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by Sam Hughes

This is a ‘three paper thesis’, the main body of which consists of the following papers:

[1] S. Hughes, Cohomology of Fuchsian groups and non-Euclidean crystallographic
groups, preprint, available at arXiv:1910.00519 [math.GR], 2019.

[2] S. Hughes, On the equivariant K- and KO-homology of some special linear groups,
to appear in Algebraic and Geometric topology. Available at arXiv:2004.08199
[math.KT], 2020.

[3] I. Chatterji, S. Hughes and P. Kropholler, Groups acting on trees and the first `2-Betti
number, to appear in Proceedings of the Edinburgh Mathematical Society. Available
at arXiv:2004.08199 [math.GR], 2020.

[4] S. Hughes, Graphs and complexes of lattices, preprint, available at arXiv:2104.13728
[math.GR], 2021.

[5] S. Hughes, Hierarchically hyperbolic groups, products of CATp´1q spaces, and virtual
torsion-freeness, preprint, available at arXiv:2105.02847 [math.GR], 2021.

In [1], we compute the cohomology groups of a number of low dimensional linear groups.
In particular, for each geometrically finite 2-dimensional non-Euclidean crystallographic
group (NEC group), we compute the cohomology groups. In the case where the group
is a Fuchsian group, we also determine the ring structure of the cohomology.

In [2], we study K-theoretic properties of arithmetic groups in relation to the Baum–
Connes Conjecture. Specifically, we compute the equivariant KO-homology of the clas-
sifying space for proper actions of SL3pZq, and the Bredon homology and equivariant
K-homology of the classifying spaces for proper actions of SL2pZr1p sq for each prime p.
Finally, we prove the Unstable Gromov-Lawson-Rosenberg Conjecture on positive scalar
curvature for a large class of groups whose maximal finite subgroups are odd order and
have periodic cohomology.

In [3], we generalise results of Thomas, Allcock, Thom-Petersen, and Kar-Niblo to the
first `2-Betti number of quotients of certain groups acting on trees by subgroups with
free actions on the edge sets of the graphs.
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iv

In [4], we study lattices acting on CATp0q spaces via their commensurated subgroups.
To do this we introduce the notions of a graph of lattices and a complex of lattices giving
graph and complex of group splittings of CATp0q lattices. Using this framework we
characterise irreducible uniform pIsompEnqˆT q-lattices by C˚-simplicity and the failure
of virtual fibring and biautomaticity. We construct non-residually finite uniform lattices
acting on arbitrary products of right angled buildings and non-biautomatic lattices acting
on the product of En and a right-angled building. We investigate the residual finiteness,
L2-cohomology, and C˚-simplicity of CATp0q lattices more generally. Along the way we
prove that many right angled Artin groups with rank 2 centre are not quasi-isometrically
rigid.

In [5], we prove that a group acting geometrically on a product of proper minimal
CATp´1q spaces without permuting isometric factors is a hierarchically hyperbolic group.
As an application we construct, what to the author’s knowledge are, the first examples
of hierarchically hyperbolic groups which are not virtually torsion-free.
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Chapter A

Introduction

We will refer to the papers as Paper 1 [Hug19], Paper 2 [CHK20], Paper 3 [Hug20],
Paper 4 [Hug21a], and Paper 5 [Hug21b]. Papers 1, 3, 4, and 5 are single-author papers.
Paper 2 is joint work with Indira Chatterji and Peter Kropholler. The paper was based
on an unfinished project of of Peter and Indira, specifically, they had proved the main
result (Theorem 2.A) for graphs of finite groups. Peter suggested that I take a look
at the project and I found a strategy to extend the result to the class of groups C and
proved the additional computations (Theorem 2.E).

Note that Section B.4 contains a brief summary of joint work with Pierre-Emmanuel
Caprace in which we present a sketch of a proof fixing a gap in the main theorem of
“Regular elements of CATp0q groups” by Pierre-Emmanuel Caprace and Gašper Zadnik
[CZ13].

Other papers and preprints completed by the author during his PhD studies may be
found here [GH21] and [HMPSSn21].

In Paper 1 we compute the group cohomology of lattices in PGL2pRq using the equivariant
spectral sequence for a Γ-space. The paper is self contained, however, it is expected the
reader is familiar with group homology and cohomology. An excellent reference for this
is [Bro94].

In Paper 2 we investigate the L2-cohomology of certain graphs of groups. The techniques
rely on basic properties of the L2-cohomology theory and are developed in the paper. For
additional background the reader could consult [Lüc02]. The paper also heavily relies on
groups acting on trees, the relevant background here is given in the Section B.1.

In Paper 3 we turn our attention to the equivariant cohomology theory of Bredon and its
connection with various conjectures in K-theory. We perform a number of explicit com-
putations of K-groups of arithmetic groups, and prove the Unstable Gromov–Lawson–
Rosenberg Conjecture for a large class of groups (Theorem 3.E). Again the paper is
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2 Chapter A Introduction

essentially self contained, however, the computations of KΓ
˚ pEΓq for Γ “ PSL2pZr1p sq

use the Bruhat-Tits’ tree for Γ. We provide background on the Bruhat-Tits’ tree for
PSL2pZr1p sq in Section B.1.2.3.

In Paper 4 we study lattices in more general products of CATp0q spaces. We introduce the
notions of a graph and a complex of lattices and use this to deduce a number of structural
properties of lattices in mixed products of either a tree or CATp0q polyhedral complex
and a fairly arbitrary CATp0q space. The paper relies and builds on work of Caprace–
Monod [CM09b] [CM09a] [CM19] and Leary–Minasyan [LM19]. An introduction to
CATp0q groups and spaces is given in Section B.2, an introduction to Leary–Minasyan
groups is given in Section B.1.2.2. Finally, the background on CATp0q lattices in given
in Section B.3

In Paper 5 we construct a hierarchically hyperbolic group which is not virtually torsion-
free answering a well known folklore question. The paper uses elementary methods and
is essentially self contained. However, many of the proofs are streamlined by results in
Paper 4 - we highlight the relevant parts in the body of the paper. Indeed, it was whilst
writing Paper 4 that the author came up with the ideas for this example.

Finally, I would like to include a few words about how these projects fit together. As
the title suggests the overarching theme is “equivariant cohomology, lattices, and trees”
- all but one of the papers (Paper 5) features some cohomology calculation, all but one
of the papers features lattices acting on CATp0q spaces (Paper 2), and all of the papers
feature groups acting on trees. The project which spurred this was to construct a variant
of Leary and Minasyan’s groups LMpAq that acted on the real hyperbolic plane RH2,
we hoped that this group would be a counterexample to the Flat Closing Conjecture.

The project required an understanding of NEC groups. At some point I realised the
cohomology of these NEC groups had not be computed and so Paper 1 was born. I
figured that the calculation was profitable, not just because it was interesting in its own
right, but because it could be used to give a deeper understanding of the cohomology of
these “hyperbolic Leary–Minasyan groups”. Once this was computed I became interested
in other cohomology theories (L2 and Bredon) which led to Paper 3 and the joint paper
with Indira Chatterji and Peter Kropholler (Paper 2). Paper 3 originally began life as
an attempt to compute the Bredon cohomology of all lattices in PSL2pRq ˆ Tp`1, where
p is a prime and Tp`1 is the automorphism group of pp ` 1q-regular tree. This was a
far too broad problem to tackle, however, the special case of PSL2pZr1p sq was tractable
(Theorem 3.C). After learning more about the isomorphism conjectures in K-theory and
reading [DP03] I then proved the result on the Unstable Gromov–Lawson–Rosenberg
Conjecture (Theorem 3.E).

Returning to the “hyperbolic Leary–Minasyan groups” I soon realised that the struc-
ture theory of Caprace–Monod could be extended using more combinatorial methods,
this gave rise to Paper 4 and Paper 5. Although “hyperbolic Leary–Minasyan groups”
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are not counterexamples to the Flat Closing Conjecture by a result of Caprace–Žadnik
[CZ13]. However, it transpired that the main result of this paper contains an error (the
statement still applies for the above application and we give an ammended statement in
Section B.4). This ultimately led to the work with Pierre-Emmanuel Caprace where we
hope to fix the paper for the general case.





Chapter B

Background

This chapter provides some background on the papers included in this thesis. The
papers are largely self contained, however, we take the opportunity to provide additional
information about some of the groups which will appear in this thesis. The cohomology
theories we study (ordinary group cohomology, L2-cohomology, and Bredon cohomology)
will be introduced in the relevant papers. However, the reader may wish to consult
[Bro94] for a background on group cohomology, [Lüc02] or [Kam19] for a background on
L2-cohomology, and [MV03] for Bredon cohomology.

This entire chapter contains no original content except in Section B.4 where we present
a sketch of a proof fixing a gap in the main theorem of [CZ13].

B.1 Groups acting on trees

We shall state some of the definitions and results of Bass-Serre theory. In particular, the
action will be on the right. We follow the treatment of Bass [Bas93]. Throughout a graph
A “ pV A,EA, ι, τq should be understood as it is defined by Serre [Ser03], with edges in
oriented pairs indicated by e, and maps ιpeq and τpeq from each edge to its initial and
terminal vertices. We will, however, often talk about the geometric realisation of a graph
as a metric space. In this case the graph should be assumed to be simplicial (possibly
after subdividing) and should have exactly one undirected edge e for each pair pe, eq. We
will often not distinguish between the combinatorial and metric notions.

A tree T is a connected non-empty graph without circuits. Let m and n be cardinals. A
tree is n-regular if each vertex has valence of cardinality n. A tree T is pn,mq-biregular
if the vertices of T admits a 2-colouring, the vertices of the same colour are not adjacent,
vertices of the first colour have valence m, and vertices of the second colour have valence
n.

5
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Figure B.1: A 4-regular tree.

B.1.1 Graphs of groups

A graph of groups pA,Aq consists of a graph A together with some extra data A “

pVA, EA,ΦAq. This data consists of vertex groups Av P VA for each vertex v, edge
groups Ae “ Ae P EA for each (oriented) edge e, and monomorphisms pαe : Ae Ñ

Aιpeqq P Φ for every oriented edge in A. We will often refer to the vertex and edge groups
as local groups and the monomorphisms as structure maps.

The path group πpAq has generators the vertex groups Av and elements te for each edge
e P EA along with the relations:

$

’

&

’

%

The relations in the groups Av,
te “ t´1

e ,

teαepgqt
´1
e “ αepgq for all e P EA and g P Ae “ Ae.

,

/

.

/

-

We will often abuse notation and writeA for a graph of groups. The fundamental group of
a graph of groups can be defined in two ways. Firstly, considering reduced loops based at
a vertex v in the graph of groups, in this case the fundamental group is denoted π1pA, vq
(see [Bas93, Definition 1.15]). Secondly, with respect to a maximal or spanning tree of
the graph. Let X be a spanning tree for A, we define π1pA, Xq to be the group generated
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by the vertex groups Av and elements te for each edge e P EA with the relations:
$

’

’

’

’

&

’

’

’

’

%

The relations in the groups Av,
te “ t´1

e for each (oriented) edge e,
teαepgqt

´1
e “ αepgq for all g P Ae,

te “ 1 if e is an edge in X.

,

/

/

/

/

.

/

/

/

/

-

Note that the definitions are independent of the choice of basepoint v and spanning tree
X and both definitions yield isomorphic groups so we can talk about the fundamental
group of A, denoted π1pAq.

Let G be the fundamental group corresponding to the spanning tree X. For every vertex
v and edge e, Av and Ae can be identified with their images in G. We define a tree with
vertices the disjoint union of all coset spaces G{Av and edges the disjoint union of all
coset spaces G{Ae respectively. We call this graph the Bass-Serre tree of A and note
that the action of G admits X as a fundamental domain.

Given a group G acting on a tree T , there is a quotient graph of groups formed by
taking the quotient graph from the action and assigning edge and vertex groups as the
stabilisers of a representative of each orbit. Edge monomorphisms are then the inclusions,
after conjugating appropriately if incompatible representatives were chosen.

Theorem B.1.1. [Bas93] Up to isomorphism of the structures concerned, the processes
of constructing the quotient graph of groups, and of constructing the fundamental group
and Bass-Serre tree are mutually inverse.

B.1.2 Examples

We will detail a number of examples groups acting on trees, these will appear in several
of the papers later in the thesis.

B.1.2.1 Amalgamated free products and SL2pZq

Given groups A, B, and C, and monomorphisms αA : C Ñ A and αB : C Ñ B, we
may form the amalgamated free product Γ “ A ˚C B. To do this we take the free
product A ˚ B and then identify αApCq with αBpCq. A corresponding graph of groups
for this construction is given as follows: Take a single directed edge e from a vertex v
to a vertex w. Assign the vertex group A to v, B to w and the edge group C to e.
Now, the monomorphism αA is assigned to e and the monomorphism αB is assigned to
e. This is illustrated in Figure B.2 with monomorphisms omitted. It is easy to see that
the Bass-Serre tree for the amalgamated free product Γ is the p|A : C|, |B : C|q-biregular
tree.
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A

v

B

w

C
e

Figure B.2: A graph of groups for an amalgamated free product A ˚C B

Example B.1 (SL2pZq). [Ser03, Page 35] The group SL2pZq acts on the real hyperbolic
plane RH2 by linear fractional transforms. Consider the circular arc e in the upper half
plane model starting at w “ eiπ{3 and terminating at v “ i contained in the circle of
radius 1 in C with origin 0 (this is illustrated in Figure B.3). The SL2pZq orbit of the
edge e defines an embedding of the p2, 3q-biregular tree into RH2. It is easy to check
that the stabiliser of v is isomorphic to Z4, the stabiliser of w is isomorphic to Z6 and
the stabiliser of e is the central subgroup isomorphic to Z2. In particular, SL2pZq splits
as an amalgamated free product Z4 ˚Z2 Z6.

0 ∂RH2

v
w

e

Figure B.3: The tree for SL2pZq embedded into RH2.

B.1.2.2 HNN extensions, Baumslag–Solitar groups, and Leary–Minasyan
groups

Given groups H and A and monomorphisms i, j : A Ñ H, the HNN extension H˚A of
H over A is the group defined by the presentation

xH, t | relpHq, tipaqt´1 “ jpaq @a P Ay.

HNN extensions arise as the fundamental group of a graph of groups consisting of a
single vertex and edge. Here the vertex group is H, the edge group is A, and the edge
monomorphisms are i and j. The Bass-Serre tree is the p|H : ipAq| ` |H : jpAq|q-regular
tree.

H

A

Figure B.4: A graph of groups for an HNN extension H˚A.
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Example B.2 (Baumslag–Solitar groups). The following groups were introduced in
[BS62] by Baumslag and Solitar as the first examples of non-Hopfian one-relator groups.
Let q and p denote non-zero integers and define the Baumslag–Solitar group

BSpp, qq :“ xa, t | tapt´1 “ aqy.

The group splits as an HNN-extension Z˚pZ where the edge groups are pZ “ xapy and
qZ “ xaqy. The Bass-Serre tree for BSp2, 3q is depicted in Figure B.5.

xay

xat
´1
y xat

´1ay

xata
2
yxatayxaty

Figure B.5: The Bass-Serre tree for BSp2, 3q and the vertex stabilisers.

Example B.3 (Leary–Minasyan groups). The following groups were introduced in [LM19]
by Leary and Minasyan as a class of groups containing the first examples of CATp0q but
not biautomatic groups, they were classified up to isomorphism by Valiunas [Val20]. In
fact they are not subgroups of any biautomatic group [Val21]. Let n ě 0, let A P GLnpQq,
and let L ď Zn X A´1pZnq be a finite index subgroup. The group LMpA,Lq is defined
by the presentation

LMpA,Lq “ xx1, . . . , xn, t | rxi, xjs “ 1 for 1 ď i ă j ď n, txvt´1 “ xAv for v P Ly,

where we write xw :“ xw1
1 ¨ ¨ ¨xwnn for w “ pw1, . . . , wnq P Zn. If L is the largest subgroup

of Zn such that AL is also a subgroup of Zn, then we denote LMpA,Lq by LMpAq. We
refer to the groups LMpA,Lq and LMpAq as Leary–Minasyan groups. The group clearly
splits as an HNN extension Zn˚L.

The Leary–Minasyan groups are in some sense a generalisation of Baumslag-Solitar
groups since for n “ 1, if L “ rZ and A “ s{r P GL1pQq for some non-zero integers r
and s, then LMpA,Lq “ xx, t | txrt´1 “ xsy “ BSpr, sq.
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As a concrete example, take

A “

«

3{5 ´4{5

4{5 3{5

ff

and

L “

C«

2

´1

ff«

1

2

ffG

so

AL “

C«

2

1

ff«

´1

2

ffG

.

Note that L is index 5 in Z2 and so must be a maximal subgroup. It follows that

LMpA,Lq “ LMpAq “ xa, b, t | ra, bs, ta2b´1t´1 “ a2b, tab2t´1 “ a´1b2y.

Recall that a group G is residually finite if for every non-trivial g P G there exists a
finite group Fg and a homomorphism φ : GÑ Fg such that φpgq ‰ 1. Equivalently, the
intersection of every finite-index subgroup of G is equal to t1u. Indeed, since for each
1 ‰ g P G we have φpgq ‰ 1, there exists a finite-index normal subgroup N Ĳ G with
g R N . In particular, the intersection of all finite-index normal subgroups, and hence the
intersection of all finite-index subgroups is equal to t1u. The converse is immediate.

Proposition B.1.2. [LM19, Proposition 10.4] Let A P GLnpQq and L ď Zn, then the
group LMpA,Lq is residually finite if and only if either L “ Zn, AL “ Zn, or A is
conjugate in GLnpQq to a matrix in GLnpZq.

The Leary–Minasyan groups come equipped with a representation into AGLnpRq “ Rn¸
GLnpRq, here each generator xi is sent to a basis vector of Rn identified with LbR and
the element t is sent to the matrix A in GLnpRq. Using this Leary–Minaysan show the
following.

Proposition B.1.3. [LM19, Proposition 7.1] Each group LMpA,Lq is free-by-abelian-
by-cyclic.

B.1.2.3 The Bruhat–Tits tree for SL2pZr1p sq

First we will fix some notation. Our treatment will follow [Ser03, Chapter II]. Let F
denote a field with a discrete valuation v : F Ñ Z, that is, v is a homorphism F ˚ Ñ Z
such that for all x, y P F we have

vpx` yq ě Infpvpxq, vpyqq

and the convention vp0q “ 8. Let O denote the valuation ring of F and choose π P F
such that vpπq “ 1. Note that all ideals in O are two-sided and let k “ O{πO. Let V
be a 2-dimensional F -vector space.
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A lattice of V is any finitely generated O-submodule of V which generates V as an F -
vector space. The group F ˚ acts on the set of lattices T by right multiplication. We call
the elements of T {F ˚ the classes of lattices and say that two lattices in the same class
are equivalent.

Let L and L1 be two lattices of V . It follows from the Invariant Factor Theorem for
modules over a PID that there is a O-basis te1, e2u of L and integers a, b such that
te1π

a, e2π
bu is a O-basis for L1. Note that ta, bu does not depend on the choice of basis

for L. Moreover, the integer dpL,L1q :“ |a´ b| only depends on the classes Λ and Λ1 of
L and L1. Thus, we may denote this number by dpΛ,Λ1q. We say two classes Λ, Λ1 in T
are adjacent if dpΛ,Λ1q “ 1. This endows T with the structure of a graph.

Theorem B.1.4. [Ser03, Page 70, (Theorem 1)] With notation as established in this
section, the graph T is a tree.

The group GLpV q acts on the tree T and we will refer to T as the Bruhat-Tits tree of
GLpV q. We will primarily interested in the groups SLpV q and PSLpV q. Here SLpV q

is the kernel of the Dieudonné determinant GLpV q Ñ F ˚{pF ˚, F ˚q and PSLpV q :“

SLpV q{ZpSLpV qq. Clearly, SLpV q acts on T by restricting the action of GLpV q. The
kernel of the action of SLpV q on T is ZpSLpV qq. In particular, PSLpV q also acts on T .

By [Ser03, Page 78, (Theorem 2)], SLpV q acts on T with fundamental domain a single
edge and two distinct vertices. Let L and L1 be lattices corresponding to two adjacent
vertices in T . Clearly, the stabilisers of these vertices can be identified with conjugates
of SL2pOq. Computing their intersection yields the following theorem.

Theorem B.1.5 (Ihara’s Theorem). [Ser03, Page 79, (Corollary 1)] The group SL2pF q

splits as an amalgamated free product SL2pOq ˚Γ SL2pOq where

Γ :“

#«

a b

c d

ff

: c ” 0 pmod πq

+

ď SL2pOq.

Let A be a dense subgroup of F , then the group SL2pAq is a dense subgroup of SL2pF q

and we obtain an analogous amalgam splitting. Applying this to the case where F “ Q,
v is the p-adic valuation, A “ Zr1p s and AXO “ Z we obtain the following result.

Corollary B.1.6. If p is a prime number one has SL2pZr1p sq “ SL2pZq ˚Γ0ppq SL2pZq
where

Γ0ppq :“

#«

a b

c d

ff

: c ” 0 pmod pq

+

ď SL2pZq.
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Figure B.6: The Bruhat-Tits tree for PSL2pZr 12 sq.

B.2 CATp0q spaces and their isometries

In this section we will introduce CATp0q spaces and their groups of isometries. The main
reference for this section is [BH99].

B.2.1 CATp0q spaces

A geodesic metric space X is CATp0q if for every geodesic triangle P “ 4pp, q, rq Ď X

and comparison triangle P “ 4pp, q, rq in E2 with the same side lengths as P such that
for each pair of points x, y P BP and corresponding pair of points x, y P BP we have

dXpx, yq ď dE2px, yq.

p q

r

x

y

X

p q

r

E2

x

y

Figure B.7: An illustration of the CATp0q inequality.

Examples B.4. The following spaces are CATp0q.

(i) En, that is, Euclidean n-space with the `2-metric.
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(ii) A locally finite tree. This is easily seen since all geodesic triangles are tripods.

(iii) The real hyperbolic plane RH2. More generally, any symmetric space of non-
compact type [BH99, Theorem II.10.58].

(iv) Euclidean and hyperbolic buildings [Dav98].

(v) The Davis complex of a right-angled Coxeter group and the Salvetti complex of a
right-angled Artin group.

We record a number of properties of generic CATp0q spaces.

Theorem B.2.1. Let X and Y be CATp0q spaces, then

(a) [BH99, Proposition II.1.4(1)] there is a unique geodesic between every two points of
X;

(b) [BH99, Corollary II.1.5] X is contractible;

(c) [BH99, Example II.1.15(3)] X ˆ Y equipped with the `2 metric is a CATp0q space;

(d) [BH99, Proposition II.2.7] Suppose X is complete. If C Ă X is a bounded subset of
radius r, then there exists a unique point c P X, called the centre of C, such that
C Ď Brpcq.

A metric space X is non-positively curved if it is locally CATp0q, that is, for each x P X
there exists rx ą 0 such that the ball Brxpxq endowed with the induced metric is a
CATp0q space. The following theorem shows the relationship between non-positively
curved metric spaces and CATp0q.

Theorem B.2.2 (The Cartan–Hadamard Theorem). [BH99, Theorem II.4.1] Let X be
a complete connected non-positively curved metric space, then the universal cover rX is a
CATp0q space.

B.2.2 Isometries of CATp0q spaces

Let X be a metric space and γ an isometry of X. The displacement function of γ is
the function dγ : X Ñ R` defined by dγpxq “ dpγx, xq. The translation length of γ,
denoted |γ|, is the infinimum of the image of dγ . The subset of X where dγ attains
its infinimum will be denoted by Minpγq. For a set of isometries Γ of X, we define
MinpΓq :“

Ş

γPΓ Minpγq. An isometry γ of X is called

(i) elliptic if γ has a fixed point;

(ii) hyperbolic if dγ attains a strictly positive minimum;
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(iii) parabolic if dγ does not attain its minimum;

(iv) semi-simple if Minpγq is non-empty.

Similarly, a group of isometries Γ is elliptic/hyperbolic/parabolic/semi-simple if all of its
elements are elliptic/hyperbolic/parabolic/semi-simple respectively.

Examples B.5. We will detail three examples.

(a) Let T be a locally finite tree. We will investigate the min-sets of semi-simple
isometries.

(i) Let γ be an elliptic isometry of T , then Minpγq is the fixed point set of γ. We
claim this is a connected subtree of T . Indeed, if γ fixes two vertices in T ,
then γ must fix a geodesic between them, but geodesic segments in a tree are
unique so we conclude that the fix point set is connected.

(ii) Let γ be a hyperbolic isometry of T , then Minpγq is a unique embedded
line which we call the axis of γ. Indeed, consider a tripod with vertices x,
γx, γ2x and crux v. Let m be the midpoint of the geodesic segment rx, γxs
and note that if dpm,xq ě dpv, xq, then γ fixes m. This contradicts the
fact γ is hyperbolic. Therefore, dpv, xq ą dpm,xq. If for any point y P T
we have dpy, γ2yq “ 2dpy, γyq then the γ-translates on ry, γys will form a
γ-invariant line. Thus, it suffices to show that dpm, γ2mq “ 2dpm, γmq, and
since v P rm, γms we need to show that dpv, γvq “ 2dpv, γmq. But,

dpv, γvq “ dpγx, γ2xq´2dpv, γxq “ dpx, γxq´dpx, γxq´2dpv, γmq “ 2dpv, γmq

as required.

(b) Consider the Euclidean n-space En. The isometry group IsompEnq splits as a semi-
direct product Rn ¸ Opnq. By [BH99, Proposition II.6.5] every isometry of En is
semi-simple. Either an isometry γ is elliptic, or there is an integer 0 ă k ď n such
that Minpγq is an affine subspace E of dimension k. Moreover, if k ă n, then γ

is the product of a non-trivial translation on E and an elliptic isometry on the
orthogonal complement EK.

(c) Let RH2 denote the real hyperbolic plane. The orientation preserving isometry
group of RH2 is isomorphic to PSL2pRq. Here an element g can be classified as
elliptic, hyperbolic, or parabolic by the trace of a representative lift rg P SL2pRq. If
trprgq ă 2 then g is elliptic, if trprgq ą 2 then g is hyperbolic, and if trprgq “ 2, then g
is parabolic (see for instance [Kat92]). It is easy to see that PSL2pZq – SL2pZq{Z2

is generated by elliptic elements and contains parabolic elements.

Many of the results in the previous examples hold more generally. We highlight some
important ones here.



Chapter B Background 15

Proposition B.2.3. Let X be a metric space, let γ be an isometry of X, and let Γ be a
groups of isometries of X.

(a) [BH99, Proposition II.6.2] Minpγq is γ invariant and MinpΓq is Γ invariant.

(b) [BH99, Proposition II.6.2] If α is an isometry of X, then |γ| “ |αγα´1|, and
Minpαγα´1q “ αMinpγq. In particular, if α commutes with γ, then it leaves MinpΓq

invariant. if N Ĳ Γ, then MinpNq is Γ-invariant.

Suppose in addition X is a CATp0q space.

(c) [BH99, Proposition II.6.2] dγ is convex. Hence, Minpγq is a closed convex set.

(d) [BH99, Theorem II.6.8] γ is hyperbolic if and only if there is a geodesic line c : EÑ
X (i.e. an axis) which is translated non-trivially by γ. The union of the axes of γ
equals Minpγq

Suppose further that X is a complete CATp0q space.

(e) [BH99, Proposition II.6.7] γ is elliptic if and only if γ has a bounded orbit.

(f) [BH99, Proposition II.6.7] If γn is elliptic for some non-zero integer n then γ is
elliptic.

(g) [BH99, Theorem II.6.8] If γn is hyperbolic for some non-zero integer n then γ is
hyperbolic.

B.2.3 CATp0q groups

In this section we will state some well known results about groups acting “geometrically”
on CATp0q space, before we can do this we recall some notions about group actions. Let
Γ be a group acting by isometries on a metric space X, the action is

(i) proper if for each x P X there exists a number r ą 0 such that tγ P Γ | γBrpxq X

Brpxq ‰ Hu is finite;

(ii) cocompact if there exists a compact subset K Ď X such that ΓK “ X.

Suppose a discrete group Γ acts properly cocompactly by isometries on a CATp0q space
X, then we say Γ is a CATp0q group. In this case we say that X is a space realising a
CATp0q structure on Γ.

Theorem B.2.4. If a group Γ acts properly cocompactly on a CATp0q space X, then
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(a) [BH99, Theorem III.Γ.1.1] Γ is finitely presented;

(b) [BH99, Proposition II.6.10(2)] Every element of Γ is semi-simple;

(c) [BH99, Theorem III.Γ.1.1] Γ has finitely many conjugacy classes of finite subgroups;

(d) [BH99, Theorem III.Γ.1.1] Every solvable subgroup of Γ is virtually abelian;

(e) [BH99, Theorem III.Γ.1.1] Every abelian subgroup of Γ is finitely generated;

(f) [BH99, Theorem III.Γ.1.4] Γ has solvable word and conjugacy problems.

Next we will state the Flat Torus Theorem, we will make use of this theorem in Paper 4,
a proof of the theorem can be found in [BH99, Chapter II.7]. An addendum to the
theorem was proven by Leary–Minasyan in [LM19, Theorem 6.4], the statement we give
combines both versions.

Recall that a torsor for an abelian group is a non-empty set on which it acts freely and
transitively. An affine space is naturally a torsor for its vector space of translations. By
[LM19, Remark 6.2], given a free abelian group L, we may define an inner product x¨, ¨yL
on Lb R as follows

xb, cyL :“
1

2

`

dppb` cqx, xq2 ´ dpx, bxq2 ´ dpx, cxq2
˘

.

We are now ready to state the Flat Torus Theorem. Note that items (a), (b), (c), (e), and
(g) are from [BH99, Theorem II.7.1], and items (d) and (f) are from [LM19, Theorem 6.4].

Theorem B.2.5 (The Flat Torus Theorem). [BH99, Theorem II.7.1], [LM19, Theo-
rem 6.4] Let L be a free abelian group of rank n acting properly by semi-simple isometries
on a CATp0q space X. Then:

(a) The min set M for L is non-empty and M “ Y ˆ En.

(b) Every C P L leaves M invariant, respects the product decomposition, and acts
trivially on Y and by translation on En.

(c) For y P Y , the quotient ptyu ˆ Enq{L is an n-torus.

(d) For each y P Y , the subspace tyu ˆEn is a torsor for LbR under affine extension
of the action of L.

(e) If an isometry of X normalises L, then it preserves M and the direct product
decomposition.

(f) For any isometry φ of X that commensurates L, the image of φ in GLpL b Qq ď
GLpLb Rq preserves the inner product x¨, ¨yL.
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(g) If a group Γ of isometries of X normalises L, then a finite-index subgroup of Γ cen-
tralises L. If Γ is finitely generated, then ΓL has a finite-index subgroup containing
L as a direct factor.

The theorem has an important corollary. The rank of a CATp0q space X, denoted
rankpXq, is the maximal n such that En isometrically embeds into X.

Corollary B.2.6. Let X be a CATp0q space, then the rank of any free abelian group
acting properly by semi-simple isometries on X, is at most rankpXq.

It immediately follows that any abelian subgroup of CATp0q group Γ, has rank bounded
by the rank of the CATp0q space X realising the CATp0q structure. The converse to this
observation is a famous open problem known as the Flat Closing Conjecture we will give
a more detailed discussion in Section B.4.

Another related result is the Algebraic Flat Torus Theorem which states that abelian
subgroups of CATp0q groups are undistorted. The result is actually true for the more
general class of semihyperbolic groups, however, this class will not feature in this thesis.

Theorem B.2.7. [BH99, Theorem III.Γ.4.10] If Γ is a CATp0q group and A is a finitely
generated abelian subgroup, then every monomorphism φ : A � Γ is a quasi-isometric
embedding.

B.3 Lattices in non-positive curvature

When studying groups geometrically, that is, studying groups acting properly cocom-
pactly by isometries on some metric space X, it is often convenient to study all groups
acting geometrically and faithfully on X simultaneously. To do this, we study lattices
in the full isometry group IsompXq. If X is CATp0q then the structure of IsompXq has
a rich theory which is reflected by the space X itself. In Section B.3.1 we will recall
the definition of a lattice in a locally compact group. In Section B.3.2 we will outline
Caprace–Monod’s structure theory for the isometry group of a CATp0q space X. In
Section B.3.3 we will look at various notions of irreducibility for lattices acting on prod-
ucts of CATp0q spaces. Finally, in Section B.3.4 we will detail a number of examples of
CATp0q lattices. The results stated throughout this section will be repeatedly used in
Paper 4.

B.3.1 Generalities on lattices

The following definitions may be found in [BL01, Section 1.1]. LetH be a locally-compact
group and let µ be a choice of right Haar measure on H. For a measurable subset U Ă H
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and for all h P H we have µpUhq “ µpUq and µphUq “ µpUqΞphq, where Ξ : H Ñ Rˆ is
the modular character of H. We say H is unimodular if Ξ “ 1.

Let Γ be a discrete subgroup of H. As explained in [BL01, Section 1.2], H{Γ has an
induced measure µ and the projection H � H{Γ is locally measure preserving. If
µpH{Γq ă 8 (so Γ has finite covolume), then Ξ “ 1 and H is unimodular.

A discrete subgroup Γ ď H is a lattice if the covolume µpH{Γq is finite. A lattice is
uniform if H{Γ is compact and non-uniform otherwise. Let S be a right H-set such
that for all s P S, the stabilisers Hs are compact and open, then if Γ ď H is discrete the
stabilisers are finite (see [BL01, Section 1.5]).

Let X be a locally finite, connected, simply connected simplicial complex. The group
H “ AutpXq of simplicial automorphisms of X naturally has the structure of a locally
compact topological group, where the topology is given by uniform convergence on com-
pacta.

Theorem B.3.1 (Serre’s covolume formula [Ser71]). Let X be a locally finite simply-
connected simplicial complex. Let Γ ď H be a lattice with fundamental domain ∆, then
there is a nomalisation of the Harr measure µ on H, depending only on X, such that for
each discrete subgroup Γ ă H we have

µpH{Γq “ VolpX{Γq :“
ÿ

vP∆p0q

1

|Γv|
.

B.3.2 Structure theory

We will be primarily interested in lattices in the isometry groups of CATp0q spaces, we
will call these groups CATp0q lattices (note that a uniform CATp0q lattice is a CATp0q

group). We begin by recording several facts about the structure and isometry groups of
general CATp0q spaces. The definitions and results here are largely due to Caprace and
Monod [CM09b] [CM09a] [CM19].

An isometric action of a group H on a CATp0q space X is minimal if there is no non-
empty H-invariant closed convex subset X 1 Ă X, the space X is minimal if IsompXq

acts minimally on X. Note that by [CM09b, Proposition 1.5], if X is cocompact and
geodesically complete, then it is minimal. The amenable radical of a locally compact
group H is the largest amenable normal subgroup.

Theorem B.3.2. [CM09b, Theorem 1.6] Let X be a proper CATp0q space with finite
dimensional Tits boundary and assume IsompXq has no global fixed point in BX. There is
a canonical closed, convex, IsompXq-stable subset X 1 Ď X such that G “ IsompX 1q has a
finite index, open, characteristic subgroup H Ĳ G that admits a canonical decomposition

H – IsompEnq ˆ S1 ˆ ¨ ¨ ¨ ˆ Sp ˆD1 ˆ ¨ ¨ ¨ ˆDq,
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for some n, p, q ě 0, where each Si is an almost connected simple Lie group with triv-
ial centre and each Dj is a totally disconnected irreducible group with trivial amenable
radical.

Theorem B.3.3. [CM09b, Addendum 1.8] Let X 1 and H be as above, then

X 1 – En ˆX1 ˆ ¨ ¨ ¨ ˆXp ˆ Y1 ˆ ¨ ¨ ¨ ˆ Yq

where each Xi is an irreducible symmetric space and each Yj is an irreducible minimal
CATp0q-space.

Lemma B.3.4. [CM09a, Lemma 3.4] Let A “ Rn ¸ Opnq and S be a semisimple Lie
group without compact factors. Every lattice Γ ď A ˆ S has a finite index subgroup Λ

which splits as a direct product ΛAˆΛ1, where ΓA :“ ΓXpAˆt1uq is a lattice in pAˆt1uq
and Λ1 is a lattice in S.

The following result from [CM19] is the corrected version of [CM09a, Proposition 3.6],
we will make frequent use of this result throughout Paper 4. Recall that G virtually
normalises a subgroup N if N is a normal subgroup of a finite index subgroup G.

Theorem B.3.5. [CM19, Theorem 2] Let X be a proper CATp0q space, H ď IsompXq

a closed subgroup acting cocompactly and minimally, and Γ a lattice in H. Let E “ En

be the Euclidean de Rham factor of X, where n ě 0.

(a) There exists a free abelian subgroup A – Zn of Γ, commensurated by Γ, and n is
the largest such rank. Moreover, any commensurated abelian subgroup of Γ acts
properly on E.

We now assume Γ is finitely generated.

(b) If Γ virtually normalises a free abelian subgroup of rank k, then Γ virtually splits as
Zk ˆ Γ1. Moreover, there is a corresponding invariant decomposition X – Ek ˆX 1

and the projection of Zk (resp. Γ1) to IsompX 1q is trivial (resp. discrete).

(c) If the projection of Γ to IsompEnq is virtually abelian, then Γ virtually splits as
Zn ˆ Γ1.

(d) If Γ is residually finite then Γ virtually splits as Zn ˆ Γ1.

B.3.3 Irreducibility

Let X “ X1ˆ ¨ ¨ ¨ ˆXn be a product of irreducible proper CATp0q spaces and let Γ be a
lattice in H “ H1ˆ¨ ¨ ¨ˆHn :“ IsompX1qˆ¨ ¨ ¨ˆIsompXnq, with each Hi non-discrete and
acting minimally. There are several possible notions of irreducibility for a lattice in H,
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moreover, in the general setting of CATp0q groups, they are not necessarily equivalent.
In the interest of clarity, we recount each of these and summarise their implications, we
follow the treatment in [CM12] [CLB19].

(Irr1) For every Σ Ă t1, . . . , nu, the projection πΣ : Γ Ñ HΣ has dense image. Here we
say Γ is topologically irreducible or an irreducible lattice.

(Irr2) The projection to each factor Hi is injective.

(Irr3) For every Σ Ă t1, . . . , nu, the projection πΣ : Γ Ñ HΣ has non-discrete image.
Here we say Γ is weakly irreducible or a weakly irreducible lattice.

(Irr4) Γ has no finite index subgroup which splits as a direct product of two infinite
subgroups. Here we say Γ is algebraically irreducible.

Firstly, if each Hi is a centre-free semisimple algebraic group without compact factors
then each of the definitions are equivalent [Mar91]. When each Hi is a non-discrete,
compactly generated, tdlc group, then [CLB19, Theorem H] summarises all possible
implications. Returning to the setting described above we have that (Irr2)ñ (Irr3)ñ
(Irr4) and if Γ is finitely generated, then by Theorem B.3.6 we have (Irr4) ñ (Irr3).
Note that in general (Irr4) ñ (Irr2) fails, unless Γ is residually finite. The following
theorem from [CM09a] shows the equivalence of (Irr3) and (Irr4) for many CATp0q

lattices.

Theorem B.3.6. [CM09a, Theorem 4.2] Let X be a proper CATp0q space, H ă IsompXq

a closed subgroup acting cocompactly on X, and Γ ă H a finitely generated lattice.

(i) If Γ is irreducible as an abstract group, then for for finite index subgroup Γ0 ă Γ

and any Γ0-equivariant splitting X “ X1 ˆX2 with X1 and X2 non-compact, the
projection of Γ0 to both IsompX1q and IsompX2q is non-discrete.

(ii) If in addition the H-action is minimal, then the converse holds.

B.3.4 Examples

In this section we will detail a number of examples of CATp0q lattices. We will pay
particular attention to the case of IsompEnq-lattice, tree lattices, lattices in products of
trees, and Leary–Minasyan groups. The motivation for this is that in Paper 4 we will
introduce a framework for studying lattices in products with a tree factor. In light of the
Leary–Minasyan groups a lot of the work Paper 4 will focus on lattices in IsompEnq ˆ T
where T is the automorphism group of a locally-finite tree.
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B.3.4.1 Crystallographic groups

In this section we will investigate crystallographic groups, that is, lattices in IsompEnq.
The main reference for this section is [Szc12].

Theorem B.3.7 (Bieberbach’s First Theorem1). [Zas48], [Szc12, Theorem 2.1(1)] Any
IsompEnq-lattice Γ contains a finite index normal subgroup A isomorphic to Zn and the
quotient P “ Γ{A is finite.

Bieberbach’s Second Theorem [Szc12, Theorem 2.1(2)] states that there are only finitely
many isomorphism classes of IsompEnq-lattices for each n. However, the number of these
grows dramatically (Table B.1).

Dimension 1 2 3 4 5 6
Number 2 17 219 4783 222,018 28,927,922

Table B.1: The number of crystallographic groups in low dimensions (data copied
from [CS01]).

We deduce the following well known corollary.

Corollary B.3.8. Every IsompEnq-lattice is uniform, CATp0q, virtually free abelian, and
for n ě 2 reducible.

Proof. That the lattice Γ is uniform and virtually abelian follows from the previous the-
orem. That the lattice is CATp0q follows from the fact that Γ acts properly cocompactly
on the quintessential CATp0q space En. Finally, if n ě 2 then Γ is virtually Zn and so
virtually splits as a direct product of two infinite groups.

B.3.4.2 Arithmetic groups

Arithmetic groups have already appeared a number of times in this chapter (e.g. PSL2pZr1p sq
or SL2pZq). They will play a small but significant role in Paper 4 and are the main exam-
ples of lattices acting on symmetric spaces of non-compact type. In this section we will
give a very brief overview of the main construction of arithmetic groups. An introductory
text can be found here [Mor15] and an in depth study can be found here [Mar91]. We
will not survey any structural results about arithmetic groups, instead we remark there
are some incredibly deep theorems due to Margulis and refer the reader to [Mar91].

Let k be a number field with ring of integers O. Let H be a connected non-commutative
absolutely simple adjoint k-group. Let V be a set of all inequivalent places of k, denote
the subset of Archimedean places by V 8 and the remaining finite places by V fin. For

1Bieberbach was a disgraced German mathematician and Nazi.
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each v P V we denote by kv the completion of k with respect to v. Let S Ă V be a finite
subset of places such that for every v P S, H is kv-isotropic.

For v P V let H`pkvq ă Hpkvq denote the finite index normal subgroup defined in
[BFS19, Section 6]. If v P V 8 then H`pkvq is the identity component of the real Lie
group Hpkvq. Define

H`
k,S :“

ź

vPS

H`pkvq and Hk,S :“
ź

vPS

Hpkvq.

Note that the quotient Hk,S{H
`
k,S is finite. The reduction theory of Borel and Harish-

Chandra (see for instance [Bor19]) then realises the group HpOrSsq as a lattice in Hk,S

via the diagonal embedding.

Note that Hk,S “ Hk,S8 ˆ Hk,Sfin is the splitting of Hk,S into a semisimple real Lie
group and a totally disconnected locally compact group.

We call any group commensurable in Hk,S with HpOrSsq an arithmetic lattice. These
groups were studied in the seminal work of Margulis [Mar91]. Along with crystallographic
groups they are the quintessential examples of CATp0q lattices. The CATp0q structure
is inherited from the natural action of Hk,S on a product of symmetric spaces of non-
compact type and appropriately chosen geometric realisations of Euclidean Bruhat-Tits’
buildings [CM09b] [CM09a] (see also [BH99, Chapter II.10]).

We will briefly remark a couple of famous deep results eliciting the structure of arithmetic
groups. Firstly, we note that if H :“ Hk,S is not locally-isomorphic SOpn, 1q or SUpn, 1q

then every lattice in H is arithmetic [Mar91]. Secondly, a lattice Γ in H is arithmetic
if and only if CommHpΓq is dense in H [Mar91]. Thirdly, if H is a real semisimple Lie
group, then every (non-uniform) lattice in H is finitely presented [GR69].

Example B.6. Concretely, consider SL2pZr
?

2sq, this embeds diagonally as an irre-
ducible non-uniform arithmetic lattice into SL2pRq ˆ SL2pRq, this is an example of a
Hilbert modular group. This group acts properly with finite covolume on RH2 ˆRH2, a
product of real hyperbolic planes. One could also consider SL2pZr1p sq as an irreducible
non-uniform arithmetic lattice in SL2pRqˆSL2pQpq. This group acts properly with finite
covolume on RH2 ˆ Tp`1.

B.3.4.3 Tree lattices

In this section we introduce tree lattices and edge indexed graphs. The main reference
for the content here is the book “Tree lattices” by Bass and Lubotzky [BL01].

Definition B.3.9. Let G be a graph of groups. For each oriented edge e P EG set
ipeq “ rGτpeq : φe0pGeqs P Z Y t8u. We call the pair pG, iq the edge-indexed graph
associated to G. For an edge e we set δpeq “ ipeq{ipeq and ∆pγq “ δpe1q . . . δpenq for a
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path pe1, . . . , enq in G. We say that pG, iq has bounded denominators if for some (hence
every) v P V G the set

"

∆pγq

ipeq
| e P EG, γ a path from v to ιpeq

*

has bounded denominators. Finally, we say pG, iq is unimodular whenever ∆pγq “ 1 for
all closed paths γ. Note that bounded denominators implies unimodularity.

m
n

p q

Figure B.8: Two edge labelled graphs. The loop (left) is unimodular if and only if
m “ n. The two vertices joined by an edge (right) is unimodular for all choices of

positive integers p and q

Let T be a locally finite tree and T “ AutpT q. The group T is a totally disconnected
locally compact group with compact open profinite vertex stabilisers. Indeed,

Tv “ lim
Ð
r

Tv|Bvprq

where Bvprq is the ball of radius r. A subgroup Γ of T is discrete if Γv is finite for every
vertex in T . Using the volume formula we define

VolpT {Γq :“
ÿ

vPV T {Γ

1

|Γv|
,

and we say Γ is a T -lattice if this is finite.

Theorem B.3.10. [BK90] For a faithful finite graph of finite groups G with Bass-Serre
tree T , the group Γ “ π1pGq is a tree lattice if and only if pG, iq is unimodular and
VolpT {Γq is finite.

Theorem B.3.11. [BL01, Appendix BCR] Let T be the automorphism group of a locally-
finite tree T and let H be a closed subgroup of T . There exists an H-lattice if and only
if H is unimodular and µpT {{Hq ă 8.

Example B.7. Recall in Example B.1 we showed that SL2pZq acts on the p2, 3q-biregular
tree T2,3. Indeed, SL2pZq – Z4˚Z2Z6. However, the kernel of the action of SL2pZq on T2.3

is the central cyclic group Z2. It follows that SL2pZq is not a T2,3 :“ AutpT2,3q-lattice.
Now, taking the quotient of SL2pZq by the centre gives the group PSL2pZq – Z2 ˚ Z3

which acts faithfully on T2,3. In particular, PSL2pZq is a T2,3-lattice.

The automorphism group of a tree can also admit non-uniform lattices, these lattices
are necessarily infinitely generated and exhibit a wide range of behaviour. Some are
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arithmetic groups, some are non-residually finite, and some are even simple groups. For
a detailed survey see [BL01].

Example B.8 (Nagao rays). This construction is adapted from [BK90, Page 10]. There
are non-uniform tree lattices with fundamental domain a ray. The stabilisers are defined
as follows, for n ě 1, let Γn be a strictly increasing sequence of finite groups Γ1 ă Γ2 ă

Γ3 ă . . . , let Γ`0 be a finite group and let Γ0 ď Γ`0 X Γ1 such that Γ0 ă Γ`0 . The graph
of groups A is shown in Figure B.9 and π1pAq “ Γ`0 ˚Γ0

Ť

ně0 Γn. We call such a lattice
a lattice of Nagao type and the ray a Nagao ray.

Γ`0 Γ2Γ1 Γ3

Γ0 Γ1 Γ2

Figure B.9: A Nagao ray and its stabilisers.

In some cases this construction has an arithmetic interpretation. Let p be a prime, d a
positive integer, and q “ pd. The Bruhat-Tits tree of H “ PSL2pFqptqq is the pq ` 1q-
regular tree and Γ “ PSL2pFqrtsq is a non-uniform lattice of Nago type. The local groups
are given as follows, Γ`0 “ PSL2pqq and

Γn “

#«

a b

0 a´1

ff

| a P Fˆq , degtpbq ď n

+

,

such that
Ť

ně0 Γn – Fqrts ¸ pFˆq {t˘1uq. This splitting was first proved by Nagao
[Nag59] and was generalised by Serre to give a description of the structure of PSL2 over
the coordinate ring of a projective curve [Ser03].

Existence theorems for non-uniform tree lattices are discussed in [BL01] [Car04]. Farb–
Hruska investigated the commensurability classes of non-uniform lattices in Tm,n, the
full automorphism group of a biregular tree T for m,n ě 3.

Theorem B.3.12. [FH06] For each real number r ą 0, there exist uncountably many
commensurability classes of non-uniform lattices in Tm,n, each having covolume r.

B.3.4.4 Lattices in products of trees

The study of lattices in products of trees was initiated by Burger and Mozes [BM97]
[BM00a] [BM00b]. The authors studied the local actions of the projections of a lattice
on each tree and constructed torsion-free simple groups. In Paper 4 we will study lat-
tices acting on products of trees and other CATp0q spaces. In Paper 5 we modify a
Burger–Mozes simple group to obtain the first example of a non-virtually torsion-free
hierarchically hyperbolic group. In this section we will provide some background on
lattices in products of trees.
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Proposition B.3.13. [BM00b, Proposition 1.2] Let T1, T2 be the automorphism groups
of locally finite trees T1 and T2. For a uniform lattice Γ ă T1 ˆ T2 the following are
equivalent:

(i) There exists i P t1, 2u such that πTipΓq is discrete;

(ii) Γ1 :“ Γ X T1, resp. Γ2 :“ Γ X T2, are lattices in T1, resp. T2, and Γ1 ˆ Γ2 is a
finite index subgroup of Γ.

The following example is adapted from [BMZ09, Example 1.1.1].

Example B.9. Let p ‰ q be odd primes such that p, q ” 1 pmod 4q, let HpQq denote
the Hamilton quaternion algebra over Q with basis t1, i, j, ku and define

Q :“ tx P HpZq : |x| “ paqb, a, b P N, x ” 1 pmod 2qu.

Let Qp denote the p-adic integers. Fix εp P Qp, εq P Qq with ε2p “ ε2q “ ´1. Let Γp,q

denote the image of the homomorphism φ : QÑ PGL2pQpq ˆ PGL2pQqq by

x0 ` x1i` x2j ` x3k ÞÑ

˜«

x0 ` x1εp x2 ` x3εp

´x2 ` x3εp x0 ´ x1εp

ff

,

«

x0 ` x1εq x2 ` x3εq

´x2 ` x3εq x0 ´ x1εq

ff¸

.

The group Γp,q ă Tp`1ˆTq`1 is a uniform lattice. Indeed, Γp,q is an irreducible uniform
arithmetic lattice in PGL2pQpqˆPGL2pQqq. Moreover, PGL2pQpq� Tp`1 because Tp`1

can be identified with the Bruhat-Tits’ tree for PGL2pQpq (similarly for PGL2pQqq).

Example B.10. [Rad20, Theorem 5.2] Radu constructed a number of concrete examples
of torsion-free simple groups acting on a product of trees. We reproduce one such example
here. Define

Γ :“

C

a1, a2, a3, b1, b2, b3 |
a1b3a1b3, a1b

´1
3 a1b

´1
3 , a2b3a2b3, a2b

´1
3 a3b

´1
3 ,

a3b1a
´1
3 b´1

1 , a3b2a3b3, a3b
´1
2 a3b

´1
2

G

then Γ is uniform lattice in T6 ˆ T6. Moreover, Γ has an index 4 subgroup which is
simple. Note that in Radu’s notation the group Γ is Γ6,6,1.

B.3.4.5 Leary–Minasyan groups

Many Leary–Minasyan groups are actually uniform CATp0q lattices in the product of
their Bass-Serre tree T and En. A characterisation of this property was given in terms
of the matrix A.

Theorem B.3.14. [LM19, Theorem 7.2] The group LMpA,Lq is a CATp0q group if and
only if the matrix A is conjugate in GLnpRq to an orthogonal matrix.
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A much more remarkable fact is that many of the CATp0q Leary–Minasyan groups are
actually weakly irreducible lattices in the product of IsompEnq and AutpT q. There
appears to be some confusion in the literature regarding this property; in particular,
[CM09a] claims no such lattices exist. This has been rectified in [CM19].

Theorem B.3.15. [LM19, Theorem 7.5] Suppose that A has infinite order and is con-
jugate in GLnpRq to an orthogonal matrix. Then LMpA,Lq is a lattice in IsompEnq ˆ
AutpT q whose projections to the factors are not discrete. In particular, it is weakly
irreducible.

We will detail the action on E2 in the case of the Leary–Minasyan group defined in
Example B.3 with presentation

Γ “ xa, b, t | ra, bs, ta2b´1t´1 “ a2b, tab2t´1 “ a´1b2y.

The group Γ has a representation π to IsompEnq given by πpaq “ r1, 0sT , πpbq “ r0, 1sT ,
and πptq “ A. The matrix A is a rotation by the irrational amount cos´1p3{5q and so
has infinite order. In particular, Γ is weakly irreducible. Note that the action of Γ on E2

is pictured in Figure B.10.

Leary and Minasyan proved another remarkable theorem about their groups, namely,
that the group LMpAq is biautomatic if and only if A has finite order. In particular, they
constructed the first examples of CATp0q but not biautomatic groups.

In Paper 4 we will study all weakly irreducible pIsompEnq ˆ T q-lattices (for arbitrary
locally-finite trees) simultaneously. We will characterise them in terms of the topology
(non-discrete projections), algebraically (abstractly irreducible), geometrically (the ac-
tion of T is faithful), analytically (the lattice is C˚-simple), homologically (the lattice
does not virtually fibre), and we extend the biautomaticity results of Leary–Minasyan
to the whole class.
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Figure B.10: The action of LMpAq on the Euclidean plane. The blue dots represent
elements of Z2. The green and blue squares represent the finite index subgroups L and
L1 of Z2. The action of the stable letter rotates the blue squares to the green squares.

B.4 The Flat Closing Conjecture

One of the most well known and long-standing conjectures regarding CATp0q groups is
the flat closing conjecture [Gro93, Section 6.B3].

The Flat Closing Conjecture. Let X be a proper CATp0q space and Γ a discrete group
acting properly and cocompactly by isometries on X. If X contains a d-dimensional flat,
then Γ contains a copy of Zd.

The main result of [CZ13], which proves a special case of the flat closing conjecture, is
affected by the error in [CM09a]. The next theorem provides a corrected statement of
the main result of [CZ13].

Theorem B.4.1. [CZ13, Corollary 1] Let X be a proper geodesically complete CATp0q

space and let Γ be a discrete group acting properly cocompactly by isometries on X.
Suppose in addition that X is a product of d irreducible factors. If the projection of Γ
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to the isometry group of the Euclidean de Rham factor is discrete, then Γ contains a
subgroup isomorphic to Zd.
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Paper 1
COHOMOLOGY OF FUCHSIAN GROUPS AND

NON-EUCLIDEAN CRYSTALLOGRAPHIC GROUPS

SAM HUGHES

Abstract. For each geometrically finite 2-dimensional non-Euclidean crystallographic
group (NEC group), we compute the cohomology groups. In the case where the group
is a Fuchsian group, we also determine the ring structure of the cohomology.

1.1 Introduction

Let Γ be a geometrically finite non-Euclidean crystallographic group (NEC group), i.e.
a discrete subgroup of PGL2pRq with a finite sided fundamental domain for the action
of Γ on the hyperbolic plane RH2. Throughout we let ΛpΓq denote the limit set of Γ.
In this paper, we will calculate the cohomology of Γ. In the case where Γ is a Fuchsian
group, i.e. Γ is contained in PSL2pRq, we will also calculate the cohomology ring. Our
proof will involve finding a suitable fundamental domain for the action of the group on
RH2 Y ΛpΓq and then applying a Cartan-Leray type spectral sequence.

Since RH2YΛpΓq is contractible, the sequence converges to the cohomology of Γ. Using
knowledge of the abelianization of Γ, it is easy to compute with the spectral sequence.
We will now set the convention that an omission of coefficients in the (co)homology
functors should be read as having coefficients in the trivial module Z.

Definition 1.1.1. Let m1, . . . ,mr be a set of positive integers each greater than 2. For
j “ 1, . . . , r´1, let t̂j be the greatest common divisor of the set of products ofm1, . . . ,mr

taken j at a time. Then, let t1 “ t̂1 and for j “ 2, . . . , r ´ 1 let tj “ t̂j{t̂j´1. We define
wj for j “ 1, . . . , r ´ 1 by the same process except for we perform the procedure to
2m1,m1, . . . ,mr and discard products containing 2m1m1. Finally, we define wr to be
equal to 2m1m2 . . .mr{wr´1.

Theorem 1.A. Let Γ be an NEC group of signature

pg, s, ε, rm1, . . . ,mrs, tpn1,1, . . . , n1,s1q, . . . , pnk,1, . . . , nk,skq, pq, . . . , pquq,

where the number of empty cycles equals d. Let CE denote the number of even ni,l and
let CO denote the number of period cycles for which every ni,l is odd.
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(a) If ε “ ` and d “ k “ s “ 0 (i.e. Γ is a cocompact Fuchsian group) then

HqpΓq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Z q “ 0,

Z2g ‘

´

Àr´1
j“1 Ztj

¯

q “ 1,

Z q “ 2,
Àr

j“1 Zmj q “ 2l ` 1, where l ě 1,

0 otherwise.

(b) If ε “ ´ and d “ k “ s “ 0 then

HqpΓq “
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’

’

’

’

&

’

’

’

’

%

Z q “ 0,

Zg´1 ‘

´

Àr
j“1 Zwj

¯

q “ 1,
Àr

j“1 Zmj q “ 2l ` 1, where l ě 1,

0 otherwise.

(c) If ε “ ` and d` k ` s ą 0 then

HqpΓq “

$
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’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Z q “ 0,
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pq´1qCE`CO`d

2 ‘

´
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i“1
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l“1 Zni,l

¯

‘

´

Àr
j“1 Zmj

¯

q ” 3 pmod 4q,

Z
1
2
pq`1qCE`CO`d

2 ‘

´

Àr
j“1 Zmj

¯

q ą 1 and

q ” 1 pmod 4q.

(d) If ε “ ´ and d` k ` s ą 0 then
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Z q “ 0,

Zg`s`k`d´1 ‘ ZCE`CO`d2 ‘

´

Àr
j“1 Zmj

¯

q “ 1,

Z
1
2
qCE`CO`d

2 q “ 2p ą 0,

Z
1
2
pq´1qCE`CO`d

2 ‘

´

Àk
i“1

Àsi
l“1 Zni,l

¯

‘

´

Àr
j“1 Zmj

¯

q ” 3 pmod 4q,

Z
1
2
pq`1qCE`CO`d

2 ‘

´

Àr
j“1 Zmj

¯

q ą 1 and

q ” 1 pmod 4q.

In the case where Γ is a Fuchsian group we also compute the ring structure (Theo-
rem 1.B).

Definition 1.1.2. We will write
Àr

j“1 Zmj “ p
Àr´1

j“1 Ztj q ‘ p
Àl

k“1 Zqkq, where the
Àl

k“1 Zqk term is decomposed via the invariant factor decomposition of finite abelian
groups. We write rH˚pXq for the reduced cohomology of X, that is the kernel of the map
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induced by the inclusion of the basepoint. Recall that H˚pZqq “ Zrxs{pqxq where x has
degree 2. Define Rq to be the subring of rH˚pZqq generated by x2 and x3.

Theorem 1.B. Let Γ be a Fuchsian group of signature rg, s;m1, . . . ,mrs.

(a) If s “ 0 then rH˚pΓq – rH˚pΣgq ‘

´

Àr´1
j“1

rH˚pZtj q
¯

‘ p
Àl

k“1Rqkq.

(b) If s ą 0 then rH˚pΓq – rH˚pF2g`s´1q ‘

´

Àr
j“1

rH˚pZmj q
¯

where F2g`s´1 is a free
group of rank 2g ` s´ 1.

We remark that some of the results have appeared in the literature before. The case
where Γ is a cocompact Fuchsian group, so ε “ ` and d “ k “ s “ 0, was considered by
Majumdar [15], however, our computation of the ring structure is new. The case ε “ `
and d “ k “ 0 is a corollary of a result of Huebschmann [11] and the case ε “ ´ and
d “ k “ s “ 0 was considered by Akhter and Majumdar [1]. Each of these previous
results used different methods to the ideas here.

Other interpretations of the cohomology of Fuchsian groups have appeared in the liter-
ature. These have primarily dealt with lifting phenomena [16], with Eichler cohomology
[5] [6] or with K-theory in relation to the Baum-Connes conjecture [2] [12] [13].

The paper is structured as follows. In Section 1.2 we define the signature of an NEC
group. In Section 1.3 we introduce the Cartan Leray type spectral sequence for a Γ-space.
Finally, in Section 1.4 we prove Theorem 1.A and Theorem 1.B.

Acknowledgements

I would like to thank my PhD supervisor Professor Ian Leary for his guidance and
support. I would also like to thank the anonymous reviewer as their feedback greatly
improved the exposition of this paper. This work was supported by the Engineering and
Physical Sciences Research Council grant number 2127970.

1.2 Non-Euclidean crystallographic groups

We will first describe Wilkie and Macbeath’s NEC signatures [18] [14], then the associated
fundamental domain in RH2 YΛpΓq, and finally we will give a presentation for an NEC
group in terms of its signature. For further information on NEC groups the reader should
consult [4].

An NEC signature consists of a sign ε “ ˘, and several sequences of integers grouped in
the following manner:
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(i) Two integers g, s ě 0.

(ii) An ordered set of integer periods rm1, . . . ,mrs.

(iii) An ordered set of k period cycles tCi :“ pni,1, . . . , ni,siq : 1 ď i ď ku.

(iv) A further d empty period cycles pq, . . . , pq.

The sequences and sign are then combined into the NEC signature, which is written as

pg, s, ε, rm1, . . . ,mrs, tpn1,1, . . . , n1,s1q, . . . , pnk,1, . . . , nk,skq, pq, . . . , pquq.

We let CE denote the number of even ni,l and we let CO denote the number of Ci for
which every ni,l is odd.

Associated to each NEC signature is a surface symbol describing a fundamental domain
for the associated NEC group. The surface symbol is a list of edges travelling around
the polygon clockwise. Two edges paired orientably will be indicated by the same letter
and a prime. Two edges paired non-orientably will be indicated by the same letter and
an asterisk. When ε “ `, we have the surface symbol

ξ1ξ
1
1 . . . ξrξ

1
rε1γ1,0 . . . , γ1,s1ε

1
1ε2 . . . εkγk,0 . . . , γk,skε

1
kα1β

1
1α
1
1β
1
1 . . . αgβ

1
gα
1
gβ
1
g.

When ε “ ´, we have the surface symbol

ξ1ξ
1
1 . . . ξr`sξ

1
r`sε1γ1,0 . . . , γ1,s1ε

1
1ε2 . . . εkγk,0 . . . , γk,skε

1
kα1α

˚
1 . . . αgα

˚
g .

For j “ 1, . . . , r, the period mj is attached to the vertex vj common to the edges ξj and
ξ1j . For 1 ď i ď k and 1 ď l ď si the cycle period ni,l is associated with the vertex wi,l
common to the edges γi,l´1 and γi,l. The vertices vj for j “ r ` 1, . . . , r ` s lie on the
boundary BRH2. For i “ 1, . . . , d ` k we label the vertex common to the edges εi and
γi,0 or to the edges γi,si and ε1i by wi,0. Finally, we label all other vertices v0. Several
examples of fundamental domains are given in Figure 1.1.

For an NEC group Γ we may take the quotient O “ RH2{Γ. The quotient comes with a
natural orbifold structure and many of the geometric-toplogical features of the quotient
are reflected in the signature. Indeed, if ε “ ` then O is a genus g surface with the
disjoint union of s points and d` k open disks removed. We refer to the removed points
as the cusps of O and to the boundary of the open disks as the boundary components of O.
There are r cone or orbifold points in the interior O. For the ith boundary component,
for 1 ď i ď k, there are si cone or orbifold points on the boundary. The remaining d
boundary components do not have any cone points. If ε “ ´ the situation is identical
except we begin with a sphere with g cross-caps attached.
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v0

v0

v0
v0

v0

w1,0

w1,1

w1,2

w1,0

v0
w2,0

w2,0

α1

β′
1

α′
1β1

ǫ1

γ1,0

γ1,1

γ1,2

ǫ′1 ǫ2

γ2,0

ǫ′2

(a)

v1 v2

v3

v0ξ′1 ξ2

v0

ξ3

ξ′2
v0

ξ1

ξ′3

(b)

v1 v2

v3

v0ξ′1 ξ2

v0

ξ3

ξ′2

v0

ξ1

ξ′3

∂RH2

(c)

Figure 1.1: In (a) we have a fundamental domain for an NEC group of signature
p1, 0,`, rs, tpm,nq, pquq. The topological quotient of RH2 is homeomorphic to a torus
with two open discs removed. In the orbifold structure of the quotient we have two
cone points on one of the two boundary components. In (b) we have a fundamental
domain for a Fuchsian triangle group of signature p0, 0,`, rp, q, rs, tuq “ r0, 0; p, q, rs for
p´1 ` q´1 ` r´1 ă 1. The topological quotient is homeomorphic to a sphere. In the
orbifold structure we have three cone points. In (c) we have a fundamental domain an
Fuchsian NEC group of signature p0, 1,`, rm,ns, tuq “ r0, 1;m,ns for m` n ą 4. The
topological quotient is homeomorphic to a punctured sphere. In the orbifold structure

we have two cone points in the interior of the punctured sphere.

Under the action of the associated NEC group, for 1 ď j ď r the stabiliser of the vertex
vj is a cyclic group of order mj acting on RH2 via rotations. This corresponds exactly
to a maximal elliptic subgroup of Γ fixing the point vj in RH2. If vj lies on BRH2, that
is when r ` 1 ď j ď r ` s, then the stabiliser is isomorphic to Z. This corresponds to a
maximal parabolic subgroup of Γ stabilising a cusp.

The stabiliser of the edge γi,l for 1 ď i ď k and 0 ď l ď sk or for k ` 1 ď i ď k ` d and
l “ 0 is a reflection group Z2. The reflection corresponds to a non-trivial reflection in



38 Paper 1 – Cohomology of NEC groups

Γ reflecting RH2 through the geodesic line containing γi,l. In the quotient these edges
correspond to the edges in the boundary components. The stabiliser of the vertex wi,l
for 1 ď i ď k and 1 ď l ď sk is a dihedral group D2ni,l of order 2ni,l, note the wi,l lies
in the ith boundary component. The stabiliser of the vertex wi,l for 1 ď i ď k ` d and
l “ 0 is a reflection group Z2. No other points of the polygon are fixed points of the
NEC group.

Recall that the rational Euler characteristic of a group Γ of type V F is defined to be
χQpΓq “ χpΓ1q{|Γ : Γ1| where Γ1 is a finite index subgroup of type F . Let Γ be an NEC
group of signature

pg, s, ε, rm1, . . . ,mrs, tpn1,1, . . . , n1,s1q, . . . , pnk,1, . . . , nk,skq, pq, . . . , pquq,

if ε “ ` then

χQpΓq “ 2´ 2g ´ s´ r ´ d´ k ´
1

2

k
ÿ

i“1

si `
r
ÿ

j“1

1

mi
`

1

2

k
ÿ

i“1

si
ÿ

j“1

1

ni,j

and if ε “ ´ then

χQpΓq “ 2´ g ´ s´ r ´ d´ k ´
1

2

k
ÿ

i“1

si `
r
ÿ

j“1

1

mi
´

1

2

k
ÿ

i“1

si
ÿ

j“1

1

ni,j
.

If χQpΓq ă 0 then there exists an NEC group with the corresponding signature, except
when ε “ ´ and s ą 0 where there is no known classification. By the Gauss-Bonnet
Theorem we see that the hyperbolic area of a fundamental domain for the NEC group
is equal to ´2πχQpΓq [17] (see also [4, Theorem 1.1.8]).

For the above equations, there are 17 solutions to χQpΓq “ 0, these exactly correspond
to the 17 Euclidean wallpaper groups [14, Section 8]. We can now give a presentation
for an NEC group. Due to the large number of generators and relations, we detail this
in Table 1.1.

Signature element Generator(s) Relation(s)
Period mj for 1 ď j ď r xj x

mj
j “ 1

Cycle pni,1, . . . , ni,siq for ei ci,si “ e´1
i ci,0ei

1 ď i ď k and 0 ď l ď si ci,0 . . . ci,si c2
i,l´l “ c2

i,l “ pci,l´1ci,lq
2 “ 1

Cycle pq for k ` 1 ď i ď k ` d ei, ci,0 c2
i,0 “ 1, ci,0 “ e´1

i ci,0ei
s xr, . . . , xr`s See g ˘
g ` a1, b1, . . . , ag, bg

śr`s
j“1 xj

śk`d
i“1 ei

śg
t“1rat, bts “ 1

g ´ a1, . . . , ag
śr`s
j“1 xj

śk`d
i“1 ei

śg
t“1 a

2
t “ 1

Table 1.1: Generators and relations for an NEC group.
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If d “ k “ 0 and ε “ `, then we write the signature of Γ as rg, s;m1, . . . ,mrs and we
refer to Γ a Fuchsian group (i.e. a discrete subgroup of PSL2pRq. If s “ 0, we say that
Γ is cocompact.

1.3 A Cartan-Leray type spectral sequence

For a more thorough treatment on Γ-equivariant cohomology and related spectral se-
quences the reader should consult for example [3, Chapter VII]. We will just summarise
the theory we need.

Let Γ be a discrete group, X a Γ-complex (in the sense of Brown [3, Chapter I.4]) and
M a Γ-module. We define the Γ-equivariant homology of X with coefficients in M to be

HΓ
˚ pX;Mq :“ H˚pΓ;C˚pXq bMq

with diagonal Γ-action on C˚pXq bM .

Let Ωppq be a set of representatives of Γ-orbits of p-cells in X and let Γσ denote the
stabiliser of the cell σ. We have a Γσ-module Zσ on which Γσ acts on via χσ : Γσ Ñ t˘1u.
Note that the action is trivial if Γσ fixes σ pointwise. Define Mσ :“ Zσ bM , it follows
Mσ is a Γσ-module additively isomorphic to M but with the Γσ-action twisted by χσ.
One of the main computational tools is the following spectral sequence.

Theorem 1.3.1. [3, Chapter VII (7.10)] Let X be a Γ-complex, then there is a spectral
sequence

E1
pq :“

à

σPΩppq

HqpΓσ;Zσq ñ HΓ
p`qpX;Zq.

A description of d1
p,˚ : E1

p,˚ Ñ E1
p´1,˚ is given in [3, Chapter VII.8], we will summarise

it here. Let σ be a p-cell of X and τ a pp ´ 1q-cell. Write Bστ : Mσ Ñ Mτ for the
pσ, τq-boundary component of CppXq bM Ñ Cp´1pXq bM . Let Ωσ “ tτ : Bστ ‰ 0u

and note that this is a Γσ-invariant set of pp´ 1q-cells. Let Γστ “ Γσ X Γτ and let

tστ : HpΓσ;Mσq Ñ HpΓστ ;Mσq

denote the transfer map arising from the fact |Γσ : Γστ | is finite. Now, Bστ is a Γστ -map
and B is a Γ-map, thus we have a map

uστ : H˚pΓστ ;Mσq Ñ H˚pΓτ ;Mτ q

induced by Γστ ãÑ Γτ and B. Let τ0 be a Γ-orbit representative in X and choose g P Γ

such that gpτq “ τ0. The action of g on Cp´1pXqbM induces an isomorphismMτ ÑMτ0

which is compatible with the conjugation isomorphism Γτ Ñ Γτ0 induced by g. It follows
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there is an isomorphism

vτ : H˚pΓτ ;Mτ q Ñ H˚pΓτ0 ;Mτ0q.

Finally, by [3, Chapter VII (8.1)] up to sign we have

d1
p,˚|H˚pΓσ ;Mσq “

ÿ

τPΩpp´1q

vτuστ tστ .

1.4 Cohomology

1.4.1 The cocompact Fuchsian case

We will calculate the cohomology of cocompact Fuchsian groups. We note that the proof
here is new, except for we calculate the abelianization using Smith normal form in the
same way as Majumdar [15].

Proof of Theorem 1.A(a). We will use Theorem 1.3.1. In this case X “ RH2 endowed
with the induced cell structure from the Wilkie-Macbeath polygon. To set up the spectral
sequence we observe for each mj there is a Γ-orbit of 0-cells, where each cell has stabiliser
Zmj . Now, by Theorem 1.3.1 the E1-page of the spectral sequence has the form given
by Figure 1.2.

3
Àr

j“1 Zmj 0 0 0

2 0 0 0 0

1
Àr

j“1 Zmj 0 0 0

0 Zr`1 Z2g`r Z 0

0 1 2 3

Figure 1.2: The E1-page of the spectral sequence for a Fuchsian group.

The only non-trivial differentials are along the bottom row. Slightly abusing notation
we fix a basis for the chain groups by labelling the chains by the equivariant cells which
afford them. Thus, we have a sequence

0 xv0, . . . , vry xαi, βi, ξ1, . . . , ξr|i “ 1, . . . , gy xγy 0.
d1

1,0 d1
2,0

We have d1
1,0pαiq “ d1

1,0pβiq “ v0 ´ v0 “ 0 for 1 ď i ď g, d1
1,0pξjq “ vj ´ v0 for

1 ď j ď r and, d1
2,0 “ 0. In particular, Impd1

1,0q – Zr, Kerpd1
1,0q – Z2g, Impd1

2,0q “ 0 and
Kerpd1

2,0q – Z. From this calculation we deduce the E2 page is as in Figure 1.3.
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3
Àr

j“1 Zmj 0 0 0

2 0 0 0 0

1
Àr

j“1 Zmj 0 0 0

0 Z Z2g Z 0

0 1 2 3

Figure 1.3: The E2-page of the spectral sequence for a Fuchsian group.

The only non-trivial differential is the map drawn in Figure 1.3. Moreover, the spectral
sequence clearly collapses after the computation of this differential. We can easily deduce
what this differential is using the knowledge ofH1pΓq. We will compute the abelianization
using the same method as Majumdar [15].

To compute the abelianization we write out the presentation matrix M of Γ and then
compute the Smith normal form.

M “

»

—

—

—

—

—

—

—

—

—

—

–

m1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

0
. . .

...
...

...
...

. . .
...

...
...

...
. . . 0 0 0

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 mr 0 0

1 ¨ ¨ ¨ ¨ ¨ ¨ 1 1 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

We find H1pΓq “ Z2g ‘

´

Àr´1
j“1 Ztj

¯

. The constants tj (Definition 1.1.1) come from
Theorem 6 in Ferrar’s book ‘Finite Matrices’ [8]. In particular,

śp
j“1 tj is equal to the

greatest common divisor of the p-rowed minors of M .

It follows from the calculation of the abelianization of Γ that the map d2
2,0 is a surjection

onto the factor
Àl

k“1 Zqk from the decomposition
Àr

j“1 Zmj “ p
Àr´1

j“1 Ztj q‘p
Àl

k“1 Zqkq.
The result now follows from the fact all extension problems are trivial.

Corollary 1.4.1. Let Γ be a cocompact Fuchsian group of signature rg;m1, . . . ,mrs, then

HqpΓq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Z q “ 0,

Z2g q “ 1,

Z‘
´

Àr´1
j“1 Ztj

¯

q “ 2,
Àr

j“1 Zmj q “ 2l, where l ě 2,

0 otherwise.
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1.4.2 Non-orientable NEC groups with no cusps or boundary compo-
nents

Proof of Theorem 1.A(b). Let X “ RH2 and let Γ be an NEC group with signature
pg, 0,´, rm1, . . . ,mrs, tuq. In this case our E1-page has the form given in Figure 1.2.
The only non-trivial differentials are along the q “ 0 row. Keeping the same notation as
before we now have a sequence

0 xv0, . . . , vry xα1, . . . , αg, ξ1, . . . , ξry xγy 0.
d1

1,0 d1
2,0

We have d1
1,0pαiq “ v0 ´ v0 “ 0 for 1 ď i ď g, d1

1,0pξjq “ vj ´ v0 for 1 ď j ď r

and, d1
2,0pfq “

řg
i“1 2αi. In particular, Impd1

1,0q – Zr, Kerpd1
1,0q – Z2g, Impd1

2,0q “

2Z and Kerpd1
2,0q “ 0. It follows that E2

0,0 “ Z, E2
1,0 “ Zg´1 ‘ Z2 and E2

2,0 “ 0,
the remaining entries are unchanged. Thus, by dimension considerations the spectral
sequence collapses.

The result now follows from resolving the extension problem in H1pΓq. Instead we
compute the abelianization of Γ from the presentation matrix

M “

»

—

—

—

—

—

—

—

—

—

—

–

m1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

0
. . .

...
...

...
...

. . .
...

...
...

...
. . . 0 0 ¨ ¨ ¨ 0

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 mr 0 ¨ ¨ ¨ 0

1 ¨ ¨ ¨ ¨ ¨ ¨ 1 1 2 ¨ ¨ ¨ 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

„

»

—

—

—

—

—

—

—

—

—

—

–

m2 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0

0
. . .

...
...

...
. . .

...
...

...
. . . 0 0

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 mr 0

m1 ¨ ¨ ¨ ¨ ¨ ¨ m1 m1 2m1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“M 1

We find H1pΓq “ Zg´1 ‘

´

Àr
j“1 Zwj

¯

. The constants wj (Definition 1.1.1) come from
Theorem 6 in Ferrar’s book ‘Finite Matrices’ [8]. In particular,

śp
j“1wj is equal to the

greatest common divisor of the p-rowed minors of M 1.

Corollary 1.4.2. If Γ is an NEC group with signature pg, 0,´, rm1, . . . ,mrs, tuq then,

HqpΓq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Z for q “ 0,

Zg´1 for q “ 1,
Àr

j“1 Zwj for q “ 2,
Àr

j“1 Zmj for q “ 2l, where l ě 2,

0 otherwise.
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1.4.3 Orientable NEC groups with at least one cusp or boundary com-
ponent

The remaining proofs will use the homology of finite dihedral groups. We record them
here for the convenience of the reader.

Theorem 1.4.3. [10] Let D2n denote a dihedral group of order 2n. In the case n is odd
we have

HqpD2n;Zq “

$

’

’

’

’

&

’

’

’

’

%

Z q “ 0,

Z2 q ” 1 pmod 4q,

Z2n q ” 3 pmod 4q,

0 otherwise.

HqpD2n;Z2q “ Z2 for q ě 0.

In the case n is even we have

HqpD2n;Zq “

$

’

’

’

’

’

&

’

’

’

’

’

%

Z q “ 0,

Z
1
2
pq`3q

2 q ” 1 pmod 4q,

Z
1
2
q

2 q ą 0 is even,

Z
1
2
pq`1q

2 ‘ Zn q ” 3 pmod 4q.

HqpD2n;Z2q “ Zq`1
2 for q ě 0.

We will now compute the cohomology of an NEC group with orientable quotient space
with at least one boundary component or cusp.

Proof of Theorem 1.A(c). First, assume that k ` d “ 0, so s ą 0. In this case it is easy
to see that we can rearrange the presentation of Γ so that Γ – Fs´1 ˚ Zm1 ˚ ¨ ¨ ¨ ˚ Zmr
where Fs´1 is a free group of rank s´ 1. The result now follows from a straightforward
application of the homology Mayer-Vietoris sequence.

We now treat the case with boundary, let k, d, s ě 0 such that k ` d ą 0 and let ε “ `.
We will use Theorem 1.3.1; here our space X is RH2 Y ΛpΓq endowed with the induced
cell structure from the Wilkie-Macbeath polygon. To set up the sequence, observe that
the stabiliser of a marked point vj in the interior of the quotient space is a cyclic group
Zmj . If the vertex vj lies on BRH2 then the stabiliser is Z. The stabiliser of a marked
point wi,l on the boundary of the quotient space is a dihedral group D2ni,l , and edges
along the boundary are stabilised by reflection groups isomorphic to Z2. Since the face
stabilisers are trivial, vertices have a canonical orientation, and the edges being stabilised
by Z2 are fixed pointwise, all of the orientation characters are trivial. It follows that the
E1-page consists of modules with trivial Γ-action and has the form given in Figure 1.4.
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5
Zk
`
d

2
‘

´

À

r j“
1
Z m

j

¯

‘

´

À
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1

À
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1
H
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pD
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ř
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À
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We will first deal with the differentials d1
˚,0. By slightly abusing notation and labelling

our basis elements for each chain group by the equivariant cells which afford them, we
have a sequence

0 Ð

C

vj , wi,l

ˇ

ˇ

ˇ

ˇ

0 ď j ď r ` s

1 ď i ď k ` d

0 ď l ď si

G C

αt, βt, ξj , γi,l, εi

ˇ

ˇ

ˇ

ˇ

1 ď t ď 2g,

1 ď j ď r ` s

1 ď i ď k ` d,

0 ď l ď si

G

xfy 0.

d1
1,0

d1
2,0

Computing the image of the differential d1
2,0 on the Z-basis element f , we obtain that up

to sign

f ÞÑ
k
ÿ

i“1

si
ÿ

l“0

γi,l.

So, we find Impd1
2,0q “ Z and E2

2,0 “ 0. In light of the description of the fundamental
domain in Section 1.2, for d1

1,0 we have the following

αt ÞÑ v0 ´ v0 “ 0 for 1 ď t ď 2g;

βt ÞÑ v0 ´ v0 “ 0 for 1 ď t ď 2g;

ξj ÞÑ vj ´ v0 for 1 ď j ď r ` s;

γi,l ÞÑ wi,pl`1 pmod siqq ´ wi,l for 1 ď i ď k, and 0 ď l ď si;

γi,0 ÞÑ wi,0 ´ wi,0 “ 0 for k ` 1 ď i ď k ` d;

εi ÞÑ wi,0 ´ v0 for 1 ď i ď k ` d.

In particular, we have Impd1
1,0q “ Zr`s`k`

řk
i“1 si and Kerpd1

1,0q “ Z2g`k`d. It then
follows that E2

1,0 “ Z2g`k`d´1 and E2
0,0 “ Z. At this point, it is easy to see that the

spectral sequence will collapse trivially once we have computed the differentials d1
1,˚.

We will begin with the differential d1
1,q where q ” 1 pmod 4q. Since the edges connected

to the vertices corresponding to the Zmj summands have trivial stabilisers, the Zmj
summands will survive to the E2-page. In the case q “ 1, the Z summands also survive
by the same reasoning.

We now draw our focus to the other summands. Let each D2ni,l be generated by a
reflection ri,l and a rotation ti,l of order ni,l. We have that H1pD2ni,lq is generated by
r1
i,l, t

1
i,l, the images of ti,l and ri,l under the abelianization map. For q ą 1 there will be

extra generators whenever an ni,l is even; we will suppress this from the notation. Note
that t1i,l “ 0 if n is odd. For each q ” 1 pmod 4q we now have a sequence (modulo the
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extra classes arising from dihedral groups where ni,l is even and when q ą 1)

0

C

wqi,0, w
q
p,0, r

q
i,l, t

q
i,l

ˇ

ˇ

ˇ

ˇ

ˇ

1 ď i ď k

1 ď l ď si

1 ď p ď d

G C

γqi,l, γ
q
p,0

ˇ

ˇ

ˇ

ˇ

ˇ

1 ď i ď k

0 ď l ď si

1 ď p ď d

G

d1
1,q

We will break the map d1
1,q into several cases depending on the adjacent edges in the

fundamental domain and the cycle type of the boundary component. First, we will
consider each ‘end’ of the ith boundary component with a non-empty period of cycles
(i.e. 1 ď i ď k), the reader should keep Figure 1.1(a) in mind. Here we have

pψi,0qq : Hqpxri,0yq ãÑ HqpD2ni,lq ‘HqpZ2q by γ
q
i,0 ÞÑ tqi,1 ´ w

q
i,0

and

pψi,siqq : Hqpxri,siti,siyq ãÑ HqpZ2q ‘HqpD2ni,lq by γ
q
i,0 ÞÑ wqi,0 ´ t

q
i,si
´ rqi,si .

For the intermediary edges we have

pψi,lqq : Hqpxri,lti,lyq ãÑ HqpD2ni,l`1
q ‘HqpD2ni,lq by γ

q
i,0 ÞÑ tqi,l`1 ´ t

q
i,l ´ r

q
i,l.

In each case we are suppressing from the image a possible sum of order 2 classes (distinct
from tqi,l and r

q
i,l) arising from even dihedral groups. The reason for this is that provided

at least one of the ni,l are even, the images of the maps ψi,l for 0 ď l ď si are already
linearly independent. Of course if all of the ni,l for 0 ď l ď si are odd, then the classes
do not exist.

If the boundary component i only contains odd cycles, then γqi,si “
řsi´1
l“0 γqi,l, so we have

an order 2 element in the kernel of d1
1,q. If the boundary component has an empty period

of cycles, then we have exactly one edge γi,0 with vertex wi,0 at each end. In particular
γqi,0 ÞÑ wqi,0 ´ wqi,0 “ 0. From this analysis we deduce that Kerpd1

1,qq “ ZCO`d2 and

Impd1
1,qq – Zk`

řk
i“1 si´CO

2 . It then follows from a simple calculation that E2
1,q “ ZCO`d2

and E1
0,q – Z

1
2
pq`1qCE`CO`d

2 ‘

´

Àr
j“1 Zmj

¯

for q ” 1 pmod 4q, q ą 1. When s ą 0 we
have an additional Zs summand in E2

0,1.

An alternative way of considering these maps is as follows. Let CEi denote the number
of even periods in the ith period cycle. Observe that each period cycle contributes
1
2pq`1qCEi´1 summands of Z2 to E2

0,q. The CO summands of Z2 contained in Kerpd1
1,qq

cause an additional CO summands of Z2 to survive to E2
0,q. From, above we then have

that

k `
k
ÿ

i“1

ˆ

1

2
pq ` 1qCEi ´ 1

˙

` CO “ k `
1

2
pq ` 1qCE ´ k ` CO “

1

2
pq ` 1qCE ` CO.
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We now need to compute the maps d1
1,q for q ” 3 pmod 4q. We have essentially the same

cases and proof as when q ” 1 pmod 4q except that Cokerpd1
1,qq contains a summand

Zni,l for each ni,l.

Claim For q ” 3 pmod 4q, 1 ď i ď k and 1 ď l ď si the term E2
1,q “ Cokerpd1

1,qq

contains a summand Zni,l.

Proof of claim: When ni,l is odd this is immediate. Let n :“ ni,l be even and consider
Hq`1pD2n;Zq where q ” 3 pmod 4q. There is an element of order n in Hq`1pD2n;Zq
that corresponds to a power of the second Chern class of the faithful 2-dimensional linear
representation ρ of D2n “ xr, ty. Restricting ρ to the subgroup xrty gives the regular
representation of Z2 – xrty. Now, the total Chern class of Z2 is equal to 0 in degree
4. It follows that the map Hq`1pD2n;Zq Ñ Hq`1pxrtyq has kernel containing a Zn
summand. Dualizing back to homology, it follows the map Hqpxrtyq Ñ HqpD2nq has
cokernel containing a Zn summand. This yields the claim. �

We conclude the description of E2 as follows. First, when q ” 3 pmod 4q we have

Kerpd1
1,qq – ZCO`d2 and Impd1

1,qq – Zk`
řk
i“1 si´CO

2 . It follows E2
1,q – ZCO`d and E2

0,q –

Z
1
2
pq´1qCE`CO`d

2 ‘

´

Àk
i“1

Àsi
l“1 Zni,l

¯

‘

´

Àk
j“1 Zmj

¯

. Every other entry on the E2-page
is 0 trivially.

The theorem follows from resolving the extension problems 0 Ñ E2
1,q´1 Ñ HqpΓq Ñ

E2
0,q Ñ 0, where q ą 0 is even. To resolve the extension problems, we will compute

the homology of Γ with Z2 coefficients and then compare the Z2-rank of HqpΓ;Z2q with
the Z2-rank of pE2

1,q´1 ‘ E2
0,qq b Z2 ‘ TorpE2

0,q´1,Z2q. Note that the latter is equal to
pq ` 1qCE ` 2CO ` 2d. If the ranks are equal, then the extension will split.

Recall that HnpZ2;Z2q “ Z2 for n ě 0. Combining this with the Z2-homology groups
of the Dihedral groups (Theorem 1.4.3) and the Γ-equivariant spectral sequence (Theo-
rem 1.3.1), we can set up a spectral sequence calculation. To simplify things, note we
are only interested in the maps d1

1,q for q ą 0.

Let q ą 0 and let CT denote the number of odd cycles, so CT ` CE “
řk
i“1 si. We then

have a sequence

0 Zpq`1qCE`CT`d`k
2 ZCE`CT`d`k2 0.

d1
1,q

By essentially using the same calculations as above we have that Impd1
1,qq – ZCE`CT`k´CO2 .

From this we conclude that E2
0,q “ Zpq`1qCE`CO`d

2 and that E2
1,q “ ZCO`d2 . This gives a

Z2-rank of pq ` 1qCE ` 2CO ` 2d. Thus, the extension splits.

Corollary 1.4.4. Let d` k ` s ą 0. If Γ is an NEC group with signature

pg, s,`, rm1, . . . ,mrs, tpn1,1, . . . , n1,s1q, . . . , pnk,1, . . . , nk,skq, pq, . . . , pquq
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then,

HqpΓq “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Z q “ 0,

Z2g`s`k`d´1 q “ 1,

Z
1
2
qCE`CO`d

2 ‘

´

Àr
j“1 Zmj

¯

q ” 2 pmod 4q,

Z
1
2
pq´1qCE`CO`d

2 q “ 2p` 1 where p ě 1,

Z
1
2
qCE`CO`d

2 ‘

´

Àk
i“1

Àsi
l“1 Zni,l

¯

‘

´

Àr
j“1 Zmj

¯

q ą 0 and q ” 0 pmod 4q.

1.4.4 Non-orientable NEC groups with at least one cusp or boundary
component

We will now compute the cohomology of an NEC group with non-orientable quotient
space and at least one cusp or boundary component. The proof is almost exactly the
same as the proof of Theorem 1.A(c) so we will only provide a brief sketch and highlight
the differences.

Proof of Theorem 1.A(d) (sketch). First assume that k ` d ą 0. The key differences
between the orientable (Figure 1.4) and non-orientable cases is the E1

1,0 term and the
map d1

2,0. The E1
1,0 now contains a Zg summand instead of a Z2g summand. The map

d1
2,0 now sends the generator to the sum of boundary components plus 2 times each

generator of the aforementioned Zg summand. More precisely (with the same notation
as in the proof of Theorem 1.A(c)) we have,

f ÞÑ
k
ÿ

i“1

si
ÿ

l“0

γi,l ` 2

g
ÿ

t“1

αt

In particular, E2
1,0 “ Zg`k`d´1. The proof goes through identically from here.

Now assume g ą 0 and k ` d “ 0, so s ą 0. We still have that E1
1,0 contains a Zg

summand instead of a Z2g summand. However, with notation as before,

d1
2,0pfq “ 2

g
ÿ

t“1

αt.

In particular, E2
1,0 “ Zg´1 ‘ Z2. The remainder of the proof is identical, except we now

have an extension problem to determine H1pΓq. We instead resolve this by computing
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the abelianisation from the presentation matrix

M “

»

—

—

—

—

—

—

—

—

—

—

–

m1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

0
. . .

...
...

...
...

...
...

. . .
...

...
...

...
...

...
. . . 0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 mr 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0

1 ¨ ¨ ¨ ¨ ¨ ¨ 1 1 1 ¨ ¨ ¨ 1 2 ¨ ¨ ¨ 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Clearly, M can be reduced to an pr ` 1q ˆ pr ` g ` sq matrix with the only non-zero
entries equal to m1, . . . ,mr, 1 on the leading diagonal. The result follows.

The final case when g “ k “ d “ 0 and s ą 0 follows an almost identical argument to
the case k “ d “ 0, s ą 0 and ε “ `, so we will not recreate it here.

Corollary 1.4.5. Let d` k ` s ą 0. If Γ is an NEC group of signature

pg, s,´, rm1, . . . ,mrs, tpn1,1, . . . , n1,s1q, . . . , pnk,1, . . . , nk,skq, pq, . . . , pquq

then

HqpΓq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Z q “ 0,

Zg`s`k`d´1 q “ 1,

ZCE`CO`d2 ‘

´

Àr
j“1 Zmj

¯

q “ 2,

Z
1
2
pq´1qCE`CO`d

2 q “ 2p` 1 where p ě 1,

Z
1
2
qCE`CO`d

2 ‘

´

Àk
i“1

Àsi
l“1 Zni,l

¯

‘

´

Àr
j“1 Zmj

¯

q ą 0 and q ” 0 pmod 4q,

Z
1
2
qCE`CO`d

2 ‘

´

Àr
j“1 Zmj

¯

q ą 2 and q ” 2 pmod 4q.

1.4.5 The ring structure

We will now deal with the computation of the ring structure. Recall from Definition 1.1.2
that Rq is the subring of rH˚pZqq generated by x2 and x3, where x is the degree 2 generator
of H˚pZqq.

Proof of Theorem 1.B. We first prove the result when s ą 0. Let Γ be a Fuchsian group
of signature rg, s;m1, . . . ,mrs such that s ą 0. We may rearrange the presentation of Γ

so that Γ – Fs´1 ˚ Zm1 ˚ ¨ ¨ ¨ ˚ Zmr where Fs´1 is a free group of rank s´ 1. The result
is now an easy application of the Mayer-Vietoris sequence for cohomology.
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3
Àr

j“1 Zmj 0 0 0

2 0 0 0 0

1 Zs ‘
´

Àr
j“1 Zmj

¯

0 0 0

0 Zr`s`1 Z2g`r`s Z 0

0 1 2 3

Figure 1.5: The E2-page of the cohomological spectral sequence for a cocompact
Fuchsian group. Here the element xj is additive torsion of order mj .

Now, let Γ be a Fuchsian group of signature rg, s;m1, . . . ,mrs such that s “ 0. We
instead consider the equivariant cohomology spectral sequence for Γ. Armed with our
calculation for homology, it is clear that E2-page has the form given in Figure 1.5 (here
mjxj “ 0). Now, there is an extension problem for H2pΓq which we resolved when
computing the homology of Γ. Dualising to cohomology via the universal coefficient
theorem we see that, up to a change of basis of the xjs, the extension problem kills a
subset of this new basis which generate an abelian group isomorphic to

Àl
k“1 Zqk . Since

the spectral sequence preserves cup products the result follows.

1.5 Closing remarks

We end with three remarks. Firstly, the author was asked by Professor Gareth Jones
whether the same results hold for the 17 wallpaper groups if one takes X to be the
Euclidean plane. We confirm here it does, however the cohomology computations of
these groups are well known so we will not elaborate on this. Secondly, the results in this
paper are consistent with Gaboriau’s result that L2-Betti numbers of lattices in a Lie
group are proportional to their covolume [9]. As such one deduces the well known result
that for an NEC group Γ the first L2-Betti number bp2q1 pΓq “ ´χQpΓq and all other L2-
Betti numbers vanish. Finally, Fuchsian groups are not determined by their cohomology.
Indeed, the groups with signatures rg, s; 3, 10s and rg, s; 5, 6s have isomorphic cohomology
rings but the groups are not isomorphic.
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Paper 2
THE FIRST `2-BETTI NUMBER AND GRAPHS OF GROUPS

INDIRA CHATTERJI, PETER KROPHOLLER, AND SAM HUGHES

Abstract. We generalise results of Thomas, Allcock, Thom–Petersen, Kar–Niblo on
presentations to the first `2-Betti number of quotients of certain graphs of groups by
subgroups with free actions on the edge sets of the graphs.

2.1 Introduction

The `2-Betti numbers were introduced by Atiyah as dimensions of heat kernels of certain
operators on Riemannian manifolds. The modern formulation assigns `2-Betti numbers
b
p2q
i pGq to arbitrary groups G. We refer the reader to Lück’s account where the history
can be found in the introduction of [11]. Technical results about `2-Betti numbers that
we need can be found in chapters 6 and 8 of loc. cit. The `2-Euler characteristic χp2qpGq
is defined to be the alternating sum of these Betti numbers when this series is absolutely
convergent. Let C denote the class of groups F such that

•
ř

iě0 b
p2q
i pGq is finite (this being the condition for absolute convergence),

• b
p2q
1 pF q “ b

p2q
2 pF q “ 0, and

• either χp2qpF q “ 0 or F is finite.

Note that that C contains all `2-acyclic groups (i.e. the groups for which b
p2q
i “ 0 for

all i ą 0) and in particular it contains all amenable groups. Relevant background on
`2-cohomology is included in Section 2.2. In this note we prove the following theorem.

Theorem 2.A. Let F be a group acting simplicially and cocompactly on a simplicial
tree, with vertex and edge stabilisers in C, let N be a subgroup normally generated by
m elements, intersecting the vertex stabilisers trivially, and let G denote F {N . Then
χp2qpF q is defined and setting k :“ χp2qpF q `m the following conclusions hold:

(i) If k ď 0, then G is infinite.

(ii) If k ă 0, then bp2q1 pGq ě ´k ą 0.

(iii) If G is finite, then k ą 0 and |G| ě 1
k .

Note that the hypotheses of this theorem guarantee that N acts freely on the specified
tree and in particular N is necessarily a free group. Note also that, according to [2,

53
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Corollary 1.4], if bp2q1 pGq ą 0 then G has no commensurated infinite amenable subgroup
and according to [4, Corollary 6] does not have property (T). If we also have bp2q2 pGq “ 0,
then G is in the class Dreg by [14, Lemma 2.8]. We refer the reader to [3] for background
on property (T) and to [14, Definition 2.6] for the definition of the class Dreg. Acylindri-
cally hyperbolic groups form a large class of groups admitting coarsely proper actions on
hyperbolic metric spaces. The class is a generalisation of relative hyperbolicity including
many Artin groups, mapping class groups, and OutpFnq. The main result of Osin’s pa-
per [12] states that indicable groups with positive first `2-Betti number are acylindrically
hyperbolic. In particular, we have the following corollary.

Corollary 2.B. Let G, F and N be as in Theorem 2.A. Assume that G is finitely pre-
sented, (virtually) indicable and that χp2qpF q`m ă 0. Then G is (virtually) acylindrically
hyperbolic.

The simplest way in which the indicability hypothesis may arise is through stable letters:
Let T denote the F -tree of Theorem 2.A. LetK denote the (necessarily normal) subgroup
generated by the vertex stabilisers. Then there is a subgroup E ď F that complements
K and all such subgroups are free of uniquely determined rank. Such a subgroup may
be referred to as a subgroup of stable letters of the action. The group G has an infinite
cyclic quotient when N XE has infinite index in E, in other words when there is a stable
letter that is faithfully represented in G, and in this case G is indicable.

Recall that a group G is C˚-simple if the reduced group C˚-algebra, denoted C˚r pGq,
has exactly two norm closed 2-sided ideals, 0, and the algebra C˚r pGq itself. By [5,
Corollary 6.7] we obtain the following.

Corollary 2.C. With G, F and N as before, G is C˚-simple if and only if it has trivial
amenable radical.

Theorem 2.A has some historical pedigree. It originally began life as a result about
quotients of free groups due to Thomas (see Theorem 2.D((i))) and was proved using
combinatorial methods [15]. The result was generalised by Allcock to incorporate a
bound on the rank of the abelianisation of the quotient group [1]. The introduction of
`2-cohomology came when Peterson–Thom [13, Theorem 3.6] and Kar–Niblo [10] inde-
pendently linked the inequality of Thomas to the first `2-Betti number. These discoveries
are summarized in the following result.

Theorem 2.D (Thomas [15], Allcock [1], Peterson–Thom [13], Kar–Niblo [10]). Let G
be a group with a presentation

xx1, . . . , xn| r
k1
1 , . . . , r

km
m y

in which the elements ri have order ki when interpreted in G.
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(i) If n´
řm
i“1

1
ki
ě 1 then G is infinite.

(ii) If G is finite then |G| ě 1
1´n`

řm
i“1 ki

.

(iii) If n´
řm
i“1

1
ki
ą 1 then G is non-amenable.

Deduction of Theorem 2.D from Theorem 2.A. Let G be a group with a presentation

G “ xx1, . . . , xn| r
k1
1 , . . . , r

km
m y.

Adding m fresh generators y1, . . . , ym, we can give the following alternative presentation
of the same group:

G “ xx1, . . . , xn, y1, . . . , ym| y
k1
1 , . . . , y

km
m , r1y

´1
1 , . . . , rmy

´1
m y.

Let F be the group with presentation

F “ xx1, . . . , xn, y1, . . . , ym| y
k1
1 , . . . , y

km
m y

and let N be the subgroup of F normally generated by r1y
´1
1 , . . . , rmy

´1
m . Then F is a

free product of cyclic groups: in particular it is virtually free and has Euler characteristic
χpF q “

řm
i“1

1
ki
´ n ´ m ` 1. The condition that the ri have order ki in the original

presentation ensures that N does not meet any of the finite subgroups of F and so
is torsion-free. Applying Theorem 2.A with these choices of F , N , G yields Theorem
2.D.

Throughout this paper for a group or subgroup G we will adopt the convention that 1
|G|

be interpreted as zero if G is infinite.

Finally, we also provide a computation of the first `2-Betti number for certain groups
acting on trees. This generalises a result of Lück [7], which covers the case of an amal-
gamated free product, and a result of Tsouvalas [16, Corollary 3.7]. Tsouvalas assumes
the vertex stabilisers are either residually finite or virtually torsion-free and the edge
stabilisers are finite. Here we replace both of these assumptions with Lück’s less restric-
tive assumption that the first `2-Betti numbers of the edge stabilisers vanish. So, for
example, the theorem applies to fundamental groups of graphs of C-groups.

Theorem 2.E. Let F be a group acting simplicially on a simplicial tree and let V and
E denote sets of representatives of F -orbits of vertices and edges. Assume for each e P E
that bp2q1 pFeq “ 0, then we have

b
p2q
1 pF q “

ÿ

vPV

ˆ

b
p2q
1 pFvq ´

1

|Fv|

˙

`
ÿ

ePE

1

|Fe|
`

1

|F |
.
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2.2 Background on `2-homology

Let G be a group. Then both G and the complex group algebra CG act by left mul-
tiplication on the Hilbert space `2G of square-summable sequences. The group von
Neumann algebra NG is the ring of G-equivariant bounded operators on `2G. The reg-
ular elements of NG form an Ore set and the Ore localization of NG can be identified
with the ring of affiliated operators, and is denoted by UG. One has the inclusions
CG Ď NG Ď `2G Ď UG and it is also known that UG is a self-injective ring which is
flat over NG. For more details concerning these constructions we refer the reader to [11]
and especially to Theorem 8.22 of §8.2.3 therein. The von Neumann dimension and the
basic properties we need can be found in [11, §8.3]. Now let Y be a G-CW complex as
defined1 in [11, Definition 1.25 of §1.2]. The `2-homology groups of Y are then defined
to be the equivariant homology groups HG

i pY ;UGq, and we have

b
p2q
i pY q “ dimUGHG

i pY ;UGq.

The `2-Betti numbers of a group G are then defined to be the `2-Betti numbers of EG,
that is to say

b
p2q
i pGq :“ b

p2q
i pEGq. (2.1)

By [11, Theorem 6.54(8)], the zeroeth `2-Betti number of G is equal to 1{|G|. Moreover,
if G is finite then bp2qn pGq “ 0 for n ě 1.

Let C˚pY ;UGq denote the standard cellular chain complex of Y with coefficients in UG.
We have the formula

dimUGCipY ;UGq “
ÿ

σ

1

|Gσ|

where σ runs through a set of orbit representatives of i-dimensional cells in Y . Suppose
that the `2-Euler characteristic of Y is defined. Standard arguments of homological
algebra give the connection between two Euler characteristic computations (for the details
see [11, Lemma 6.80(1)]):

χp2qpY q “
ÿ

i

p´1qib
p2q
i pY q “

ÿ

i

p´1qi dimUGCipY ;UGq “
ÿ

i

p´1qi
ÿ

σ

1

|Gσ|
. (2.2)

1This is the usual definition.
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We will need the following lemma for the proofs in the next section. One should think
of it as a mild generalisation of Theorem 6.54(2) in [11]

Lemma 2.2.1 (Comparison with the Borel construction up to rank). Let X be a G-CW
complex. Suppose for all x P X the isotropy group Gx is finite or bp2qp pGxq “ 0 for all
0 ď p ď n, then

bp2qp pXq “ bp2qp pEGˆXq for 0 ď p ď n.

Proof. It suffices to prove that the von Neumann dimensions of the kernel and cokernel
of the map

prp : HG
p pEGˆX;UGq Ñ HG

p pX;UGq

induced by the projection EG ˆX Ñ X are zero for 0 ď p ď n. Here EG ˆX carries
the diagonal action of G. By an identical argument to [11, Theorem 6.54(2)] it suffices
to prove for each isotropy subgroup H ď G and 0 ď p ď n the kernel and cokernel
of the map prp : HH

p pEH;UHq Ñ HH
p p˚;UHq have dimension equal to zero. If H is

finite this follows from [11, Theorem 6.54(8a)], and is immediate if bp2qp pHq “ 0 for all
0 ď p ď n.

2.3 The Main Theorem

To prove Theorem 2.A, one needs the following method of computing the `2-Euler char-
acteristic of a group acting on a tree analogous to Chiswell’s result [9] for rational Euler
characteristic.

Proposition 2.3.1 (Chatterji–Mislin [8]). Let F be a group acting on a tree and let V
and E denote sets of representatives of F -orbits of vertices and edges. If the `2-Euler
characteristic of each vertex and edge group is finite, then

χp2qpF q “
ÿ

vPV

χp2qpFvq ´
ÿ

ePE

χp2qpFeq.

Proof of Theorem 2.A. There is a cocompact action of F on a tree T with vertex and
edge stabilisers in the class C. Let V and E denote the vertex and edge sets. Let T
denote the quotient graph T {N and write V and E for its vertex and edge sets. Now
G “ F {N acts cocompactly on T with vertex and edge stabilisers in C. The augmented
chain complex of T is the short exact sequence

0 Ñ ZE Ñ ZV Ñ ZÑ 0

of ZF -modules. Restricting to the action of N this short exact sequence leads to a long
exact sequence for the homology of N . It is straightforward to identify H0pN ;ZV q with
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ZV and H0pN ;ZEq with ZE, so that the tail end of the sequence takes the form

H1pN ;Zq Ñ ZE Ñ ZV Ñ ZÑ 0. (2.3)

Let tri : i “ 1, ..mu denote a normal generating set for N . Choose a vertex v0 in T to be
a fixed basepoint. For 1 ď i ď m consider the geodesic from v0 to v0ri. In the quotient
graph T this geodesic descends to a loop because v0 and v0ri become identified in T .
Now 2-discs can be glued to each loop. By adjoining free G-orbits of 2-discs equivariantly
we can build a 2-complex Y with an action of G, whose 1-skeleton is T , and which has
augmented cellular chain complex

ZGm Ñ ZE Ñ ZV Ñ ZÑ 0. (2.4)

By construction the map ZGm Ñ ZE factors through a surjection ZGm Ñ H1pN ;Zq.
Therefore, the exactness of (2.3) ensures the exactness of (2.4). It follows that Y is
1-acyclic.

Let V0 and E0 be sets of orbit representatives of vertices and edges in Y . Now, applying
Proposition 2.3.1 then (2.2), we have that

χp2qpF q `m “
ÿ

vPV0

1

|Gv|
´

ÿ

ePE0

1

|Ge|
`m

“ b
p2q
0 pY q ´ b

p2q
1 pY q ` b

p2q
2 pY q.

Lemma 2.2.1 with n “ 2, yields

χp2qpF q `m “ b
p2q
0 pEGˆ Y q ´ b

p2q
1 pEGˆ Y q ` b

p2q
2 pEGˆ Y q

ě b
p2q
0 pEGˆ Y q ´ b

p2q
1 pEGˆ Y q.

Applying [11, Theorem 6.54(1a)] to the projection f : EGˆ Y Ñ EG with n “ 2 (note
that we are using the fact Y is 1-acyclic), we obtain bp2qi pEGˆY q “ b

p2q
i pEGq for i “ 0, 1.

Recalling (2.1), we therefore have

χp2qpF q `m ě b
p2q
0 pGq ´ b

p2q
1 pGq.

Let k “ χp2qpF q`m. If k ď 0, then bp2q0 pGq´b
p2q
1 pGq ď 0 and so G is infinite, this proves

(i). Now, assume k ă 0. In this case G is infinite and therefore bp2q0 pGq “ 0. It follows
that bp2q1 pGq ě ´k ą 0, this proves (ii).

If G is finite, then bp2q0 pGq “ 1
|G| , b

p2q
1 pGq “ 0, and k ą 0. In particular, k ě 1

|G| ą 0 and
(iii) follows.
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2.4 On the `2-invariants for certain groups acting on trees

Proof of Theorem 2.E. Let V and E denote sets of representatives of F -orbits of vertices
and edges for the action of F on the tree. We consider the relevant part of the E1-page
for the F -equivariant spectral sequence (see Chapter VII.9 of [6]) applied to the tree:

1
À

vPV H
F
1 pF ˆFv EFv;UF q 0

0
À

vPV H
F
0 pF ˆFv EFv;UF qq

À

ePE H
F
0 pF ˆFe EFe;UF qq

0 1

d1

If F is finite then bp2q1 pF q “ 0, so d1 is injective and E2
1,0 “ 0. The result follows from

the fact E1
0,1 “ 0.

Now, assume F is infinite, then d1 is surjective since bp2q0 pF q “ 0. Thus,

dimUF pKerpd1qq “
ÿ

ePE

b
p2q
0 pFeq ´

ÿ

vPV

b
p2q
0 pFvq.

Now, the spectral sequence obviously collapses on the E2-page and E1
0,1 “ E2

0,1. Since
von Neumann dimension is additive over short exact sequences, we have

b
p2q
1 pF q “ dimUF pKerpd1qq ` dimUF pE2

0,1q

“

˜

ÿ

ePE

b
p2q
0 pFeq ´

ÿ

vPV

b
p2q
0 pFvq

¸

`
ÿ

vPV

b
p2q
1 pFvq,

and the result follows.
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Paper 3
ON THE EQUIVARIANT K- AND KO-HOMOLOGY OF SOME

SPECIAL LINEAR GROUPS

SAM HUGHES

Abstract. We compute the equivariant KO-homology of the classifying space for
proper actions of SL3pZq and GL3pZq. We also compute the Bredon homology and
equivariant K-homology of the classifying spaces for proper actions of PSL2pZr 1p sq and
SL2pZr 1p sq for each prime p. Finally, we prove the Unstable Gromov-Lawson-Rosenberg
Conjecture for a large class of groups whose maximal finite subgroups are odd order
and have periodic cohomology.

3.1 Introduction

There has been considerable interest in the Baum-Connes conjecture, which states that
for a group Γ a certain ‘assembly map’, from the equivariant K-homology of the clas-
sifying space for proper actions EΓ to the topological K-theory of the reduced group
C˚-algebra, is an isomorphism [3]. The Baum-Connes conjecture is known to hold for
several families of groups, including word-hyperbolic groups, CATp0q-cubical groups and
groups with the Haagerup property. An excellent survey can be found in [2].

The Baum–Connes Conjecture. Let Γ be a discrete group, then the following assembly
map is an isomorphism

µ : KΓ
˚ pEΓq Ñ Ktop

˚ pC˚r pΓqq.

There is also a ‘real’ Baum-Connes conjecture which predicts that an assembly map
from the equivariant KO-homology of EΓ to the topological K-theory of the real group
C˚-algebra is an isomorphism. It is known that the Baum-Connes Conjecture implies
the Real Baum-Connes Conjecture [4].

The Real Baum–Connes Conjecture. Let Γ be a discrete group, then the following
assembly map is an isomorphism

µR : KOΓ
˚ pEΓq Ñ KOtop

˚ pC˚r pΓqq.

In spite of the interest, to date there have been very few computations of KΓ- and KOΓ-
homology. Indeed, for KΓ-homology there are complete calculations for one relator
groups [35], NEC groups [32], some Bianchi groups and hyperbolic reflection groups [30]
[38] [39], some Coxeter groups [16] [46] [45], Hilbert modular groups [44], SL3pZq [47], and
PSL4pZq [10]. Explicit assembly maps have also been computed for solvable Baumslag-
Solitar groups [37], lamplighter groups of finite groups [18] and certain wreath products

61
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[36] [31]. For KOΓ-homology the author is aware of two complete computations; the
first, due to Davis and Lück, on a family of Euclidean crystallographic groups [14], and
the second, due to Mario Fuentes-Rumí, on simply connected graphs of cyclic groups of
odd order and of some Coxeter groups [17].

In this paper we compute the equivariant K-homology of SL2pZr1p sq and the equivariant
KO-homology of SL3pZq. We give the relevant background and the connection to Bredon
homology in Section 3.2.

The calculation for KOΓ-homology is of particular interest because it is (to the author’s
knowledge) the first computation of KOΓ

˚ for a property (T) group. For background on
property (T) the reader may consult the monograph [5]. This interest stems from the fact
that property (T) is a strong negation of the Haagerup property which implies Baum-
Connes [21]. Moreover, the (real) Baum-Connes conjecture is still open for SLnpZq when
n ě 3. We note that there are counterexamples for the Baum-Connes conjecture for
groupoids constructed from SL3pZq and more generally a discrete group with property
(T) for which the assembly map is known to be injective [22].

Theorem 3.A (Theorem 3.3.2). Let Γ “ SL3pZq, then for n “ 0, . . . , 7 we have

KOΓ
npEΓq “ Z8, Z8

2, Z8
2, 0, Z8, 0, 0, 0

and the remaining groups are given by 8-fold Bott-periodicity.

Applying a Künneth type theorem [46, Theorem 3.6] to the isomorphism GL3pZq –
SL3pZqˆZ2 on the level of Bredon homology, we obtain the following result for GL3pZq.

Corollary 3.B (Theorem 3.3.3). Let Γ “ GL3pZq, then for n “ 0, . . . , 7 we have

KOΓ
npEΓq “ Z16, Z16

2 , Z16
2 , 0, Z16, 0, 0, 0

and the remaining groups are given by 8-fold Bott-periodicity.

We also consider Γ “ PSL2pZr1p sq or SL2pZr1p sq, for p a prime, computing the equivari-
ant K-homology groups KΓ

n pEΓq. There has been considerable interest in determining
homological properties of the groups SL2pZr 1

m sq and groups related to them [1] [9] [23].
It appears, however, that even with computer based methods the problem of determin-
ing the cohomology of SL2pZr 1

m sq for m a product of 3 primes is out of reach [9]. In
Lemma 3.5.4 we give a short proof of the Baum-Connes conjecture for SL2pZr1p sq and
so we obtain the topological K-theory of the reduced group C˚-algebra of SL2pZr1p sq as
well.

Theorem 3.C (Theorem 3.5.6). Let p be a prime and Γ “ PSL2pZr1p sq, then K
Γ
n pEΓq is

a free abelian group with rank as given in Table 3.1. Moreover, since the Baum-Connes
Conjecture holds for Γ we have KΓ

˚ pEΓq – Ktop
˚ pC˚r pΓqq.
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p ” 2 3 1 pmod 12q 5 pmod 12q 7 pmod 12q 11 pmod 12q

n “ 0 7 6 4` 1
6pp´ 7q 6` 1

6pp` 1q 5` 1
6pp´ 1q 7` 1

6pp` 7q

n “ 1 0 0 3 1 2 0

Table 3.1: Z-rank of the equivariant K-homology of the classifying space for proper
actions of PSL2pZr 1p sq for p prime.

Theorem 3.D (Theorem 3.5.7). Let p be a prime and Γ “ SL2pZr1p sq. Then KΓ
n pEΓq

is additively isomorphic to the direct sum of two copies of the corresponding equivariant
K-homology group of PSL2pZr1p sq.

Finally, we will give a proof of the Unstable Gromov-Lawson-Rosenberg Conjecture for
positive scalar curvature for a large class of groups whose torsion subgroups have peri-
odic cohomology. The statement and background concerning this conjecture is given in
Section 3.6. However, we will introduce the following notation now before the theorem
statement. We say a group Γ satisfies:

(M) If every finite subgroup is contained in a unique maximal finite subgroup.

(NM) If M is a maximal finite subgroup of Γ, then the normaliser NΓpMq of M is equal
to M .

(BC) If Γ satisfies the Baum-Connes conjecture.

(PFS) If all maximal finite subgroups of Γ are odd order and have periodic cohomology.

A large number of arithmetic groups satisfy the following theorem including many finite
index subgroups PSL2pZr1p sq for p ” 11 pmod 12q and Hilbert modular groups. We will
detail a number of additional examples in Section 3.6.

Theorem 3.E (Theorem 3.6.2). Let Γ be a group satisfying (BC), (M), (NM) and (PFS).
If BΓ is finite and has dimension at most 9, then the Unstable Gromov-Lawson-Rosenberg
Conjecture holds for Γ.

In Section 3.2 we give the relevant background on equivariant K and KO-homology.
In Section 3.3 we give the computations of the equivariant KO-homology for SL3pZq
and GL3pZq. In Section 3.4 we provide auxiliary computations of the equivariant K-
homology of Fuchsian groups. In Section 3.5 we compute the equivariant K-homology
of PSL2pZr1p sq and SL2pZr1p sq. Finally, in Section 3.6 we prove the results about the Un-
stable Gromov-Lawson-Rosenberg Conjecture and give a number of examples of groups
satisfying the conjecture.
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3.2 Preliminaries

In this section we introduce the relevant background from Bredon homology and its
interactions with equivariant K- and KO-homology. We follow the treatment given in
Mislin’s notes [35].

3.2.1 Classifying spaces for families

Let Γ be a discrete group. A Γ-CW complex X is a CW-complex equipped with a cellular
Γ-action. We say the Γ action is proper if all of the cell stabilisers are finite.

Let F be a family of subgroups of Γ which is closed under conjugation and finite inter-
sections. A model for the classifying space EFΓ for the family F is a Γ-CW complex such
that all cell stabilisers are in F and the fixed point set of every H P F is contractible.
This is equivalent to the following universal property: For every Γ-CW complex Y there
is exactly one Γ-map Y Ñ EFΓ up to Γ-homotopy.

In the case where F “ FIN , the family of all finite subgroups of Γ, we denote EFIN pΓq

by EΓ. We call such a space, the classifying space for proper actions of Γ. Note that if
Γ is torsion-free then EΓ “ EΓ.

3.2.2 Bredon homology

Let Γ be a discrete group and F be a family of subgroups. We define the orbit cate-
gory OrF pΓq to be the category with objects given by left cosets Γ{H for H P F and
morphisms the Γ-maps φ : Γ{H Ñ Γ{K. A morphism in the orbit category is uniquely
determined by its image ϕpHq “ γK and γHγ´1 Ď K; conversely, each such γ P Γ

defines a G-map.

A (left) Bredon module is a covariant functor M : OrF pΓq Ñ Ab, where Ab is the
category of Abelian groups. Consider a Γ-CW complex X and a family of subgroups F
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containing all cell stabilisers. Let M be a Bredon module and define the Bredon chain
complex with coefficients in M as follows:

Let tcαu be a set of orbit representatives of the n-cells in X and let Γα denote the
stabiliser of the cell α. The nth chain group is then

Cn :“
à

α

MpΓ{Γcαq.

If γc1 is an pn ´ 1q-cell in the boundary of c, then γ´1Γcγ Ď Γc1 . This defines a Γ-map
ϕ : Γ{Γc Ñ Γ{Γc1 , which in turn gives an induced homomorphism Mpϕq : MpΓ{Γcq Ñ

MpΓ{Γc1q. Therefore, we obtain a differential B : Cn Ñ Cn´1. Taking homology of the
chain complex pC˚, Bq gives the Bredon homology groups HF

n pX;Mq. A right Bredon
module and Bredon cohomology are defined analogously using contravariant functors.

3.2.3 Equivariant K-homology

The original definition of equivariantK-homology used Kasparov’sKK-theory [3]. There
is also homotopy theoretic approach using spaces and spectra over the orbit category due
to Davis-Lück [12]. We will highlight the details we need.

Let Γ be a discrete group. In the context of the Baum-Connes conjecture we are specif-
ically interested in the case where X “ EΓ, F “ FIN and M “ RC the complex
representation ring. We consider RCp´q as a Bredon module in the following way: For
Γ{H P OrF pΓq set RCpΓ{Hq :“ RCpHq, the ring of complex representations of the finite
group H. Morphisms are then given by induction of representations.

We note that RCpΓq :“ HF
0 pΓq “ colimΓ{HPOrpΓqRCpHq. In the case that Γ has finitely

many conjugacy classes of finite subgroups, RCpΓq is a finitely generated quotient of
À

RCpHq, where H runs over conjugacy classes of finite subgroups.

We now exhibit the connection between Bredon homology and KΓ
˚ pEΓq, the equivariant

K-homology of the classifying space for proper actions. Indeed, for each subgroup H ď Γ

equivariant K-homology satisfies

KΓ
n pΓ{Hq “ Ktop

n pC˚r pHqq.

In the case H is a finite subgroup we have C˚r pHq “ CH, KΓ
0 pΓ{Hq “ Ktop

0 pCHq “
RCpHq, and KΓ

1 pΓ{Hq “ Ktop
1 pCHq “ 0. The remaining KΓ groups are given by 2-fold

Bott periodicity. This allows us to view KΓ
n p´q as a Bredon module over OrbFIN pΓq.

We may use an equivariant Atiyah-Hirzebruch spectral sequence to compute the KΓ-
homology of a proper Γ-CW-complex X from its Bredon homology.

Theorem 3.2.1. [35, Page 50] Let Γ be a group and X a proper Γ-CW complex, then
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there is an Atiyah-Hirzebruch type spectral sequence

E2
p,q :“ HFIN

p pX;KΓ
q p´qq ñ KΓ

p`qpXq.

3.2.4 Equivariant KO-homology

In this section we summarise the material from [14, Section 9] which we will require for
our calculations. Again fixing a discrete group Γ and F “ FIN , we introduce two more
Bredon modules, the real representation ringRRp´q, and the quaternionic representation
ring RHHp´q. These are defined on OrF pΓq in exactly the same way as the complex
representation ring. We have natural transformations between the functors. Indeed for
a finite subgroup H ď Γ we have a diagram:

RRpHq RCpHq RHHpHq.

ν σ

ρ η

Note that the diagram does not commute. For instance let 1 P RRpHq denote the trivial
representation, then ρνp1q “ 2 ¨ p1q.

For a real representation ψ , the complexification is νpψq “ ψ b C. For a complex rep-
resentation φ, the symplectification is σpφq “ φ b HH. Going the other way, for an
n-dimensional quaternionic representation ω , the complexification is ηpωq “ η consid-
ered as 2n-dimensional complex representation. Similarly, for an n-dimensional complex
representation φ, the realification is ρpφq “ φ considered as a 2n-dimensional real rep-
resentation. Note that any composition of the x-ification natural transformations with
the same source and target is necessarily not the identity.

The situation for the equivariant KO -homology, denoted KOΓ
˚ p´q, is similar to the

equivariant K -homology but more complicated. For a subgroup H ď Γ we set KOΓ
npΓ{Hq “

KOtop
n pC˚r pHqq. By [8, Section 1.2], in the case that H is a finite subgroup we have that

KOΓ
npΓ{Hq “ KOtop

n pC˚r pHqq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

RRpHq n “ 0,

RRpHq{ρpRCpHq n “ 1,

RCpHq{ηpRHHpHqq n “ 2,

0 n “ 3,

RHHpHq n “ 4,

RHHpHq{σpRCpHqq n “ 5,

RCpHq{νpRRpHqq n “ 6,

0 n “ 7,
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with the remaining groups given by 8-fold Bott-periodicity. For X a proper Γ-space,
the Atiyah-Hirzebruch spectral sequence from before now takes the form

E2
p,q :“ HFIN

p pX;KOΓ
q p´qq ñ KOΓ

p`qpXq.

3.2.5 Spectra and homotopy

The section gives an alternative Γ-equivariant homotopy theoretic viewpoint. Now, we
consider Γ-equivariant homology theories as functors E : OrF pΓq Ñ Spectra. Techni-
cally, to avoid functorial problems one must take composite functors through the cate-
gories C˚ -Cat and Groupoids. We do not concern ourselves with this complication
and refer the reader to [12] and [15].

Instead we will take for granted that there is a composite functor

KO : OrF pΓq Ñ Spectra

which satisfies πnKOpΓ{Hq “ KOtop
n pC˚r pHqq. When F “ FIN this perspective gives

a homotopy theoretic construction of the (real) Baum-Connes assembly map. Indeed,
we have maps

BΓ` ^KO » hocolim
OrT RV pΓq

KOÑ hocolim
OrF pΓq

KOÑ hocolim
OrALLpΓq

KO » KOpC˚r pΓ;Rqq.

The assembly map µR is then πn applied to the composite.

3.2.6 Group C˚-algebras and KK -theory

In this section we give a brief outline of Kasparov’s KK -theory, the material here will
not be used elsewhere in the paper. The theory was introduced by Kasparov in [26] [27]
in relation to the Novikov Conjecture. The original formulation of the Baum-Connes
Conjecture using KK -theory was given in [3].

For a C˚ -algebra A define M8pAq to be the direct limit of sets of pnˆnq-matrices over
A as n Ñ 8. Similarly, define GL8pAq to be the direct limit of groups of invertible
pnˆ nq-matrices over A.

Topological or operator K -theory is a 2-periodic homology theory of unital C˚ -algebras
denoted Ktop

˚ p´q. The zeroth K -group of a unital C˚ -algebra A is defined to be the
Grothendieck group of the set of projections in M8pAq up to Murray von Neumann
equivalence. The first K -group is defined to be GL8pAq{GL8pAq0 , where GL8pAq0 is
the path component of the identity.
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An alternative formulation is given by Kasparov’s bifunctor KKp´,´q. For any two
C˚ -algebras A and B there is an abelian group KKpA,Bq. An element of KKpA,Bq
is a homotopy class of pA,Bq-Fredholm bimodules (see [2, Section 3] for the precise
definition). The zeroth K -group of A from before is recovered as KKpC, Aq and the
first K -group is recovered as KKpC0pRq, Aq.

Let Γ be a discrete group. The reduced C˚ -algebra of Γ, denoted C˚r pΓq, is the norm
closure of the algebra of bounded operators on `2pΓq by the left regular representation
of Γ. The algebra and its K -groups are intimately related with the theory of elliptic
operators on manifolds M with fundamental group Γ. For more information the reader
should consult the survey [2] and the references therein.

3.3 Equivariant KO-homology of SL3pZq

3.3.1 A classifying space for proper actions

A model for X “ ESL3pZq can be constructed as a SL3pZq-equivariant deformation
retract of the symmetric space SL3pRq{Op3q. This construction has been detailed several
times in the literature ([50, Theorem 2], [20, Theorem 2.4] or [47, Theorem 13]), so
rather than detailing it again here, we simply extract the relevant cell complex and cell
stabilisers. Specifically, we follow the notation of Sánchez-García [47] and collect the
information in Table 3.2.

3.3.2 Proof of Theorem 3.A

The calculation of the equivariant KO -groups will require the following proposition and
an analysis of the representation theory of the finite subgroups of SL3pZq. We remark
that one could prove a dozen subtle variations on the theme of the following proposition.
However, rather than do this we offer the slogan: “Computations with coefficients in
KOΓ

np´q can be greatly simplified by looking for chain maps to the Bredon chain complex
with coefficients in RCp´q."

Proposition 3.3.1. Let Γ be a discrete group, F “ FIN and suppose X is a proper
Γ-CW complex with finitely many Γ orbits of cells in each dimension. Assume that for
every cell stabiliser the real, complex and quarternionic character tables are equal, then
the Atiyah-Hirzebruch spectral sequence converging to KOΓ

˚ pXq has E2 -page isomorphic
to

E2
p,q “ HFIN

p pX;KΓ
0 q bKOqp˚q ‘ TorZ1 rH

FIN
p´1 pX;KΓ

0 q,KOqp˚qs

where for q “ 0, . . . , 7 we have

KOqp˚q “ Z, Z2, Z2, 0, Z, 0, 0, 0
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Dimension Cell Boundary Stabiliser

3 T1 ´t1 ` t2 ´ t3 ` t4 ´ t5 t1u

2

t1 e1 ´ e2 ´ e4 Z2

t2 e4 ´ e5 ` e6 t1u
t3 e6 ´ e7 ` e8 Z2

2

t4 e1 ´ e3 ` e5 ` e8 Z2

t5 e2 ´ e3 ` e6 ´ e6 ` e7 Z2

1

e1 v1 ´ v2 Z2
2

e2 v3 ´ v1 D3

e3 v5 ´ v1 D3

e4 v3 ´ v2 Z2

e5 v4 ´ v2 Z2

e6 v4 ´ v3 Z2
2

e7 v5 ´ v3 D4

e8 v5 ´ v4 D4

0

v1

-

Symp4q
v2 D6

v3 Symp4q
v4 D4

v5 Symp4q

Table 3.2: Cell structure and stabilisers of a model for ESL3pZq.

and the remaining groups are given by 8-fold Bott-periodicity.

Note that the Tor terms vanish except possibly when q “ 1 or 2.

Proof. Since the three character tables are equal, the complexification from ν : RR Ñ

RC and the symplectification from σ : RC Ñ RHH are isomorphisms. In the other
direction, the complexification from η : RHHÑ RC and the realification from ρ : RC Ñ

RR correspond to multiplication by 2. We will now compute each row of the spectral
sequence in turn.

q “ 0 : We have E2
p,0 “ HFIN

p pX;KOΓ
0 q which is exactly equal to HFIN

p pX;RRq,
the result follows from the isomorphism HFIN

p pX;RRq – HFIN
p pX;KΓ

0 q b Z and the
vanishing of the Tor group.

q “ 1 : The realification ρ : RC Ñ RR is multiplication by 2, thus the cokernel of the
map

ρ˚ : CFIN
˚ pX;RCq Ñ CFIN

˚ pX;RRq

is the modulo 2 reduction of CFIN
˚ pX;RRq. Consider CFIN

˚ pX;RRq as a chain complex
of abelian groups. The result follows from the Universal Coefficient Theorem in homology
with Z2 coefficients applied to the homology of the chain complex CFIN

˚ pX;RRq.
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q “ 2 : The complexification η : RHHÑ RC is multiplication by 2 and CFIN
˚ pX;RCq

is isomorphic to CFIN
˚ pX;RRq. The result now follows as in the case q “ 1.

q “ 3 : Immediate since KOΓ
3 p´q “ 0.

q “ 4 : Since ν and σ are both isomorphisms, their composition gives an isomorphism
of Bredon chain complexes CFIN

˚ pX;RRq – CFIN
˚ pX;RHHq. The result now follows

as in the q “ 0 case.

q “ 5 : Since σ is an isomorphism, the cokernel of the map

σ˚ : CFIN
˚ pX;RCq Ñ CFIN

˚ pX;RHHq

vanishes. The result follows.

q “ 6 : Since ν is an isomorphism, the cokernel of the map

ν˚ : CFIN
˚ pX;RRq Ñ CFIN

˚ pX;RCq

vanishes. The result follows.

q “ 7 : Immediate since KOΓ
7 p´q “ 0.

Theorem 3.3.2 (Theorem 3.A). Let Γ “ SL3pZq, then for n “ 0, . . . , 7 we have

KOΓ
npEΓq “ Z8, Z8

2, Z8
2, 0, Z8, 0, 0, 0

and the remaining groups are given by 8-fold Bott-periodicity.

Proof. Let Γ “ SL3pZq, F “ FIN and X “ ESL3pZq. We can now complete the
calculation for the equivariant KO -homology groups. First, we recap the calculation of
the Bredon chain complex with complex representation ring coefficients due to Sánchez-
García. We have a chain complex

0 Z Z11 Z28 Z26 0
B3 B2 B1

where

B3 „

”

1 01ˆ10

ı

, B2 „

«

I10 010ˆ18

010ˆ1 01ˆ18

ff

, and B1 „

«

I18 018ˆ8

010ˆ18 010ˆ8

ff

.

Therefore, the homology groups of the chain complex are isomorphic to Z8 in dimension
0 and to 0 in every other dimension.

Now, the cell stabiliser subgroups of SL3pZq acting on X are isomorphic to t1u, Z2 ,
Z2

2 , D3 , D4 , Symp4q and D6 . Each of these satisfies the conditions of the proposition
above. This is easily checked by computing the Schur indicators of each of the irreducible
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characters of each group. Since the Schur indicator equals 1 in every case we conclude
the three character tables for each group are equal (see for instance [19, Exercise 3.38]).
Applying this to the previous calculation we obtain a single non-trivial column when
p “ 0 in the Atiyah-Hirzebruch spectral sequence and so it collapses trivially.

Corollary 3.3.3 (Corollary 3.B). Let Γ “ GL3pZq, then for n “ 0, . . . , 7 we have

KOΓ
npEΓq “ Z16, Z16

2 , Z16
2 , 0, Z16, 0, 0, 0

and the remaining groups are given by 8-fold Bott-periodicity.

Proof. First, note that the direct product of Z2 with any of the cell stabiliser subgroups
of SL3pZq still satisfies the conditions of the Proposition 3.3.1. Now, we may compute the
E2 -page of the associated Atiyah Hirzebruch spectral sequence by applying the Künneth
formula [46, Theorem 3.6] to the calculation of each row of the E2 -page for ESL3pZq.
Since the spectral sequence is concentrated in a single column we have isomorphisms

KOGL3pZq
n pEGL3pZqq – KOSL3pZq

n pESL3pZqq bKOZ2
n p˚q,

from which the result is immediate.

3.4 Equivariant K -homology of Fuchsian groups

In this section we compute the equivariant K -homology of every finitely generated Fuch-
sian group, that is, a finitely generated discrete subgroup of PSL2pRq. The reason for
this apparent detour is that we will later split the groups PSL2pZr1p sq as amalgamated
free products of certain Fuchsian subgroups. Thus, we can use a Mayer-Vietoris type
argument to compute their K -homology.

Note that Theorem 3.4.1(a) was computed in [32] along with a more general result for
cocompact NEC groups. Moreover, their integral cohomology was determined by the
author in [23]. An introduction to Fuchsian groups is provided by [28].

The computation is made easier by the fact that every finitely generated Fuchsian group
is described by piece of combinatorial data called a signature [28, Chapter 4.3]. Indeed,
a Fuchsian group of signature rg, s;m1, . . . ,mrs has a presentation with generators

a1, . . . , a2g, c1, . . . , cs, d1, . . . , dr

and relations
g
ź

i“1

rai, ag`is
r
ź

j“1

dj

s
ź

k“1

ck “ dm1
1 “ ¨ ¨ ¨ “ dmrr “ 1,
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and acts on the hyperbolic plane RH2 with a 4g ` 2s` 2r sided fundamental polygon.
The tessellation of the polygon under the group action has 1` s` r orbits of vertices, s
of which are on the boundary BRH2 , 2g` s` r orbits of edges and 1 orbit of faces. All
edge and face stabilisers are trivial. All vertex stabilisers are trivial except for r orbits
of vertices, each of which is stabilised by some Zmj . Note that if s “ 0 we say Γ is
cocompact.

The signature also describes a quotient 2-orbifold which is homeomorphic to a genus
g surface with s points removed. The orbifold data is then given by the r marked
points, each corresponding to one of the mj , or equivalently a maximal conjugacy of
finite subgroups.

If r “ 0, we do not write any mj in the signature. In which case Γ has signature rg, s; s,
is torsionfree, and isomorphic to either the fundamental group of a genus g surface, or a
free group of rank 2g ` s´ 1.

Theorem 3.4.1. Let Γ be a Fuchsian group of signature rg, s;m1, . . . ,mrs.

(a) If s “ 0 then,

KΓ
n pEΓq “ KnpC

˚
r pΓqq “

$

&

%

Z2´r`
řr
j“1mj n even,

Z2g n odd.

(b) If s ą 0 then,

KΓ
n pEΓq “ KnpC

˚
r pΓqq “

$

&

%

Z1´r`
řr
j“1mj n even,

Z2g`s´1 n odd.

Proof of (a). Let Γ be a Fuchsian group of signature rg, s;m1, . . . ,mrs with s “ 0 and
F “ FIN . Since Γ satisfies the Baum-Connes conjecture [21] it is enough to compute
the equivariant K -homology. The hyperbolic plane with the induced cell structure of
the Γ action is a model for EΓ (see for instance [33]). Recall that the cell structure has
r` 1 orbits of vertices, 2g` r orbits of edges and exactly 1 orbit of 2-cells. One vertex
v0 is stabilised by the trivial group and for j “ 1, . . . , r the vertex vj is stabilised by
Zmj . Thus, we have a Bredon chain complex

0 Z‘
´

Àr
j“1 RCpZmj q

¯

Z2g`r Z 0,
B1 B2

and substituting in RCpZmj q “ Zmj we obtain

0 Z‘
´

Àr
j“1 Zmj

¯

Z2g`r Z 0.
B1 B2
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We fix the following basis for each chain group: In degree 0 we have generators xj,l , for
j “ 1, . . . , r and l “ 1, . . . ,mj , and the generator z . In degree 1 we have a1, . . . , a2g and
y1, . . . , yr , and in degree 2, the generator w . An easy calculation yields that B2pwq “ 0,
B1paiq “ 0, and B1pyjq “

řmj
l“1 xj,l ´ z . Thus,

HF
n pEΓ;RCq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Z1`
řr
j“1pmj´1q if n “ 0;

Z2g if n “ 1;

Z if n “ 2;

0 otherwise.

The result now follows from the collapsed Atiyah-Hirzebruch spectral sequence given in
[35, Theorem 5.27] and we obtain KΓ

0 pEΓq “ HF
0 pEΓ;RCq‘H

F
2 pEΓ;RCq and KΓ

1 pEΓq “

HF
1 pEΓ;RCq.

Zm1 Zmr

2g ` s´ 1

Figure 3.1: A graph of groups for a non-cocompact Fuchsian group.

Proof of (b). Let Γ be a Fuchsian group of signature rg, s;m1, . . . ,mrs with s ą 0 and
let F “ FIN . In this case we can rearrange the presentation of Γ such that we have a
splitting of Γ as an amalgamated free product Γ – Zs´1 ˚Zm1 ˚ ¨ ¨ ¨ ˚Zmr . Now, Γ splits
as a finite graph of finite groups (Figure 3.1) and it is easy to see that the Bass-Serre
tree of Γ is a model for EΓ.

We will first compute the Bredon homology HF
˚ pEΓ;RCq with coefficients in the rep-

resentation ring, then apply the equivariant Atiyah-Hirzebruch spectral sequence. We
have a Bredon chain complex

0 Z‘
´

Àr
j“1 RCpZmj q

¯

Z2g`s´1 0,B

substituting in RCpZmj q “ Zmj we obtain

0 Z‘
´

Àr
j“1 Zmj

¯

Z2g`s´1 0.B

Let the first non-zero term have generating set xxj,l, z | j “ 1, . . . , r, l “ 1, . . . ,mjy and
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the second term xa1, . . . , a2g, c1, . . . , cs´1, d1, . . . , dry. It is easy to see the differential
B is given by Bpaiq “ Bpbiq “ Bpckq “ 0 and Bpdjq “

řmj
l“1 xj,l ´ z . It follows that

HF
0 pEΓ;RCq “ Z1`

řr
j“1pmj´1q , HF

1 pEΓ;RCq “ Z2g`s´1 and 0 otherwise. The result
now follows from the collapsed Atiyah-Hirzebruch spectral sequence [35, Theorem 5.27].
In particular, we have KΓ

n pEΓq “ HF
n pEΓ;RCq for n “ 0, 1.

3.5 Computations for PSL2pZr1psq and SL2pZr1psq

3.5.1 Preliminaries

In an abuse of notation, throughout this section we will denote the image t˘Au of
a matrix A P SL2pRq in PSL2pRq by the matrix A. Recall that for p a prime we
have PSL2pZr1p sq “ PSL2pZq ˚Γ0ppq PSL2pZq, where Γ0ppq is the level p Hecke principle
congruence subgroup (see for instance Serre’s book “Trees" [48]). The amalgamation is
specified by two embeddings of the congruence subgroup Γ0ppq into PSL2pZq. The first
is given by

Γ0ppq :“

#«

a b

c d

ff

P PSL2pZq : c ” 0 pmod pq

+

and the second via
«

a b

c d

ff

ÞÑ

«

a pb

p´1c d

ff

.

In light of this we will collect some facts about each of the groups in the amalgamation.
We begin by recording (Table 3.3) the Fuchsian signatures and the associated Bredon
homology for each of the groups Γ0ppq and PSL2pZq. Note that when p ” 11 pmod 12q

the group Γ0ppq is free.

Lemma 3.5.1. The signatures and Bredon homology groups of Γ0ppq and PSL2pZq are
given in Table 3.3.

Γ0ppq Signature HF
0 pΓ;RCq HF

1 pΓ;RCq

p “ 2 r0, 2; 2s Z2 Z
p “ 3 r0, 2; 3s Z3 Z

p ” 1 pmod 12q r0, 1
6pp´ 7q ` 1; 2, 2, 3, 3s Z7 Z

1
6
pp´7q

p ” 5 pmod 12q r0, 1
6pp` 1q ` 1; 2, 2s Z3 Z

1
6
pp`1q

p ” 7 pmod 12q r0, 1
6pp´ 1q ` 1; 3, 3s Z5 Z

1
6
pp´1q

p ” 11 pmod 12q r0, 1
6pp` 7q ` 1; s Z Z

1
6
pp`7q

PSL2pZq r0, 1; 2, 3s Z4 0

Table 3.3: Fuchsian signatures and Bredon homology groups of Γ0ppq for p prime.

Proof. Let r0, s;m1, . . . ,mrs be the signature of Γ0ppq. We will first compute the ordi-
nary cohomology groups of Γ0ppq, then using these we will deduce the signatures, finally
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the Bredon homology may then be read off of Theorem 3.4.1(b). Our computation of the
cohomology will be near identical to the computation in [1, Section 2]. The key differ-
ence is that the modules in [1] are for the lifts of Γ0ppq in SL2pRq whereas we are always
working with the projectivised groups (see the discussion after [1, Proposition 2.2]). Note
that the fact the signature of PSL2pZq is r0, 1; 2, 3s is well known.

Let G “ PSL2ppq and let Q be the subgroup of equivalence classes of matrices with
lower left hand entry equal to zero. Clearly, Q – Zp ¸ Z 1

2
pp´1q (unless p “ 2, 3 where

Q – Zp ). Each Γ0ppq fits into a short exact sequence with normal subgroup a congruence
subgroup Γppq isomorphic to a free group and quotient Q.

Now, recall [48, Example 4.2(c)] that PSL2pZq acts on a tree T with fundamental domain
an edge. Moreover, G acts on T {Γppq. The stabiliser subgroups for both actions are Z2

and Z3 for the vertices and trivial for the edges. It follows Γ0ppq acts freely on EQˆ T
and so EQˆQ T {Γ0ppq is a model for BΓ0ppq.

Let C˚ denote the cellular cochains on the B -CW complex T {Γppq, then by [1, Section 2]
we have the following isomorphisms of B -modules

C0 :“ ZrG{Z2s |B ‘ ZrG{Z3s |B and C1 :“ ZrGs |B.

As in [1, Section 2] we have a long exact sequence

¨ ¨ ¨ Ñ HnpΓ0ppq;Zq Ñ HnpB;C0q Ñ HnpB;C1q Ñ Hn`1pΓ0ppq;Zq Ñ ¨ ¨ ¨

Since C0 is a permutation module, H1pB;C0q “ 0. Calculating ranks yields that
H1pΓ0ppq;Zq “ ZNppq where

Nppq “ 1, 1,
1

6
pp´ 7q,

1

6
pp` 1q,

1

6
pp´ 1q,

1

6
pp` 7q,

ordered as in Table 3.3. In [23, Theorem 1.4(b)] it is shown that a Fuchsian group Γ of
signature r0, s;m1, . . . ,mrs has H1pΓ;Zq – Zs´1 . In particular, we deduce the signature
of Γ0ppq must have the form r0, Nppq ` 1;m1, . . . ,mrs.

Now, C1 is a free B -module and so we have an isomorphism H2npΓ0ppq;Zq – H2pB;C0q

for all n ě 1. As in [1, Proposition 2.3] we obtain that

H2npΓ0ppq;Zq – Z2, Z3, Z2
6, Z2

2, Z2
3, 0,

ordered as in Table 3.3. The result now follows from the following three facts. Firstly, for
a Fuchsian group Γ of signature r0, s;m1, . . . ,mrs, each mj corresponds to a conjugacy
class of maximal finite cyclic subgroups Zmj . Secondly, by the proof of [23, Theo-
rem 1.4(b)], each maximal conjugacy class of finite cyclic subgroups Zmj contributes a
rH˚pZmj ;Zq summand to rH˚pΓ;Zq. Thirdly, PSL2pZq and hence Γ0ppq has no elements
of order 6.
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Remark 3.5.2. Let ĂΓ0ppq denote the lift of Γ0ppq in SL2pRq. An alternative compu-
tation of H˚pΓ0ppq;Zq can be achieved by back solving the Lyndon-Hochschild-Serre
spectral sequence (see for instance [7, Chapter VII.6]) for the group extension Z2 �
ĂΓ0ppq� Γ0ppq which takes the form

E˚,˚2 “ H˚pΓ0ppq;H
˚pZ2;Zqq ñ H˚pĂΓ0ppq;Zq

using the cohomology calculations for ĂΓ0ppq in [1].

We shall also record the conjugacy classes of finite order elements of Γ0ppq and PSL2pZr1p sq.
Note that the only conjugacy classes of finite subgroups of PSL2pZq are one class of
groups isomorphic to Z2 and one to Z3 since PSL2pZq – Z2 ˚Z3 . The conjugacy classes
of finite subgroups of Γ0ppq can be read off of the signature, there is exactly one of order
mj for each j “ 1, . . . , r .

Lemma 3.5.3. The number of conjugacy classes of finite order elements in PSL2pZr1p sq
are those given in Table 3.4.

p ” 2 3 1 pmod 12q 5 pmod 12q 7 pmod 12q 11 pmod 12q

Identity 1 1 1 1 1 1
Order 2 1 2 1 1 2 2
Order 3 4 2 2 4 2 4
Total 6 5 4 6 5 7

Table 3.4: Number of conjugacy classes of finite order elements of PSL2pZr 1p sq for p
prime.

Proof. The result follows from the following observation: If there is a conjugacy of ele-
ments of order 2 (resp. 3) in Γ0ppq, then each of class of elements of order 2 (resp. 3)
in PSL2pZq fuses in PSL2pZr1p sq. To see this, consider an element in the first copy of
PSL2pZq, conjugate it to an element in Γ0ppq, and then conjugate it to an element in
the other copy of PSL2pZq.

Lemma 3.5.4. Both SL2pZr1p sq and PSL2pZr1p sq satisfy the Baum-Connes Conjecture.

Proof. Since PSL2pZr1p sq “ PSL2pZq ˚Γ0ppq PSL2pZq, the Bass-Serre tree of the amalga-
mation is a locally-finite 1-dimensional contractible PSL2pZr1p sq-CW complex. More-
over, each of the stabilisers Γc have cdQpΓcq “ 1, being a graph of finite groups. Now,
we apply [35, Corollary 5.14] to see that the stabilisers satisfy Baum-Connes and [35,
Theorem 5.13] to see that PSL2pZr1p sq does. The proof is identical for SL2pZr1p sq.



Paper 3 – Equivariant K - and KO -homology 77

3.5.2 Computations

There is a long exact Mayer-Vietoris sequence for computing the Bredon homology of an
amalgamated free product.

Theorem 3.5.5. [35, Corollary 3.32] Let Γ “ H ˚L K and let M be a Bredon module.
There is a long exact Mayer-Vietoris sequence:

¨ ¨ ¨ HFIN
n pL;Mq HFIN

n pH;Mq ‘HFIN
n pK;Mq

¨ ¨ ¨ HFIN
n´1 pL;Mq HFIN

n pEΓ;Mq

We are now ready to compute the K -theory of PSL2pZr1p sq.

Theorem 3.5.6 (Theorem 3.C). Let p be a prime and Γ “ PSL2pZr1p sq, then KΓ
n pEΓq

is a free abelian group with rank as given in Table 3.1. Moreover, since the Baum-Connes
Conjecture holds for Γ we have KΓ

˚ pEΓq – Ktop
˚ pC˚r pΓqq.

Proof. There are 6 cases to consider, the two cases when p “ 2, 3 and the four cases
given by p ” 1, 5, 7, 11 pmod 12q. Let Γ “ PSL2pZr1p sq and F “ FIN . In each case we
have the following long exact Mayer-Vietoris sequence

0

HF
2 pΓ;RCq HF

1 pΓ0ppq;RCq
`

HF
1 pPSL2pZq;RCq

˘2

`

HF
0 pPSL2pZq;RCq

˘2
HF

0 pΓ0ppq;RCq HF
1 pΓ;RCq

HF
0 pΓ;RCq 0.

We have computed the Bredon homology groups of PSL2pZq and Γ0ppq in Table 3.3.
Thus, we can separate the above sequence into two sequences. Indeed, HF

1 pPSL2pZq;RCqq “

0, so it follows that HF
2 pΓ;RCq – HF

1 pΓ0ppq;RCq. The other sequence is then given by
the remaining terms.

We will treat the case p “ 2, the other cases proceed identically. We have HF
2 pΓ;RCq “ Z

and an exact sequence

0 HF
1 pΓ;RCq Z2 Z8 HF

0 pΓ;RCq 0.
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We now compute the colimit HF
0 pΓ;RCq “ colimΓ{HPOrF pΓqRCpHq. Since we have a

complete description of the conjugacy classes of finite subgroups of Γ and the only inclu-
sions are given by t1u ãÑ Z2 and t1u ãÑ Z3 , it follows that HF

0 pΓ;RCq “ Z6 . Moreover,
for the sequence to be exact, it follows the map Z2 Ñ Z8 must be an isomorphism onto
the kernel of the first map. In particular HF

1 pΓ;RCq “ 0.

The result now follows from the collapsed Atiyah-Hirzebruch spectral sequence given in
[35, Theorem 5.27] and we obtain KΓ

0 pEΓq “ HF
0 pΓ;RCq ‘HF

2 pΓ;RCq and KΓ
1 pEΓq “

HF
1 pΓ;RCq. We record the Bredon homology groups for the remaining cases in Table 3.5,

the reader can easily verify these. Note that they are always torsion-free and so are
completely determined by their Z-rank.

p ” 2 3 1 pmod 12q 5 pmod 12q 7 pmod 12q 11 pmod 12q

n “ 0 6 5 4 6 5 7

n “ 1 0 0 3 1 2 0

n “ 2 1 1 1
6pp´ 7q 1

6pp` 1q 1
6pp´ 1q 1

6pp` 7q

Table 3.5: Z-rank of the Bredon homology of PSL2pZr 1p sq for p prime.

The computation for SL2pZr1{psq is almost entirely analogous. We highlight the differ-
ences below.

Theorem 3.5.7 (Theorem 3.D). Let p be a prime and Γ “ SL2pZr1p sq. Then KΓ
n pEΓq

is additively isomorphic to the direct sum of two copies of the corresponding equivariant
K -homology group of PSL2pZr1p sq.

Proof (Sketch). Let F “ FIN . First, we must compute the Bredon homology of the
lifts of PSL2pZq and Γ0ppq to SL2pRq. For this we use the graph of groups in Figure 3.1
and note that now every edge group is the same central copy of Z2 and the vertex groups
change as follows: The vertices with trivial vertex group now have vertex group the same
central copy of Z2 . The vertex groups isomorphic to Z2 are now Z4 and the vertex groups
isomorphic to Z3 are now Z6 (each extended by the central Z2 ). Computing the Bredon
homology we find that in each case it is isomorphic to the direct sum of two copies of
the corresponding Bredon homology group in the projective case.

Now, we apply the long exact Mayer-Vietoris sequence to the amalgamated free product
decomposition of SL2pZr1p sq. Since HF

1 pSL2pZq;RCq “ 0, like in the projective case,
the sequence splits into two exact sequences. The computation of HF

2 pSL2pZr1p sqqq is
immediate as before and is additively isomorphic to the direct sum of two copies of
HF

2 pPSL2pZr1p sq;RCq.

To compute the zeroth and first homology groups we will again use the colimit isomor-
phism HF

0 pΓ;RCq “ colimΓ{HPOrF pΓqRCpHq. To use this we obtain a count of the total
number of conjugacy classes of finite order elements in SL2pZr1p sq. To do this use a near
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identical argument to Lemma 3.5.3 that takes into account the central Z2 subgroup. It
follows that the number of conjugacy classes of elements of finite order in SL2pZr1p sq is
equal to twice the number for the corresponding projective group. It follows that the
colimit computation for HF

0 pSL2pZr1p sq;RCq is additively isomorphic to the direct sum
of two copies of HF

0 pPSL2pZr1p sq;RCq, where Γ “ SL2pZr1p sq.

From here one computes HF
1 pSL2pZr1p sq;RCq in an identical manner to the projective

case. The resulting groups are isomorphic to the direct sum of two copies of the corre-
sponding Bredon homology groups in the projective case. The result now follows from
the collapsed Atiyah-Hirzebruch spectral sequence given in [35, Theorem 5.27] and we
obtain KΓ

0 pEΓq “ HF
0 pΓ;RCq ‘H

F
2 pΓ;RCq and KΓ

1 pEΓq “ HF
1 pΓ;RCq.

3.6 The Unstable Gromov-Lawson-Rosenberg Conjecture

Given a smooth closed n-manifold M a classical question is to ask whether M admits
a Riemannian metric of positive scalar curvature. In a vast generalisation of the Atiyah-
Singer index theorem, Rosenberg [41] exhibits a class in KOtop

n pC˚r pπ1pMqqq which is an
obstruction to M admitting a metric of positive scalar curvature.

More precisely, let M be a closed spin n-manifold and f : M Ñ BΓ be a continuous
map for some discrete group Γ. Let α : ΩSpin

n pBΓq Ñ KOtop
n pC˚r pΓqq be the index of the

Dirac operator. If M admits a metric of positive scalar curvature, then αrM,f s “ 0 P

KOtop
n pC˚r pΓqq

The Unstable Gromov–Lawson–Rosenberg Conjecture. Let M be a closed spin
n-manifold and Γ “ π1pMq. If f : M Ñ BΓ is a continuous map which induces the
identity on the fundamental groups, then M admits a metric positive scalar curvature if
and only if αrM,f s “ 0 P KOtop

n pC˚r pΓqq.

The conjecture has been verified in the case of some finite groups [51] [42] [29] [40],
when the group has periodic cohomology, torsion-free groups for which the dimension
of BΓ is less than 9 [24], and cocompact Fuchsian groups [15]. However, there are
counterexamples: The first is due to Schick [49] who disproves the conjecture for the
direct product Z4 ˆ Zn when n is odd; while other instances have been constructed in
[24]. For more information on the Unstable GLR Conjecture the reader should consult
[24] and the references therein.

3.6.1 Proof of Theorem 3.E

We will now prove the conjecture for a large class of groups. Our proof is structurally sim-
ilar to the proof by Davis-Pearson [15] so we will summarise their method and highlight
any differences.
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Let ko be the connective cover of KO with covering map p and let D be the ko-
orientation of spin bordism. The map α (from above) is obtained by the following
composition

ΩSpin
n pBΓq konpBΓq KOnpBΓq KOtop

n pC˚r pΓqq
D p µR

We note that konp˚q “ 0 for n ă 0 and that p is an isomorphism for n ě 0 on the one
point space.

Recall from the introduction that a group Γ satisfies:

(M) If every finite subgroup is contained in a unique maximal finite subgroup.

(NM) If M is a maximal finite subgroup of Γ, then the normaliser NΓpMq of M is equal
to M .

(BC) If Γ satisfies the Baum-Connes conjecture.

(PFS) If all maximal finite subgroups of Γ are odd order and have periodic cohomology.

Proposition 3.6.1. Let Γ be a group satisfying (BC), (M), and (NM). Let Λ be a set
of conjugacy classes of maximal finite subgroups of Γ. There is a commutative diagram
with exact rows

ĄKOn`1pBΓq
À

pHqPΛ

ĄKOnpBHq ĄKOnpBΓq ĄKOnpBΓq

ĄKOn`1pBΓq
À

pHqPΛ

ĄKO
top

n pC˚r pHqq
ĄKO

top

n pC˚r pΓqq
ĄKOnpBΓq.

id µR
µR id

Proof. First, since Γ satisfies (BC), (M) and (NM) by either [13, Corollary 3.13] or
the proof of [13, Theorem 4.1] for any constant functor Ec : OrF pΓq Ñ Spectra by
Γ{H ÞÑ E there are long exact sequences

¨ ¨ ¨ Ñ
À

pHqPΛ

HnpBH;Eq

˜

À

pHqPΛ

πnpEq

¸

‘HnpBΓ;Eq HnpBΓ;Eq Ñ ¨ ¨ ¨

and

¨ ¨ ¨
À

pHqPΛ

rHnpBH;Eq rHnpBΓ;Eq rHnpBΓ;Eq ¨ ¨ ¨

We perform a diagram chase exactly as in [15, Proposition 4], taking E “ KO and the
isomorphism

πn

ˆ

hocolim
OrF pΓq

pEcq

˙

– HnpBΓ;Eq,
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the result follows.

Theorem 3.6.2 (Theorem 3.E). Let Γ be a group satisfying (BC), (M), (NM) and
(PFS). If BΓ is finite and has dimension at most 9, then the Unstable Gromov-Lawson-
Rosenberg Conjecture holds for Γ.

Proof. Let ko be the spectrum of the connective cover of KO. Via the cover we obtain
a natural transformation p : koc Ñ KOc of constant OrF pΓq-Spectra. From the
previous proposition we obtain a commutative diagram

Ăkon`1pBΓq
À

pHqPΛ

ĂkonpBHq ĂkonpBΓq ĂkonpBΓq

ĄKOn`1pBΓq
À

pHqPΛ

ĄKO
top

n pC˚r pHqq
ĄKO

top

n pC˚r pΓqq
ĄKOnpBΓq.

p
µR˝p

µR˝p p (:)

By Joachim-Schick [24, Lemma 2.6] p is an isomorphism for n ě 6 and an injection
for n “ 5. Now, suppose that n ě 5 so we are in the setting of the GLR conjecture.
Consider an element

β P K :“ Ker pµR ˝ p : konpBΓq Ñ KOnpC
˚
r pΓ;Rqq

and note that K – KerpµR ˝ p : ĂkonpBΓq Ñ ĄKO
top

n pC˚r pΓqq. Combining the diagram
(:) with the isomorphism p : ĂkonpBΓq Ñ ĄKO

top

n pBΓq for n ě 6 (injection for n “ 5), we
can deduce that there exists

γ P Ker

˜

à

pHqPΛ

konpBHq Ñ
à

pHqPΛ

KOnpBHq

¸

which maps to β .

For a group L let ko`n pBLq be the subgroup of konpBLq given by DrM,f s where M is
a positively curved spin manifold and f is a continuous map. In [6] the authors prove for
any finite group of odd order with periodic cohomology H , that ko`n pBHq “ KerpµR˝p :

konpBHq Ñ KOtop
n pC˚r pHqq. Thus, we have γ P ko`n pBHq and β P ko`n pBΓq. Now, in

[52] it is proven that if DrM,f s P ko`n pBGq, then M admits a metric of positive scalar
curvature. In particular, we are done.

Remark 3.6.3. It is unclear whether the assumption that the finite subgroups having
odd order can be dropped. Indeed, it was pointed out to the author by J.F. Davis
that the statement of [6, Corollary 2.2] contains a misprint. One should instead (in
the notation of [6]) define YnpBπq to be the kernel of A ˝ p restricted to the subgroup
DpΩnpBπqq Ď konpBπq. After making this correction, the statements and proofs in the
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paper are correct. This error caused a mistake in the main theorem of [15] which is only
correct if one restricts to Fuchsian groups whose torsion only has odd order.

The dimension bound on BΓ is an artefact of the proof and arises from the lemma of
Joachim–Schick [24, Lemma 2.6]. Specifically ko is the ´3-connected cover of KO and
so if dimBΓ ď 9 the natural transformation of the corresponding Atiyah–Hirzebruch
spectral sequences E˚p,q Ñ F ˚p,q is an isomorphism for p ` q ě 6 and an injection when
p ` q “ 5. The following corollary shows that one always has a bound relating dimM

to dimBΓ such that the α-invariant can determine the existence of a metric of positive
scalar curvature on M (provided π1pMq satisfies the other hypothesis of Theorem 3.6.2).

Corollary 3.6.4. Let M be a connected closed spin n-manifold and let Γ “ π1pMq be
a group satisfying (M), (NM) and (PFS). Suppose the assembly map µR is injective and
BΓ is finite of dimension N . If n ě maxt5, N ´ 4u, then M admits a metric with
positive scalar curvature if and only if αrM,f s “ 0.

3.6.2 Some examples

In this section we will detail some applications of Theorem 3.E to various families of
groups. These results are new whenever the groups involved are infinite and have torsion.

3.6.2.1 Graphs of groups

In [43, Theorem 3.1] it is shown that the fundamental groups of graphs of groups with
vertex groups satisfying (M) and (NM) and with torsion-free edge groups, satisfy (M)
and (NM). It follows that we have the following combination theorem:

Corollary 3.6.5. The Γ be a finitely presented fundamental group of a graph of groups
such that the vertex groups satisfy (BC), (M) and (NM) and the edge groups are torsion-
free and satisfy (BC). If the vertex groups satisfy (PFS) and BΓ has dimension at most
9, then Γ satisfies the Unstable GLR Conjecture.

3.6.2.2 3-manifold groups

In [43, Section 3.3] it is shown that 3-manifold groups satisfy (M) and (NM) and there is a
well known classification of finite subgroups of orientable connected 3-manifold groups.
These are exactly the groups which act freely on the 3-sphere and so have periodic
cohomology by [7, Chapter VI.9]. In [34] it is shown 3-manifold groups satisfy (BC).
Applying Theorem 3.E we obtain the following result (which is new whenever Γ is infinite
and contains torsion):

Corollary 3.6.6. Let M be a closed orientable connected 3-manifold with fundamental
group Γ. If Γ has no elements of order 2 then Γ satisfies the Unstable GLR Conjecture.
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3.6.2.3 One-relator groups

In [13, Page 32] it is shown that one-relator groups satisfy (BC), (M) and (NM) and
admit a two dimensional model for EΓ. By [25, Theorem 3] every element of finite order
in Γ is conjugate to a power of w . Hence, every finite order subgroup is cyclic of odd
order and so satisfies (PFS). Applying Theorem 3.E we obtain the following result (which
to the authors knowledge is new whenever Γ is infinite and contains torsion):

Corollary 3.6.7. Let Γ “ xX | wy be a finitely generated one-relator group and suppose
w has odd order when interpreted in Γ, then Γ satisfies the Unstable GLR Conjecture.

3.6.2.4 Hilbert modular groups

Let k be a totally real number field of degree n and Ok be its ring of integers. The
Hilbert modular group of k is defined to be PSL2pOkq and is a lattice in PSL2pRqn .
Note that if k “ Q then we recover the classical modular group PSL2pZq. Properties
(BC), (M) and (NM) are given in [11, Lemma 4.3]. Applying Theorem 3.E we obtain
the following new result:

Corollary 3.6.8. Let k be a totally real number field with degree less than or equal to
4. Let Γ ď PSL2pOkq be finitely presented. If all finite subgroups of Γ are cyclic of odd
order then Γ satisfies the Unstable GLR Conjecture.

Proof. This follows from the fact every finite subgroup of PSL2pRqn is a product of finite
cyclic groups.

3.6.2.5 Subgroups of PSL2pZr1p sq for p ” 11 pmod 12q

In this section we will prove the result that many subgroups of PSL2pZr1p sq for p ” 11

pmod 12q satisfy the conditions of Theorem 3.E. The result is new whenever the subgroup
is infinite, has torsion, and is not isomorphic to a Fuchsian group. We will also compute
the KO -theory of C˚r pPSL2pZr1p sq;Rq.

Corollary 3.6.9. Let p ” 11 pmod 12q and let Γ ă PSL2pZr1p sq be finitely presented.
If Γ has no elements of order 2, then Γ satisfies the Unstable GLR Conjecture.

There are many finite index subgroups of PSL2pZr1p sq for p ” 11 pmod 12q satisfying
the hypothesis of the corollary. Indeed, by the amalgamated free product decomposition,
PSL2pZr1p sq is generated by the two subgroups isomorphic to PSL2pZq – Z2 ˚Z3 . Thus,
PSL2pZr1p sq is a four generated group xa, b, c, dy where a and c have order 2, and b and
d have order 3. The kernel of the homomorphism φ : PSL2pZr1p sq Ñ Z2 by a, c ÞÑ 1 and
b, d ÞÑ 0 is a finite index subgroup of PSL2pZr1p sq with no 2-torsion.
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Proof. The proof follows from applying Theorem 3.E to the observation that every finite
subgroup of PSL2pZr1p sq is cyclic and hence has periodic cohomology and the following
lemma. Note that Γ is necessarily a proper subgroup since PSL2pZr1p sq always contains
elements of order 2.

Lemma 3.6.10. Let p be a prime, then PSL2pZr1p sq satisfies (M). Moreover, if p ” 11

pmod 12q then PSL2pZr1p sq satisfies (NM).

Proof. Since each non-trivial finite subgroup of Γ is of order 2 or 3 it is obvious that
Γ satisfies (M). Now, assume p ” 11 pmod 12q and note that PSL2pZq – Z2 ˚ Z3

satisfies (NM). Recall the amalgamated free product decomposition, PSL2pZr1p sq “
PSL2pZq ˚Γ0ppq PSL2pZq. The amalgamated subgroup Γ0ppq is torsion-free so we may
apply [43, Theorem 3.1].

An alternative direct proof of the calculations of the K -groups of C˚r pPSL2pZr1p sqq when
p ” 11 pmod 12q is as follows. Note that this bypasses the computation of the Bredon
homology but does not give us a way to compute either invariant for SL2pZr1p sq.

Lemma 3.6.11. Let Γ “ PSL2pZr1p sq, then BΓ »
Ž

b1pΓ0ppqq
S2

Proof. Let X “ EPSL2pZq ˆPSL2pZq Γ and Y “ EΓ0ppq ˆΓ0ppq Γ. We have

BΓ » hocolim
Top

pX Ð Y Ñ Xq {Γ,

» hocolim
Top

pX{Γ Ð Y {Γ Ñ X{Γq .

Since EPSL2pZq{PSL2pZq is an interval and EΓ0ppq{Γ0ppq is a finite graph, we have

BΓ » hocolim
Top

¨

˝I Ð
ł

b1pΓ0ppqq

S1 Ñ I

˛

‚,

but I is contractible, so up to homotopy this becomes a suspension of a wedge of circles.
In particular, BΓ »

Ž

b1pΓ0ppqq
S2 .

Theorem 3.6.12. Let p ” 11 pmod 12q and let Γ “ PSL2pZr1p sq, then

Ktop
0 pC˚r pΓqq “ Z7` 1

6
pp`7q and Ktop

1 pC˚r pΓqq “ 0.

Proof. Let Λ be a set of representatives of finite subgroups of Γ. By [13, Theorem 4.1(a)]
we have a short exact sequence

0 Ñ
à

pHqPΛ

rKtop
n pC˚r pHqq Ñ Ktop

n pC˚r pΓqq Ñ KnpBΓq Ñ 0.
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The only nontrivial part now is computing KnpBΓq, but we have already shown that BΓ

is homotopy equivalent to a wedge of
Ž

b1pΓ0ppqq
S2 , i.e. a wedge of 2-spheres. Thus, we

can simply apply the homological Atiyah-Hirzebruch spectral sequence (which collapses
trivially) to obtain that K0pBΓq “ Z

1
6
pp`7q`1 and K1pBΓq “ 0.

A near identical argument can be used to compute the KO -groups of C˚r pPSL2pZr1p sqq
when p ” 11 pmod 12q.

Theorem 3.6.13. Let p ” 11 pmod 12q be a prime and Γ “ PSL2pZr1p sq. Except for
an extension problem in dimensions congruent to 1, 3 and 4 modulo 8, we have for
n “ 0, . . . , 7 that

KOtop
n pC˚r q “ Z5, Z3

2, Z2` 1
6
pp`7q ‘ Z3

2, Z
1
6
pp`7q

2 , Z5 ‘ Z
1
6
pp`7q

2 , 0, Z2` 1
6
pp`7q, 0

and the remaining groups are given by 8-fold Bott-periodicity.

Proof. Let Λ be a set of representatives of finite subgroups of Γ. As before, by [13,
Theorem 4.1(a)] we have a short exact sequence

0 Ñ
à

pHqPΛ

ĄKO
top

n pC˚r pHqq Ñ KOtop
n pC˚r pΓqq Ñ KOnpBΓq Ñ 0.

Now, KOnpBΓq – KOnp˚q‘KOn´2p˚q
1
6
pp`7q and the groups KOZm

n p˚q – KOtop
n pC˚r pZmqq

are given in [17, Section 2.1].

Our methods leave open the following.

Question 3.6.14. Let p be a prime, then does PSL2pZr1p sq satisfy the Unstable GLR
Conjecture? What about a lattice in PSL2pRq ˆ PSL2pQpq?
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Paper 4
GRAPHS AND COMPLEXES OF LATTICES

SAM HUGHES

Abstract. We study lattices acting on CATp0q spaces via their commensurated
subgroups. To do this we introduce the notions of a graph of lattices and a complex
of lattices giving graph and complex of group splittings of CATp0q lattices. Using
this framework we characterise irreducible uniform pIsompEnq ˆ T q-lattices by C˚ -
simplicity and the failure of virtual fibring and biautomaticity. We construct non-
residually finite uniform lattices acting on arbitrary products of right angled buildings
and non-biautomatic lattices acting on the product of En and a right-angled building.
We investigate the residual finiteness, L2 -cohomology, and C˚ -simplicity of CATp0q

lattices more generally. Along the way we prove that many right angled Artin groups
with rank 2 centre are not quasi-isometrically rigid.

4.1 Introduction

Let H be a locally compact group with Haar measure µ. A discrete subgroup Γ ď H

is a lattice if the covolume µpH{Γq is finite. We say the lattice uniform is H{Γ is
cocompact and non-uniform otherwise. We say a lattice Γ in a product H1 ˆ H2 is
weakly irreducible if the projection of Γ to each factor is non-discrete, otherwise we say
Γ is reducible. Given a pair of locally compact groups H1 and H2 there are a number
of basic questions one can ask:

(Q1) Does H1 ˆH2 contain weakly irreducible lattices?

(Q2) What are the generic properties of a weakly irreducible lattice?

In the classical setting of lattices in semisimple Lie groups and linear algebraic groups
over local fields these questions are well studied. Indeed, there are deep theorems such
as the Margulis normal subgroup theorem, super-rigidity theorem, and the arithmeticity
theorem [47].

The non-classical setting is more complicated and was initiated by studing lattices in the
full automorphism group of a locally-finite polyhedral complex. A striking example of the
non-classical setting is given by the work of Burger and Mozes [12] [13] [14]. The authors
constructed torsion-free simple groups which could be realised as cocompact irreducible
lattices in a product of automorphism groups of locally-finite trees.

Thus, one should find a class of spaces which contain the exciting phenomena to be found
in products of polyhedral complexes whilst enjoying a strong geometric grounding. The
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answer was to be found in the notion of non-positive curvature or CATp0q spaces. The
theory encompasses symmetric spaces, non-positively curved manifolds, Euclidean and
hyperbolic buildings, and more [6]. The reader is referred to [6] for a comprehensive
introduction to the theory.

Assumption 4.1.1. Throughout this paper, all actions of groups on graphs or polyhedral
complexes are assumed to admissible. That is, each element of a group fixes pointwise
each cell it preserves.

A systematic study of the full isometry groups of CATp0q spaces and their lattices was un-
dertaken by Caprace and Monod [24] [23] [26]. The authors showed in [24, Theorem 1.6],
that under mild hypotheses on a CATp0q space X , there is finite index subgroup of
H ď IsompXq which splits as

H – IsompEnq ˆ S1 ˆ ¨ ¨ ¨ ˆ Sp ˆD1 ˆ ¨ ¨ ¨ ˆDq, (4.1)

for some n, p, q ě 0, where each Si is an almost connected simple Lie group with trivial
centre and each Dj is a totally disconnected irreducible group with trivial amenable
radical. Moreover by [24, Addendum 1.8], X itself splits as

X “ En ˆX1 ˆ ¨ ¨ ¨ ˆXp ˆ Y1 ˆ ¨ ¨ ¨ ˆ Yq (4.2)

where each Xi is an irreducible symmetric space of non-compact type and each Yj is an
irreducible minimal CATp0q-space.

Taking these decompositions as a starting point motivates a new approach towards
CATp0q groups, that is, understanding the lattices in each of the factors individually
and then how the factors interact. The later question is the central goal of this paper:
To provide a combinatorial framework for studying lattices in products of irreducible
CATp0q spaces and deduce properties of the weakly irreducible lattices. To this end
we introduce the notion of a graph of lattices (Definition 4.3.2) with fixed locally-finite
Bass-Serre T (we will also assume that the tree is unimodular and its automorphism
group is non-discrete, these are essentially non-degeneracy conditions so that there are
tree lattices). Note that in the case of a product of two trees a similar construction was
considered by Benakli and Glasner [5].

Roughly a graph of lattices is a graph of groups such that all local groups are finite-
by-commensurable-H -lattices equipped with a morphism to H . We use this to study
lattices in the product of T :“ AutpT q and closed subgroups H of the isometry group of
a fairly generic CATp0q space. We prove a structure theorem for pHˆT q-lattices. That
is, we show every pH ˆ T q-lattice gives rise to a graph of H -lattices and conversely, we
give necessary and sufficient conditions for a graph of H -lattices to be an pHˆT q-lattice.

Theorem 4.A (Theorem 4.3.3). Let X be a finite dimensional proper CATp0q space
and let H “ IsompXq contain a uniform lattice. Let pA,A, ψq be a graph of H -lattices
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with locally-finite unimodular non-discrete Bass-Serre tree T , and fundamental group Γ.
Suppose T “ AutpT q admits a uniform lattice.

(i) Assume A is finite. If for each local group Aσ the kernel Kerpψ|Aσq acts faithfully
on T , then Γ is a uniform pHˆT q-lattice and hence a CATp0q group. Conversely,
if Λ is a uniform pH ˆ T q-lattice, then Λ splits as a finite graph of uniform H -
lattices with Bass-Serre tree T .

(ii) Under the same hypotheses as (i), Γ is quasi-isometric to X ˆ T .

(iii) Assume X is a CATp0q polyhedral complex. Let µ be the normalised Haar measure
on H . If for each local group Aσ the kernel Kσ “ Kerpψ|Aσq acts faithfully on T
and the sum

ř

σPV A µpAσq{|Kσ| converges, then Γ is a pHˆT q-lattice. Conversely,
if Λ is a pH ˆ T q-lattice, then Λ splits as a graph of H -lattices with Bass-Serre
tree T .

We also introduce an analogous construction we call a complex of lattices (Definition 4.6.1)
by replacing the tree with a CATp0q polyhedral complex and then prove an analogous
structure theorem (Theorem 4.6.2). In the process we deduce some consequences about
commensurated subgroups of CATp0q groups.

We study of various properties of pH ˆ T q-lattices providing answers to (Q2). In Sec-
tion 4.4.1 we investigate the L2 -Betti numbers of pH ˆ T q-lattices and some closely
related groups. We also compute the rational homological dimension of S -arithmetic
lattices in characteristic p ą 0 (Theorem 4.4.5). The author expects this latter result
is well known however he could not find a reference in the literature. We investigate
C˚ -simplicity (Section 4.4.2), virtual fibring (Section 4.4.3) and autostackability (Sec-
tion 4.4.4) of pH ˆ T q-lattices in terms of the properties of H -lattices. We will give the
necessary background for each property in the relevant section.

In Section 4.5 we detail a number of constructions and examples of pHˆT q-lattices using
elementary Bass-Serre theory answering (Q1). The constructions are reminiscent of the
“universal covering trick” of Burger and Mozes [13] and so we provide a comparison in
Section 4.5.3.

Until Leary and Minasyan’s examples of CATp0q but not virtually biautomatic groups
in [45] there were no known examples of lattices where the projection to IsompEnq is
non-discrete. In light of this we begin a study of weakly irreducible lattices with non-
trivial Euclidean de Rham factor. We adapt the biautomaticity criterion given in [45,
Theorem 1.2] to apply to arbitrary CATp0q lattices in the presence of a Euclidean de
Rham factor (Theorem 4.7.7).

For T the automorphism group of a locally-finite tree we give constructions of many
more pIsompEnq ˆ T q-lattices. We then prove the following characterisation of uni-
form pIsompEnq ˆ T q-lattices eliciting a number of generic properties of such lattices
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eleciting a strong answer to (Q2). Note the following theorem is optimal in the sense
that irreducible uniform pIsompEnqˆT q-lattices are always non-residually finite and not
virtually biautomatic, however, there also exist non-residually finite reducible uniform
pIsompEnq ˆ T q-lattices for n ě 3 (this can be seen by taking the direct product of an
irreducible pIsompE2q ˆ T q-lattice with Zn´2 , then applying Theorem 4.7.7).

Theorem 4.B (Theorem 4.7.13). Let T be a locally finite unimodular leafless tree not
isometric to R and let T “ AutpT q. Let Γ be a uniform pIsompEnq ˆ T q-lattice. The
following are equivalent:

(i) Γ is a weakly irreducible pIsompEnq ˆ T q-lattice;

(ii) Γ is irreducible as an abstract group;

(iii) Γ acts on T faithfully;

(iv) Γ does not virtually fibre;

(v) Γ is C˚ -simple;

(vi) and if n “ 2, Γ is non-residually finite and not virtually biautomatic.

In Section 4.8 we adapt a construction of Horbez and Huang [38] to extend actions from
a regular tree to the universal cover of a Salvetti complex rSL with defining graph L.
In particular, from a graph of lattices, one obtains a complex of lattices. With a mild
hypothesis on the graph L, we use this construction to obtain weakly irreducible non-
biautomatic uniform lattices acting on rSLˆEn for n ě 2 (Example 11) answering (Q1).
We also deduce a consequence about quasi-isometric rigidity of right angled Artin groups
with centre containing Z2 .

Corollary 4.C (Example 11 and Corollary 4.8.5). Let L be a finite simplicial graph
on vertices V “ tv1, . . . , vmu and let W “ tv1, . . . , v5u. Suppose AW ă AL is a free
subgroup and that SympW q ď AutpLq. If AL is irreducible, then there exists a weakly
irreducible uniform lattice in AutprSLqˆ IsompEnq which is not virtually biautomatic nor
residually finite. In particular, AL ˆ Z2 is not quasi-isometrically rigid.

In [58], Thomas constructs a functor from graphs of groups covered by a fixed biregular
tree T to complexes of groups covered by a fixed “sufficiently symmetric” right-angled
building X with parameters determined by the valences of T . We will give the relevant
definitions in Section 4.9.1. However, note that by [40] a right-angled building X is
uniquely specified by a flag complex L and a set of positive integer parameters tqiu, if
all of the qi equal q then we say X has uniform thickness q . In Theorem 4.9.4 we show
that Thomas’ functor theorem takes a graph of lattices to a complex of lattices and in
particular pHˆT q-lattices to pHˆAq-lattices, where T “ AutpT q, A “ AutpXq, and H
is a closed subgroup of the isometry group of a CATp0q space (under mild hypothesis).
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As consequences we construct more CATp0q groups which are not virtually biautomatic
(Corollary 4.9.5) and both uniform and non-uniform weakly irreducible lattices in prod-
ucts of fairly arbitrary hyperbolic and Euclidean buildings (Corollary 4.9.9) answering
(Q1). We highlight one special case here:

Corollary 4.D (Special case of Corollary 4.9.5). Let X be the right-angled building
of a regular m-gon of uniform thickness 10n and let A “ AutpXq. For each n ě 2

there exists a weakly irreducible uniform pIsompEnq ˆ Aq-lattice which is not virtually
biautomatic nor residually finite. In particular, if Y is irreducible, then the direct product
of a uniform A-lattice with Z2 is not quasi-isometrically rigid.

4.1.1 Structure of the paper

In Section 4.2 we give the relevant background on lattices acting on CATp0q spaces.
In Section 4.3 we give the relevant background on graphs of groups, define graphs of
lattices, and prove the structure theorem (Theorem 4.3.3). In Section 4.4 we investigate
L2 -cohomology, C˚ -simplicity, virtual fibring, and autostackability of pH ˆ T q-lattices.
We also compute the rational homological dimension of group schemes over function
fields in positive characteristic. In Section 4.5 we provide a number of constructions and
explicit examples of pH ˆ T q-lattices. In Section 4.6 we give the relevant background
on complexes of groups, define complexes of lattices, and prove the structure theorem
(Theorem 4.6.2). In Section 4.7 we study CATp0q lattices acting on spaces with non
trivial Euclidean de Rham factor. We prove the non-biautomaticity criterion for general
CATp0q groups and prove the characterisation of pIsompEnqˆT q-lattices. In Section 4.8
we adapt the construction of Horbez and Huang. In Section 4.9 we give the relevant
background on right-angled buildings and Thomas’ functor theorem. We then prove
our functor theorem (Theorem 4.9.4) and deduce a number of consequences. Finally, in
Section 4.10 we record a few questions and conjectures.
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4.2 Preliminaries

4.2.1 Lattices and covolumes

Let H be a locally compact topological group with right invariant Haar measure µ.
A discrete subgroup Γ ď H is a lattice if the covolume µpH{Γq is finite. A lattice is
uniform if H{Γ is compact and non-uniform otherwise. Let S be a right H -set such
that for all s P S , the stabilisers Hs are compact and open, then if Γ ď H is discrete
the stabilisers are finite.

Let X be a locally finite, connected, simply connected simplicial complex. The group
H “ AutpXq of simplicial automorphisms of X naturally has the structure of a lo-
cally compact topological group, where the topology is given by uniform convergence on
compacta.

Theorem 4.2.1 (Serre’s covolume formula [55]). Let X be a locally finite simply-
connected simplicial complex. Let Γ ď H be a lattice with fundamental domain ∆,
then there is a nomalisation of the Harr measure µ on H , depending only on X , such
that for each discrete subgroup Γ ă H we have

µpH{Γq “ VolpX{Γq :“
ÿ

vP∆p0q

1

|Γv|
.

Note that T the automorphism group of a locally finite tree T admits lattices if and
only if the group T is unimodular (that is the left and right Haar measures coincide).
In this case we say T is unimodular.

4.2.2 Non-positive curvature

We will be primarily interested in lattices in the isometry groups of CATp0q spaces, we
will call these groups CATp0q lattices (note that a uniform CATp0q lattice is a CATp0q

group). We begin by recording several facts about the structure and isometry groups of
general CATp0q spaces. The definitions and results here are largely due to Caprace and
Monod [24] [23] [26].

An isometric action of a group H on a CATp0q space X is minimal if there is no non-
empty H -invariant closed convex subset X 1 Ă X , the space X isminimal if IsompXq acts
minimally on X . Note that by [24, Proposition 1.5], if X is cocompact and geodesically
complete, then it is minimal. The amenable radical of a locally compact group H is the
largest amenable normal subgroup. We can now state Caprace and Monod’s group and
space decomposition theorems mentioned in the introduction.

Theorem 4.2.2. [24, Theorem 1.6] Let X be a proper CATp0q space with finite dimen-
sional Tits’ boundary and assume IsompXq has no global fixed point in BX . There is a
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canonical closed, convex, IsompXq-stable subset X 1 Ď X such that G “ IsompX 1q has a
finite index, open, characteristic subgroup H Ĳ G that admits a canonical decomposition

H – IsompEnq ˆ S1 ˆ ¨ ¨ ¨ ˆ Sp ˆD1 ˆ ¨ ¨ ¨ ˆDq,

for some n, p, q ě 0, where each Si is an almost connected simple Lie group with triv-
ial centre and each Dj is a totally disconnected irreducible group with trivial amenable
radical.

Theorem 4.2.3. [24, Addendum 1.8] Let X 1 and H be as above, then

X 1 – En ˆX1 ˆ ¨ ¨ ¨ ˆXp ˆ Y1 ˆ ¨ ¨ ¨ ˆ Yq

where each Xi is an irreducible symmetric space and each Yj is an irreducible minimal
CATp0q-space.

4.2.3 Irreducibility

Let X “ X1ˆ¨ ¨ ¨ˆXn be a product of irreducible proper CATp0q spaces and let Γ be a
lattice in H “ H1ˆ¨ ¨ ¨ˆHn :“ IsompX1qˆ¨ ¨ ¨ˆIsompXnq, with each Hi non-discrete and
acting minimally. There are several possible notions of irreducibility for a lattice in H ,
moreover, in the general setting of CATp0q groups, they are not necessarily equivalent.
In the interest of clarity, we recount each of these and summarise their implications, we
follow the treatment in [25] [22].

(Irr1) For every Σ Ă t1, . . . , nu, the projection πΣ : Γ Ñ HΣ has dense image. Here we
say Γ is topologically irreducible or an irreducible lattice.

(Irr2) The projection to each factor Hi is injective.

(Irr3) For every Σ Ă t1, . . . , nu, the projection πΣ : Γ Ñ HΣ has non-discrete image.
Here we say Γ is weakly irreducible or a weakly irreducible lattice.

(Irr4) Γ has no finite index subgroup which splits as a direct product of two infinite
subgroups. Here we say Γ is algebraically irreducible.

Firstly, if each Hi is a centre-free semisimple algebraic group without compact factors
then each of the definitions are equivalent [47]. When each Hi is a non-discrete, com-
pactly generated, tdlc group, then [22, Theorem H] summarises all possible implications.
Returning to the setting described above we have that (Irr2) ñ (Irr3) ñ (Irr4) and
if Γ is finitely generated, then by Theorem 4.2.4 we have (Irr4) ñ (Irr3). Note that in
general (Irr4) ñ (Irr2) fails, unless Γ is residually finite. The following theorem from
[23] shows the equivalence of (Irr3) and (Irr4) for many CATp0q lattices.
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Theorem 4.2.4. [23, Theorem 4.2] Let X be a proper CATp0q space, H ă IsompXq a
closed subgroup acting cocompactly on X , and Γ ă H a finitely generated lattice.

(i) If Γ is irreducible as an abstract group, then for for finite index subgroup Γ0 ă Γ

and any Γ0 -equivariant splitting X “ X1 ˆX2 with X1 and X2 non-compact, the
projection of Γ0 to both IsompX1q and IsompX2q is non-discrete.

(ii) If in addition the H -action is minimal, then the converse holds.

Finally, we restate a result of Caprace-Monod which we can use as criterion to determine
non-residual finiteness of lattices in products.

Theorem 4.2.5. [23, Theorem 4.10] Let X be a proper CATp0q space such that G “

IsompXq acts cocompactly and minimally. Let Γ ă IsompXq be a finitely generated
algebraically irreducible lattice. Let Γ1 “ ΓXH , where H is given in Theorem 4.2.2. If
the projection of Γ1 to an irreducible factor of X has non-trivial kernel, then Γ is not
residually finite.

4.3 Graphs of lattices

In this section we will review Bass-Serre theory, graphs of spaces and tree lattices. These
tools will be fundamental to us in the following chapters. We will then define a graph of
lattices and prove the structure theorem for pH ˆ T q-lattices.

4.3.1 Graphs of groups

We shall state some of the definitions and results of Bass-Serre theory. In particular, the
action will be on the right. We follow the treatment of Bass [2]. Throughout a graph
A “ pV A,EA, ι, τq should be understood as it is defined by Serre [56], with edges in
oriented pairs indicated by e, and maps ιpeq and τpeq from each edge to its initial and
terminal vertices. We will, however, often talk about the geometric realisation of a graph
as a metric space. In this case the graph should be assumed to be simplicial (possibly
after subdividing) and should have exactly one undirected edge e for each pair pe, eq.
We will often not distinguish between the combinatorial and metric notions.

A graph of groups pA,Aq consists of a graph A together with some extra data A “

pVA, EA,ΦAq. This data consists of vertex groups Av P VA for each vertex v , edge
groups Ae “ Ae P EA for each (oriented) edge e, and monomorphisms pαe : Ae Ñ

Aιpeqq P Φ for every oriented edge in A. We will often refer to the vertex and edge
groups as local groups and the monomorphisms as structure maps.
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The path group πpAq has generators the vertex groups Av and elements te for each edge
e P EA along with the relations:

$

’

&

’

%

The relations in the groups Av,
te “ t´1

e ,

teαepgqt
´1
e “ αepgq for all e P EA and g P Ae “ Ae.

,

/

.

/

-

We will often abuse notation and write A for a graph of groups. The fundamental group
of a graph of groups can be defined in two ways. Firstly, considering reduced loops based
at a vertex v in the graph of groups, in this case the fundamental group is denoted
π1pA, vq (see [2, Definition 1.15]). Secondly, with respect to a maximal or spanning tree
of the graph. Let X be a spanning tree for A, we define π1pA, Xq to be the group
generated by the vertex groups Av and elements te for each edge e P EA with the
relations:

$

’

’

’

’

&

’

’

’

’

%

The relations in the groups Av,
te “ t´1

e for each (oriented) edge e,
teαepgqt

´1
e “ αepgq for all g P Ae,

te “ 1 if e is an edge in X.

,

/

/

/

/

.

/

/

/

/

-

Note that the definitions are independent of the choice of basepoint v and spanning tree
X and both definitions yield isomorphic groups so we can talk about the fundamental
group of A, denoted π1pAq.

Let G be the fundamental group corresponding to the spanning tree X . For every vertex
v and edge e, Av and Ae can be identified with their images in G. We define a tree
with vertices the disjoint union of all coset spaces G{Av and edges the disjoint union of
all coset spaces G{Ae respectively. We call this graph the Bass-Serre tree of A and note
that the action of G admits X as a fundamental domain.

Given a group G acting on a tree T , there is a quotient graph of groups formed by
taking the quotient graph from the action and assigning edge and vertex groups as the
stabilisers of a representative of each orbit. Edge monomorphisms are then the inclusions,
after conjugating appropriately if incompatible representatives were chosen.

Theorem 4.3.1. [2] Up to isomorphism of the structures concerned, the processes of
constructing the quotient graph of groups, and of constructing the fundamental group
and Bass-Serre tree are mutually inverse.

Let pA,Aq and pB,Bq be graphs of groups. Amorphism of graphs of groups φ : pA,Aq Ñ
pB,Bq consists of:

(i) A graph morphism f : AÑ B .

(ii) Homomorphisms of local groups φv : Av Ñ Bfpvq and φe “ φe : Ae Ñ Bfpeq .
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(iii) Elements γv P π1pB, fpvqq for each v P V A and γe P πpBq for each e P EA such
that if v “ ipeq then

• δe :“ γ´1
v γe P Bfpvq ;

• φa ˝ αe “ Adpδeq ˝ αfpeq ˝ φe .

4.3.2 A Structure theorem

In this section we will define a graph of lattices and prove the structure theorem for
pH ˆ T q-lattices. We say L is covirtually an H -lattice if there exists a finite normal
subgroup F Ÿ L such that L{F is isomorphic to an H -lattice.

Definition 4.3.2 (Graph of lattices). Let H be a locally compact group with Haar
measure µ. A graph of H -lattices pA,A, ψq is a graph of groups pA,Aq equipped with
a morphism of graphs of groups ψ : AÑ H where H is considered as a graph of groups
of groups over a single vertex such that:

(i) Each local group Aσ P A is covirtually an H -lattice and the image ψpAσq is an
H -lattice;

(ii) The local groups are commensurable in Γ “ π1pAq and their images are commen-
surable in H ;

(iii) For each e P EA the element te of the path group πpAq is mapped under ψ to an
element of CommHpψepAeqq.

Theorem 4.3.3 (The Structure Theorem - Theorem 4.A). Let X be a finite dimensional
proper CATp0q space and let H “ IsompXq contain a uniform lattice. Let pA,A, ψq be
a graph of H -lattices with locally-finite unimodular non-discrete Bass-Serre tree T , and
fundamental group Γ. Suppose T “ AutpT q admits a uniform lattice.

(i) Assume A is finite. If for each local group Aσ the kernel Kerpψ|Aσq acts faithfully
on T , then Γ is a uniform pHˆT q-lattice and hence a CATp0q group. Conversely,
if Λ is a uniform pH ˆ T q-lattice, then Λ splits as a finite graph of uniform H -
lattices with Bass-Serre tree T .

(ii) Under the same hypotheses as (i), Γ is quasi-isometric to X ˆ T .

(iii) Assume X is a CATp0q polyhedral complex. Let µ be the normalised Haar measure
on H . If for each local group Aσ the kernel Kσ “ Kerpψ|Aσq acts faithfully on T
and the sum

ř

σPV A µpAσq{|Kσ| converges, then Γ is a pHˆT q-lattice. Conversely,
if Λ is a pH ˆ T q-lattice, then Λ splits as a graph of H -lattices with Bass-Serre
tree T .
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We will divert the majority of the proof to the proof of Theorem 4.6.2 due to the similarity
of the theorem statement and arguments involved in the proof. The minor difference
arises from the fact that the category of graphs of groups is not equivalent to the category
of 1-complexes of groups (see [58, Proposition 2.1]) due to the difference in morphisms.
We highlight the key differences below.

Proof. We first prove (i). The “if direction" is the same as Theorem 4.6.2(i). For the
converse note that an pHˆT q-lattice Γ splits as a graph of groups pA,Aq. Indeed, Γ acts
on the tree T through the projection πT , now we may apply the fundamental theorem
of Bass-Serre theory. The projection to H induces a morphism of graphs of groups
πH : AÑ H . The same argument as Theorem 4.6.2(i) implies that the local groups are
commensurable covirtually commensurable H -lattices. In particular, the images of the
elements te P πpAq for e P EA are contained in CommHpπHpAσqq for every local group
Aσ . ˛

We now prove (ii). By (i) Γ acts properly discontinuously cocompactly on X ˆ T . The
result follows from the Švarc-Milnor Lemma [6, I.8.19]. ˛

The proof of (iii) is almost identical to (i) we will highlight the differences. Since X is
a CATp0q polyhedral complex, it follows that X ˆ T is. Now, we may apply Serre’s
Covolume Formula to Γ “ π1pAq. Let ∆ be a fundamental domain for Γ acting on
X ˆ T , then the covolume of Γ may be computed as

ÿ

σP∆0

1

|Γσ|
“

ÿ

σPπT p∆0q

ÿ

τPπ´1
T pσq

1

|Γτ |
“

ÿ

σPπT p∆0q

1

|Kσ|

ÿ

τPπ´1
T pσq

|Kσ|

|Γτ |
“

ÿ

σPπT p∆0q

µpπHpΓσqq

|Kσ|
.

Since πT p∆0q can be identified with V A and the later sum converges by assumption, it
follows as before that Γ acts faithfully properly discontinuously and isometrically with
finite covolume on X ˆ Y . For the converse we proceed as in Theorem 4.6.2(iii). ˛

4.3.3 Reducible lattices

Let X be a proper minimal CATp0q space and H “ IsompXq. Let T be a locally-
finite non-discrete unimodular leafless tree and T “ AutpT q. We will now characterise
reducible uniform pH ˆ T q-lattices by both their projections to H and T , and by the
separability of the vertex stabilisers in the projection to T . Moreover, if H is linear,
we will show that all such lattices are linear, and thus, residually finite. We say that
a subgroup Λ ď Γ is separable if it is the intersection of finite-index subgroups of Γ,
virtually normal if Λ contains a finite index subgroup N such that N Ĳ Γ, and weakly
separable if it is the intersection of virtually normal subgroups of Γ.

Proposition 4.3.4. Let X be a proper minimal CATp0q space and H “ IsompXq. Let
T be a locally-finite non-discrete unimodular leafless tree and let T “ AutpT q. Let Γ be
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a uniform pHˆT q-lattice equipped with projections πH and πT to H and T respectively,
then the following are equivalent:

(i) πHpΓq is an H -lattice;

(ii) πT pΓq is a T -lattice;

(iii) For every vertex v P T , the projection of the vertex stabiliser πT pΓvq is separable
in πT pΓq;

(iv) There is a vertex v P T such that the projection of the vertex stabiliser πT pΓvq is
weakly separable in πT pΓq;

(v) Γ is a reducible pH ˆ T q-lattice.

Proof. First, we will show that (i) implies (ii), our proof for this case largely follows [14,
Proposition 1.2]. Assume πHpΓq is an H -lattice, then Γ ¨ T is closed and so Γ X T is
a uniform T -lattice. Now, πT pΓq normalises ΓX T and hence by [13, 1.3.6] is discrete.
Thus, πT pΓq is discrete and so is a lattice in T .

Next, we will show that (ii) implies (i). Assume πT pΓq is a lattice in T and consider
the kernel K of the action of Γ on T . We will show that K is a finite index subgroup
of πHpΓq. Assume that K has infinite index, then πHpΓq{K ď πT pΓq is an infinite
subgroup of the vertex stabiliser, a profinite group, and so cannot be discrete. Thus, K
has finite index in πHpΓq. Since K acts trivially on T we see that K “ Γ XH . Since
Γ ¨H is closed it follows K is an H -lattice. Thus, πHpΓq is virtually a lattice in H and
therefore an H -lattice.

Clearly, (v) implies (i) and (ii). We will now prove that (i) and (ii) imply (v). By the
previous paragraph we have K Ĳ πHpΓq finite index. Let ΓT “ tγ | pe, γq P Γu, we want
to show that ΓT is a uniform T -lattice. Since all uniform T -lattices are commensurable
ΓT will be a finite index subgroup of πT pΓq. By the first paragraph we see ΓT is a
uniform lattice. Thus, K ˆ ΓT is a finite index subgroup of Γ and so Γ is reducible.

Now, evidently (iii) implies (iv). To see that (iv) implies (v) we apply [20, Corollary 30]
to πT pΓq, noting that a cocompact action on a leafless tree does not preserve any subtree,
in particular, πT pΓq is discrete. Finally, we show that (v) implies (iii). Observe that
πT pΓq is a virtually free T -lattice which splits as a finite graph of finite groups. Since
πT pΓq is a finite graph of finite groups, the vertex stabilisers are separable subgroups.

One immediate consequence of the theorem is that we can determine whether a lat-
tice is irreducible simply by considering the projections to either H or T . Also, note
that if H is the automorphism group of a unimodular leafless tree then we recover [14,
Proposition 1.2] and and [20, Corollary 32].
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We also have the following observations about the linearity and residual finiteness of
reducible lattices.

Proposition 4.3.5. With the same notation as before, assume H is linear (or lattices
in H are residually finite). If Γ is a uniform reducible pH ˆ T q-lattice, then Γ is linear
(resp. residually finite).

Proof. If Γ is reducible, then Γ is virtually a direct product of a linear (resp. residually
finite) group with a virtually free group. In particular, Γ is virtually a direct product of
linear (resp. residually finite) groups and therefore linear (resp. residually finite).

Corollary 4.3.6. With H and T as before, assume H is linear. If Γ is a finitely
generated uniform pH ˆ T q-lattice, then exactly one of the following holds:

(i) Γ is reducible and therefore linear (hence residually finite);

(ii) Γ is irreducible and linear (hence residually finite);

(iii) Γ is irreducible and non-residually finite.

Moreover, if H is a connected centre-free semisimple linear algebraic group without com-
pact factors and Γ is irreducible and linear, then Γ is arithmetic and just-infinite.

Proof. The first case follows from the previous proposition. Now, assume Γ is irreducible
and πHpΓq is injective, then πH is a faithful linear representation of Γ and we are in
the second case. Since Γ is linear, πT must be injective otherwise Γ would contradict
Theorem 4.2.5. Now, if either of πT or πH are not injective, then by Theorem 4.2.5 we
see that Γ is not residually finite. Note that πT not being injective necessarily implies
that πH is not injective because otherwise Γ would admit a faithful linear representation,
contradicting non-residual finiteness. To prove the moreover note that Γ is just-infinite
follows from the Bader-Shalom Normal Subgroup Theorem [18] applied to the closure of
Γ in H ˆ T . The arithmeticity of Γ follows from [4].

Let vbppΓq denote the pth virtual Betti number of Γ which is defined to be the maximum
of the pth Betti number over all finite index subgroups of Γ, or 8 if the set is unbounded.

Proposition 4.3.7. With H and T as before, assume H is a connected centre-free
semisimple linear algebraic group without compact factors. Let Γ be a finitely generated
uniform irreducible pH ˆ T q-lattice. If vb1pΓq ą 0, then Γ is not residually finite. In
particular, if b1pT {Γq ą 0, then Γ is not residually finite.

Proof. Since Γ is irreducible, by the previous corollary, either Γ is linear and just-infinite,
or Γ is not residually finite. Now, if the virtual Betti number of Γ is greater than zero,
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then a finite index subgroup Γ1 of Γ admits Z as a quotient and so cannot be just
infinite. Hence, Γ1 is not residually finite and so neither is Γ.

The quotient space T {Γ gives rise to a graph of groups splitting of Γ with Bass-Serre
tree T . An easy application of the Mayer-Vietoris sequence applied to T shows that
b1pΓq ě b1pT {Γq.

4.4 Properties of pH ˆ T q-lattices

In this section we will investigate the L2 -cohomology, C˚ -simplicity, virtual fibring, and
autostackability of pHˆT q-lattices in terms of properties of H -lattices. We remark that
in each case the proofs are relatively elementary but depend in an essential way on the
structure theorem (Theorem 4.3.3).

4.4.1 L2–cohomology and dimension

Let Γ be a group. Both Γ and the complex group algebra CΓ act by left multiplication on
the Hilbert space `2Γ of square-summable sequences. The group von Neumann algebra
NΓ is the ring of Γ-equivariant bounded operators on `2G. The regular elements of
NG form an Ore set and the Ore localization of NΓ can be identified with the ring of
affiliated operators UΓ.

There are inclusions CΓ Ď NΓ Ď `2Γ Ď UΓ and it is also known that UΓ is a self-
injective ring which is flat over NΓ. For more details concerning these constructions we
refer the reader to [46] and especially to Theorem 8.22 of Section 8.2.3 therein. The von
Neumann dimension and the basic properties we need can be found in [46, Section 8.3].

Let Y be a Γ-CW complex as defined in [46, Definition 1.25]. The `2 -homology groups
of Y are defined to be the equivariant homology groups HΓ

i pY ;UΓq, and we have

b
p2q
i pY q “ dimUGHΓ

i pY ;UΓq.

The `2 -Betti numbers of a group Γ are then defined to be the `2 -Betti numbers of EΓ.
By [46, Theorem 6.54(8)], the zeroth `2 -Betti number of Γ is equal to 1{|Γ| where 1{|Γ|

is defined to be zero if Γ is infinite. Moreover, if Γ is finite then b
p2q
n pGq “ 0 for n ě 1.

In this section we will compute the L2 -Betti numbers of pH ˆ T q-lattices for a very
general choice of H and T . Our primary tool will be Gaboriau’s invariance of L2 -Betti
numbers under measure equivalence.

Two countable groups Γ and Λ are said to be measure equivalent if there exist com-
muting, measure-preserving, free actions of Γ and Λ on some infinite Lebesgue measure
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space pΩ,mq, such that the action of each of the groups Γ and Λ admits a finite measure
fundamental domain. The key examples of measure equivalent groups are lattices in the
same locally-compact group [34].

Theorem 4.4.1. Let H be a unimodular locally compact group with lattices and T be
a locally-finite unimodular tree with automorphism group T . Assume H -lattices do not
have two consecutive non-zero L2 -Betti numbers. Let Γ be an pH ˆT q-lattice and let V
and E be a representative set of orbits of vertices and edges respectively for the action of
Γ on T . We have

bp2qn pΓq “
ÿ

ePE

b
p2q
n´1pΓeq ´

ÿ

vPV

b
p2q
n´1pΓvq.

Proof. Let Λ be a reducible pHˆT q-lattice and assume Λ splits as LˆFn where L is an
H -lattice. Using the Künneth formula we see that the L2 -Betti numbers of Λ are non-
vanishing in the dimensions precisely 1 higher than the non-vanishing L2 -Betti numbers
of L. Both Λ and Γ are measure equivalent, since they both lattices in pH ˆ T q. By
Gaboriau’s theorem on the invariance of L2 -Betti numbers under measure equivalence
[30, Theorem 6.3], the L2 -Betti numbers of Γ are non-vanishing in the same degrees as
Λ.

Now, we apply the Γ-equivariant cohomology Mayer-Vietoris ([17, Chapter VII.9]) se-
quence with UΓ coefficients to the filtration of EΓ given by the cell structure of the
Bass-Serre tree T . Since the vertex and edge stabilisers of the action on T do not
have two sequential non-zero L2 -Betti numbers, neither does Γ. Thus, the sequence
degenerates into short exact sequences

0 Ñ
à

ePE

Hn
ΓpΓe;UΓq Ñ

à

vPV

Hn
ΓpΓv;UΓq Ñ Hn`1

Γ pΓ;UΓq Ñ 0

and the result follows from the additivity of von Neumann dimension.

As an immediate corollary we recover the following well known result.

Corollary 4.4.2. Let Γ be a tree lattice, then all L2 -Betti numbers of Γ vanish, except

b
p2q
1 pΓq “

ÿ

ePE

1

|Γe|
´

ÿ

vPV

1

|Γv|
.

The assumption of not having two sequential non-zero L2 -Betti numbers turns out to
not be very restrictive as [46, Theorem 5.12] and [49, Theorem 1.6] demonstrate. For
arbitrary CATp0q lattices, the presence of the Euclidean de Rham factor causes the
L2 -Betti numbers to vanish.

Proposition 4.4.3. Let X be a proper CATp0q space with non-trivial Euclidean de
Rham factor and H ď IsompXq be a closed subgroup acting minimally and cocompactly.
If Γ is an H -lattice, then the L2 -Betti numbers of Γ vanish.
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Proof. By [26, Theorem 2(i)] Γ has a commensurated free abelian subgroup A and so
b
p2q
p pAq “ 0 for all p ě 0. Now, we apply [3, Corollary 1.4].

Remark 4.4.4. More generally, let X be a proper CATp0q space with canonical closed
convex IsompXq-stable subset X 1 Ď X such that X 1 “MˆX1ˆ¨ ¨ ¨ˆXn , where M is a
symmetric space of non-compact type and each Xi is irreducible and minimal. Assume
rankCpIsompMqq´ rankCpIsompMqq “ 0, let H ď IsompX 1q be a closed subgroup acting
cocompactly and minimally and let Γ be an H -lattice. By measure rigidity and repeat
applications of the Künneth theorem we have bp2qp pΓq “ 0 for p ă 1

2 dimpMq `
řn
i“1 bi ,

where bi is the smallest dimension such that an IsompXiq-lattice has a non-vanishing L2 -
Betti number. In particular, if either the L2 -cohomology of an IsompXiq-lattice vanishes
or f-rkpMq ą 0 (see [46, Theorem 5.12]), then the L2 -cohomology of Γ vanishes.

4.4.1.1 Rational homological dimension of group schemes over function fields

Let k be the function field of an irreducible projective smooth curve C defined over a
finite field Fq . Let S be a finite non-empty set of (closed) points of C . Let OS be
the ring of rational functions whose poles lie in S . For each p P S there is a discrete
valuation νx of k such that νppfq is the order of vanishing of f at p. The valuation ring
Op is the ring of functions that do not have a pole at p, that is

OS “
č

pRS

Op.

Let k̄ denote the algebraic closure of k . Let G be an affine group scheme defined over k̄
such that Gpk̄q is almost simple. For each p P S there is a completion kp of k and the
group Gpkpq acts on the Bruhat-Tit’s building Xp . Thus, we may embed GpOSq into
the product

ś

pPS Gp as an arithmetic lattice.

In [31] it is shown that cdQpGpOSqq “
ś

pPS dimXp . In light of this Ian Leary asked the
author what is hdQpGpOSqq? The author suspects the result is well-known, however, it
does not seem to appear in the literature. It may be possible to obtain an alternative
proof using a result of Roman Sauer [54].

Theorem 4.4.5. Let G be a simple simply connected Chevalley group. Let k and OS

be as above, then
hdQpGpOSqq “ cdQpGpOSqq “

ź

pPS

dimXp.

Proof. We first note that the group Γ :“ GpOSq is measure equivalent to the prod-
uct

ś

pPS GpFqrtpsq for some suitably chosen tp P Op . By [49, Theorem 1.6] the group
GpFqrtpsq has one non-vanishing L2 -Betti number in dimension dimpXpq. Hence, by
the Künneth formula GpFqrtpsq has one non-vanishing L2 -Betti number in dimension
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d “
ś

pPS dimXp Thus, by Gaboriau’s theorem [30], the group Γ has exactly one
non-vanishing L2 -Betti number in dimension d. It follows that hdQpΓq ě d. The
reverse inequality follows from the fact that Γ acts properly on the d-dimensional space
ś

pPS dimXp .

4.4.2 C˚–simplicity

Let Γ be a discrete group. The reduced C˚ -algebra of Γ, denoted C˚r pΓq, is the norm
closure of the algebra of bounded operators on `2pΓq by the left regular representation of
Γ. We say Γ is C˚ -simple if C˚r pΓq has exactly two norm-closed two-sided ideals 0 and
C˚r pΓq itself. A C˚ -simple group Γ enjoys a number of properties including having trivial
amenable radical, the infinite conjugacy class (icc) property, the unique trace property
[11, Theorem 1.3], and having a free action on its Furstenberg boundary BFΓ [43].

In 1975 Powers proved that the free group F2 is C˚ -simple [48]. Since this result it
has been a major open problem to classify C˚ -simple groups, we refer the reader to [27]
for a general survey and [11] for a number of recent developments. In the setting of
CATp0q groups there is a characterisation of C˚ -simple CATp0q cubical groups [44] and
of linear groups [11, Theorem 1.6]. In this section we will consider the C˚ -simplicity of
pH ˆ T q-lattices.

The C˚ -simplicity of graphs of groups has been considered before [28], however, the
methods developed there are not applicable to pH ˆ T q-lattices because the vertex and
edge groups are all commensurable. Instead, we will apply the machinery developed in
[11] to prove the C˚ -simplicity of pH ˆ T q-lattices via properties of either H or the
action on T .

Let Γ be a group. We say a subgroup H is normalish if for every n ě 1 and t1 . . . , tn

the intersection
Şn
i“1H

ti is infinite.

Proposition 4.4.6. Let Γ be the fundamental group of a (possibly infinite) graph of
finite groups with leafless Bass-Serre tree T not isometric to R. If Γ is infinite, not
virtually cyclic and acts faithfully on T , then Γ is C˚ -simple.

Proof. As Γ is not finite or virtually cyclic Γ has a positive (possibly infinite) first L2 -
Betti number. Indeed, the chain complex of the Bass-Serre tree C˚pT ;UΓq, which is
concentrated in dimension 0 and 1, may be used to compute the L2 -homology. As Γ

is infinite the boundary map is surjective and so the L2 -homology is concentrated in
degree 1. We may pair each orbit of 0-cells v with an orbit of 0-cells e contained in
the boundary of e, in each case the dimension of the UΓ-module is 1{|Γv| or 1{|Γe|,
and 1{|Γe| ´ 1{|Γv| ě 0. Since Γ is non-trivial and not virtually cyclic some of these
inequalities must be strict. In particular, we conclude Γ has a (possibly infinite) non-
trivial first L2 -Betti number equal to the sum of these partial sums plus extra terms
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1{|Γe| for any orbit of edges not accounted for. Since Γ has a trivial amenable radical
and a non-trivial L2 -Betti number we may apply [11, Theorem 6.5] to deduce that Γ is
C˚ -simple.

Alternatively, we first note that any normalish subgroup of Γ contains a free subgroup
since Γ is a faithful graph of finite groups and is not virtually cyclic. Now, we apply [11,
Theorem 6.2] to deduce that Γ is C˚ -simple.

The following theorem and corollary give a partial answer to two questions of de la
Harpe [27] and consider the more general case of an arbitrary graph of groups. Let T
be a locally-finite non-discrete unimodular leafless tree and T “ AutpT q. The theorem
implies the following lattices are C˚ -simple:

• H is a semisimple Lie group with trivial centre and Γ is a graph of S -arithmetic
lattices. This new whenever Γ is not residually finite. To see this, apply (i) and
(i);

• Γ is a lattice in a product of trees. To see this, apply (iii);

• Γ is the fundamental group of a graph of lattices where each vertex and edge group
acts on the universal cover of a Salvetti complex corresponding to a right-angled
Artin group with trivial centre. To see this, apply (i) and (i) to [11, Theorem 1.6];

• H is the automorphism group of an affine building with no irreducible factor iso-
metric to En and Γ is an irreducible pH ˆ T q-lattice. To see this, apply (i);

• H is the automorphism group of a hyperbolic building and Γ is an irreducible
pH ˆ T q-lattice. To see this, apply (i);

• H is a product of the above and Γ is an irreducible pH ˆ T q-lattice. To see this,
apply (i);

• IsompEnq and Γ is an irreducible pIsompEnq ˆ T q-lattice. Note this characterises
irreducible pIsompEnq ˆ T q-lattices and will follow from (ii) (see Theorem 4.7.13).

The results in this list are new whenever the pHˆT q-lattices in question are not cubical
or linear groups.

Theorem 4.4.7. Let X “ X1 ˆ ¨ ¨ ¨ ˆ Xk be a product of proper minimal cocompact
CATp0q-spaces each not isometric to R and let H “ IsompX1q ˆ ¨ ¨ ¨ ˆ IsompXkq act
without fixed point at infinity. Let T be a locally-finite non-discrete unimodular leafless
tree and T “ AutpT q. Let n ě 0 and Γ ă IsompEnq ˆ H ˆ T be a finitely generated
lattice.

(i) Assume Γ is reducible and n “ 0, then Γ is C˚ -simple if and only if Γ X H is
C˚ -simple, and Γ has the icc property.
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(ii) Assume Γ is weakly irreducible. If one of the following holds:

(i) H -lattices have no normalish amenable subgroups;

(ii) KerpπT q is trivial and KerpπIsompEnqˆHqq is infinite;

(iii) H -lattices have a non-zero L2 -Betti number and trivial amenable radical;

then Γ is C˚ -simple.

Proof. In the reducible case Γ virtually splits as Fn ˆ ΓH . The result follows from the
following three observations [27, Proposition 19 (i,iii,iv)], a direct product of two C˚ -
simple groups is C˚ -simple, finite index subgroups of C˚ -simple groups are simple, and
a virtually C˚ -simple group is C˚ -simple if and only if it satisfies the icc property.

Now, assume Γ is irreducible. We will show that (i) implies C˚ -simplicity. Since Γ

is finitely generated G “ T {Γ is finite. We first show that any amenable normalish
subgroup N of Γ must fix a vertex of T . Let g P Γ act as a hyperbolic element on
T , choose any other element h P Γ acting hyperbolically on T with an axis not equal
to g , then any normalish subgroup N containing g contains the free group xg, hy and
so cannot be amenable. Thus, N fixes a vertex of T . Now, by Theorem 4.3.3 every
vertex and edge stabiliser of Γ is a finite-by-H -lattice group. Since by assumption H -
lattices do not contain any normalish amenable subgroups, neither does Γ. It remains
to verify that Γ has no finite normal subgroups, but Γ has trivial amenable radical by
[23, Corollary 2.7]. In particular the result now follows from [11, Theorem 6.2].

We next prove (ii) implies C˚ -simplicity. Let K “ KerpπIsompEnqˆHqq, we have that Γ

is an extension of K by πIsompEnqˆHqpΓq. Now, K is a (possibly infinite) graph of finite
groups acting faithfully on T . Indeed, restricting π :“ πIsompEnqˆH to a vertex stabiliser
Γv ă Γ of the action on T , by Theorem 4.3.3 we see Kerpπ|Γvq is finite. Every finite
subgroup of Γ, and hence K , is conjugate to a finite subgroup of some vertex stabiliser.
Thus, the graph of groups decomposition is given by T {K .

We claim K is not virtually infinite cyclic. Indeed, if K was virtually cyclic, then there
exists a commensurated infinite cyclic subgroup Z ă K ă Γ. By [26, Theorem 2(i)] Z
acts properly on En in the decomposition of X . But Z ă K , a contradiction.

It follows the group K is C˚ -simple by Proposition 4.4.6. Because KerpπT q is trivial,
every element acts non-trivially on T and so the centraliser CΓpKq is trivial. Now, we
apply [11, Theorem 1.4] to prove the result.

Finally, we will prove (iii) implies C˚ -simplicity. We apply the cohomology Γ-equivariant
Mayer-Vietoris sequence with UΓ coefficients arising from filtering EΓ by the Bass-Serre
tree [17, Chapter VII.9]. Since T is not a quasi-line there is a vertex v connected to an
edge e such that the stabilisers satisfy |Γv : Γe| ě 3, thus the L2 -Betti numbers of Γe are
at least 3 times the L2 -Betti number of Γv . Now, additivity of von Neumann dimension
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over exact sequences and a simple counting argument implies every pHˆT q-lattice must
have a non-trivial L2 -Betti number. Alternatively, we note that every pHˆT q-lattice is
measure equivalent to Lˆ Fr where L is an H -lattice and Fr is a free group. Now, an
application of the Kunneth formula yields that LˆFr has a non-trivial L2 -Betti number
and so by Gaboriau’s theorem [30, Theorem 6.3] so does every pH ˆ T q-lattice. By [23,
Corollary 2.7] every pH ˆT q-lattice has trivial amenable radical, the result follows from
[11, Theorem 6.5].

A near identical proof to that of (i) yields the following corollary.

Corollary 4.4.8. Let Γ be the fundamental group of a finite graph of groups. Assume,
that for each edge and vertex that are incident that the intersection of the corresponding
edge group and the vertex group does not contain either a normalish amenable subgroup
or a non-trivial finite normal subgroup. If Γ is irreducible as an abstract group, then Γ

is C˚ -simple.

4.4.3 Fibring

Recall that a group Γ is said to algebraically fibre if there is a non-trivial homomorphism
φ : Γ Ñ Z such that Kerpφq is finitely generated. If Γ has a finite index subgroup which
algebraically fibres, then we say Γ virtually fibres.

Fix a finite generating set S for Γ. A character 0 ‰ φ P H1pΓ;Rq “ HompΓ,Rq lies
in the first Bieri-Neumann-Strebel-Renz (BNSR) invariant Σ1pΓq if and only if the full
subgraph of CaypΓ, Sq spanned by tg P Γ | φpgq ě 0u is connected. The relevance of the
BNSR invariant is due to the following classical theorem of Bieri-Neumann-Strebel.

Theorem 4.4.9. [15, Theorem B1] Let Γ be a finitely generated group and let φ : Γ Ñ Z
be non-trivial, then Kerpφq is finitely generated if and only if tφ,´φu Ď Σ1pΓq.

Theorem 4.4.10. Let X be a finite dimensional proper CATp0q space and let H “

IsompXq be cocompact and minimal. Let T be a locally finite unimodular leafless tree
not isometric to R and let T “ AutpT q. Suppose H1pL;Rq “ 0 for all H -lattices L,
then every pH ˆ T q-lattice Γ does not virtually fibre.

Note that the hypothesis that H1pL;Rq “ 0 for all H -lattices L is satisfied for instance
when H is a higher rank semi-simple Lie group. It is unclear whether the hypothesis
can be weakened whilst working with such a general choice of Γ and H .

Proof. Let Γ be an pHˆT q-lattice, then Γ splits as a graph of H -lattices A. In particu-
lar, every vertex and edge group is finite-by-H -lattice and so has trivial first cohomology.
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Now, we apply the Mayer-Vietoris sequence of the graph of groups decomposition (see
[17, Chapter VI.9]) to obtain an exact sequence

0 H0pΓq
À

vPV AH
0pΓvq

À

ePEAH
0pΓeq H1pΓq 0.

Where the ending 0 is due to the fact
À

vPV AH
1pΓvq “ 0. It follows that H1pΓ;Rq “

H1pT {Γ;Rq.

Claim: Γ splits as a reduced graph of groups and is not an ascending HNN extension.

We may assume the graph of groups is reduced by contracting any edges with a trivial
amalgam L ˚L K . Note that these contractions do not change the vertex and edge
stabilisers, but may change the Bass-Serre tree (the tree will still not be quasi-isometric
to R since there are necessarily other vertices of degree at least 3).

Now for Γ to be an ascending HNN-extension A must consist of a single vertex and
edge. Let t be the stable letter of Γ, then t acts as an isometry on X . In particular, by
considering covolumes of H -lattices acting on X , the two embeddings of the edge group
Γe into the vertex group Γv must have the same index. Now, since T is not a quasi-line,
these embeddings must have index at least 2 yielding the claim. ˛

Now, H1pΓ;Rq “ HompΓ,Rq and so every character φ P HompΓ,Rq vanishes on every
vertex and edge group of the graph of groups decomposition A. Moreover, we may
assume A is reduced by contracting any edges of the from B ˚C C . Thus, we may apply
[21, Proposition 2.5] to deduce φ R ΣpΓq. As this is true for every pH ˆ T q-lattice, it
follows Γ does not virtually fibre.

4.4.4 Autostackability

In this section we will discuss autostackability of pHˆT q-lattices in terms of H -lattices.
The property was introduced by Brittenham, Hermiller and Holt in [7] to simultaneously
generalise automatic groups and groups with finite rewriting systems - we will not define
the property here since our proofs do not require the definition and are elementary. The
class of autostackable groups is broad, including all automatic groups, 3-manifold groups
[9], Thompson’s group F [19], the Baumslag-Gersten group [39], and some groups not
of type FP3 [8]. In spite of this, it appears to be unknown if every group with solvable
word problem is autostackable. Moreover, autostackability properties of the class of
CATp0q groups have largely gone unstudied. In light of Leary and Minasyan’s examples
of CATp0q groups which are not biautomatic [45] it would be desirable to determine the
autostackability properties of these and related groups.

Theorem 4.4.11. Let X be a finite dimensional proper CATp0q space and H “ IsompXq.
Let T be a locally finite unimodular tree and let T “ AutpT q. If uniform H -lattices are
(auto)stackable, then uniform pH ˆ T q-lattices are (auto)stackable. Moreover, if X is
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CATp0q polyhedral complex and finitely presented H -lattices are (auto)stackable, then
finitely presented pH ˆ T q-lattices are (auto)stackable.

Proof. In either case, by Theorem 4.3.3 we see Γ splits as a graph of H -lattices. In
particular, every local group is a commensurable finite-by-H -lattice. Now, by [8, The-
orem 3.3] (auto)stackable groups are closed under extension, so we see the local groups
are (auto)stackable. By [9, Proposition 4.2] (see also [8, Theorem 3.4]), a group is
(auto)stackable with respect to any finite index subgroup. Finally, [9, Theorem 3.5] states
that the fundamental group of a graph of groups whose vertex groups are (auto)stackable
with respect to the edge groups is (auto)stackable. In particular, Γ is (auto)stackable.

The following corollary follows by induction on the number of trees n with the base case
given by the previous theorem. The inductive step is given by applying previous theorem
to deduce the result holds for n trees after assuming the result holds for n´ 1 trees. As
an example the corollary applies whenever X is CATp´1q.

Corollary 4.4.12. Let X and H be as above. Let
śn
i“1 Ti be a product of trees and let

T “
śn
i“1 AutpTiq. If uniform H -lattices are (auto)stackable, then uniform pH ˆ T q-

lattices are (auto)stackable. Moreover, if X is CATp0q polyhedral complex and finitely
presented H -lattices are (auto)stackable, then finitely presented pH ˆ T q-lattices are
(auto)stackable.

In Theorem 4.7.13 we will prove that all irreducible uniform pIsompEnqˆT q-lattices are
not virtually biautomatic, generalising the result of Leary and Minasyan [45]. However,
the following corollary proves that all of these lattices are in fact (auto)stackable.

Corollary 4.4.13. Uniform pIsompEnq ˆ T q-lattices are (auto)stackable. In particular,
the Leary-Minasyan groups are (auto)stackable.

Proof. A free abelian group is automatic and hence (auto)stackable. As (auto)stackability
is closed under finite extensions it follows IsompEnq-lattices are (auto)stackable. Now,
we apply the previous theorem.

4.5 Constructions and examples

In this section we will detail a number of constructions and explicit examples of lattices
in products of CATp0q spaces and trees.
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4.5.1 Residual finiteness and amalgams

For each symmetric space X of non-compact type with associated Lie group H we will
construct infinitely many non-residually finite irreducible pHˆT q-lattices, where T is the
automorphism group of an appropriate Bass-Serre tree. More generally the construction
applies whenever there are upper bounded chains in the poset pLatpHq,ďq.

Theorem 4.5.1. Let X be a CATp0q space, let H “ IsompXq act cocompactly and
minimally. Let A,B be commensurable uniform H -lattices such that A ‰ B . Let C ďf.i.

AX B and Γ “ A ˚C B . Let T be the Bass-Serre tree of Γ and T “ AutpT q. Assume
T is unimodular, then Γ is a pH ˆ T q-lattice. Moreover,

(i) If xA,By ă H is not an H -lattice, then Γ is an irreducible pH ˆ T q-lattice.

(ii) If Γ is irreducible and C is a proper subgroup of A X B , then Γ is not residually
finite.

Proof. The fact that Γ is a lattice follows from Theorem 4.3.3. Now, (i) follows from
Theorem 4.3.4, since if xA,By is not a lattice, then πHpΓq is not a lattice and so Γ is
not reducible and hence irreducible. To prove (ii), consider an element γ in pAXBq´C
and words γa and γb representing γ in the generating sets of copies of A and B in Γ.
Since, γaγ´1

b is not contained in the copy of C in Γ, the element acts non-trivially on
T , and so is non-trivial. However, πHpγaq “ πHpγbq, so πHpγaγ

´1
b q “ 1H . But Γ is

irreducible and πHpΓq has a non-trivial kernel so we can apply Caprace and Monod’s
criteria (Theorem 4.2.5).

The following lemma is immediate, but combined with the previous theorem, it implies
that we can construct non-residually finite groups out of uniform lattices in each Lie
group corresponding to a symmetric space of non-compact type.

Lemma 4.5.2. Let H be a locally compact group with Haar measure µ. If there exists
a bound ε on the minimal µ-covolume of lattices in H and the set of possible covolumes
of H -lattices is discrete, then the poset LatpHq has maximal elements.

Example 1. Let X be a symmetric space of non-compact type and H the associated
Lie group. Let A and B be commensurable maximal H -lattices such that A ‰ B . Let
C be a finite index proper subgroup of AXB , then Γ “ A˚C B is a non-residually finite
pH ˆT q-lattice. Such examples exist by considering arithmetic lattices Γ in H . Indeed,
Margulis’ commensurator criterion states that CommHpΓq is dense in H and so there
exist lattices commensurable to Γ which are not contained in Γ.

In the more general setting of CATp0q-spaces we have the following corollary.
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Corollary 4.5.3. Assume Γ “ A˚CB is a uniform pHˆT q-lattice such that A ‰ B and
neither A ă B nor B ă A. If A or B is the upper bound of a chain in pLat,ďq, then
Γ is irreducible. Moreover, if C is a proper subgroup of AXB , then Γ is non-residually
finite.

Proof. Assume without loss of generality that A is the upper bound, then xA,By cannot
be a lattice because it would contain A, contradicting the maximality of A. Thus, we
can apply Theorem 4.5.1.

Example 2 (Change of tree). Given an edge transitive but not vertex transitive ir-
reducible pH ˆ Tk,`q-lattice Γ one may construct a non-residually finite irreducible
pH ˆ Tmk,n`q-lattice for all m,n ě 2 as follows:

Firstly, note Γ splits as a graph of H -lattices. Indeed, Γ “ A ˚C B where A, B and
C are covirtually H -lattices. We may assume that A stabilises a vertex of valence k
and B stabilises a vertex of valence `. Let NA and NB be finite groups of order m
and n respectively and pick split extensions rA “ NA ¸ A and rB “ NB ¸ B . We
may construct a graph of lattices by considering the graph of groups corresponding to
rA ˚C rB . The representations of rA and rB are the given by the composites rA� AÑ H

and rB � B Ñ H . The resulting fundamental group rΓ acts on the pmk, n`q-regular
tree, the lattice is irreducible and non-residually finite by Theorem 4.5.1.

This technique gives the following partial solution to the problem of realising lattices in
every possible tree for H a rank one real Lie group with trivial centre.

Example 3. Let H “ HpRq be a rank one real Lie group with trivial centre and
Hp “ HpQpq denote the same group scheme over the p-adic numbers for some prime p.
Let X be the rank-one symmetric space associated to H . The Bruhat-Tits’ building for
Hp is a tree of valence given by some function f of the prime p. In particular, there is
an edge transitive but not vertex transitive S -arithmetic lattice acting on XˆTfppq . By
the previous example we may construct irreducible non-residually finite lattices acting
on X ˆ Tmfppq,nfppq for all m,n ě 2.

These groups are C˚ -simple by Theorem 4.4.7, austostackable by Theorem 4.4.11, and if
X is 2n-dimensional, then the groups have a non-trivial L2 -Betti number in dimension
n` 1 by Theorem 4.4.1. If X is odd-dimensional, then the L2 -cohomology vanishes.

Concretely, in the case of H “ PSL2pRq, the function f is given by fppq “ p` 1, so we
obtain irreducible lattices acting on the pmpp ` 1q, npp ` 1qq-regular tree for all primes
p and integers m,n ě 2.
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4.5.2 Vertex transitive lattices

In this section we will detail some constructions for lattices in a product of a CATp0q

space and a tree such that the lattices act vertex transitively on the tree.

Proposition 4.5.4. Let L ď H be groups and t P CommHpLq, then there exist finite-
index subgroups J,K ď L such that J t “ K

Proof. By definition K “ LX Lt has finite index in L. Now, set J “ Kt´1 , this clearly
also has finite index in L.

L J t11 “ K1

J t22 “ K2

J
tn´1

n´1 “ Kn´1

J tnn “ Kn

Figure 4.1: A single vertex graph of groups.

Let X be a metric space and let H “ IsompXq. Let L be a H -lattice and let t1, . . . , tn P
CommHpLq. Assume that ti conjugates a finite-index subgroup Ji ď L to a finite-index
subgroup Ki ď L (existence of Hi and Ki is given in the next proposition). In light
of Proposition 4.5.4, whilst slightly abusing notation, we can construct a single vertex
graph of groups G where all of the edges are loops (Figure 4.1). We now define Γ “

GpL, tpJ1, t1q, . . . , pJn, tnquq :“ π1pGq. We can associate to Γ the Bass-Serre tree T of
the graph of groups G . Note that T is an infinite, locally finite, p

řn
i“1 |Γ : Ji|`|Γ : Ki|q-

regular, simplicial tree.

Lemma 4.5.5. Let Γ be a lattice in a rank-one Lie group H with symmetric space X
of non-compact type. Let t be an infinite order elliptic element of H , then

L :“
č

nPZ
Γt

n

has infinite index in Γ.

Proof. Assume L has finite index, then by Garland and Raghunathan [32] [33], the
quotient X{L has finitely many cusps with bounded intersection. Let p be the fixed
point of t and consider a Dirichlet domain ∆ “ ∆ppLq for L at p. Since X{Γ has
finitely many cusps, ∆ has finitely many sectors (each with bounded intersection) going
to infinity. The xty-orbit of such a sector is unbounded (indeed it traces out a copy of
S1 in BX ), but this contradicts Garland-Raghunathan and so we conclude L must have
infinite index.
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Theorem 4.5.6. Let X be a rank-one symmetric space of non-compact type and let
H be the associated Lie group. Let L be an H -lattice, t1, . . . , tk P CommHpΓq and let
Γ :“ GpL, tpJi, tiquq with Bass-Serre tree T . Let T “ AutpT q. If πHxt1, . . . , tky contains
an infinite order elliptic element t, then Γ is a weakly irreducible pH ˆ T q-lattice.

Proof. Clearly, the projection of Γ to the group H is not discrete because Γ contains
an infinite order elliptic element. Now, the vertex stabilisers of the action of Γ on T are
conjugates of L ă G Thus, the kernel of the action is equal to CorepΓ, Lq, but by the
previous lemma this is infinite index in L. It follows that the image of Γ is an infinite
subgroup of the vertex stabiliser in T (a compact profinite group) and so cannot have
discrete image.

Example 4. Let H be a non-compact simple Lie group and O the ring of integers of
some number field k . Assume that either HpOq is either an irreducible uniform lattice
or rank-one. Now, choose an infinite order elliptic element t P CommHpHpOqq and
construct the group Γ “ GpHpOq, tq with Bass-Serre tree T . Let T “ AutpT q. By
Theorem 4.3.3 we conclude that Γ is a lattice in G “ p

ś

σPS8 HpK
σq ˆ T q. Moreover,

if t is irreducible, then Γ is a weakly and algebraically irreducible lattice. To see Γ

is weakly irreducible, note that the projection of Γ to any sub-product of G is clearly
non-discrete. Now, we apply Theorem 4.2.4 to see Γ is algebraically irreducible.

In the next example we will present an explicit presentation of a non-residually finite,
irreducible, vertex and edge transitive pPSL2pRq ˆ T60q-lattice.

Example 5. Consider the following matrices in SL2pRq given by

a “

«

1
2

?
2 ´1

2

?
2

3
2

?
2 ´1

2

?
2

ff

, b “

«

1
2

1
2p
?

2´ 1q
1
2p´3

?
2´ 3q 1

2

ff

,

c “

«

1
2

1
2p
?

2` 1q
1
2p´3

?
2` 3q 1

2

ff

, t “

«

1
5

2
5

?
2

´6
5

?
2 1

5

ff

.

The projectivisation of the matrices a, b and c in PSL2pRq generate a Fuchsian group of
signature r0; 2, 2, 3, 3s with presentation L “ xa, b, c | a2 “ b3 “ c3 “ pc´1ab´1q2 “ 1y.
The conjugate of L by the infinite order elliptic element t in PSL2pRq yields an isometric
Fuchsian group Lt “ xα, β, γy. The intersection is generated by

K “xacb´1a, cac´1, b´1acb´1, c´1bca, bcabc´1, b´1cbc´1ab´1, b´1c´1bc´1b´1, c´1acab´1

ababc´1ba, abacb´1ab´1, babac´1b´1c´1, babcac´1b, b´1cabc´1b´1c´1y.

We also find that K is index 30 and has signature r5; 2, 2, 2, 2s. Since K is contained
in L, to complete our construction we simply need to find J :“ t´1pKq, which will also
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be contained in Γ. A lengthy calculation yields

J “xc´1abab´1, b´1ab, cab´1c, acb´1abac, cabac´1ab, c´1acab´1a, babac´1bac´1b´1,

ac´1ba, bacb´1acb´1c´1ab´1ac´1, bac´1bc´1, cbc´1ac´1ab, cb´1abcac,

c´1ac´1ac´1b´1acb´1y.

The group Γ “ xa, b, c, t | a2 “ b3 “ c3 “ pc´1ab´1q2 “ 1, J t “ Ky is a non-residually
finite irreducible lattice in PSL2pRqˆT60 . By Theorem 4.4.1 the only non-vanishing L2 -
Betti number of Γ is in dimension 2 and is equal to ´1

3´p´10q “ 29
3 . By Theorem 4.4.7

Γ is C˚ -simple, by Theorem 4.4.11 Γ is autostackable, and by the same argument as
in the proof of Theorem 4.4.10, Γ does not algebraically fibre. Moreover, if Γ has first
virtual Betti number equal to 1, then Γ does not virtually fibre.

Example 6 (Mixed products). Consider a uniform weakly irreducible lattice in PSL2pRqˆ
T60 constructed as a single vertex graph of groups GpΓ, tq, assume that the stable let-
ter t acts on RH2 as an infinite order elliptic rotation. Similarly, consider a uniform
weakly irreducible lattice in IsompE2qˆT10 constructed as a single vertex graph of groups
GpZ2, sq, assume that the stable letter s acts on E2 as an infinite order elliptic rotation
(such examples were considered by Leary and Minasyan in [45]).

We will now construct a uniform lattice in PSL2pRq ˆ IsompE2q ˆ T300 . Let Λ :“

GpΓ ˆ Z2, rq, where r acts as t on RH2 and as s on E2 . We claim the projections to
each sub-product of the factors are non-discrete and so Λ is not commensurable with
any reducible lattice. Thus, by Theorem 4.3.4, Λ is an weakly irreducible lattice.

To prove the claim we investigate each projection in turn. Clearly, the projections to
PSL2pRq, IsompE2q and PSL2pRq ˆ IsompE2q are non-discrete. Moreover, by Theo-
rem 4.5.6 or [45, Theorem 7.5] it is easy to see the projection to T300 is non-discrete. In
fact more is true, the projection is faithful. In light of this it is easy to see the projections
to PSL2pRq ˆ T300 and IsompE2q ˆ T300 are non-discrete.

Note that the choices of the ambient groups PSL2pRq and IsompE2q were arbitrary.
Indeed, the reader can pick any combination of symmetric spaces of non-compact (and
Euclidean) type, or any irreducible proper minimal CATp0q space which contains lattices
which have a non-discrete commensurator and construct a weakly irreducible lattice in
the product of the automorphism group of the Bass-Serre tree and the associated real
simple Lie groups (and IsompEnq) and the isometry group of the CATp0q space. This is
markedly different to the arithmetic setting where the Lie groups must be isogenous.

Example 7 (Non-uniform lattices in products of trees). Fix a prime p. Consider the lin-
ear algebraic group H “ PSL2pFppptqqq and the non-uniform lattice L “ PSL2pFprtsq ă
H . The Bruhat-Tits’ building for H is a pp` 1q-regular tree T and L acts with finite
covolume and fundamental domain an infinite ray. Let t P CommHpLq be infinite order
and elliptic. By Proposition 4.5.4 there exist finite index subgroups J,K ď L such that
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J t “ K . Let n ě 1 and consider the HNN-extension Γ of Ln over finite index subgroups
Jn and Kn where each copy of J is mapped to the corresponding copy of K by t. The
group Γ is non-uniform lattice acting on T n

p`1 ˆ T2kn where k “ |L : J |. Moreover, it is
easy to see that Γ is a weakly irreducible lattice.

More generally by [1] non-uniform tree lattices of ‘Nagao type’ have a dense commen-
surator in the full automorphism group of the universal covering tree. The construction
can be easily adapted to this setting.

4.5.3 The universal covering trick

In this section we will compare the notion of a graph of lattices with the “universal
covering trick" of Burger–Mozes [13, Section 1.8] and generalised by Caprace–Monod
[23, Section 6.C]. In particular, we will show how in many cases one can obtain a graph
of lattices from the universal covering trick. We take the opportunity to point out
that many of the groups constructed in the previous sections cannot be obtained from
universal covering trick.

Example 8 (The universal covering trick). Let A be the geometric realisation of a locally
finite graph (not reduced to a single point) and let Q ă IsompAq be a vertex transitive
closed subgroup. Let C be an infinite profinite group acting level transitively on a locally
finite rooted tree T0 . Let B be the 1-skeleton of the square complex Aˆ T0 and let T
be the universal cover. Define D to be the extension 1 � π1pBq � D � C ˆ Q � 1.
By [23, Proposition 6.8], there exists a CATp0q space Y such that D � IsompY q is a
closed subgroup, and D acts cocompactly and minimally without fixed point at infinity.

The classical situation where this is applied is as follows: Let Q be a product of p-adic
Lie groups, H be a product of real Lie groups and Γ ă H ˆ Q to be an S -arithmetic
irreducible lattice. Let A be the 1-skeleton of the Bruhat-Tit’s building for X , let T
be the universal cover of A and let T “ AutpT q. Now, Γ lifts to a weakly irreducible
lattice rΓ ă HˆQˆT and the corresponding graph of lattices is obtained by considering
the graph A{Γ equipped with local groups given by the stabilisers of the action of Γ on
A.

4.6 Complexes of lattices

In this section we will introduce the notion of a complex of H -lattices. We will then
prove a structure theorem analogous to Theorem 4.3.3 for these complexes of H -lattices.
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4.6.1 Complexes of groups

The definitions in this section are adapted from [58, Section 1.4] and [36] [37]. Through-
out this section if X is a polyhedral complex then X 1 is its first barycentric subdivision.
This is a simplicial complex with vertices V X 1 and edges EX 1 . Each e P EX 1 corre-
sponds to cells τ Ă σ of X and so we may orient them from σ to τ . We will write
ipeq “ σ and tpeq “ τ . We say two edges e and f of X 1 are composable if ipeq “ tpfq, in
which case there exists an edge g “ ef of X 1 such that ipcq “ ipeq and tpcq “ tpfq, and
e, f and g form the boundary of a 2-simplex in X . We denote the set of composable
edges by E2X 1 .

A complex of groups GpXq “ pGσ, ψe, ge,f q over a polyhedral complex X is given by the
following data:

(i) For each vertex σ of V X 1 , a group Gσ called the local group at σ .

(ii) For each edge e of EX 1 , a monomorphism ψe : Gipeq Ñ Gtpeq called the structure
map.

(iii) For each pair of composable edges e and f , an element ge,f P Gtpeq called the
twisting element. We require these elements to satisfy the following conditions:

(i) For pe, fq P EX 1 , we have Adpge,f qψef “ ψeψf .

(ii) For each triple of composable edges a, b and c we have a cocycle condition
ψapgb,aq “ gc,bgcb,a .

We say GpXq is simple if each of the twisting elements ge,f are the identity.

Some complexes of groups arise from actions on polyhedral complexes. Let G be a
group acting without inversions on a polyhedral complex Y . Let X “ Y {G with natural
projection p : Y Ñ X . For each σ P V X 1 , choose a lift rσ P V Y 1 such that prσ “ σ .
The local group Gσ is the stabiliser of rσ in G, and the structure maps and twisting
elements are given by further choices. The resulting complex of groups GpXq is unique
up to isomorphism. A complex of groups isomorphic to a complex of groups arising from
a group action is called developable.

Let GpXq be a complex of groups over a polyhedral complex X . Let T be a maximal
tree in the 1-skeleton of X 1 and fix a basepoint σ in T . The fundamental group of
GpXq, denoted π1pGpXq, σ0q, is generated by the set

ž

σPV X 1

Gσ
ž

te`, e´ : e P EX 1u
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subject to the relations

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

the relations in the groups Gσ,
pe`q´1 “ e´ and pe´q´1 “ e`,

e`f` “ ge,f pefq
`, @pe, fq P E2X 1,

ψepgq “ e`ge´, @g P Gipeq,

e` “ 1, @e P T.

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

If GpXq is developable, then it has a universal cover ČGpXq. This is a simply connected
polyhedral complex, equipped with an action of G “ π1pGpXq, σ0q such that the complex
of groups given by ČGpXq{G is isomorphic to GpXq.

Let GpXq “ pGσ, ψeq and HpY q “ pHτ , ψf q be complexes of groups over polyhedral
complexes X and Y . Let f : X 1 Ñ Y 1 be a simplicial map sending vertices to vertices
and edges to edges. A morphism Φ : GpXq Ñ HpY q over f consists of:

(i) A homomorphism φσ : Gσ Ñ Hfpσq for each σ P V X 1 .

(ii) For each e P EX 1 an element ge P Htpfpeqq such that

(i) Adpgeqψfpeqφipeq “ φtpeqψe ;

(ii) For all pa, bq P E2X 1 we have φtpaqpga,bqgab “ geψfpaqpgbqgfpaq,fpbq .

4.6.2 Complexes of lattices

In this section we introduce complexes of lattices in analogy with the graphs of lattices
we defined previously.

Definition 4.6.1 (Complex of lattices). Let H be a locally compact group with Haar
measure µ. A complex of H -lattices pGpXq, ψq is a developable complex of groups
equipped with a morphism ψ to H such that:

(i) For each σ P V X 1 , the local group Gσ is covirtually an H -lattice and the image
ψpGσq is an H -lattice;

(ii) The local groups are commensurable in Γ “ π1pGpXq, σq and their images are
commensurable in H .

(iii) For each e P EX 1 , the elements e` and e´ in Γ are mapped to elements of
CommHpψpGσqq.

The analogous structure theorem is given as follows.
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Theorem 4.6.2. Let X be a finite dimensional proper CATp0q space and let H “

IsompXq contain a uniform lattice. Let pGpZq, ψq be a complex of H -lattices over a
polyhedral complex Z , with universal cover Y , and fundamental group Γ. Suppose A “
AutpY q admits a uniform lattice.

(i) Assume Z is finite and Y is a CATp0q space. If for each local group Gσ the kernel
Kerpψ|Gσq acts faithfully on Y , then Γ is a uniform pH ˆ Aq-lattice and hence a
CATp0q group. Conversely, if Λ is a uniform pH ˆ Aq-lattice, then Λ splits as a
finite complex of uniform H -lattices with universal cover Y .

(ii) Under the same hypotheses as (i), Γ is quasi-isometric to X ˆ Y .

(iii) Assume X is a CATp0q polyhedral complex and Y is a CATp0q space. Let µ
be the normalised Haar measure on H . If for each local group Gσ the kernel
Kσ “ Kerpψ|Gσq acts faithfully on Y and the sum

ř

σPV Z µpGσq{|Kσ| converges,
then Γ is a pH ˆ Aq-lattice. Conversely, if Λ is a pH ˆ Aq-lattice, then Λ splits
as a finite complex of H -lattices with universal cover Y .

Note that by definition we are assuming all complexes of lattices are developable com-
plexes of groups.

Proof. We first prove (i). The fundamental group Γ of GpZq acts on the universal cover
Y and on X via the homomorphism ψ : Γ Ñ H . The action on the product space
X ˆ Y is properly discontinuous cocompact and by isometries. The kernel of the action
is contained in the intersection

Ş

σPZ1 Kerpψ|Gσq. But this acts faithfully on Y , thus,
the action is faithful. It follows Γ is an pH ˆAq-lattice.

We now prove the converse. Assume Γ is an pH ˆ Aq-lattice, and note that the action
of Γ on Y yields a developable complex of groups GpZq “ pΓσ, ψa, ga,bq with spanning
tree T and equipped with a homomorphism πH : Γ Ñ H . It suffices to show the local
groups corresponding to the vertices of Z are covirtually H -lattices. Indeed, for an edge
e P EZ 1 , if the index |Γtpeq : ψepΓipeqq| is infinite, then the universal cover of GpZq would
not be locally finite. It follows that all of the local groups are commensurable and hence,
commensurable in H . Consequently, the elements e` and e´ for all e P E2Z 1{T in Γ

must commensurate the local groups.

Let σ P Y be a vertex and consider the stabiliser Γσ ă Γ for the action on X ˆ Y .
Suppose Γσ does not act cocompactly on X ˆσ , then there is no compact set whose Γσ

translates cover X ˆ σ . Let D be a non-compact set whose Γσ -translates cover X ˆ σ ,
but there is a compact set C whose Γ translates cover X ˆ Y . We may arrange our
subsets such that C 1 “ C X pX ˆ σq Ď D . In particular, there are elements gi P Γ{Γσ

whose translates of C 1 cover D . But some of these elements fix must X ˆ σ yielding a
contradiction. Hence, Γσ is cocompact.
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It is clear that KerpΓσ Ñ Hq is finite. Otherwise Γ would act with infinite point
stabilisers on X ˆ Y contradicting the discreteness of Γ. It remains to show that the
projection Γσ of Γσ to H is discrete. Assume that Γσ is not discrete, then there does
not exists a neighbourhood N of 1 P H such that N X Γσ “ t1u. But this immediately
implies there does not exist a neighbourbood N 1 of 1 P H ˆ A such that N 1 X Γ “ t1u

which contradicts the discreteness of Γ. It follows Γσ is covirtually an H -lattice.

The final step is to show the elements e` and e´ for each e P EX 1 are mapped to
elements of CommHpπHpΓσqq. But this is immediate since the local groups map to H
with finite kernel, the elements e` and e´ commensurate the local groups, and so must
still preserve the appropriate conjugation relations in the map to H . ˛

We now prove (ii). By (i), Γ acts properly discontinuously cocompactly on X ˆ Y . The
result follows from the Švarc-Milnor Lemma [6, I.8.19]. ˛

The proof of (iii) is almost identical to (i) we will highlight the differences. Since X is
a CATp0q polyhedral complex, it follows that X ˆ Y is. Now, we may apply Serre’s
Covolume Formula to Γ. Let ∆ be a fundamental domain for Γ acting on X ˆ Y , then
the covolume of Γ may be computed as

ÿ

σP∆0

1

|Γσ|
“

ÿ

σPπY p∆0q

ÿ

τPπ´1
Y pσq

1

|Γτ |
“

ÿ

σPπY p∆0q

1

|Kσ|

ÿ

τPπ´1
Y pσq

|Kσ|

|Γτ |
“

ÿ

σPπY p∆0q

µpπXpΓσqq

|Kσ|
.

Since πY p∆0q can be identified with Z and the later sum converges by assumption, it
follows as before that Γ acts faithfully properly discontinuously and isometrically with
finite covolume on X ˆ Y . For the converse the only adjustment required is that the
compact sets C and C 1 in the proof of (i) should be replaced with ones of finite covolume.
The remainder of the proof is identical. ˛

4.6.3 Properties: L2-cohomology and C˚-simplicity

In this section we will prove a result on L2 -cohomology in the spirit of Theorem 4.4.1
and a result on C˚ -simplicity in the spirit of Theorem 4.4.7 for pH ˆAq-lattices.

Theorem 4.6.3. Let H be a unimodular locally compact group with lattices and X be a
locally-finite CATp0q polyhedral complex with cocompact minimal automorphism group A.
Assume any two non-zero L2 -Betti numbers of an H -lattice are in dimensions separated
by at least dimpXq and that A-lattices have at most one non-vanishing L2 -Betti number
in dimension k . Let Γ be an pH ˆAq-lattice and ∆ppq be a representative set of p-cells
for the action of Γ on X . We have

bp2qn pΓq “

dimpXq
ÿ

p“0

ÿ

σP∆ppq

p´1qpb
p2q
n´kpΓσq.
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Proof. The proof is essentially identical to Theorem 4.4.1, except now we use a G-
equivariant spectral sequence [17, Chapter VII.7] applied to the filtration of X by skeleta
with UΓ coefficients. The assumption that any two non-zero L2 -Betti numbers of an
H -lattice are in dimensions separated by at least dimpXq forces any higher differentials
to be 0. In particular, the E2 -page equals the E8 page of the spectral sequence.
Moreover, the E2 -page is computed by using the same measure equivalence argument as
in Theorem 4.4.1.

The proof of the following theorem is essentially the same measure equivalence and
Künneth formula argument as in Theorem 4.4.7(iii).

Theorem 4.6.4. Let X “ X1 ˆ ¨ ¨ ¨ ˆ Xk be a product of proper minimal cocompact
CATp0q-spaces each not isometric to R and let H “ IsompX1q ˆ ¨ ¨ ¨ ˆ IsompXkq act
without fixed point at infinity. Let Y be a locally-finite CATp0q polyhedral complex not
quasi-isometric to En and let A “ AutpY q act without fixed point at infinity. Let Γ ă

H ˆ T be a finitely generated weakly irreducible lattice. If both H - and A-lattices have
a non-zero L2 -Betti number and trivial amenable radical, then Γ is C˚ -simple.

4.7 Lattices with non-trivial Euclidean factor

In this section we will characterize irreducible uniform pIsompEnq ˆ T q-lattices. We
will also strengthen the virtual biautomaticity criterion for a Leary-Minasyan group [45,
Theorem 8.5] to arbitrary CATp0q-lattices. Along the way we will prove a number of
results about pIsompEnq ˆ Aq-lattices. To this end we will examine the projections
πIsompEnq and πOpnq more closely.

Lemma 4.7.1. Let X be a proper CATp0q-space, let H “ IsompXq, and let Γ be a
finitely generated pIsompEnq ˆHq-lattice. If the projection πIsompEnqpΓq is not discrete,
then πOpnqpΓq contains an element of infinite order.

Proof. For πIsompEnqpΓq to be not discrete at least one of the following must be true:

(i) πOpnqpΓq is not discrete and thus, contains an element of infinite order.

(ii) There exists a sequence of elements gi P Rn such that gi Ñ 0 as iÑ8.

If the first case holds we are done, so assume it does not. After passing to a subse-
quence we may assume that each gi is not some power or root of any other gj and so
πIsompEnqpΓq X Rn contains an infinitely generated abelian subgroup A. Since we have
assumed the first case does not hold πOpnqpΓq is a finite group F and we have a short
exact sequence

t1u Ñ AÑ πIsompEnqpΓq Ñ F Ñ t1u.
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But this implies πIsompEnqpΓq is an infinitely generated quotient of the finitely generated
group Γ, a contradiction. Hence, πOpnqpΓq contains an element of infinite order.

The following propositions give criteria for irreducibility in terms of the action of πOpnqpΓq

on Rn .

Proposition 4.7.2. Let T be a locally finite unimodular leafless tree not isometric to
R and let T “ AutpT q. Let Γ be a uniform pIsompEnq ˆ T q-lattice, then Γ is weakly
and algebraically irreducible if and only if πOpnqpΓq is not virtually contained in some
Opn ´ 1q. In particular, if Γ is weakly irreducible, then no finite index subgroup of
πOpnqpΓq fixes a 1-dimensional subspace of Rn .

The analogous result for pIsompEnqˆAq-lattices is as follows. We will prove both results
simultaneously.

Proposition 4.7.3. Let X be an irreducible locally finite CATp0q polyhedral complex
and let A “ AutpXq act cocompactly and minimally. Let Γ be a uniform pIsompEnq ˆ
Aq-lattice, then Γ is weakly and algebraically irreducible if and only if πOpnqpΓq is not
virtually contained in some Opn ´ 1q. In particular, if Γ is weakly irreducible, then no
finite index subgroup of πOpnqpΓq fixes a 1-dimensional subspace of Rn .

Proof of Proposition 4.7.2 and 4.7.3. Suppose Γ is reducible then Γ has a virtually nor-
mal Z subgroup. Clearly, πOpnqpΓq virtually centralises this subgroup and so πOpnqpΓq

must be virtually contained in some Opn´ 1q.

Conversely, suppose πOpnqpΓq is virtually contained in some Opn´1q. Passing to the cor-
responding finite index subgroup Λ we see that the action of Λ preserves two subspaces
of Rn . One isomorphic to Rn´1 and one isomorphic to R – R. Now, Λ splits as a graph
of lattices in which every vertex and edge group has an infinite order generator which
acts freely cocompactly on R and stabilises the subspace RK setwise via πIsompEnq . The
infinite cyclic groups intersect in some infinite cyclic subgroup Z ă Λ. The stable letters
of Λ must virtually centralise Z since otherwise they would map R into RK . Thus, Z
is virtually normal in Λ and hence Γ. By [26, Theorem 2(ii)] Γ is reducible.

The following corollary is immediate.

Corollary 4.7.4. Let T be a locally finite unimodular leafless tree not isometric to R
and let T “ AutpT q. Let Γ be a uniform pIsompE2qˆT q-lattice, then Γ is an irreducible
lattice if and only if πOp2qpΓq contains an element of infinite order.

The following propositions give criteria for irreducibility in terms of the action of Γ on
T .
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Proposition 4.7.5. Let T be a locally finite unimodular leafless tree not isometric to R
and let T “ AutpT q. Let Γ be a uniform pIsompEnq ˆ T q-lattice. Then Γ is weakly and
algebraically irreducible if and only if Γ acts on T faithfully.

The analogous result for pIsompEnqˆAq-lattices is as follows. We will prove both results
simultaneously.

Proposition 4.7.6. Let X be an irreducible locally finite CATp0q polyhedral complex
and let A “ AutpXq act cocompactly and minimally. Let Γ be a uniform pIsompEnqˆAq-
lattice, then Γ is weakly and algebraically irreducible if and only if Γ acts on X faithfully.

Proof of Proposition 4.7.5 and 4.7.6. Assume Γ is irreducible. By [26, Corollary 3], Γ

has finite amenable radical B . Such a non-trivial element g P B stabilises a vertex of
the Bass-Serre tree T (resp. complex X ). Now, either g has infinitely many conjugates
which contradicts the finiteness of B , or g stabilises the whole of T (resp. X ) and so is
contained in Γ X IsompEnq. By Lemma 4.7.1 and Proposition 4.7.2 (Proposition 4.7.3)
there is an infinite order element in πOpnqpΓq and hence an infinite order element in
πIsompEnqpΓq which does not commute with g . But now the normal closure of g in Γ

must contained infinitely many conjugates of g . Hence, B is infinite, a contradiction.
Thus, B must be trivial.

The converse in the tree case follows from Proposition 4.3.4. If Γ acts on X faithfully,
then the projection πApΓq is non-discrete. By Theorem 4.2.4 it suffices to show P “

πIsompEnqpΓq is non-discrete. Suppose P is discrete, then there is a finite index subgroup
of P isomorphic to Z “ Zn . But this is a virtually normal free abelian subgroup, so by
[26, Theorem 2(ii)], Γ is reducible and so there is a finite index subgroup of Z which acts
trivially on X , a contradiction. Thus, P is non-discrete and so Γ is weakly irreducible
and by Theorem 4.2.4 algebraically irreducible.

As an brief application we will construct (virtually) torsion-free irreducible pIsompEnqˆ
T10q-lattices.

Example 9. Recall the Leary-Minasyan group LMpAq where A is the matrix corre-
sponding to the Pythagorean triple p3, 4, 5q which acts on E2 ˆ T10 . (Note that these
groups were classified up to isomorphism by Valiunas [59].) By [45], this has presentation

LMpAq “ xa, b, t | ra, bs, ta2b´1t´1 “ a2b, tab2t´1 “ a´1b2y.

Using this group we will construct a virtually torsion-free irreducible pIsompEnq ˆ T q-
lattice where T is the automorphism group of the 10n-regular tree for all n ě 3.

Let Zn “ xa0, . . . , an´1y and let F “ xfy be a cyclic group of order n acting on L by
cyclically permuting the ai . Let L “ Zn ¸ F , this is a crystallographic group and so
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embeds into IsompEnq. Now, consider the pnˆ nq-matrix B given by

B “

«

A 0

0 In´2

ff

.

We define Γn to be the HNN extension of L by the matrix B , the Bass-Serre tree of
this HNN extension will be regular of valence 10n. This has generators a0, . . . , an´1, f, t

and relations

fn “ 1, rai, ajs “ 1, faif
´1 “ ai`1 pmod nq, ra2, ts “ 1, . . . , ran´1, ts “ 1,

ta2
0a
´1
1 t´1 “ a2

0a1, ta0a
2
1t
´1 “ a´1

0 a2
1,

where i, j P t0, . . . , n´1u. Here the first three sets of relation come from L, the relations
rai, ts “ 1 for i ě 2 come from the fact B fixes ta2, . . . , an´1u point-wise, and the last
two relations arise from the action of B on xa0, a1y. Now, let a :“ a0 , then we may
write Γn as

Γn “ xa, f, t | f
n “ 1, ta2a´f t´1 “ a2af , tapa2qf t´1 “ a´1pa2qf , raf

i
, af

j
s “ 1y

for i, j P t0, . . . , n´ 1u. Thus, Γn is a 3 generator, 1
2npn´ 1q ` 3 relator group.

To see Γn is irreducible note that πOpnqpΓq is not virtually contained in some Opn´1q ă

Opnq. Indeed, consider the subgroup generated by the πOpnqpfq-orbit of πOpnqptq. To
show Γn is virtually torsion-free note that every torsion element of Γn has non-trivial
image in πOpnqpΓnq. This is generated by the images of f and t and so is a finitely
generated linear group and hence has a finite index torsion-free subgroup Pn . The
preimage of Pn in Γn is torsion-free.

4.7.1 Biautomaticity

In this section we give a condition to determine the failure of biautomaticity for a CATp0q

group in the presence of a non-trivial Euclidean de Rham factor.

For the rest of this section we fix the following notation and terminology, the treatment
roughly follows [45, Section 2] and [29, Section 2.3, 2.5]. Let A be a finite set and let
Γ be a group with a map µ : A Ñ Γ. We say that Γ is generated by A if the unique
extension of µ to the homomorphism from the free monoid A˚ to Γ is surjective. We
will call elements of A˚ words and for any w P A˚ , if µpwq “ g for some g P Γ, we will
say w represents g . We will always assume A is closed under inversion, that is, there is
an involution i : AÑ A such that µpipaqq “ µpaq´1 , in this case we will denote ipaq as
a´1 . Any subset L Ď A˚ will be called a language over A.

An automatic structure for a group Γ is a pair pA,Lq, where A is a finite generating
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set of Γ equipped with a map µ : A Ñ Γ and closed under inversion, and A Ď A˚ is a
language satisfying three conditions. Firstly, µpLq “ Γ, secondly L is a regular language,
that is, it is accepted by some finite state automaton, and thirdly, it satisfies a fellow
traveller property (which we will not make precise here). We say pA,Lq is biautomatic
structure if both pA,Lq and pA,L´1q are automatic structures. A group Γ is said to be
automatic (resp. biautomatic) if it admits an automatic (resp. biautomatic) structure.

A (bi)automatic structure is finite-to-one if |µ´1pgq XA| ă 8 for all g P Γ. As noted in
[45, Page 8] by [29, Theorem 2.5.1] it may be assumed that all (bi)automatic structures
are finite-to-one. So without loss of generality we will make this assumption and we will
also suppose that all the automata in this paper have no dead states.

A subgroup H ă Γ is L-quasiconvex if there exists κ ě 0 such that for any path p in
the Cayley graph of Γ with respect to A, starting at 1Γ , ending at some h P H , and
labelled by a word w P L, then every vertex of p lies in the κ-neighbourhood of H . The
main examples of L-quasiconvex subgroups are centralisers of finite subsets as proved in
[35, Proposition 4.3] and [29, Theorem 8.3.1 and Corollary 8.3.5].

Theorem 4.7.7. Let X “
śm
i“1Xi be a product of proper irreducible CATp0q spaces

each not isometric to E and H ă IsompXq be a closed subgroup acting minimally and
cocompactly on X . Let n ě 2 and let Γ be an pIsompEnq ˆHq-lattice. If the projection
πIsompEnqpΓq is not discrete, then Γ is not virtually biautomatic.

Proof. Assume pB,Lq is a biautomatic structure on Γ. By [26, Theorem 2(i)] there exists
a commensurated free abelian subgroup A ď Γ acting properly on En of rank n.

Claim: There is a finite index subgroup of A that is L-quasiconvex.

By the Flat Torus Theorem the rank of a maximal abelian subgroup of Γ is bounded by
the rank of a maximal flat in X ˆ En . Let F be such a flat acted on by A. Fix a set of
generators SA for A and a set of generators S containing SA for the maximal abelian
subgroup containing A stabilising F .

We may split X into a product Y1 ˆ Y2 where A acts trivially on Y1 and non-trivially
on Y2 . For j “ 1, 2 let Kj “ IsompYjq X H . Since, A acts trivially on Y1 it follows
A and Γ XK1 commute. Now, Γ splits as a complex of pIsompEnq ˆK1q-lattices. In
particular, A is a subgroup of a vertex group Γv , which is covirtually virtually isomorphic
to AˆKv , where Kv is a lattice in K1 . Define SK to be a set of generators for Kv and
for each s P SK let s1 P Kv be some element which does no commute with s. Define a
set S1K “ ts, s

1 : s P SKu and note that it is finite.

Let N “ KerpπIsompEnqq. For each irreducible factor Zj for j “ 1, . . . , ` of Y2 choose
some element gj P N ă Γ which acts non-trivially on Zj . Note the kernel N is non-
empty since otherwise Γ would be a finitely generated linear group and hence residually
finite, contradicting [24, Theorem 2(iv)]. Now, we can choose such an element so that
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it centralises a finite index subgroup of A. Indeed, we may choose gj P xxAyy X N .
Since A is commensurated gj centralises Agj X A a finite index subgroup of A. For
each gj pick another element g1j which centralises a finite index subgroup of A and does
not commute with gj . Let SY2 “ tgj , g

1
j : j “ 1 . . . , `u and note that it is finite. Let

A1 “
´

Ş

gPSY2
Ag

¯

X A, since this is the intersection of finitely many commensurable
subgroups A1 is a finite index subgroup of A. By construction A1 is the centraliser of
the finite set S1K Y SY2 Y SA . Thus, by [35, Proposition 4.3], A1 is L-quasiconvex. ˛

Now, by Lemma 4.7.1 there exists an element in t P πOpnqpΓq with infinite order, let t
denote a preimage of t in Γ. By [45, Corollary 5.4], there is a finite index subgroup
Γ0 Ĳ Γ such that every finitely generated subgroup of Γ0 centralises a finite index
subgroup of A. After passing to a suitable power we may assume tk P Γ0 . But xtky
does not centralise a finite index subgroup of A, a contradiction. Hence, there is no
biautomatic structure on Γ. Since the hypotheses on Γ pass to finite index subgroups,
it follows Γ is not virtually biautomatic.

The following corollary characterises the biautomaticity of pIsompEnq ˆ T q-lattices.

Corollary 4.7.8. Let T be a locally finite unimodular leafless tree not quasi-isometric
to E and let T “ AutpT q. Let n ě 2 and let Γ be a pIsompEnq ˆ T q-lattice. Then, Γ is
virtually biautomatic if and only if Γ is uniform and the projection πOpnqpΓq is finite.

Proof. Note that a non-uniform pIsompEnq ˆ T q-lattice is not finitely generated and
hence, not virtually biautomatic. Indeed, it must split as a graph of groups with in-
finitely many vertices since IsompEnq does not have any non-uniform lattices. Thus, we
may assume Γ is uniform. Now, if Γ is virtually biautomatic then by Theorem 4.7.7
πIsompEnqpΓq is discrete and hence πOpnqpΓq is finite. Conversely, if πOpnqpΓq is finite then
Γ virtually splits as Zn ˆ Fr which is biautomatic.

Example 10. The group Γn for each n ě 2 constructed in Example 9 is an irreducible
pIsompEnq ˆ T10nq-lattice that is not virtually biautomatic.

Remark 4.7.9. In light of M. Valiunas’ result [60, Theorem 1.2] Theorem 4.7.7 can be
strengthened to state that Γ does not embed into any biautomatic group. It may also
be possible to simplify the proof using their result.

4.7.2 Fibring

In this section we characterise irreducible pIsompEnqˆT q-lattices as those which do not
virtually fibre. This result is new even for Leary-Minasyan groups.

Theorem 4.7.10. Let T be a locally-finite leafless unimodular tree, not isometric to
R, and let T “ AutpT q. Let Γ be a uniform pIsompEnq ˆ T q-lattice, then Γ virtually
algebraically fibres if and only if Γ is reducible.
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Proof. If Γ is reducible, then Γ virtually splits as ZˆΓ1 , in which case Γ virtually fibres.

We will now prove every irreducible uniform pIsompEnqˆT q-lattice does not algebraically
fibre, this will prove the theorem since a finite index subgroup of an irreducible lattice
is an irreducible lattice. Now, suppose Γ is an irreducible uniform pIsompEnq ˆ T q-
lattice. By Theorem 4.3.3, the group Γ splits as a graph of IsompEnq-lattices, and so is
the fundamental group of a graph of groups with vertex and edge stabilisers finite-by-
IsompEnq-lattices. By the same argument as in the claim of the proof of Theorem 4.4.10
we may assume Γ is a reduced graph of groups which does not split as an ascending
HNN-extension.

Now, H1pΓ;Zq b R – H1pΓ;Zq and by Proposition 4.7.11, for every character φ P

H1pΓ;Rq we see that φ restricted to a vertex or edge group is zero. Since Γ is the
fundamental group of a reduced graph of groups, is not an ascending HNN extension,
and φ vanishes on every edge group, we may apply [21, Proposition 2.5] to deduce that
φ R ΣpΓq. Hence, Γ does not algebraically fibre.

Proposition 4.7.11. Let T be a locally-finite leafless unimodular tree, not isometric to
R, let T “ AutpT q, and let Γ be a uniform pIsompEnq ˆ T q-lattice. If Γ is irreducible,
then H1pΓ;Zq “ H1pT {Γ;Zq.

The analogous result for pIsompEnqˆAq-lattices is as follows. We will prove both results
simultaneously.

Proposition 4.7.12. Let X be an irreducible locally finite CATp0q polyhedral complex
and let A “ AutpXq act cocompactly and minimally, and let Γ be a uniform pIsompEnqˆ
Aq-lattice. If Γ is algebraically irreducible, H1pΓ;Zq “ H1pX{Γ;Zq.

Proof of Proposition 4.7.11 and 4.7.12. Let φ P H1pΓ;Zq “ HompΓ,Zq. Suppose φ is
non-zero on some local group L, then after passing to a finite index subgroup the re-
striction of φ is non-zero on some subgroup isomorphic to Zn . In particular, φ defines
a codimension 1 subgroup of Zn contained in Kerpφq. Moreover, after passing to a
further finite index subgroup L1 – Zn , by commensurability of the local groups, there is
codimension 1 subgroup K – Zn´1 of L1 which is contained in every local group. Now,
the flat RbK is an pn´ 1q-dimensional flat stabilised by P “ πOpnqpΓq, contradicting
Proposition 4.7.2 (Proposition 4.7.3). Thus, every local group is contained in Kerpφq.

The isomorphism now follows from applying the equivariant spectral sequence to the
filtration of T or X by skeleta (see [17, Chapter VII.7]). The previous paragraph shows
that E0,1

2 “ 0, thus H1pΓ;Zq “ E1,0
2 “ E1,0

8 “ H1pX{Γ;Zq.
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4.7.3 A characterisation

We are now ready to prove the characterisation of irreducible pIsompEnq ˆ T q-lattices
(Theorem 4.B) from the introduction.

Theorem 4.7.13 (Theorem 4.B). Let T be a locally finite unimodular leafless tree not
isometric to R and let T “ AutpT q. Let Γ be a uniform pIsompEnq ˆ T q-lattice. The
following are equivalent:

(i) Γ is a weakly irreducible pIsompEnq ˆ T q-lattice;

(ii) Γ is irreducible as an abstract group;

(iii) Γ acts on T faithfully;

(iv) Γ does not virtually fibre;

(v) Γ is C˚ -simple;

(vi) and if n “ 2, Γ is non-residually finite and not virtually biautomatic.

Proof. The equivalence of (i) and (ii) is given by Theorem 4.2.4. The equivalence of
(i) and (iii) is given by Proposition 4.7.5. The equivalence of (i) and (iv) is given by
Theorem 4.7.10.

To see (i) and (iii) imply (v), observe that by [26, Theorem 2(iv)] Γ is non-residually finite
and so KerpπIsompEnqq is infinite. Now, Γ satisfies the conditions of Theorem 4.4.7(ii)
and so Γ is C˚ -simple. If Γ is reducible, then Γ virtually splits as Λ “ ZkˆΓ1 for some
1 ď k ď n. In particular, Λ is not C˚ -simple since Λ has non-trivial amenable radical.
It follows that Γ is not C˚ -simple. Thus, (v) is equivalent to (i).

Assume n “ 2 and note, by Corollary 4.7.4, Γ is irreducible if and only if πOpnqpΓq
contains an infinite order element. It follows from [26, Theorem 2(iv)] that Γ is re-
ducible if and only if Γ is residually finite. The equivalence of (i) and (vi) is given by
Corollary 4.7.8.

4.8 Products with Salvetti complexes

In this section we will adapt a construction of Horbez and Huang [38, Proposition 4.5] to
extend actions from trees to Salvetti complexes. Horbez–Huang constructed an example
of a non-uniform lattice acting on the universal cover of the Salvetti complex rSL provided
L is not a complete graph. We generalise this to construct a tower of uniform lattices in
AutprSLq and with an additional hypothesis on L non-biautomatic lattices in IsompEnqˆ
AutprSLq.
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4.8.1 Graph and polyhedral products

Let K be a simplicial complex on the vertex set rms :“ t1, . . . ,mu. Let pX,Aq “
tpXi, Aiq | i P rmsu be a collection of CW-pairs. The polyhedral product of pX,Aq and
K , is the space

pX,AqK :“
ď

σPK

m
ź

i“1

Y σ
i Ď

m
ź

i“1

Xi where Y σ
i “

$

&

%

Xi if i P σ,

Ai if i R σ.

Let K be a simplicial complex on rms vertices. Let Γ “ tΓ1, . . . ,Γmu be a set of
discrete groups. The graph product of Γ and K , denoted ΓK is quotient of the free
product ˚iPrmsΓi by the relations rγi, γjs “ 1 for all γi P Γi and γj P Γj if i and j are
connected by an edge in K . Let BΓ “ tBΓ1, . . . , BΓnu. The graph product ΓK is the
fundamental group of the polyhedral product X “ pBΓ, ˚qK . Moreover, if K is a flag
complex, i.e. every nonempty set of vertices which are pairwise connected by edges spans
a simplex, then X is a KpΓK , 1q [57, Theorem 1.1].

If every vertex group in a graph product ΓL is Z then we call the group a right-angled
Artin group (RAAG) and denote ΓL by AL . In this case we will identify the generating
set of AL with the vertex set V L of L. The polyhedral product pS1, ˚qL is a classifying
space for AL , is referred to as the Salvetti complex for AL and denoted by SL . We
denote the universal cover by rSL .

4.8.2 Extending actions over the Salvetti complex

We will now adapt the construction of Horbez and Huang [38, Proposition 4.5] to extend
actions from trees to Salvetti complexes and present some applications.

Construction 4.8.1. Let L be a finite simplicial graph on vertices tv1, . . . , vmu and
suppose xv1, . . . , vky “ Fk ă AL is a free subgroup. Let Γ be a group acting on T2k by
isometries such that the action is label-preserving, then the action of Γ on T extends
to an action of rΓ on rSL by isometries. Moreover, if Γ is a T2k -lattice then rΓ is an
AutprSLq-lattice.

Proof. There is an isometric embedding T2k � rSL with edges labelled by V “ tv1, . . . , vku Ď

V L. Define φ : AL � Fk by v ÞÑ 1 unless v P V and let π : rSL Ñ X be the covering
space corresponding to Kerpφq. Let Γ be a group acting on T2k preserving the labelling,
we want to extend the action of Γ on T2k to an action on rSL .

We may identify the vertex set of T2k with the vertex set of X via the embedding of
T2k � rSL . We orient each edge of rSL and endow X with the induced labelling and
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orientation. The 1-skeleton Xp1q of X is obtained from T2k by attaching to each vertex
of T2k a circle for each v P V LzV .

Since Γ acts by isometries on T2k label preservingly, it follows Γ acts by isometries on
Xp1q label preservingly and preserves the orientation of edges in V LzV . It follows the
action extends to X . Let rΓ be the group of lifts of all automorphisms in Γ, we have a
short exact sequence

1 Autpπq rΓ Γ 1.

We have rSL{rΓ “ X{Γ so there is a bijection between the rΓ-orbits of rSp0qL and the Γ-orbits
of T p0q2k . For a vertex v P X, each lift of g P StabΓpvq fixes a unique vertex ṽ P rSL. In
particular, the cardinality of the vertex stabilisers is preserved. It follows from Serre’s
covolume formula that if Γ was a T2k-lattice, then rΓ is an AutprSLq-lattice.

Proposition 4.8.2. There is an ascending tower of lattices in T4 “ AutpT4q with label
preserving action.

Proof. The groups will be index two subgroups of the HNN extensions constructed in
[10, Example 7.4]. We describe them here for the convenience of the reader. Let Vr “
tf : Zr Ñ Z2 : f a functionu – Zr2 and αr P AutpVrq by αrpfqpiq “ fpi ` 1q. Let
Wr “ tf P Vr : fp0q “ 1u – Zr´1

2 and define Γr to be the HNN extension

xVr, t | f
t “ αrpfq @f PWry.

By [10, Proposition 7.6] the group Γr acts faithfully on T4 with quotient a loop (one
vertex and one edge) and covolume 1{mr . Moreover, if r|r1 then Γr ď Γr1 with index
mr1´r and so for r ě 2, the sequence pΓrsqsě1 is an infinite ascending chain in LatupT4q.

Now, define φ : Γr Ñ Z2 by φpVrq “ 0 and φptq “ 1. The kernel Λr is an index
two subgroup which satisfies the same properties as Γr except now the quotient has
fundamental domain the first barycentric subdivision of a loop (two vertices and two
edges) and covolume 2{mr .

Corollary 4.8.3. Let L be a finite flag complex which is not a full simplex, then the
automorphism group AutprSLq of the universal cover of the Salvetti complex contains a
tower of uniform lattices.

Proof. Fix r ě 2. We apply Construction 4.8.1 to the lattices Λrs for s ě 1 in the
preceding proposition and obtain a sequence of lattices rΛrs in AutprSLq. The group rΛrs

has two orbits of vertices, each stabilised by a group of order mrs , it follows from Serre’s
Covolume Formula that rΛrs has covolume equal to 2{mrs . It remains to show that the
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inclusions Λrs � Λrs1 induce inclusions rΛrs � rΛrs1 for s1 ă s. Consider the covering
space π : rSL Ñ X where X is as in Construction 4.8.1. Note that X and hence Autpπq

does not depend on r or s since each group acts with the same fundamental domain. In
particular, as Λrs ă Λrs1 we have rΛrs ă rΛrs1 for s ă s1 .

Theorem 4.8.4. Let L be a finite simplicial graph on vertices V “ tv1, . . . , vmu and
suppose xv1, . . . , vky “ Fk ă AL is a free subgroup and that tv1, . . . , vku Ď AutpLq¨v1 . Let
X be a proper CATp0q space and assume H ă IsompXq acts cocompactly and minimally.

(i) Let Γ be a group acting on T2k by isometries, then the action of Γ on T extends
to an action of rΓ on rSL by isometries.

(ii) If Γ is a uniform lattice in H ˆ T2k , then rΓ is a uniform lattice in H ˆAutprSLq.

(iii) If in addition X is a CATp0q polyhedral complex and Γ is an pH ˆ T2kq-lattice,
then rΓ is an pH ˆAutprSLqq-lattice.

(iv) If the projection of Γ to H (resp. T2k ) is non-discrete, then so is the projection of
rΓ to H (resp. AutprSLq).

Proof. The proof of (i) is identical to Construction 4.8.1 except now we do not require
the action to be label preserving on T2k . Indeed, the assumption that tv1, . . . , vku Ď

AutpLq ¨v1 implies there is an isometry of rSL that permutes the edges around any vertex
of T2k and so we can extend any action on T2k to rSL . ˛

The proof of (ii) follows from taking the diagonal embedding rΓ � H ˆ AutprSLq and
then noting that the quotient prSLˆXq{rΓ is compact and that cardinality of each of the
vertex stabilisers is finite. ˛

We prove (iii) in the same manner, noting the covolume on the product space is finite
by Serre’s Covolume Formula. ˛

The images of the projections of Γ and rΓ to H coincide. Since any element of Γ

which acts non-trivially on T2k lifts to an element acting non-trivially on rSL , the non-
discreteness of πT2k

pΓq implies the non-discreteness of π
AutprSLq

prΓq. This proves (iv).
˛

Example 11. Applying the previous theorem to the Leary-Minasyan group LMpAq

which acts irreducibly on the product of a 10-regular tree and E2 we obtain a lattice Γ

in IsompE2q ˆAutprSLq. Moreover, the projection to either factor is non-discrete. Thus,
if rSL is irreducible, then Γ is algebraically irreducible by [23]. By Theorem 4.7.7 the
group Γ is not virtually biautomatic.

Recall that a group Γ is quasi-isometrically rigid if every group quasi-isometric to Γ is
virtually isomorphic to Γ. The quasi-isometric rigidity of right angled Artin groups has
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received a lot of attention recently (see for instance [41] and the references therein). The
following corollary is immediate and appears to be new if L has no induced 4-cycle [41]
and AL is not a free group [45].

Corollary 4.8.5 (Corollary 4.C). Let L be a finite simplicial graph on vertices V “

tv1, . . . , vmu and let W “ tv1, . . . , v5u. Suppose AW ă AL is a free subgroup and that
SympW q ď AutpLq. If AL is irreducible, then there exists a weakly irreducible uniform
lattice in AutprSLqˆ IsompEnq which is not virtually biautomatic nor residually finite. In
particular, AL ˆ Z2 is not quasi-isometrically rigid.

Proof. The group Γ constructed in Example 11 is algebraically irreducible, non-residually
finite, and quasi-isometric to ALˆZ2 . Both properties are virtual isomorphism invariants
but ALˆZ2 is algebraically reducible and residually finite. In particular, ALˆZ2 is quasi-
isometric to Γ but not virtually isomorphic to Γ and so cannot be quasi-isometrically
rigid.

Remark 4.8.6. It seems likely that one could take a polyhedral product of locally
CATp0q cube complexes over a flag complex and then repeat the above constructions
to obtain towers of lattices in the automorphism group of the universal cover and more
weakly irreducible lattices in mixed products.

4.9 From trees to right-angled buildings

In this section will show that the functors introduced by A. Thomas in [58] take graphs
of H -lattices with a fixed Bass-Serre tree to complexes of H -lattices whose development
is a “sufficiently symmetric" right-angled building (we will make this precise later). Fi-
nally, we will combine these tools to construct a number of examples. In particular,
non-residually finite pIsompEnq ˆ Aq-lattices where A is the automorphism group of a
sufficiently symmetric right-angled building, and non-residually finite algebraically irre-
ducible lattices in products of arbitrarily many isometric and non-isometric sufficiently
symmetric right-angled buildings.

4.9.1 Right angled buildings

Let pW, Iq be a right-angled Coxeter system. Let N be the finite nerve of pW, Iq and
P 1 be the simplicial cone on N 1 with vertex x0 . A right-angled building of type pW, Iq
is a polyhedral complex X equipped with a maximal family of subcomplexes called
apartments. Such an apartment is isometric to the Davis complex for pW, Iq and the
copies of P 1 in X are called chambers. Moreover, the apartments and chambers satisfy
the axioms for a Bruhat–Tits building.



Paper 4 – Graphs and complexes of lattices 133

Let S denote the set of J Ď I such that WJ ď W is finite. Note that WH “ t1u so
H P S . For each i P I , the vertex P 1 of type tiu will be called an i-vertex, and the union
of the simplices of P 1 which contains the i-vertex but not x0 will be called the i-face
There is a one-to-one correspondence between the vertices of P 1 and the types J P S .

Let X be a right-angled building. A vertex of X has a type J P S induced by the
types of P 1 . For i P I an tiu-residue of X is the connected subcomplex consisting of all
chambers which meet in a given i-face. The cardinality of the tiu-residue is the number
of copies of P 1 in it.

Theorem 4.9.1 ([40]). Let pW, Iq be a right-angled Coxeter system and tqi : i P Iu a
set of integers such that qi ě 2, then up to isometry there exists a unique building X of
type pW, Iq such that for each i P I the tiu-residue of X has cardinality qi .

If pW, Iq is generated by reflections in an n-dimensional right-angled hyperbolic polygon
P , then P 1 is the barycentric subdivision of P . Moreover, the apartments of X are
isometric to RHn . In this case we call X a hyperbolic building. We remark that a
right-angled building can be expressed as the universal cover of a polyhedral product,
however, we will not use this observation elsewhere.

Remark 4.9.2. Let pW, Iq be a right-angled Coxeter system with parameters tqiu and
nerve N . Let Ei be a set of size qi and let CEi denote the simplicial cone on Ei , denote
the collections of these by E and CE respectively. The right-angled building of type
pW, Iq with parameters tqiu is the universal cover of the polyhedral product pCE,EqN .

4.9.2 A functor theorem

In this section we will recap a functorial construction of A. Thomas which takes graphs
of groups with a given universal covering tree to complexes of groups with development
a right-angled building. We will then show that this functor takes graphs of lattices to
complexes of lattices and deduce some consequences.

Let X be a right-angled building of type pW, Iq and parameters tqiu with chamber P 1 .
Suppose mi1,i2 “ 8 and define the following two symmetry conditions due to Thomas
[58]:

(T1) There exists a bijection g on I such that mi,j “ mgpiq,gpjq for all i, j P I , and
gpi1q “ i2.

(T2) There exists a bijection h : ti P I : mi1,i ă 8u Ñ ti P I : mi2,i ă 8u such that
mi,j “ mhpiq,hpjq for all i, j in the domain, hpi1q “ i2 , and for all i in the domain
qi “ qhpiq .
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We include the construction adapted from [58] for completeness and for utility in the
proofs of the new results which will follow. An example of the construction for a graph
of groups consisting of a single edge is given in Figure 4.2

ti2, i4u

ti2, i5u

ti1, i5u

ti1, i3u

ti3, i4u
ti3u

ti4u

ti2u

ti5u

ti1u
H

Gw ˆ Zq4

Gw ˆ Zq5

Gv ˆ Zq5

Gv ˆ Zq3

Ge ˆ Zq3 ˆ Zq4
Ge ˆ Zq3

Ge ˆ Zq4

Gw

Ge ˆ Zq5

Gv
Ge

Figure 4.2: The left pentagon shows a labelling of the types J P S . The right
pentagon shows the local groups after applying Thomas’ functor to a graph of groups
with a single edge. In both pentagons the dashed line shows the embedding of the
graph. If the graph of groups has a single vertex, then Gv “ Gw , q1 “ q2 , q3 “ q4 ,
the edge pti1, i5u, ti1uq is glued to pti2, i5u, ti2uq, and the edge pti1, i3u, ti1uq is glued

to pti2, i4u, ti2uq.

Construction 4.9.3 (Thomas’ Functor [58]). Let X be a right-angled building of type
pW, Iq and parameters tqiu. For each i1, i2 P I such that mi1,i2 “ 8 let T be the
pqi1 , qi2q-biregular tree. Suppose (T1) holds and if qi1 “ qi2 then (T2) holds with g an
extension of h. Then there is functor F : GpT q Ñ CpXq preserving faithfulness and
coverings.

We will construct F as a composite F2 ˝F1 . We first define F1 : G Ñ C1 . Let pA,Aq be
a graph of groups and |A| the geometric realisation of A. We will construct a complex
of groups F1pAq over |A|. For the objects we have:

• The local groups at the vertices of |A| are the vertex groups of A.

• For all e P EA let σe “ σe be the vertex of the barycentric subdivision |A|1 at the
midpoint of e.

• The local group at σe in F1pAq is Ae “ Ae .

• A monomorphism αe : Ae Ñ Aipeq in A induces the same monomorphism in F1pAq.

Let φ : AÑ B be a morphism of graphs of groups over a map of graphs f , note that by
[58, Proposition 2.1] F1 is not injective on morphisms. We define F1pφq as follows:

• The map f induces a polyhedral map f 1 : |A|1 Ñ |B|1 so we will define F1pφq :

F1pAq Ñ F1pBq over f .
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• Now take the morphisms on the local groups to be the same as for φ.

Let CpT q “ ImpF1pGpT qqq and GpY q P CpT q. Now, we will define F2 : CpT q Ñ CpXq as
follows:

• We first embed Y 1 into a canonically constructed polyhedral complex F2pY q. For
each e P EY let P 1e be a copy of P 1 and identify the midpoint of e with the cone
vertex x0 of P 1e .

• If Y is 2-colourable with colours i1 and i2 (from the valences of the Bass-Serre
tree if qi1 ‰ qi2 ), then we identify the vertex of e of type ij with the ij -vertex of
P 1e .

• Suppose Y is not 2-colourable. If e P EY is not a loop in Y then identify one
vertex of e with the i1 -vertex of P 1e and the other with the i2 -vertex. If e forms
a loop then we attach P 1e{h (where h is the isometry from the assumption) and
identify the vertex of e to the image of the i1 - and i2 -vertices of in P 1e{h.

• Glue together, either by preserving type on the i1 - and i2 -faces or by the isometry
h, the faces of the the P 1e and P 1e{h whose centres correspond to the same vertex
of Y . Let F2pY q denote the resulting polyhedral complex.

• Note that Y 1 � F2pY q and that each vertex of F2pY q has a unique type J P S or
two types J and hpJq where i1 P J P S and h is the isometry from the assumption.

• Fix the local groups and structure maps induced by the embedding of Y 1 in F pY q.
For each i P I let Gi “ Zqi and for J Ď I let GJ “

ś

jPJ Gj . For each e P EY let
Ge be the local group at the midpoint of e.

• Let J P S such that neither i1 or i2 are in J . The local group at a vertex of
type J is GeˆGJ . The structure maps between such local groups are the natural
inclusions.

• Let J P S and suppose ik P J for one of k “ 1 or k “ 2. Since mi1,i2 “ 8 both
i1 and i2 cannot be in J . Let Fe be the ik -face of P 1e or the glued face of P 1e{h.
The vertex of type J in P 1e or P 1e{h is contained in Fe . Let v be the vertex of Y
identified with the centre of Fe and let Gv be the local group at v in GpY q

• The local group at the vertex of type J is Gv ˆ GJztiku . For each J 1 Ă J with
ik P J

1 the structure map Gv ˆ GJ 1ztiku � Gv ˆ GJztiku is the natural inclusion.
For each J 1 Ă J with ik R J

1 the structure map Ge ˆ GJ 1 � Gv ˆ GJztiku is the
product of the structure map Ge � Gv in GpY q and the natural inclusion.

Now, let φ : GpY q Ñ HpZq be a morphism in CpT q over a non-degenerate polyhedral
map f : Y Ñ Z . We will define F2pφq as follows:
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• If Y and Z are two colourable f extends to a polyhedral map F2pfq : F2pY q Ñ

F2pZq. Otherwise we use (T1) to construct F2pfq.

• If τ P V F pY q then Gτ “ Gσ ˆGJ where σ is a vertex of Y 1 . The homomorphism
of local groups Gσ ˆ GJ Ñ Hfpσq ˆ GJ is φσ on the first factor and the identity
on the other factors.

• Let a P EF pY q. If ψa , the structure map along a P F2pGpY qq, has a structure map
ψb from GpY q as its first factor, put F2pφqpbq “ φpaq. Otherwise set F2pφqpbq “ 1.

We will now show the functor takes graphs of lattices to complexes of lattices and deduce
a number of consequences. Recall for a locally compact group H that LatpHq denotes
the (po)set of H -lattices and LatupHq denotes the (po)set of uniform H -lattices.

Theorem 4.9.4. Let Y be a right-angled building of type pW, Iq and parameters tqiu
and let A “ AutpY q. For each i1, i2 P I such that mi1,i2 “ 8 let T be the pqi1 , qi2q-
biregular tree and let T “ AutpT q. Suppose (T1) holds and if qi1 “ qi2 then (T2) holds
with g an extension of h, and let F : GpT q Ñ CpY q be Thomas’ functor. Let X be a
finite dimensional proper CATp0q space and assume H “ IsompXq contains a cocompact
lattice. The following conclusions hold:

(i) If GpT q is a graph of H -lattices, then F pGpT qq is a complex of H -lattices.

(ii) F induces an inclusion of sets LatupHˆ Tq� LatupHˆAq.

(iii) If Y is a CATp0q polyhedral complex then F induces an inclusion of sets LatpHˆ

Tq� LatpHˆAq.

Let Γ be a uniform pH ˆ T q-lattice and let FΓ be the corresponding pH ˆAq-lattice.

(iv) πT pΓq is discrete if and only if πApFΓq is discrete. Moreover, πHpΓq “ πHpFΓq.

(v) If Γ satisfies any of talgebraically irreducible, non-residually finite, not virtually
torsion freeu, then so does FΓ.

Proof. We first prove (i). We will first verify the conditions on the local groups and
then construct a morphism to H . Let pB,B, ψq be a graph of H -lattices and consider
the image LpZq of B under F . Here Z “ F pBq. Each local group in LpZq is of the
form Gσ ˆGJ where Gσ is a local group in B and GJ is a finite product of finite cyclic
groups. We have a morphism ψ : B Ñ H such that the image of each local group Gσ is
an H -lattice and the restriction to Gσ has finite kernel. Thus, by construction the local
groups in LpZq are commensurable in π1pLpZqq. We define F pψσq to be the composite
ψ|Gσ ˝ πσ : Gσ ˆ GJ � Gσ Ñ ψpGσq, thus commensurability of the images in H is
immediate.
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We will now deal with the edges. Note the twisting elements in LpZq are all trivial and
the complex of groups H has all structure maps the identity. Let the structure maps in
LpZq be denoted by λa for a P EZ 1 and the structure maps in B by αe for e P EB . The
family of elements pteqePEB in the path group πpBq are mapped under ψ to elements of
CommHpψpGσqq where Gσ is some local group. Now, let a P EZ 1 , then by construction
a either corresponds to a subdivision of an edge a in EB in which case we define
pFψqpaq “ ψpaq. Or, a corresponds to a inclusion of local groups GσˆGJ 1 Ñ GσˆGJ ,
in which case we define pFψqpaq “ 1H .

It remains to verify the two edge axioms for a morphism. For each a P EZ 1 corresponding
to the subdivision of an edge a in EB we have

AdppFψqpaqq ˝ F pψipaqq “ Adpψpaqq ˝ ψipaq ˝ πa “ ψtpaq ˝ αa ˝ πa “ F pψtpaqq ˝ F pαaq,

where πa is the surjection Ga ˆGJ � Ga . For any other edge a P EZ 1 we have

AdppFψqpaqq ˝ F pψipaqq “ F pψipaqq and F pψtpaqq ˝ λa “ F pψipaqq.

Finally, the other condition that pFψqpabq “ pFψqpaqpFψqpbq for pa, bq P E2Z 1 is verified
trivially. Thus, F pBq “ LpZq is a complex of H -lattices. ˛

We will next prove (ii). Let Γ be an pHˆT q-lattice. By Theorem 4.3.3, Γ splits as graph
of H -lattices B . Thus, by (i) we obtain a complex of H -lattices F pBq with fundamental
group Λ. By Theorem 4.6.2(i) it suffices to show that for each local group Gσ in F pBq
the kernel Kσ “ KerpπH |FGσq acts faithfully on X . Now, Kσ is a direct product of
Lσ “ KerpπH |Gσq with a direct product of cyclic groups GJ , where Gσ is a local group
in B . By construction GJ acts faithfully on X and by Theorem 4.3.3, Kσ acts faithfully
on T whose automorphism group embeds into A. In particular, Kσ acts faithfully on
X . ˛

We will next prove (iii). We construct a complex of lattices as in the previous case.
The proof for (iii) is now identical once we have verified that covolume condition in
Theorem 4.6.2(iii). Let c denote the covolume of an pH ˆ T q-lattice Γ with associated
graph of lattices pB,Bq, this is given by the formula c “

ř

σPV A µpΓσq ă 8. Now, every
vertex of the complex Z “ F pBq has local group isomorphic to a finite extension of some
Γσ . In particular we may bound

ř

σPZ µpΓσq by `ˆ c where ` is the number of vertices
in the finite Coxeter nerve of X . ˛

The proof of (iv) follows from the proof of (i). ˛

The proof of (v) follows from either applying Theorem 4.2.4 to (iv) (algebraically ir-
reducible) or the fact Γ � FΓ and the properties of residual finiteness and virtual
torsion-freeness are subgroup closed. ˛
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4.9.3 Examples and applications

In this section we will detail some sample examples and applications of the functor
theorem.

We can obtain a number of examples by applying Thomas’ functor to any irreducible
pIsompEnqˆT q-lattice. This will give a non-biautomatic group acting properly discontin-
uously cocompactly on EnˆX where X is a sufficiently symmetric right-angled building.
More precisely, we have the following corollary:

Corollary 4.9.5 (General version of Corollary 4.D). Let Y be a right-angled building
of type pW, Iq and parameters tqiu and let A “ AutpY q. For each i1, i2 P I such that
mi1,i2 “ 8 let T be the pqi1 , qi2q-biregular tree and let T “ AutpT q. Suppose (T1) holds
and if qi1 “ qi2 then (T2) holds with g an extension of h and let F : GpT q Ñ CpY q be
Thomas’ functor. Let Γ be a uniform pIsompEnq ˆ T q-lattice and suppose πOpnqpΓq is
infinite, then FΓ is a uniform pIsompEnq ˆAq-lattice which is not virtually biautomatic
nor residually finite. In particular, if Y is irreducible, then the direct product of a uniform
A-lattice with Z2 is not quasi-isometrically rigid.

Proof. By Theorem 4.9.4 FΓ is a uniform pIsompEnqˆAq-lattice with a non-discrete pro-
jection to Opnq. That FΓ is not virtually biautomatic then follows from Theorem 4.7.7.
The failure of quasi-isometric rigidity follows from the fact that the direct product of a
uniform A lattice with Z2 is reducible, whereas, the weakly irreducible lattice is alge-
braically irreducible by Theorem 4.2.4 and so does not virtually split as a direct product
of two infinite groups. In particular, the groups cannot by virtually isomorphic.

Example 12. Let Γ “ LMpAq where A is the matrix corresponding to the Pythagorean
triple p3, 4, 5q . Recall the group acts on E2 ˆ T10 . Let X be the right angled building
whose Coxeter nerve is the regular pentagon and whose parameters are given by q1 “

q2 “ 10, q3 “ q4 “ k , and q5 “ `. Let A be the automorphism group of X and consider
FΓ the image of Γ under Thomas’ functor F as in Figure 4.2. By Theorem 4.9.4, the
group FΓ is a non-residually finite pIsompEnqˆAq-lattice with non-discrete projections
to both factors and is irreducible as an abstract group. Moreover, by the previous
corollary, FΓ is not virtually biautomatic.

We will now construct a presentation for Λk,` :“ FΓ. The group has generators
a, b, x3, x4, x5, t and relations

xk3 “ xk4 “ x`5 “ 1, ra, bs, ra, x3s, ra, x4s, ra, x5s, rb, x3s, rb, x4s, rb, x5s, rx3, x4s,

ta2b´1t´1 “ a2b, tab2t´1 “ a´1b2, tx3t
´1 “ x4, rt, x5s.

The following proposition shows the group is virtually torsion-free.
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Proposition 4.9.6. The group Λ2,2 in Example 12 is virtually torsionfree. This is
witnessed by the index 16 subgroup

∆ :“ xa, b, x3tx4t
´1, x3x4t

´2, px5x3q
2, px5x4q

2, t´1x3x4t
´1, ptx5x4t

´1q2y.

Proof. The quotient Λ2,2{∆ is isomorphic to D4ˆZ2 which has order 16. By construc-
tion every torsion element of Λ2,2 is conjugate to some power of x3 , x4 , x5 or x3x4 .
Indeed, every torsion element is contained in a vertex or edge stabiliser of the action on
the pentagonal building and acts trivially on E2 . Each of these elements is mapped to a
non-trivial element of D4 ˆ Z2 . In particular, the kernel ∆ is torsion-free.

Corollary 4.9.7. The group ∆ admits a presentation with 8 generators

a, b, y1, y2, y3, y4, y5, y6

and 20 relations
ra, bs, ra, y4s, ra, y3s, rb, y3s, rb, y4s,

a´2b´1y6a
2by´1

6 ,

a´1y1ba
2y´1

1 b´1a´1,

ba´1by´1
1 b´2ay1,

y6y
´1
2 b´1y2y

´1
6 y´1

2 by2,

y2y
´1
6 y´1

2 a´1y2y6y
´1
2 a,

y´1
2 ab´1ay2y

´1
5 a´1ba´1y5,

y5a
´2b´1y´1

5 y3y5a
2by´1

5 y´1
3 ,

y4y
´1
5 y´1

3 y5y
´1
1 y2y6y

´1
2 y´1

4 y3y1y
´1
6 ,

y´1
5 ab´3y5y6y

´1
5 b2a´1by5y

´1
6 ,

y´1
5 ba´1b2y5y4y

´1
5 b´1ab´2y5y

´1
4 ,

y´1
5 ab´3y5b

´1a´2y´1
5 b2a´1by5a

2b,

b´1a´3b´1a´2y´1
5 b´1ab´3a2y5ba

2b´3,

y´1
2 baby2y

´1
5 b´1ab´2y5b

´1a´2b´2ay´1
5 b´1ab´2y5b

´1a´2,

ay5a
4ba2b2y´1

5 b2a´1b3a´1b3a´1by5a
4b2y´1

5 b2,

y3y5y
´1
4 y6aba

3by´1
5 b3a´1y5a

2by´1
5 b2a´1by5y

´1
6 y4y

´1
5 y´1

3 b2ay5ba
4by´1

5 b2a´1b

and the abelianization of ∆ is isomorphic to Z2
8 ‘ Z6 .

Remark 4.9.8. It follows immediately from the presentation of ∆ that it and hence
Λ2,2 contain a subgroup isomorphic to Z3 . For example xa, b, y3y or xa, b, y4y. Note that
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this coincides with the dimension of a maximal flat in XˆE2 . Since both groups have a
commensurated abelian subgroup their L2 -cohomology vanishes (see Proposition 4.4.3).

Example 13. Let n ě 2 and let Γn be the irreducible lattice constructed in Example 9
acting on En ˆ T10n . Let X be a right angled building satisfying (T1) and (T2) with
automorphism group A and parameters tqiu all equal to 10n. Applying Thomas’ functor
and Theorem 4.9.4 to Γn we obtain a non-residually finite pIsompEnq ˆ Aq-lattice with
non-discrete projections to both factors. Moreover by Corollary 4.9.5, Γn is not virtually
biautomatic.

We will now show the existence of non-residually finite lattices in arbitrary products
of sufficiently symmetric isometric and non-isometric right-angled buildings. We note
that Bourdon’s “hyperbolization of Euclidean buildings" [16, Section 1.5.2] can be used
to construct weakly irreducible uniform lattices in products of hyperbolic buildings. We
will provide a number of examples to show that the groups we construct here are distinct.

Corollary 4.9.9. Let Γ be a weakly irreducible lattice in product of trees T1ˆ¨ ¨ ¨ˆTn such
that Tk is ptk1 , tk2q-biregular. Let X1 ˆ ¨ ¨ ¨ ˆXn be a product of irreducible right angled
buildings satisfying (T1) and (T2). Suppose Xk is of type pWk, Ikq, has parameters
ttk1 , tk2 , qk3 , . . . , qknk u where mki1 ,ki2

“ 8 and Ak “ AutpXkq. The lattice Λ “ FnΓ

obtained by applying Thomas’ functor n times (once for each tree Tk corresponding to
the building Xk ) is a lattice in A1ˆ¨ ¨ ¨ˆAn , is weakly and algebraically irreducible, and
is non-residually finite.

Proof. Let Tk “ AutpTkq. The result follows from applying Theorem 4.9.4 n times as
follows. Consider Γ as a graph of pT2 ˆ ¨ ¨ ¨ ˆ Tnq-lattices and apply F to obtain a
pA1 ˆ T2 ˆ ¨ ¨ ¨ ˆ Tnq-lattice with the desired properties (non-residual finiteness follows
from the fact that the projection to T2ˆ¨ ¨ ¨ˆTn has a non-trivial kernel). Now, consider
FΓ as a graph of pA1ˆT3ˆ . . . Tnq-lattices and proceed by induction on the index k .

Examples 14. We will detail three examples:

(i) In [53, Theorem 2.27, Theorem 3.15] the authors construct infinite series of explicit
examples of irreducible S -arithmetic quaternionic lattices acting simply transitively
on the vertices of products of n ě 1 trees of constant valency, in each case we may
apply Theorem 4.9.9 to obtain algebraically and weakly irreducible non-residually
finite uniform lattices acting on a product of n buildings. It is unclear whether
these groups are related to the groups constructed by Bourdon’s hyperbolization.

(ii) In [14] [12] Burger and Mozes construct for each pair of sufficiently large even
integers pm,nq a finitely presented simple group as a uniform lattices in a product
of trees Tm ˆ Tn (for more examples see [52] [51] [50]). Applying Theorem 4.9.9,
we obtain uniform non-residually finite algebraically and weakly irreducible lattices
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acting on a product of buildings X1 ˆX2 each satisfying (T1) and (T2) with X1

having some parameters equal to m and X2 having some parameters equal to n.

(iii) Applying Theorem 4.9.9 to the non-uniform lattices in products of arbitrarily many
trees constructed in Example 7 yields weakly irreducible non-uniform lattices in
products of arbitrarily many sufficiently symmetric right-angled buildings.

4.10 Some questions

In this section we will raise a conjecture and some questions left open by this paper. In
light of the results in Section 4.4.4 showing that many CATp0q groups are autostackable
(in particular the Leary-Minasyan groups) we raise the following conjecture:

Conjecture 4.10.1. Every CATp0q group is autostackable.

In every example of an pIsompEnqˆT q-lattice known to the author, the lattice is virtually
torsion-free. Note that if there was a non-virtually torsion-free pIsompEnq ˆ T q-lattice
Γ, then any inseparable torsion element must be contained in KerpπIsompEnqq.

Question 4.10.2. Are there non-virtually torsion-free pIsompEnq ˆ T q-lattices?

Since it is possible to characterise pIsompEnq ˆ T q-lattice in terms of C˚ -simplicity and
virtual fibring, it would be interesting to recover the characterisation for complexes of
IsompEnq-lattices.

Question 4.10.3. Are the weakly irreducible non-biautomatic groups constructed in
Section 4.8 and Section 4.9 C˚ -simple? Do they virtually fibre?

More generally we ask:

Question 4.10.4. When is a CATp0q lattice C˚ -simple?

The characterisation of weakly irreducible pIsompEnq ˆ T q-lattices (Theorem 4.B) sug-
gests the following question:

Question 4.10.5. Can C˚ -simplicity and virtual fibring of a Leary-Minasyan group
LMpAq be determined by properties of the matrix A?

Finally, we remark that in [42] the constructions in this paper were used by the author to
construct an example of a hierarchically hyperbolic group which is not virtually torsion-
free.
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Paper 5
HIERARCHICALLY HYPERBOLIC GROUPS AND VIRTUAL

TORSION-FREENESS

SAM HUGHES

Abstract. We construct non-virtually torsion-free hierarchically hyperbolic groups.

5.1 Introduction

Hierarchically hyperbolic groups (HHGs) and spaces (HHSs) were introduced by Behr-
stock, Hagen and Sisto in [5]. Hierarchically hyperbolic groups are known to satisfy a
number of properties such as having finite asymptotic dimension [4, Theorem A], having
a uniform bound on the conjugator length of Morse elements [1], and for virtually torsion-
free HHGs, their uniform exponential growth is well understood [2]. HHGs belong to
the class of semihyperbolic groups [13, Corollary F] (see also [11]). In particular, they
have undistorted abelian subgroups, solvable conjugacy problem, finitely many conjugacy
classes of finite subgroups, and are of type FP8 .

That HHGs have only many finitely many conjugacy classes of finite subgroups implies
that every residually finite HHG is in fact virtually torsion-free. This motivates the
question of whether there exist any non-virtually torsion-free HHGs. The question is of
considerable interest to specialists since, for example, a number of theorems about HHGs
require the assumption of virtual torsion-freeness (see for instance [2, Theorem 1.1] and
[22, Theorem 1.2(3’)]).

In this paper we construct a CATp0q lattice Γ acting faithfully and geometrically on a
product of trees. We then prove that Γ is a hierarchically hyperbolic group and has no
finite index torsion-free subgroups.

Theorem 5.A (Theorem 5.4.3). There exist hierarchically hyperbolic groups which are
not virtually torsion-free.

To the author’s knowledge this is the first explicit example of an HHG which is not
virtually torsion-free. The author suspects that it is possible to apply the results of
Hagen–Susse [14] to Wise’s examples in [24] to obtain an HHG which is not virtually
torsion-free, however, the construction presented here is much more elementary and gives
an explicit HHG structure.

147
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5.2 Definitions

In this section we will give the relevant background on HHSs and HHGs for our endeav-
ours. The definitions are rather technical so we will only focus on what we need, for a full
account the reader should consult [3, Definition 1.1, 1.2.1]. We will follow the treatment
in [18, Section 2]. To this end, a hierarchically hyperbolic space (HHS) is pair pX,Sq
where X is an ε-quasigeodesic space and S is a set with some extra data which essen-
tially functions as a coordinate system on X where each coordinate entry is a hyperbolic
space. The relevant parts of the axiomatic formalisation are described as follows:

• For each domain U P S, there is a hyperbolic space CU and projection πU : X Ñ

CU that is coarsely Lipschitz and coarsely onto [3, Remark 1.3].

• S has a partial order Ď, called nesting. Nesting chains are uniformly finite, and
the length of the longest such chain is called the complexity of pX,Sq.

• S has a symmetric relation K, called orthogonality. The complexity bounds pair-
wise orthogonal sets of domains.

• The relations Ď and K are mutually exclusive. The complement of Ď, K and “
is called transversality and denoted &.

• If U P S and there is some domain orthogonal to U , then there is some W P S

such that V ĂW whenever V KU . We call W an orthogonal container.

• Whenever U&V or U Ă V there is a bounded set ρUV Ă CV . These sets, and
projections of elements x P X , are consistent in the following sense:

– ρ-consistency: Let U, V,W P S such that U Ă V and ρVW is defined, then
ρUW coarsely agrees with ρVW ;

– If U&V then mintdCU pπU pxq, ρVU q, dCV pπV pxq, ρ
U
V qu is bounded.

All coarseness may taken to be uniform so we can and will fix a uniform constant ε [3,
Remark 1.6].
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We remind the reader that these axioms for an HHS are not a complete set but only
recall the structure we will need. For the full definition the reader should consult [3,
Definition 1.1, 1.2.1]. The following definition of an HHG is however complete.

Let X be the Cayley graph of a group Γ and suppose pX,Sq is an HHS, then pΓ,Sq is
a hierarchically hyperbolic group structure (HHG) if it also satisfies the following:

(i) Γ acts cofinitely on S and the action preserves the three relations. For each g P G
and each U P S, there is an isometry g : CU Ñ CgU and these isometries satisfy
g ¨ h “ gh;

(ii) for all U, V P S with U&V or V Ă U and all g, x P Γ there is equivariance of the
form gπU pgxq “ πgU pgxq and gρVU “ ρgVgU .

Note that this is not the original definition of a HHG as given in [3]. Instead, we have
adopted the simpler axioms from [18], the axioms we have given imply the original
axioms, however, by [12, Section 2.1] they are in fact equivalent.

5.3 Hierarchical hyperbolicity and products

In this section we provide a proof of the folklore result that a group acting geometrically
on a product of δ -hyperbolic spaces with equivariant projections is an HHG. Let X be a
proper metric space and let H “ IsompXq, then H is a locally compact group with the
topology given by uniform convergence on compacta. Let Γ be a discrete subgroup of
H . We say Γ is a uniform lattice if X{Γ is compact. Recall that IsompEnq “ Rn¸Opnq,
we denote by πOpnq the projection to Opnq.

Proposition 5.3.1. Let n ě 0 and let H ď IsompEnq ˆ
śm
i“1 IsompXiq be a closed

subgroup, where each Xi is a proper non-elementary δ -hyperbolic space. Assume H acts
minimally and cocompactly on X “ En ˆ

śm
i“1Xi and let Γ be a uniform H -lattice. If

πOpnqpΓq is trivial, then Γ is a hierarchically hyperbolic group.

Proof. Let q be a Γ-equivariant quasi-isometry CaypΓ,Aq Ñ X given by the Švarc-
Milnor Lemma [6, I.8.19]. If n ą 0, then for j P t1 ´ n, . . . , 0u let Xj “ R and
Hj “ IsompEq. If n ą 0, then let i P t1´ n, . . . ,mu, otherwise let i P t1, . . . ,mu. Now,
products of HHSs are HHSs so pX,Sq is an HHS [3, Proposition 8.27]. Moreover, by
the description given in the proof of [3, Proposition 8.27] every domain of S is either
bounded (in fact a point) or some Xi .

Note that S is finite and the action on S is trivial. Every domain of the structure is
either bounded (in fact a point) or one of the Xi . In the first case the Γ action is trivial
and in the second case Γ acts via πHi . This immediately yields the first axiom.
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For the second axiom consider the following diagram where the vertical arrows are given
by applying the obvious group action:

Γˆ CaypΓ,Aq πHipΓq ˆXi

CaypΓ,Aq Xi.

pπHi ,πXi˝qq

πXi˝q

We will verify the diagram commutes. Let x P CaypΓ,Aq and g P Γ. First, we evaluate
the composite map going down then across, we have

pg, xq ÞÑ gx ÞÑ πXipqpgxqq.

Going the other way we have

pg, xq ÞÑ pπHipgq, πXipqpxqqq ÞÑ pπHipgq, πXipqpxqq “ πXipgqpxqq “ πXipqpgxqq

where the last equality is given by the Γ-equivariance of q . In particular, gπXipxq “
πgXipgxq “ πXipgxq. The other condition for equivariance is established immediately
since any two domains that are not points are orthogonal to each other.

We restate this result in terms of groups acting geometrically on products of CATp´1q

spaces. For an introduction to CATpκq groups and spaces see [6]. We will assume some
non-degeneracy conditions on the CATp0q spaces to avoid many technical difficulties
associated with the CATp0q condition (see [10, Section 1.B] for a thorough explanation).
A group H acting on a CATp0q space X is minimal if there is no H -invariant closed
convex subset X 1 Ă X . If IsompXq is minimal, then we say X is minimal.

Corollary 5.3.2. Let Γ be a group acting properly cocompactly by isometries on a fi-
nite product of proper irreducible minimal CATp´1q-spaces without permuting isometric
factors, then Γ is a hierarchically hyperbolic group.

Proof. The group Γ splits as a short exact sequence

t1u� F � Γ � Λ � t1u,

where Λ satisfies the conditions of the previous theorem and F is the kernel of the action
onto the product space. Since F acts trivially on the product space, it acts trivially on
the HHG structure for Λ. The epimorphism ϕ : Γ � Λ induces an equivariant quasi-
isometry ψ on the associated Cayley graphs. Thus, we may precompose every map in
the previous theorem with ϕ or ψ to endow Γ with the structure of a HHG.

To prove a converse to this corollary one may need to investigate the commensurators of
maximal abelian subgroups of a hierarchically hyperbolic group Γ. Indeed, the CATp0q
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not biautomatic groups introduced by Leary–Minasyan [17] and the groups constructed
by the author in [15] have maximal abelian subgroups which have infinite index in their
commensurator and are not virtually normal. All of these groups have a non-discrete
projection to Opnq ď IsompEnq.

Question 5.3.3. Suppose a hierarchically hyperbolic group Γ has the property that
every abelian subgroup is contained in a maximal abelian subgroup. Then, is a maximal
abelian subgroup A of Γ either finite index in its commensurator CommΓpAq or virtually
normal?

5.4 Non-virtually torsion-free HHGs

In this section we will construct a hierarchically hyperbolic group which is not virtually
torsion-free.

Let Λ be a Burger-Mozes simple group [7] [8] [9] acting on T1 ˆ T2 splitting as an
amalgamated free product Fn ˚Fm Fn with embeddings i, j : Fm Ñ Fn . This defines a
groups Λ which embeds discretely into the product of T1 “ AutpT1q and T2 “ AutpT2q

with compact quotient. For instance one may take Rattaggi’s example of a lattice in the
product of an 8-regular and 12-regular tree which splits as F7 ˚F73 F7 [21] (see also [20]
or one of Radu’s examples [19]).

Define A “ Zp ¸ Fn for p prime such that the Fn -action is non-trivial. Consider the
embeddings ri,rj : Fm � Fn � A given by the composition of i or j with the obvious
inclusion. Now, we build a group Γ as an amalgamated free product A ˚Fm A, note
that Γ surjects onto the original Burger-Mozes group Λ with kernel the normal closure
of the torsion elements. Let T3 denote the Bass-Serre tree of Γ and let T3 denote the
corresponding automorphism group.

Proposition 5.4.1. Γ is a uniform pT1ˆT3q-lattice which does not permute the factors.

This can be easily deduced by endowing Γ with a graph of lattices structure in the sense
of [15, Defintion 3.1] and then applying [15, Theorem A]. Instead we will provide a direct
proof.

Proof. The group Γ acts on Bass-Serre tree T3 and also on T1 via the homomorphism
ψ : Γ Ñ T1 defined by taking the surjection Γ � Λ. The diagonal action on the product
space T1 ˆ T3 is properly discontinuous cocompact and by isometries. The kernel of
the action is trivial, since the only elements which could act trivially are the torsion
elements. However, these all clearly act non-trivially on T3 . Thus, the action is faithful.
We conclude that Γ is a uniform pT1 ˆ T3q-lattice.

It remains to show Γ is not virtually torsion-free.
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Proposition 5.4.2. Γ is not virtually torsion-free.

The author thanks Yves de Cornulier for the following argument.

Proof. Note that Fn normally generates A. Indeed, let a be a generator of Zp and
f P Fn act by faif´1 ÞÑ a2i. The elements a´1fa and af´1a´1 are in xxFnyy by
definition, thus, a´1faaf´1a´1 “ a´1a4a´1 “ a2 P xxFnyy. It immediately follows
a P xxFnyy and so Fn normally generates A.

Now, the finite residual of Γ, that is the intersection of all finite-index subgroups of Γ,
denoted Γp8q , clearly contains the Burger-Mozes simple group Λ. Thus, both copies of
Fn are contained in Γp8q since these are subgroups of Λ. As Fn normally generates
A, it follows Γp8q “ Γ. Since, A is not torsion-free, we conclude Γ is not virtually
torsion-free.

To summarise we have the following theorem.

Theorem 5.4.3 (Theorem 5.A). Γ is a hierarchically hyperbolic group which is not
virtually torsion-free.

Proof. By Proposition 5.4.1 and Corollary 5.3.2 we see Γ is a hierarchically hyperbolic
group. By Proposition 5.4.2 we see Γ is not virtually torsion-free.

Remark 5.4.4. In [15, Corollary 9.9] the author gave a way to use A. Thomas’s con-
struction in [23] to promote lattices in products of trees to lattices in products of “suf-
ficiently symmetric” right-angled buildings. Applying [15, Corollary 9.9] to one of the
non-virtually torsion-free lattices Γ we obtain a non-virtually torsion-free lattice Λ act-
ing on a product of “sufficiently symmetric” right-angled hyperbolic buildings each not
quasi-isometric to a tree. Moreover, by Corollary 5.3.2 Λ is hierarchically hyperbolic.
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