [11, Theorem 6.54(2)] it suffices
to prove for each isotropy subgroup H < G and 0 < p < n the kernel and cokernel
of the map pr), : HZ{{(EH;L{H) — H;{(*;Z/IH) have dimension equal to zero. If H is
finite this follows from [11, Theorem 6.54(8a)], and is immediate if bz(f)(H ) = 0 for all
0<p<n O

2.3 The Main Theorem

To prove Theorem 2.A, one needs the following method of computing the ¢2-Euler char-
acteristic of a group acting on a tree analogous to Chiswell’s result [9] for rational Euler

characteristic.

Proposition 2.3.1 (Chatterji-Mislin [8]). Let F' be a group acting on a tree and let V
and E denote sets of representatives of F-orbits of vertices and edges. If the ¢?-Euler

characteristic of each vertex and edge group is finite, then

XP(F) = Y XD (F) = Y X (F).

veV eeE

Proof of Theorem 2.A. There is a cocompact action of F' on a tree T" with vertex and
edge stabilisers in the class C. Let V and E denote the vertex and edge sets. Let T
denote the quotient graph T/N and write V and E for its vertex and edge sets. Now
G = F/N acts cocompactly on T with vertex and edge stabilisers in C. The augmented

chain complex of T is the short exact sequence
0->ZE -2V -7Z—0

of ZF-modules. Restricting to the action of N this short exact sequence leads to a long

exact sequence for the homology of N. It is straightforward to identify Hy(N;ZV) with
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ZV and Ho(N;ZFE) with ZE, so that the tail end of the sequence takes the form

H{(N;Z) — ZE — 7V — 7. — 0. (2.3)

Let {r;: i = 1,..m} denote a normal generating set for N. Choose a vertex vy in T to be
a fixed basepoint. For 1 < ¢ < m consider the geodesic from vg to vgr;. In the quotient
graph T this geodesic descends to a loop because vg and vgr; become identified in 7.
Now 2-discs can be glued to each loop. By adjoining free G-orbits of 2-discs equivariantly
we can build a 2-complex Y with an action of G, whose 1-skeleton is T, and which has

augmented cellular chain complex
ZG™ — ZE — 7V — Z — 0. (2.4)

By construction the map ZG™ — ZE factors through a surjection ZG™ — H;i(N;Z).
Therefore, the exactness of (2.3) ensures the exactness of (2.4). It follows that Y is

1-acyclic.

Let Vp and Ey be sets of orbit representatives of vertices and edges in Y. Now, applying
Proposition 2.3.1 then (2.2), we have that

PSRN GE

=69()—69OU+69@U-

XP(F) +m =

Lemma 2.2.1 with n = 2, yields

XO(E) +m = b2 (EG x V) = b (EG x V) + b3 (EG x Y)
> 0BG x Y) — b2 (EG x Y).

Applying [11, Theorem 6.54(1a)] to the projection f : EG x Y — EG with n = 2 (note
that we are using the fact Y is 1-acyclic), we obtain b§2) (EGXY) = bZ@)(EG) fori=0,1.
Recalling (2.1), we therefore have

XP(F) +m = (@) - b7 (@).

Let k = Y@ (F) +m. If k < 0, then b(2)(G) — b§2)(G) < 0 and so G is infinite, this proves
(i). Now, assume k < 0. In this case G is infinite and therefore bé2)(G) = 0. It follows
that ng) (G) = —k > 0, this proves (ii).

If G is finite, then b(()2) (G) = ﬁ, ng)(G) =0, and k > 0. In particular, k > @ > 0 and

(iii) follows. O
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2.4 On the /?-invariants for certain groups acting on trees

Proof of Theorem 2.F. Let V and E denote sets of representatives of F-orbits of vertices
and edges for the action of F on the tree. We consider the relevant part of the El-page
for the F-equivariant spectral sequence (see Chapter VIL.9 of [6]) applied to the tree:

1 @D,y HY (F xp, EF,;;UF) 0
0 Doy HE (F x g, EF;UF)) —— Pecr HE(F xp, EF;UF))
0 1

If F is finite then ng)(F) =0, so d! is injective and E%,O = 0. The result follows from
the fact E&l = 0.

Now, assume F is infinite, then d' is surjective since b( )( F) = 0. Thus,

dimyp (Ker(d")) Z b Z B
ecFE veV

Now, the spectral sequence obviously collapses on the E?-page and E&l = E3,1- Since

von Neumann dimension is additive over short exact sequences, we have
2 . .
bg )(F) = dlmUF(Ker(dl)) + dlmuF(Eg’l)

<Zb - ST )4—26

eeFE veV veV

and the result follows. O
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Paper 3

ON THE EQUIVARIANT K- AND KO-HOMOLOGY OF SOME
SPECIAL LINEAR GROUPS

SAM HUGHES

ABSTRACT. We compute the equivariant K O-homology of the classifying space for
proper actions of SL3(Z) and GL3(Z). We also compute the Bredon homology and
equivariant K-homology of the classifying spaces for proper actions of PSLQ(Z[%]) and

SL2(Z[1%]) for each prime p. Finally, we prove the Unstable Gromov-Lawson-Rosenberg
Conjecture for a large class of groups whose maximal finite subgroups are odd order

and have periodic cohomology.

3.1 Introduction

There has been considerable interest in the Baum-Connes conjecture, which states that
for a group I' a certain ‘assembly map’, from the equivariant K-homology of the clas-
sifying space for proper actions EI' to the topological K-theory of the reduced group
C*-algebra, is an isomorphism [3]. The Baum-Connes conjecture is known to hold for
several families of groups, including word-hyperbolic groups, CAT(0)-cubical groups and

groups with the Haagerup property. An excellent survey can be found in [2].

The Baum—Connes Conjecture. Let I be a discrete group, then the following assembly
map is an isomorphism

pe K (ED) — KPP (CHI)).

There is also a ‘real’ Baum-Connes conjecture which predicts that an assembly map
from the equivariant K O-homology of EI' to the topological K-theory of the real group
C*-algebra is an isomorphism. It is known that the Baum-Connes Conjecture implies

the Real Baum-Connes Conjecture [4].

The Real Baum—Connes Conjecture. Let I' be a discrete group, then the following

assembly map is an isomorphism

pr : KO (ET) — KOYP(CH(I)).

In spite of the interest, to date there have been very few computations of K- and KO"-
homology. Indeed, for KT-homology there are complete calculations for one relator
groups [35], NEC groups [32], some Bianchi groups and hyperbolic reflection groups [30]
[38] [39], some Coxeter groups [16] [46] [45], Hilbert modular groups [44], SL3(Z) [47], and
PSL4(Z) |10]. Explicit assembly maps have also been computed for solvable Baumslag-
Solitar groups [37], lamplighter groups of finite groups [18| and certain wreath products

61
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[36] [31]. For KO'-homology the author is aware of two complete computations; the
first, due to Davis and Liick, on a family of Euclidean crystallographic groups [14], and
the second, due to Mario Fuentes-Rumi, on simply connected graphs of cyclic groups of

odd order and of some Coxeter groups [17].

In this paper we compute the equivariant K-homology of SLo (Z[%]) and the equivariant
K O-homology of SL3(Z). We give the relevant background and the connection to Bredon

homology in Section 3.2.

The calculation for KO'-homology is of particular interest because it is (to the author’s
knowledge) the first computation of KOL for a property (T) group. For background on
property (T) the reader may consult the monograph [5]. This interest stems from the fact
that property (T) is a strong negation of the Haagerup property which implies Baum-
Connes [21]. Moreover, the (real) Baum-Connes conjecture is still open for SL,,(Z) when
n = 3. We note that there are counterexamples for the Baum-Connes conjecture for
groupoids constructed from SL3(Z) and more generally a discrete group with property

(T) for which the assembly map is known to be injective [22].

Theorem 3.A (Theorem 3.3.2). Let I' = SL3(Z), then forn =0,...,7 we have
KO, (El) = 2°, 73, Z3 0, Z° 0, 0, 0
and the remaining groups are given by 8-fold Bott-periodicity.

Applying a Kiinneth type theorem [46, Theorem 3.6] to the isomorphism GL3(Z) =
SL3(Z) x Zg on the level of Bredon homology, we obtain the following result for GL3(Z).

Corollary 3.B (Theorem 3.3.3). Let I' = GL3(Z), then forn =0,...,7 we have
KOL(ET) =2z', 7% 7 o, z'° o0, 0, 0
and the remaining groups are given by 8-fold Bott-periodicity.

We also consider I' = PSLQ(Z[}%]) or SLQ(Z[%]), for p a prime, computing the equivari-

ant K-homology groups K (ET). There has been considerable interest in determining

homological properties of the groups SLa(Z[1]) and groups related to them [1] [9] [23].

m
It appears, however, that even with computer based methods the problem of determin-

ing the cohomology of SLa(Z[X]) for m a product of 3 primes is out of reach [9]. In
Lemma 3.5.4 we give a short proof of the Baum-Connes conjecture for SLQ(Z[%]) and

so we obtain the topological K-theory of the reduced group C*-algebra of SLo (Z[%]) as

well.

Theorem 3.C (Theorem 3.5.6). Let p be a prime and I’ = PSLQ(Z[%]), then KL (ETL) is
a free abelian group with rank as given in Table 3.1. Moreover, since the Baum-Connes
Congecture holds for T we have KL (ET') = K°P(C*(I)).
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[2[3] 1 (mod12) | 5 (mod12) | 7 (mod 12) | 11 (mod 12) |

n=0[7[6[4+4p—1 [6+4p+1) [5+40—1) [ T+40+D
n=1]0]0 3 1 2 0

TABLE 3.1: Z-rank of the equivariant K-homology of the classifying space for proper
actions of PSLy (Z[%]) for p prime.

Theorem 3.D (Theorem 3.5.7). Let p be a prime and I' = SLQ(Z[%]), Then KL (ET')
is additively isomorphic to the direct sum of two copies of the corresponding equivariant
K-homology group of PSLQ(Z[%]),

Finally, we will give a proof of the Unstable Gromov-Lawson-Rosenberg Conjecture for
positive scalar curvature for a large class of groups whose torsion subgroups have peri-
odic cohomology. The statement and background concerning this conjecture is given in
Section 3.6. However, we will introduce the following notation now before the theorem

statement. We say a group I satisfies:

(M) If every finite subgroup is contained in a unique maximal finite subgroup.

(NM) If M is a maximal finite subgroup of I', then the normaliser Np(M) of M is equal
to M.

(BC) If T satisfies the Baum-Connes conjecture.

(PFS) If all maximal finite subgroups of I" are odd order and have periodic cohomology.

A large number of arithmetic groups satisfy the following theorem including many finite
index subgroups PSLQ(Z[%]) for p =11 (mod 12) and Hilbert modular groups. We will
detail a number of additional examples in Section 3.6.

Theorem 3.E (Theorem 3.6.2). Let T be a group satisfying (BC), (M), (NM) and (PFS).

If BI' is finite and has dimension at most 9, then the Unstable Gromov-Lawson-Rosenberg

Congecture holds for T'.

In Section 3.2 we give the relevant background on equivariant K and K O-homology.
In Section 3.3 we give the computations of the equivariant KO-homology for SL3(Z)
and GL3(Z). In Section 3.4 we provide auxiliary computations of the equivariant K-
homology of Fuchsian groups. In Section 3.5 we compute the equivariant K-homology
of PSLQ(Z[%]) and SLQ(Z[%]). Finally, in Section 3.6 we prove the results about the Un-
stable Gromov-Lawson-Rosenberg Conjecture and give a number of examples of groups

satisfying the conjecture.
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3.2 Preliminaries

In this section we introduce the relevant background from Bredon homology and its
interactions with equivariant K- and K O-homology. We follow the treatment given in
Mislin’s notes [35].

3.2.1 Classifying spaces for families

Let I' be a discrete group. A I'-CW complex X is a CW-complex equipped with a cellular

I'-action. We say the I' action is proper if all of the cell stabilisers are finite.

Let F be a family of subgroups of I" which is closed under conjugation and finite inter-
sections. A model for the classifying space ExI for the family F is a -CW complex such
that all cell stabilisers are in F and the fixed point set of every H € F is contractible.
This is equivalent to the following universal property: For every I'-CW complex Y there

is exactly one I'-map Y — ExI" up to I'-homotopy.

In the case where F = FZN, the family of all finite subgroups of ', we denote Ezzar(T)
by EI'. We call such a space, the classifying space for proper actions of I'. Note that if
I' is torsion-free then EI' = ET .

3.2.2 Bredon homology

Let T" be a discrete group and F be a family of subgroups. We define the orbit cate-
gory Orz(T') to be the category with objects given by left cosets I'/H for H € F and
morphisms the I'-maps ¢ : I'/H — I'/K. A morphism in the orbit category is uniquely
determined by its image ¢(H) = vK and yHy~! < K; conversely, each such v € T

defines a G-map.

A (left) Bredon module is a covariant functor M : Org(I') — Ab, where Ab is the
category of Abelian groups. Consider a I'-CW complex X and a family of subgroups F
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containing all cell stabilisers. Let M be a Bredon module and define the Bredon chain

complex with coefficients in M as follows:

Let {cq} be a set of orbit representatives of the n-cells in X and let I', denote the

stabiliser of the cell a. The nth chain group is then
Cn =P M([T/T,,).
(03

If v¢’ is an (n — 1)-cell in the boundary of ¢, then v 'I'.y € I'v. This defines a I-map
¢ : I'/T. — I'/Tw, which in turn gives an induced homomorphism M (y) : M (I'/T;) —
M(T'/T'). Therefore, we obtain a differential 0 : C,, — C,_;. Taking homology of the
chain complex (Cy,d) gives the Bredon homology groups H; (X;M). A right Bredon

module and Bredon cohomology are defined analogously using contravariant functors.

3.2.3 Equivariant K-homology

The original definition of equivariant K-homology used Kasparov’s K K-theory [3]. There
is also homotopy theoretic approach using spaces and spectra over the orbit category due
to Davis-Liick [12]. We will highlight the details we need.

Let I" be a discrete group. In the context of the Baum-Connes conjecture we are specif-
ically interested in the case where X = EI', F = FIN and M = R¢ the complex
representation ring. We consider R¢(—) as a Bredon module in the following way: For
I'/H € Org(I') set Re(I'/H) := Re(H), the ring of complex representations of the finite

group H. Morphisms are then given by induction of representations.

We note that Re(T) := Hf (I') = colimp)georryRe(H). In the case that T has finitely
many conjugacy classes of finite subgroups, Rc¢(T') is a finitely generated quotient of

@ Rc(H), where H runs over conjugacy classes of finite subgroups.

We now exhibit the connection between Bredon homology and KL (ET), the equivariant
K-homology of the classifying space for proper actions. Indeed, for each subgroup H < T’

equivariant K-homology satisfies
K, (U/H) = K,*(C} (H)).

In the case H is a finite subgroup we have C*(H) = CH, K} (I'/H) = K;°°(CH) =
Re(H), and K] (T/H) = K{°°(CH) = 0. The remaining K groups are given by 2-fold
Bott periodicity. This allows us to view K. (—) as a Bredon module over Orbzza/(T).

We may use an equivariant Atiyah-Hirzebruch spectral sequence to compute the K-

homology of a proper I'-CW-complex X from its Bredon homology.

Theorem 3.2.1. [35, Page 50| Let I be a group and X a proper I'-CW complex, then
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there is an Atiyah-Hirzebruch type spectral sequence

E? o= HI™N(X KL (-)) = KL

p+q(X)‘

3.2.4 Equivariant KO-homology

In this section we summarise the material from [14, Section 9] which we will require for
our calculations. Again fixing a discrete group I' and F = FZN, we introduce two more
Bredon modules, the real representation ring Rg(—), and the quaternionic representation
ring RgyH(—). These are defined on Orz(I") in exactly the same way as the complex
representation ring. We have natural transformations between the functors. Indeed for

a finite subgroup H < I' we have a diagram:

T ™
Re(H) Re(H) RuH(H).
f\ﬁ/ "\n/

Note that the diagram does not commute. For instance let 1 € Rg(H ) denote the trivial

representation, then pr(1) = 2-(1).

For a real representation v, the complezification is v(¢)) = ¢ ® C. For a complex rep-
resentation ¢, the symplectification is o(¢) = ¢ ® HH. Going the other way, for an
n-dimensional quaternionic representation w, the complezification is n(w) = n consid-
ered as 2n-dimensional complex representation. Similarly, for an n-dimensional complex
representation ¢, the realification is p(¢) = ¢ considered as a 2n-dimensional real rep-
resentation. Note that any composition of the x-ification natural transformations with

the same source and target is necessarily not the identity.

The situation for the equivariant KO-homology, denoted KOL(—), is similar to the
equivariant K -homology but more complicated. For asubgroup H < I' weset KOL(T'/H) =
KOYP(C*(H)). By [8, Section 1.2], in the case that H is a finite subgroup we have that

-

Rr(H) n =0,
Re(H)/p(Re(H) n=1,
Re(H)/n(ReH(H)) n =2,
0 n =3,
RuH(H) n =4,
RuH(H)/o(Rc(H)) n =35,
Re(H)/v(Rr(H))  n =6,
0 n=="17,

KOL(N/H) = KO (Cr () = 3
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with the remaining groups given by 8-fold Bott-periodicity. For X a proper I'-space,
the Atiyah-Hirzebruch spectral sequence from before now takes the form

B2 = HI™N(X; KOY (-)) = KO}

p+q(X)'

3.2.5 Spectra and homotopy

The section gives an alternative I'-equivariant homotopy theoretic viewpoint. Now, we
consider I'-equivariant homology theories as functors E: Orz(I') — Spectra. Techni-
cally, to avoid functorial problems one must take composite functors through the cate-
gories C*-Cat and Groupoids. We do not concern ourselves with this complication
and refer the reader to [12] and [15].

Instead we will take for granted that there is a composite functor
KO: Org(I') — Spectra

which satisfies 7, KO(I'/H) = KOy (C*(H)). When F = FIN this perspective gives
a homotopy theoretic construction of the (real) Baum-Connes assembly map. Indeed,

we have maps

BTy A KO ~ hocolim KO — hocolimKO — hocolimKO ~ KO(C} (T; R)).
Or7ry(T) Orz(I) Oracc(T)

The assembly map pg is then 7, applied to the composite.

3.2.6 Group C*-algebras and K K-theory

In this section we give a brief outline of Kasparov’s K K -theory, the material here will
not be used elsewhere in the paper. The theory was introduced by Kasparov in [26] [27]
in relation to the Novikov Conjecture. The original formulation of the Baum-Connes

Conjecture using K K -theory was given in [3].

For a C*-algebra A define M, (A) to be the direct limit of sets of (n x n)-matrices over
A as n — 0. Similarly, define GLy(A) to be the direct limit of groups of invertible

(n x n)-matrices over A.

Topological or operator K -theory is a 2-periodic homology theory of unital C*-algebras
denoted K:ff)p(f). The zeroth K -group of a unital C*-algebra A is defined to be the
Grothendieck group of the set of projections in My (A) up to Murray von Neumann
equivalence. The first K -group is defined to be GLy(A)/GLy(A)o, where GLo(A)o is
the path component of the identity.
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An alternative formulation is given by Kasparov’s bifunctor K K(—,—). For any two
C*-algebras A and B there is an abelian group KK (A, B). An element of KK (A, B)
is a homotopy class of (A, B)-Fredholm bimodules (see [2, Section 3| for the precise
definition). The zeroth K-group of A from before is recovered as KK (C, A) and the
first K -group is recovered as KK (Cp(R), A).

Let I' be a discrete group. The reduced C*-algebra of T', denoted C}*(I'), is the norm
closure of the algebra of bounded operators on ¢£2(T") by the left regular representation
of I'. The algebra and its K-groups are intimately related with the theory of elliptic
operators on manifolds M with fundamental group I'. For more information the reader

should consult the survey [2] and the references therein.

3.3 Equivariant KO-homology of SL3(Z)

3.3.1 A classifying space for proper actions

A model for X = ESL3(Z) can be constructed as a SL3(Z)-equivariant deformation
retract of the symmetric space SL3(R)/O(3). This construction has been detailed several
times in the literature ([50, Theorem 2|, [20, Theorem 2.4| or [47, Theorem 13]), so
rather than detailing it again here, we simply extract the relevant cell complex and cell
stabilisers. Specifically, we follow the notation of Sanchez-Garcia [47| and collect the

information in Table 3.2.

3.3.2 Proof of Theorem 3.A

The calculation of the equivariant K O-groups will require the following proposition and
an analysis of the representation theory of the finite subgroups of SL3(Z). We remark
that one could prove a dozen subtle variations on the theme of the following proposition.
However, rather than do this we offer the slogan: “Computations with coefficients in
KO (—) can be greatly simplified by looking for chain maps to the Bredon chain complex

with coefficients in R¢(—)."

Proposition 3.3.1. Let T be a discrete group, F = FIN and suppose X is a proper
I'-CW complex with finitely many I' orbits of cells in each dimension. Assume that for
every cell stabiliser the real, complex and quarternionic character tables are equal, then
the Atiyah-Hirzebruch spectral sequence converging to KOL(X) has E?-page isomorphic
to

Ejy, = HI™V(X; K§) © KOq(x) @ Tor{ [HHN (X3 K), KOy (%))

where for ¢ =0,...,7 we have

KOy(x) =27, Zy, 7y, 0, Z, 0, 0, 0
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Dimension ‘ Cell ‘ Boundary \ Stabiliser ‘

3 Ty —t1 +to —t3+ 1ty — 5 {1}
tl €1 — €y — €4 ZQ
to €4 — €5 + €4 {1}

2 t3 €g —e7 + €8 Z%
ty €1 —e3 +e5+eg Zo
t5 €y —e3+eg—€egt+er Zo
€1 V1 — V3 Z%
€2 V3 — U1 D3
€3 V5 — U1 D3
€4 V3 — V2 ZQ

1
es Vg — V2 Lo
€6 V4 — V3 Z%
er U5 — U3 Dy
es U5 — U4 Dy
U1 Sym(4)
V2 D¢

0 V3 - Sym(4)
V4 D4
Vs Sym(4)

TABLE 3.2: Cell structure and stabilisers of a model for ESL3(Z).
and the remaining groups are given by 8-fold Bott-periodicity.
Note that the Tor terms vanish except possibly when ¢ =1 or 2.

Proof. Since the three character tables are equal, the complexification from v : Rg —
Rc and the symplectification from o : R¢ — RyH are isomorphisms. In the other
direction, the complexification from 7 : RgH — R¢ and the realification from p : R¢ —
Rr correspond to multiplication by 2. We will now compute each row of the spectral

sequence in turn.

q=0: We have E;%,o = H;IN(X;KO(I;) which is exactly equal to HEIN(X;RR),
the result follows from the isomorphism prZN(X;RR) = prIN(X; K!)®7Z and the

vanishing of the Tor group.

q = 1: The realification p : R¢ — Rgr is multiplication by 2, thus the cokernel of the
map

ps s OT N (X Re) — CTN (X Re)

is the modulo 2 reduction of CZZV (X; Rg). Consider C7 ™V (X; Rg) as a chain complex
of abelian groups. The result follows from the Universal Coefficient Theorem in homology

with Zs coefficients applied to the homology of the chain complex C7 IN (X;RR).
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q = 2 : The complexification 7 : RgH — R¢ is multiplication by 2 and C{ N (X;Re)
is isomorphic to C{ IN (X;Rg). The result now follows as in the case ¢ = 1.

q = 3 : Immediate since KO};(—) =0.

q =4 : Since v and o are both isomorphisms, their composition gives an isomorphism
of Bredon chain complexes CYZV(X;Rg) =~ CFTN(X; RyH). The result now follows

as in the ¢ = 0 case.

q = 5 : Since o is an isomorphism, the cokernel of the map
v : CT™N (X Re) — TV (X Ry H)

vanishes. The result follows.

q = 6 : Since v is an isomorphism, the cokernel of the map
Vg C’fIN(X;RR) — CfIN(X;RC)

vanishes. The result follows.
q = 7 : Immediate since KOg(—) =0. 0

Theorem 3.3.2 (Theorem 3.A). Let I' = SL3(Z), then for n =0,...,7 we have
KO};(EF) = Z87 ng Zga 0, Zg’ 0, 0, 0O

and the remaining groups are given by 8-fold Bott-periodicity.

Proof. Let T' = SL3(Z), F = FIN and X = ESL3(Z). We can now complete the
calculation for the equivariant K O-homology groups. First, we recap the calculation of
the Bredon chain complex with complex representation ring coefficients due to Sanchez-

Garcia. We have a chain complex

03 02

0 Z 711 728 O, 72 ' 0

where

I 0 I 0
05 ~ [1 lew] oy~ 10 10x18 Cand 4 ~ 18 18x8 .
Oox1  O1x18 O1ox18 O10xs

Therefore, the homology groups of the chain complex are isomorphic to Z® in dimension

0 and to 0 in every other dimension.

Now, the cell stabiliser subgroups of SL3(Z) acting on X are isomorphic to {1}, Za,
73, D3, D4, Sym(4) and Dg. Each of these satisfies the conditions of the proposition

above. This is easily checked by computing the Schur indicators of each of the irreducible
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characters of each group. Since the Schur indicator equals 1 in every case we conclude
the three character tables for each group are equal (see for instance |19, Exercise 3.38|).
Applying this to the previous calculation we obtain a single non-trivial column when

p = 0 in the Atiyah-Hirzebruch spectral sequence and so it collapses trivially. O

Corollary 3.3.3 (Corollary 3.B). Let I' = GL3(Z), then for n =0,...,7 we have
KO, (ET) =27, 7® 7% o, 7' 0, 0, 0

and the remaining groups are given by 8-fold Bott-periodicity.

Proof. First, note that the direct product of Zs with any of the cell stabiliser subgroups
of SL3(Z) still satisfies the conditions of the Proposition 3.3.1. Now, we may compute the
E?-page of the associated Atiyah Hirzebruch spectral sequence by applying the Kiinneth
formula [46, Theorem 3.6] to the calculation of each row of the E?-page for ESL3(Z).

Since the spectral sequence is concentrated in a single column we have isomorphisms
KOSW B (ECLy(Z)) = KOSD (ESLy(Z)) ® KO (),

from which the result is immediate. O

3.4 Equivariant K-homology of Fuchsian groups

In this section we compute the equivariant K-homology of every finitely generated Fuch-
sian group, that is, a finitely generated discrete subgroup of PSLg(R). The reason for
this apparent detour is that we will later split the groups PSLQ(Z[%]) as amalgamated
free products of certain Fuchsian subgroups. Thus, we can use a Mayer-Vietoris type

argument to compute their K -homology.

Note that Theorem 3.4.1(a) was computed in [32| along with a more general result for
cocompact NEC groups. Moreover, their integral cohomology was determined by the

author in [23]. An introduction to Fuchsian groups is provided by [28].

The computation is made easier by the fact that every finitely generated Fuchsian group
is described by piece of combinatorial data called a signature [28, Chapter 4.3]. Indeed,

a Fuchsian group of signature [g,s;mi, ..., m,| has a presentation with generators
al,...,agg,cl,...,cs,dl,...,dT

and relations

g T s
[ai7ag+i] de Hck = dTl =-=d =1,
=1 1

j=1 k=

(2
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and acts on the hyperbolic plane RH? with a 4¢ + 2s + 2r sided fundamental polygon.
The tessellation of the polygon under the group action has 1+ s+ r orbits of vertices, s
of which are on the boundary dRH?, 2g + s + r orbits of edges and 1 orbit of faces. All
edge and face stabilisers are trivial. All vertex stabilisers are trivial except for r orbits
of vertices, each of which is stabilised by some Z;,;. Note that if s = 0 we say I' is

cocompact.

The signature also describes a quotient 2-orbifold which is homeomorphic to a genus
g surface with s points removed. The orbifold data is then given by the r marked
points, each corresponding to one of the m;, or equivalently a maximal conjugacy of

finite subgroups.

If » = 0, we do not write any m; in the signature. In which case I' has signature [g, s; ],
is torsionfree, and isomorphic to either the fundamental group of a genus g surface, or a

free group of rank 2g + s — 1.

Theorem 3.4.1. Let T' be a Fuchsian group of signature [g,s;mq,...,my].

(a) If s =0 then,

s .
Z2TE=™ o even,

K, (ET) = K,(C}(I)) =
729 n odd.

(b) If s > 0 then,

r . 7V tEi- ™y even,
Z29+s—1 n odd.

Proof of (a). Let T' be a Fuchsian group of signature [g, s;m1,...,m,] with s = 0 and
F = FIN . Since T satisfies the Baum-Connes conjecture [21] it is enough to compute
the equivariant K -homology. The hyperbolic plane with the induced cell structure of
the I' action is a model for EI' (see for instance [33]). Recall that the cell structure has
r + 1 orbits of vertices, 2g + r orbits of edges and exactly 1 orbit of 2-cells. One vertex
vy is stabilised by the trivial group and for j = 1,...,r the vertex v; is stabilised by

Ln,; - Thus, we have a Bredon chain complex
0— Z® ((—B;T:IRC(ZW)> e 2 g,
and substituting in RC(ij) = 7" we obtain

06— 2@ (D, Zm) 2 2% 2z 0.
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We fix the following basis for each chain group: In degree 0 we have generators z;;, for
j=1,...,rand [l =1,...,m;, and the generator z. In degree 1 we have ay,..., a2, and
Y1,---,Yr, and in degree 2, the generator w. An easy calculation yields that d2(w) = 0,
01(a;) =0, and 01 (y;) = >, xju — 2. Thus,

(71455 mi=1) i = 0;
r 729 ifn=1;
Hn (EF7RC> = 9
Z ifn=2;
0 otherwise.

\

The result now follows from the collapsed Atiyah-Hirzebruch spectral sequence given in
[35, Theorem 5.27] and we obtain K (EI') = Hf (ET; Rc)®Hy (ET; Re) and K} (ED) =
HY (ET;Re). O

2g+s—1

Lin, Ly,

T

FI1GURE 3.1: A graph of groups for a non-cocompact Fuchsian group.

Proof of (b). Let T' be a Fuchsian group of signature [g, s;mq,...,m,] with s > 0 and
let F = FZN . In this case we can rearrange the presentation of I' such that we have a
splitting of T’ as an amalgamated free product ' = Z5~ 1% Z,,, -+ % Z,, . Now, I splits
as a finite graph of finite groups (Figure 3.1) and it is easy to see that the Bass-Serre
tree of I' is a model for EI'.

We will first compute the Bredon homology H; (ET;Rc) with coefficients in the rep-
resentation ring, then apply the equivariant Atiyah-Hirzebruch spectral sequence. We

have a Bredon chain complex
0« Z® (@;Zlnc(zmj)) R TR S
substituting in Rc¢(Zm,;) = Z™7 we obtain

0 Z@® (@;zlzma‘) O gretssl

Let the first non-zero term have generating set (x;;,2 | j=1,...,r, I=1,...,m;) and
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the second term {ai,...,asg,¢1,...,Cs—1,d1,...,dr). It is easy to see the differential
0 is given by d(a;) = d(b;)) = d(ck) = 0 and a(dj) = 3, xj; — z. It follows that
HI (ET;Re) = 21421~V gF (B Re) = Z29+571 and 0 otherwise. The result
now follows from the collapsed Atiyah-Hirzebruch spectral sequence [35, Theorem 5.27].
In particular, we have KL (EI') = HJ (ET;Rc¢) for n =0, 1. O

3.5 Computations for PSLQ(Z[%]) and SLy(Z[:])

1
p
3.5.1 Preliminaries

In an abuse of notation, throughout this section we will denote the image {+A} of
a matrix A € SLa(R) in PSLy(R) by the matrix A. Recall that for p a prime we
have PSLQ(Z[%]) = PSL2(Z) #py(p) PSL2(Z), where T'g(p) is the level p Hecke principle
congruence subgroup (see for instance Serre’s book “Trees" [48]). The amalgamation is
specified by two embeddings of the congruence subgroup I'g(p) into PSLy(Z). The first
is given by

To(p) ::{[“ Z]ePSLQ(Z):cEO (modp)}

a b a pb
c d ple d|’

In light of this we will collect some facts about each of the groups in the amalgamation.

and the second via

We begin by recording (Table 3.3) the Fuchsian signatures and the associated Bredon
homology for each of the groups I'g(p) and PSL2(Z). Note that when p =11 (mod 12)
the group T'g(p) is free.

Lemma 3.5.1. The signatures and Bredon homology groups of T'o(p) and PSLa(Z) are
given in Table 3.3.

! Lo(p) \ Signature \ H (T; Re) \ HY(T; Re) \
p= [0, 2; 2] 7?2 Z
p=3 [0,2;3] 73 Z
p=1 (mod12) | [0,3(p—7)+1;2,2,3,3] 77 760=7)
p=5 (mod 12) [0, %(p +1) +1;2,2] 73 7, (p+1)
p="7 (mod 12) [0,3(p—1) +1;3,3] 75 781
p=11 (mod 12) [0, s(p+7)+1;] 7 7,6+
| PSLy(z) | [0,1;2,3] |zt ] 0 \

TABLE 3.3: Fuchsian signatures and Bredon homology groups of T'g(p) for p prime.

Proof. Let [0,s;my,...,m;] be the signature of I'g(p). We will first compute the ordi-

nary cohomology groups of I'g(p), then using these we will deduce the signatures, finally
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the Bredon homology may then be read off of Theorem 3.4.1(b). Our computation of the
cohomology will be near identical to the computation in [1, Section 2|. The key differ-
ence is that the modules in [1] are for the lifts of T'g(p) in SLa(R) whereas we are always
working with the projectivised groups (see the discussion after [1, Proposition 2.2]). Note
that the fact the signature of PSLa(Z) is [0,1;2, 3] is well known.

Let G = PSLy(p) and let @ be the subgroup of equivalence classes of matrices with

lower left hand entry equal to zero. Clearly, Q) = Z, x Z1 (p—1) (unless p = 2,3 where
2

Q = Zyp). Each T'g(p) fits into a short exact sequence with normal subgroup a congruence

subgroup I'(p) isomorphic to a free group and quotient Q.

Now, recall [48, Example 4.2(c)| that PSLs(Z) acts on a tree 7 with fundamental domain
an edge. Moreover, G acts on T /I'(p). The stabiliser subgroups for both actions are Zs

and Zs for the vertices and trivial for the edges. It follows T'g(p) acts freely on EQ x T
and so EQ x¢ T/T'o(p) is a model for BT'y(p).

Let C* denote the cellular cochains on the B-CW complex 7 /T'(p), then by [1, Section 2|

we have the following isomorphisms of B-modules
CY:=Z[G/Zs) | ®Z[G/Z3] |5 and C':=Z[G] |-
As in [1, Section 2| we have a long exact sequence
- = H(To(p); Z) — H"(B; C°) — H"(B;C") — H" " (Lo (p); Z) — -+

Since CY is a permutation module, H'(B;C°) = 0. Calculating ranks yields that
HY(To(p); Z) = ZN®) where
1

NG =1, 1, o-7, o+1), so-1). b+,

ordered as in Table 3.3. In [23, Theorem 1.4(b)] it is shown that a Fuchsian group I' of
signature [0, s;my,...,m,| has HY(I';Z) = Z*~!. In particular, we deduce the signature
of T'o(p) must have the form [0, N(p) + 1;my,...,m;].

Now, C! is a free B-module and so we have an isomorphism H?"(I'y(p); Z) = H?(B;C")
for all n > 1. As in [1, Proposition 2.3| we obtain that

HQ”(FO(p);Z) = Z27 Z37 Z(257 Z%a Z%a 07

ordered as in Table 3.3. The result now follows from the following three facts. Firstly, for
a Fuchsian group I' of signature [0, s;mq,...,m,], each m; corresponds to a conjugacy
class of maximal finite cyclic subgroups Z,,. Secondly, by the proof of [23, Theo-
rem 1.4(b)], each maximal conjugacy class of finite cyclic subgroups Z,,; contributes a
H* (Zn,;;Z) summand to H*(D; Z). Thirdly, PSLy(Z) and hence Tg(p) has no elements
of order 6. O
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Remark 3.5.2. Let ﬁ;(p) denote the lift of I'g(p) in SL2(R). An alternative compu-
tation of H*(T'g(p);Z) can be achieved by back solving the Lyndon-Hochschild-Serre
spectral sequence (see for instance [7, Chapter VIL.6]) for the group extension Zy —
ﬁ;(p) — I'o(p) which takes the form

Ey* = H*(To(p); H*(Z2:2)) = H*(To(p); Z)

using the cohomology calculations for fvo(p) in [1].

We shall also record the conjugacy classes of finite order elements of I'g(p) and PSLo (Z[%]) .
Note that the only conjugacy classes of finite subgroups of PSLy(Z) are one class of
groups isomorphic to Zy and one to Zs since PSLy(Z) = Zgy + Z3. The conjugacy classes
of finite subgroups of I'g(p) can be read off of the signature, there is exactly one of order

m; for each j =1,...,r.

Lemma 3.5.3. The number of conjugacy classes of finite order elements in PSLQ(Z[%])

are those given in Table 3.4.

p= [2]3]1 (mod12) |5 (mod12) [ 7 (mod 12) | 11 (mod 12) |
Identity | 1 | 1 1 1 1 1
Order 2 | 1|2 1 1 2 2
Order 3 | 4 | 2 2 4 2 4
Total [6]5 | 4 6 5 \ 7 |

TABLE 3.4: Number of conjugacy classes of finite order elements of PSLs (Z[%]) for p
prime.

Proof. The result follows from the following observation: If there is a conjugacy of ele-
ments of order 2 (resp. 3) in I'g(p), then each of class of elements of order 2 (resp. 3)
in PSLy(Z) fuses in PSLQ(Z[%]). To see this, consider an element in the first copy of
PSLy(Z), conjugate it to an element in I'g(p), and then conjugate it to an element in
the other copy of PSLa(Z). O

Lemma 3.5.4. Both SLQ(Z[%]) and PSLQ(Z[%]) satisfy the Baum-Connes Conjecture.

Proof. Since PSLQ(Z[%]) = PSLa(Z) #r(p) PSL2(Z), the Bass-Serre tree of the amalga-
mation is a locally-finite 1-dimensional contractible PSLQ(Z[%])-CW complex. More-
over, each of the stabilisers I'. have cdg(I'c) = 1, being a graph of finite groups. Now,
we apply [35, Corollary 5.14] to see that the stabilisers satisfy Baum-Connes and [35,

Theorem 5.13| to see that PSLQ(Z[%]) does. The proof is identical for SLQ(Z[%]). O
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3.5.2 Computations

There is a long exact Mayer-Vietoris sequence for computing the Bredon homology of an

amalgamated free product.

Theorem 3.5.5. [35, Corollary 3.32| Let I' = H =1, K and let M be a Bredon module.

There is a long exact Mayer-Vietoris sequence:

- —— HIN(Ly M) —— HJ™N(H; M) @ H ™V (K3 M)

|

c—— HIIN(L; M) «————— HJTN(ED; M)

We are now ready to compute the K-theory of PSLa (Z[%])

Theorem 3.5.6 (Theorem 3.C). Let p be a prime and T' = PSLQ(Z[%]), then KL(ET)

is a free abelian group with rank as given in Table 3.1. Moreover, since the Baum-Connes
Congecture holds for T we have KL (ET) =~ KLP(C*(T)).

Proof. There are 6 cases to consider, the two cases when p = 2,3 and the four cases
given by p=1,5,7,11 (mod 12). Let ' = PSLQ(Z[%]) and F = FZN . In each case we
have the following long exact Mayer-Vietoris sequence

0

!

HI (T;Re) —— H{ (To(p); Re) —— (HY (PSLa(Z); Re))’

!

(Hf (PSLa(Z); Re))? +—— H{ (To(p); Re) «——— HY (T3 Re)

|

HI (T;Re) 0.

We have computed the Bredon homology groups of PSLs(Z) and I'g(p) in Table 3.3.
Thus, we can separate the above sequence into two sequences. Indeed, H{ (PSL2(Z); Rc)) =
0, so it follows that Hi (I';R¢) = H{ (To(p); Rc). The other sequence is then given by

the remaining terms.

We will treat the case p = 2, the other cases proceed identically. We have HQF (T;Re) =Z

and an exact sequence

0 —— H{ (T;Re) 72 78 H (T;R¢) —— 0.
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We now compute the colimit Hf (I';R¢) = colimr )/ geor - (myRe(H). Since we have a
complete description of the conjugacy classes of finite subgroups of I' and the only inclu-
sions are given by {1} <> Zy and {1} < Zs, it follows that H{ (I'; R¢) = Z5. Moreover,
for the sequence to be exact, it follows the map Z? — Z8® must be an isomorphism onto
the kernel of the first map. In particular H{ (I'; R¢) = 0.

The result now follows from the collapsed Atiyah-Hirzebruch spectral sequence given in
[35, Theorem 5.27] and we obtain K} (EI') = Hf (T;Rc) ® Hf (I;R¢) and K] (ET) =
H{ (I'; Rc). We record the Bredon homology groups for the remaining cases in Table 3.5,
the reader can easily verify these. Note that they are always torsion-free and so are

completely determined by their Z-rank. O

| p= [2]3]1 (mod12)[5 (mod12) | 7 (mod 12) [ 11 (mod 12) |

n=0]6]5 4 6 5 7
n=10]0 3 1 2 0
n=21]1] Lp-7 Lp+1) slp—1) sp+7)

TABLE 3.5: Z-rank of the Bredon homology of PSLQ(Z[%]) for p prime.

The computation for SLo(Z[1/p]) is almost entirely analogous. We highlight the differ-

ences below.

Theorem 3.5.7 (Theorem 3.D). Let p be a prime and I' = SLQ(Z[}%]), Then KL (ET)
1s additively isomorphic to the direct sum of two copies of the corresponding equivariant
K -homology group of PSLQ(Z[%]).

Proof (Sketch). Let F = FIN . First, we must compute the Bredon homology of the
lifts of PSLy(Z) and I'g(p) to SLa(R). For this we use the graph of groups in Figure 3.1
and note that now every edge group is the same central copy of Zs and the vertex groups
change as follows: The vertices with trivial vertex group now have vertex group the same
central copy of Zs. The vertex groups isomorphic to Zs are now Z4 and the vertex groups
isomorphic to Zz are now Zg (each extended by the central Zs). Computing the Bredon
homology we find that in each case it is isomorphic to the direct sum of two copies of

the corresponding Bredon homology group in the projective case.

Now, we apply the long exact Mayer-Vietoris sequence to the amalgamated free product
decomposition of SLQ(Z[%]). Since H{ (SL2(Z); Rc) = 0, like in the projective case,
the sequence splits into two exact sequences. The computation of Hy (SLQ(Z[%]))) is
immediate as before and is additively isomorphic to the direct sum of two copies of

HE (PSLy(Z[1]); Re).

To compute the zeroth and first homology groups we will again use the colimit isomor-

phism Hf (T;R¢) = colimr ) geor - (ryRe(H ). To use this we obtain a count of the total

number of conjugacy classes of finite order elements in SLy (Z[%]) To do this use a near
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identical argument to Lemma 3.5.3 that takes into account the central Zy subgroup. It
follows that the number of conjugacy classes of elements of finite order in SLo (Z[%]) is
equal to twice the number for the corresponding projective group. It follows that the
colimit computation for Hg (SLQ(Z[%]); Rc) is additively isomorphic to the direct sum
of two copies of H{(PSLQ(Z[%]);RC), where I' = SLQ(Z[%]).

From here one computes H{ (SLQ(Z[%]); R¢) in an identical manner to the projective
case. The resulting groups are isomorphic to the direct sum of two copies of the corre-
sponding Bredon homology groups in the projective case. The result now follows from
the collapsed Atiyah-Hirzebruch spectral sequence given in [35, Theorem 5.27| and we

obtain K} (ET) = H{ (I;Rc) ® H{ (I';Rc) and K} (El') = H{ (T; Rc). O

3.6 The Unstable Gromov-Lawson-Rosenberg Conjecture

Given a smooth closed n-manifold M a classical question is to ask whether M admits
a Riemannian metric of positive scalar curvature. In a vast generalisation of the Atiyah-
Singer index theorem, Rosenberg [41] exhibits a class in KOy (C*(m(M))) which is an

obstruction to M admitting a metric of positive scalar curvature.

More precisely, let M be a closed spin n-manifold and f: M — BI' be a continuous
map for some discrete group I'. Let a: Q?Lpin(BF) — KOy®(C*(T')) be the index of the
Dirac operator. If M admits a metric of positive scalar curvature, then a[M, f] = 0 €
KOw®(CH(I)

The Unstable Gromov—Lawson—Rosenberg Conjecture. Let M be a closed spin
n-manifold and T' = m(M). If f: M — BT is a continuous map which induces the
identity on the fundamental groups, then M admits a metric positive scalar curvature if
and only if a[M, f] = 0e KOZP(C*(I)).

The conjecture has been verified in the case of some finite groups [51] [42] [29] [40],
when the group has periodic cohomology, torsion-free groups for which the dimension
of BT is less than 9 [24], and cocompact Fuchsian groups [15]. However, there are
counterexamples: The first is due to Schick [49] who disproves the conjecture for the
direct product Z* x Z,, when n is odd; while other instances have been constructed in
[24]. For more information on the Unstable GLR Conjecture the reader should consult

[24] and the references therein.

3.6.1 Proof of Theorem 3.E

We will now prove the conjecture for a large class of groups. Our proof is structurally sim-
ilar to the proof by Davis-Pearson [15] so we will summarise their method and highlight

any differences.
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Let ko be the connective cover of KO with covering map p and let D be the ko-
orientation of spin bordism. The map «a (from above) is obtained by the following

composition
QP (BT) —L— ko, (BT) —"— KO, (BT) " KO (C(I))

We note that ko, () = 0 for n < 0 and that p is an isomorphism for n > 0 on the one

point space.

Recall from the introduction that a group I' satisfies:

(M) If every finite subgroup is contained in a unique maximal finite subgroup.

(NM) If M is a maximal finite subgroup of I', then the normaliser Ny (M) of M is equal
to M.

(BC) If T satisfies the Baum-Connes conjecture.

(PFS) If all maximal finite subgroups of I" are odd order and have periodic cohomology.

Proposition 3.6.1. Let T be a group satisfying (BC), (M), and (NM). Let A be a set
of conjugacy classes of mazximal finite subgroups of I'. There is a commutative diagram

with exact rows

—~— —~—

KOu.1(BI) —— @ KO,(BH) —— KO,(BI') —— KO, (BI)

(H)eA
lid lMR BR id

KOpi1(BT) —— @ KO.T(C*(H)) —— KO."(C*(T")) —— KOn(BT).
(H)eA

Proof. First, since I' satisfies (BC), (M) and (NM) by either [13, Corollary 3.13| or
the proof of [13, Theorem 4.1] for any constant functor E.: Orxz(I') — Spectra by

I'/H — E there are long exact sequences
-+— P H,(BH;E) — ( @ Wn(E)> ® H,(BI';E) —— H,(BI';E) — ---
(H)eA

and

.—— @ H.(BH;E) — H,(BI;E) — H,(B[E) —— -
(H)eA

We perform a diagram chase exactly as in [15, Proposition 4|, taking E = KO and the

isomorphism

Tn (hocolim(EC)> ~ H,(BT; E),
Orx(I)
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the result follows. O

Theorem 3.6.2 (Theorem 3.E). Let T' be a group satisfying (BC), (M), (NM) and
(PFS). If BT is finite and has dimension at most 9, then the Unstable Gromov-Lawson-
Rosenberg Congecture holds for T'.

Proof. Let ko be the spectrum of the connective cover of KO. Via the cover we obtain
a natural transformation p : ko, — KO, of constant Orx(I')-Spectra. From the

previous proposition we obtain a commutative diagram

keons1(BT) ———— @ kop(BH) ——— kon(BT) —— ko, (BT

(H)eA
} [peer J J (1)

KOp1(BD) —— @ KO.P(C*(H)) —— KO-(C*T)) —— KOn(BI).
(H)eA

By Joachim-Schick [24, Lemma 2.6] p is an isomorphism for n > 6 and an injection
for n = 5. Now, suppose that n > 5 so we are in the setting of the GLR conjecture.

Consider an element
feK :=Ker(urop:kon(Bl') - KO, (C}(T;R))

and note that K =~ Ker(ug op : i{:\an(BF) — I?é;op(Cf (I')). Combining the diagram
(1) with the isomorphism p: kwon(BF) — If(}éiop(ﬁf) for n > 6 (injection for n = 5), we

can deduce that there exists

ye Ker< @ kon(BH) > P KOn(BH)>
(

H)eA (H)eA
which maps to 5.

For a group L let ko, (BL) be the subgroup of ko, (BL) given by D[M, f] where M is
a positively curved spin manifold and f is a continuous map. In [6] the authors prove for
any finite group of odd order with periodic cohomology H, that ko (BH) = Ker(ugop :
kon(BH) — KOP(C*(H)). Thus, we have v € koj (BH) and f € ko (BT). Now, in
[52] it is proven that if D[M, f] € ko,; (BG), then M admits a metric of positive scalar

curvature. In particular, we are done. O

Remark 3.6.3. It is unclear whether the assumption that the finite subgroups having
odd order can be dropped. Indeed, it was pointed out to the author by J.F. Davis
that the statement of [6, Corollary 2.2] contains a misprint. One should instead (in
the notation of [6]) define Y, (B7) to be the kernel of A o p restricted to the subgroup
D(Q"(Bm)) € ko, (Bm). After making this correction, the statements and proofs in the
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paper are correct. This error caused a mistake in the main theorem of [15] which is only

correct if one restricts to Fuchsian groups whose torsion only has odd order.

The dimension bound on BI' is an artefact of the proof and arises from the lemma of
Joachim—Schick |24, Lemma 2.6|. Specifically ko is the —3-connected cover of KO and
so if dim BI' < 9 the natural transformation of the corresponding Atiyah—Hirzebruch
spectral sequences E, , — Fj  is an isomorphism for p + ¢ > 6 and an injection when
p + g = 5. The following corollary shows that one always has a bound relating dim M
to dim BI' such that the a-invariant can determine the existence of a metric of positive

scalar curvature on M (provided 71 (M) satisfies the other hypothesis of Theorem 3.6.2).

Corollary 3.6.4. Let M be a connected closed spin n-manifold and let T' = w1 (M) be
a group satisfying (M), (NM) and (PFS). Suppose the assembly map pgr is injective and
BI' is finite of dimension N. If n > max{5, N — 4}, then M admits a metric with

positive scalar curvature if and only if a[M, f] = 0.

3.6.2 Some examples

In this section we will detail some applications of Theorem 3.E to various families of

groups. These results are new whenever the groups involved are infinite and have torsion.

3.6.2.1 Graphs of groups

In [43, Theorem 3.1] it is shown that the fundamental groups of graphs of groups with
vertex groups satisfying (M) and (NM) and with torsion-free edge groups, satisfy (M)

and (NM). It follows that we have the following combination theorem:

Corollary 3.6.5. The I' be a finitely presented fundamental group of a graph of groups
such that the vertex groups satisfy (BC), (M) and (NM) and the edge groups are torsion-
free and satisfy (BC). If the vertex groups satisfy (PFS) and BI' has dimension at most
9, then I' satisfies the Unstable GLR Conjecture.

3.6.2.2 3-manifold groups

In [43, Section 3.3 it is shown that 3-manifold groups satisfy (M) and (NM) and there is a
well known classification of finite subgroups of orientable connected 3-manifold groups.
These are exactly the groups which act freely on the 3-sphere and so have periodic
cohomology by [7, Chapter VI.9]. In [34] it is shown 3-manifold groups satisfy (BC).
Applying Theorem 3.E we obtain the following result (which is new whenever I is infinite

and contains torsion):

Corollary 3.6.6. Let M be a closed orientable connected 3-manifold with fundamental
group I'. If ' has no elements of order 2 then I' satisfies the Unstable GLR Conjecture.
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3.6.2.3 One-relator groups

In [13, Page 32| it is shown that one-relator groups satisfy (BC), (M) and (NM) and
admit a two dimensional model for EI'. By [25, Theorem 3| every element of finite order
in I' is conjugate to a power of w. Hence, every finite order subgroup is cyclic of odd
order and so satisfies (PFS). Applying Theorem 3.E we obtain the following result (which

to the authors knowledge is new whenever I' is infinite and contains torsion):

Corollary 3.6.7. Let I' = (X | w) be a finitely generated one-relator group and suppose
w has odd order when interpreted in I', then T' satisfies the Unstable GLR Conjecture.

3.6.2.4 Hilbert modular groups

Let k be a totally real number field of degree n and Oy be its ring of integers. The
Hilbert modular group of k is defined to be PSLs(Oy) and is a lattice in PSLy(R)™.
Note that if & = Q then we recover the classical modular group PSLy(Z). Properties
(BC), (M) and (NM) are given in [11, Lemma 4.3]. Applying Theorem 3.E we obtain

the following new result:

Corollary 3.6.8. Let k be a totally real number field with degree less than or equal to
4. Let T < PSLa(Oy) be finitely presented. If all finite subgroups of I are cyclic of odd
order then ' satisfies the Unstable GLR Conjecture.

Proof. This follows from the fact every finite subgroup of PSLy(R)™ is a product of finite
cyclic groups. O

3.6.2.5 Subgroups of PSLQ(Z[}%]) for p=11 (mod 12)

In this section we will prove the result that many subgroups of PSLs (Z[%]) for p =11
(mod 12) satisfy the conditions of Theorem 3.E. The result is new whenever the subgroup
is infinite, has torsion, and is not isomorphic to a Fuchsian group. We will also compute
the KO-theory of C;"(PSLQ(Z[%]);]R).

Corollary 3.6.9. Let p = 11 (mod 12) and let T' < PSLQ(Z[%]) be finitely presented.
If ' has no elements of order 2, then I' satisfies the Unstable GLR Congecture.

There are many finite index subgroups of PSLQ(Z[%]) for p = 11 (mod 12) satisfying

the hypothesis of the corollary. Indeed, by the amalgamated free product decomposition,
PSLy(Z[1]) is generated by the two subgroups isomorphic to PSLy(Z) = Zs * Z3. Thus,

P
PSLQ(Z[%]) is a four generated group {a, b, ¢, d) where a and ¢ have order 2, and b and
d have order 3. The kernel of the homomorphism ¢ : PSLQ(Z[%]) — Z3 by a,c— 1 and

b,d — 0 is a finite index subgroup of PSLQ(Z[%]) with no 2-torsion.
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Proof. The proof follows from applying Theorem 3.E to the observation that every finite
subgroup of PSLs (Z[%D is cyclic and hence has periodic cohomology and the following
lemma. Note that I' is necessarily a proper subgroup since PSLy (Z[%]) always contains

elements of order 2. O

Lemma 3.6.10. Let p be a prime, then PSLQ(Z[%]) satisfies (M). Moreover, if p =11
(mod 12) then PSLQ(Z[%]) satisfies (NM).

Proof. Since each non-trivial finite subgroup of I' is of order 2 or 3 it is obvious that
I' satisfies (M). Now, assume p = 11 (mod 12) and note that PSLy(Z) = Zg * Zg3
satisfies (NM). Recall the amalgamated free product decomposition, PSL2(Z[%]) =
PSL2(Z) #ryp) PSL2(Z). The amalgamated subgroup I'g(p) is torsion-free so we may
apply [43, Theorem 3.1]. O]

An alternative direct proof of the calculations of the K -groups of C} (PSLQ(Z[%])) when

p =11 (mod 12) is as follows. Note that this bypasses the computation of the Bredon

homology but does not give us a way to compute either invariant for SLQ(Z[%]).

Lemma 3.6.11. Let I' = PSLy(Z[}]), then BT =~ \/y (1)) S°
Proof. Let X = EPSLa(Z) xpgr,z) [ and Y = ETg(p) xpy(p) ['- We have
BI' ~ hocolim (X <Y — X) /T,
Top

~ hocolim (X/T' < Y/I' - X/T').
Top

Since EPSLy(Z)/PSL2(Z) is an interval and ELg(p)/To(p) is a finite graph, we have

BT ~ hocoli — R
B o’(Iz‘glglm 1 \/ S 1],
b1(To(p))

but [ is contractible, so up to homotopy this becomes a suspension of a wedge of circles.
In particular, BT" ~ \/b1(Fo(p)) S2?. O

Theorem 3.6.12. Let p =11 (mod 12) and let I' = PSLQ(Z[%]), then
Ky (C(T) = 270D and K*P(CF (D)) = 0.

Proof. Let A be a set of representatives of finite subgroups of I'. By [13, Theorem 4.1(a)]

we have a short exact sequence

0— @ KLP(CHH)) — KPP(CHT)) — K,(BI) — 0.
(H)eA
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The only nontrivial part now is computing K, (BI'), but we have already shown that BI'
is homotopy equivalent to a wedge of \/bl(l“o(p)) 52 i.e. a wedge of 2-spheres. Thus, we
can simply apply the homological Atiyah-Hirzebruch spectral sequence (which collapses
trivially) to obtain that Ky(BI') = Zs@+D+ and K, (BI') = 0. O

A near identical argument can be used to compute the KO-groups of C(PSLa (Z[%]))
when p =11 (mod 12).

Theorem 3.6.13. Let p = 11 (mod 12) be a prime and I' = PSLQ(Z[%]). Ezcept for
an extension problem in dimensions congruent to 1,3 and 4 modulo 8, we have for
n=20,...,7 that

L (p+7)

p+7) Z5 (_B Z2€

1
KOWP(CY) =25, 73, 72+®) @73, 78" , 0, 72 s®D g

and the remaining groups are given by 8-fold Bott-periodicity.

Proof. Let A be a set of representatives of finite subgroups of I'. As before, by [13,

Theorem 4.1(a)] we have a short exact sequence

0> @ KO\ (CH)) — KOWP(CH(I')) — KOp(BI) — 0.
(H)eA

Now, KO (BT) = KOy (#)®KOpn—s()s @7 and the groups KOLm (x) = KORP(C*(Zy,))
are given in [17, Section 2.1]. O

Our methods leave open the following.

Question 3.6.14. Let p be a prime, then does PSLQ(Z[%]) satisfy the Unstable GLR

Conjecture? What about a lattice in PSLa(R) x PSLy(Q,)?
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Paper 4
GRAPHS AND COMPLEXES OF LATTICES

SAM HUGHES

ABSTRACT. We study lattices acting on CAT(0) spaces via their commensurated
subgroups. To do this we introduce the notions of a graph of lattices and a complex
of lattices giving graph and complex of group splittings of CAT(0) lattices. Using
this framework we characterise irreducible uniform (Isom(E™) x T')-lattices by C*-
simplicity and the failure of virtual fibring and biautomaticity. We construct non-
residually finite uniform lattices acting on arbitrary products of right angled buildings
and non-biautomatic lattices acting on the product of E” and a right-angled building.
We investigate the residual finiteness, L2?-cohomology, and C*-simplicity of CAT(0)
lattices more generally. Along the way we prove that many right angled Artin groups

with rank 2 centre are not quasi-isometrically rigid.

4.1 Introduction

Let H be a locally compact group with Haar measure p. A discrete subgroup I' < H
is a lattice if the covolume u(H/T') is finite. We say the lattice uniform is H/I' is
cocompact and non-uniform otherwise. We say a lattice I' in a product H; x Hs is
weakly irreducible if the projection of I' to each factor is non-discrete, otherwise we say
T" is reducible. Given a pair of locally compact groups H; and Hs there are a number

of basic questions one can ask:

(Q1) Does H; x Hs contain weakly irreducible lattices?

(Q2) What are the generic properties of a weakly irreducible lattice?

In the classical setting of lattices in semisimple Lie groups and linear algebraic groups
over local fields these questions are well studied. Indeed, there are deep theorems such
as the Margulis normal subgroup theorem, super-rigidity theorem, and the arithmeticity
theorem [47].

The non-classical setting is more complicated and was initiated by studing lattices in the
full automorphism group of a locally-finite polyhedral complex. A striking example of the
non-classical setting is given by the work of Burger and Mozes [12] [13] [14]. The authors
constructed torsion-free simple groups which could be realised as cocompact irreducible

lattices in a product of automorphism groups of locally-finite trees.

Thus, one should find a class of spaces which contain the exciting phenomena to be found

in products of polyhedral complexes whilst enjoying a strong geometric grounding. The

89
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answer was to be found in the notion of non-positive curvature or CAT(0) spaces. The
theory encompasses symmetric spaces, non-positively curved manifolds, Euclidean and
hyperbolic buildings, and more [6]. The reader is referred to [6] for a comprehensive

introduction to the theory.

Assumption 4.1.1. Throughout this paper, all actions of groups on graphs or polyhedral
complezes are assumed to admissible. That is, each element of a group fixes pointwise

each cell it preserves.

A systematic study of the full isometry groups of CAT(0) spaces and their lattices was un-
dertaken by Caprace and Monod [24] [23] [26]. The authors showed in [24, Theorem 1.6],
that under mild hypotheses on a CAT(0) space X, there is finite index subgroup of
H < Isom(X) which splits as

H =~ Isom(E") x Sy x -+ x S, x Dy x --+ x Dy, (4.1)

for some n,p,q = 0, where each S; is an almost connected simple Lie group with trivial
centre and each D; is a totally disconnected irreducible group with trivial amenable
radical. Moreover by [24, Addendum 1.8], X itself splits as

X=E"xX;x---xX,xY; x---xY, (4.2)

where each X; is an irreducible symmetric space of non-compact type and each Y; is an

irreducible minimal CAT(0)-space.

Taking these decompositions as a starting point motivates a new approach towards
CAT(0) groups, that is, understanding the lattices in each of the factors individually
and then how the factors interact. The later question is the central goal of this paper:
To provide a combinatorial framework for studying lattices in products of irreducible
CAT(0) spaces and deduce properties of the weakly irreducible lattices. To this end
we introduce the notion of a graph of lattices (Definition 4.3.2) with fixed locally-finite
Bass-Serre 7 (we will also assume that the tree is unimodular and its automorphism
group is non-discrete, these are essentially non-degeneracy conditions so that there are
tree lattices). Note that in the case of a product of two trees a similar construction was

considered by Benakli and Glasner [5].

Roughly a graph of lattices is a graph of groups such that all local groups are finite-
by-commensurable- H -lattices equipped with a morphism to H. We use this to study
lattices in the product of T := Aut(7) and closed subgroups H of the isometry group of
a fairly generic CAT(0) space. We prove a structure theorem for (H x T')-lattices. That
is, we show every (H x T')-lattice gives rise to a graph of H-lattices and conversely, we

give necessary and sufficient conditions for a graph of H-lattices to be an (H x T')-lattice.

Theorem 4.A (Theorem 4.3.3). Let X be a finite dimensional proper CAT(0) space
and let H = Isom(X) contain a uniform lattice. Let (A, A, 1) be a graph of H -lattices
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with locally-finite unimodular non-discrete Bass-Serre tree T, and fundamental group T'.

Suppose T = Aut(T) admits a uniform lattice.

(i) Assume A is finite. If for each local group A, the kernel Ker(v|a,) acts faithfully
on T, then T is a uniform (H x T)-lattice and hence a CAT(0) group. Conversely,
if A is a uniform (H x T)-lattice, then A splits as a finite graph of uniform H -

lattices with Bass-Serre tree T .
(ii) Under the same hypotheses as (i), T is quasi-isometric to X x T .

(iii) Assume X is a CAT(0) polyhedral complex. Let pu be the normalised Haar measure
on H. If for each local group A, the kernel K, = Ker(v|a,) acts faithfully on T
and the sum Y 4 W(Ag)/|Ks| converges, then T' is a (H xT)-lattice. Conversely,
if A is a (H x T)-lattice, then A splits as a graph of H -lattices with Bass-Serre
tree T .

We also introduce an analogous construction we call a complex of lattices (Definition 4.6.1)
by replacing the tree with a CAT(0) polyhedral complex and then prove an analogous
structure theorem (Theorem 4.6.2). In the process we deduce some consequences about

commensurated subgroups of CAT(0) groups.

We study of various properties of (H x T')-lattices providing answers to (Q2). In Sec-
tion 4.4.1 we investigate the L2-Betti numbers of (H x T)-lattices and some closely
related groups. We also compute the rational homological dimension of S-arithmetic
lattices in characteristic p > 0 (Theorem 4.4.5). The author expects this latter result
is well known however he could not find a reference in the literature. We investigate
C*-simplicity (Section 4.4.2), virtual fibring (Section 4.4.3) and autostackability (Sec-
tion 4.4.4) of (H x T')-lattices in terms of the properties of H-lattices. We will give the

necessary background for each property in the relevant section.

In Section 4.5 we detail a number of constructions and examples of (H x T')-lattices using
elementary Bass-Serre theory answering (Q1). The constructions are reminiscent of the
“universal covering trick” of Burger and Mozes [13] and so we provide a comparison in
Section 4.5.3.

Until Leary and Minasyan’s examples of CAT(0) but not virtually biautomatic groups
in [45] there were no known examples of lattices where the projection to Isom(E™) is
non-discrete. In light of this we begin a study of weakly irreducible lattices with non-
trivial Euclidean de Rham factor. We adapt the biautomaticity criterion given in [45,
Theorem 1.2] to apply to arbitrary CAT(0) lattices in the presence of a Euclidean de
Rham factor (Theorem 4.7.7).

For T the automorphism group of a locally-finite tree we give constructions of many
more (Isom(E™) x T')-lattices. We then prove the following characterisation of uni-

form (Isom(E™) x T)-lattices eliciting a number of generic properties of such lattices
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eleciting a strong answer to (Q2). Note the following theorem is optimal in the sense
that irreducible uniform (Isom(E"™) x T')-lattices are always non-residually finite and not
virtually biautomatic, however, there also exist non-residually finite reducible uniform
(Isom(E™) x T')-lattices for n = 3 (this can be seen by taking the direct product of an
irreducible (Isom(E?) x T')-lattice with Z"~2, then applying Theorem 4.7.7).

Theorem 4.B (Theorem 4.7.13). Let T be a locally finite unimodular leafless tree not
isometric to R and let T = Aut(T). Let I' be a uniform (Isom(E"™) x T')-lattice. The

following are equivalent:

(i) T is a weakly irreducible (Isom(E™) x T')-lattice;
(ii) T' is wrreducible as an abstract group;
(i) T acts on T faithfully;
(iv) T' does not virtually fibre;
(v) T is C*-simple;

(vi) and if n =2, T' is non-residually finite and not virtually biautomatic.

In Section 4.8 we adapt a construction of Horbez and Huang [38] to extend actions from
a regular tree to the universal cover of a Salvetti complex S 1, with defining graph L.
In particular, from a graph of lattices, one obtains a complex of lattices. With a mild
hypothesis on the graph L, we use this construction to obtain weakly irreducible non-
biautomatic uniform lattices acting on Sz x E" for n > 2 (Example 11) answering (Q1).
We also deduce a consequence about quasi-isometric rigidity of right angled Artin groups

with centre containing Z2.

Corollary 4.C (Example 11 and Corollary 4.8.5). Let L be a finite simplicial graph
on vertices V.= {v1,...,vn} and let W = {v1,...,v5}. Suppose Aw < Ap is a free
subgroup and that Sym(W) < Aut(L). If Ap is irreducible, then there exists a weakly
irreducible uniform lattice in Aut(gL) x Isom(E™) which is not virtually biautomatic nor

residually finite. In particular, Ap x Z? is not quasi-isometrically rigid.

In [58], Thomas constructs a functor from graphs of groups covered by a fixed biregular
tree 7 to complexes of groups covered by a fixed “sufficiently symmetric” right-angled
building X with parameters determined by the valences of 7. We will give the relevant
definitions in Section 4.9.1. However, note that by [40] a right-angled building X is
uniquely specified by a flag complex L and a set of positive integer parameters {¢;}, if
all of the ¢; equal ¢ then we say X has uniform thickness ¢q. In Theorem 4.9.4 we show
that Thomas’ functor theorem takes a graph of lattices to a complex of lattices and in
particular (H xT')-lattices to (H x A)-lattices, where T' = Aut(7), A = Aut(X), and H
is a closed subgroup of the isometry group of a CAT(0) space (under mild hypothesis).
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As consequences we construct more CAT(0) groups which are not virtually biautomatic
(Corollary 4.9.5) and both uniform and non-uniform weakly irreducible lattices in prod-
ucts of fairly arbitrary hyperbolic and Euclidean buildings (Corollary 4.9.9) answering
(Q1). We highlight one special case here:

Corollary 4.D (Special case of Corollary 4.9.5). Let X be the right-angled building
of a regular m-gon of uniform thickness 10n and let A = Aut(X). For each n = 2
there exists a weakly irreducible uniform (Isom(E™) x A)-lattice which is not virtually
biautomatic nor residually finite. In particular, if Y is irreducible, then the direct product

of a uniform A-lattice with 7?2 is not quasi-isometrically rigid.

4.1.1 Structure of the paper

In Section 4.2 we give the relevant background on lattices acting on CAT(0) spaces.
In Section 4.3 we give the relevant background on graphs of groups, define graphs of
lattices, and prove the structure theorem (Theorem 4.3.3). In Section 4.4 we investigate
L?-cohomology, C*-simplicity, virtual fibring, and autostackability of (H x T')-lattices.
We also compute the rational homological dimension of group schemes over function
fields in positive characteristic. In Section 4.5 we provide a number of constructions and
explicit examples of (H x T)-lattices. In Section 4.6 we give the relevant background
on complexes of groups, define complexes of lattices, and prove the structure theorem
(Theorem 4.6.2). In Section 4.7 we study CAT(0) lattices acting on spaces with non
trivial Euclidean de Rham factor. We prove the non-biautomaticity criterion for general
CAT(0) groups and prove the characterisation of (Isom(E"™) x T')-lattices. In Section 4.8
we adapt the construction of Horbez and Huang. In Section 4.9 we give the relevant
background on right-angled buildings and Thomas’ functor theorem. We then prove
our functor theorem (Theorem 4.9.4) and deduce a number of consequences. Finally, in

Section 4.10 we record a few questions and conjectures.
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4.2 Preliminaries

4.2.1 Lattices and covolumes

Let H be a locally compact topological group with right invariant Haar measure u.
A discrete subgroup I' < H is a lattice if the covolume p(H/T') is finite. A lattice is
uniform if H/T' is compact and non-uniform otherwise. Let S be a right H-set such
that for all s € S, the stabilisers Hg are compact and open, then if I' < H is discrete

the stabilisers are finite.

Let X be a locally finite, connected, simply connected simplicial complex. The group
H = Aut(X) of simplicial automorphisms of X naturally has the structure of a lo-
cally compact topological group, where the topology is given by uniform convergence on

compacta.

Theorem 4.2.1 (Serre’s covolume formula [55]). Let X be a locally finite simply-
connected simplicial complex. Let I' < H be a lattice with fundamental domain A,
then there is a nomalisation of the Harr measure p on H, depending only on X, such

that for each discrete subgroup I' < H we have

1
Tyl

p(H/T) = Vol(X/T) :=
veA(0)

Note that T the automorphism group of a locally finite tree 7 admits lattices if and
only if the group 7T is unimodular (that is the left and right Haar measures coincide).

In this case we say T is unimodular.

4.2.2 Non-positive curvature

We will be primarily interested in lattices in the isometry groups of CAT(0) spaces, we
will call these groups CAT(0) lattices (note that a uniform CAT(0) lattice is a CAT(0)
group). We begin by recording several facts about the structure and isometry groups of
general CAT(0) spaces. The definitions and results here are largely due to Caprace and
Monod [24] 23] |26].

An isometric action of a group H on a CAT(0) space X is minimal if there is no non-
empty H-invariant closed convex subset X’ ¢ X, the space X is minimal if Isom(X) acts
minimally on X . Note that by [24, Proposition 1.5], if X is cocompact and geodesically
complete, then it is minimal. The amenable radical of a locally compact group H is the
largest amenable normal subgroup. We can now state Caprace and Monod’s group and

space decomposition theorems mentioned in the introduction.

Theorem 4.2.2. |24, Theorem 1.6] Let X be a proper CAT(0) space with finite dimen-

sional Tits” boundary and assume Isom(X) has no global fized point in 0X . There is a
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canonical closed, conver, Isom(X)-stable subset X' < X such that G = Isom(X') has a

finite index, open, characteristic subgroup H < G that admits a canonical decomposition
H =~ TIsom(E") x S; x -+ x Sy x Dy x --+ x Dy,

for some n,p,q = 0, where each S; is an almost connected simple Lie group with triv-
ial centre and each Dj is a totally disconnected irreducible group with trivial amenable
radical. O

Theorem 4.2.3. |24, Addendum 1.8] Let X' and H be as above, then
X’;E”xXlx-uxprle-uqu

where each X; is an irreducible symmetric space and each Y; is an irreducible minimal
CAT(0)-space. O

4.2.3 Irreducibility

Let X = Xj x ---x X, be a product of irreducible proper CAT(0) spaces and let T" be a
lattice in H = Hyx---x Hy, := Isom(X7) x- - - xIsom(X,,), with each H; non-discrete and
acting minimally. There are several possible notions of irreducibility for a lattice in H,
moreover, in the general setting of CAT(0) groups, they are not necessarily equivalent.
In the interest of clarity, we recount each of these and summarise their implications, we
follow the treatment in [25] [22].

(Irrl) For every ¥ c {1,...,n}, the projection 7x, : I' > Hyx, has dense image. Here we

say ' is topologically irreducible or an irreducible lattice.
(Irr2) The projection to each factor H; is injective.

(Irr3) For every X c {1,...,n}, the projection 7y : I' — Hy has non-discrete image.

Here we say T' is weakly trreducible or a weakly irreducible lattice.

(Irr4) T has no finite index subgroup which splits as a direct product of two infinite

subgroups. Here we say I' is algebraically irreducible.

Firstly, if each H; is a centre-free semisimple algebraic group without compact factors
then each of the definitions are equivalent [47]. When each H; is a non-discrete, com-
pactly generated, tdlc group, then [22, Theorem H| summarises all possible implications.
Returning to the setting described above we have that (Irr2) = (Irr3) = (Irr4) and
if ' is finitely generated, then by Theorem 4.2.4 we have (Irrd) = (Irr3). Note that in
general (Irrd4) = (Irr2) fails, unless I' is residually finite. The following theorem from
[23] shows the equivalence of (Irr3) and (Irr4) for many CAT(0) lattices.
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Theorem 4.2.4. |23, Theorem 4.2] Let X be a proper CAT(0) space, H < Isom(X) a

closed subgroup acting cocompactly on X, and I' < H a finitely generated lattice.

(i) If T is irreducible as an abstract group, then for for finite index subgroup T'y < T'
and any T'g-equivariant splitting X = X7 x Xo with X1 and X9 non-compact, the
projection of Ty to both Isom(X1) and Isom(X3s) is non-discrete.

(ii) If in addition the H -action is minimal, then the converse holds. O

Finally, we restate a result of Caprace-Monod which we can use as criterion to determine

non-residual finiteness of lattices in products.

Theorem 4.2.5. [23, Theorem 4.10] Let X be a proper CAT(0) space such that G =
Isom(X) acts cocompactly and minimally. Let T' < Isom(X) be a finitely generated
algebraically irreducible lattice. Let T' =T n H, where H is given in Theorem 4.2.2. If
the projection of I to an irreducible factor of X has non-trivial kernel, then T is not
residually finite. O

4.3 Graphs of lattices

In this section we will review Bass-Serre theory, graphs of spaces and tree lattices. These
tools will be fundamental to us in the following chapters. We will then define a graph of

lattices and prove the structure theorem for (H x T')-lattices.

4.3.1 Graphs of groups

We shall state some of the definitions and results of Bass-Serre theory. In particular, the
action will be on the right. We follow the treatment of Bass [2]. Throughout a graph
A = (VA,EA,.,7) should be understood as it is defined by Serre [56], with edges in
oriented pairs indicated by €, and maps ¢(e) and 7(e) from each edge to its initial and
terminal vertices. We will, however, often talk about the geometric realisation of a graph
as a metric space. In this case the graph should be assumed to be simplicial (possibly
after subdividing) and should have exactly one undirected edge e for each pair (e,€).

We will often not distinguish between the combinatorial and metric notions.

A graph of groups (A, A) consists of a graph A together with some extra data A =
(VA EA, ®A). This data consists of vertex groups A, € VA for each vertex v, edge
groups A, = Az € EA for each (oriented) edge e, and monomorphisms (o, : A —
Aye)) € @ for every oriented edge in A. We will often refer to the vertex and edge

groups as local groups and the monomorphisms as structure maps.
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The path group m(A) has generators the vertex groups A, and elements ¢, for each edge
e € FA along with the relations:

The relations in the groups A,,
tE = te_la
teaz(g)t;! = ae(g) for alle e EA and g € A, = Az

We will often abuse notation and write A for a graph of groups. The fundamental group
of a graph of groups can be defined in two ways. Firstly, considering reduced loops based
at a vertex v in the graph of groups, in this case the fundamental group is denoted
m1(A,v) (see |2, Definition 1.15]). Secondly, with respect to a maximal or spanning tree
of the graph. Let X be a spanning tree for A, we define m;(A, X) to be the group
generated by the vertex groups A, and elements t. for each edge e € FA with the

relations:
The relations in the groups A,

tz =t ! for each (oriented) edge e,
teaE(g)te_l = ae(g) for all g € A,
te = 1 if e is an edge in X.

Note that the definitions are independent of the choice of basepoint v and spanning tree
X and both definitions yield isomorphic groups so we can talk about the fundamental
group of A, denoted m1(A).

Let G be the fundamental group corresponding to the spanning tree X . For every vertex
v and edge e, A, and A, can be identified with their images in G. We define a tree
with vertices the disjoint union of all coset spaces G/A, and edges the disjoint union of
all coset spaces G/A, respectively. We call this graph the Bass-Serre tree of A and note

that the action of G admits X as a fundamental domain.

Given a group G acting on a tree T, there is a quotient graph of groups formed by
taking the quotient graph from the action and assigning edge and vertex groups as the
stabilisers of a representative of each orbit. Edge monomorphisms are then the inclusions,

after conjugating appropriately if incompatible representatives were chosen.

Theorem 4.3.1. [2] Up to isomorphism of the structures concerned, the processes of
constructing the quotient graph of groups, and of constructing the fundamental group

and Bass-Serre tree are mutually inverse. O

Let (A, .A) and (B, B) be graphs of groups. A morphism of graphs of groups ¢ : (A, A) —
(B, B) consists of:

(i) A graph morphism f: A — B.

(ii) Homomorphisms of local groups ¢, : Ay — By, and ¢ = ¢z : Ae — By(e)-
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(iii) Elements =, € m1(B, f(v)) for each v € VA and ~, € w(B) for each e € EA such
that if v =i(e) then

o 0=, "% € Byy;
® ¢4 00ae = Ad(de) 0 ap(e) O Pe-

4.3.2 A Structure theorem

In this section we will define a graph of lattices and prove the structure theorem for
(H x T)-lattices. We say L is covirtually an H -lattice if there exists a finite normal

subgroup F'<1 L such that L/F is isomorphic to an H -lattice.

Definition 4.3.2 (Graph of lattices). Let H be a locally compact group with Haar
measure p. A graph of H -lattices (A, A, 1)) is a graph of groups (A,.A) equipped with
a morphism of graphs of groups ¢ : A — H where H is considered as a graph of groups

of groups over a single vertex such that:

(i) Each local group A, € A is covirtually an H-lattice and the image 1(A,) is an
H -lattice;

(ii) The local groups are commensurable in I' = 7 (A) and their images are commen-

surable in H;

(iii) For each e € FA the element t. of the path group n(A) is mapped under ¢ to an
element of Commp (¢e(Ae)).

Theorem 4.3.3 (The Structure Theorem - Theorem 4.A). Let X be a finite dimensional
proper CAT(0) space and let H = Isom(X) contain a uniform lattice. Let (A, A, 1) be
a graph of H -lattices with locally-finite unimodular non-discrete Bass-Serre tree T, and

fundamental group T'. Suppose T = Aut(T) admits a uniform lattice.

(i) Assume A is finite. If for each local group A, the kernel Ker(i|a,) acts faithfully
on T, then T is a uniform (H xT)-lattice and hence a CAT(0) group. Conversely,
if A is a uniform (H x T)-lattice, then A splits as a finite graph of uniform H -

lattices with Bass-Serre tree T .
(ii) Under the same hypotheses as (i), T' is quasi-isometric to X x T .

(iii) Assume X is a CAT(0) polyhedral complex. Let pu be the normalised Haar measure
on H. If for each local group A, the kernel K, = Ker(v|a,) acts faithfully on T
and the sum Y 4 W(Ag)/|Ks| converges, then T' is a (H xT)-lattice. Conversely,
if A is a (H x T)-lattice, then A splits as a graph of H -lattices with Bass-Serre
tree T .
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We will divert the majority of the proof to the proof of Theorem 4.6.2 due to the similarity
of the theorem statement and arguments involved in the proof. The minor difference
arises from the fact that the category of graphs of groups is not equivalent to the category
of 1-complexes of groups (see [58, Proposition 2.1|) due to the difference in morphisms.
We highlight the key differences below.

Proof. We first prove (i). The “if direction" is the same as Theorem 4.6.2(i). For the
converse note that an (H x T')-lattice T" splits as a graph of groups (A4, .A). Indeed, T" acts
on the tree 7 through the projection 7, now we may apply the fundamental theorem
of Bass-Serre theory. The projection to H induces a morphism of graphs of groups
mp A — H. The same argument as Theorem 4.6.2(i) implies that the local groups are
commensurable covirtually commensurable H-lattices. In particular, the images of the

elements t. € m(A) for e € EA are contained in Commpg (7 (A,)) for every local group
Ay. o

We now prove (ii). By (i) I" acts properly discontinuously cocompactly on X x 7. The

result follows from the Svarc-Milnor Lemma [6, 1.8.19].

The proof of (iii) is almost identical to (i) we will highlight the differences. Since X is
a CAT(0) polyhedral complex, it follows that X x 7 is. Now, we may apply Serre’s
Covolume Formula to I' = 7;(A). Let A be a fundamental domain for I' acting on

X x T, then the covolume of I' may be computed as

R L 1 Kl s la(r)
IS P INED SN PV D YN D Y AR

el oeny(A%) rers! (o) oeny (A0) renr! (o) oeny(A0)

Since 77 (A%) can be identified with VA and the later sum converges by assumption, it
follows as before that I' acts faithfully properly discontinuously and isometrically with

finite covolume on X x Y. For the converse we proceed as in Theorem 4.6.2(iii). « [

4.3.3 Reducible lattices

Let X be a proper minimal CAT(0) space and H = Isom(X). Let 7 be a locally-
finite non-discrete unimodular leafless tree and T' = Aut(7). We will now characterise
reducible uniform (H x T)-lattices by both their projections to H and T', and by the
separability of the vertex stabilisers in the projection to T'. Moreover, if H is linear,
we will show that all such lattices are linear, and thus, residually finite. We say that
a subgroup A < I' is separable if it is the intersection of finite-index subgroups of I,
virtually normal if A contains a finite index subgroup N such that N < I', and weakly

separable if it is the intersection of virtually normal subgroups of I'.

Proposition 4.3.4. Let X be a proper minimal CAT(0) space and H = Isom(X). Let
T be a locally-finite non-discrete unimodular leafless tree and let T = Aut(T). Let T' be
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a uniform (H xT')-lattice equipped with projections mg and mp to H and T respectively,

then the following are equivalent:

(1) 7 (T) is an H -lattice;
(ii) 7p(T) is a T -lattice;

(iii) For every vertex v € T, the projection of the vertex stabiliser wp(T'y) is separable

m WT(F) )

(iv) There is a vertex v € T such that the projection of the vertex stabiliser wp(I'y) is

weakly separable in mp(T');

(v) T is a reducible (H x T)-lattice.

Proof. First, we will show that (i) implies (ii), our proof for this case largely follows [14,
Proposition 1.2]. Assume 7y (") is an H-lattice, then T' - T is closed and so I' n T is
a uniform T-lattice. Now, 7p(I") normalises I' " T" and hence by [13, 1.3.6] is discrete.

Thus, 7p(I") is discrete and so is a lattice in T'.

Next, we will show that (ii) implies (i). Assume 7p(T") is a lattice in T' and consider
the kernel K of the action of I' on 7. We will show that K is a finite index subgroup
of mg(I"). Assume that K has infinite index, then 7y (T')/K < 7p(T') is an infinite
subgroup of the vertex stabiliser, a profinite group, and so cannot be discrete. Thus, K
has finite index in 7wy (T"). Since K acts trivially on 7 we see that K = T' n H. Since
I'- H is closed it follows K is an H-lattice. Thus, my(T") is virtually a lattice in H and

therefore an H -lattice.

Clearly, (v) implies (i) and (ii). We will now prove that (i) and (ii) imply (v). By the
previous paragraph we have K < 7y (') finite index. Let I'r = {7 | (e,v) € T'}, we want
to show that I'p is a uniform T'-lattice. Since all uniform T '-lattices are commensurable
I'r will be a finite index subgroup of np(I'). By the first paragraph we see I'r is a

uniform lattice. Thus, K x I'p is a finite index subgroup of I' and so I' is reducible.

Now, evidently (iii) implies (iv). To see that (iv) implies (v) we apply [20, Corollary 30|
to mp(T'), noting that a cocompact action on a leafless tree does not preserve any subtree,
in particular, mp(T) is discrete. Finally, we show that (v) implies (iii). Observe that
mp(T) is a virtually free T-lattice which splits as a finite graph of finite groups. Since

77 (T) is a finite graph of finite groups, the vertex stabilisers are separable subgroups. [

One immediate consequence of the theorem is that we can determine whether a lat-
tice is irreducible simply by considering the projections to either H or T'. Also, note
that if H is the automorphism group of a unimodular leafless tree then we recover [14,
Proposition 1.2] and and |20, Corollary 32].
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We also have the following observations about the linearity and residual finiteness of

reducible lattices.

Proposition 4.3.5. With the same notation as before, assume H is linear (or lattices
in H are residually finite). If T is a uniform reducible (H x T')-lattice, then T is linear
(resp. residually finite).

Proof. If T' is reducible, then T' is virtually a direct product of a linear (resp. residually
finite) group with a virtually free group. In particular, T" is virtually a direct product of

linear (resp. residually finite) groups and therefore linear (resp. residually finite). O

Corollary 4.3.6. With H and T as before, assume H is linear. If I' is a finitely
generated uniform (H x T)-lattice, then exactly one of the following holds:

(i) T s reducible and therefore linear (hence residually finite);
(ii) T 4s wrreducible and linear (hence residually finite);

(iii) T is irreducible and non-residually finite.

Moreover, if H is a connected centre-free semisimple linear algebraic group without com-

pact factors and I is irreducible and linear, then I' is arithmetic and just-infinite.

Proof. The first case follows from the previous proposition. Now, assume I' is irreducible
and 7 (T') is injective, then 7 is a faithful linear representation of I' and we are in
the second case. Since I is linear, 7w must be injective otherwise I" would contradict
Theorem 4.2.5. Now, if either of mp or my are not injective, then by Theorem 4.2.5 we
see that I' is not residually finite. Note that w7 not being injective necessarily implies
that 7 is not injective because otherwise I' would admit a faithful linear representation,
contradicting non-residual finiteness. To prove the moreover note that I' is just-infinite
follows from the Bader-Shalom Normal Subgroup Theorem [18] applied to the closure of
I'in H x T'. The arithmeticity of I follows from [4]. O

Let vb,(I") denote the pth virtual Betti number of I" which is defined to be the maximum

of the pth Betti number over all finite index subgroups of I', or oo if the set is unbounded.

Proposition 4.3.7. With H and T as before, assume H is a connected centre-free
semisimple linear algebraic group without compact factors. Let T' be a finitely generated
uniform irreducible (H x T')-lattice. If vbi(T') > 0, then T is not residually finite. In
particular, if b1(T/T") > 0, then T' is not residually finite.

Proof. Since I is irreducible, by the previous corollary, either I' is linear and just-infinite,

or I' is not residually finite. Now, if the virtual Betti number of I' is greater than zero,



102 Paper 4 — Graphs and complexes of lattices

then a finite index subgroup I of I' admits Z as a quotient and so cannot be just

infinite. Hence, I" is not residually finite and so neither is T".

The quotient space 7 /I' gives rise to a graph of groups splitting of I' with Bass-Serre
tree 7. An easy application of the Mayer-Vietoris sequence applied to T shows that
by(T) = by (T/T). O

4.4 Properties of (H x T)-lattices

In this section we will investigate the L%-cohomology, C*-simplicity, virtual fibring, and
autostackability of (H x T')-lattices in terms of properties of H-lattices. We remark that
in each case the proofs are relatively elementary but depend in an essential way on the

structure theorem (Theorem 4.3.3).

4.4.1 [?-cohomology and dimension

Let I" be a group. Both I' and the complex group algebra CI' act by left multiplication on
the Hilbert space ¢2T" of square-summable sequences. The group von Neumann algebra
NT is the ring of I'-equivariant bounded operators on (2G. The regular elements of
NG form an Ore set and the Ore localization of NT can be identified with the ring of
affiliated operators UT .

There are inclusions CI' € NT < /’I' € YT and it is also known that UT is a self-
injective ring which is flat over NT. For more details concerning these constructions we
refer the reader to [46] and especially to Theorem 8.22 of Section 8.2.3 therein. The von

Neumann dimension and the basic properties we need can be found in [46, Section 8.3].

Let Y be a I'-CW complex as defined in [46, Definition 1.25]. The ¢2-homology groups
of Y are defined to be the equivariant homology groups H,LF (Y;UT), and we have

B (V) = dimyg HE (V;UT).
The ¢2-Betti numbers of a group I' are then defined to be the ¢2-Betti numbers of ET.

By [46, Theorem 6.54(8)], the zeroth £2-Betti number of T is equal to 1/|T'| where 1/|T|
is defined to be zero if I' is infinite. Moreover, if I" is finite then b,(f) (G) =0 for n>1.

In this section we will compute the L?-Betti numbers of (H x T)-lattices for a very
general choice of H and T'. Our primary tool will be Gaboriau’s invariance of L?-Betti

numbers under measure equivalence.

Two countable groups I' and A are said to be measure equivalent if there exist com-

muting, measure-preserving, free actions of I' and A on some infinite Lebesgue measure
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space (£, m), such that the action of each of the groups I' and A admits a finite measure
fundamental domain. The key examples of measure equivalent groups are lattices in the

same locally-compact group [34].

Theorem 4.4.1. Let H be a unimodular locally compact group with lattices and T be
a locally-finite unimodular tree with automorphism group T. Assume H -lattices do not
have two consecutive non-zero L?-Betti numbers. Let T be an (H x T)-lattice and let V
and E be a representative set of orbits of vertices and edges respectively for the action of

T on T. We have
AT = > 0P, (1) — Y o (1),

eeFE veV

Proof. Let A be areducible (H x T')-lattice and assume A splits as L x F,, where L is an
H-lattice. Using the Kiinneth formula we see that the L?-Betti numbers of A are non-
vanishing in the dimensions precisely 1 higher than the non-vanishing L?-Betti numbers
of L. Both A and I' are measure equivalent, since they both lattices in (H x T'). By
Gaboriau’s theorem on the invariance of L?-Betti numbers under measure equivalence

[30, Theorem 6.3], the L2-Betti numbers of I are non-vanishing in the same degrees as
A.

Now, we apply the I'-equivariant cohomology Mayer-Vietoris ([17, Chapter VIIL.9]) se-
quence with UD coefficients to the filtration of ET' given by the cell structure of the
Bass-Serre tree 7. Since the vertex and edge stabilisers of the action on 7 do not
have two sequential non-zero L?-Betti numbers, neither does I'. Thus, the sequence

degenerates into short exact sequences

0 — P HE(Te;UT) — @ HE(Dy;UT) — HEH(D;UT) — 0
eck veV

and the result follows from the additivity of von Neumann dimension. O

As an immediate corollary we recover the following well known result.

Corollary 4.4.2. Let ' be a tree lattice, then all L?-Betti numbers of T vanish, except

1 1
» (1) = - :
rm =2, U] vezvlrvl

eeE

The assumption of not having two sequential non-zero L?-Betti numbers turns out to
not be very restrictive as [46, Theorem 5.12] and [49, Theorem 1.6] demonstrate. For
arbitrary CAT(0) lattices, the presence of the Euclidean de Rham factor causes the

L2-Betti numbers to vanish.

Proposition 4.4.3. Let X be a proper CAT(0) space with non-trivial Euclidean de
Rham factor and H < Isom(X) be a closed subgroup acting minimally and cocompactly.
If T is an H -lattice, then the L?-Betti numbers of ' vanish.
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Proof. By [26, Theorem 2(i)] T has a commensurated free abelian subgroup A and so
b§,2) (A) =0 for all p > 0. Now, we apply [3, Corollary 1.4]. O

Remark 4.4.4. More generally, let X be a proper CAT(0) space with canonical closed
convex Isom(X)-stable subset X’ € X such that X’ = M x X; x---x X,,, where M is a
symmetric space of non-compact type and each Xj; is irreducible and minimal. Assume
rankc (Isom(M)) — ranke (Isom(M)) = 0, let H < Isom(X’) be a closed subgroup acting
cocompactly and minimally and let I' be an H-lattice. By measure rigidity and repeat
applications of the Kiinneth theorem we have béQ) (T) = 0 for p < §dim(M) + >, b;,
where b; is the smallest dimension such that an Isom(X;)-lattice has a non-vanishing L?-
Betti number. In particular, if either the L?-cohomology of an Isom(X;)-lattice vanishes
or frk(M) > 0 (see [46, Theorem 5.12]), then the L?-cohomology of T' vanishes.

4.4.1.1 Rational homological dimension of group schemes over function fields

Let k be the function field of an irreducible projective smooth curve C' defined over a
finite field Fy. Let S be a finite non-empty set of (closed) points of C'. Let Og be
the ring of rational functions whose poles lie in S. For each p € S there is a discrete
valuation v, of k such that v,(f) is the order of vanishing of f at p. The valuation ring

O, is the ring of functions that do not have a pole at p, that is

Os=[)0,
pES

Let k denote the algebraic closure of k. Let G be an affine group scheme defined over k
such that G(k) is almost simple. For each p € S there is a completion k, of k and the
group G(k,) acts on the Bruhat-Tit’s building X,,. Thus, we may embed G(Og) into

the product Hpes G, as an arithmetic lattice.

In [31] it is shown that cdg(G(Os)) = [ [,cs dim X, In light of this lan Leary asked the
author what is hdg(G(Og))? The author suspects the result is well-known, however, it
does not seem to appear in the literature. It may be possible to obtain an alternative

proof using a result of Roman Sauer [54].

Theorem 4.4.5. Let G be a simple simply connected Chevalley group. Let k and Og

be as above, then

hdg(G(Og)) = edg(G(Os)) = [ [ dim X,
peS

Proof. We first note that the group I' := G(Qg) is measure equivalent to the prod-
uct [[,cq G(Fq[tp]) for some suitably chosen ¢, € Op. By [49, Theorem 1.6] the group
G(F,[t,]) has one non-vanishing L?-Betti number in dimension dim(X,). Hence, by

the Kiinneth formula G(F,[t,]) has one non-vanishing L?-Betti number in dimension
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d = [[pesdim X, Thus, by Gaboriau’s theorem [30], the group I' has exactly one
non-vanishing L?-Betti number in dimension d. It follows that hdg(T') > d. The
reverse inequality follows from the fact that I' acts properly on the d-dimensional space
[[pes dim X,. O

4.4.2 (C*—simplicity

Let T be a discrete group. The reduced C*-algebra of T', denoted C}(T), is the norm
closure of the algebra of bounded operators on ¢2(I") by the left regular representation of
. We say T' is C*-simple if C*(T") has exactly two norm-closed two-sided ideals 0 and
Cx(T) itself. A C*-simple group I' enjoys a number of properties including having trivial
amenable radical, the infinite conjugacy class (icc) property, the unique trace property

[11, Theorem 1.3|, and having a free action on its Furstenberg boundary JpI' [43].

In 1975 Powers proved that the free group F» is C*-simple [48]. Since this result it
has been a major open problem to classify C*-simple groups, we refer the reader to [27]
for a general survey and [11]| for a number of recent developments. In the setting of
CAT(0) groups there is a characterisation of C*-simple CAT(0) cubical groups 44| and
of linear groups [11, Theorem 1.6]. In this section we will consider the C*-simplicity of
(H x T')-lattices.

The C*-simplicity of graphs of groups has been considered before 28], however, the
methods developed there are not applicable to (H x T')-lattices because the vertex and
edge groups are all commensurable. Instead, we will apply the machinery developed in
[11] to prove the C*-simplicity of (H x T')-lattices via properties of either H or the

action on 7.

Let ' be a group. We say a subgroup H is normalish if for every n > 1 and t1...,t,

the intersection (), H is infinite.

Proposition 4.4.6. Let T' be the fundamental group of a (possibly infinite) graph of
finite groups with leafless Bass-Serre tree T mnot isometric to R. If I' is infinite, not

virtually cyclic and acts faithfully on T, then T' is C* -simple.

Proof. As T is not finite or virtually cyclic I' has a positive (possibly infinite) first L2-
Betti number. Indeed, the chain complex of the Bass-Serre tree Cy(7T;UT"), which is
concentrated in dimension 0 and 1, may be used to compute the L?-homology. As T
is infinite the boundary map is surjective and so the L?-homology is concentrated in
degree 1. We may pair each orbit of 0-cells v with an orbit of 0-cells e contained in
the boundary of e, in each case the dimension of the UI'-module is 1/|T',| or 1/|T|,
and 1/|T¢] — 1/|Ty| = 0. Since T' is non-trivial and not virtually cyclic some of these
inequalities must be strict. In particular, we conclude I' has a (possibly infinite) non-

trivial first L2-Betti number equal to the sum of these partial sums plus extra terms
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1/|T¢| for any orbit of edges not accounted for. Since I' has a trivial amenable radical
and a non-trivial L2-Betti number we may apply [11, Theorem 6.5] to deduce that T' is
C*-simple.

Alternatively, we first note that any normalish subgroup of I' contains a free subgroup
since T" is a faithful graph of finite groups and is not virtually cyclic. Now, we apply [11,
Theorem 6.2] to deduce that I" is C*-simple. O

The following theorem and corollary give a partial answer to two questions of de la
Harpe [27] and consider the more general case of an arbitrary graph of groups. Let 7T
be a locally-finite non-discrete unimodular leafless tree and 7" = Aut(7). The theorem

implies the following lattices are C*-simple:

e H is a semisimple Lie group with trivial centre and I' is a graph of S-arithmetic
lattices. This new whenever I' is not residually finite. To see this, apply (i) and
(i);

e ' is a lattice in a product of trees. To see this, apply (iii);

e [ is the fundamental group of a graph of lattices where each vertex and edge group
acts on the universal cover of a Salvetti complex corresponding to a right-angled

Artin group with trivial centre. To see this, apply (i) and (i) to [11, Theorem 1.6];

e H is the automorphism group of an affine building with no irreducible factor iso-

metric to E" and T is an irreducible (H x T)-lattice. To see this, apply (i);

e H is the automorphism group of a hyperbolic building and I' is an irreducible
(H x T)-lattice. To see this, apply (i);

e H is a product of the above and T is an irreducible (H x T')-lattice. To see this,
apply (i);

e Isom(E") and I' is an irreducible (Isom(E™) x T')-lattice. Note this characterises

irreducible (Isom(E™) x T')-lattices and will follow from (ii) (see Theorem 4.7.13).

The results in this list are new whenever the (H x T')-lattices in question are not cubical

or linear groups.

Theorem 4.4.7. Let X = X; X -+ x X be a product of proper minimal cocompact
CAT(0)-spaces each not isometric to R and let H = Isom(X7) x --- x Isom(X}) act
without fized point at infinity. Let T be a locally-finite non-discrete unimodular leafless
tree and T = Aut(T). Let n = 0 and I' < Isom(E™) x H x T' be a finitely generated

lattice.

(i) Assume T is reducible and n = 0, then T' is C*-simple if and only if T n H s
C* -simple, and I" has the icc property.
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(ii) Assume I' is weakly irreducible. If one of the following holds:

(i) H -lattices have no normalish amenable subgroups;
(ii) Ker(mwy) is trivial and Ker(Tigom(mn)xm)) 5 infinite;

(iii) H -lattices have a non-zero L?-Betti number and trivial amenable radical;

then I' is C*-simple.

Proof. In the reducible case I' virtually splits as F,, x I';r. The result follows from the
following three observations [27, Proposition 19 (i,iii,iv)|, a direct product of two C*-
simple groups is C*-simple, finite index subgroups of C*-simple groups are simple, and

a virtually C*-simple group is C*-simple if and only if it satisfies the icc property.

Now, assume I' is irreducible. We will show that (i) implies C*-simplicity. Since I'
is finitely generated G = T/I' is finite. We first show that any amenable normalish
subgroup N of I' must fix a vertex of 7. Let g € I' act as a hyperbolic element on
T, choose any other element h € I' acting hyperbolically on 7 with an axis not equal
to g, then any normalish subgroup N containing ¢ contains the free group {g,h) and
so cannot be amenable. Thus, N fixes a vertex of 7. Now, by Theorem 4.3.3 every
vertex and edge stabiliser of I' is a finite-by- H -lattice group. Since by assumption H -
lattices do not contain any normalish amenable subgroups, neither does I'. It remains
to verify that I' has no finite normal subgroups, but I' has trivial amenable radical by

[23, Corollary 2.7|. In particular the result now follows from [11, Theorem 6.2].

We next prove (ii) implies C*-simplicity. Let K = Ker(mgom(gn)xm)), we have that T
is an extension of K by Tigom(gn)xa)(I'). Now, K is a (possibly infinite) graph of finite
groups acting faithfully on 7. Indeed, restricting m := TgomEn)x g t0 a vertex stabiliser
I'y < T of the action on 7, by Theorem 4.3.3 we see Ker(w|r,) is finite. Every finite
subgroup of I', and hence K, is conjugate to a finite subgroup of some vertex stabiliser.

Thus, the graph of groups decomposition is given by 7T /K.

We claim K is not virtually infinite cyclic. Indeed, if K was virtually cyclic, then there
exists a commensurated infinite cyclic subgroup Z < K < I'. By [26, Theorem 2(i)] Z

acts properly on E™ in the decomposition of X. But Z < K, a contradiction.

It follows the group K is C*-simple by Proposition 4.4.6. Because Ker(7y) is trivial,
every element acts non-trivially on 7 and so the centraliser Cr(K) is trivial. Now, we

apply [11, Theorem 1.4] to prove the result.

Finally, we will prove (iii) implies C*-simplicity. We apply the cohomology I'-equivariant
Mayer-Vietoris sequence with UI" coefficients arising from filtering ET by the Bass-Serre
tree [17, Chapter VII.9]. Since 7 is not a quasi-line there is a vertex v connected to an
edge e such that the stabilisers satisfy |, : Tc| = 3, thus the L?-Betti numbers of ', are

at least 3 times the L2?-Betti number of T',. Now, additivity of von Neumann dimension
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over exact sequences and a simple counting argument implies every (H x T')-lattice must
have a non-trivial L2-Betti number. Alternatively, we note that every (H x T)-lattice is
measure equivalent to L x F,. where L is an H-lattice and F. is a free group. Now, an
application of the Kunneth formula yields that L x F, has a non-trivial L?-Betti number
and so by Gaboriau’s theorem [30, Theorem 6.3| so does every (H x T')-lattice. By [23,
Corollary 2.7] every (H x T')-lattice has trivial amenable radical, the result follows from
[11, Theorem 6.5]. O

A near identical proof to that of (i) yields the following corollary.

Corollary 4.4.8. Let I' be the fundamental group of a finite graph of groups. Assume,
that for each edge and vertex that are incident that the intersection of the corresponding
edge group and the vertex group does not contain either a normalish amenable subgroup
or a non-trivial finite normal subgroup. If T' is irreducible as an abstract group, then T’

is C* -simple.

4.4.3 Fibring

Recall that a group I is said to algebraically fibre if there is a non-trivial homomorphism
¢ : ' — Z such that Ker(¢) is finitely generated. If I' has a finite index subgroup which
algebraically fibres, then we say I' virtually fibres.

Fix a finite generating set S for I'. A character 0 # ¢ € H'(I';R) = Hom(I",R) lies
in the first Bieri-Neumann-Strebel-Renz (BNSR) invariant £1(T') if and only if the full
subgraph of Cay(I', S) spanned by {g € I | ¢(g) = 0} is connected. The relevance of the

BNSR invariant is due to the following classical theorem of Bieri-Neumann-Strebel.

Theorem 4.4.9. [15, Theorem B1| Let T be a finitely generated group and let ¢ : T — 7Z
be non-trivial, then Ker(¢) is finitely generated if and only if {¢, —¢} < X1(I). O

Theorem 4.4.10. Let X be a finite dimensional proper CAT(0) space and let H =
Isom(X) be cocompact and minimal. Let T be a locally finite unimodular leafless tree
not isometric to R and let T = Aut(T). Suppose H'(L;R) = 0 for all H -lattices L,
then every (H x T)-lattice T' does not virtually fibre.

Note that the hypothesis that H'(L;R) = 0 for all H-lattices L is satisfied for instance
when H is a higher rank semi-simple Lie group. It is unclear whether the hypothesis

can be weakened whilst working with such a general choice of I' and H.

Proof. Let I" be an (H x T')-lattice, then T splits as a graph of H-lattices A. In particu-

lar, every vertex and edge group is finite-by- H -lattice and so has trivial first cohomology.
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Now, we apply the Mayer-Vietoris sequence of the graph of groups decomposition (see

[17, Chapter VI.9]) to obtain an exact sequence
0 —— HOT) —— Dpeya H'(To) —— Deepa H*(Le) —— H'(T) —— 0.

Where the ending 0 is due to the fact @, 4 H*(Ty) = 0. It follows that H'(I';R) =
HY(T/T;R).

Claim: I splits as a reduced graph of groups and is not an ascending HNN extension.

We may assume the graph of groups is reduced by contracting any edges with a trivial
amalgam L =7 K. Note that these contractions do not change the vertex and edge
stabilisers, but may change the Bass-Serre tree (the tree will still not be quasi-isometric

to R since there are necessarily other vertices of degree at least 3).

Now for I'" to be an ascending HNN-extension A must consist of a single vertex and
edge. Let t be the stable letter of I', then t acts as an isometry on X . In particular, by
considering covolumes of H -lattices acting on X, the two embeddings of the edge group
I'. into the vertex group I', must have the same index. Now, since T is not a quasi-line,

these embeddings must have index at least 2 yielding the claim.

Now, HY(T';R) = Hom(I',R) and so every character ¢ € Hom(T',R) vanishes on every
vertex and edge group of the graph of groups decomposition A. Moreover, we may
assume A is reduced by contracting any edges of the from B o C. Thus, we may apply
[21, Proposition 2.5| to deduce ¢ ¢ 3(I"). As this is true for every (H x T')-lattice, it
follows I' does not virtually fibre. O

4.4.4 Autostackability

In this section we will discuss autostackability of (H x T')-lattices in terms of H -lattices.
The property was introduced by Brittenham, Hermiller and Holt in [7] to simultaneously
generalise automatic groups and groups with finite rewriting systems - we will not define
the property here since our proofs do not require the definition and are elementary. The
class of autostackable groups is broad, including all automatic groups, 3-manifold groups
[9], Thompson’s group F' [19], the Baumslag-Gersten group [39], and some groups not
of type FPs [8]. In spite of this, it appears to be unknown if every group with solvable
word problem is autostackable. Moreover, autostackability properties of the class of
CAT(0) groups have largely gone unstudied. In light of Leary and Minasyan’s examples
of CAT(0) groups which are not biautomatic [45] it would be desirable to determine the

autostackability properties of these and related groups.

Theorem 4.4.11. Let X be a finite dimensional proper CAT(0) space and H = Isom(X).
Let T be a locally finite unimodular tree and let T = Aut(T). If uniform H -lattices are
(auto)stackable, then uniform (H x T)-lattices are (auto)stackable. Moreover, if X is
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CAT(0) polyhedral complex and finitely presented H -lattices are (auto)stackable, then
finitely presented (H x T')-lattices are (auto)stackable.

Proof. In either case, by Theorem 4.3.3 we see I' splits as a graph of H-lattices. In
particular, every local group is a commensurable finite-by- H-lattice. Now, by [8, The-
orem 3.3| (auto)stackable groups are closed under extension, so we see the local groups
are (auto)stackable. By [9, Proposition 4.2] (see also [8, Theorem 3.4]), a group is
(auto)stackable with respect to any finite index subgroup. Finally, [9, Theorem 3.5] states
that the fundamental group of a graph of groups whose vertex groups are (auto)stackable

with respect to the edge groups is (auto)stackable. In particular, I" is (auto)stackable. [

The following corollary follows by induction on the number of trees n with the base case
given by the previous theorem. The inductive step is given by applying previous theorem
to deduce the result holds for n trees after assuming the result holds for n — 1 trees. As

an example the corollary applies whenever X is CAT(—1).

Corollary 4.4.12. Let X and H be as above. Let ]!, T; be a product of trees and let
T = 12, Aut(T;). If uniform H -lattices are (auto)stackable, then uniform (H x T')-
lattices are (auto)stackable. Moreover, if X is CAT(0) polyhedral complex and finitely
presented H -lattices are (auto)stackable, then finitely presented (H x T')-lattices are
(auto)stackable.

In Theorem 4.7.13 we will prove that all irreducible uniform (Isom(E™) x T')-lattices are
not virtually biautomatic, generalising the result of Leary and Minasyan [45]. However,

the following corollary proves that all of these lattices are in fact (auto)stackable.

Corollary 4.4.13. Uniform (Isom(E"™) x T')-lattices are (auto)stackable. In particular,

the Leary-Minasyan groups are (auto)stackable.

Proof. A free abelian group is automatic and hence (auto)stackable. As (auto)stackability
is closed under finite extensions it follows Isom(E™)-lattices are (auto)stackable. Now,

we apply the previous theorem. O

4.5 Constructions and examples

In this section we will detail a number of constructions and explicit examples of lattices

in products of CAT(0) spaces and trees.
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4.5.1 Residual finiteness and amalgams

For each symmetric space X of non-compact type with associated Lie group H we will
construct infinitely many non-residually finite irreducible (H x T')-lattices, where T is the
automorphism group of an appropriate Bass-Serre tree. More generally the construction

applies whenever there are upper bounded chains in the poset (Lat(H), <).

Theorem 4.5.1. Let X be a CAT(0) space, let H = Isom(X) act cocompactly and
minimally. Let A, B be commensurable uniform H -lattices such that A # B. Let C <y,
AnB and I' = Axc B. Let T be the Bass-Serre tree of I' and T' = Aut(T). Assume

T is unimodular, then T is a (H x T)-lattice. Moreover,

(i) If (A, B) < H s not an H -lattice, then T is an irreducible (H x T')-lattice.

(ii) If T s irreducible and C' is a proper subgroup of A n B, then T is not residually
finite.

Proof. The fact that I' is a lattice follows from Theorem 4.3.3. Now, (i) follows from
Theorem 4.3.4, since if (A, B) is not a lattice, then 7z (I") is not a lattice and so IT" is
not reducible and hence irreducible. To prove (ii), consider an element v in (An B)—C
and words v, and -y, representing v in the generating sets of copies of A and B in T'.
Since, va7, 1 is not contained in the copy of C' in T, the element acts non-trivially on
T, and so is non-trivial. However, 7y (va) = 7(W), 50 Tu (a7, ') = 1g. But T is
irreducible and 7 (I') has a non-trivial kernel so we can apply Caprace and Monod’s
criteria (Theorem 4.2.5). O

The following lemma is immediate, but combined with the previous theorem, it implies
that we can construct non-residually finite groups out of uniform lattices in each Lie

group corresponding to a symmetric space of non-compact type.

Lemma 4.5.2. Let H be a locally compact group with Haar measure p. If there exists
a bound € on the minimal p-covolume of lattices in H and the set of possible covolumes

of H -lattices is discrete, then the poset Lat(H) has maximal elements.

Example 1. Let X be a symmetric space of non-compact type and H the associated
Lie group. Let A and B be commensurable maximal H-lattices such that A # B. Let
C be a finite index proper subgroup of An B, then I' = A#¢ B is a non-residually finite
(H x T')-lattice. Such examples exist by considering arithmetic lattices I in H. Indeed,
Margulis’ commensurator criterion states that Commp (') is dense in H and so there

exist lattices commensurable to I' which are not contained in T".

In the more general setting of CAT(0)-spaces we have the following corollary.
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Corollary 4.5.3. Assume I' = A%¢ B is a uniform (H xT)-lattice such that A # B and
neither A < B nor B < A. If A or B is the upper bound of a chain in (Lat, <), then
I" is irreducible. Moreover, if C' is a proper subgroup of An B, then I' is non-residually
finite.

Proof. Assume without loss of generality that A is the upper bound, then (A, B) cannot
be a lattice because it would contain A, contradicting the maximality of A. Thus, we

can apply Theorem 4.5.1. O

Example 2 (Change of tree). Given an edge transitive but not vertex transitive ir-
reducible (H x Ty g)-lattice I' one may construct a non-residually finite irreducible

(H x Thg ne)-lattice for all m,n > 2 as follows:

Firstly, note I' splits as a graph of H-lattices. Indeed, I' = A *¢c B where A, B and
C are covirtually H-lattices. We may assume that A stabilises a vertex of valence k
and B stabilises a vertex of valence £. Let N4 and Np be finite groups of order m
and n respectively and pick split extensions A= NyxAand B= NgxB. We
may construct a graph of lattices by considering the graph of groups corresponding to
A *C B. The representations of A and B are the given by the composites A»A—>H
and B - B — H. The resulting fundamental group I' acts on the (mk,nt)-regular

tree, the lattice is irreducible and non-residually finite by Theorem 4.5.1.

This technique gives the following partial solution to the problem of realising lattices in

every possible tree for H a rank one real Lie group with trivial centre.

Example 3. Let H = H(R) be a rank one real Lie group with trivial centre and
H, = H(Q,) denote the same group scheme over the p-adic numbers for some prime p.
Let X be the rank-one symmetric space associated to H. The Bruhat-Tits’ building for
H, is a tree of valence given by some function f of the prime p. In particular, there is
an edge transitive but not vertex transitive S-arithmetic lattice acting on X x Tz, . By
the previous example we may construct irreducible non-residually finite lattices acting

on X x Tmf(p),nf(p) for all m,n = 2.

These groups are C*-simple by Theorem 4.4.7, austostackable by Theorem 4.4.11, and if
X is 2n-dimensional, then the groups have a non-trivial L?-Betti number in dimension

n + 1 by Theorem 4.4.1. If X is odd-dimensional, then the L?-cohomology vanishes.

Concretely, in the case of H = PSLy(R), the function f is given by f(p) =p+ 1, so we
obtain irreducible lattices acting on the (m(p + 1),n(p + 1))-regular tree for all primes

p and integers m,n = 2.
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4.5.2 Vertex transitive lattices

In this section we will detail some constructions for lattices in a product of a CAT(0)

space and a tree such that the lattices act vertex transitively on the tree.

Proposition 4.5.4. Let L < H be groups and t € Commp (L), then there exist finite-
index subgroups J, K < L such that J' =

Proof. By definition K = L n L! has finite index in L. Now, set J = K t_l, this clearly

also has finite index in L. O

Jtn 1:

n—1

J§2 = K>
FIGURE 4.1: A single vertex graph of groups.

Let X be a metric space and let H = Isom(X). Let L be a H-lattice and let ¢1,...,t, €
Commy(L). Assume that ¢; conjugates a finite-index subgroup J; < L to a finite-index
subgroup K; < L (existence of H; and K; is given in the next proposition). In light
of Proposition 4.5.4, whilst slightly abusing notation, we can construct a single vertex
graph of groups G where all of the edges are loops (Figure 4.1). We now define I' =
G(L,{(J1,t1),. .., (Jn,tn)}) := m(G). We can associate to I' the Bass-Serre tree T of
the graph of groups G. Note that 7 is an infinite, locally finite, (3>, |T': J;|+ | : K;])-

regular, simplicial tree.

Lemma 4.5.5. Let T' be a lattice in a rank-one Lie group H with symmetric space X

of non-compact type. Let t be an infinite order elliptic element of H, then

=

neZ

has infinite index in T".

Proof. Assume L has finite index, then by Garland and Raghunathan [32] [33], the
quotient X /L has finitely many cusps with bounded intersection. Let p be the fixed
point of ¢ and consider a Dirichlet domain A = A,(L) for L at p. Since X/I' has
finitely many cusps, A has finitely many sectors (each with bounded intersection) going
to infinity. The (t)-orbit of such a sector is unbounded (indeed it traces out a copy of
S in 0X), but this contradicts Garland-Raghunathan and so we conclude L must have

infinite index. O
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Theorem 4.5.6. Let X be a rank-one symmetric space of non-compact type and let
H be the associated Lie group. Let L be an H -lattice, t1,...,t, € Commpg(T") and let
I':=G(L,{(Ji,ti)}) with Bass-Serre tree T. Let T = Aut(T). If mg{t1,...,tx) contains

an infinite order elliptic element t, then T' is a weakly irreducible (H x T)-lattice.

Proof. Clearly, the projection of I' to the group H is not discrete because I' contains
an infinite order elliptic element. Now, the vertex stabilisers of the action of I" on 7T are
conjugates of L < G Thus, the kernel of the action is equal to Core(T', L), but by the
previous lemma this is infinite index in L. It follows that the image of I' is an infinite
subgroup of the vertex stabiliser in T (a compact profinite group) and so cannot have

discrete image. O

Example 4. Let H be a non-compact simple Lie group and O the ring of integers of
some number field k. Assume that either H(O) is either an irreducible uniform lattice
or rank-one. Now, choose an infinite order elliptic element ¢ € Commpg(H(O)) and
construct the group I' = G(H(O),t) with Bass-Serre tree 7. Let T' = Aut(7). By
Theorem 4.3.3 we conclude that I' is a lattice in G = ([ [,cqe H(K?) x T'). Moreover,
if ¢ is irreducible, then I' is a weakly and algebraically irreducible lattice. To see I’
is weakly irreducible, note that the projection of I' to any sub-product of G is clearly

non-discrete. Now, we apply Theorem 4.2.4 to see I' is algebraically irreducible.

In the next example we will present an explicit presentation of a non-residually finite,

irreducible, vertex and edge transitive (PSLy(R) x Tgo)-lattice.

Example 5. Consider the following matrices in SLa(R) given by

B el
32 —Lyal’ 3(=3v2-3)
[ ] é(x/i+1)] t_! L %\/5]
$(=3v2+3) : ’ e

D=

~—~~

N[ = s‘
—_

S~—
S ——

The projectivisation of the matrices a,b and ¢ in PSLy(R) generate a Fuchsian group of
signature [0;2,2,3,3] with presentation L = {(a,b,c | a®> = b = & = (c7tab™1)? = 1).
The conjugate of L by the infinite order elliptic element ¢ in PSLy(R) yields an isometric
Fuchsian group L! = {a, 8,7). The intersection is generated by

K =<acb_1a, cac™t, b tach™t, ¢ toea, beabe™t, b rebe tab™h, b e oe oY, e lacab™!

ababe tba, abach™tab™!, babac b le™t, babeac™'b, b_lcabc_lb_lc_1>.

We also find that K is index 30 and has signature [5;2,2,2,2]. Since K is contained

in L, to complete our construction we simply need to find J := ¢t~(K), which will also
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be contained in I'. A lengthy calculation yields

J =<c*1abab71, b=tab, cable, acb tabac, cabac tab, ¢ tacab 'a, babac tbac b7!,

1 1

ac ba, bach tach e tabac™t, bac e, ebe tac ab, ebtabeac,

clactac o tach™ ).

The group ' = {a,b,c,t | a®> = b3 = = (c7tab™1)? = 1, J = K) is a non-residually
finite irreducible lattice in PSLa(R) x Tgo. By Theorem 4.4.1 the only non-vanishing L?-
Betti number of I' is in dimension 2 and is equal to —% —(—10) = %. By Theorem 4.4.7
I' is C*-simple, by Theorem 4.4.11 T" is autostackable, and by the same argument as
in the proof of Theorem 4.4.10, I" does not algebraically fibre. Moreover, if " has first

virtual Betti number equal to 1, then I' does not virtually fibre.

Example 6 (Mixed products). Consider a uniform weakly irreducible lattice in PSLy(R) x
Tso constructed as a single vertex graph of groups G(I',t), assume that the stable let-
ter t acts on RH? as an infinite order elliptic rotation. Similarly, consider a uniform
weakly irreducible lattice in Isom(E?) x T1¢ constructed as a single vertex graph of groups
G(Z2, s), assume that the stable letter s acts on E? as an infinite order elliptic rotation

(such examples were considered by Leary and Minasyan in [45]).

We will now construct a uniform lattice in PSLa(R) x Isom(E?) x Tp9. Let A :=
G(I' x Z2%,7), where r acts as t on RH? and as s on E2. We claim the projections to
each sub-product of the factors are non-discrete and so A is not commensurable with

any reducible lattice. Thus, by Theorem 4.3.4, A is an weakly irreducible lattice.

To prove the claim we investigate each projection in turn. Clearly, the projections to
PSL(R), Isom(E?) and PSLy(R) x Isom(E?) are non-discrete. Moreover, by Theo-
rem 4.5.6 or [45, Theorem 7.5] it is easy to see the projection to T3 is non-discrete. In
fact more is true, the projection is faithful. In light of this it is easy to see the projections
to PSLa(R) x T30 and Isom(IE?) x T3gp are non-discrete.

Note that the choices of the ambient groups PSLy(R) and Isom(EE?) were arbitrary.
Indeed, the reader can pick any combination of symmetric spaces of non-compact (and
Euclidean) type, or any irreducible proper minimal CAT(0) space which contains lattices
which have a non-discrete commensurator and construct a weakly irreducible lattice in
the product of the automorphism group of the Bass-Serre tree and the associated real
simple Lie groups (and Isom(E™)) and the isometry group of the CAT(0) space. This is

markedly different to the arithmetic setting where the Lie groups must be isogenous.

Example 7 (Non-uniform lattices in products of trees). Fix a prime p. Consider the lin-
ear algebraic group H = PSLy(F,((¢))) and the non-uniform lattice L = PSLy(F,[t]) <
H. The Bruhat-Tits’ building for H is a (p + 1)-regular tree 7 and L acts with finite
covolume and fundamental domain an infinite ray. Let ¢t € Commpg (L) be infinite order

and elliptic. By Proposition 4.5.4 there exist finite index subgroups J, K < L such that
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Jt = K. Let n > 1 and consider the HNN-extension I of L™ over finite index subgroups
J™ and K™ where each copy of J is mapped to the corresponding copy of K by t. The
group I is non-uniform lattice acting on 7%, x Tagn where k = |L : J|. Moreover, it is

easy to see that I' is a weakly irreducible lattice.

More generally by [1] non-uniform tree lattices of ‘Nagao type’ have a dense commen-
surator in the full automorphism group of the universal covering tree. The construction

can be easily adapted to this setting.

4.5.3 The universal covering trick

In this section we will compare the notion of a graph of lattices with the “universal
covering trick" of Burger—Mozes [13, Section 1.8] and generalised by Caprace-Monod
[23, Section 6.C]. In particular, we will show how in many cases one can obtain a graph
of lattices from the universal covering trick. We take the opportunity to point out
that many of the groups constructed in the previous sections cannot be obtained from

universal covering trick.

Example 8 (The universal covering trick). Let A be the geometric realisation of a locally
finite graph (not reduced to a single point) and let @ < Isom(A) be a vertex transitive
closed subgroup. Let C be an infinite profinite group acting level transitively on a locally
finite rooted tree 7y. Let B be the 1-skeleton of the square complex A x Ty and let T
be the universal cover. Define D to be the extension 1 — m(B) — D — C x Q — 1.
By [23, Proposition 6.8], there exists a CAT(0) space Y such that D — Isom(Y) is a

closed subgroup, and D acts cocompactly and minimally without fixed point at infinity.

The classical situation where this is applied is as follows: Let ) be a product of p-adic
Lie groups, H be a product of real Lie groups and I' < H x @) to be an S-arithmetic
irreducible lattice. Let A be the 1-skeleton of the Bruhat-Tit’s building for X, let T
be the universal cover of A and let T' = Aut(7). Now, I' lifts to a weakly irreducible
lattice I' < H x Q@ x T and the corresponding graph of lattices is obtained by considering
the graph A/T" equipped with local groups given by the stabilisers of the action of I" on
A.

4.6 Complexes of lattices

In this section we will introduce the notion of a complex of H-lattices. We will then

prove a structure theorem analogous to Theorem 4.3.3 for these complexes of H -lattices.
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4.6.1 Complexes of groups

The definitions in this section are adapted from [58, Section 1.4] and [36] [37]. Through-
out this section if X is a polyhedral complex then X’ is its first barycentric subdivision.
This is a simplicial complex with vertices VX’ and edges FX’. Each e € EX' corre-
sponds to cells 7 < ¢ of X and so we may orient them from o to 7. We will write
i(e) = o and t(e) = 7. We say two edges e and f of X’ are composable if i(e) = t(f), in
which case there exists an edge g = ef of X’ such that i(c) = i(e) and t(c) = t(f), and
e, f and g form the boundary of a 2-simplex in X. We denote the set of composable
edges by E2X'.

A complez of groups G(X) = (Go, e, ge,f) over a polyhedral complex X is given by the

following data:

(i) For each vertex o of VX', a group G, called the local group at o.

(ii) For each edge e of EX’, a monomorphism ¢, : Gy — Gy called the structure

map.

(iii) For each pair of composable edges e and f, an element g,y € Gy called the

twisting element. We require these elements to satisfy the following conditions:

(i) For (e, f) € EX', we have Ad(ge,f)Vef = Vety.
(ii) For each triple of composable edges a, b and ¢ we have a cocycle condition

wa(gb,a) = Ye,bYch,a -

We say G(X) is simple if each of the twisting elements g. s are the identity.

Some complexes of groups arise from actions on polyhedral complexes. Let G be a
group acting without inversions on a polyhedral complex Y. Let X = Y /G with natural
projection p : Y — X. For each o € VX', choose a lift & € VY’ such that po = o.
The local group G, is the stabiliser of & in G, and the structure maps and twisting
elements are given by further choices. The resulting complex of groups G(X) is unique
up to isomorphism. A complex of groups isomorphic to a complex of groups arising from

a group action is called developable.

Let G(X) be a complex of groups over a polyhedral complex X. Let T be a maximal
tree in the 1-skeleton of X’ and fix a basepoint o in T'. The fundamental group of
G(X), denoted 71 (G(X),00), is generated by the set

H Ggu{e+,e_: ee EX'}

ceV X/
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subject to the relations

the relations in the groups G,
(")t =e"and (e7)t =et,
Lot ft = goslef)*, Ve, f) € E2X,
Ye(g) = etge™, Vg e Gy,

et =1, VeeT.

"

If G(X) is developable, then it has a universal cover 5(\)2/) This is a simply connected
polyhedral complex, equipped with an action of G = 71(G(X), 0g) such that the complex
of groups given by G(X)/G is isomorphic to G(X).

Let G(X) = (Go,%e) and H(Y) = (H;,vy) be complexes of groups over polyhedral
complexes X and Y. Let f: X’ — Y’ be a simplicial map sending vertices to vertices
and edges to edges. A morphism ® : G(X) — H(Y) over f consists of:

(i) A homomorphism ¢, : G, — Hy () for each o € VX'

(ii) For each e e EX' an element g. € Hy(s(c)) such that

(1) Ad(ge)Vs(e)Pite) = Pr(e)Ves
(i) For all (a,b) € E2X’ we have Dt(a)(Gab)dab = 9eV f(a)(9b) It (a),f(b) -

4.6.2 Complexes of lattices
In this section we introduce complexes of lattices in analogy with the graphs of lattices
we defined previously.

Definition 4.6.1 (Complex of lattices). Let H be a locally compact group with Haar
measure . A complex of H-lattices (G(X),v) is a developable complex of groups
equipped with a morphism ¢ to H such that:

(i) For each o € VX', the local group G, is covirtually an H-lattice and the image
Y(Gy) is an H-lattice;

(ii) The local groups are commensurable in I' = m(G(X),0) and their images are

commensurable in H .

(iii) For each e € EX’, the elements et and e~ in I' are mapped to elements of

Commpyg (¢Y(Gy)).

The analogous structure theorem is given as follows.
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Theorem 4.6.2. Let X be a finite dimensional proper CAT(0) space and let H =
Isom(X) contain a uniform lattice. Let (G(Z),v) be a complex of H -lattices over a
polyhedral complex Z, with universal cover Y , and fundamental group I". Suppose A =

Aut(Y) admits a uniform lattice.

(i) Assume Z is finite and Y is a CAT(0) space. If for each local group G, the kernel
Ker(¢|g,) acts faithfully on Y, then T is a uniform (H x A)-lattice and hence a
CAT(0) group. Conversely, if A is a uniform (H x A)-lattice, then A splits as a

finite complex of uniform H -lattices with universal cover Y .
(ii) Under the same hypotheses as (i), T' is quasi-isometric to X x Y .

(i) Assume X is a CAT(0) polyhedral complex and Y is a CAT(0) space. Let u
be the normalised Haar measure on H. If for each local group G, the kernel
K, = Ker(¢¥|g,) acts faithfully on Y and the sum Y, i, 1(Go)/| K| converges,
then I" is a (H x A)-lattice. Conversely, if A is a (H x A)-lattice, then A splits

as a finite complex of H -lattices with universal cover Y .

Note that by definition we are assuming all complexes of lattices are developable com-

plexes of groups.

Proof. We first prove (i). The fundamental group I' of G(Z) acts on the universal cover
Y and on X via the homomorphism % : I' — H. The action on the product space
X x Y is properly discontinuous cocompact and by isometries. The kernel of the action
is contained in the intersection (),., Ker(¢|g,). But this acts faithfully on Y, thus,
the action is faithful. It follows T" is an (H x A)-lattice.

We now prove the converse. Assume I' is an (H x A)-lattice, and note that the action
of I' on Y yields a developable complex of groups G(Z) = (I'y, %4, gap) with spanning
tree T' and equipped with a homomorphism 7y : I' > H. It suffices to show the local
groups corresponding to the vertices of Z are covirtually H -lattices. Indeed, for an edge
ee EZ', if the index [Ty : 1e(T'y(e))| is infinite, then the universal cover of G(Z) would
not be locally finite. It follows that all of the local groups are commensurable and hence,
commensurable in H. Consequently, the elements et and e~ for all e € E2Z//T in T

must commensurate the local groups.

Let 0 € Y be a vertex and consider the stabiliser I'; < I' for the action on X x Y.
Suppose I'; does not act cocompactly on X x o, then there is no compact set whose I,
translates cover X x 0. Let D be a non-compact set whose I',-translates cover X x o,
but there is a compact set C' whose I' translates cover X x Y. We may arrange our
subsets such that ¢’ = C' n (X x ) € D. In particular, there are elements g; € I'/T',
whose translates of C’ cover D. But some of these elements fix must X x o yielding a

contradiction. Hence, I', is cocompact.
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It is clear that Ker(I's — H) is finite. Otherwise I' would act with infinite point
stabilisers on X x Y contradicting the discreteness of I'. It remains to show that the
projection T'y of I'y to H is discrete. Assume that T, is not discrete, then there does
not exists a neighbourhood N of 1 € H such that N n T, = {1}. But this immediately
implies there does not exist a neighbourbood N’ of 1 € H x A such that N' n T = {1}

which contradicts the discreteness of I'. It follows I', is covirtually an H -lattice.

The final step is to show the elements e’ and e~ for each e € EX' are mapped to
elements of Commpy (7 (T,)). But this is immediate since the local groups map to H
with finite kernel, the elements e™ and e~ commensurate the local groups, and so must

still preserve the appropriate conjugation relations in the map to H.

We now prove (ii). By (i), I' acts properly discontinuously cocompactly on X x Y. The

result follows from the Svarc-Milnor Lemma [6, 1.8.19]. o

The proof of (iii) is almost identical to (i) we will highlight the differences. Since X is
a CAT(0) polyhedral complex, it follows that X x Y is. Now, we may apply Serre’s
Covolume Formula to I'. Let A be a fundamental domain for I' acting on X x Y, then

the covolume of I' may be computed as

D 1 3 D L D 1 [Ko| _ 3 p(mx (o))
Lo | = | Kol = |y Ky
oeAl oemy (A9) Teﬂ'yl(o') oemy (A0) TEﬂ'Yl (o) oemy (AD)

Since my (A®) can be identified with Z and the later sum converges by assumption, it
follows as before that I' acts faithfully properly discontinuously and isometrically with
finite covolume on X x Y. For the converse the only adjustment required is that the
compact sets C' and C” in the proof of (i) should be replaced with ones of finite covolume.

The remainder of the proof is identical. o O

4.6.3 Properties: L?-cohomology and C*-simplicity

In this section we will prove a result on L?-cohomology in the spirit of Theorem 4.4.1

and a result on C*-simplicity in the spirit of Theorem 4.4.7 for (H x A)-lattices.

Theorem 4.6.3. Let H be a unimodular locally compact group with lattices and X be a
locally-finite CAT(0) polyhedral complex with cocompact minimal automorphism group A.
Assume any two non-zero L?-Betti numbers of an H -lattice are in dimensions separated
by at least dim(X) and that A-lattices have at most one non-vanishing L? - Betti number
in dimension k. Let T be an (H x A)-lattice and AWP) be a representative set of p-cells
for the action of I' on X. We have

dim(X)

2 =3 Y (1@, (r,).

p=0 geA®)
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Proof. The proof is essentially identical to Theorem 4.4.1, except now we use a G-
equivariant spectral sequence [17, Chapter VII.7] applied to the filtration of X by skeleta
with UT coefficients. The assumption that any two non-zero L?-Betti numbers of an
H -lattice are in dimensions separated by at least dim(X) forces any higher differentials
to be 0. In particular, the E?-page equals the E® page of the spectral sequence.
Moreover, the E2-page is computed by using the same measure equivalence argument as
in Theorem 4.4.1. O

The proof of the following theorem is essentially the same measure equivalence and

Kiinneth formula argument as in Theorem 4.4.7(iii).

Theorem 4.6.4. Let X = Xy x --- x Xi be a product of proper minimal cocompact
CAT(0)-spaces each not isometric to R and let H = Isom(X;) x -+ x Isom(Xy) act
without fized point at infinity. Let Y be a locally-finite CAT(0) polyhedral complex not
quasi-isometric to B and let A = Aut(Y') act without fized point at infinity. Let T' <
H x T be a finitely generated weakly irreducible lattice. If both H - and A-lattices have

a non-zero L?-Betti number and trivial amenable radical, then T' is C* -simple.

4.7 Lattices with non-trivial Euclidean factor

In this section we will characterize irreducible uniform (Isom(E™) x T')-lattices. We
will also strengthen the virtual biautomaticity criterion for a Leary-Minasyan group [45,
Theorem 8.5] to arbitrary CAT(0)-lattices. Along the way we will prove a number of
results about (Isom(E™) x A)-lattices. To this end we will examine the projections

Tsom(Er) and mo(,) more closely.

Lemma 4.7.1. Let X be a proper CAT(0)-space, let H = Isom(X), and let T be a
finitely generated (Isom(E") x H)-lattice. If the projection migomen) (L") is not discrete,

then mom)(I') contains an element of infinite order.
Proof. For migmny(I) to be not discrete at least one of the following must be true:

(i) mo(m)(I') is not discrete and thus, contains an element of infinite order.

(ii) There exists a sequence of elements g; € R such that g; — 0 as i — 0.

If the first case holds we are done, so assume it does not. After passing to a subse-
quence we may assume that each g; is not some power or root of any other g; and so
Tisom(En)(I') M R™ contains an infinitely generated abelian subgroup A. Since we have
assumed the first case does not hold g, (T) is a finite group F' and we have a short
exact sequence

{1} = A = Tgom@En) (I) — F — {1}.
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But this implies mygomEn)(I') is an infinitely generated quotient of the finitely generated

group I', a contradiction. Hence, Wo(n)(f‘) contains an element of infinite order. O

The following propositions give criteria for irreducibility in terms of the action of 7oy (T)

on R™.

Proposition 4.7.2. Let T be a locally finite unimodular leafless tree not isometric to
R and let T = Aut(T). Let T' be a uniform (Isom(E™) x T)-lattice, then T is weakly
and algebraically irreducible if and only if mo(y) (T) is not virtually contained in some
O(n — 1). In particular, if T is weakly irreducible, then no finite index subgroup of

mom) (L) fizes a 1-dimensional subspace of R™.

The analogous result for (Isom(E™) x A)-lattices is as follows. We will prove both results

simultaneously.

Proposition 4.7.3. Let X be an irreducible locally finite CAT(0) polyhedral complex
and let A = Aut(X) act cocompactly and minimally. Let T' be a uniform (Isom(E™) x
A)-lattice, then T' is weakly and algebraically irreducible if and only if mo(,) (') is not
virtually contained in some O(n — 1). In particular, if T is weakly irreducible, then no

finite index subgroup of mo(,) (L) fizes a 1-dimensional subspace of R™.

Proof of Proposition 4.7.2 and 4.7.3. Suppose I is reducible then I' has a virtually nor-
mal Z subgroup. Clearly, mo(,) (") virtually centralises this subgroup and so TO(n) (T)

must be virtually contained in some O(n —1).

Conversely, suppose To(y,)(I') is virtually contained in some O(n—1). Passing to the cor-
responding finite index subgroup A we see that the action of A preserves two subspaces
of R™. One isomorphic to R~ and one isomorphic to R =~ R. Now, A splits as a graph
of lattices in which every vertex and edge group has an infinite order generator which
acts freely cocompactly on R and stabilises the subspace R' setwise via Tlsom(En)- Lhe
infinite cyclic groups intersect in some infinite cyclic subgroup Z < A. The stable letters
of A must virtually centralise Z since otherwise they would map R into R*+. Thus, Z

is virtually normal in A and hence I". By [26, Theorem 2(ii)] T is reducible. O

The following corollary is immediate.

Corollary 4.7.4. Let T be a locally finite unimodular leafless tree not isometric to R
and let T = Aut(T). Let T be a uniform (Isom(IE?) x T)-lattice, then T is an irreducible

lattice if and only if o) (L) contains an element of infinite order.

The following propositions give criteria for irreducibility in terms of the action of I' on

T.
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Proposition 4.7.5. Let T be a locally finite unimodular leafless tree not isometric to R
and let T = Aut(T). Let T' be a uniform (Isom(E™) x T')-lattice. Then T is weakly and
algebraically irreducible if and only if I' acts on T faithfully.

The analogous result for (Isom(E™) x A)-lattices is as follows. We will prove both results

simultaneously.

Proposition 4.7.6. Let X be an irreducible locally finite CAT(0) polyhedral complex
and let A = Aut(X) act cocompactly and minimally. Let T' be a uniform (Isom(E™)x A)-
lattice, then T is weakly and algebraically irreducible if and only if I' acts on X faithfully.

Proof of Proposition 4.7.5 and 4.7.6. Assume T is irreducible. By [26, Corollary 3|, T'
has finite amenable radical B. Such a non-trivial element g € B stabilises a vertex of
the Bass-Serre tree T (resp. complex X ). Now, either g has infinitely many conjugates
which contradicts the finiteness of B, or g stabilises the whole of 7 (resp. X) and so is
contained in I" n Isom(E™). By Lemma 4.7.1 and Proposition 4.7.2 (Proposition 4.7.3)
there is an infinite order element in 7p(,)(I') and hence an infinite order element in
Tisom(Er)(I') which does not commute with g. But now the normal closure of g in T
must contained infinitely many conjugates of g. Hence, B is infinite, a contradiction.
Thus, B must be trivial.

The converse in the tree case follows from Proposition 4.3.4. If I' acts on X faithfully,
then the projection m4(I") is non-discrete. By Theorem 4.2.4 it suffices to show P =
Wlsom(En)(F) is non-discrete. Suppose P is discrete, then there is a finite index subgroup
of P isomorphic to Z = Z™. But this is a virtually normal free abelian subgroup, so by
[26, Theorem 2(ii)], I" is reducible and so there is a finite index subgroup of Z which acts
trivially on X, a contradiction. Thus, P is non-discrete and so I' is weakly irreducible

and by Theorem 4.2.4 algebraically irreducible. O
As an brief application we will construct (virtually) torsion-free irreducible (Isom(E™) x
To)-lattices.

Example 9. Recall the Leary-Minasyan group LM(A) where A is the matrix corre-
sponding to the Pythagorean triple (3,4,5) which acts on E? x T19. (Note that these

groups were classified up to isomorphism by Valiunas [59].) By [45], this has presentation
LM(A) = {a,b,t | [a,b], ta®b~ 71 = &b, tab®t™! = a7 1b?).

Using this group we will construct a virtually torsion-free irreducible (Isom(E"™) x T')-

lattice where T is the automorphism group of the 10n-regular tree for all n > 3.

Let Z" = {ag,...,an—1) and let F = {f) be a cyclic group of order n acting on L by
cyclically permuting the a;. Let L = Z"™ x F', this is a crystallographic group and so
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embeds into Isom(E™). Now, consider the (n x n)-matrix B given by

1A 0
0 In72 .
We define I'), to be the HNN extension of L by the matrix B, the Bass-Serre tree of
this HNN extension will be regular of valence 10n. This has generators ag, ..., an—1, f,t
and relations
fn =1, [aivaj] =1, faif_l = Qij+1 (mod n)> [a27t] =1, ..., [an—lat] =1,
tagaflt_l = agal, taga%t_l = aala%,

where 7,5 € {0,...,n—1}. Here the first three sets of relation come from L, the relations
[a;,t] =1 for i > 2 come from the fact B fixes {ag,...,a,—1} point-wise, and the last

two relations arise from the action of B on {ag,a1). Now, let a := ap, then we may

write I',, as
T, ={a, ft]f"=1, ta>aTt71 = a2a’, ta(a®)/t7 = a1 (a®)7, [afi,afj] =1
for i,7€{0,...,n—1}. Thus, I',, is a 3 generator, %n(n — 1) + 3 relator group.

To see T'y, is irreducible note that 7o) (T") is not virtually contained in some O(n—1) <
O(n). Indeed, consider the subgroup generated by the mq(y)(f)-orbit of T, (t). To
show I, is virtually torsion-free note that every torsion element of I';, has non-trivial
image in 7o) (I'n). This is generated by the images of f and ¢ and so is a finitely
generated linear group and hence has a finite index torsion-free subgroup FP,. The

preimage of P, in I',, is torsion-free.

4.7.1 Biautomaticity

In this section we give a condition to determine the failure of biautomaticity for a CAT(0)

group in the presence of a non-trivial Euclidean de Rham factor.

For the rest of this section we fix the following notation and terminology, the treatment
roughly follows [45, Section 2] and [29, Section 2.3, 2.5]. Let A be a finite set and let
I' be a group with a map p: A — I'. We say that I' is generated by A if the unique
extension of p to the homomorphism from the free monoid A* to I' is surjective. We
will call elements of A* words and for any w € A*, if pu(w) = g for some g € I', we will
say w represents g. We will always assume A is closed under inversion, that is, there is
an involution 7 : A — A such that pu(i(a)) = u(a)™!, in this case we will denote i(a) as

a~'. Any subset £L < A* will be called a language over A.

An automatic structure for a group I' is a pair (A, L), where A is a finite generating
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set of I' equipped with a map p: A — I' and closed under inversion, and A4 € A* is a
language satisfying three conditions. Firstly, u(£) = T', secondly L is a regular language,
that is, it is accepted by some finite state automaton, and thirdly, it satisfies a fellow
traveller property (which we will not make precise here). We say (A, L) is biautomatic
structure if both (A, £) and (A, £L7!) are automatic structures. A group T is said to be

automatic (resp. biautomatic) if it admits an automatic (resp. biautomatic) structure.

A (bi)automatic structure is finite-to-one if |u=(g) nA| < o for all g € I'. As noted in
[45, Page 8] by [29, Theorem 2.5.1] it may be assumed that all (bi)automatic structures
are finite-to-one. So without loss of generality we will make this assumption and we will

also suppose that all the automata in this paper have no dead states.

A subgroup H < I' is L-quasiconvex if there exists k£ > 0 such that for any path p in
the Cayley graph of I' with respect to A, starting at 1r, ending at some h € H, and
labelled by a word w € L, then every vertex of p lies in the k-neighbourhood of H. The
main examples of £-quasiconvex subgroups are centralisers of finite subsets as proved in
[35, Proposition 4.3] and |29, Theorem 8.3.1 and Corollary 8.3.5].

Theorem 4.7.7. Let X = [["; X; be a product of proper irreducible CAT(0) spaces
each not isometric to E and H < Isom(X) be a closed subgroup acting minimally and
cocompactly on X . Let n > 2 and let I' be an (Isom(E™) x H)-lattice. If the projection

Tsom(gn) (L) is not discrete, then T is not virtually biautomatic.

Proof. Assume (B, L) is a biautomatic structure on I'. By [26, Theorem 2(i)] there exists

a commensurated free abelian subgroup A < I' acting properly on E" of rank n.
Claim: There is a finite index subgroup of A that is L-quasiconvex.

By the Flat Torus Theorem the rank of a maximal abelian subgroup of I' is bounded by
the rank of a maximal flat in X x E". Let F' be such a flat acted on by A. Fix a set of
generators S4 for A and a set of generators S containing S4 for the maximal abelian

subgroup containing A stabilising F'.

We may split X into a product Y7 x Yo where A acts trivially on Y; and non-trivially
on Yy. For j = 1,2 let K; = Isom(Y;) n H. Since, A acts trivially on Y it follows
A and T' n K7 commute. Now, I' splits as a complex of (Isom(E™) x Kj)-lattices. In
particular, A is a subgroup of a vertex group I',, which is covirtually virtually isomorphic
to A x K, where K, is a lattice in K. Define Sk to be a set of generators for K, and
for each s € Sk let s’ € K, be some element which does no commute with s. Define a

set S ={s,s': s € Sk} and note that it is finite.

Let N = Ker(gom(gn)). For each irreducible factor Z; for j = 1,...,£ of Y choose
some element g; € N < I' which acts non-trivially on Z;. Note the kernel IV is non-
empty since otherwise I' would be a finitely generated linear group and hence residually

finite, contradicting |24, Theorem 2(iv)|]. Now, we can choose such an element so that
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it centralises a finite index subgroup of A. Indeed, we may choose g; € ((A)) n N.
Since A is commensurated g; centralises A% N A a finite index subgroup of A. For
each g; pick another element g} which centralises a finite index subgroup of A and does
not commute with g;. Let Sy, = {gj,g}: j = 1...,¢} and note that it is finite. Let
A = (ﬂ geSv, A9> N A, since this is the intersection of finitely many commensurable
subgroups A’ is a finite index subgroup of A. By construction A’ is the centraliser of

the finite set S% U Sy, U Sa. Thus, by [35, Proposition 4.3], A’ is L-quasiconvex.

Now, by Lemma 4.7.1 there exists an element in ¢ € 7o) (I") with infinite order, let ¢
denote a preimage of ¢ in I'. By [45, Corollary 5.4|, there is a finite index subgroup
I'Y < T such that every finitely generated subgroup of I'’ centralises a finite index
subgroup of A. After passing to a suitable power we may assume t* € I'0. But (tF)
does not centralise a finite index subgroup of A, a contradiction. Hence, there is no
biautomatic structure on I'. Since the hypotheses on I' pass to finite index subgroups,

it follows I' is not virtually biautomatic. O

The following corollary characterises the biautomaticity of (Isom(E™) x T')-lattices.

Corollary 4.7.8. Let T be a locally finite unimodular leafless tree not quasi-isometric
to E and let T = Aut(T). Let n =2 and let I' be a (Isom(E"™) x T')-lattice. Then, I' is

virtually biautomatic if and only if T' is uniform and the projection mo(,)(I) is finite.

Proof. Note that a non-uniform (Isom(E™) x T')-lattice is not finitely generated and
hence, not virtually biautomatic. Indeed, it must split as a graph of groups with in-
finitely many vertices since Isom(E"™) does not have any non-uniform lattices. Thus, we
may assume [' is uniform. Now, if I' is virtually biautomatic then by Theorem 4.7.7
Tsom(gn) (L) is discrete and hence 7o, (I') is finite. Conversely, if 7o) (') is finite then
I" virtually splits as Z™ x F,. which is biautomatic. 0l

Example 10. The group I'), for each n > 2 constructed in Example 9 is an irreducible

(Isom(E™) x Thpp)-lattice that is not virtually biautomatic.

Remark 4.7.9. In light of M. Valiunas’ result [60, Theorem 1.2] Theorem 4.7.7 can be
strengthened to state that I' does not embed into any biautomatic group. It may also

be possible to simplify the proof using their result.

4.7.2 Fibring

In this section we characterise irreducible (Isom(E™) x T')-lattices as those which do not

virtually fibre. This result is new even for Leary-Minasyan groups.

Theorem 4.7.10. Let T be a locally-finite leafless unimodular tree, not isometric to
R, and let T = Aut(T). Let T' be a uniform (Isom(E™) x T)-lattice, then T virtually
algebraically fibres if and only if I is reducible.
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Proof. If T is reducible, then T" virtually splits as Z x I'", in which case I" virtually fibres.

We will now prove every irreducible uniform (Isom(E"™) x T')-lattice does not algebraically
fibre, this will prove the theorem since a finite index subgroup of an irreducible lattice
is an irreducible lattice. Now, suppose I' is an irreducible uniform (Isom(E™) x T)-
lattice. By Theorem 4.3.3, the group I' splits as a graph of Isom(E")-lattices, and so is
the fundamental group of a graph of groups with vertex and edge stabilisers finite-by-
Isom(E™)-lattices. By the same argument as in the claim of the proof of Theorem 4.4.10
we may assume [’ is a reduced graph of groups which does not split as an ascending
HNN-extension.

Now, HY(I';Z) @ R =~ H'(I';Z) and by Proposition 4.7.11, for every character ¢ €
H'(T';R) we see that ¢ restricted to a vertex or edge group is zero. Since I' is the
fundamental group of a reduced graph of groups, is not an ascending HNN extension,

and ¢ vanishes on every edge group, we may apply |21, Proposition 2.5] to deduce that
¢ ¢ 3(T'). Hence, I' does not algebraically fibre. O]

Proposition 4.7.11. Let T be a locally-finite leafless unimodular tree, not isometric to
R, let T = Aut(T), and let T' be a uniform (Isom(E™) x T')-lattice. If T is irreducible,
then HY(T;Z) = HY(T/T;Z).

The analogous result for (Isom(E™) x A)-lattices is as follows. We will prove both results

simultaneously.

Proposition 4.7.12. Let X be an irreducible locally finite CAT(0) polyhedral complex
and let A = Aut(X) act cocompactly and minimally, and let T' be a uniform (Isom(E™) x
A)-lattice. If T is algebraically irreducible, HY(T';Z) = HY(X/T;Z).

Proof of Proposition 4.7.11 and 4.7.12. Let ¢ € H'(I'; Z) = Hom(I",Z). Suppose ¢ is
non-zero on some local group L, then after passing to a finite index subgroup the re-
striction of ¢ is non-zero on some subgroup isomorphic to Z™. In particular, ¢ defines
a codimension 1 subgroup of Z" contained in Ker(¢). Moreover, after passing to a
further finite index subgroup L’ =~ Z", by commensurability of the local groups, there is
codimension 1 subgroup K =~ Z"~! of L’ which is contained in every local group. Now,
the flat R® K is an (n — 1)-dimensional flat stabilised by P = 7o (,)(I"), contradicting
Proposition 4.7.2 (Proposition 4.7.3). Thus, every local group is contained in Ker(¢).

The isomorphism now follows from applying the equivariant spectral sequence to the
filtration of 7 or X by skeleta (see [17, Chapter VIL.7]). The previous paragraph shows
that Ey' =0, thus HY(I;Z) = Ey° = EX’ = HY(X/T;Z). O
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4.7.3 A characterisation

We are now ready to prove the characterisation of irreducible (Isom(E™) x T')-lattices

(Theorem 4.B) from the introduction.

Theorem 4.7.13 (Theorem 4.B). Let T be a locally finite unimodular leafless tree not
isometric to R and let T = Aut(T). Let T’ be a uniform (Isom(E"™) x T)-lattice. The

following are equivalent:

(i) T is a weakly irreducible (Isom(E™) x T')-lattice;
(ii) T' is arreducible as an abstract group;
(iii) T acts on T faithfully;
(iv) T' does not virtually fibre;
(v) T is C*-simple;

(vi) and if n =2, T is non-residually finite and not virtually biautomatic.

Proof. The equivalence of (i) and (ii) is given by Theorem 4.2.4. The equivalence of
(i) and (iii) is given by Proposition 4.7.5. The equivalence of (i) and (iv) is given by
Theorem 4.7.10.

To see (i) and (iii) imply (v), observe that by [26, Theorem 2(iv)| I is non-residually finite
and so Ker(7gomgn)) is infinite. Now, I' satisfies the conditions of Theorem 4.4.7(ii)
and so I' is C*-simple. If T' is reducible, then T' virtually splits as A = ZF x I for some
1 < k < n. In particular, A is not C*-simple since A has non-trivial amenable radical.

It follows that I' is not C*-simple. Thus, (v) is equivalent to (i).

Assume n = 2 and note, by Corollary 4.7.4, T' is irreducible if and only if 7o) (T')
contains an infinite order element. It follows from [26, Theorem 2(iv)] that I' is re-
ducible if and only if T' is residually finite. The equivalence of (i) and (vi) is given by
Corollary 4.7.8. O

4.8 Products with Salvetti complexes

In this section we will adapt a construction of Horbez and Huang [38, Proposition 4.5] to
extend actions from trees to Salvetti complexes. Horbez—Huang constructed an example
of a non-uniform lattice acting on the universal cover of the Salvetti complex S 1, provided
L is not a complete graph. We generalise this to construct a tower of uniform lattices in
Aut(§ 1) and with an additional hypothesis on L non-biautomatic lattices in Isom(E™) x
Aut(S).
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4.8.1 Graph and polyhedral products

Let K be a simplicial complex on the vertex set [m] := {1,...,m}. Let (X,A) =
{(Xi, A;) | i € [m]} be a collection of CW-pairs. The polyhedral product of (X, A) and
K, is the space

Xl' ifiGU,

(XvA)K = U ﬁYf c ﬁXi where Y7 =
oeK i=1 A; ifi¢o.

i=1

Let K be a simplicial complex on [m] vertices. Let ' = {I'y,...,I';,} be a set of
discrete groups. The graph product of T and K, denoted '’ is quotient of the free
product #e[,)I'i by the relations [v;,7;] =1 for all ; € T'; and ~; € T'; if 4 and j are
connected by an edge in K. Let BL = {BT,...,BI',}. The graph product I'* is the

fundamental group of the polyhedral product X = (BT, %)X

. Moreover, if K is a flag
compler, i.e. every nonempty set of vertices which are pairwise connected by edges spans

a simplex, then X is a K(I'®,1) [57, Theorem 1.1].

If every vertex group in a graph product I'" is Z then we call the group a right-angled
Artin group (RAAG) and denote 'Y by Aj. In this case we will identify the generating
set of Ay with the vertex set VL of L. The polyhedral product (S, ) is a classifying
space for Ajp, is referred to as the Salvetti complex for Ap and denoted by Sp. We

denote the universal cover by S .

4.8.2 Extending actions over the Salvetti complex

We will now adapt the construction of Horbez and Huang [38, Proposition 4.5] to extend

actions from trees to Salvetti complexes and present some applications.

Construction 4.8.1. Let L be a finite simplicial graph on vertices {vi,...,vy} and
suppose {v1,...,vxy = Fy, < Ar is a free subgroup. Let T' be a group acting on To by
isometries such that the action is label-preserving, then the action of I' on T extends
to an action of L on §L by isometries. Moreover, if I is a Ty -lattice then L is an
Aut(Sy)-lattice.

Proof. There is an isometric embedding 7o — Sp, with edges labelled by V = {vy, ..., v}
VL. Define ¢ : A, — Fy, by v+— 1 unless v € V and let 7 : §L — X be the covering
space corresponding to Ker(¢). Let I be a group acting on T3 preserving the labelling,

we want to extend the action of I on 75, to an action on §L.

We may identify the vertex set of 7o, with the vertex set of X via the embedding of
Tor, — S 1. We orient each edge of S 1, and endow X with the induced labelling and

=
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orientation. The 1-skeleton XY of X is obtained from 735 by attaching to each vertex
of Tax a circle for each v e VL\V.

Since I' acts by isometries on Tai label preservingly, it follows I' acts by isometries on
XM label preservingly and preserves the orientation of edges in VIL\V. It follows the
action extends to X. Let I' be the group of lifts of all automorphisms in I', we have a

short exact sequence

1 —— Aut(r) r r 1.

We have §L/f‘ = X /I so there is a bijection between the T-orbits of §£0) and the I'-orbits
of 7'2(,3). For a vertex v € X, each lift of g € Stabp(v) fixes a unique vertex o € Sp. In
particular, the cardinality of the vertex stabilisers is preserved. It follows from Serre’s

covolume formula that if I' was a Tyy-lattice, then I is an Aut(Sy)-lattice. O

Proposition 4.8.2. There is an ascending tower of lattices in Ty = Aut(Ty) with label

preserving action.

Proof. The groups will be index two subgroups of the HNN extensions constructed in
[10, Example 7.4]. We describe them here for the convenience of the reader. Let V, =
{f :Zy —> Zy : f afunction} = Z§ and o, € Aut(V;) by a,(f)(i) = f(i +1). Let
W, ={feV,: f(0)=1} = Z;~! and define T, to be the HNN extension

Vst | ff = o (f) Vf € W,).

By [10, Proposition 7.6] the group I', acts faithfully on 7; with quotient a loop (one
vertex and one edge) and covolume 1/m”. Moreover, if 7|’ then ', < I';y with index

r'—r

m and so for r > 2, the sequence (I';s)s>1 is an infinite ascending chain in Lat,(74).

Now, define ¢ : I, — Zg by ¢(V;) = 0 and ¢(t) = 1. The kernel A, is an index
two subgroup which satisfies the same properties as I', except now the quotient has
fundamental domain the first barycentric subdivision of a loop (two vertices and two

edges) and covolume 2/m". O

Corollary 4.8.3. Let L be a finite flag complex which is not a full simplex, then the
automorphism group Aut(§ 1) of the universal cover of the Salvetti complex contains a

tower of uniform lattices.

Proof. Fix r = 2. We apply Construction 4.8.1 to the lattices A,s for s > 1 in the
preceding proposition and obtain a sequence of lattices /N\rs in Aut(g ). The group /N\Ts
has two orbits of vertices, each stabilised by a group of order m””, it follows from Serre’s

Covolume Formula that A,s has covolume equal to 2/m"" . It remains to show that the
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inclusions A,s — A,r,s’ induce inclusions ./NXTS — Krs/ for s’ < s. Consider the covering
space T : S, — X where X is as in Construction 4.8.1. Note that X and hence Aut()
does not depend on r or s since each group acts with the same fundamental domain. In

particular, as Aps < A o we have Aps <A o for s <. O

Theorem 4.8.4. Let L be a finite simplicial graph on vertices V = {v1,...,vn} and
suppose (v, ..., vpy = Fy < Ar is a free subgroup and that {v1,...,vx} S Aut(L)-v1. Let
X be a proper CAT(0) space and assume H < Isom(X) acts cocompactly and minimally.

(i) Let T be a group acting on Tay by isometries, then the action of I' on T extends

to an action of L on §L by isometries.
(ii) If T is a uniform lattice in H x Ty, then [ isa uniform lattice in H x Aut(gL).

(iii) If in addition X is a CAT(0) polyhedral complex and T' is an (H x Tyy)-lattice,
then T is an (H x Aut(Sy))-lattice.

(iv) If the projection of T to H (resp. Ty ) is non-discrete, then so is the projection of
T to H (resp. Aut(SL)).

Proof. The proof of (i) is identical to Construction 4.8.1 except now we do not require
the action to be label preserving on 7. Indeed, the assumption that {vi,...,v} <
Aut(L)-v; implies there is an isometry of S 1, that permutes the edges around any vertex

of T, and so we can extend any action on 7o to Sp.

The proof of (ii) follows from taking the diagonal embedding I' — H x Aut(S;) and
then noting that the quotient (57, x X)/I' is compact and that cardinality of each of the

vertex stabilisers is finite. &

We prove (iii) in the same manner, noting the covolume on the product space is finite

by Serre’s Covolume Formula.

The images of the projections of I' and [' to H coincide. Since any element of I’
which acts non-trivially on 7s; lifts to an element acting non-trivially on S L, the non-
discreteness of 7, (I') implies the non-discreteness of Aut(gL)(f)' This proves (iv).
. O

Example 11. Applying the previous theorem to the Leary-Minasyan group LM(A)
which acts irreducibly on the product of a 10-regular tree and E? we obtain a lattice T’
in Isom(E2) x Aut(S7). Moreover, the projection to either factor is non-discrete. Thus,
if S . is irreducible, then I' is algebraically irreducible by [23]. By Theorem 4.7.7 the

group I' is not virtually biautomatic.

Recall that a group I' is quasi-isometrically rigid if every group quasi-isometric to I' is

virtually isomorphic to I'. The quasi-isometric rigidity of right angled Artin groups has
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received a lot of attention recently (see for instance [41] and the references therein). The
following corollary is immediate and appears to be new if L has no induced 4-cycle [41]

and Ay, is not a free group [45].

Corollary 4.8.5 (Corollary 4.C). Let L be a finite simplicial graph on vertices V. =
{vi,...,on} and let W = {v1,...,v5}. Suppose Aw < Ap is a free subgroup and that
Sym(W) < Aut(L). If Ay is irreducible, then there exists a weakly irreducible uniform
lattice in Aut(Sy) x Isom(E"™) which is not virtually biautomatic nor residually finite. In

particular, Ay x Z2 is not quasi-isometrically rigid.

Proof. The group I' constructed in Example 11 is algebraically irreducible, non-residually
finite, and quasi-isometric to Ay x Z?. Both properties are virtual isomorphism invariants
but Ay, xZ? is algebraically reducible and residually finite. In particular, Ay, xZ? is quasi-
isometric to I' but not virtually isomorphic to I' and so cannot be quasi-isometrically

rigid. O

Remark 4.8.6. It seems likely that one could take a polyhedral product of locally
CAT(0) cube complexes over a flag complex and then repeat the above constructions
to obtain towers of lattices in the automorphism group of the universal cover and more

weakly irreducible lattices in mixed products.

4.9 From trees to right-angled buildings

In this section will show that the functors introduced by A. Thomas in [58] take graphs
of H-lattices with a fixed Bass-Serre tree to complexes of H -lattices whose development
is a “sufficiently symmetric" right-angled building (we will make this precise later). Fi-
nally, we will combine these tools to construct a number of examples. In particular,
non-residually finite (Isom(E™) x A)-lattices where A is the automorphism group of a
sufficiently symmetric right-angled building, and non-residually finite algebraically irre-
ducible lattices in products of arbitrarily many isometric and non-isometric sufficiently

symmetric right-angled buildings.

4.9.1 Right angled buildings

Let (W,I) be a right-angled Coxeter system. Let N be the finite nerve of (W, ) and
P’ be the simplicial cone on N’ with vertex zg. A right-angled building of type (W, I)
is a polyhedral complex X equipped with a maximal family of subcomplexes called
apartments. Such an apartment is isometric to the Davis complex for (W,I) and the
copies of P’ in X are called chambers. Moreover, the apartments and chambers satisfy

the axioms for a Bruhat—Tits building.
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Let S denote the set of J < I such that W; < W is finite. Note that Wy = {1} so
@ € S. For each i € I, the vertex P’ of type {i} will be called an i-verter, and the union
of the simplices of P’ which contains the i-vertex but not xg will be called the i-face

There is a one-to-one correspondence between the vertices of P’ and the types J € S.

Let X be a right-angled building. A vertex of X has a type J € S induced by the
types of P’. For i € I an {i}-residue of X is the connected subcomplex consisting of all
chambers which meet in a given i-face. The cardinality of the {i}-residue is the number

of copies of P’ in it.

Theorem 4.9.1 (|40]). Let (W,I) be a right-angled Cozeter system and {¢;: i € I} a
set of integers such that q; = 2, then up to isometry there exists a unique building X of
type (W, I) such that for each i € I the {i}-residue of X has cardinality q; .

If (W, 1) is generated by reflections in an n-dimensional right-angled hyperbolic polygon
P, then P’ is the barycentric subdivision of P. Moreover, the apartments of X are
isometric to RH™. In this case we call X a hyperbolic building. We remark that a
right-angled building can be expressed as the universal cover of a polyhedral product,

however, we will not use this observation elsewhere.

Remark 4.9.2. Let (W, ) be a right-angled Coxeter system with parameters {¢;} and
nerve N. Let E; be a set of size ¢; and let C'E; denote the simplicial cone on F;, denote
the collections of these by £ and CFE respectively. The right-angled building of type
(W, I) with parameters {¢;} is the universal cover of the polyhedral product (CE, E)V.

4.9.2 A functor theorem

In this section we will recap a functorial construction of A. Thomas which takes graphs
of groups with a given universal covering tree to complexes of groups with development
a right-angled building. We will then show that this functor takes graphs of lattices to

complexes of lattices and deduce some consequences.

Let X be a right-angled building of type (W, I) and parameters {¢;} with chamber P’.
Suppose m;, ;, = o0 and define the following two symmetry conditions due to Thomas

[58]:

(T1) There exists a bijection g on I such that m;; = my@ g¢;) for all 4,5 € I, and
g(il) = iQ.

(T2) There exists a bijection h: {i € I : m;;; < 0} — {i € I : my,; < o0} such that
mij = Mp)n) for all 4,j in the domain, h(i1) = iz, and for all 7 in the domain

4 = 4n(i)-
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We include the construction adapted from [58] for completeness and for utility in the
proofs of the new results which will follow. An example of the construction for a graph
of groups consisting of a single edge is given in Figure 4.2

{i3vi4} Ge x Z% X ZQ4

{is} Ge X ZLg,

v, ia} {ia} G, x 7
X Ly

Gy X Zq4

{i27 7’4} Gv
{Zé} GU X ZQ5 ‘
Ge X Zq

Gy
{i2,i5} T G x Ly,

{i1}

{i1, 5}
{is}

FIGURE 4.2: The left pentagon shows a labelling of the types J € &. The right

pentagon shows the local groups after applying Thomas’ functor to a graph of groups

with a single edge. In both pentagons the dashed line shows the embedding of the

graph. If the graph of groups has a single vertex, then G, = Gy, ¢1 = ¢2, q3 = qu,

the edge ({i1,i5},{i1}) is glued to ({i2,i5}, {i2}), and the edge ({i1,i3},{i1}) is glued
to ({iz, 14}, {i2}).

Construction 4.9.3 (Thomas’ Functor [58]). Let X be a right-angled building of type
(W,I) and parameters {q;}. For each i1,i2 € I such that m; ;, = oo let T be the
(i, » Giy ) -biregular tree. Suppose (T1) holds and if ¢;, = gi, then (T2) holds with g an
extension of h. Then there is functor F : G(T) — C(X) preserving faithfulness and

COVETINGS.

We will construct F' as a composite Fyo Fy. We first define F} : G — Cy. Let (4, .A) be
a graph of groups and |A| the geometric realisation of A. We will construct a complex
of groups Fj(A) over |A|. For the objects we have:

e The local groups at the vertices of |A| are the vertex groups of A.

e For all e € FA let 0. = oz be the vertex of the barycentric subdivision |A|" at the

midpoint of e.
e The local group at o, in Fy(A) is A, = Ag.
e A monomorphism . : A — Ai(e) in A induces the same monomorphism in Fj (A).

Let ¢ : A — B be a morphism of graphs of groups over a map of graphs f, note that by
[58, Proposition 2.1] F} is not injective on morphisms. We define F(¢) as follows:

e The map f induces a polyhedral map [’ : |A|" — |B|’ so we will define Fj(¢) :
Fi(A) - Fi(B) over f.
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Now take the morphisms on the local groups to be the same as for ¢.

Let C(T) = Im(F1(G(T))) and G(Y) € C(T). Now, we will define F; : C(T) — C(X) as

follows:

Now,

We first embed Y’ into a canonically constructed polyhedral complex F5(Y'). For
each e € EY let P/ be a copy of P’ and identify the midpoint of e with the cone

vertex xo of P..

If Y is 2-colourable with colours i; and iy (from the valences of the Bass-Serre
tree if ¢;; # ¢, ), then we identify the vertex of e of type i; with the ij-vertex of
P..

Suppose Y is not 2-colourable. If e € FY is not a loop in Y then identify one
vertex of e with the i1-vertex of P/ and the other with the iy-vertex. If e forms
a loop then we attach P//h (where h is the isometry from the assumption) and

identify the vertex of e to the image of the i;- and ig-vertices of in P//h.

Glue together, either by preserving type on the i1- and is-faces or by the isometry
h, the faces of the the P/ and P!/h whose centres correspond to the same vertex

of Y. Let F5(Y) denote the resulting polyhedral complex.

Note that Y’ — F5(Y) and that each vertex of F»(Y) has a unique type J € S or
two types J and h(J) where i1 € J € S and h is the isometry from the assumption.

Fix the local groups and structure maps induced by the embedding of Y’ in F(Y)).
For each i € I let G; = Zgy, and for J = I let G; = HjeJGj' For each e € EY let
G be the local group at the midpoint of e.

Let J € § such that neither i¢; or is are in J. The local group at a vertex of
type J is Ge x G . The structure maps between such local groups are the natural

inclusions.

Let J € § and suppose i € J for one of k =1 or k = 2. Since m;, ;, = 00 both
i1 and ig cannot be in J. Let F, be the igx-face of P, or the glued face of P./h.

e

The vertex of type J in P. or P!/h is contained in Fe. Let v be the vertex of YV

e

identified with the centre of F, and let G, be the local group at v in G(Y)

The local group at the vertex of type J is Gy x G\ ;,). For each J' < J with
ir € J' the structure map G, x G 0,1 — Gy X Gy, s the natural inclusion.
For each J' < J with iy ¢ J' the structure map G. x Gy — Gy X G,y is the

product of the structure map G. — G, in G(Y') and the natural inclusion.

let ¢ : G(Y) — H(Z) be a morphism in C(7) over a non-degenerate polyhedral

map f:Y — Z. We will define F5(¢) as follows:



136 Paper 4 — Graphs and complexes of lattices

e If Y and Z are two colourable f extends to a polyhedral map Fy(f) : Fo(Y) —
F5(Z). Otherwise we use (T1) to construct Fy(f).

o If e VF(Y) then G; = G, x Gj where o is a vertex of Y’. The homomorphism
of local groups G, x G; — Hy;) x G is ¢, on the first factor and the identity

on the other factors.

e Let ae EF(Y). If 9, the structure map along a € F»(G(Y)), has a structure map
Yy from G(Y) as its first factor, put Fa(¢)(b) = ¢(a). Otherwise set Fy(¢)(b) = 1.

We will now show the functor takes graphs of lattices to complexes of lattices and deduce
a number of consequences. Recall for a locally compact group H that Lat(H) denotes
the (po)set of H-lattices and Lat,(H) denotes the (po)set of uniform H -lattices.

Theorem 4.9.4. Let Y be a right-angled building of type (W,I) and parameters {q;}
and let A = Aut(Y). For each i1,i3 € I such that m;, ;, = o0 let T be the (g, qi,)-
biregular tree and let T' = Aut(T). Suppose (T1) holds and if ¢;, = qi, then (T2) holds
with g an extension of h, and let F : G(T) — C(Y) be Thomas’ functor. Let X be a
finite dimensional proper CAT(0) space and assume H = Isom(X) contains a cocompact

lattice. The following conclusions hold:

(1) If G(T) is a graph of H -lattices, then F(G(T)) is a complex of H -lattices.
(ii) F induces an inclusion of sets Lat,(H x T) — Lat,(H x A).

(iii) If Y is a CAT(0) polyhedral complex then F' induces an inclusion of sets Lat(H x
T) — Lat(H x A).

Let T' be a uniform (H x T)-lattice and let FT be the corresponding (H x A)-lattice.

(iv) mp(T) is discrete if and only if mao(FT) is discrete. Moreover, ng(I') = g (FT).

(v) If T satisfies any of {algebraically irreducible, non-residually finite, not virtually

torsion free}, then so does FT.

Proof. We first prove (i). We will first verify the conditions on the local groups and
then construct a morphism to H. Let (B, B,1) be a graph of H-lattices and consider
the image L(Z) of B under F. Here Z = F(B). Each local group in L(Z) is of the
form G, x Gj where G, is a local group in B and G is a finite product of finite cyclic
groups. We have a morphism 1 : B — H such that the image of each local group G, is
an H -lattice and the restriction to G, has finite kernel. Thus, by construction the local
groups in L(Z) are commensurable in 71 (L(Z)). We define F(1),) to be the composite
Y|g, ome : Go X Gy - G; — ¥(G,), thus commensurability of the images in H is

immediate.
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We will now deal with the edges. Note the twisting elements in L(Z) are all trivial and
the complex of groups H has all structure maps the identity. Let the structure maps in
L(Z) be denoted by A, for a € EZ' and the structure maps in B by «, for e € EB. The
family of elements (¢.).epp in the path group 7(B) are mapped under ¢ to elements of
Commp (¢(Gy)) where G, is some local group. Now, let a € EZ’, then by construction
a either corresponds to a subdivision of an edge ¢ in EB in which case we define
(FY)(a) = 9(a). Or, a corresponds to a inclusion of local groups G, x G — G, x Gy,
in which case we define (F¢)(a) = 1g.

It remains to verify the two edge axioms for a morphism. For each a € EZ’ corresponding

to the subdivision of an edge a in EB we have

Ad((F)(a)) o F(¥ia)) = Ad(¥(a)) 0 Yi(a) © Ta = () © @a © Ta = F(y(a)) © Faa),

where 7, is the surjection G, x Gy — G,. For any other edge a € EZ’ we have

Ad((Fy)(a)) o F(tia)) = F(i(q)) and F(1yq)) © Aa = F(Yi(a))-

Finally, the other condition that (F1))(ab) = (F1))(a)(F)(b) for (a,b) € E*>Z’ is verified
trivially. Thus, F(B) = L(Z) is a complex of H -lattices. &

We will next prove (ii). Let I be an (H x T')-lattice. By Theorem 4.3.3, I splits as graph
of H-lattices B. Thus, by (i) we obtain a complex of H-lattices F(B) with fundamental
group A. By Theorem 4.6.2(i) it suffices to show that for each local group G, in F(B)
the kernel K, = Ker(ng|rg,) acts faithfully on X. Now, K, is a direct product of
L, = Ker(mg|g,) with a direct product of cyclic groups G, where G, is a local group
in B. By construction G acts faithfully on X and by Theorem 4.3.3, K, acts faithfully
on 7 whose automorphism group embeds into A. In particular, K, acts faithfully on
X. o

We will next prove (iii). We construct a complex of lattices as in the previous case.
The proof for (iii) is now identical once we have verified that covolume condition in
Theorem 4.6.2(iii). Let ¢ denote the covolume of an (H x T')-lattice I' with associated
graph of lattices (B, B), this is given by the formula ¢ = Y _, 4 u(I's) < 0. Now, every
vertex of the complex Z = F(B) has local group isomorphic to a finite extension of some
I's. In particular we may bound )} _, 11(I's) by € x ¢ where £ is the number of vertices

in the finite Coxeter nerve of X. o
The proof of (iv) follows from the proof of (i).

The proof of (v) follows from either applying Theorem 4.2.4 to (iv) (algebraically ir-
reducible) or the fact I' — FT and the properties of residual finiteness and virtual

torsion-freeness are subgroup closed. o O
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4.9.3 Examples and applications

In this section we will detail some sample examples and applications of the functor

theorem.

We can obtain a number of examples by applying Thomas’ functor to any irreducible
(Isom(E™) x T')-lattice. This will give a non-biautomatic group acting properly discontin-
uously cocompactly on E™ x X where X is a sufficiently symmetric right-angled building.

More precisely, we have the following corollary:

Corollary 4.9.5 (General version of Corollary 4.D). Let Y be a right-angled building
of type (W, I) and parameters {q;} and let A = Aut(Y'). For each iy,i9 € I such that
My, iy = 0 let T be the (gi,, gi,) -bireqular tree and let T' = Aut(T). Suppose (T1) holds
and if q;, = qi, then (T2) holds with g an extension of h and let F : G(T) — C(Y) be
Thomas’ functor. Let T' be a uniform (Isom(E"™) x T')-lattice and suppose 7o) (I) is
infinite, then FT is a uniform (Isom(E™) x A)-lattice which is not virtually biautomatic
nor residually finite. In particular, if Y is irreducible, then the direct product of a uniform

A-lattice with 7?2 is not quasi-isometrically rigid.

Proof. By Theorem 4.9.4 FT is a uniform (Isom(E™) x A)-lattice with a non-discrete pro-
jection to O(n). That FT' is not virtually biautomatic then follows from Theorem 4.7.7.
The failure of quasi-isometric rigidity follows from the fact that the direct product of a
uniform A lattice with Z? is reducible, whereas, the weakly irreducible lattice is alge-
braically irreducible by Theorem 4.2.4 and so does not virtually split as a direct product

of two infinite groups. In particular, the groups cannot by virtually isomorphic. O

Example 12. Let I' = LM(A) where A is the matrix corresponding to the Pythagorean
triple (3,4,5) . Recall the group acts on E? x T1g. Let X be the right angled building
whose Coxeter nerve is the regular pentagon and whose parameters are given by ¢ =
g2 =10, g3 = q4 = k, and g5 = £. Let A be the automorphism group of X and consider
FT the image of I" under Thomas’ functor F' as in Figure 4.2. By Theorem 4.9.4, the
group FT is a non-residually finite (Isom(E"™) x A)-lattice with non-discrete projections
to both factors and is irreducible as an abstract group. Moreover, by the previous

corollary, FT is not virtually biautomatic.

We will now construct a presentation for Ay, := FI'. The group has generators

a,b,x3,x4,x5,t and relations
:U’?f = :xé =1, [avb]a [aa$3]’ [a,x4], [aa$5]’ [ba$3]’ [ba$4]’ [ba$5]7 [$3,1:4],

ta’b 17 = @%b, tab®t! = a7, tast™! = x4, [t, 5]

The following proposition shows the group is virtually torsion-free.
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Proposition 4.9.6. The group Az in Evample 12 is virtually torsionfree. This is
witnessed by the index 16 subgroup

A:={a, b, zatzat™", wazat 2, (z523)%, (z574)? t ' agzat™h, (tzszat™h)?).

Proof. The quotient A /A is isomorphic to Dy x Zg which has order 16. By construc-
tion every torsion element of Ago is conjugate to some power of z3, x4, x5 or x3z4.
Indeed, every torsion element is contained in a vertex or edge stabiliser of the action on
the pentagonal building and acts trivially on E2. Each of these elements is mapped to a

non-trivial element of Dy x Zsy. In particular, the kernel A is torsion-free. O

Corollary 4.9.7. The group A admits a presentation with 8 generators

a, b) Y1, Y2, Y3, Y4, Ys, Yo

and 20 relations

[a,b], [a,yal, [a,ys], [b,ys], [b,val,
I T
a yrbatyT b la Y,
ba_lbyflb_2ay1,
veys b oy yy Tbye,
Y2ys Ya 0 yayeys La,
Y b~ ayays ta” ba " ys,
ysa b~ ys ysysa®byy tys
Y1ys Y3 Ysyr Yayels s Usv1ve s
ys tab~ ysysys bPa bysyg
ys 'ba Vrysyays b ab P ysyy
y5_1ab*3y5b*1a*2y5_1b2a*1by5a2b,
bila73bfla72y571bflabf3a2y5ba2b73,
y;lbabygyglb_lab_2y5b_1a_2b_2ayg1b_lab_2y5b_1a_2,
ay5a4ba2b2y5_1b2a_1b3a_1b3a_1by5a4b2y5_1b2,
ysysys ysaba’bys b0 a ysa’bys 0P bysyg tyays s b aysbabys 'bra b
and the abelianization of A is isomorphic to Z% VAR

Remark 4.9.8. It follows immediately from the presentation of A that it and hence
Ay 2 contain a subgroup isomorphic to Z3. For example (a,b, y3) or {a,b,ys). Note that
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this coincides with the dimension of a maximal flat in X x E2. Since both groups have a

commensurated abelian subgroup their L?-cohomology vanishes (see Proposition 4.4.3).

Example 13. Let n > 2 and let I'), be the irreducible lattice constructed in Example 9
acting on E™ x T19,. Let X be a right angled building satisfying (T1) and (T2) with
automorphism group A and parameters {¢;} all equal to 10n. Applying Thomas’ functor
and Theorem 4.9.4 to T',, we obtain a non-residually finite (Isom(E"™) x A)-lattice with
non-discrete projections to both factors. Moreover by Corollary 4.9.5, I'), is not virtually

biautomatic.

We will now show the existence of non-residually finite lattices in arbitrary products
of sufficiently symmetric isometric and non-isometric right-angled buildings. We note
that Bourdon’s “hyperbolization of Euclidean buildings" [16, Section 1.5.2| can be used
to construct weakly irreducible uniform lattices in products of hyperbolic buildings. We

will provide a number of examples to show that the groups we construct here are distinct.

Corollary 4.9.9. Let I' be a weakly irreducible lattice in product of trees T x- - -x T, such
that Ti is (tk,,tk,)-bireqular. Let X1 x --- x X, be a product of irreducible right angled
buildings satisfying (T1) and (T2). Suppose Xy is of type (W, Ix), has parameters
{tkl,tkz,qkS,...,qknk} where my, ;, = 0 and A = Aut(Xy). The lattice A = F"T
obtained by applying Thomas’ functor n times (once for each tree Ty corresponding to
the building Xy, ) is a lattice in Ay X - -+ x Ay, , is weakly and algebraically irreducible, and

s non-residually finite.

Proof. Let Ty, = Aut(Ty). The result follows from applying Theorem 4.9.4 n times as
follows. Consider T' as a graph of (Ty x .-+ x T,)-lattices and apply F to obtain a
(A] x Ty x -+ x T,)-lattice with the desired properties (non-residual finiteness follows
from the fact that the projection to T x - - - x T}, has a non-trivial kernel). Now, consider

FT as a graph of (A1 x T3 x...T,)-lattices and proceed by induction on the index k. [

Examples 14. We will detail three examples:

(i) In [53, Theorem 2.27, Theorem 3.15] the authors construct infinite series of explicit
examples of irreducible S-arithmetic quaternionic lattices acting simply transitively
on the vertices of products of n > 1 trees of constant valency, in each case we may
apply Theorem 4.9.9 to obtain algebraically and weakly irreducible non-residually
finite uniform lattices acting on a product of n buildings. It is unclear whether

these groups are related to the groups constructed by Bourdon’s hyperbolization.

(ii) In [14] [12] Burger and Mozes construct for each pair of sufficiently large even
integers (m,n) a finitely presented simple group as a uniform lattices in a product
of trees T, x Tp (for more examples see [52] [51] [50]). Applying Theorem 4.9.9,

we obtain uniform non-residually finite algebraically and weakly irreducible lattices
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acting on a product of buildings X; x Xy each satisfying (T1) and (T2) with X;

having some parameters equal to m and Xy having some parameters equal to n.

(iii) Applying Theorem 4.9.9 to the non-uniform lattices in products of arbitrarily many
trees constructed in Example 7 yields weakly irreducible non-uniform lattices in

products of arbitrarily many sufficiently symmetric right-angled buildings.

4.10 Some questions

In this section we will raise a conjecture and some questions left open by this paper. In
light of the results in Section 4.4.4 showing that many CAT(0) groups are autostackable

(in particular the Leary-Minasyan groups) we raise the following conjecture:

Conjecture 4.10.1. Every CAT(0) group is autostackable.

In every example of an (Isom(E™) x T")-lattice known to the author, the lattice is virtually
torsion-free. Note that if there was a non-virtually torsion-free (Isom(E"™) x T')-lattice

', then any inseparable torsion element must be contained in Ker(migomgn))-
Question 4.10.2. Are there non-virtually torsion-free (Isom(E™) x T')-lattices?
Since it is possible to characterise (Isom(E™) x T')-lattice in terms of C*-simplicity and

virtual fibring, it would be interesting to recover the characterisation for complexes of
Isom(E™)-lattices.

Question 4.10.3. Are the weakly irreducible non-biautomatic groups constructed in
Section 4.8 and Section 4.9 C*-simple? Do they virtually fibre?

More generally we ask:

Question 4.10.4. When is a CAT(0) lattice C*-simple?

The characterisation of weakly irreducible (Isom(E™) x T')-lattices (Theorem 4.B) sug-
gests the following question:

Question 4.10.5. Can C*-simplicity and virtual fibring of a Leary-Minasyan group

LM(A) be determined by properties of the matrix A?

Finally, we remark that in [42] the constructions in this paper were used by the author to
construct an example of a hierarchically hyperbolic group which is not virtually torsion-

free.
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Paper 5

HIERARCHICALLY HYPERBOLIC GROUPS AND VIRTUAL
TORSION-FREENESS

SAM HUGHES

ABSTRACT. We construct non-virtually torsion-free hierarchically hyperbolic groups.

5.1 Introduction

Hierarchically hyperbolic groups (HHGs) and spaces (HHSs) were introduced by Behr-
stock, Hagen and Sisto in [5]. Hierarchically hyperbolic groups are known to satisfy a
number of properties such as having finite asymptotic dimension [4, Theorem A], having
a uniform bound on the conjugator length of Morse elements [1], and for virtually torsion-
free HHGs, their uniform exponential growth is well understood [2]. HHGs belong to
the class of semihyperbolic groups [13, Corollary F| (see also [11]). In particular, they
have undistorted abelian subgroups, solvable conjugacy problem, finitely many conjugacy

classes of finite subgroups, and are of type FP,.

That HHGs have only many finitely many conjugacy classes of finite subgroups implies
that every residually finite HHG is in fact virtually torsion-free. This motivates the
question of whether there exist any non-virtually torsion-free HHGs. The question is of
considerable interest to specialists since, for example, a number of theorems about HHGs
require the assumption of virtual torsion-freeness (see for instance [2, Theorem 1.1] and
[22, Theorem 1.2(3%)]).

In this paper we construct a CAT(0) lattice I acting faithfully and geometrically on a
product of trees. We then prove that I' is a hierarchically hyperbolic group and has no

finite index torsion-free subgroups.

Theorem 5.A (Theorem 5.4.3). There exist hierarchically hyperbolic groups which are

not virtually torsion-free.

To the author’s knowledge this is the first explicit example of an HHG which is not
virtually torsion-free. The author suspects that it is possible to apply the results of
Hagen-Susse [14] to Wise’s examples in [24] to obtain an HHG which is not virtually
torsion-free, however, the construction presented here is much more elementary and gives

an explicit HHG structure.

147



148 Paper 5 -

Acknowledgements

The author would like to thank his PhD supervisor lan Leary for his guidance and sup-
port. Additionally, the author would like to thank Mark Hagen, Ashot Minasyan, Harry
Petyt, and Motiejus Valiunas for helpful correspondence and conversations. Finally, the
author would like to thank Yves de Cornulier for the idea inspiring the examples in
Section 5.4 .

5.2 Definitions

In this section we will give the relevant background on HHSs and HHGs for our endeav-
ours. The definitions are rather technical so we will only focus on what we need, for a full
account the reader should consult [3, Definition 1.1, 1.2.1]. We will follow the treatment
in [18, Section 2|. To this end, a hierarchically hyperbolic space (HHS) is pair (X, S)
where X is an e-quasigeodesic space and & is a set with some extra data which essen-
tially functions as a coordinate system on X where each coordinate entry is a hyperbolic

space. The relevant parts of the axiomatic formalisation are described as follows:

e For each domain U € &, there is a hyperbolic space CU and projection my : X —
CU that is coarsely Lipschitz and coarsely onto [3, Remark 1.3].

e G has a partial order =, called nesting. Nesting chains are uniformly finite, and

the length of the longest such chain is called the complezity of (X,S).

e G has a symmetric relation |, called orthogonality. The complexity bounds pair-

wise orthogonal sets of domains.

e The relations £ and L are mutually exclusive. The complement of =, 1 and =

is called transversality and denoted .

e If U € & and there is some domain orthogonal to U, then there is some W € &
such that V = W whenever VLU. We call W an orthogonal container.

e Whenever UV or U — V there is a bounded set p‘[f c CV. These sets, and

projections of elements z € X, are consistent in the following sense:

— p-consistency: Let U, V,W € & such that U = V and p% is defined, then
p% coarsely agrees with p“fv;

— If UAV then min{dey (7 (), p;), dev (my (z), p¥)} is bounded.

All coarseness may taken to be uniform so we can and will fix a uniform constant € |3,
Remark 1.6].
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We remind the reader that these axioms for an HHS are not a complete set but only
recall the structure we will need. For the full definition the reader should consult [3,

Definition 1.1, 1.2.1]. The following definition of an HHG is however complete.

Let X be the Cayley graph of a group I" and suppose (X, &) is an HHS, then (T, &) is
a hierarchically hyperbolic group structure (HHG) if it also satisfies the following:

(i) T acts cofinitely on & and the action preserves the three relations. For each g € G
and each U € &, there is an isometry g : CU — CgU and these isometries satisfy
g-h=gh;

(i) for all U,V € & with UMV or V = U and all g,z € T there is equivariance of the

|4
form gy (gx) = mou(ga) and gpy; = pJ;-

Note that this is not the original definition of a HHG as given in [3|. Instead, we have
adopted the simpler axioms from [18|, the axioms we have given imply the original

axioms, however, by [12, Section 2.1] they are in fact equivalent.

5.3 Hierarchical hyperbolicity and products

In this section we provide a proof of the folklore result that a group acting geometrically
on a product of §-hyperbolic spaces with equivariant projections is an HHG. Let X be a
proper metric space and let H = Isom(X), then H is a locally compact group with the
topology given by uniform convergence on compacta. Let I' be a discrete subgroup of
H. We say I is a uniform lattice if X /T" is compact. Recall that Isom(E") = R" x O(n),
we denote by o, the projection to O(n).

Proposition 5.3.1. Let n > 0 and let H < Isom(E") x [[:Z, Isom(X;) be a closed
subgroup, where each X; is a proper non-elementary § -hyperbolic space. Assume H acts
minimally and cocompactly on X = E™ x [[72, X; and let T be a uniform H -lattice. If
TO(n) (T) s trivial, then T is a hierarchically hyperbolic group.

Proof. Let q be a T'-equivariant quasi-isometry Cay(I',A) — X given by the Svarc-
Milnor Lemma [6, 1.8.19]. If n > 0, then for j € {1 —n,...,0} let X; = R and
H; =Isom(E). If n > 0, then let i € {1 —n,...,m}, otherwise let ¢ € {1,...,m}. Now,
products of HHSs are HHSs so (X, &) is an HHS [3, Proposition 8.27]. Moreover, by
the description given in the proof of [3, Proposition 8.27| every domain of & is either

bounded (in fact a point) or some X;.

Note that & is finite and the action on & is trivial. Every domain of the structure is
either bounded (in fact a point) or one of the X;. In the first case the I' action is trivial

and in the second case I' acts via mpg,. This immediately yields the first axiom.
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For the second axiom consider the following diagram where the vertical arrows are given

by applying the obvious group action:

| |

I x Cay(I', A) ™50 (1) x X,
Cay(I',A) > X

~

ﬂ'Xioq

We will verify the diagram commutes. Let x € Cay(I', A) and g € T'. First, we evaluate

the composite map going down then across, we have

(9,x) — gz — mx,(q(g7)).

Going the other way we have

(9,2) = (7, (9), 7x;(q(2))) = (7r;(9), 7x, (¢(x)) = 7x,(99(x)) = 7x,(¢(92))

where the last equality is given by the I'-equivariance of ¢. In particular, grx,(z) =
mgx,(9x) = mx,(g9x). The other condition for equivariance is established immediately

since any two domains that are not points are orthogonal to each other. O

We restate this result in terms of groups acting geometrically on products of CAT(—1)
spaces. For an introduction to CAT(k) groups and spaces see [6]. We will assume some
non-degeneracy conditions on the CAT(0) spaces to avoid many technical difficulties
associated with the CAT(0) condition (see [10, Section 1.B]| for a thorough explanation).
A group H acting on a CAT(0) space X is minimal if there is no H-invariant closed

convex subset X’ < X . If Isom(X) is minimal, then we say X is minimal.

Corollary 5.3.2. Let I' be a group acting properly cocompactly by isometries on a fi-
nite product of proper irreducible minimal CAT(—1)-spaces without permuting isometric

factors, then T' is a hierarchically hyperbolic group.

Proof. The group I' splits as a short exact sequence
{1} - F —-T — A — {1},

where A satisfies the conditions of the previous theorem and F' is the kernel of the action
onto the product space. Since F' acts trivially on the product space, it acts trivially on
the HHG structure for A. The epimorphism ¢ : I' = A induces an equivariant quasi-
isometry 1 on the associated Cayley graphs. Thus, we may precompose every map in

the previous theorem with ¢ or ¢ to endow I' with the structure of a HHG. O

To prove a converse to this corollary one may need to investigate the commensurators of

maximal abelian subgroups of a hierarchically hyperbolic group T'. Indeed, the CAT(0)
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not biautomatic groups introduced by Leary—Minasyan [17] and the groups constructed
by the author in [15] have maximal abelian subgroups which have infinite index in their
commensurator and are not virtually normal. All of these groups have a non-discrete

projection to O(n) < Isom(E"™).

Question 5.3.3. Suppose a hierarchically hyperbolic group I' has the property that
every abelian subgroup is contained in a maximal abelian subgroup. Then, is a maximal
abelian subgroup A of I" either finite index in its commensurator Commp(A) or virtually

normal?

5.4 Non-virtually torsion-free HHGs

In this section we will construct a hierarchically hyperbolic group which is not virtually

torsion-free.

Let A be a Burger-Mozes simple group [7] [8] [9] acting on 71 x T2 splitting as an
amalgamated free product F, *p, F, with embeddings i,j : F;,, — F},. This defines a
groups A which embeds discretely into the product of 77 = Aut(71) and T = Aut(72)
with compact quotient. For instance one may take Rattaggi’s example of a lattice in the
product of an 8-regular and 12-regular tree which splits as Fr =g, F7 [21] (see also [20]

or one of Radu’s examples [19]).

Define A = Zj, x F,, for p prime such that the F),-action is non-trivial. Consider the
embeddings Z,; : F,, — F, »— A given by the composition of i or j with the obvious
inclusion. Now, we build a group I' as an amalgamated free product A #p,, A, note
that I' surjects onto the original Burger-Mozes group A with kernel the normal closure
of the torsion elements. Let 73 denote the Bass-Serre tree of I' and let T3 denote the

corresponding automorphism group.

Proposition 5.4.1. T is a uniform (T} x Ts)-lattice which does not permute the factors.

This can be easily deduced by endowing I" with a graph of lattices structure in the sense
of [15, Defintion 3.1| and then applying |15, Theorem A]. Instead we will provide a direct

proof.

Proof. The group I' acts on Bass-Serre tree T3 and also on 77 via the homomorphism
1 : I' > T defined by taking the surjection I' = A. The diagonal action on the product
space T1 x T3 is properly discontinuous cocompact and by isometries. The kernel of
the action is trivial, since the only elements which could act trivially are the torsion
elements. However, these all clearly act non-trivially on 73. Thus, the action is faithful.
We conclude that I' is a uniform (7 x T3)-lattice. O

It remains to show I is not virtually torsion-free.
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Proposition 5.4.2. T' is not virtually torsion-free.
The author thanks Yves de Cornulier for the following argument.

Proof. Note that F, normally generates A. Indeed, let a be a generator of Z, and
f € F, act by fa'f~! + a%i. The elements a~'fa and af 'a=! are in ((F},)) by
definition, thus, a~!faaf la™' = a~ta*a™! = a® € ((F,)). It immediately follows

a € {{(F,)) and so F, normally generates A.

Now, the finite residual of I', that is the intersection of all finite-index subgroups of I',
denoted T'(®) | clearly contains the Burger-Mozes simple group A. Thus, both copies of
F, are contained in I'®) since these are subgroups of A. As F, normally generates
A, it follows T'(®) = T'. Since, A is not torsion-free, we conclude I' is not virtually

torsion-free. O

To summarise we have the following theorem.

Theorem 5.4.3 (Theorem 5.A). T' is a hierarchically hyperbolic group which is not

virtually torsion-free.

Proof. By Proposition 5.4.1 and Corollary 5.3.2 we see I' is a hierarchically hyperbolic

group. By Proposition 5.4.2 we see I' is not virtually torsion-free. O

Remark 5.4.4. In [15, Corollary 9.9 the author gave a way to use A. Thomas’s con-
struction in [23| to promote lattices in products of trees to lattices in products of “suf-
ficiently symmetric” right-angled buildings. Applying [15, Corollary 9.9] to one of the
non-virtually torsion-free lattices I' we obtain a non-virtually torsion-free lattice A act-
ing on a product of “sufficiently symmetric” right-angled hyperbolic buildings each not

quasi-isometric to a tree. Moreover, by Corollary 5.3.2 A is hierarchically hyperbolic.
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