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This thesis aims to develop a series of nonlinear time series models for analysing

count data, especially to overcome the “curse of dimensionality” for high and

ultra-high dimensions. This is of particular needs for big data analysis in ap-

plications to discrete-valued outcome events, such as financial market direction,

infected patients number in epidemiology and etc., where the nature of data is

often unknown.

In contrast to time series for continuous responses, where numerous related stud-

ies are available, literature paid scant attention to discrete-valued time series

estimation and forecasting. Existing studies are developed based on the exten-

sion of classic AutoRegressive Moving Averge model (ARMA). To better capture

the relationship between response and exogenous variables, we have proposed a

semi-parametric procedure called the “ Generalised Model Averaging MArginal

nonlinear Regressions (GMAMaR) and showed the uniform consistency for local

maximum likelihood estimation of one dimensional non-parametric local linear es-

timation. The asymptotic properties of the procedure are established under mild

conditions on the time series observations that are of β-mixing property. This

model has overcame the “curse of dimensionality” by taking the advantage of

cheap computational cost of low dimensional estimation and the idea of model

averaging to approximate the true estimates.

In particular, to deal with the popular binary classification problem, we study a

special case of logistic regression, namely “Model Averaging MArginal nonlinear
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LOgistic Regressions (MAMaLOR). This is the case where binary outcome is con-

sidered. The performance of our proposed model is superior when compared to

conventional method with numerical examples.

We notice another problem when facing big data that only a few of them are truly

useful in explaining the responses out of hundreds and thousands exogenous vari-

ables. Thus, we propose a penalise maximum likelihood estimation for variable

selection combined with our developed model by utilising adaptive LASSO as a

tool. A new computational procedure is also suggested to solve the proposed pe-

nalised likelihood estimation. By extracting important information from data, the

performance of our proposed methods is improved significantly both in estimation

and in prediction.

Last but not least, with the on-going event of COVID-19 in the UK, we further

consider the spatial effects along with temporal dependency. The idea is thus to

extend time series analysis to the domain of spatio-temporal modelling. We utilise

proposed model to investigate impacts of micro variables of the implementation

of lockdown on the daily number of confirmed cases. The results are consistent

with the consensus of epidemiology studies, and deeper understandings of how to

adapt and prioritise the policies in the combat of epidemic are also provided.

To conclude, the proposed series of nonlinear time series models show great poten-

tial in the context of discrete-valued events. While providing a more accurate es-

timation and prediction, the models also offer a better interpretability and deeper

understanding of the relationships between response and potential factors. We

hope to demonstrate that this thesis thus contribute to the development of this

area, and could be further extended to the area of sptio-temporal and other areas

of applications.
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Chapter 1

Introduction

1.1 Research background

With the rapid development of large scale data analysis, time-series data now

plays a crucial role in today’s business. Financial companies are dealing with

high frequency trades, stocks and options; Banks and insurance companies need to

decide the credit allowance for different applicant with their past information; Even

suppliers and manufactures are using past data to predict the future demands. All

these practical needs are calling for more precise and concise tools, e.g., models

with better interpretability, to provide insights of the data rather than a black-box

for the user to better understand the nature of it.

Time-series models have been extensively studied in literature, where most of

them are for continuous responses. In the contrast, literature on discrete-valued

time-series estimation and forecasting is still very limited. However, such data is

common in practice (Brown, 2004). For instance, the binary type of time-series

data is often seen in credit scoring, predicting the possibility of natural hazard

and the success rate of human activities (campaigns, sport games and etc.). It is

also assumed in epidemiology that the infect rate of pandemic follows a poisson or

negative-binomial distribution. Researchers in these areas need to study the data

to understand the on-going events and thus help to make better decisions, e.g., to

predict the impact of epidemic and to help reduce its damage. The importance of

these applications therefore calls a further research in this area.

1
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Traditionally, e.g., in generalised linear regression (GLM)(McCullagh and Nelder,

1989), modelling discrete-valued data and continuous-valued data requires only

different link functions. However, in the case of time series analysis where the de-

pendence of data is present, such techniques developed based on the assumption of

independent and identically distributed (i.i.d) cannot be applied directly. As to the

classic time series models, e.g., ARIMA(Box et al., 2015) and GARCH(Bollerslev,

1986)(Taylor, 2008), the results are not guaranteed to be integers due to the lack

of such constraints when applied to count data. Moreover, since they are origi-

nally developed for autoregressive procedures, including exogenous variables, e.g.,

in ARMAX model, is therefore not straightforward and requires treatment for the

aim of interpretation.

The first ever discrete-valued time series model can be tracked back to Jacobs and

Lewis (1978). They have proposed the DARMA (Discrete mixed AutoRegressive-

Moving Average) processes, in which the correlation structure of the process is

determined by parameters and the marginal distributions. However its long term

performance is not as good as expected. McKenzie (1985) proposed the INARMA

(INteger-valued AutoRegressive-Moving Average), which is still extensively used in

today. Based on the work of Shephard (1995), Generalised Linear Autoregressive

Moving Average model (GLARMA) has been applied in many different fields. For

example, Rydberg and Shephard (2003) and Liesenfeld et al. (2006) in financial

modelling, Turner et al. (2011) and Buckley and Bulger (2012) in epidemiological

assessments and clinical management individually. GLARMA model assumes a

state process depending linearly on covariates and non-linearly on past values. The

observation is independent and has an exponential distribution. So for time series

with long time period or large number of individuals, it is comparatively easily to

fit than other parameter-driven models. Davis et al. (1999) provide a review of

varieties to modelling discrete-time series. For more relevant information, please

refer to Davis et al. (2016), where a comprehensive review has been provided.

Consider an example of credit scoring that if the bank needs to make a decision

on the acceptance of loans for a person based on his past information, it is natural

to assume the person’s financial ability or the probability of defaulting has de-

pendence of its past values and hundreds or thousands of other information, e.g.,

career, earnings, age, marriage status and etc. In the case where a new applicant

is present, i.e., we don’t have his or her past credits, the evaluation must be done

based on the other information, and thus the interpretation of the relationships
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between the exogenous covariates and defaulting rate is important. Moreover, due

to the unknown nature of data, strong assumptions such as linear relationship are

hard to be appreciated. Hence, a novel model with better interpretability and

robustness for discrete time-series data is in a timely need.

Due to the development of modern techniques, we are now able to collect large-

scale data that are of high and ultra-high dimensions. When applying data-driven

techniques, e.g., non-parametric models, the computational capacity would limit

the number of dimensionality to be considered. This is known as the “curse of

dimensionality”, which suggests that they are not applicable to high dimension

data sample due to high computational costs.

Intuitively, to overcome such difficulty, one would consider to reduce the dimen-

sionality. Recently, a novel semi-parametric model for continuous data proposed

by Li et al. (2015), namely the Model Average MArginal Regression (MAMAR),

presents an idea that one can first extract one dimensional information and then

combine them together as a kind of model averaging. Since the computational

cost for low dimension estimation is cheap, the “curse of dimensionality” is thus

overcame.

In this thesis, we therefore follow this idea to develop our discrete-valued time

series model for big data. In addition, as it is nearly impossible to select the

“true” variables that are related to the response according to human experience,

variable selection techniques, e.g., LASSO(Tibshirani, 1996), will be considered to

extract important information. That is, a penalty term is added to the model and

the coefficients of non-correlated variables would thus be forced to (near) zero.

Last but not least, in the case where the mixing time series data are collected

from multiple regions, the dependency of data may be not only in the manner

of time but also of space. For instance, it is known in epidemiology that the

infect rates in different locations are different (Avery et al., 2020). It is, of course,

subjected to the local population, medical resources and etc., but also impacted

by the development of epidemic nearby. To better capture this type of spatial

impacts along with the nature of time dependency, a spatio-temporal model for

discrete-valued big data is also needed.
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1.2 Research aims

In this section, we will summarise the research questions studied in this thesis.

In particular, we consider these questions in the context of discrete-valued time

series data of possibly high and ultra-high dimensions. To represent the depen-

dency structure of time series data, β-mixing condition is adopted throughout this

thesis. We will further clarify these assumptions in the following chapters where

the potential question may arise.

The research questions are given as follows:

1. How to develop the uniform consistency of local likelihood estimation valid

with discrete-valued response time series data?

2. How to overcome the “curse of dimensionality” of data-driven models?

3. How to select the important factors among hundreds and thousands vari-

ables, e.g., in high and ultra-high dimensions?

4. How to capture the neighbouring effects, i.e., the spatial impacts, of time

series data collected at different locations?

Local linear regression has been developed for data-driven analysis that relaxes

the linear assumption (Fan and Yao, 2003). The computational cost is known

to be cheap as it is one dimensional. However, when present in the context of

time series, the asymptotic properties of it need to be re-confirmed, as the i.i.d

assumption, e.g., made in Fan et al. (1998a), is no longer valid. Thus the first

question here is to confirm the uniform consistency of local likelihood estimation

for time series data.

With the results of the first question, we are now able to overcome the “curse of

dimensionality” following the idea of Li et al. (2015). That is, we can treat each

one dimensional information extracted as a single “model”, and use the popular

model averaging method to approximate the true estimates. In particular, we are

considering the general form of exponential family for all kinds of discrete-valued

time series data.

Once the above question is answered, to expand the practical applicability of the

developed model, it is important to extract only the important information from
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many variables. Conventional techniques involve penalising the original model in

different ways, and therefore force the coefficients of non-correlated variables to be

zero. In this thesis, we are concerning the asymptotic properties of such penalty

methods combined with our model.

The last question further extends the area of application to the spatio-temporal

domain. This is of particular importance to deal with emerging events such as

COVID-19. Such global events provide us rich data across different regions. It is

thus in a timely need to study the corresponding neighbouring effects along with

the time series dependency for predictions.

1.3 Outline

Figure 1: Outline of the Thesis

The structure of this thesis will be structured as follows:

Chapter 2 will present a non-parametric local likelihood estimation, namely the

local linear maximum likelihood (LLML), based on β-mixing time series data. We

then provide the proof of its asymptotic consistency. A Monte-Carlo simulation

and the applications to COVID-19 and FTSE100 Index data are given to show the

strength of our approach. A bandwidth selection criterion is also discussed and

applied to improve the performance of this approach.
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Based on the work in Chapter 2, we then propose a semi-parametric model in

Chapter 3, namely the Model Averaging nonlinear Marginal Logistic Regressions

(MAMaLoR), following the ideas of Li et al. (2015). This is a special case where

the popular binary classification problem is considered in the context of time series

data. Asymptotic results are established for our proposed procedure. Numerical

results of simulation and application to FTSE100 index data further confirm the

ability of our proposed model compared to conventional methods, when dealing

with large number of dimensions. This chapter has been submitted to peer review

journal for publication.

Next, in Chapter 4, we generalise the semi-parametric model proposed in Chapter 3

to the exponential family. In addition, the variable selection technique adapted

LASSO (Zou, 2006) is applied to our generalised model. We show the asymptotic

properties under mild conditions, where the computational algorithm is designed

for the purpose of application. Numerical performances to the application of

FTSE100 index data are compared to both conventional method and popular

machine learning technique.

Chapter 5 is an application to the COVID-19 data in the UK. A simple yet powerful

spatio-temporal analysis is present to deal with the emerging needs of infection

number prediction. That is, both the temporal lags and the neighbouring effects

are considered in the model. In particular, we are also concerning exogenous

factors such as people’s self-awareness of protection and the power of lockdown

regards reducing the infect rate. The numerical example indicates the importance

of capturing these spatial effects when dealing with such type of data.

Conclusions, challenges and future works are summarised at the end of the thesis

in Chapter 6.



Chapter 2

Uniform Consistency for Local

Maximum Likelihood Estimation

of Time Series Non-Parametric

Regression by Local Linear

Estimating Equations

Local linear kernel fitting is a popular non-parametric technique for modelling

nonlinear time series data. Investigations into it, although extensively made for

continuous-valued case, are still rare for the time series that are discrete-valued.

In this chapter, we propose and develop the uniform consistency of local linear

maximum likelihood (LLML) fitting for time series regression allowing response to

be discrete-valued under β-mixing dependence condition. Specifically, the uniform

consistency of LLML estimators is established under time series conditional expo-

nential family distributions with aid of a beta-mixing empirical process through lo-

cal estimating equations. Performances of the proposed method are demonstrated

by a Monte-Carlo simulation study and the applications to COVID-19 data and

financial time series data FTSE100 . There is a huge potential for the developed

theory contributing to further development of discrete-valued semiparametric time

series models.

7
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2.1 Introduction

The research of local linear regression is of wide interest in statistical and econo-

metric nonlinear and non-parametric modelling (c.f., Fan and Gijbels (1996), Fan

and Yao (2003), Li and Racine (2007), Lu and Linton (2007)). This is because

in practice people often have no prior knowledge about the relationship between

variables, and especially in the age of big data. Thus, non-parametric models, and

especially semiparametric models that combine non-parametric and parametric

methods, are particularly of interest to deal with such situation of nonlinear time

series analysis; see e.g., Gao (2007) and Terasvirta et al. (2010).

Though in literature continuous-valued response is often assumed, discrete out-

comes are common in practice, e.g., in finance, insurance, biology and etc. Specif-

ically, we are interested in the discrete-valued time series datasets, which, in partic-

ular, can be expressed in the form of conditional exponential family distributions.

For example, the Poisson distribution is widely applied in applications such as

in queuing theory, e.g., to express the number of people joining the queue, and

in particular in modelling COVID-19 time series data such as the series of daily

increase number of virus infected cases. Binomial distribution (or Categorical dis-

tribution in a more general sense), e.g., of financial time series data, is another

example that plays an important role in areas of classification such as disease di-

agnosing, default rate checking, and etc. Within the discrete-valued time series

models, parametric linear or nonlinear autoregression technique is very popular.

The reader is referred to Davis et al. (1999), Fokianos et al. (2009) and Davis et al.

(2016) for a comprehensive review on the related developments.

Differently from those parametric models which suffer from model misspecification,

in this chapter we propose analysing time series regression in a non-parametric

manner for discrete-valued response under a conditional exponential family. In this

sense, maximum likelihood method is preferred over ordinary mean least square

method. The idea of adopting maximum likelihood method in local fitting can

be traced back to Tibshirani and Hastie (1987), where they have applied it to

the generalised linear models and proportional hazards models for independent

data. Later Fan et al. (1998a) have discussed the good properties of it in local

polynomial fitting. Related research also includes Carroll et al. (1997), among

others, where they have done a series of research work on local estimation.
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However, when applied to time series, the independence assumption often assumed

in literature is violated with temporal dependency, characterising of which is also

known in terms of “mixing”. Mixing conditions, as briefly discussed in Wong et al.

(2020), are established in literature as a way to extending results from i.i.d cases to

dependent structure (c.f., Bradley (2005), Lu (2001) and Lu and Linton (2007)). In

particular, β-mixing, which is often discussed in machine learning (Mcdonald et al.,

2011), defines the β coefficient at lag n to be the l1 distance from independence in

probability (c.f., Definition 2.1 in Section 2.2). The β-mixing property also implies

the α-mixing condition as it is stronger and with a faster decay rate. For a more

detailed discussion of β-mixing conditions, the reader is referred to Doukhan et al.

(1995)[Section2.4].

Our focus in this chapter is thus to establish the asymptotic properties of the

local linear maximum likelihood (LLML) fitting for time series non-parametric

regression allowing for discrete-valued response under β-mixing condition. As is

well known, the uniform consistency results of such non-parametric kernel-based

estimators are widely useful in further developments such as semiparametric mod-

elling (c.f., Nielsen (2005), Hansen (2008) and Kristensen (2009)). Investigations

into the method, although extensively made for continuous-valued time series (c.f.,

Liebscher (1996) , Masry (1996), Bosq (2012), Fan and Yao (2003), Hansen (2008)

and Kristensen (2009), Li et al. (2012), and the references therein), are still rare for

the time series that are discrete-valued. In this chapter, we develop the uniform

consistency of local linear maximum likelihood (LLML) fitting under β-mixing

dependence condition. Specifically, the uniform consistency of LLML estimators

under time series conditional exponential family distributions is established. Dif-

ferently from the local least squares based estimation with available analytical

solution in the literature (c.f., Li et al. 2012), study of the LLML estimator be-

comes much harder as it lacks an analytical solution, which need more efforts by

a β-mixing empirical process theory to cope with (c.f., Lu et al. (2007)) in this

chapter. Performances of the proposed method are demonstrated by a Monte-

Carlo simulation study and the applications to COVID-19 and FTSE100 Index

data . There is a huge potential for the developed theory contributing to further

development of discrete-valued semiparametric time series models.

The rest of this chapter is structured as follows. We will introduce the local

linear estimating model in Section 2, followed by the establishment of its uniform

consistency discussed in Section 3. In Section 4, the numerical examples including
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a Monte-Carlo simulation and the applications to COVID-19 and FTSE100 index

data will be demonstrated before the conclusion in Section 5.

2.2 Time Series Local Linear Model

We consider a general regression model with (Yt, Xt) being the β-mixing time series

process, where Yt allows to be discrete valued, and Xt denotes the d-dimensional

covariate series. Formally, the β-mixing property can be explicitly expressed to

measure dependence as follows:

Definition 2.1. Let Zt = (Yt, Xt) be a strictly stationary time series. The process

Zt is said to be β-mixing if

β(n) = E

{
sup

B∈F∞t+n
|P (B)− P (B|Zt, Zt−1, ...)|

}
→ 0

as n→∞, where F∞t+n is the information field (also-called σ-algebra) of {Zs, s ≥
t+ n}.

Here the strict stationary time series means that the joint probability of Zt do not

change in time. For further details, the readers are referred to Hamilton (2020).

Assume that Yt has a conditional distribution in the exponential family given the

past information up to time t− 1 expressed in Xt. Then the generic form of

density function of the conditional exponential family can be expressed as:

mY (y; θt) = Θ(y) exp(yθt − φ(θt)), (2.1)

where Θ(.) and φ(.) are known functions for a particular distribution family, and

θt is the canonical parameter depending on the given information in Xt, which

can also be expressed by a link function η(µt). Here µt is the conditional mean

µt = E(Yt|Xt) that is to be estimated, which connects the covariate vector Xt,

satisfying µt = E(Yt|Xt) = φ′(θt), where φ′(·) stands for the derivative of φ(·). So

φ′−1(·) is a canonic link function, which is known for a specific distribution, where

φ′−1 stands for the inverse function of φ
′
. We will hence consider a known link

function η = φ′−1 by which we express the regression as follows:

η(µt) = θt = f(Xt), (2.2)
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with f(·) the unknown function that we need to estimate. Therefore this prob-

lem of non-parametric estimation is essentially semi-parametric in the sense that

non-parametric function f and conditional exponential family for Yt given the

information expressed in Xt apply.

Then given the observations {(Yt, Xt), t = 1, 2, · · · , n} of the size n, the local log

conditional likelihood for the Yt’s (given initial information) is thus given by

`h,x(µ;Y ) =
n∑
t=1

logmYt(Yt,θt)Kh(Xt − x), (2.3)

where Kh(·) = h−dK(·/h) with K(·) a kernel function on Rd, and h > 0 is a

bandwidth satisfying h = hn → 0 as n→∞. Note that we denote the dimensions

considered d, where d = 1 in our special case of one-dimensional local linear

regression.

Since the relationship between Yt andXt is often unknown, non-parametric smoothers

can be used to estimate the conditional mean by estimating equations obtained

by setting the partial differentiations of (2.3) being zero,

1

n

n∑
t=1

Λ(Yt, θt)Kh(Xt − x) = 0, (2.4)

where Λ() is an appropriately defined function denoting the distance between Yt

and θt. For instance, if Yt is binary-valued, then Λ(Yt, θt) = Yt − φ′(θt) . The

model in population can then be expressed as:

E[Λ(Yt, θt)|Xt] = 0. (2.5)

Suppose f(x) has (p+ 1)-th continuous derivative at any given point x. Then for

data points Xt in the neighbourhood of x, we can approximate f(Xt) via Taylor

expansion by polynomial of degree p:

f(Xt) ≈ f(x) + f ′(x)(Xt − x) + ...+
f (p)(x)

p!
(Xt − x)p

≡ xTt β, |Xt − x|≤ h, (2.6)
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where xt = (1, (Xt−x), ..., (Xt−x)p)T , with the superscript T demoting transpose,

and β = (β0, ..., βp) with βj = f (j)(x)/j!, and f (j)(x) is the j-th order derivative

of f(x) w.r.t. x.

In a general sense, the larger degree of polynomial would give a smoother estimator

but at the cost of stronger assumptions with more local parameters to estimate.

In this regard, local linear fitting is usually preferred, i.e., p = 1. (c.f., Fan et al.

(1998a)).

Thus under the first order partial derivative,

f(Xt) ≈ f(x) + f ′(x)T (Xt − x)

≡ β1 + βT2 (Xt − x), if |(Xt − x)|≤ h,
(2.7)

where f ′(x) is the derivative of f(x) w.r.t. x, and β = (β1, β
T
2 )T ∈ R1+d is a vector

of local coefficients at x.

By solving the local maximum likelihood estimation above (see Fan et al. (1998a)),

which is easy as it could be seen as a locally weighted linear regression, we then get

the estimation at x as the intercept f̂(x) in the equation (2.7). Since x is chosen

arbitrary, we now let x go through each point in Xt and hence get the estimated

conditional mean µ̂t = η−1(f̂(Xt)) with η−1() standing for the inverse function of

the link function η(·).

2.3 Uniform consistency

In this section, we will derive the uniform consistency of the local fitting estimator

β̂ = (β̂1, β̂
T
2 )T = (f̂(x), (f̂ ′(x))T )T to β0 = (f(x), (f ′(x))T )T with respect to x ∈ A,

a closed subset of Rd. It is based on general local estimating equations.

Our estimator β̂ = β̂n is defined as the solution to :

Ωn(β, x, h) =

(
Ω

(1)
n (β, x, h)

Ω
(2)
n (β, x, h)

)
= 0, (2.8)

where
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Ω(1)
n (β, x, h) =

1

n

n∑
t=1

Λ(Yt; β1 + βT2 (Xt − x))Kh(Xt − x), (2.9)

Ω(2)
n (β, x, h) =

1

n

n∑
t=1

Λ(Yt; β1 + βT2 (Xt − x)) · [Xt − x
h

]Kh(Xt − x),

with β = (β1, β2) and the bandwidth h.

For greater generality, we allow f̂(x) to be an approximate solution to the equation

so that Ωn(β̂n, x, h) goes to zero in probability at a rate to be specified later.

For independent and identically distributed (i.i.d.) data, the convergence of the

estimators was established by Nielsen (2005). However, for our concerned β-mixing

time series, we give the theorems with proofs shown in this Section 2.3.

Before jumping into the results, we need the following

2.3.1 Assumptions

A1 (i) The process (Yt, Xt), with Yt of a conditional distribution in the exponen-

tial family given Xt, is strictly stationary β-mixing with the mixing coeffi-

cient β(t) = O(t−b) for some b > max(2(ρr+ 1)/(ρr− 2), (r+ a)/(1− 2/ρ))

with a ≥ (ρr − 2)r/(2 + ρr − 4r); (ii) the joint probability density function

gXt−1,···,Xt−s(x1, · · · , xs) is bounded uniformly for any t0 < t1 < · · · < ts and

0 ≤ s ≤ 2(r − 1); (iii) E|Λ(Yt, f(Xt))|ρr< ∞, E|Xt|ρr< ∞ for some real

number ρ > 4− 2/r, where r ≥ 1 is some positive integer.

A2 The kernel K(·) is a bounded and symmetric density function on R with

bounded support SK . Furthermore, |K(z)−K(x)|≤ C|z − x| for z, x ∈ SK
and some 0 < C <∞.

A3 (i) The bandwidth h = hn satisfies the conditions limn→∞ h = 0 and

lim infn→∞ nh
2(r−1)a+(ρr−2)

(a+1)ρ > 0 for some integer r ≥ 3; (ii) There exists a

sequence of positive integers sn → ∞ such that sn = o((nh)1/2), ns−bn → 0

and snh
2(ρr−2)

[2+b(ρr−2)] > 1 as n→∞;

A4 For any concerned function f in 2.2 , we define its Lipschitz norm: For some

$ > 0, let [$] be the largest integer not greater than $, and define (if it
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exists)

‖f‖∞,$ = max
0≤κ≤[$]

sup
x∈A
‖f (κ)(x)‖+ sup

x 6=x′;x,x′∈A

‖f ([$])(x)− f ([$])(x′)‖
‖x− x′‖$−[$]

, (2.10)

where f (κ)(x) stands for the κ-th derivative of f(x) with respect to x. We

suppose f belongs to a functional space F with some $ ≥ 2 and c > 0:

F := {f : f is a continuous function from A to R with ‖f‖∞,$≤ c},
(2.11)

where c is a positive constant. This functional space F (containing functions

f of which its Lipschitz norm is bounded) is often denoted by C$
c (A).

A5 Assume that E[Λ(Yt, z)
2] <∞ for all z ∈ R. Let

Φ(x, z) = E[Λ(Yt, z)|Xt = x]. (2.12)

• (i) (x, z)→ Φ(x, z) · g(x) is three times continuously differentiable

as a function form R2 to R, where g(x) is the marginal density of

x, which is strictly positive and continuous over A. We denote the

derivative of Φ with respect to x by Φ̇x, and the derivative with

respect z by Φ̇z, etc.

• (ii) For any fixed Yt the function z → Λ(Yt, z) is Lipschitz on a

compact set. For any compact C ⊂ R there is a function Ω∗(Yt)

(depending on C) such that

|Λ(Yt, z)− Λ(Yt, z̃)|≤ Ω∗(Yt) · |z − z̃| for all z, z̃ ∈ C, (2.13)

where E[(Ω∗(Yt))
2r(1 + |Xt|2r)] < ∞ with r given in assumption

A1.

Remark 2.2. Assumption 1 shows a standard β-mixing process which is

satisfied by many linear and nonlinear time series models (Fan and Yao,

2003; Lu et al., 2007). The kernel is guaranteed to be bounded by Assumption

2, which is commonly seen in this type of problem (Hardle et al., 1993; Xia

and Li, 1999). Assumption 3 is also standard in time series topics (Fan

et al., 2003; Lu et al., 2007) Note that the lim inf in A3(i) that is finite,

just greater than 0, is needed – it borrows from Assumption (C7) of Lu et al.

(2007).
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The Lipschitz norm conditions (Assumption 4 and 5) are introduced to give

a tighter bound than uniform norm (Nielsen, 2005). Note that we are con-

cerned with function β, β̂ and β0 as a function of x in F. Under A4 the

Lipschitz continuous norm, it is stronger than the uniform norm for a func-

tion in F, i.e. the Lipschitz norm of $:

‖β‖F= ‖β‖∞= max
i=1,2

supx∈A|βi(x)|≤ ‖β‖∞,$, (2.14)

Thus, consistency in Lipschitz norm implies uniform consistency. Assump-

tion A5 was introduced for a general case of local estimating equations (c.f.,

Nielsen (2005)). Recalling that f(Xt) = η(µt) under canonical link function

η and (2.9), we have Λ(Yt, z) = Yt − φ′(z), Φ(Xt, z) = E[Λ(Yt, z)|Xt = x] =

E(Yt|Xt = x) − φ′(z) = φ′(f(Xt)) − φ′(z). Clearly Φ(x, f(Xt)) = 0. Here

assumption A5 holds automatically under assumption A1.

2.3.2 Theorems

We first need to study the properties of Ω
(1)
n and Ω

(2)
n in expectation.

Theorem 2.3. Suppose the assumptions A1-A4 with model 2.2 are satisfied.

Then

E[Ωn(β, x, h)|Xt] = (1 + o(1))diag(1, hd)Ω0(β, x),

where o(1) is uniformly with respect to x ∈ A and β ∈ F, and Ω0(β, x) =

(Ω
(1)
0 (β, x), (Ω

(d)
0 (β, x))T )T , with Ω

(1)
0 (β, x) = Φ(x, β1)g(x) and

Ω
(2)
0 (β, x) = (β2Φ̇z(x, β1) + Φ̇x(x, β1))g(x) + Φ(x, β1)g′(x).

The true value of the local parameter β0 = (f(x), (f ′(x))T )T is the solution

to

E[Ωn(β, x, h)|Xt] = 0.

Further, E[Ωn(β, x, h)|Xt] = 0 has the unique solution at β0.

Proof. We only outline the proof as it is similar to the derivation in Section

2 of Nielsen (2005).

First, we note that the solution of Ωn(f(x), x, h) = 0 is also the solution to

Mn(β, h) = sup
x∈A
|Ωn(β, x, h)|= 0 (2.15)
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Now consider the solution point β0 ofMn(β, h) = 0 over Lipschitz continuous

function β(x) (define on A) with ‖β‖∞,φ≤ c and c > 0. Note that by

differentiability of the β0 = β0(x) = (f(x), (f ′(x))T )T and the boundedness

of A, such a c exits.

Intuitively, if Ωn(β, x, h) is uniformly close to E[Ωn(β, x, h)]. Then β̂ should

be close to the solution of E[Ωn(β, x, h)] = 0, and is a consistent estimator

of β0. We first check β0 is the solution to E[Ωn(β, x, h)] = 0 with our local

estimating equations for the local exponential family model estimated by

local maximum likelihood estimation under model (2.2):

E[Ω(1)
n (β, x, h)] = E[

1

n

n∑
t=1

[Yt − φ′(β1 + β2(Xt − x))]h−dKh(Xt − x)]

= E[E[
1

n

n∑
t=1

[Yt − φ′(β1 + β2(Xt − x))]]h−dKh(Xt − x)|Xt]

= E[
1

n

n∑
t=1

[E[Yt|Xt]− φ′(β1 + β2(Xt − x))]h−dKh(Xt − x)]

= E[
1

n

n∑
t=1

[φ′(f(Xt)− φ′(β1 + β2(Xt − x))]h−dKh(Xt − x)],

where E[Yt|Xt] = φ′(f(Xt)) follows from (2.2).

Let f̃(zj) = φ′(zj), and by Taylor expansion together with assumptions A4

and A2 we find:

E[Ω(1)
n (β, x, h)] = E[

1

n

n∑
t=1

[f̃(f(Xt))− f̃(β1 + β2(Xt − x))]h−dKh(Xt − x)]

= (1 + o(1))[f̃(f(x))− f̃(β1)]g(x) (2.16)

where o(1) is uniformly in x ∈ A owing to assumption A4.

Although we are mainly interested in the generalised local regression model

in Section 2.2, where Λ(yj, zj) = y − φ′(zj) as indicated above, but for a

general Λ(yj, zj) under assumption A5, we can still establish (2.16) as in



17

Nielsen (2005):

E[Ω(1)
n (β, x, h)] = E[Λ(Yt; β1 + β2(Xt − x))h−dKh(Xt − x)]

= E[Φ(Xt; β1 + β2(Xt − x))h−dKh(Xt − x)]

= Φ(x, β1)g(x) +O(h2),

where the O-term does not depend on x nor on ‖β(x)‖∞≤ C, and corre-

sponding to the local exponential family regression in Section 2.2, Φ(x, β1) =

f̃(f(x))− f̃(β1).

Similarly, as in Nielsen (2005),

E[Ω(2)
n (β, x, h)] = E[Λ(Yi; β1 + β2(Xt − x))

Xt − x
h

h−dKh(Xt − x)]

= h(β2Φ̇z(x, β1)) + Φ̇x(x, β1))g(x) + hΦ(x, β1)g′(x) +O(h3),

where corresponding to the local exponential family regression in Section 2.2,

Φ̇x(x, β1) = f̃ ′(f(x))f ′(x) = f ′(x)φ′′(f(x)) and Φ̇z(x, β1) = −f̃ ′(β1) =

−φ′′(β1), with f̃ ′(zj) = φ′′(zj) as defined above.

Thus we get:

E[Ω(1)
n (β, x, h)] = Ω

(1)
0 (β, x) +O(h2) (2.17)

and

E[Ω(2)
n (β, x, h)] = hΩ

(2)
0 (β, x) +O(h3) (2.18)

where

Ω
(1)
0 (β, x) = Φ(x, β1)g(x)

Ω
(2)
0 (β, x) = (βzΦ

′
z(x, β1) + Φ̇x(x, β1))g(x) + Φ(x, β1)g′(x).

Denote by β0 = (β01, β02) the solution to Ω0(β, x) = 0, where

Ω0(β, x) = (Ω
(1)
0 (β, x),Ω

(2)
0 (β, x))T . Then we have:Φ(x, β01) = 0

β02(x) = − Φ̇x(x,β01)

Φ̇z(x,β02)
,

(2.19)

which is actually unique correspondingly to our local general linear regression

in Section 2.2, with β01 = f(x) and β02 = f ′(x) (in this special case of one-

dimensional estimation, i.e., d = 1, both β01 and β02 are scalar; see (2.7)).
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The proof of Theorem 2.3 is done.

We turn to the uniform consistency of β̂ = β̂n in probability. For Ω
(i)
0 (β, x),

i = 1, 2, we further know from the above that Ω
(i)
0 (β, x) is continuous in

β ∈ F (in Lipschitz norm) and x ∈ A (in Euclidean norm). Therefore, for

any ε > 0, there exists δ > 0 such that

‖β̂ − β0‖∞> δ ⇒ max
i=1,2
|Ω(i)

0 (β̂, x)|> ε, for x ∈ A. (2.20)

By (2.20), it suffices to show maxi=1,2 supx∈A|Ω
(i)
0 (β̂, x)|= maxi=1,2 supx∈A|Ω

(i)
0 (β̂, x)−

Ω
(i)
0 (β0, x)|→ 0 in probability as n → ∞. We have the uniform consistency

as follows.

Theorem 2.4. Suppose the assumptions are satisfied, then diag(1, h−d)Ωn(β, x)

converges uniformly in probability to Ω0(β, x) with respect to β ∈ F, x ∈ A,

and further if nh2 →∞, then β̂n(x)→ β0(x) uniformly for x ∈ A.

Proof. We first need the fact that Ω̃n = diag(1, h−d)Ωn converges uniformly

in probability to Ω0, the proof for which is standard (c.f., Lemma A.1 of Lu

et al. (2007)) udder the given assumptions.

Now we notice that

Ω
(i)
0 (β̂, x)− Ω

(i)
0 (β0, x) =(Ω

(i)
0 (β̂, x)− Ω̃(i)

n (β̂, x))

− (Ω
(i)
0 (β0, x)− Ω̃(i)

n (β0, x))

+ (Ω̃(i)
n (β̂, x)− Ω̃(i)

n (β0, x)). (2.21)

The first two terms on the RHS of (2.21) converge to zero uniformly by the

uniform convergence of Ω̃n just mentioned above. So we only need to show

the third term on the RHS of (2.21) converges to zero uniformly, which is

shown below.

Let Dn = diag(1, h) and define the empirical process:

Gn(β, x, h) =
1√
n

n∑
t=1

(Λ∗(Zt,β, x, h)− E[Λ∗(Zt,β, x, h)])

=
√
nh(Ωn(β, x)− EΩn(β, x)) (2.22)
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with

Λ∗(Zt,β, x, h) = Λ
(
Yt, β1 + β2(Xt − x)

)
·Kh(Xt − x)


1
...

(Xt−x
h

)d

 (2.23)

The two components of Gn(β, x, h) are denoted by G
(i)
n (β, x, h), i = 1, 2.

Then Ω̃n(β, x)−EΩ̃n(β, x) = D−1
n (Ωn(β, x)−EΩn(β, x)), which is equal to

(n1/2h)−1D−1
n Gn(β, x, h).

In this proof, we need to determine when Gn(β, x, h) converges uniformly in

distribution to a bivariate Gaussian process. This can be done as follows in

two steps.

Firstly, by the usual Slutsky’s skill, it is easy to show the convergence in

distribution of Gn(β, x, h) to a Gaussian distribution at any finite number of

pairs of (β, x)’s. Secondly, to show the weak convergence in process, we will

need to show the stochastic equicontinuity of {G(i)
n (β, x, h) : β ∈ F, x ∈ A},

that is, for every ε > 0 and ϕ > 0, there is a δ > 0 such that:

lim sup
n→∞

P ( sup
β∈F,x∈A

sup
(β′,x′)∈B((β,x),δ)

|G(i)
n (β′(·), x′, h)−G(i)

n (β(·), x, h)|> ε) < ϕ.

(2.24)

Here B(ϑ, δ) represents a ball in the parameter space, centred at ϑ = (β, x)

and whose radius depends on δ. For this we need a lemma owing to Doukhan

et al. (1995).

Lemma 2.5. To prove the stochastic equicontinuity of the empirical process

we need to check the following conditions (Doukhan et. al, 1995, page 405)

(a) {Zt = (Yt, Xt) : t ≥ 1}is a stationary absolutely regular sequence with

mixing coefficient β(s) = O(s−b) for some b > r/(r − 1), and r > 1.

(b) Ep[{Ω̃∗}2r(Zt)] < ∞, where r > 1 in (a), and Ω̃∗(Zt) is the envelope of

M = {Λ∗(·, β, x, h) : β ∈ F, x ∈ A}, that is |Λ∗(·, β ∈ F, x ∈ A, h)|≤ Ω̃∗(·)
for any β ∈ F, x ∈ A

(c) ∀ε > 0, logN2(ε,M) = O(ε−2η) for some ϕ > 0, with b(1−ϕ) > r/(r−1)

for b and r as in (a), where N2(ε,M) is the L2-bracketing cover number of

M in (b)

Now the following proof is to check if the conditions above are met.
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(a) holds by the Assumption A1.

(b) can be validated as we have ‖β‖≤ ‖β0‖+1 = C. For β, β̃ ∈ F with

Lipschitz norm ‖β‖, ‖β̃‖≤ C and x, x̃ ∈ A we have

|βi(x)− β̃i(x̃)| ≤ |βi(x)− β̃i(x)|+|β̃i(x)− β̃i(x̃)|

≤ sup
x∈A
|βi(x)− β̃i(x)|+|x− x̃|· sup

x,x′∈A

|β̃i(x)− β̃(x′)|
|x− x′|

≤ ‖β − β̃‖+2C|x− x̃|.

Similarly, by Lipschitz norm

|β2(x)x− β̃2(x̃)x̃| ≤ |β2(x)|·|x− x̃|+|x̃|·|β2(x)− β̃2|

≤ C|x− x̃|+supx∈A|x|·(‖β − β̃‖+2C|x− x̃|)

and

{(y, z) −→ Λ(y; β1(x)+β2(x)(z−x))K(
z − x
h

) : x ∈ A, h > 0, β ∈ F, ‖β‖F< C}

with the envelope (c.f. Nielsen (2005), page 497)

(|Λ(y, 0)|+(C1 + C2|z|)Ω∗(y)) · sup
u∈SK

K(u),

where Ω∗(y) is defined in assumption A5(ii), and SK is the support of K(·).
Similarly,

{(y, z) −→ Λ(y; β1(x)+β2(x)(z−x))
z − x
h

K(
z − x
h

) : x ∈ A, h > 0, β ∈ F, ‖β‖F< C}

with the envelope

(|Λ(y, 0)|+(1 + supx∈A(|x|+|z|)Ω∗(y)|) · sup
u∈SK
|u|K(u)

Hence (b) holds by conditions A1 and A2.(van der Vaart and Wellner 1996,

Section 2.7.4).

(c) The proof can be as done in Lu et al. (2007) (page S26), so we only have a

simple idea given here. As F = Cφ
c (A) with φ ≥ 2, for ∀ε > 0, we can cover

F by finite number, say N1, of balls of radius ε with centres βi, i = 1, .., N1,
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in F, say, Fi, i = 1, ..., N1, such that: ∀β ∈ F,∃βi, such that

‖β − βi‖≤
ε

2C
.

By van der Vaart and Wellner (1996, Theorem 2.7.1), it is known that N1 =

N(ε,F, ‖·‖∞) satisfies logN(ε,F, ‖·‖∞) ≤ Cε−1/2. Similarly, A is a closed

subset in R, for ∀ε > 0, we can cover A by finite number, N2 = Cε−1, of

balls of radius ε with centres xi, i = 1, .., N2, in A, say, Aj, j = 1, ..., N2, such

that: ∀x ∈ A,∃xi, such that

‖x− xj‖≤
ε

2C
.

As Λ∗(Zt,β, x, h) =

Λ
(
Yt, β1 + β2(Xt − x)

)
·Kh(Xt − x)


1
...

(Xt−x
h

)d


is a continuous function of (β, x), Λ∗(·,β, x, h) can be approximated by, say,

Λ∗(·,βi∗ , xj∗ , h) for some i∗ and j∗ for any β ∈ F, x ∈ A. Therefore we can

cover M = {Λ∗(·,β, x, h) : β ∈ F, x ∈ A} by N2(ε,M) ≤ N1 × N2 suitably

defined balls as specified in (c) (van der Vaart and Wellner,1996, Theorem

2.7.1). The details are omitted here (c.f., Lu et al. (2007)).

Thus {Gn(β, x, h) : β ∈ F, x ∈ A} converges in distribution in process.

Hence,

sup
‖β(x)‖≤C,x∈A

|G(i)
n (β, x, h)|= Op(1), i = 1, 2 (2.25)

By Equations (2.17) and (2.18) we have

sup
‖β(x)‖≤C,x∈A

|Ω(1)
n (β(x), x, h)− Ω

(1)
0 (β(x), x)|

≤ 1√
nh

sup
‖β(x)‖≤C,x∈A,h>0

|G(i)
n (β(x), x, h)|

+ sup
‖β(x)‖≤C,x∈A,h>0

|E[Ω(1)
n (β(x), x, h)− Ω

(1)
0 (β(x), x)]|

= Op(1/(
√
nh)) +O(h2)

P−→ 0;
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and

sup
‖β(x)‖≤C,x∈A

|1
h

Ω(2)
n (β(x), x, h)− Ω

(2)
0 (β(x), x)|

= Op(
1√
nh

) +O(h2)
P−→ 0.

Thus by (2.20) and (2.21) with nh2 →∞, ‖β̂(.)−β0(.)‖F= op(1) is proved.

Based on Theorem 2.4, we can simply have f̂(x) is uniformly consistent to

f(x) over x ∈ A, a closed subset of Rd. This is a very useful theoretical result.

For example, in practice, we are interested in µt = E(Yt|Xt) = η−1(f(Xt))

(following from (2.2), with η−1 the inverse function of a known link η) for

prediction of Yt, which can therefore be estimated by µ̂t = Ê(Yt|Xt) =

η−1(f̂(Xt)). We can thus have the consistency as follows. Under the

assumptions of Theorem 2.4 with a continuous link function η, we have

sup
Xt∈A
|µ̂t − µt|→ 0

in probability as n→∞. In practice, we can take the close set A ⊂ Rd very

large so that the observed values of Xt belong to it. This guarantees that

our predicted value µ̂t, i.e., Ŷt, is uniformly consistent to the theoretically

optimal predictor µt as the training sample size n tends to infinity.

2.4 Numerical examples

In this section, a Monte-Carlo simulation is first present to show the ad-

vantage of this method. The response Yt generated is assumed to follow a

binomial distribution given Xt. This is the case that our proposed method

works as a binary classification, which can be applied to a wide range of ap-

plications in practice. Then we give an application to the COVID-19 data of

which the daily confirmed number of new cases are estimated and predicted.

A poisson distribution is assumed for the response variable, which is com-

monly adopted in epidemiology studies. Another application to FTSE100

Index data, where the market direction is assumed to follow the binomial
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distribution, is presented at the end of this section. We hope to demonstrate

that the proposed local linear method is robust for the exponential family.

2.4.1 Simulation

Let the mixing time series data of size n be generated by

Xt = cos(2Xt−1) + εt

Yt = I(Xt > 0), (2.26)

where εt ∼ i.i.dN(0, σ2). For the sake of simplicity, here we choose σ2 = 1.

According to the assumption, Yt given Xt follows a binomial distribution

with probability pt. Hence we have

[Yt|Xt] ∼ Bin(1, pt),

where pt = p(Xt) is defined as:

p(x) = P (Yt = 1|Xt−1 = x)

= P (cos(2Xt−1) + εt > 0|Xt−1 = x)

= P (
εt
σ
>
−cos(2x)

σ
)

= 1−Φ(−cos(2x)

σ
) = Φ(

cos(2x)

σ
),

(2.27)

where Φ is the cumulative distribution function (CDF) of the standard nor-

mal distribution The corresponding log odds can be obtained from:

f(Xt) = log
pt

1− pt
, (2.28)

Now we can re-write the log likelihood function as:

logL =
n∑
i=1

[log(pi) · Yi + log(1− pi)(1− Yi)]K(
Xi − x
h

), (2.29)

where K(Xi−x
h

) is the Epanechnikov kernel with standard formulation

K(u) =
3

4
(1− u2)I[−1,1](u), (2.30)
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where it is commonly adopted in literature; see Fan et al. (1998a), and

the range [−1, 1] is used here to generate a sequence of points within it to

estimate.

It is known that, the bandwidth h selected for kernel would have large impact

on its performance (Fan et al., 1998a). Different criterion would also lead

to different optimal h. In this chapter, we are going to use cross validation

based on log likelihood to select the best h within given data sample. Note

that the logL

logL =
n∑
i=1

[log(
1

1 + e−(f+f ′(Xi−x))
)·Yi+log(1− 1

1 + e−(f+f ′(Xi−x))
)·(1−Yi)]K(

Xi − x
h

).

(2.31)

The idea is to remove the ith point of Xt and Yt each time for i ∈ (1, 2, ..., n).

With the new data Y[−i] and X[−i], we can estimate f̂[−i](Xi) using our lo-

cal exponential family model and then estimate the probability. The cross

validation function is thus maximised with the optimal bandwidth to be

selected:

p̂
h[−i]
i =

1

1 + e−f̂
h
[−i](Xi)

, (2.32)

CV (h) =
n∑
i=1

[log(p̂
h[−i]
i )Yi + log(1− p̂h[−i]i )(1− Yi)]. (2.33)

Similarly, for other exponential family distribution, e.g., Poisson distribution,

the log likelihood function (2.29) need be re-written appropriately and the

cross validation is defined correspondingly. This is omitted to save space.

The performance of our proposed method is then examined on the fixed

points of the set [−1, 1] with a grid of 0.01. To evaluate the quality of

estimation, here we give a criterion, namely Squared Estimation Error(SEE),

defined by

SEE =
1

nest

nest∑
j=1

(f̂(xj)− f(xj))
2, (2.34)

where f(xj) = log(
pj

1−pj ) with pj = p(xj) and p(x) defined in (2.27). Here

xj’s are the points of the partition of [−1, 1] into small intervals of length

0.01 with nest = 201.

Table 2.1 summarises the statistics of bandwidth selected of three different

cases n = 200, 400 and 800 with 100 replications. Together with Figure 1, it

clearly shows that with the increase of sample size n, the local exponential
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Table 2.1: Statistics of optimal bandwidth selected for 3 different sizes of
sample (n=200, 400 and 800) with 100 repetitions

Min 1st Qu. Median Mean 3rd Qu. Max.
n=200 0.3603 0.6758 0.7885 0.8020 0.9512 1.4409
n=400 0.2891 0.5578 0.6572 0.6517 0.7656 0.9089
n=800 0.1806 0.4663 0.5465 0.5240 0.6108 0.7029

Figure 1: Bandwidth selected for sample size n = 200, n = 400 and n = 800
with 100 repetitions

Figure 2: Estimation results of sample size n = 200, n = 400 and n = 800 with
100 repetitions
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family model would require a smaller kernel to capture the insight of data

over time, which is consistent to the expectation. The estimation results,

as depicted in Figure 2, further confirms that with larger number of sample

size n, the estimation would converge to the real value. It also indicates

the difficulty in estimating the curves by a small range of local observations

due to the fact that there might be a sequence of all Yt = 1s or Yt = 0s.

The box-plot of SEE indicates that all three cases perform well with small

errors and few outliers. However, larger sample size would further increase

the estimation accuracy as suggested by the narrower 95% confidence level

range and smaller SEE mean in the case of n = 800.

In summary, the performance of our proposed model combined with the

bandwidth selection technique is quite well in estimation when the actual

data has mixing structure.

2.4.2 An illustrative application to the COVID-19 daily

increase in UK

In this subsection, we will introduce a simple application of the local Poisson

estimation in healthcare forecasting. We have collected roughly 9 months

data of COVID-19 daily increase number (UKGovernment, 2021). The data

covers the time period from 16th-Jan-2020 to 1st-Sep-2020 in UK, consisting

of 230 observations in total. We will estimate the daily increase number Yt,

given some known information Xt. Owing to curse of dimensionality for non-

parametric estimation of µt = E(Yt|Xt) with the dimension d of Xt being

large, we only give a simple illustration, with Xt being taken with d = 1. For

more practical scenario of high dimension d, some kind of semiparametric

models will be necessary, which is left for research elsewhere.

Here, as a demonstration, we consider two cases for Xt. In Case 1, the past

value Yt−i, say i = 7, for Xt is considered on one-week lag effect, where we

will see Yt as discrete-valued for count number, but simply put Xt = Yt−7 as

continuous-valued so that our method can be applied in this chapter. In Case

2, alternatively, we will take Xt for the log of UK Daily News Index, which

can be seen as continuous-valued more naturally. This UK Daily News Index

is also known as newspaper-based Economic Policy Uncertainty (EPU) Index

(EconomicPolicyUncertainty, 2021), which is considered as people may be

interested in how COVID-19 is connected to our daily life in many different
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aspects. The data is divided into two samples. The training sample contains

the first 200 observations to fit the model. The predicting sample contains

the rest 30 observations to validate the ability of prediction.

Suppose that Yt|Xt ∼ Poisson(λt) (as it is reported to be roughly symmetric

and bell-shaped in epidemiology studies, see also Farr (1840) ). We can

estimate the log conditional mean of Yt given Xt, that is log λt = f(Xt),

using the proposed method. Here λt can be interpreted as the expected

daily increase rate of COVID-19.

Figure 3: Estimated Daily Increase (Blue dots) based on EPU Index versus
Actual Daily Increase (Black line)

We first look at Case 2, with the estimation of λt = exp{f(Xt)} based on

EPU Index. The estimations of λt at each time t are depicted in Figure (3).

It indicates that there is a very weak (and maybe even weaker) correlation

between it and the daily increase number, as the Index itself covers a rather

too wide aspects. For example, after the daily increase Yt has been controlled,

e.g., during the quarantine, we still have news with regard to policies and

vaccine. The Brexit is also an important factor that may impact EPU Index

better than the daily increase number. We also examined the estimation

based on the lags of log(EPU), with similar outcomes omitted here. As a

consequence, the estimation based on the logarithm of EPU fails to provide

the accurate estimation nor the prediction.
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Figure 4: Estimated Daily Increase (blue dots) and Predicted Daily Increase
(red dots) base on past information Yt−7 versus Actual Daily Increase (black

line)

We now look at Case 1. The usage of past information is widely tested in

the domain of time series. In this example, we find that the daily increase

number Yt has a week pattern. By applying our model to Xt = Yt−7 and

estimate λt at each t, which is provided in Figure (4). It shows that the

lagged value Xt = Yt−7 can provide the much better information and thus

results, including both estimation and prediction. Such weekly pattern may

be a result of the incubation period and diagnosis as it is now known that

it takes on average 5 days (range 1-11 days and the maximum is 14 days)

for the patient to show symptoms and then it may take some time for the

patient to be treated and confirmed by NHS; see also Lauer et al. (2020).

To further benchmark the performance of our model, we fit the data also

into a GLM model with Poisson family based on the same information. The

results of the estimated λt over the prediction sample period are plotted

with red dots for GLM in Figure (5), where the predictions by our proposed

local linear method are coloured in blue, with actual observations in black.

It is therefore obvious that allowing the relationship to be nonlinear by our

method shows its value.
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Figure 5: Predicted Daily Increase by Local Linear Regression (blue dots) and
Generalised Linear Regression (red dots) based on past information Xt = Yt−7,

versus Actual Daily Increase (black line)

Figure 6: The time series plot of volatility and log(volume)

2.4.3 An application: forecasting FTSE100 index

In this subsection, we will introduce an application of the local logistic es-

timating in financial data where 5 years-long data set of FTSE100 index is

used. The data includes the close price cpt, open price opt, high price maxpt,

low price minpt and volume V lmt within the time period from 14 April 2014
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to 13 May 2019 consisting 1283 observations in total. We will estimate the

marginal distribution of market evolution Yt, whether the market price go up

(Yt = 1) or not (Yt = 0), given the log volume Vt , volatility vt and geometric

return Gt respectively, by

Yt =

{
1 if cpt − cpt−1 > 0

0 else,
(2.35)

vt = log(100
(maxpt −minpt)
1
2
(maxpt +minpt)

),

Vt = log(V lmt),

Gt = 100log(
cpt
cpt−1

).

(2.36)

The three series of volatility vt, log-volume Vt and geometric return Gt are

depicted in figure (6). Note that Yt = I(Gt > 0), with I(·) standing for an

indicator function.

By assuming Yt|log(vt)(or Vt, Gt) ∼ binomial(1, pt), we can estimate the

marginal log odds f(·) = log pt
1−pt using our method. To further give an

boundary to the estimation, we use the bootstrap confidence interval with

100 repetitions. The idea is to regenerate Ẏt using the binomial distribution

with the estimated p̂t. Now substitute Ẏt into our estimations, we can have

100 estimations for each f(·). Thus provide a standard deviation that can

be used to draw the confidence level.

Figure 7 shows the estimated f(·) for different sample sizes of three cases.

Note that, we assume there is dependency in the data hence the last vt in

each sample will be omitted as well as the first Yt. Thus we are estimating the

market change today based on the trading volume (or volatility & geometric

return) of yesterday. The estimated marginal log odds f(·) are similar but

with small adjustments of the slops.

Note that the bootstrap 95 percentage confidence level have provided the

possible regions of f(·). With the increase of sample size N , the confidence

bounds tend to be narrower for both cases, which suggests a smaller error

term. According to the confidence interval, we notice that for volume and
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Figure 7: Estimation with different sample size

volatility, constant zero is always contained in the 95% intervals, which sug-

gests that there is no evidence to make any conclusion based on these two

variables and they are not statistically significant. This is to say, among

the three different variables, only geometric return seems to have signifi-

cant relationship to the market directions. It also indicates the difficulty

of estimating the marginal probability of stock performance based on high

frequency financial data.

However, the forecasting results in Figure 8 show that the performance of

our method is good, compared to the benchmark of the liner regression

model. Here the accuracy is the ratio of correct forecasts divided by the

total forecasts made (1−
∑
|Ŷt−Yt|

Nforecast
) and we set any forecast Ŷt = 1 if p̂t > 0.5.

The performance of our proposed non-parametric method clearly shows the

advantage of adopting nonlinear relationships in the estimation and fore-

casting of such financial data. Linear model can only make pure guessing

given any of the three covariates, while our local linear method suggests that

the geometric return can, to some degree, help explaining the future market

direction.

One shall also note that normal time series techniques such as ARIMA can-

not be adopted when there is binary variable, which further confirms the

advantage of our method. Our results also suggest that, estimating the stock

performance based on a single variable is very difficult. Hence the estimation
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Figure 8: (a) is the accuracy of log(volume) for local logistic model and linear model
estimations ;(b) is the accuracy of volatility for local logistic model and linear model
estimations ; (c) is the accuracy of geometric return for local logistic model and linear
model estimations.

based on it could be only a little bit better than pure guessing. However,

similar to the other non-parametric methods, the curse of dimensionality

would make the computational cost of adding independent variables directly

to be very large. This calls the future study based on our local logistic model

to overcome such computational difficulty.

In summary, the performance of our proposed generalised local linear method

shows great potential in dealing with discrete-valued time series. The appli-

cation of empirical data further indicates that such method can well capture

the nonlinear relationship between response and covariate. Future usage

of it in the areas of discrete-valued time series analysis and forecasting is

therefore warranted.
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2.5 Conclusion

In this chapter, we have introduced a generalised local linear fitting of

discrete-valued time series under mixing conditions. Theoretical results in-

cluding the uniform consistency property and corresponding proofs are pre-

sented. A simulation study of binomial distributed time series is used to

illustrate the performance of our method. In addition, the applications to

COVID-19 and FTSE100 Index data are examined. Results of these numer-

ical examples show the great power and potential of our method. We thus

believe it can contribute to the further development of discrete-valued time

series estimation and forecasting in the future.

The investigation of non-parametric smoother for time series data is still

an active area that can be applied to many disciplines. The results in this

chapter thus can further contributes to the studies related to count time

series data. Based on the result of this chapter, further research to establish

optimal uniform convergence rates for time series data need more efforts to

make, which is left for future research.





Chapter 3

Semiparametric Averaging of

Nonlinear Marginal Logistic

Regressions and Forecasting for

Time Series Classification

Binary classification is an important issue in many applications but mostly

studied for independent data in the literature. In this chapter, we investi-

gate binary time series classification by proposing a semiparametric proce-

dure named a “Model Averaging nonlinear MArginal LOgistic Regressions”

(MAMaLoR) for binary time series data based on the time series informa-

tion of covariates and their lags. The procedure involves approximating

the logistic multivariate conditional regression function by combining low-

dimensional non-parametric nonlinear marginal logistic regressions, in the

sense of Kullback-Leibler distance. We have hence suggested a time series

conditional likelihood method for estimating the optimal averaging weights

together with local maximum likelihood estimations of the non-parametric

marginal time series logistic (auto)regressions. The asymptotic properties

of the procedure are established under mild conditions on the time series

observations that are of β-mixing property. With cheap computational cost

of low-dimensional estimation, our procedure can avoid the “curse of dimen-

sionality” for, and be easily applied to, high dimensional lagged information

based nonlinear time series classification forecasting. The performances of

the procedure are further confirmed both by Monte-Carlo simulation and

35
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an empirical study for market moving direction forecasting of the financial

FTSE100 index data.

3.1 Introduction

Time series data lagged information has been useful for forecasting of future.

Traditionally, for continuous-valued time series data, ARIMA based analysis

is well developed and applied (c.f., Box et al. (1970)). Further development of

nonlinear and non-parametric analysis of that kind of time series data can be

found in Tong (1990), Fan and Yao (2003), Gao (2007) and Terasvirta et al.

(2010) for comprehensive reviews. Particularly, curse of dimensionality is a

common challenging issue when faced a large number of time series lagged

observations. Various semiparametric models are hence developed, which

however usually involve expensive computations (c.f., the above-mentioned

references). Alternatively, Li et al. (2015) have recently introduced a novel

procedure for forecasting the unknown future by conditional time series re-

gression with high-dimensional time series lagged data, namely the Model

Averaging MArginal Regressions (MAMAR). This is a very flexible proce-

dure for time series forecasting based on the idea of model averaging the

low-dimensional marginal forecasts. See also Chen et al. (2016, 2018) for

more recent developments on the approach under continuous valued time

series response.

However, in many situations of practical time series forecasting, such con-

tinuous response based procedure is not always adequate. In this chapter we

are concerned with binary valued time series classification forecasting. Ob-

servations like the market price moving (up/down) direction forecasting and

the default/non-default credit scoring classification are actually discretely

binary-valued. Binary data is a kind of important data with logistic regres-

sion analysis developed popularly for many applications though mostly under

independent data in the literature (c.f., Cox and Snell (1989)). Our aim in

this chapter is thus to suggest a novel semiparametric procedure, named

“Model Averaging nonlinear MArginal LOgistic Regressions” (MAMaLoR)

for binary time series classification based on the information of a large num-

ber of lagged covariates, by extending the MAMAR idea of Li et al. (2015)

to binary-valued time series nonlinear classification. This is motivated by
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the needs of wide practical applications, such as the financial examples men-

tioned. We are aware that such binary-valued time series data exist in wide

applications beyond finance, though the financial application is particularly

examined in this chapter. In fact, binary classification has been thought of

as one of the most important problems in machine learning and statistics

(c.f., Ryabko and Mary (2013)).

Within the discrete-valued time series models, linear autoregression tech-

nique is very popular. The history of analysing and modelling discrete-valued

time series by a linear structure goes back to Jacobs and Lewis (1978), who

proposed the DARMA (discrete mixed autoregressive-moving average) pro-

cess. However its long term foresting performance is not as good as expected.

McKenzie (1985) has alternatively proposed the INARMA (Integer-valued

autoregressive-moving average) model, which is still well applied even to-

day. Further developments include Waller et al. (1997) on hierarchica dy-

namic generalized linear mixed model for spatial time series problems, and

Shephard (1995) on generalised linear autoregressive moving average model

(GLARMA) applied in many different fields such as Rydberg and Shep-

hard (2003) and Liesenfeld et al. (2006) in financial modelling and Turner

et al. (2011) and Buckley and Bulger (2012) in epidemiological assessments

and clinical management. Similarly, an Integer-valued GARCH model (IN-

GARCH) has been proposed by Ferland et al. (2006) in the spirit of the

generalised autoregressive conditional heteroskedastic model (GARCH). In

addition, the general latent-based time series models including the binary

case are proposed by Davis and Wu (2009) (Experiment 2 on Page 743) and

de Oliveira Maia et al. (2021) (Subsection 2.3). For a comprehensive review

on the related developments, the reader is referred to Davis et al. (1999) and

Davis et al. (2016).

Though linearity is widely adopted in the literature, it may often be too

strong to be appreciated when dealing with unknown data. In the case of

time series classification and forecasting, the influences of the predictor vari-

ables and their lags on the response are usually of unknown forms. The

assumptions made on linear parametric relationship may be incorrect if we

don’t have prior knowledge about the true relationship between the lagged

covariates and the response. Differently from the parametric discrete-valued

time series models above, in this chapter, we will therefore suggest utilising

non-parametric method where estimation of conditional regression functions
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is data driven. Here, in our proposed MAMaLoR procedure for binary time

series classification, it involves approximating the logistic multivariate condi-

tional regression function by combining low-dimensional nonlinear marginal

logistic regressions which will be estimated non-parametrically in the first

step of our procedure. A popular non-parametric approach in the litera-

ture is local fitting or kernel smoother of unknown functions (c.f., Fan et al.

(1998a)), which can be estimated via technique of either maximum likelihood

or least square method. Differently from Li et al. (2015), for our binary time

series data, maximum likelihood method is preferred for non-parametric lo-

cal linear fitting of the low-dimensional conditional marginal logistic regres-

sions. The idea of maximum likelihood local fitting can be traced back to

Tibshirani and Hastie (1987) and Fan and Gijbels (1995) for independent

and identically distributed (i.i.d.) data, and Fan and Yao (1998) extending

to stochastic regression. We will apply the maximum likelihood local fitting

of the conditional marginal logistic regressions with the uniform consistency

in the time series setting, which is required in the second step of combining

those marginal logistic regressions for classification forecasting in our MA-

MaLoR procedure. Hence, in this chapter, we will consider the maximum

likelihood local fitting method under the data dependence of a so-called β-

mixing conditions. For a more detailed discussion on β-mixing conditions,

the reader is referred to Doukhan et al. (1995) [Section2.4]. Theoretically, we

will establish the asymptotic properties for our MAMaLoR procedure under

β-mixing conditions.

Another advantage with our MAMaLoR procedure to be noted is that it

overcomes the so-called “curse of dimensionality” (c.f., Seifert and Gasser

(1996)), when a large number of time series lagged predictors are taken

account of, leading to high dimensional conditional logistic regression func-

tions. For multivariate nonparametric models with the increase of dimension

d, it is well known that the performance may become worse or even useless

(when d is beyond 2) as the sample size is required to increase exponen-

tially to get the same quality of estimation for one dimensional function. In

our MAMaLoR procedure, we consider combining low-dimensional marginal

non-parametric nonlinear logistic regressions, and hence “curse of dimen-

sionality” is flexibly avoided for time series binary classification similarly to

that for the regression in Li et al. (2015). This is different than perhaps it
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initially looks when compared to the popular semiparametric generalised ad-

ditive model (GAM) (Hastie and Tibshirani, 1987). When we only consider

the one-dimensional marginal non-parametric logistic regressions for com-

bination, our MAMaLoR shares a similar model form as a special case of

GAM, but the GAM still suffers from heavier computational costs and other

deficiencies in forecasting due to possible overfitting in particular in the case

of small samples but with a relatively large number of time series lagged

predictors, while these difficulties are more easily avoided in MAMaLoR. In

addition, the low-dimensional marginal non-parametric logistic regressions

could also be two-dimensional for combination in our MAMaLoR, where it

is not of a GAM form (see more discussion on this in Section 3.4.2 below)

We will also show in the data examples that our MAMaLoR procedure is

not only easy to implement, but also work better in classification forecasting

than GAM.

The structure of the rest of the chapter is as follows: In Section 2, we pro-

vide the basic ideas on the proposed MAMaLoR procedure. Estimations

for the MAMaLoR procedure with asymptotic properties established under

β-mixing properties are given in Section 3. In Section 4 the numerical ex-

amples including a simulation and an application to forecasting the market

price moving direction of FTSE 100 data will be demonstrated. Section 5

gives the conclusion. All the proofs will be relegated to an Appendix.

3.2 Model averaging marginal nonlinear lo-

gistic regressions

We are concerned with the binary classification forecasting. Let (Yt, X
T
t )

be a stationary time series process with Yt the response of binary values

of 0 and 1 at time t and Xt = (x1t, ..., xdt)
T a d-dimensional random vector

representing the available information up to time t−1, where the components

of Xt may involve the concerned time series covariates and their lags so that

the dimension d may be rather large as in Li et al. (2015) in practice.

In general, we denote by It−1 for all the information up to time t− 1 about

time series Yt. So the regression problem is to estimate the conditional
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probability for classification forecasting:

pt = P (Yt = 1|It−1). (3.1)

Because of the curse of dimensionality, it is well known that a direct non-

parametric estimation of pt performs very poor. We suggest the semipara-

metric procedure, Model Averaging nonlinear MArginal LOgistic Regressions

(MAMaLoR), for binary time series classification by extending the MAMAR

idea of Li et al. (2015), consisting of two steps as follows.

First, we would like to look at the marginal foresting effects based on part

of the available information, say each component, of Xt. Then define the

marginal forecasting probability based on the jth component (xjt) as follows:

pjt = P (Yt = 1|xjt), j = 1, ..., d. (3.2)

A popular idea to model the conditional probability pjt is by logistic regres-

sion. If we let F be the logistic cumulative distribution function(c.d.f), i.e.,

F (u) = eu

1+eu
, then the marginal non-parametric logistic regression is

logit(pjt) ≡ log
pjt

1− pjt
= fj(xjt), (3.3)

where fj(xjt) can be a nonlinear function of xjt, and we hence have:

pjt = F (fj(xjt)). (3.4)

Our second step is to combine the marginal logistic regressions together with

a constant to approximate our concerned pt in (3.12) by using the idea of

model average as follows:

logit(pt) ≈ α0 + α1logit(p1t) + ...+ αdlogit(pdt)

= α0 + α1f1(x1t) + ...+ αdfd(xdt) ≡ fMA
t , (3.5)

where α = (α0, α1, ..., αd) is the vector of unknown coefficients. Indeed

the direct motivation for equation (3.5) comes from the model averaging

by combining the easily estimable marginal logit forecasts to approximate

the high-dimensional logit forecast that is hard to be well estimated due to

curse of dimensionality for a relatively large d, so equation (3.5) represents
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an approximation, rather than an exact equality, similar to that in Li et al.

(2015). This can be seen as a model average as the α can be seen as

the weights assigned to different marginal estimations (c.f., Li et al. (2015)).

Here we use the affine combination in equation (3.5) because it is flexible

and easy to apply for classification forecasting and also much less overfitting

than the GAM for forecasting in application. These advantages are similar

to those in Li et al. (2015) with regression forecasting.

Let F−1(·) be the inverse function of F (·). Then (3.5) can alternatively be

expressed as

F−1(pt) = log(
pt

1− pt
) ≈ α0 +

d∑
j=1

αjF
−1(E(Yt|xjt)), (3.6)

where E(Yt|xjt) = P (Yt = 1|xjt) = pjt. Therefore our (3.6) can be seen as a

logit transformed extension of the MAMAR procedure of Li et al. (2015), in

which E(Yt|It−1) is approximated by α0 +
∑d

j=1 αjE(Yt|xjt) in terms of L2

distance, that is E{E(Yt|It−1)− α0 −
∑d

j=1 αjE(Yt|xjt)}2 is minimised with

respect to α = (α0, α1, ..., αd). Differently from this L2 distance in Li et al.

(2015), our approximation in (3.5) and (3.6) is based on the Kullback-Leibler

distance (KL-distance), a natural distance function from a “true” probability

distribution, pyt = P (Yt = y|It−1) = pyt (1− pt)1−y, to a “target” probability

distribution, qyt = qyt (1− qt)1−y, for y = 0, 1, with qt = qt(α) = F (fMA
t ) and

fMA
t defined in (3.5),

KL(pyt, qyt) = Epyt{log(pyt/qyt)}, (3.7)

which is minimised with respect to α; we denote this minimiser by α(0).

Note that (3.5) or (3.6) is a kind of approximation to the binary-valued

distribution in pt = P (Yt = 1|x1t, · · · , xdt). So this KL distance is appropriate

to measure the closeness of the approximation of distribution, which is widely

applied (c.f., Zhang et al. (2016)). We hence need to estimate the minimiser

by maximum likelihood estimation below.

We make some comments before ending this section. Firstly, in this chapter

we focus on the MAMaLoR procedure as given in (3.5) or (3.6) for easy

implementation, but the basic idea underlying our proposed method can ap-

ply more than this. In general, estimation of the conditional probability pt

of Yt = 1 given Xt = (x1t, · · · , xdt) by nonparametric logistic regression for
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classification suffers from curse of dimensionality if d > 3, but we can well es-

timate the low-dimensional marginal conditional probabilities. We therefore

try to approximate this high-dimensional conditional probability pt by the

affine combination, in logit transformation, of low-dimensional marginal con-

ditional probabilities, say one-dimensional pjt, j = 1, · · · , d, as done above

for simplicity in this chapter. Here our MAMaLoR approximation given in

(3.5) or (3.6) shares a similar model form as a special case of GAM (Hastie

and Tibshirani (1987)), but it more easily avoids the shortcomings that the

GAM suffers from, such as heavier computational costs and other deficiencies

in forecasting due to possible overfitting with GAM in particular in the case

of relatively small samples but with a larger number of time series lagged pre-

dictors. In addition, the low-dimensional marginal non-parametric logistic

regressions could also be two-dimensional for combination in our MAMaLoR.

Note that pjt’s used in the combination approximation (3.5) could be re-

placed or added by other low-, say two-, dimensional marginal conditional

probabilities pjkt = P (Yt = 1|xjt, xkt), for j, k = 1, · · · , d, in the approxima-

tion, where it is not of a GAM form. However, this approximation would

lead to additional issues including more careful variable selection needed for a

good classification forecasting when d is large (c.f., Chen et al. (2018)), so we

leave this problem for study in other work. Secondly, our combination idea

for binary forecasting above is different from that of Lahiri and Yang (2016).

In Lahiri and Yang (2016), it is based on discriminant analysis idea with cop-

ula applied to combine the conditional marginal distributions of two compo-

nents of Xt, say x1t and x2t, given the binary response Yt = 1 (in the notation

of our chapter) to model the conditional joint distribution of (x1t, x2t) given

Yt = 1. They suppose both conditional marginal distributions of x1t and x2t

given the binary response Yt = 1 as well as the copula function are known

with parametric distributions respectively up to some unknown parameters.

They mainly focus on the case d = 2, rather than d > 3 as addressed in

this chapter. When d = 2, we can also estimate the conditional joint prob-

ability density function of (x1t, x2t) given Yt = 1 non-parametrically via the

equality f(x1, x2|Y = 1) = P (Y = 1|x1, x2)fX1,X2(x1, x2)/P (Y = 1), where

fX1,X2(x1, x2) stands for the joint probability density function of (x1t, x2t)

while P (Y = 1|x1, x2) is just what we are concerned with above.



43

3.3 Estimation and Properties

3.3.1 Estimation

We articulate the estimation for the MAMaLoR procedure in two steps.

To estimate the weight coefficients in (3.5), as fj(xjt)’s are unknown, we

need to estimate them first. Here nonparametric smoother is used to esti-

mate the marginal probability pjt = E(Yt = 1|xjt) through that given in

(3.3). We suggest applying maximum likelihood local linear fitting (c.f., Fan

et al. (1998a)) for estimation of fj(·) in (3.3) as it is one-dimension and Yt

given xjt follows Bernoulli(pjt) distribution. Note that by taking the Taylor

Expansion of fj(xjt) at an arbitrary point xj0 given it is differentiable, then

as xjt is close to xj0, it gives an approximation

fj(xjt) ≈ fj(xj0) + f ′j(xj0)(xjt − xj0)

≡ β1 + β2(xjt − xj0), (3.8)

if |xjt− xj0|≤ h, where h is a bandwidth to be appropriately selected. Then

under the conditional independence of Yt given the relevant information up

to time (t − 1) along t, define the conditional local log likelihood function

for (3.3) and (3.8) by:

`(β, xj0, h) =
n∑
t=1

[Yt(β1 + β2(xjt − xj0))

− log(1 + exp(β1 + β2(xjt − xj0)))]Kh(xjt − xj0), (3.9)

where Kh(·) = h−1K(·/h) with K(·) a kernel function on R1 (c.f. Jones et al.

(1994)). The aim is to estimate β = (β1, β
T
2 ) = (fj(xj0), f ′j(xj0))T , that is,

[
f̂j(xj0)

f̂ ′j(xj0)

]
=

[
β̂1

β̂2

]
= arg max

β1,β2
`(β, xj0, h). (3.10)

By solving the optimisation, which is easy as it could be seen as a locally

weighted linear regression, we then get the estimation at xj0 as the intercept

f̂j(xj0) in the equation (3.8). Since xj0 is chosen arbitrary, we now let xj0 go

through each point in xjt and hence get the estimated marginal probability

p̂jt = F (f̂j(xjt)), where we recall F (y) = ey/(1 + ey).
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Now we can try to estimate the coefficients in (3.5) together with replacing

the fj(xjt)’s by f̂j(xjt)’s. That is, we would like to estimate the minimiser

that minimises (3.7) by using maximum likelihood estimation.

Under the conditional independence of Yt given the relevant information up

to time (t−1) along t, following from (3.5), we can define the (approximate)

conditional likelihood function as follows:

L(α) =
n∏
t=1

P (Yt = yt|It−1;α)

=
n∏
t=1

(pt(α))yt(1− pt(α))1−yt ,

(3.11)

where

pt(α) =
eα0+

∑d
j=1 αjfj(xjt)

1 + eα0+
∑d
j=1 αjfj(xjt)

. (3.12)

Note that (3.11) can be also viewed as a kind of composite likelihood; see

Varin et al. (2011). Then taking nature log of the equation (3.11) together

with (3.12), with fj(xjt)’s replaced by f̂j(xjt)’s, we define the log conditional

likelihood function (scaled by 1/n) as follows

l̂(α) =
1

n

n∑
t=1

[
yt(α0 +

d∑
j=1

αj f̂j(xjt))− log(1 + eα0+
∑d
j=1 αj f̂j(xjt))

]
. (3.13)

In order to control the impacts of the poor estimate of fj(·)’s at the extreme

xjt’s, we slightly modify the estimation procedure with the log-likelihood

given in (3.13), and define the following modified log-likelihood function:

ln(α) = ln(f̂(·),α) =
1

n

n∑
t=1

[{
Yt

(
α0 +

d∑
j=1

αj f̂j(xjt)

)}

− log

{
1 + exp

(
α0 +

d∑
j=1

αj f̂j(xjt)

)}
w(Xt), (3.14)

which asymptotically corresponds to the population log-likelihood function:

l(f(·),α) = E

[{
Yt

(
α0 +

d∑
j=1

αjfj(xjt)

)}
− log

{
1 + exp

(
α0 +

d∑
j=1

αjfj(xjt)

)}]
w(Xt),

(3.15)
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where f(·) = (f1(·), · · · , fd(·))T , f̂(·) is defined similarly with estimated ele-

ments, Xt = (x1t, ..., xdt) and w(Xt) =
∏d

j=1 I(c0j≤xjt≤c1j) is a weight function

controlling the edge effects in the estimation with I(·) being an indicator

function and c0j < c1j appropriately chosen. For example, in practice, c0j

and c1j may be chosen to include all observations, or as 0.1 and 0.9 quan-

tiles of the sample xjt, t = 1, 2, · · · , n, if there are extreme outliers, which

are hence removed from estimation by using this control weight function Lu

et al. (2007)[Section 3.2]. Note that α̂ = arg maxα ln(f̂(·),α) gives the

estimator α̂ from sample data and α(0) = arg maxα l(f(·),α) gives the true

parameter vector α(0) = (α00, α01, ..., α0d)
T .

We now take the first order derivative of the modified log-likelihood function

(3.14) with respect to αj:

∂ln(α)

∂αj
=

1

n

n∑
t=1

[ytf̂j(xjt)− p̂tf̂j(xjt)]w(Xt), (3.16)

where

p̂t = p̂t(α) =
eα0+

∑d
j=1 αj f̂j(xjt)

1 + eα0+
∑d
j=1 αj f̂j(xjt)

. (3.17)

The second order derivative, which is also known as the Hessian matrix, is

negative definite:

∂2ln(α)

∂αj∂αk
= − 1

n

n∑
t=1

f̂j(xjt)p̂t(1− p̂t)f̂k(xkt)w(Xt). (3.18)

This is to say, the likelihood function is concave and hence has a unique

maximiser.

From the computational perspective, note that equation (3.5) looks like a

logistic linear regression with f̂j(xjt) given, which means we can apply rel-

evant technique and algorithm developed in GLM with logistic regression.

Therefore our MAMaLoR procedure is easy to implement in computation.

In addition, both marginal nonparametric logistic regression estimation by

local linear fitting and parametric affine combination estimation are applied

in our method, so the MAMaLoR procedure is of “semiparametric” nature.



46

3.3.2 Asymptotic properties

In this section, we present the large sample property of asymptotic normality

for our proposed MAMaLoR procedure. We would like to first show α̂ →
α(0) in probability as n→∞.

For notational ease below, we define

pt(f(·),α) =
eα0+

∑d
j=1 αjfj(xjt)

1 + eα0+
∑d
j=1 αjfj(xjt)

. (3.19)

Note that pt(α) = pt(f(·),α) and p̂t(α) = pt(f̂(·),α).

In addition, we suppose (Yt, X
T
t ) are β-mixing, for which given in defini-

tion 2.1.

We now introduce the following assumptions.

A1 (i) We assume (Yt, Xt) (with Yt being binary) is strictly stationary pro-

cess under β-mixing condition. There exists b > max(2(ρr+1)/(ρr−2),

(r+a)/(1−2/ρ)) and a ≥ (rρ−2)r/(2+rρ−4r), such that β(t) = O(t−b);

(ii) for any t1 < · · · < ts and 1 ≤ s ≤ 2r, the joint probability den-

sity function of (Xt1 , · · · , Xts) := gXt1 ,···,Xts (x1, · · · , xs) is bounded above

uniformly; (iii) there exists ρ > 4− 2/r in R and r ≥ 1 in Z, such that

E|Xt|ρr<∞.

A2 The weight function w(Xt) =
∏d

j=1 I(c0j≤xjt≤c1j) with c0j < c1j appropri-

ately chosen, where I(·) is an indicator function.

This weight function is used for controlling the edge effects in the esti-

mation.

A3 (i) The bandwidth h = hn satisfies the conditions limn→∞ h = 0 and

lim infn→∞ nh
2(r−1)a+(ρr−2)

(a+1)ρ > 0 for some integer r ≥ 3; (ii) There exists a

sequence of positive integers sn →∞ such that sn = o((nh)1/2), ns−bn →
0 and snh

2(ρr−2)
[2+b(ρr−2)] > 1 as n→∞; (iii) nh4 = o(1) as n→∞.

A4 Let f0(·) = (f1(·), ..., fd(·))T be the vector of the true conditional regres-

sion functions, with fj(·)’s defined in Equation (3.3). For an f(·), define

its Lipschitz norm: For some $ > 0, let [$] be the largest integer not
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greater than $, and define (if it exists)

‖f‖∞,$ = max
0≤κ≤[$]

sup
x∈A
‖f (κ)(x)‖+ sup

x 6=x′;x,x′∈A

‖f ([$])(x)− f ([$])(x′)‖
‖x− x′‖$−[$]

,

(3.20)

where f (κ)(x) is the κ-th derivative of f(x) with respect to x, and A =∏d
j=1[c0j, c1j] with some real values of c0j and c1j satisfying c0j < c1j

given in assumption A2. We suppose f0(·) with fj’s belongs to the

functional space F with $ ≥ 2:

F := {f : continuous from A to Rd with ‖f‖∞,$≤ c}, (3.21)

where c is a positive constant. This functional space F (containing

functions f of which its Lipschitz norm is bounded) is often denoted by

C$
c (A).

A5 For the local likelihood function (3.9), define Λ(Yt, zj) = Yt−exp(zj)/[1+

exp(zj)], and

Φ(xj, zj) = E[Λ(Yt, zj)|xjt = xj], (3.22)

satisfying (xj, zj)→ Φ(xj, zj) · gj(xj) is three times continuously differ-

entiable as a function form R2 to R, where gj(xj) is the marginal density

of xjt, which is strictly positive and continuous over Aj = [c0j, c1j]. We

denote the derivative of m with respect to xj by Φ̇x, and the derivative

with respect zj by Φ̇z, etc.

Remark. (i) Assumption 1 shows a technical standard β-mixing process

which is satisfied by many linear and non-linear time series models

under geometric ergodicity (Fan and Yao, 2003; Lu et al., 2007). The

edge effect is controlled by Assumption 2, which removes the extreme

estimates around the boundaries of Xt, in order to improve the practical

performance of the estimation (c.f. Fan et al. (1998b), Fan et al. (2003)

and Lu et al. (2007)).

(ii) Assumption 3 is also standard in time series topics (Fan et al., 2003;

Lu et al., 2007) and easily satisfied though it looks a bit involved. For

example, if we take h = n−c with 1/4 < c < (b− 2)/b and sn = (nh)1/k

with 2 < k < (1−c)b, then it follows that sn = (nh)1/k = n(1−c)/k →∞,

sn = o((nh)1/2), ns−bn = n1−b(1−c)/k → 0 and nh4 = n1−4c = o(1) as



48

n→∞, while lim infn→∞ nh
b1 > 0 if c < 1/b1, where b1 ≡ 2(r−1)a+(ρr−2)

(a+1)ρ
.

As ns−bn → 0, we have sn ≥ n1/b as n is sufficiently large, and, letting

b2 ≡ 2(ρr−2)
[2+b(ρr−2)]

, hence snh
b2 ≥ n1/b−cb2 > 1 if c < 1/(bb2) = [2+b(ρr−2)]

2(ρr−2)b
>

1/2. Therefore A3(i)-(iii) is satisfied if there is some c such that 1/4 <

c < min{(b−2)/b, 1/b1, 1/(bb2)}, which holds true if b > 8/3, b1 < 4 and

bb2 < 4. Here b1 < 4 is equivalent to a > (r−4)ρ−2
4ρ−2(r−1)

. Note that bb2 < 2.

So A3(i)-(iii) holds true easily. Note that the lim inf in A3(i) that is

finite, just greater than 0, is needed – it borrows from Assumption (C7)

of Lu et al. (2007).

(iii) Assumptions 4 and 5 give smoothness conditions on the condi-

tional regression and marginal density functions. The Lipschitz norm

conditions (Assumption 4) are introduced to give a tighter bound than

uniform norm (Nielsen, 2005). For more information on Lipschitz norm,

the reader is referred to Van Der Vaart and Wellner (1996).

Theorem 3.1. (Consistency) Suppose Assumptions A1-A5 hold. Let A be

a close set in Rd+1 and α0 is an interior point of A, f ∈ F and nh4 = o(1).

Then α̂−α0 = op(1).

It is to prove the convergence of α̂ to α0 in probability. That is, we would

like to show:

∀δ > 0, P (‖α̂−α0‖> δ)→ 0,

as n→∞.

Here we follow Lemma 4.1 of Lu et al. (2007), given below, to prove Theo-

rem 3.1.

Lemma 3.2. (Consistency Lemma) Suppose α0 ∈ A satisfies l(f0(·),α0) =

maxα∈A l(f0(·),α), where f0(·) is the true function vector in Assumption A4,

A is a closed set in Rd+1 with α0 an interior point of A, and that

i. ln(f̂(·), α̂) ≤ maxα∈A ln(f̂(·),α) + op(1)

ii. For all δ > 0, there exists ε(δ) > 0 such that

inf
‖α−α0‖>δ

|l(f0(·),α)− l(f0(·),α0)|≥ ε(δ)

iii. Uniformly for all α ∈ A, l(f(·),α) is continuous with respect to the met-

ric ‖·‖F in f(·) at f0(·), where ‖f(·)‖F= supx∈A‖f(x)‖ with ‖·‖ being the

Euclidean norm of Rd.
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iv. ‖f̂(·)− f0(·)‖F= op(1)

v. For all δn with δn = o(1),

sup
α∈A

sup
‖f(·)−f0(·)‖F≤δn

|ln(f(·),α)− l(f(·),α)|= op(1).

Then α̂−α0 = op(1)

The proof of Theorem 3.1 is given:

Proof. Proposition 3.2 (Consistency Lemma) follows from Lemma 4.1 in Lu

et al. (2007). The consistency of α̂ can be proved by checking the conditions

specified in Proposition 3.2. As α̂ and α0 are the maximizers of ln(f̂(·),α)

and l(f0(·),α), respectively, (i) and (ii) hold obviously. (iii) also holds clearly

by the following fact:

l(f(·),α) = E[Ytχ̃t(f)Tα− log(1 + eχ̃t(f)
Tα)], (3.23)

where χ̃t(f) = (1, f1(x1t)..., fd(xdt))
T with fj’s being marginal functions that

are generally different from those in f0 given in Assumption A4 at a cost of

slight notation confusion.

Then:

sup
α∈A
|l(f(·),α)− l(f0(·),α)|

≤ E|Yt|‖χ̃t(f)− χ̃t(f0)‖α+ |log(1 + eχ̃t(f)
Tα)− log(1 + eχ̃t(f0)Tα)|

≤ eχ̃t(f)
Tα

1 + eχ̃t(f)Tα
‖χ̃t(f)− χ̃t(f0)‖‖α‖

≤ C‖f − f0‖F, (3.24)

where C is a generic constant.

Now, to proved (iv), we show that the estimator f̂j(.) replacing fj(.) function

in the model averaging step is uniformly consistent. The proof for the local

fitting technique is given as follows. It is similar to that of Nielsen (2005)

under i.i.d. data, but we are concerned with time series data process of

β-mixing as defined in Subsection 3.2.
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The nonlinear logistic regression can be formulated as follows:

logit(pj(xjt)) = log(
pj(xjt)

1− pj(xjt)
) = fj(xjt), (3.25)

where pj(xjt) = P (Yt = 1|xjt) and 1− pj(xjt) = P (Yt = 0|xjt), and fj(·) is a

non-parametric function from R to R.

Given the local log likelihood function in (3.9), we have the following types

of estimation equations:

Ω(1)
n (β, xj, h) =

1

n

∂`

∂β1

=
1

n

n∑
t=1

[Yt −
exp(β1 + βT2 (xjt − xj))

1 + exp(β1 + βT2 (xjt − xj))
]Kh(xjt − xj) = 0,

(3.26)

Ω(2)
n (β, xj, h) =

1

nh

∂`

∂β2

=
1

n

n∑
t=1

[Yt −
exp(β1 + βT2 (xjt − xj))

1 + exp(β1 + βT2 (xjt − xj))
]
xjt − xj

h
Kh(xjt − xj) = 0.

(3.27)

Intuitively, if Ωn(β, xj, h) = (Ω
(1)
n (β, xj, h),Ω

(2)
n (β, xj, h))T is uniformly close

to E[Ωn(β, xj, h)] in xj ∈ Aj = [cj0, c1j]. Then β̂ should be close to the

solution of E[Ωn(β, xj, h)] = 0, and is a consistent estimator of β0. We

first check β0 is close to the solution to E[Ωn(β, xj, h)] = 0 with our local

maximum likelihood estimation under model (3.25):

E[Ω(1)
n (β, xj, h)] = E[

1

n

n∑
t=1

[Yt −
exp(β1 + β2(xjt − xj))

1 + exp(β1 + β2(xjt − xj))
]Kh(xjt − xj)]

= E[E[
1

n

n∑
t=1

[Yt −
exp(β1 + β2)(xjt − xj))

1 + exp(β1 + β2(xjt − xj))
]]Kh(xjt − xj)|Xt]

= E[
1

n

n∑
t=1

[E[Yt|xjt]−
exp(β1 + β2(xjt − xj0))

1 + exp(β1 + β2(xjt − xj))
]Kh(xjt − xj)]

= E[
1

n

n∑
t=1

[
exp(fj(xjt))

1 + exp(fj(xjt))
− exp(β1 + β2(xjt − xj))

1 + exp(β1 + β2(xjt − xj))
]Kh(xjt − xj)],

where note that E[Yt|xjt] =
exp(fj(xjt))

1+exp(fj(xjt))
.
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Let f̃(zj) = ezj

1+ezj
, and by Taylor expansion together with assumptions A4

and A2 we find:

E[Ω(1)
n (β, xj, h)] = E[

1

n

n∑
t=1

[f̃(fj(xjt))− f̃(β1 + β2(xjt − xj))]Kh(xjt − xj)]

= (1 + o(1))[f̃(fj(xjt))− f̃(β1)]gj(xj)

where o(1) is uniformly in x ∈ A owing to assumption A4 and gj is the

marginal probability density function of xjt. In fact, if we denote Λ(Yt, zj) =

Yt − exp(zj)/[1 + exp(zj)] as in Assumption A5, then

E[Ω(1)
n (β, xj, h)] = E[Λ(Yt; β1 + β2(xjt − xj))Kh(xjt − xj)]

= E[Φ(xj; β1 + β2(xjt − xj))Kh(xjt − xj)]

= Φ(xj, β1)gj(xj) +O(h2), (3.28)

where corresponding to our local logistic regression, Φ(xj, β1) = f̃(fj(xj))−
f̃(β1), and the O-term does not depend on x ∈ A nor on β1 = fj(xj) which

is the j-th component of f0(·) owing to Assumption A4.

Similarly,

E[Ω(2)
n (β, xj, h)] = E[Λ(Yi; β1 + β2(xjt − xj))

xjt − xj
h

Kh(xjt − xj)]

= h(β2Φ̇z(xj, β1)) + Φ̇x(xj, β1))gj(xj) + hΦ(xj, β1)g′j(xj) +O(h3),

where, corresponding to our local logistic regression model, Φ̇x(xj, β1) =

f̃ ′(fj(xj))f
′
j(xj)

= f ′j(xj)
efj(xj)

(1+efj(xj))2
and Φ̇z(xj, β1) = −f̃ ′(β1) = − eβ1

(1+eβ1 )2
, with f̃ ′(zj) =

ezj/(1 + ezj)2 as defined above, and the O-term is uniform with respect to

x ∈ A.

Thus we get:

E[Ω(1)
n (β, xj, h)] = Ω

(1)
0 (β, xj) +O(h2) (3.29)

and

E[Ω(2)
n (β, xj, h)] = hΩ

(2)
0 (β, xj) +O(h3) (3.30)

where

Ω
(1)
0 (β, xj) = Φ(xj, β1)gj(xj), (3.31)

Ω
(2)
0 (β, xj) = (β2Φ̇z(xj, β1) + Φ̇x(xj, β1))gj(xj) + Φ(xj, β1)g′j(xj). (3.32)
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Denote by β0 = (β01, β02) the solution to Ω0(β, xj) = 0, where Ω0(β, xj) =

(Ω
(1)
0 (β, xj),Ω

(2)
0 (β, xj))

T . Then we have:Φ(xj, β01) = 0

β02(x) = − Φ̇x(xj ,β01)

Φ̇z(xj ,β02)
,

(3.33)

which is actually unique correspondingly to our local linear logistic regression

(3.9) with β01 = fj(xj) and β02 = f ′j(xj).

For Ω
(i)
0 (β, xj), i = 1, 2, we further know from the above that Ω

(i)
0 (β, xj) is

continuous in β ∈ F (in Lipschitz norm) and x ∈ A (in Euclidean norm)

owing to Assumption A4. Therefore, for any ε > 0, there exists δ > 0 such

that

‖β̂ − β0‖∞> δ ⇒ max
i=1,2
|Ω(i)

0 (β̂, xj)|> ε, for x ∈ A. (3.34)

Therefore for the uniform consistency of β̂ to β0 in probability, by (3.34), it

suffices to show maxi=1,2 supx∈A|Ω
(i)
0 (β̂, xj)| = maxi=1,2 supx∈A|Ω

(i)
0 (β̂, xj) −

Ω
(i)
0 (β0, xj)|→ 0 in probability as n→∞. This follows from

max
i=1,2

sup
‖β‖F≤C

sup
xj∈Aj

|Ω(i)
n (β, xj)− Ω

(i)
0 (β, xj)|→ 0

as n→∞, which is easily proved under Assumptions A1–A4 (c.f., Lu et al.

(2007)) with details omitted, where C is a generic constant which may be

large. The proof of (iv) is done.

To check (v), let δn = o(1) and ‖f − f0‖F≤ δn. Then we have:

ln(f(·),α)− l(f(·),α) = {ln(f(·),α)− ln(f0(·),α)}+ {ln(f0(·),α)− l(f0(·),α)}

+ {l(f0(·),α)− l(f(·),α)}

= I + II + III. (3.35)

Uniformly, for α ∈ A and f satisfying ‖f − f0‖F≤ δn, I,II and III can be

proved to tend to zero. The proof is easy that we can show here III follows

equation (3.24) and II is easily proved by law of large number together with

A being a compact set. Note that III is the expected value of I. That I tends

0 can be proved similarly. Hence we know that I + II + III tend to zero.

By completing the checking of the conditions of Proposition 3.2 (Consistency

Lemma), the proof of Theorem 2.1 is completed.
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For asymptotic normality, we need to introduce some more notation. Let

χ̃t(f0) = (1, f1(x1t)..., fd(xdt))
T with fj(xjt) defined in (3.3),

U = E[pt(1− pt)]χ̃t(f0)χ̃t(f0)Tw(Xt),

V = lim
n→∞

V ar

(
1√
n

n∑
t=1

(Yt − pt)χ̃t(f0)w(Xt)

)
.

(3.36)

Then we have

Theorem 3.3. (Asymptotic Normality)

Suppose that the assumptions A1-A5 are satisfied, for α ∈ A, and U is

positive define. If nh4 = o(1), then

√
n(α̂−α0)

L−→ N(0,U−1VU−1) (3.37)

as n→∞, where
L−→ stands for convergence in distribution.

We remark that owing to time series dependence, V may not be equal to U

in Theorem 3.3. The proof of Theorem 3.3 is provided in:

Proof. Now we will derive the asymptotic normality. Note that ln(f(·),α)

and l(f(·),α) are differentiable with respect to α. By applying simple alge-

braic operations, we can obtain and denote the derivatives as follows:

l
′

n(f(·),α) =
1

n

n∑
t=1

[(Yt − pt(f ,α))χ̃t(f)]w(Xt)

l′(f(·),α) = E[(Yt − pt(f ,α))χ̃t(f)]w(Xt)

l
′′

n(f(·),α) = − 1

n

n∑
t=1

pt(f ,α)(1− pt(f ,α))χ̃t(f)χ̃t(f)Tw(Xt)

l
′′
(f(·),α) = E[−pt(f ,α)(1− pt(f ,α))χ̃t(f)χ̃t(f)T ]w(Xt)

where χ̃t(f) = (1, f1(x1t)..., fd(xdt))
T

To obtain the bias, now we can apply the Taylor Expansion:
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0 = l
′

n(f̂(·), α̂) = l
′

n(f̂(·),α0) + l
′′

n(f̂(·),α0 + ξ(α̂−α0))(α̂−α0),
√
n(α̂−α0) = −[l

′′

n(f̂(·),α0 + ξ(α̂−α0))]−1
√
nl
′

n(f̂(·),α0),

(3.38)

where |ξ|< 1.

Then we get them together with the consistency of α̂ to α0.

√
n(α̂−α0) = −(1 + op(1))[l

′′

n(f0(·),α0)]−1
√
n[l
′

n(f0(·),α0) +O(h2)], (3.39)

by noting that

l
′

n(f̂ ,α0)− l′n(f0,α0)) = (1 + oP (1))
1

n

n∑
t=1

(Yt − pt)(χ̃t(f̂)− χ̃t(f0))w(Xt)]

= OP (h2) (3.40)

owing to the uniform consistency of f̂ to f0 and E[f̂ ]− f0 = O(h2) as we have

proved.

Note that

l
′′

n(f0,α0) = − 1

n

n∑
t=1

pt(f0,α0)(1− pt(f0,α0))χ̃t(f0)χ̃t(f0)Tw(Xt). (3.41)

By law of large number, we have

l
′′

n(f0,α0)→ l
′′
(f0,α0) = U = E[pt(1− pt)]χ̃t(f0)χ̃t(f0)Tw(Xt). (3.42)

By central limit theorem,

√
nl
′

n(f0,α0)→ N(0,V) (3.43)
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where

V = lim
n→∞

V ar(
1√
n

(Yt − pt)χ̃t(f0)w(Xt)). (3.44)

Thus the asymptotic variance matrix

V ar(α̂|f(·)) = U−1VU−1. (3.45)

The asymptotic normality of α̂ hence follows.

3.4 Numerical evidence

In this section, we illustrate the empirical application of our proposed MA-

MaLoR model by both simulated and real data numerical examples to un-

derstand the impact of lagged information on binary-valued time series data

forecasting. A Monte-Carlo simulation study is given in the first subsection

and an application to financial data of FTSE 100 index is then presented in

the second subsection.

3.4.1 A simulation study

In order to examine the finite sample performance of the method, a Monte-

Carlo simulation is made. Bandwidth selection for h in (3.9) is indeed an

important problem but appears quite sensitive to outliers for the Cross-

Validation (CV) based on likelihood. So we leave this for further investi-

gation. In the simulation, we applied a simple Cross-Validation by using

h.select in R package sm, which is actually based on a direct estimation of

pjt = E(Yt|xjt).

The model used in this section is given as follows:

Yt = I(xt > 0),

xt =
9∑

k=1

g0k(xt−k) + εt,

g0k(xt−k) = akxt−k + δ exp(−kxt−k)/(1 + exp(−kxt−k)) + γ cos(xt−kxt−1),

(3.46)
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Table 3.1: Parameters specified in Model (3.46)

a1 a2 a3 a4 a5 a6 a7 a8 a9

-0.1129 0.0245 -0.1892 -0.0820 -0.1962 -0.1232 0.1180 0.1282 -0.2407

where εt’s are i.i.d. following a logistic distribution, generated by εt =

log(et/(1− et)) with et having a uniform distribution over the interval (0, 1).

Here we use logistic distribution for the error term so that the resultant

model is a logistic time series regression model with the true link function

being a logit link function; see (3.48) below. Our simulation model for xt

is basically similar to that in Li et al. (2015), where the values of ak, for

k = 1, 2, . . . , 9, are given in Table 3.1. We have taken ak’s such that all

the roots of the polynomial, 1 −
∑9

k=1 akλ
k, are outside the unit circle and

note that
∑9

k=1 g0k(xk) =
∑9

k=1 akxk + o(‖x‖), as ‖x‖→ ∞, no matter what

finite real values the δ and γ take on, where ‖x‖ is the Euclidean norm of

x = (x1, x2, · · · , x9)′, so there is a geometrically ergodic stationary solution,

which is β-mixing with exponentially decaying mixing coefficient, for xt in

(3.46) (c.f., Lu (1998)). We will have the constants δ and γ taking on values

of 0 and 0.5, respectively, with the 4 pairs of which specified in Figures 1

and 2. Note that we can adjust δ and γ with non-zero values to change

the model with different degree of nonlinear structure or interaction. When

(δ, γ) = (0, 0), the xt process in (3.46) is a purely linear AR model; when

γ = 0 but δ 6= 0, it is an additive AR model, while γ 6= 0 leads to a model

with interaction between xkt = xt−k and x1t = xt−1, for k = 1, 2, · · · , 9. The

larger the value γ, the larger the deviation of the model from an additive

structure for xt.

By the assumption imposed on model (3.46), Yt given Xt := {xt−1, . . . , xt−9}
follows a Bernoulli distribution with probability pt, that is

[Yt|Xt] ∼ Bin(1, pt), (3.47)
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where Bin(·, ·) stands for a binomial distribution, and the probability pt is

defined as,

pt = P (Yt = 1|Xt) = P

(
9∑

k=1

g0k(xt−k) + εt > 0|Xt

)
= P

(
εt > −

9∑
k=1

g0k(xt−k)|Xt

)

= 1− F

(
−

9∑
k=1

g0k(xt−k)

)
= F

(
9∑

k=1

g0k(xt−k)

)
,

(3.48)

where F (z) = ez/(1 + ez), for z ∈ R1, is a logistic cumulative distribution

function. In the simulation below, we apply a logistic classification forecast-

ing based on the observations of (Yt, Xt).

The simulation consists of the data generated with the estimation sample

size set to be n = 500 and n = 1000, respectively, and a testing sample of size

of np = 50 for prediction evaluation. When generating the time series data,

in view of a necessary warming up step, we deleted the first 100 observations

every time from the (100+n+np) generated sample through the iterations for

xt in (3.46) with initial values taken to be zero. The simulation is repeated

100 times for each setting.

In this simulation, we let δ and γ take on values in {0, 0.5} each time to

represent different degrees of nonlinear structures and interactions in (3.46).

For the bandwidth used in our estimation, how to select optimal one for

forecasting is still an open question. We just simply applied the simplest

cross validation for the needed bandwidth in simulation. To evaluate the

forecasting, we apply the area under the curve (AUC) of receiver operation

characteristic (ROC), which is a popular criterion often used to evaluate the

performance of prediction for binary variable classification. The larger the

AUC, the better the model. The boxplots of the AUC values of 100 repeti-

tions with the testing sample of size np = 50 for different methods are plotted

in Figures 1 and 2 with estimation sample of size n = 500 and n = 1000, re-

spectively. The methods, in each panel, include ”MAMaLoR”, ”LLoR” and

”AddLoR” referring to the maximum likelihood estimation methods based

on model averaging marginal nolinear logistic model (proposed in this chap-

ter), linear logistic regression model and additive logistic model (via GAM),

respectively. In most practical applications with binary classification, we

can only observe (Yt, Xt) with Xt representing the past observations of xt,
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Figure 1: Boxplots of the area under curve (AUC) with 100 repetitions for
one-step ahead classification predictions, with np = 50 observations for testing,

of different methods under different true model structures (Top left: linear,
Top right: additive, Bottom left & right: nonlinear non-additive) based on

n = 500 observations for training.
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Figure 2: Boxplots of the area under curve (AUC) with 100 repetitions for
one-step ahead classification predictions, with np = 50 observations for testing,

of different methods under different true model structures (Top left: linear,
Top right: additive, Bottom left & right: nonlinear non-additive) based on

n = 1000 observations for training.
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rather than xt itself, but for the real data example with stock price below,

we can have the data of xt, and we have therefore, as a comparison, addi-

tionally consider the classification forecasting of Yt through Yt = I(xt > 0)

with forecasting of xt by the methods of ”MAMaR”, ”AR” and ”’AddR”

representing least squares estimations of nonlinear MAMaR model (Li et al.,

2015), pure AR model and additive model for xt, respectively. Note that the

latter three models are used to predict the value of xt directly and then we

convert it into prediction of binary Yt. Following from Figures 1 and 2, we

summarise our findings as follows.

(i) When the true models are additive (corresponding to γ = 0) as indicated

in the upper panels of Figures 1 and 2, we can see that the performances of

our proposed MAMaLoR method, though not the best, are basically com-

parable to those of the additive logistic (AddLoR) model in classification

forecasting in terms of the popular classification performance measure of

area under curve (AUC). Here if the true model is linear (corresponding to

δ = 0 and γ = 0), then, as expected, linear logistic (LLoR) model performs

the best in classification forecasting. Furthermore, it is interesting to note

that the LLoR method even performs better than the AddLoR in forecasting

when the true model is nonlinearly additive (corresponding to δ = 0.5 and

γ = 0) with the training sample size being n = 500 (shown in the upper

right panel of Figure 1); however, as the training sample size increases to

n = 1000, our proposed MAMaLoR method clearly becomes comparable to

both LLoR and AddLoR in performance of forecasting as shown in the upper

right panel of Figure 2.

(ii) When the true models are not additive (corresponding to γ 6= 0) as in-

dicated in the bottom panels of Figures 1 and 2, we can clearly see that the

performances of our proposed MAMaLoR method are the best among all

the six considered methods. Interestingly, our MAMaLoR method performs

much better than both LLoR and AddLoR methods in classification fore-

casting in both cases of n = 500 (bottom panel of Figure 1) and n = 1000

(bottom panel of Figure 2). Here the LLoR method performs the worst.

(iii) When comparing logistic regression based forecasting methods (MA-

MaLoR, LLoR, AddLoR) with other indirect least squares (auto)regression

based methods (MAMaR, AR, AddR) for classification, both classes of meth-

ods are basically correspondingly comparable when the true models are ad-

ditive. But our MAMaLoR method performs the best if the true models are
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Table 3.2: Parameters specified in Model (3.49)

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

0.0542 -0.0837 0.0578 -0.1336 -0.0152 -0.0042 -0.0286 0.0102 -0.0174 -0.0302 -0.0629
a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22

0.0258 -0.0207 -0.0266 -0.0375 0.0639 -0.0528 0.0615 -0.0508 0.1036 -0.0307 0.0785
a23 a24 a25 a26 a27 a28 a29 a30 a31

-0.0806 -0.0381 0.0755 0.0096 -0.0257 -0.0273 -0.0717 -0.0229 -0.0309

not additive, as indicated in both bottom panels of Figures 1 and 2, in par-

ticular the performance of our MAMaLoR method turns to be more viable

when the training sample size n becomes large for time series bigger data.

We now extend the number of lags considered in (3.46) to 31. We use

the following model along with the parameters summarised in Table 3.2 to

generate data for the simulation.

Yt = I(xt > 0),

xt =
31∑
k=1

g0k(xt−k) + εt,

g0k(xt−k) = akxt−k + δ exp(−kxt−k)/(1 + exp(−kxt−k)) + γ cos(xt−kxt−1),

(3.49)

where εt’s are i.i.d. following a logistic distribution, generated by εt =

log(et/(1− et)) with et having a uniform distribution over the interval (0, 1).

We use the parameters estimated by the linear AR model of 31 lags, i.e.,

AR(31), to the geometric return of Financial data of FTSE 100 Index, which

is introduced later in the application section below.

Here (3.49) has an analogue setting to (3.46). Similar to (3.46), Yt given

Xt := {xt−1, . . . , xt−31} follows a Bernoulli distribution with probability pt.

We then conduct the Monte-Carlo simulation with the estimation sample

size set to be n = 1000 and a testing sample of size of np = 50 for prediction

evaluation.

We focus on the settings of non-additive data structure in (3.49), where

δ = 0, γ = 0.5. The results are depicted in Figure 3. It is noted that GAM

model has been removed as it costed too much time to converge when facing

a high dimension of d = 31. The performances of the candidate models

are summarised as follows: (i) when the model is not additive (γ 6= 0), the



62

Figure 3: Boxplots of the area under curve (AUC) with 100 repetitions for
one-step ahead classification predictions of non-additive data, with np = 50
observations for testing, for lag = 31, based on n = 1000 observations for

training.

MAMaLoR model clearly outperforms the other candidate models in the

context of prediction power, confirmed by the highest AUC value; (ii) the

computational cost of MAMaLoR model are comparable to that for LLoR

and AR model, as it only increases in polynomial time when adding more

lags (i.e., enlarge the dimensionality d).

To conclude it, our proposed MAMaLoR method is flexible to deal with

binary-valued time series data with complex nonlinear and interaction struc-

tures. It is shown that MAMaLoR model can compete with other popular

models in prediction at a lower computational cost. It overcomes the “curse

of dimensionality” as one can easily add more predictor variables into the

model and the computational time is still in polynomial time . However,

when more and more predictor variable are added, we should take care to

select the relevant variable for prediction, which is beyond the scope of this

chapter and left for further study.
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Figure 4: The time series plot of volatility vt, log-volume Vt and geometric
return Gt defined in (3.50).

3.4.2 An application: forecasting market moving di-

rection of FTSE 100 index

In this section, we demonstrate practical advantages of our proposed MA-

MaLoR model by an application to forecasting market moving direction of

FTSE 100 Index data. The data set includes close price, cpt, the maximum

price maxpt and the minimum price minpt of the day, and the trading volume

V lmt for each day from 1 May 2013 to 1 May 2018, with 1263 observations.

We are concerned with whether the market price going up (Yt = 1) or not
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(Yt = 0) is determined by the factors of historical data, such as volatility,

volume and (geometric) return, which are defined, respectively, by

Yt =

{
1 if cpt − cpt−1 > 0

0 else,
(3.50)

vt = log(100
(maxpt −minpt)
1
2
(maxpt +minpt)

),

Vt = log(V lmt),

Gt = 100log(
cpt
cpt−1

).

The three series of volatility vt, log-volume Vt and geometric return Gt are

depicted in figure (4). Note that Yt = I(Gt > 0), with I(·) standing for an

indicator function.

In this example, we are interested in the one-step-ahead prediction of the

market (price) moving direction Yt by using the information of a range of

lags of all volatility, volume and geometric return to examine if they help

to improve the explanation or prediction of market direction. Each lagged

variable will be treated as a single predictor and then fed to the model.

To start with, we consider Xt = (vt−j, Vt−j, Gt−j, j = 1, 2, 3, 4) ,i.e., a short

lag of 4 and 3 ∗ 4 = 12 variables used in total, to predict Yt. The number of

lags will then be enlarged later to fully exploit the advantage of our proposed

MAMaLoR procedure. Though the selection of the lags is important in

prediction, we start with this arbitrary selected lag first. The training sample

we used is from the 1st observation to the 800th observation. Our evaluation

or testing sample for the prediction is the following 200 observations (801 to

1000) right after the training sample. Since Yt is binary, we are plotting the

Receiver Operating Characteristic (ROC) and computing Area Under the

Curve (AUC) to compare the performances (see Ballings et al. (2015)).

We first estimate the marginal logistic regressions fj(·)’s in (3.3) for the given

lagged volatility, volume and geometric return variables, respectively, with

a bandwidth of 0.5 applied for initial investigation.

We are comparing our MAMaLoR with the linear logistic (LLoR) and the

additive logistic (AddLoR) models in forecasting of Yt based on the lagged



65

information of Xt. As to the LLoR and AddLoR models, we use, respectively,

the GLM in R and the R package (gam) for the binomial family with logistic

link, with the s(.) functions that automatically specify a smoothing spline

fit for each component of Xt in the GAM model. For ease of statement, we

call the LLoR and the AddLoR models the GLM and the GAM below,

Figure 5: Marginal probability of significant variables in MAMaLoR model

Figure 6: Smooth function for significant variables in GAM model

Note that in general it is poor to estimate the probability of P (Yt = 1|Xt)

via a purely nonparametric logistic regression for such a high dimensional

case with Xt = (vt−j, Vt−j, Gt−j, j = 1, 2, 3, 4) of dimension d = 12 due to
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Table 3.3: Summary of MAMaLoR, GLM and GAM model fittings

MAMaLoR model GLM (LLoR) model GAM (AddLoR) model
Estimate Std. Error Pr(|z|) Pr(|z|) P-value

Intercept -0.7697 0.2001 0.000120 *** Intercept 0.496 Intercept 0.204
f1(vt−1) -0.1815 1.2192 0.881654 vt−1 0.632 s(vt−1) 0.7654
f2(vt−2) 0.7542 0.6624 0.254884 vt−2 0.460 s(vt−2) 0.2275
f3(vt−3) 0.7087 0.6118 0.246755 vt−3 0.237 s(vt−3) 0.0586 .
f4(vt−4) 0.9240 0.8155 0.257175 vt−4 0.835 s(vt−4) 0.6357
f5(Vt−1) 1.0364 1.2139 0.393246 Vt−1 0.580 s(Vt−1) 1.0000
f6(Vt−2) 0.4283 0.6882 0.533729 Vt−2 0.306 s(Vt−2) 0.1544
f7(Vt−3) 0.3587 0.7690 0.640865 Vt−3 0.918 s(Vt−3) 0.5899
f8(Vt−4) -0.6463 1.0239 0.527874 Vt−4 0.852 s(Vt−4) 1.0000
f9(Gt−1) 1.6064 0.4549 0.000413 *** Gt−1 0.147 s(Gt−1) 0.2821
f10(Gt−2) 1.2537 0.4592 0.006335 ** Gt−2 0.214 s(Gt−2) 0.0543 .
f11(Gt−3) 2.1436 0.7808 0.006042 ** Gt−3 0.268 s(Gt−3) 0.2892
f12(Gt−4) 1.1419 0.4337 0.008461 ** Gt−4 0.121 s(Gt−4) 0.0592 .

AIC 1062.1 AIC 1118.4 AIC 1095.604
Signif. codes: *** 0.001 ** 0.01 * 0.05 . 0.1

curse of dimensionality. We compare the performance of our MAMaLoR

model with both GLM and GAM in the forms detailed as follows:

MAMaLoR model:

logit(pt) = log
pt

1− pt
≈ α0 +

4∑
j=1

αjfj(vt−j) +
4∑
j=1

α4+jf4+j(Vt−j) +
4∑
j=1

α8+jf8+j(Gt−j),

(3.51)

where fj(vt−j) = logit(P (Yt = 1|vt−j)) for j = 1, 2, 3, 4 and f4+j(Vt−j) and

f8+j(Gt−j) defined similarly are pre-estimated, respectively, as in (3.10) and

then αj’s estimated, detailed in Section 3.1;

GLM model:

logit(pt) ≈ α0 +
4∑
j=1

αjvt−j +
4∑
j=1

α4+jVt−j +
4∑
j=1

α8+jGt−j, (3.52)

where αj’s are estimated by the GLM in R;

GAM model:

logit(pt) ≈ α0 +
4∑
j=1

gj(vt−j) +
4∑
j=1

g4+j(Vt−j) +
4∑
j=1

g8+j(Gt−j), (3.53)

where gj(·)’s are unknown functions estimated by GAM in R with the s(.)

functions specifying a smoothing spline fit.
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The fitting results of these models are summarised in Table 3.3. AIC is

widely applied for model selection. As an indicative only, by the AIC values

shown in this table, the MAMaLoR with the used bandwidth of h = 0.5

seems preferred to the GLM and the GAM. Here the selected bandwidth

of h = 0.5 is an indicative only for illustration - it appears to work well.

Also as shown, none of the GLM coefficients are significant at 5% level

of significance, while the GAM result seems to imply that almost all the

variables in model (3.53) are not useful in explaining the market direction

Yt except the components, vt−3, Gt−2 and Gt−4, the additive functions of

which are displayed in Figure 6. Differently, our MAMaLoR model appears

to show that the market direction Yt is significantly correlated to the lagged

geometric returns from t − 1 to t − 4 through marginal local linear logistic

(auto)regression estimates together with an intercept (see Figure 5 on the

estimated marginal probabilities of P (Yt = 1|Gt−j = xj) for j = 1, 2, 3, 4).

From the above analysis, it appears that one may conclude that the true

relationship between Yt and Xt is not linear. In particular, the MAMaLoR

model recognizes the relationship between the lags of the geometric return

Gt and the market index moving direction Yt, which appears reasonable

according to the way we set them, while the other models fail to provide

relevant information.

In addition, we notice from the MAMaLoR result in Table 3.3 that, though

all the lagged volatility and volume variables seem to be removed from our

model, it is possible that a longer range of lags of the geometric return would

still be significant and help to explain Yt. We have hence examined to deter-

mine the optimal number of lags for geometric return (Gt) in the MAMaLoR

model. The AIC value for each fit with different lags of geometric return is

plotted in Figure (7). It appears that the MAMaLoR model improves with

more lags, though the following lags of Gt after lag of 21 may not help a lot

in explaining Yt with the change of AIC being small from lag = 21 to lag

= 31. We have hence considered a lag order of 31 in our MAMaLoR model

fitting. By removing the insignificant lags of Gt in the model, we obtain

a new MAMaLoR model fitting result provided in Table 3.4 with a much

smaller AIC value of 968.74 than those in Table 3.3.

We have further compared the AUC values of the forecasting of the market

moving direction Yt based on the significant Xt identified by the above analy-

sis. The group ofXt = (Gt−1, Gt−3, Gt−8, Gt−11, Gt−13, Gt−14, Gt−15, Gt−16, Gt−17
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Figure 7: The aic of MAMaLoR model with different number of lagged Gt.

Table 3.4: MAMaLoR model after lag selection

MAMaLoR model
Estimate Std. Error Pr(|z|)

Intercept -1.9983 0.2612 2.01e-14 ***
Gt−1 1.7347 0.4848 0.000346 ***
Gt−3 2.4553 0.8163 0.002631 **
Gt−8 1.0010 0.3262 0.002150 **
Gt−11 1.6940 0.6218 0.006439 **
Gt−13 1.1286 0.4655 0.015320 *
Gt−14 1.1290 0.2811 5.93e-05 ***
Gt−15 3.0522 1.1383 0.007332 **
Gt−16 1.2039 0.3765 0.001384 **
Gt−17 1.5887 0.5373 0.003106 **
Gt−18 1.1873 0.5708 0.037528 *
Gt−21 1.2115 0.2944 3.87e-05 ***
Gt−28 2.1106 0.6844 0.002043 **
Gt−31 1.5785 0.8405 0.060367.

AIC 968.74
Signif. codes: *** 0.001 ** 0.01 * 0.05 . 0.1

, Gt−18, Gt−21, Gt−28, Gt−31) is identified by the MAMaLoR model given in Ta-

ble 3.4. The AUC values with the ROC curves for both MAMaLoR model

with and without bandwidth selection, and the corresponding GLM are in-

vestigated.

As is well known, financial return is notoriously difficult to predict, so it

is quite understandable that the predictive power of a model on financial
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Figure 8: The ROC curves for the MAMaLoR with selected bandwidth (h
given in Table 3.5) and the GLM models. Here the corresponding AUC values
for MAMaLoR 0.6041 with h selected, and for GLM it is 0.560, respectively.

Table 3.5: Bandwidth selected for the 13 significant variables given in
Table 3.4

Gt−1 Gt−3 Gt−8 Gt−11 Gt−13 Gt−14 Gt−15 Gt−16 Gt−17 Gt−18 Gt−21 Gt−28 Gt−31

h selected 0.2287426 0.5396938 0.8646845 0.8266905 1.4065888 1.1340509 1.8326259 0.3591425 1.3146497 0.9988872 1.3914061 1.8377243 1.8388175

return is basically very low with the AUC close to 0.5 for forecasting of

price moving direction under an efficient market hypothesis. In this sense, a

model that achieves AUC higher than 0.5 for forecasting of the price moving

direction is of interest, which indicates some kind of ability in forecasting

by the model. The ROC curves together with the AUC values are given

in Figure 8. It is clear that the performance of our proposed MAMaLoR

is better than that of GLM model in time series classification prediction,

which is promising. Recognising that the market direction may also be

influenced by other more factors, there is, henceforth, still a room for our

MAMaLoR model to improve its predictability by optimally choosing the

lagged information from more explanatory variables.

We comment that the performance of kernel based models, e.g., local linear

regression, may depend on the choice of bandwidth. For simplicity, as in

the simulation, we used the function h.select available in R package sm,

which is a direct estimation of pjt = E(Yt|xjt) based on cross validation, to

find the bandwidths for the 13 selected predictors given in Table 3.4. The

selected bandwidth h’s are summarised in Table 3.5, used for the MAMaLoR
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in Figure 8. Again it appears to work well although there is no theoretical

guarantee that these h’s selected are globally optimal for classification. We

leave the investigation of theoretically optimal bandwidth selection to the

future work.

3.5 Conclusion

In this chapter, a novel semi-parametric logistic model, namely MAMaLoR,

has been proposed to forecast binary time-series classification data with mix-

ing dependence. The consistency and asymptotic normality of the estimator

of averaging coefficients are established under mild conditions. A simulation

based numerical example is presented to show the strength of our proposed

model in forecasting. An application of our MAMaLoR model to forecast

of market moving direction of the FTSE100 financial data has further illus-

trated its power in time series classification forecasting by a comparison with

the GAM and GLM models. With more work by careful variable selection,

the performance of our proposed model would still improve, which is left for

future work. We hope this would contribute to further studies in semipara-

metric classification models in time series domain, with the future research

direction including variable selection and bandwidth selection in high and

ultra-high dimension case.



Chapter 4

Variable Selection in

Generalised Model Averaging

MArginal Regressions for

Discrete-Valued Time Series

To study the discrete-valued time series data of exponential family in high

and ultra-high dimensions, we propose the semiparametric model named a

‘Generalised Model Averaging MArginal Regression’ (GMAMaR) with the

variable selection technique called adapted LASSO. The procedure can be

viewed as a penalised model averaging method, where each nonparametric

and nonlinear marginal regression is estimated in the sense of Kullback-

Leibler distance. The asymptotic properties are established under mild

conditions for the time series observations that are of β-mixing property.

With the computational advantage of low dimensional regression, the GMA-

MaR model can avoid the ‘curse of dimensionality’. The adapted LASSO

technique, which can be viewed as a Lagrange penalty, then extracts the

important information, and therefore overcomes the problem of overfitting,

especially for relatively small size of data. The performance of the procedure

are supported by an application to FTSE 100 index data for market direction

forecasting compared with traditional Generalised Linear Model (GLM) and

popular machine learning technique Random Forest (RF).

71
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4.1 Introduction

With the development of modern technology, high-dimensional discrete-valued

time series data has been often faced in various disciplines, e.g., the binary

outcome of market performance in financial market and daily increase num-

ber of infected patients that follows the poisson or negative-binomial distri-

bution in epidemiology. However the accurate of such estimation tend to

deteriorate in high dimension due to the “curse of dimensionality” (Stork

et al., 2001). This is due to the computational costs that increase expo-

nentially with the covariate space. To overcome this drawback, Li et al.

(2015) have proposed a novel method for estimating unknown form of data

and forecasting the unknown future by conditional time series regression,

namely the Model Averaging MArginal Regression (MAMAR). Peng and

Lu (2021a) later extend the idea to the logistics regression where maximum

likelihood method is adopted. In this chapter, we further allow the discrete-

value time series to have a distribution in the exponential family that includes

the binomial distribution.

However, in many situations of practice, a further challenge for the regression

in high-dimensional is to avoid “poor generalisation ability”, i.e., overfitting,

especially when the data size is relatively small. With noncorrelated variables

included, the model will produce additional errors in estimation and it is hard

for people to understand the true important variables. The problem is, we

don’t know what variables to include and what to exclude based on human

experience.

The basic idea is to reduce the dimensionality via different tools and get rid of

the non-correlated variables. Traditional variable selection methods, such as

stepwise selection based on AIC (DeLeeuw, 1992) and BIC (Schwarz et al.,

1978) have a number of drawbacks as discussed in Breiman et al. (1996)

and Fan and Li (2001). LASSO method (Tibshirani (1996) and Tibshirani

(1997)), instead, applies a L1-penalty to the conventional logistic regression

model, such that the model would shrink in order to force useless variables

to be estimated with close-to-zero coefficients, and yields the consistent esti-

mator under mild conditions shown in Zou (2006) and Zhao and Yu (2006).

In particular, Zou (2006) has improved the conventional LASSO technique

to adaptive LASSO by assigning different weights to different interactions

and proved the validity of the “Oracle Property”. Thus the collinearity
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of parameters does not change the degree of fitting, and the sample size

gives no restriction on the number of parameters. As a consequence, when

the sample size is rather small, or when it comes to higher dimension, the

adapted penalisation method could improve the stability of the estimation.

Further state-of-art studies, such as the extension of adaptive LASSO in

spatial models, can be referred to Al-Sulami et al. (2019).

To conclude, there are several advantage of using penalisation model:

• When dealing with the interaction of multiple factors, the number of

parameters would be very large. However, the penalisation could esti-

mate the coefficients in a better way.

• In the case of which dummy variables are included into the model, the

problem of collinearity may arise. Adapted LASSO method, however,

overcome this problem and thus can be used to analyse high dimensional

data.

The aim of this chapter is thus to apply the adapted LASSO technique to the

novel discrete-valued time series model, namely the Generalised Marginal

Moving Average Regression (GMAMaR), for data of unknown forms and

under the data dependence of a so-called β-mixing condition. The model

aims to extract important information of covariates from high and ultra-

high data. We will also show in numerical examples that our GMAMaR

model with variable selection can work better in forecasting than traditional

generalised linear model (GLM)(McCullagh and Nelder, 1989) with logistic

regression and also popular machine learning method, namely, the Random

Forest (RF)(Liaw and Wiener, 2002).

The remaining of chapter is structured as follows. In Section 2, we first in-

troduce our Generalised Marginal Moving Average Regression (GMAMaR)

for the discrete-valued time series that have a distribution of the exponen-

tial family. The adapted LASSO penalty is then added to the GMAMaR

model as the Lagrange multiplier. The estimation of GMAMaR model is

illustrated in Section 3, where the detail of the computational algorithm for

the penalised model is also provided. Theoretical results for the asymptotic

properties are then given in Section 4. In Section 5, the numerical exam-

ple of an application of the binomial distribution to forecasting the market

price moving direction of FTSE 100 index will be given. Conclusions are

summarised in Section 6. All the proofs are relegated to the Appendix.
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4.2 Generalised model averaging marginal non-

linear regressions

Consider a β-mixing (stationary) time series process (Yt, X
T
t ) with Yt the

discrete-valued response variable at time t that has a distribution in the

exponential family and Xt = (x1t, ..., xdt)
T a d-dimensional covariate series

representing the available information up to time t−1 with possibly also the

lagged terms. The dimension d may be rather large in practice.

A well known difficulty, namely the “curse of dimensionality”, means that a

direct nonparametric or semiparametric estimation may perform very poor

in computation when d is large, e.g., d > 3. For instance, the computational

cost of Generalised Additive Model (GAM)(Hastie and Tibshirani, 1990) is

large and it is difficult to converge for small sample size. We therefore sug-

gest the semiparametric procedure, namely Generalised Model Averaging

nonlinear Marginal Regressions (GMAMaR), by extending the model aver-

aging idea of Li et al. (2015). The model involves estimating the marginal

probability of Yt given each covariate xjt first, and then combining all the

marginal information by model averaging. Due to the cheap computation of

one-dimensional nonparametric estimation, the “curse of dimensionality” is

thus avoided.

To avoid overfitting, we further apply the adapted LASSO technique (c.f.

Zou (2006)) that improves the conventional LASSO method with “oracle

property”, i.e., asymptotic properties, to our proposed GMAMaR model. By

forcing the coefficients of uncorrelated covariates to be zero, the important

information is thus extracted. This is introduced at the end of this section.

4.2.1 Semiparametric procedure

The genetic form of density function of exponential family can be given:

mY (Yt;θt) = exp(Ytθt − ψ(θt) + Ψ(Yt,Θ)), (4.1)

where Θ is a known parameter, Ψ(·) and ψ(·) are known functions for a

particular distribution family, and θt is the canonical parameter depending

on the given information in Xt, which can also be expressed by a link function
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η(µt). Here µt is the conditional mean µt = E(Yt|Xt) that is to be estimated.

So the regression problem is to estimate the conditional expectation for the

discrete-value time series:

µt = E(Yt|Xt) = ψ′(θt), (4.2)

where ψ′(·) stands for the first order derivative of ψ(·). For a specific dis-

tribution, (ψ′)−1(·) = η(·) is a known canonic link function, which is the

inverse function of ψ′(·). We then consider the approximation of µt with the

one-dimensional marginal information as follows:

θt = η(µt) = (ψ′)−1(µt) ≈ α0 +
d∑
j=1

αjη
−1(E(Yt|xjt)) ≡ θt(α), (4.3)

where E(Yt|xjt) is the one-dimensional conditional mean to be estimated

based on j-th covariate xjt, and α = (α0, . . . , αd) are the unknown coeffi-

cients also to be estimated. For the ease of presenting, we defer the detail of

estimations later in Section 3. Here α can be seen as the weights assigned

to different marginal estimations, and thus this procedure can be viewed as

a model averaging, detailed as follows.

The marginal conditional mean based on the j-th component (xjt) can be

defined as follows:

µjt = E(Yt|xjt), j = 1, ..., d. (4.4)

The generalised marginal nonparametric regression can be expressed as:

η(µjt) = fj(xjt), (4.5)

where fj(xjt) is a nonlinear function of xjt, and we have:

µjt = η−1(fj(xjt)). (4.6)

By combining the one-dimensional marginal regressions, we can re-write (4.3)

as follows:
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θt = η(µt) ≈ α0 + α1η(µ1t) + ...+ αdη(µdt)

= α0 + α1f1(x1t) + ...+ αdfd(xdt) ≡ fMA
t ≡ θt(α), (4.7)

Denote It−1 all the information up to time t − 1 about time series Yt. In

the MAMAR procedure of Li et al. (2015), they estimate E(Yt|It−1) by

α0 +
∑d

j=1 αjE(Yt|xjt) in terms of L2 distance, that is E{E(Yt|It−1)− α0 −∑d
j=1 αjE(Yt|xjt)}2 is minimised with respect to α = (α0, α1, ..., αd). Here,

we estimate the regression (4.7) and (4.3) in terms of the Kullback-Leibler

distance (KL-distance), that is a natural distance function from a “true”

distribution, to a “target” distribution.

KL = 2
n∑
t=1

Eyt{log(m(Yt; θt))} − log(m(Yt; θt(α))), (4.8)

The KL-distance is minimised with respect to α, and we denote this (true)

minimiser by α(0). We hence need to estimate the minimiser by maximum

likelihood estimation given below:

α̂∗(n) = arg maxL(α, f0)

=
1

n

n∑
t=1

[
Yt(α0 +

d∑
j=1

αjfj(xjt))− ψ(α0 +
d∑
j=1

αjfj(xjt)) + Ψ(Yt,Θ)

]
,

(4.9)

where α̂∗(n) is defined similarly with estimated elements of f0(·) = (f1(·), . . . , fd(·))T .

4.2.2 Adapted LASSO

Recall the log-likelihood function (4.9), which is equivalent to

L(α, f0) =
n∑
t=1

[{Yt(α0 +
d∑
j=1

αjfj(xjt))} − ψ(α0 +
d∑
j=1

αjfj(xjt)) + Ψ(Yt,Θ)],

(4.10)
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where α = (α0, . . . , αd) is to be optimised in order to find the maximum

L. The idea is thus to penalise the coefficients of non-correlated variables

to be zero. It is equivalent to multiply the coefficients by a weight factor.

To formulate it combined with our original model, we use the Lagrange

Multiplier method and obtain the estimation α̂, viz:

α̂ = arg min
α
−L+ λn

d∑
j=1

Ej|αj|, (4.11)

where the vector E = (E1, · · · ,Ed)T = 1
|α̂∗(n)|ι , standing for Ej = 1

|α̂∗(n)j |ι

component-wisely, for ι > 0. and α̂∗(n) = (α̂
∗(n)
1 , · · · , α̂∗(n)

d )T is a
√
n consis-

tent estimator to the true parameter α∗, e.g., an MLE that maximises the

log-likelihood L as defined in (4.10) with estimated fj(·)’s. The Lagrange

Multiplier coefficient λn can vary with n.

We then formulate the estimation problem of α̂ by minimising the penalised

log-likelihood estimation function with estimated fj(·)’s:

α̂ = arg min R̂(α)

=
n∑
t=1

[{−Yt(α0 +
d∑
j=1

αj f̂j(xjt))}+ ψ(α0 +
d∑
j=1

αj f̂j(xjt))−Ψ(Yt,Θ)]

+ λn

d∑
j=1

Êj|αj|, (4.12)

where f̂j(·)’s are the one-dimensional marginal estimators, which are made

by local linear maximum likelihood fitting based on (4.6). Details of the

ideas above for estimation are given below.

4.3 Estimation of penalised GMAMaR

In this section, the estimation of the GMAMaR procedure is divided into two

stages. In the first stage, we aim to estimate the one-dimensional nonpara-

metric function fj(xjt). This unknown function is allowed to be nonlinear,

and estimated based on data given. Then, with estimated f̂j(xjt)’s on hand,

we can replace fj(xjt)’s in (4.7), and treat the semiparametric estimation
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problem as a weighted linear regression with links to exponential family.

The penalised coefficients, e.g., α̂ in (4.12), as well as the Lagrange Mul-

tiplier λn can be estimated with computational algorithm that requires the

estimation of f̂j(xjt) and α̂∗(n), which is then introduced at the end of this

section.

4.3.1 Estimating f̂j(xjt)

As fj(xjt)’s are unknown, we need to estimate them first. Here nonparamet-

ric method can be used to estimate the marginal probability µjt = E(Yt|xjt).
In this chapter, we suggest applying maximum likelihood local linear fitting

(c.f., Fan et al. (1998a) and Peng and Lu (2021b)) for the estimation of fj(·)
in (4.7) as it is one-dimension, and Yt given xjt follows exponential family

distribution. The conditional local log likelihood is thus given by:

`h,x(µjt;Yt) =
n∑
t=1

logmYt(Yt, θjt)kh(xjt − xj0), (4.13)

where Kh(·) = h−1K(·/h) with K(·) is the kernel function on R1, h is the

bandwidth appropriately selected, and µjt = E(Yt|xjt) = ψ′(θjt) is the ex-

pected probability to be estimated.

Note that by taking the Taylor Expansion of fj(xjt) at an arbitrary point

xj0 given it is differentiable, and knowing xjt that is in the neighbourhood

of xj0, we can give its approximation (fj(xj0)) as follows:

fj(xjt) ≈ fj(xj0) + f ′j(xj0)(xjt − xj0)

≡ β1 + β2(xjt − xj0), |xjt − xj0|≤ h. (4.14)

The estimation of fj at xj0 as the intercept β̂1 in (4.14) is relatively easy as

it can be viewed as a weighted linear regression. By letting xj0 go through

each points in xjt, we thus have the marginal estimation f̂j(xjt).
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4.3.2 Estimating α̂∗(n)

Now we can try to estimate the coefficients α in (4.9) together by replacing

the fj(xjt)’s with f̂j(xjt)’s:

L̂(α) =
1

n

n∑
t=1

[
Yt(α0 +

d∑
j=1

αj f̂j(xjt))− ψ(α0 +
d∑
j=1

αj f̂j(xjt)) + Ψ(Yt,Θ)

]
.

(4.15)

To avoid the impacts of the poor estimate of fj(·)’s at extreme values, e.g.,

where the values of xjt are near the boundaries, we improve the estimation

procedure in (4.15) by adding a weight function w(Xt) =
∏d

j=1 I(c0j≤xjt≤c1j)

controlling the edge effects in the estimation with I(·) being an indicator

function with c0j < c1j appropriately chosen:

Ln(α) = Ln(α, f̂(·)) =
1

n

n∑
t=1

{Yt(α0 +
d∑
j=1

αj f̂j(xjt))

− ψ(α0 +
d∑
j=1

αj f̂j(xjt)) + Ψ(Yt,Θ)}w(Xt), (4.16)

with the population (expected) log-likelihood function:

L(α, f0(·)) ≈ E[Yt(α0 +
d∑
j=1

αjfj(xjt))

− ψ(α0 +
d∑
j=1

αjfj(xjt)) + Ψ(Yt,Θ)]w(Xt), (4.17)

where f0(·) = (f1(·), . . . , fd(·))T and f̂(·) is defined similarly with estimated

elements. In practice, c0j and c1j may be chosen to include all observations,

or as 0.1 and 0.9 quantiles of the sample xjt, t = 1, 2, · · · , n, if there are

extreme outliers. These poor estimates of fj(xjt) are thus removed from the

estimation of α.
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From the computational perspective, with f̂j(xjt) known, equation (4.7) can

be viewed as a generalised linear regression, which means we can apply rele-

vant technique and algorithm developed. Therefore our GMAMaR procedure

is easy to implement in computation.

4.3.3 Estimating λn and α̂

Recall that the estimation of α̂ can be reached by solving the minimization

problem of (4.11). Without the penalty term, the objective function of

this minimization problem is thus the log-likelihood part of R(α), which is

equivalently to (4.16):

L(α) =
n∑
t=1

{−Yt(α0+
d∑
j=1

αjfj(xjt))+ψ(α0+
d∑
j=1

αjfj(xjt))+Ψ(Yt,Θ)}w(Xt).

(4.18)

We can also write the gradient of the objective function as follows:

G(α) =
n∑
t=1

[Yt − ψ′(α0 +
d∑
j=1

αjfj(xjt))]χ̃t(f0)w(Xt), (4.19)

where χ̃t(f0) = (1, f1(x1t), . . . , fd(xdt)).

Notice that both the log-likelihood function and its gradient function are

hard to be solved in a close form. Thus we will use the computer software

to tackle the problem more efficiently. Here, a computational procedure is

developed to find out the best estimation that maximize the likelihood.

(The algorithm for the GMAMaR model with adapted LASSO)

1. Solve the GMAMaR model to get the initial estimation set: α̂∗(n)

2. Compute the weight of adaptive LASSO: Êj = 1

|α̂∗(n)j |ι
, here ι > 0 can

be chosen as 1 for simplicity;

3. Define f̃j(xjt) = fj(xjt)/Êj, for j = 1, ..., d;

4. Solve the LASSO model for all λn that are considered by tackling the

following minimisation problem:
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α̂∗∗(λn) = arg min
α

n∑
t=1

{[−Yt(α0 +
d∑
j=1

αj f̃j(xjt))]

+ ψ(α0 +
d∑
j=1

αj f̃j(xjt))−Ψ(Yt,Θ)}w(Xt) + λn

d∑
j=1

Êj|αj|,

(4.20)

where we use the lbfgs package in R (Coppola and Stewart, 2014),

which would handle the adaptive LASSO problem by treating it as an

optimization problem of the log likelihood function (4.18) plus the L1

norm penalisation;

5. Compute the adaptive LASSO estimation: α̂∗ = α̂∗∗/Êj, for j =

1, ..., d;

6. Define the best estimation α̂∗(λ∗n) and choose the best penalisation

coefficient λ∗n by finding the minimum BIC value:

BIC(λn) =
n∑
t=1

{[Yt(α0 +
d∑
j=1

αjfj(xjt))]

− ψ(α0 +
d∑
j=1

αjfj(xjt)) + Ψ(Yt,Θ)}w(Xt) + klog(λn)/λn,

(4.21)

where k 6= 0 is the number of parameters estimated by the model;

7. Output α̂∗(λn) and λ∗n.

8. In a more general setting, we can also tune the parameter ι and repeat-

ing step 3− 7 to find out the best pair (α̂∗, λ∗n, ι∗).

4.4 Asymptotic properties

In this section, we are going to present the asymptotic properties, namely

the uniform consistency and asymptotic normality, of the proposed penalised

GMAMaR procedure.

Since the non-correlated estimations are penalised to (near) zero in our es-

timation, with α∗ denoting d-dimensional vector of true estimations, we
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denote α∗1 to be d0-dimensional vector of non-zero true parameters and α∗2

to be (d− d0)-dimensional vector of zero true parameters.

α∗ =

[
α∗1

α∗2

]
=

[
α∗1

0

]
.

Consider the true model with sparse representation. Let A = {j : α∗j 6= 0} =

{1, ..., d0}, and d0 < d. We can write the Fisher information matrix:

I =

[
I11 I12

I21 I22

]
.

where I11 is a d0 × d0 matrix. Then l11 is the Fisher information with the

true sub-model known. We would like to show that under mild conditions

as listed in the following assumption 4.1, the adaptive LASSO estimation of

GMAMaR model satisfies the following theorems.

Assumption 4.1. 1. (i) We assume (Yt, Xt) (Yt has a distribution in

the exponential family) is β-mixing with the mixing coefficient β(t) =

O(t−b) for some b > max(2(ρr + 1)/(ρr − 2), (r + a)/(1 − 2/ρ)) with

a ≥ (rρ − 2)r/(2 + rρ − 4r); (ii) the joint probability density function

gXt1 ,···,Xts (x1, · · · , xs) is bounded uniformly for any t0 < t1 < · · · < ts

and 0 ≤ s ≤ 2(r − 1); (iii) E|Xt|ρr< ∞ for some real number ρ >

4− 2/r, where r ≥ 1 is some positive integer.

2. (i) The bandwidth h = hn satisfies the conditions limn→∞ h = 0 and

lim infn→∞ nh
2(r−1)a+(ρr−2)

(a+1)ρ > 0 for some integer r ≥ 3; (ii) There exists a

sequence of positive integers sn →∞ such that sn = o((nh)1/2), ns−bn →
0 and snh

2(ρr−2)
[2+b(ρr−2)] > 1 as n→∞; (iii) nh4 = o(1) as n→∞.

3. The weight function w(Xt) =
∏d

j=1 I(c0j≤xjt≤c1j) with c0j < c1j is appro-

priately chosen, where I(·) is an indicator function.

4. We define f0(·) = (f1(·), ..., fd(·))T the vector of the true conditional

regression functions, fj(·)’s, which have continuous and bounded second

order derivatives.

5. We assume under the true parameter α∗, E[∂L(α∗;f0)
∂αj

] = 0, where L(α; f)

is defined in (4.9). The Fisher information matrix at α = α∗, I(α∗) =

E[∂L(α∗;f0)
∂α

][∂L(α∗;f0)
∂α

]T , is finite and positive definite.
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6. There is an sufficient large enough open subset f that contains α∗(true

parameter) ,such that ∀α ∈ f, there exists a finite function ψjks =

Eα∗ [Sjks(X)] <∞:

| ∂L(X,α)

∂αj∂αk∂αs
|≤ Sjks(X), (4.22)

where this S is the upper bound uniformly with respect to α.

Remark. Note that Assumption 1 gives the weak dependency of time series,

which is β-mixing (Fan and Yao, 2003), (Lu et al., 2007). Assumption 2 is

standard in time series topics (Fan et al., 2003), (Lu et al., 2007). The edge

effect is controlled by Assumption 3, which removes the extreme estimates

around the boundaries of Xt, in order to improve the practical performance

of the estimation (c.f. Fan et al. (1998b), Fan et al. (2003) and Lu et al.

(2007)). Assumption 4 gives the smoothness conditions on the conditional

density and regression functions. Assumption 5 and Assumption 6 are often

adopted in conventional models to guarantee asymptotic normality of the

maximum likelihood estimates (Fan and Li, 2001).

Theorem 4.2. Let above Assumptions hold. Suppose λn√
n
→ 0 and λnn

(ι−1)/2 →
∞. Then there exist a global minimizer α̂ of the objective function R̂(α) de-

fined in (4.12) such that ‖α̂ − α∗‖= Op(
1√
n
), where α∗ is the parameter

under true model.

Proof. Recall A = {j : α∗j 6= 0} = {1, ..., d0} (say, without loss of generality),

and d0 < d. Note that Ej = 1
|α̂∗j |ι

with α̂∗j ≡ α̂
∗(n)
j the pre-estimator root-n

consistent to αj. Let cn = 1√
n
. Recall L(·; ·) is log likelihood function defined

in (4.10) and R̂(·) is penalised likelihood function defined in (4.12). Then if

the global minimum of R̂(·), α̂, satisfies ‖α̂−α∗‖= Op(
1√
n
), it equivalently

belongs, with probability tending to 1, in the ball A = {α∗ + cnδ : ‖δ‖≤ ξ},
which is centred around α∗ with radius cnδ. Here ‖.‖ is the L2 Euclidean

norm, and ξ is a large constant.

First note by the uniform consistency of the f̂j(·) to fj(·) over any compact

set (c.f., Theorem 2 of Chapter 2 (Peng and Lu, 2021b)), we can re-write

the objective function R̂(·) in (4.12) that satisfies R̂(α) = (1 + oP (1))Rn(α)

uniformly w.r.t. α ∈ A0 = {α∗ + c1δ : ‖δ‖≤ ξ} (c.f., Lu et al. 2007) with
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Rn defined below. Now we can examine Rn as follows.

Rn(α∗ + cnδ) =
n∑
t=1

{−Yt(α∗0 +
d∑
j=1

(α∗j + cnδ)fj(xjt))}w(Xt)

+
n∑
t=1

{ψ(α∗0 +
d∑
j=1

(α∗j + cnδ)fj(xjt)) + Ψ(Yt,Θ)}w(Xt)

+ λn

d∑
j=1

Ej|α∗j + cnδ|, (4.23)

and

Rn(α∗) =
n∑
t=1

{−Yt(α∗0 +
d∑
j=1

(α∗j )fj(xjt))}w(Xt)

+
n∑
t=1

{ψ(α∗0 +
d∑
j=1

(α∗j )fj(xjt)) + Ψ(Yt,Θ)}w(Xt) + λn

d∑
j=1

Ej|α∗j |.

(4.24)

Denote Mn(δ) = Rn(α∗ + cnδ)−Rn(α∗). By Tylor’s expansion, we have:

Mn(δ) = Rn(α∗ + cnδ)−Rn(α∗)

= −
[
cn[
∂L(α∗; f0)

∂α
]Tδ +

1

2
δT
∂2L(α∗; f0)

∂α∂αT
δc2

n{1 + op(1)}
]

+ λn

d∑
j=1

Ej{|α∗j + cnδ|−|α∗j |}, (4.25)

where L(α∗; f0) is the true log likelihood function (4.10).

For simplicity, we denote:

Mn(δ) = A1 + A2 + A3, (4.26)

with

A1 = −
n∑
t=1

[(Yt − ψ′(f0,α
∗))]cnχ̃t(f0)Tδw(Xt), (4.27)

A2 =
n∑
t=1

1

2
[ψ′′(f0,α

∗)δT χ̃t(f0)χ̃t(f0)Tδ]c2
nw(Xt){1 + op(1)}, (4.28)
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A3 = λncn

d∑
j=1

Ejc
−1
n (|α∗ + cnδ|−|α∗|), (4.29)

where ψ′(f0,α
∗) = ψ′(α∗0 +

∑d
j=1 α

∗
jfj(xjt)) is the first order derivative of

ψ(α∗0 +
∑d

j=1 α
∗
jfj(xjt)) , ψ′′(f0,α

∗) = ψ′′(α∗0 +
∑d

j=1 α
∗
jfj(xjt)) is the second

order derivative of ψ(α∗0+
∑d

j=1 α
∗
jfj(xjt)) and χ̃t(f0) = (1, f1(x1t), . . . , fd(xdt)).

Now we present the asymptotic limit for each term stated above.

Recall the objective function Rn(·) in (4.12) and α∗ is the true parameter

that minimises the objective function EL(α; f0). We then observe its first

order derivative A1, viz:

E[(Yt − ψ′(f0,α
∗))χ̃t(f0)Tδ]w(Xt) = 0,

and

V ar[(Yt − ψ′(f0,α
∗))χ̃t(f0)Tδw(Xt)] = E[ψ′′(f0,α

∗)δT χ̃t(f0)χ̃t(f0)Tδw(Xt)]

= V (α∗).

By applying central limit theorem, we have 1√
n

∑n
i=1(Yt−ψ′(f0,α

∗))χ̃t(f0)Tw(Xt) =

Op(1), and hence A1 = A1/(cn
√
n)

d−→ −δTN(0,V (α∗)). We then have:

A1 = Op(
√
ncnξ) = Op(nc

2
nξ). (4.30)

For A2, similarly we have:

E[ψ′′(f0,α
∗)χ̃t(f0)χ̃t(f0)T ]w(Xt) = I(α∗),

A2 =
1

nc2
n

A2
p−→ 1

2
δTI(α∗)δ,

and

A2 = Op(nc
2
nξ

2). (4.31)
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ForA3, if α∗j 6= 0 for j ∈ A, then Ej = 1
|α̂∗j |ι
→ 1
|α∗j |ι

and c−1
n (|α∗j+cnδj|−|α∗j |)→

δjsgn(α∗j ). Thus we have:

λncn
∑
j∈A

Ejc
−1
n (|α∗j+cnδj|−|α∗j |) = λncn

∑
j∈A

δjsgn(α∗j )OP (1) = OP (λncnξ)
p−→ 0

for any ‖δ‖≤ ξ because λncn = O(λn/
√
n) → 0 by the assumption of this

theorem.

If α∗j = 0 for j ∈ Ac, then c−1
n (|α∗j + cnδj|−|α∗j |) = |δj| and |c−1

n α̂∗j |= Op(1)

by the root-n consistency of the pre-estimator α̂∗j . Hence

λncnEjc
−1
n (|α∗j+cnδj|−|α∗j |) = λncnEj|δj|= λncnc

−ι
n (|c−1

n α̂∗j |)−ι|δj|= λncnc
−ι
n |δj|OP (1),

which tends to +∞ in probability if δj 6= 0 for some j ∈ Ac, and is equal to

zero otherwise, because λncnc
−ι
n = O(λnn

(ι−1)/2)→∞ by the assumption of

this theorem.

Hence by choosing a sufficiently large ξ, we have:

A3 = λncn

(∑
j∈A

Ejc
−1
n (|α∗j + cnδj|−|α∗j |) +

∑
j∈Ac

Ejc
−1
n (|α∗j + cnδj|−|α∗j |)

)
,

(4.32)

which tends to +∞ in probability if δj 6= 0 for some j ∈ Ac, and zero

otherwise.

Thus, from (4.30), (4.31) and (4.32), Mn() = Rn(α∗ + cnδ) − Rn(α∗) =

A1 + A2 + A3, which tends in distribution to M(δ) ≡ −δTN(0,V (α∗)) +
1
2
δTI(α∗)δ and is of the order Op(nc

2
nξ

2) = Op(ξ
2), for any ‖δ‖≤ ξ with all

δj = 0 for j ∈ Ac, and tends to +∞ for any ‖δ‖≤ ξ with some δj 6= 0 for

j ∈ Ac.

Note that α̂ minimises R̂(α) = Rn(α)(1 + oP (1)). If α̂ is not within {α∗ +

cnδ : ‖δ‖≤ ξ}, that is α̂ is in {α∗ + cnδ : ‖δ‖≥ ξ}, then, owing to convexity

of Rn(α), α̂ must be on {α∗ + cnδ : ‖δ‖= ξ}, with probability tending to

one.

When ‖δ‖= ξ holds, by noticing that Mn(δ) = A1 + A2 + A3 and A2 ≥ 0 is

the largest term (it is bounded by ξ2, while A1 is bounded by ξ and ξ is a

large constant), we have inf‖δ‖=ξ Rn(α∗ + cnδ) ≥ Rn(α∗).
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Thus,

P (
√
n|α̂−α∗|> ξ) = P (α̂ /∈ A) ≤ P (inf

δ∈U
Rn(α∗ + cnδ) ≤ Rn(α∗))→ 0,

and this completes the proof.

Now we would like to introduce the following theorem of the consistency of

estimation.

Theorem 4.3. (Consistency) Let above Assumptions hold. Suppose λn√
n
→

0, pick a ι > 0 and λnn
(ι−1)/2 → ∞. Let α1 be d0-dimensional non-zero

vector of all α1
j such that j ∈ A. and α2 be d − d0-dimensional zero vector

of all α2
j such that j ∈ Ac Then the non-correlated variables are estimated to

zero with probability tending to one:

P (α̂2 = α∗2 = 0)→ 1 as n→∞.

Proof. Recall that A = {j : α∗j 6= 0}. Now we define Â = {j : α̂j 6= 0}. If we

have ∀j ∈ A,P (j ∈ Â) → 1, then it suffices to show that ∀j′ ∈ Ac, P (j′ ∈
Âc)→ 0.

Denote by E2 the part of E = (E1, · · · ,Ed)T corresponding to Ej’s with

j ∈ Ac, where Ac stands for the complement of A, and componentwise

operations apply where easily seen. We now consider j′ ∈ Â by taking the

derivative of R̂(α) with respect to α2 and use the Taylor expansion, viz:

∂R̂(α̂)

∂α2
= −∂L(α̂)

∂α2
+ λnE

2sgn(α̂2)

= −∂L(α∗)

∂α2
− ∂2L(α∗)

∂α2∂α2T
(α̂2 −α∗2){1 + op(1)}+ λnE

2sgn(α̂2)

= B1 +B2 +B3, (4.33)

with

1√
n
B1 = −

n∑
t=1

[(Yt − ψ′(ft,Ac , α̂2)]χ̃t,Ac(f0)w(Xt)
1√
n
{1 + op(1)}, (4.34)
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where ft,Ac and χ̃t,Ac(f0) stand for the components of ft and χ̃t(f0) corre-

sponding to index j ∈ Ac,

1√
n
B2 =

1

n

n∑
t=1

[ψ′′(ft,Ac , α̂
2)χ̃t,Ac(f0)χ̃t,Ac(f0)T ]w(Xt)

×
√
n(α∗2 − α̂2){1 + op(1)}, (4.35)

1√
n
B3 =

1√
n
λnE

2sgn(α̂2). (4.36)

By the law of large number and central limit theorem, 1√
n
B1

d−→ N(0, I22)

and 1
n

∑n
t=1 ψ

′′(ft,Ac , α̂
2)χ̃t(ft,Ac)χ̃t(ft,Ac)

T P−→ I22. Hence B1 and B2 are of

order Op(
√
n).

B3 term is of order n
1
2Op(a

∗
n), where, under adaptive weights of E, a∗n =

λnE
2sgn(α̂2)/

√
n = λnn

(ι−1)/2sgn(α̂2), which tends to zero or∞ component-

wisely, depending on α̂2 = 0 or not component-wisely, by the assumption of

this theorem.

Hence ∂R̂(α̂)
∂α2 = B1+B2+B3, for which 1√

n
∂R̂(α̂)
∂α2 should be finite in probability

(as α̂ is the minimiser of R̂(α)), is determined by the sign of α̂2. So we have

P (α̂2 = α∗2 = 0)→ 1 as n→∞.

Theorem 4.4. (Asymptotic Normality) Let above Assumption hold. Sup-

pose λn√
n
→ 0 and λnn

(ι−1)/2 →∞. Then
√
n(α̂1 −α∗1)

p−→ N(0, I−1
11 ).

Proof. Recall that A = {j : α∗j 6= 0}. There exists a global minimiser of the

objective function R̂(α), which is as same as the minimiser of R̂(α1), viz:

∂R̂(α1)

∂α1
|{α1=α̂1}= 0.

By taking Taylor expansion, we have:

∂R̂(α̂)

∂α1
= C1 + C2 + C3, (4.37)
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with

1√
n
C1 = −

n∑
t=1

[(Yt − ψ′(ft,A, α̂1)]χ̃t,A(f0)w(Xt)
1√
n
{1 + op(1)}

= −
n∑
t=1

[(Yt − ψ′(ft,A,α∗1)]χ̃t,A(f0)w(Xt)
1√
n
{1 + op(1)}, (4.38)

where ft,A and χ̃t,A(f0) stand for the components of ft and χ̃t(f0) correspond-

ing to index j ∈ A,

1√
n
C2 =

1

n

n∑
t=1

[ψ′′(ft,A, α̂
1)χ̃t(f0)χ̃t(f0)T ]w(Xt)

×
√
n(α∗1 − α̂1){1 + op(1)}

=
1

n

n∑
t=1

[ψ′′(ft,A,α
∗1)χ̃t(f0)χ̃t(f0)T ]w(Xt)

×
√
n(α∗1 − α̂1){1 + op(1)}, (4.39)

1√
n
C3 =

1√
n
λnE

1sgn(α̂1). (4.40)

For C1,

E[(Yt − ψ′(ft,A,α∗1))χ̃t,A(f0)w(Xt)] = 0,

and

V ar[(Yt − ψ′(ft,A,α∗1))χ̃t,A(f0)w(Xt)]

= E[ψ′′(ft,A,α
∗1)χ̃t,A(f0)χ̃t,A(f0)Tw(Xt)] =: I11(α∗1).

For C2, similarly we have:

1

n

n∑
t=1

[ψ′′(ft,A,α
∗1)χ̃t,A(f0)χ̃t,A(f0)Tw(Xt)]

p−→ I11(α∗1).

For C3, when n → ∞, λnE
1sgn(α̂1) = λnE

1sgn(α∗1){1 + op(1)}. Also we

know that 1√
n
C3 = OP (λn/

√
n)→ 0 by the assumption of this theorem.
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Therefore:

0 = − 1√
n

n∑
t=1

[(Yt − ψ′(ftj, α̂1)]χ̃t(ftj)w(Xt)

+
1

n

n∑
t=1

[ψ′′(ft,A, α̂
1)χ̃t,A(f0)χ̃t,A(f0)Tw(Xt)]

√
n(α∗1 − α̂1){1 + op(1)}

+ op(1) (4.41)

Because α̂1 is a consistent estimation as shown in previous theorems, by

central limit theorem, we have:

− 1√
n

n∑
t=1

[(Yt − ψ′(ft,A, α̂1)]χ̃t(ft,A)w(Xt)
d−→ N(0, I11) (4.42)

and
1

n

n∑
t=1

[ψ′′(ftjc , α̂
1)χ̃t,A(f0)χ̃t,A(f0)Tw(Xt)]

p−→ I11. (4.43)

Thus,
√
n(α̂1 −α∗1)

d−→ N(0, I−1
11 I11I

−1
11 ) = N(0, I−1

11 ). (4.44)

The asymptotic normality part is proven.

Theorems 4.2-4.4 together give the asymptotic normality and consistency

(which is called Oracle Property) for the proposed Adaptive LASSO semi-

parametric regression model.

4.5 An application to FTSE 100 index

In this section, we give an application to the FTSE 100 index data, as-

suming the market price direction follows a binomial distribution, to show

the strength of our penalised GMAMaR model, as an extension to Chapter

3(Peng and Lu (2021a)). The data include the open price opt, close price

cpt, the maximise price of the day maxpt and the minimum price of the day

minpt, the trading volume V lmt from 01−May−2013 to 01−May−2018,

of 1263 observations. We are concerned with whether the market price go

up (Yt = 1) or not (Yt = 0) with the relationship between volatility, volume

and geometric return, depicted in figure (1) and defined, respectively, by
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Yt =

{
1 if cpt − cpt−1 > 0;

0 else.
,

vt = log(100
(maxpt −minpt)
1
2
(maxpt +minpt)

),

Vt = log(V lmt),

Gt = 100log(
cpt
cpt−1

). (4.45)

Figure 1: The time series plot of volatility Vt, volume vt and geometric return
Gt

We are interested in the ability to select only the important independent vari-

ables when the dimensionality d is large. We thus examine the performances

of the variable selection using the one-step-ahead prediction of the market

price Yt with the information of long lags l (from max lag l = 30 to l = 50 )

of all volatility, volume and geometric return to check if they are helpful in

improving the explanation or prediction of market price. That is, each lagged

term will be treated as a single covariate to be fed to the model and we are us-

ing Xt = (vt−1, vt−2, vt−3, . . . , vt−l, Vt−1, Vt−2, Vt−3, . . . , Vt−l, Gt−1, Gt−2, Gt−3,

. . . , Gt−l) to predict Yt. The training sample we used is from the 1st obser-

vation to the 1100th observation. Our evaluation sample of the prediction is
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the following 50 observations (1101 to 1150) right after the training sample.

Since Yt is binary, we are computing the receiver operating characteristic

curve (ROC) and area under the curve (AUC) to compare the performance

(see Ballings et al. (2015)). In particular, the value of AUC is calculated

based on the Receiver Operating Characteristic curve (ROC), which depicts

the true positive rate against the false positive rate. In this sense, the larger

AUC, the better the model.

When the max lag l = 30, we have in total 90 covariate variables in the

model with most of them not statistically significant. After applying the

penalty, only three covariates are selected that can contribute to explaining

the market evolve direction, see Table 4.1. We notice that the volatility term

v3 is significant at the confidence level of 95%, while the geometric return

terms G14 and G21 are significant at confidence level of 99%. This is to say,

the past information of geometric return is more powerful in explaining the

market evolution and we can expect such impact to have a (roughly) weekly

cycle. However, since term G7 is missing here, the market cycle cannot be

confirmed yet. One possible conjecture could be that the fluctuation in the

previous week has covered the normal cycle pattern.

Penalised GMAMaR model (lag=30)
Estimate Std.Error Pr(—z—)

Intercept -0.04868 0.07157 0.49639
v3 1.07576 0.49916 0.03115 *
G14 0.47238 0.15948 0.00306 **
G21 0.37952 0.14072 0.00700 **

AIC 1465.6
Signif codes: *** 0.001 ** 0.01 * 0.05 . 0.1 1

Table 4.1: GMAMaR model with max lag l = 30

Now we extend the max lag l to 50 to feed the model more past information.

Table 4.2 summaries that there are 7 statistically significant covariates. It

is interesting that now v3 term is omitted, when compared to Table 4.1.

Instead, the model identifies the Volume term V23. In the sense of practice,

a larger Volume does imply a more active market, and thus leads to larger

volatility and market evolution. However, we may suspect that this term

will ease if we can include more correlated variables, as such relationship is

indirect. As to the geometric return, we can see the weekly pattern more

clearly. Though the model suggests the term G8 instead of G7 and gives
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Penalised GMAMaR model (lag = 50)
Estimate Std.Error Pr(—z—)

Intercept -0.4960 0.1205 3.88E-05 ***
V23 1.6516 0.7613 0.030052 *
G8 0.6695 0.2862 0.019306 *
G14 0.4893 0.1731 0.004701 **
G21 0.3964 0.1464 0.006774 **
G34 0.5688 0.2362 0.016028 *
G35 0.9514 0.4231 0.024522 *
G48 0.7719 0.2167 0.000368 ***

AIC 1416.7
Signif codes: *** 0.001 ** 0.01 * 0.05 . 0.1 1

Table 4.2: GMAMaR model with max lag l = 50

two continuous term G34 and G35, we notice that it could be a result of the

turbulence in the market evolution observed from data, and thus they are

only significant at 95% confidence level.

We also notice that the AIC value has decreased from 1465.6 to 1416.7

with more past information available, which encourages us to include more

correlated variables into the model. Though it is out of the scope of this

chapter to identify all the correlated variables explaining the stock market,

this points out the potential value of our model as it can significantly reduce

the dimensionality of large data by removing the non-correlated terms. This

is especially important in practice since we are often unable to identify which

covariates are useful by human experience.

Another perspective to discuss is the prediction ability of the proposed

model. Here we compute the ROC plot for the GMAMaR model with-

out (Group 1) and with (Group 2) variable sections. To further distinguish

the power of our model, we introduce the basic generalised linear regression

model (GLM)(McCullagh and Nelder, 1989) and the random forests method

(RF)(Liaw and Wiener, 2002) to compare with. Note that both the GLM

and RF have the i.i.d assumption for the data set.

Figures 2 and 3 suggest that the prediction ability for our GMAMaR model

does improve with variable selection (Group 2). We notice that, with more

past information being included, the final prediction ability has also been

enhanced after applying the penalty.

On the other hand, the overfitting problem is observed for GLM model. At

first glance, the prediction ability of GLM is surprisingly good, especially
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Figure 2: The ROC curve for Group 1 and Group 2 that is without and with
variable selections, respectively, of max lag l = 30

when more variables are included without selection (Group 1). However,

with more non-correlated variables included in the model, the modelling

error term shall increase, and thus leads to worse estimation and prediction.

We therefore confirm that GLM model cannot capture the true relationships

between correlated variables and Yt, as its performances fail to improve after

variable selection.

As to RF method, based on its theory, there is no need to add lag terms for

it. Hence the prediction power (AUC) is consistent in both case, which is

0.5704. This is to say, the RF method cannot capture the true relationship

as it is unable to identify the time dependent trends. However, since it

can be seen as the model average of decision tree method, it doesn’t suffer

from overfitting problem. We notice that, for lag l = 50, as summarised in

Table 4.3, our proposed GMAMaR model have the best prediction power as

indicated by a higher AUC value with variable selection. Thus for FTSE

100 index data, the result suggests that it is more likely to have a dependent

data structure as assumed in this chapter.

In fact, for the prediction of a binary variable, any pure guessing shall has

a success rate near 50% according to the law of large number. Thus any

prediction model with AUC being around 0.5 can hardly be distinguished

from pure guessing. Back to our case, however, there are two important

factors to be noticed. On one hand, it is hard to have a good performance



95

Figure 3: The ROC curve for Group 1 and Group 2 that is without and with
variable selections, respectively, of max lag l = 50

Table 4.3: AUC comparison with and without variable selection

Lag = 30 Lag = 50
Model Group 1 Group 2 Group 1 Group 2
GMAMaR 0.5100 0.5624 0.5673 0.718
GLM 0.5888 0.5174 0.6458 0.5978
Random Forests 0.5704
Group 1: Without Adaptive LASSO;
Group 2: With Adaptive LASSO.

due to the limit of test sample size to reduce the variance. On the other hand,

there is no guarantees or guidance for us to choose the possible correlated

variables to be included into the model. Hence we never know if the model

has performed at its best. In fact, it is realised that human experience

has large deficiency in this domain, and many studies start to include more

variables, with some of them being non-financial factors, such as weather

and social aspects (e.g., mood). Thus we would like to conclude here that

our proposed GMAMaR model with variable selection technique is a good fit

into this domain to help people understanding the true relationships between

variables in a possibly high and ultra-high dimension with dependent data

structure.
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4.6 Conclusion

In this chapter, we propose a novel semiparametric procedure GMAMaR

with variable selection technique, namely the adapted LASSO, such that it

is enabled to deal with large scale discrete-valued time series data of unknown

forms, particularly to select the correlated variables in high or ultra-high di-

mensional space. The computation of the penalised GMAMaR method is

cheap to avoid to well-known “curse of dimensionality”, and thus easy to

implement in practice. Theoretical results, e.g., the uniform consistency and

asymptotic normality of the penalised procedure are established as well. A

numerical example based on FTSE 100 index data is presented to further

validate the power of the model with comparison to traditional GLM method

and popular machine learning method Random Forest. We believe the con-

tributions of this chapter close the gap of variable selection in high and ultra

high dimension for discrete-valued time series modelling and provide the in-

dustry with a more robust method to deal with real data, in particular where

variables are not completed understood. This model can also be further ex-

tended to spatio-temporal domain such that not only the relations of time

dependency but also location dependency can be included.

The study of high and ultra-high dimensional data is still active. We hope to

demonstrate that the proposed penalised GMAMaR procedure can further

contribute to this field in further research.



Chapter 5

Modelling the COVID-19 Data

in the UK:

A Spatio-Temporal Analysis of

Count-Valued Data

The COVID-19 pandemic has impacted the way people live worldwide, in-

cluding the UK. In this chapter we propose a spatio-temporal model for

count data with both nonlinear time trends and autoregressive and spatial

neighbouring effects as well as other mobility and news index data consid-

ered for estimation and prediction of the COVID-19 data in the UK. Our

proposed model is shown to perform more effectively with the aid of vari-

able selection technique. We can thus extract useful information providing

more insights empirically into the key factors contributing to the daily con-

firmed cases at different locations. We find that the success of interventions

varied depending on locations, as a location may subject to its population,

medical resource and its role in the national or international transportation

network. Our findings also show that the neighbouring effects are signifi-

cant, and hence limiting public transportation nearby is effective to control

the spread of pandemic by reducing contacts. Moreover, we empirically find

that the media effects are significant, which may well promote self-protection

awareness in controlling the spread of pandemic. It is further shown that

all these effects are varied with locations. We can expect these findings and

techniques would be useful in guiding and supporting the policy making and

97
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allocation of the resources that are location based for pandemic controls, and

in making contribution to the related COVID epidemiology studies.

5.1 Introduction

The COVID-19 pandemic has impacted the way people live worldwide, in-

cluding the UK. The development of modern techniques has made it possible

for spatial time series data to be collected along time and over locations,

which becomes prevalent in today’s research. For example, Ferguson et al.

(2020) used the data collected in mainland China to predict the infected

number of COVID-19 for the UK, which turns out to be probably one of the

famous works on COVID-19 to the public. Similarly, the Institute of Health

Metrics (IHME) at the University of Washington has published regular pre-

dictions in the United States for specific locations. However, their figures

reported are criticised by later studies (c.f., Avery et al. (2020)), which fail to

incorporate the spatio-temporal effect of infectious rate. Indeed, traditional

epidemiology models, e.g., SIR (susceptible/infected/recovered) model, do

not consider the neighbouring effect when facing spatial data, see e.g., Un-

win et al. (2020). While many spatio-temporal methods have been developed

in the literature (c.f., Cressie and Wikle (2015)), they are yet rarely, or only

preliminarily, applied to the study of pandemic, though it is believed in

epidemiology studies that the infectious rate, often known as R0, is a time-

varying and location dependent value. Aisyah et al. (2020), for instance,

described the COVID-19 data in Indonesia in the spatial-temporal format,

which supports the argument of Avery et al. (2020). Another attempt of

discovering the spatial and temporal effects of COVID-19 data in Africa can

be found in Gayawan et al. (2020), where the spatio-temporal effects are

assumed to be random effects and estimated using Bayesian inference tech-

niques with prior assumptions of distributions. Giuliani et al. (2020), on

the contrary, adopted the time-series mixed effects generalised linear model

to understand and predict the spatio-temporal effects of the infections of

COVID-19 in Italy. However, we notice that they only consider the past

information of lag 1 and spatial effects of neighbouring provinces that share

a border with the reference location. Unlike spatio-temporal modelling, time

series analysis for the COVID-19 may have been examined more widely in

the literature, see e.g., Kim et al. (2020) and Zhu et al. (2021). These studies
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assume the Poisson distribution for the daily death number, which is com-

monly adopted for count data. Alternatively, other distributions are applied

for epidemiology models (see, e.g., Ferguson et al. (2020)), and it is also often

assumed that the true infectious number follows a Gamma distribution while

the observed infectious number follows a Negative-Binomial distribution.

Differently from the references mentioned above, in this chapter, we aim to

present more effective statistical techniques for the modelling and analysis

of spatio-temporal daily confirmed number data of the COVID-19 at 367

local authorities in the UK (see details of the data illustration in Section

2 below). We will suggest our spatio-temporal models for COVID-19 data

based on the following points. First of all, following Kim et al. (2020) and

Zhu et al. (2021), we propose to apply in this chapter the Poisson distribution

to model the count data of daily confirmed number of COVID-19, as it is

reported that for an uncontrolled pandemic the distributions of the time

series of cases are roughly symmetric and bell-shaped (c.f., Farr (1840)).

This is different from the spatio-temporal modelling with continuous-valued

responses in the current literature (c.f., Lu et al. (2009), Al-Sulami et al.

(2017)). Secondly, for spatio-temporal data, assumption of some kind of

stationarity is often needed for statistical inference, see e.g., Lu et al. (2009).

However, this may often be violated in practice. The spread and development

of COVID-19 cases are known to have had two waves to the date (as of the

data considered). The time series of daily confirmed number of new cases

show clearly two peaks. This, in other words, implies that the time series of

COVID-19 data is not stationary in time. Therefore, we suggest allowing the

time trend to be modelled in a nonlinear function instead of being a constant,

in order to permit the non-stationary series with time trend to be modelled

into a time series model framework at each location. Moreover, we follow

Al-Sulami et al. (2017) and Lu et al. (2009), allowing the spatial data are

non-stationary across spacial locations on irregular sampling grids. Thirdly,

we will suggest extending the idea of spatial neighbouring lag interactions

for the continuous-valued responses as considered in Al-Sulami et al. (2017)

and Lu et al. (2009) to modelling of spatial neighbouring lag interactions

with discrete-valued daily confirmed number of new cases for the COVID-19

data.

The purpose of this chapter is therefore to apply our proposed spatio-temporal
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model for modelling and analysis of the COVID-19 data collected at irregu-

larly spaced locations of 367 local authorities in the UK. The feature of the

model considers the relationship between response and covariates as well as

both the temporal lag and spatial neighbouring effects. It is noted that such

consideration is advocated in literature, e.g., Avery et al. (2020). We further

allow the time trend at each location to be nonlinear instead of constant to

ease the non-stationary nature of COVID-19 data in modelling. For instance,

we can consider possible relationships of mobility and news index on daily

confirmed cases for 367 local authorities in the UK, which will be examined

in this chapter. Optimal temporal lags as well as spatial neighbouring lags

are selected for each location. Note that the dimension of the regression in

our model at one location can be as high as (21∗367+10) = 7717 maximum

on the basis of its 21-day (3 weeks) temporal lags over 367 locations, plus 10

covariates on mobility and news index1. Therefore, the selection of the sig-

nificant spatial and temporal lags and the related covariates is important for

our understanding of the dynamic behaviours of the pandemic over time and

across space. As a comparison to our proposed model, we will also present

the results for the models without consideration of spatial neighbouring ef-

fects and the models without consideration of time trends. We will see that

the variable selection technique applied in the analysis will help to extract

the information from data and therefore provide further insights for deci-

sion makers and researchers to understand how such pandemic dynamically

develops in both time and spatial dimensions and how to more effectively

control the development of such pandemic.

In particular, the empirical findings show that: (1) The daily confirmed

number has strong time trends across different time periods of interven-

tions; (2) A neighbouring effect is also identified that areas of key role in

a transportation network often suffer more serious infection of COVID-19,

and thus the action of lockdown is indeed an effective measure in the combat

of pandemic; (3) The media effects are significant, which may well promote

self-protection awareness in controlling the spread of pandemic; (4) However,

we demonstrate that all these effects identified are varied with locations, so

different local authorities may need to implement varied policies regarding

1For the ease of understanding, we would like to defer the discussion of these covariates later
to Section 2.
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control measures such as lockdown, not only because of the varied popu-

lation size and medical resources, etc., but also depending on their roles

in a transportation network. Therefore, limiting public transportation and

using media advertisement of COVID-19 information to promote the pub-

lic’s awareness of self-protection (e.g., wearing masks) should be of the first

priority in the sense of preventing the spread of this pandemic. We can ex-

pect these findings and the suggested methods will be useful in guiding and

supporting the policy making and allocation of the resources that are loca-

tion based for pandemic controls, and in making contribution to the related

COVID epidemiology studies.

The remainder of this chapter is structured as follows. In section 2, we

present the COVID-19 data used in this chapter with a background intro-

duction. We present the spatio-temporal model with methods in Section

3 including the techniques adopted for model estimation and variable se-

lections. Empirical findings are illustrated in Section 4, where details of

numerical results and more insights are presented. Finally, conclusions are

summarised in Section 5.

5.2 The COVID-19 data

5.2.1 Background

As confirmed on 31st January 2020, the first case of COVID-19 was identified

in the UK. In fact, the world has experienced a serious global pandemic since

then. The number of confirmed cases in UK was among the highest of the

world. Globally, the total number grew to 102,283,784, including 2,219,236

deaths, on 31st January 2021. As to the UK, there were 3,818,423 confirmed

cases of COVID-19 as well as 105,571 deaths at that time. We will focus

on analysis of a UK COVID-19 data set that we have collected in a spatio-

temporal manner in this chapter.

The impact of COVID-19 had deeply affected the way people live. To

deal with such a global pandemic, travels and transportations were under a

stricter supervision to prevent its spread. As a consequence, it has greatly

damaged the global economy and businesses. For instance, the crude oil

price of West Texas Intermediate crude dropped to negative for the first
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time ever on 20th April 2020. In the UK, the stock market index, namely

FTSE 100 Index, reached 4993.89 on 23rd March 2020 due to the first wave

of COVID-19. Its performance had not yet been back to the level of 7000

ever since, at the date of 10th January 2021.

In the combat against COVID-19, all efforts, including both governmental

policies and individual behaviours, were made, aiming to reduce the value

of infectious rate R0, in order to save lives. Avery et al. (2020) had stated

that two actions would be expected facing such a serious contagious disease:

(1) Government would enact policies, such as lockdown, to slow or stop

the spread; (2) People will need to change their behaviour to avoid getting

infected. Both actions would lead to reducing R0 with COVID-19 spread,

and thus save thousands of lives. In order to prevent the further spread of

COVID-19, the UK government had announced three national lockdowns.

The first lockdown started on 23rd March 2020 and lasted into July 2020.

The second one came into force on 5th November 2020, and ended on 2nd

December 2020. The latest lockdown was implemented on 4th January 2021

and it was expected to last until March. During the lockdown, people were

restricted to stay at home, e.g., work from home, unless for essential needs.

Most of the social events, as well as sports, are banned.

To explore more clearly the impact of these reactions on the spread of

COVID-19, there have been some previous studies, e.g., Unwin et al. (2020),

who have proposed to use the mobility data obtained from mobile devices to

reflect the implementation of lockdown, during which people are restricted

to live, study and work from home. Consequently, the mobility rate would

decrease dramatically under lockdown. Note that such number would also

differ, if we compare different areas, e.g., at residential areas and commercial

districts, or via different transportation means, e.g., by driving and walking.

It is thus worthwhile to investigate if the impacts of lockdown are identical

for each location or if lockdown is only necessary for some of them. More-

over, people travelling with different transportation means may be subjected

to heterogeneous levels of risks with locations.

On the other hand, it is relatively hard to collect data linked directly to

people’s behaviours like social distancing and wearing masks. The studies

on the USA cases, e.g., Jamieson and Albarracin (2020) and Barrios and

Hochberg (2020), have paid attention to the public media and detected the

correlation between people’s awareness/knowledge of safe behaviours and
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the related resources available on media. In this chapter, we have therefore

consulted the UK News Index for this type of data, roughly representing

how many media discussions on COVID-19 are published every day in UK.

5.2.2 Data

In this chapter, we consider a roughly 10 months data set of COVID-19

daily increase number in the UK, published by the UKGovernment (2021),

covering 352 days with the time period from 15th-Feb-2020 to 31st-Jan-2021

(as of the date when this work was started) and 367 locations of the UK

lower tier local authorities in total. Here Northern Ireland was excluded in

this study as it is separated from the other parts of the UK by the sea with

less transportation because of the pandemic control, so we only consider

the study of the areas of the Great Britain in this chapter. See Figure 1

for the locations in which we have plotted the accumulated confirmed cases

of the COVID-19 in our date set. In this figure, the accumulated number

of cases, from 62 case in Orkney Island (the smallest number) to 87641

cases in Birmingham (the largest number), are grouped with the five values

in quantiles at 0% (62 cases), 25% (4569 cases), 50% (6974 cases), 75%

(12762 cases) and 100% (87641 cases) respectively. We can see that darker

areas suffer from the COVID-19 more seriously, while lighter areas are barely

impacted (except some unavailable data-NA part).

Following Unwin et al. (2020), we consulted mobility data obtained both

from Google (2021) and Apple (2021) to represent the effect of lock down.

For instance, the mobility would drop fast once lockdown is implemented,

and increase otherwise.

In particular, Google data are calculated based on a benchmark setting such

that we can see the change of mobility in those places:

• Grocery & pharmacy: Mobility data collected from grocery markets

and pharmacies.

• Parks: Mobility data collected from public parks.

• Transit stations: Mobility data collected from public transport hubs.

• Retail & recreation: Mobility data collected from public place of enter-

tainment.
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Figure 1: Accumulated Confirmed Case (partitioned in quantiles at 0% (62
cases), 25% (4569 cases), 50% (6974 cases), 75% (12762 cases) and 100%

(87641 cases)) of Great Britain up to 31st January 2021 (The darker colour &
larger percentage indicate the more serious accumulated number of infected

patients in that area).

• Residential: Mobility data collected from residence.

• Workplaces: Mobility data collected from workplace.

Apple data, on the other hand, only classify the mobility into public trans-

portation, walking and driving to represent the daily travels. We notice that

all these data are collected based on the mobile devices using either Google

or Apple services and there should be little overlaps.

In addition, we also consider the UK Daily News Index available from an

online website EconomicPolicyUncertainty (2021), which is also known as
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newspaper-based Economic Policy Uncertainty (EPU) Index. The EPU

refers to the count of articles that at least match one of the three term

sets as given by its name. It may serve as an indication on how COVID-19

has been connected to our daily lives in many different aspects.

5.3 Methodology: A spatio-temporal model

for Covid-19 data

5.3.1 Model assumption and structure

Let Yt(sk) and Xt(sk) denote two spatio-temporal processes with observa-

tions at discrete time points, t = 1, ..., n, that covers the n = 352 days from

15th February 2020 to 31st January 2021, where Yt(sk) is the concerned daily

confirmed number of COVID-19 cases at a given location sk among m = 367

local authorities in Great Britain, and Xt(sk) is the covariate vector that

contains D = 10 covariate variables including Google and Apple mobility

data and News index, as introduced in Section 2. The spatial unit of a

local authority, sk, is denoted as sk := (uk, vk) ∈ R2, where uk are vk are

x (longitude) and y (latitude) coordinates of representing locations of local

authorities with index k = 1, ...,m. At a given spatial location sk, we can

consider a time series model with our spatio-temporal structure as follows.

Denote by It−1 for the information up to time t− 1 about time series Yj(sk)

for j ≤ (t−1) with all considered locations of k = 1, 2, · · · ,m. The regression

is to model the following conditional expectation:

λt(sk) = E[Yt(sk)|It−1]. (5.1)

As suggested in Kim et al. (2020) and Zhu et al. (2021), we further assume the

daily number of new cases Yt(sk) follows a conditional Poisson distribution:

Yt(sk)|It−1 ∼ Poisson(λt(sk)). (5.2)

By noticing that the Yt(sk) is both time and spatio dependent, we need

to include the temporal-lag autoregressive term Yt−p(sk), for p = 1, ..., P ,

and the spatial neighbour time lagged term Y s
t−q(sk) =

∑m
i=1wkiYt−q(si),
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for q = 1, ..., Q. We will specify spatial weight wki as well as the spatial

neighbouring effect Y s
t−q(sk) with details in the next subsection. Then we can

write our family of location-dependent spatial-temporal model, extending

Al-Sulami et al. (2017) to a count data process Yt(sk), as follows:

log(λt(sk)) = f(t̃, sk)+
P∑
p=1

αp(sk)Yt−p(sk)+

Q∑
q=1

βq(sk)Y
s
t−q(sk)+

D∑
d=1

γd(sk)Xtd(sk).

(5.3)

Here f(·, sk) denotes a nonlinear time trend function at location sk with

t̃ = t/n for t = 1, 2, . . . , n, and is of own interest in view of the time trending

with non-stationary count process of the daily increase number, Yt(sk), of

COVID-19 cases at location sk (c.f., as illustrated in Figure 4 below). This

point is different from the usual idea of differencing operation in time that is

popularly applied to make time series data stationary for continuous-valued

data (c.f., Al-Sulami et al. (2017)). Note that it is more difficult to apply

the differencing to the count-valued time series data Yt(sk) as it makes it

harder to model (5.1) through (5.2) with changes of the distribution for

the new data. Therefore introducing this trending function is important to

model the daily increase number series of COVID-19 cases in this chapter.

Estimation of f(t̃, sk) will be further discussed in Subsection 5.3.2.1. The

coefficients, α(sk) = (α1(sk), ..., αP (sk))
′, β(sk) = (β1(sk), ..., βQ(sk))

′ and

γ(sk) = (γ1(sk), ..., γD(sk))
′ in model (5.3) are the parameter vectors to be

estimated, which allow to be location sk dependent, where the α and β are

the spillover weights assigned to dynamic lag effects of the response Yt(sk)

at the location sk itself and its spatial weighted neighbours, respectively,

and γ represents the spillover effects of the covariates on mobility and news

indexes, with A′ standing for a transpose of a vector or matrix A.

For notational simplicity, we let Zt(sk) = [Yt−1(sk), ..., Yt−P (sk), Y
s
t−1(sk), ..., Y

s
t−Q(sk),

Xt1(sk), ...XtD(sk)]
′ and θ(sk) = [(α(sk))

′, (β(sk))
′, (γ(sk))

′]′. The formula

(5.3) can be written as:

log(λt(sk)) = f(t̃, sk) + (θ(sk))
′Zt(sk). (5.4)
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5.3.2 Estimation

For model (5.4), before discussion of estimation of θ(sk) via maximum log-

likelihood method, we first present some ideas on how to construct the time

trend function f(·, sk) by splines and the spatial neighbour Y s
t−q(sk) by weight

matrix as precursors.

5.3.2.1 Nonlinear time trend function

For the time trend term f(t̃, sk), the idea is to capture the nonlinear trending

of time series at each location with t̃ increasing for the whole time period con-

sidered. A popular idea for nonlinear function fitting is by a spline method

that uses the linear combination of basis functions to present the nonlinear

structure. We can write the smooth trending function at a chosen location

sk as follows:

f(t̃, sk) =
R+δ∑
r=0

µr(sk)ηr(t̃), (5.5)

where δ is the degree of basis polynomial, R is the total number of inner knots

used in construction of spline, and ηr(t̃)’s are the set of spline basis functions

with coefficients µr(sk) at location sk; c.f., Perperoglou et al. (2019).

It is widely reported that cubic splines (δ = 3) are popular as a perfect curve

smoothing; see e.g., Hastie et al. (2009). In this chapter, we thus follow this

standard and generate a smoothed nonlinear curve using the B-spline basis

functions. This can be implemented by R package Splines with function bs

(c.f., Venables et al. (2009)).

We then fit the smoothed time trend f(t̃, sk) in cubic spline into the re-

gression model (5.3) replacing the constant intercept, and we will obtain the

estimated coefficients µl(sk) in the estimation subsection below. In this chap-

ter, we select the degrees of freedom to df = 6 according to the AIC values

of the fitted model (5.3): for example, AIC= 2802.5, 2803.7, 2622, 2580 and

2625 respectively for df = 3, 4, 5, 6 and 7 at City of London. That is, when

specifying the degrees of freedom to df = 6, the number of inner knot points

is R = df− δ = 3. In addition, the intercept, i.e., the term η0, is omitted in

the computations of this chapter (otherwise it may lead to multicollinearity

in regression).
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5.3.2.2 Spatial neighbouring effect

For a given location sk, the corresponding spatial neighbouring effect can be

characterised by:

Y s
t−q(sk) =

m∑
i=1

wkiYt−q(si), (5.6)

where wki ≥ 0 is the spatial weight characterising the neighbouring effect

from location si to sk, standardised to satisfy wii = 0 and
∑m

i=1 wki = 1.

This term is often pre-specified a priori in econometrics; see Anselin (2013)

In this chapter, to determine the spatial weight wki, we use the inverse dis-

tance between locations, i.e., wki = 1/dki, where dki is measured in distance

on Euclidean space between locations sk and si (c.f. Wilhelmsson (2002)).

It is adopted in Al-Sulami et al. (2017). This weight corresponds to the as-

sumption that a virus host would travel more frequently between locations

nearby with larger impacts. We then standardise it, such that
∑m

i=1 wki = 1.

The weighted spatial effect Y s
t is obtained henceforth. In the model, this

spatial effect is pre-calculated before estimation and then treated as the

covariate variables. We aim to investigate the corresponding neighbouring

effect on response Yt at each location.

5.3.2.3 Estimating the unknown parameters

Given the Poisson model (5.3) above, we want to find the estimators, θ̂(sk) =

[(α̂(sk))
′, (β̂(sk))

′, (γ̂(sk))
′]′ = [α̂1(sk), ..., α̂P (sk), β̂1(sk), ..., β̂Q(sk), γ̂1(sk), ...γ̂D(sk)]

′,

via maximum log-likelihood method.

Recall that Zt(sk) = [Yt−1(sk), ..., Yt−P (sk), Y
s
t−1(sk), ..., Y

s
t−Q(sk), Xt1((sk), ...XtD((sk)]

and It−1 is denoted for all the available information known up to time

t − 1. Thus, based on the time series observations, {(Zt(sk), Yt(sk)), t =

1, 2, · · · , n}, at location sk, we can write the conditional likelihood function

following from (5.2), given the initial available information I0, for estimation

of θ(sk) as follows:

LikS(θ(sk)) =
n∏
t=1

pS(Yt(sk)|It−1(sk);θ(sk))

=
n∏
t=1

eYt(sk)[f(t̃,sk)+(θ(sk))′Zt(sk)]e−e
f(t̃,sk)+(θ(sk))

′Zt(sk)

Yt(sk)!
,

(5.7)
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where for notational simplicity, we suppose I0 stands for the information

{(Zt(sk), Yt(sk)),
t ≤ 0}, pS(·|·) for conditional Poisson probability function, and Yt(sk)|It−1(sk), t =

1, 2, · · · , n, are (conditionally) independent.

Taking nature log of the equation (5.7), the log likelihood function is:

LS(θ(sk)) =
n∑
t=1

{Yt(sk)[f(t̃, sk) + (θ(sk))
′Zt(sk)]

− exp(f(t̃, sk) + (θ(sk))
′Zt(sk))− log(Yt(sk)! )}, (5.8)

With the population (expected )log-likelihood function:

L(θ(sk)) =
n∑
t=1

E[{Yt(sk)[f(t̃, sk) + (θ(sk))
′Zt(sk)]

− exp(f(t̃, sk) + (θ(sk))
′Zt(sk))− log(Yt(sk)! )}], (5.9)

we are then seeking to estimate the parameter vector θ̂(sk) = (α̂(sk), β̂(sk), γ̂(s))

by maximising the log likelihood function (5.8) with f(t̃, sk) specified in (5.5).

Note that θ̂(sk) = arg maxLS(θ(sk)) giving the estimator θ̂(sk) from sam-

ple data, and θ0(sk) = arg maxL(θ(sk)) giving the true parameter vector

θ0(sk) = (α0(sk), β0(sk), ..., γ0(sk))
T .

Note for each sk the log-likelihood function (5.8) are continuous and twice

differentiable. We now find the first order derivatives of the log-likelihood

function (5.8) with respect to θ(sk), leading to the following type of estima-

tion equations:

L
(1)
S (θ(sk)) =

∂LS(θ(sk))

∂θ(sk)

=
n∑
t=1

[Yt(sk)− exp(f(t̃, sk) + (θ(sk))
′Zt(sk))]Zt(sk) = 0. (5.10)

The empirical Fisher information matrix, the inverse of which is an estimator

of the asymptotic variance of the estimator θ̂(sk), is obtained by deriving

the negative second-order partial derivatives, and is positive definite:
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L
(2)
S (θ(sk)) = − ∂2LS(θ(sk))

∂θ(sk)∂(θ(sk))′

=
n∑
t=1

Zt(sk)[exp(f(t̃, sk) + (θ(sk))
′Zt(sk))](Zt(sk))

′. (5.11)

This is to say, the log-likelihood function is concave and hence has a unique

maximiser.

Intuitively, if L
(1)
S (θ(sk)) is asymptotically close to E[L

(1)
S (θ(sk))] uniformly

with respect to θ(sk) over a compact set with θ0(sk) being its interior point,

then θ̂(sk) should be close to the solution of E[L
(1)
S (θ(sk))] = 0, and is a

consistent estimator of θ0(sk).

5.3.3 Variable selection

When estimating the model above, another practical issue is on time lag

orders which need be identified. Further, there may be only a few of the

variables that are actually helpful for explaining the daily increase number

Yt. We hence need to optimally select the best time lag orders, and to

identify the important variables that can extract the useful information.

5.3.3.1 Selection of time lag orders

To find out the optimal settings of the time lag orders P and Q in Model

(5.3), one can use the Akaike Information Criterion (AIC) value for model

selection. In particular, considering small sample size of data available in

this chapter, we adopt the AICc method as suggested by Hurvich and Tsai

(1993), where a penalty term of sample size and number of parameters are

considered. When the sample size goes to infinity, such penalty term would

converge to zero. However, if the sample size is small, overfitting with too

many parameters can therefore be avoided:

AICc(P,Q) = AIC(P,Q) +
2(P +Q+D)2 + 2(P +Q+D)

n− (P +Q+D)− 1
, (5.12)
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where

AIC(P,Q) = 2(P +Q+D)− 2[
n∑
t=1

[Yt(sk)[f(t̃, sk) + (θ(sk))
′Zt(sk)]

− exp(f(t̃, sk) + (θ(sk))
′Zt(sk))− log(Yt(sk)! )]].

The longest incubation period for the patient to show symptoms and to be

confirmed by NHS is known to be less than three weeks. Thus, for each lo-

cation, combined with the knowledge of the COVID-19, we optimally decide

the settings of (P,Q) for P,Q ≤ 21. It is based on the intuition that it takes

maximum 14 days for the patient to show symptoms and then it may take a

few more days for him/her to be treated and confirmed, see e.g., Lauer et al.

(2020). We thus use 21 days as maximum time lags here. Further lags can

be easily incorporated into the model if needed.

5.3.3.2 Extracting feature variables

It is noticed that overfitting is often found when having a large number of

independent variables. To overcome it, variable selection techniques, such

as LASSO and other ridge penalties (c.f., Friedman et al. (2010)), can be

used here. Recalling the log-likelihood LS(θ(sk)) in (5.8), we can give the

penalised log-likelihood, that is the negative log-likelihood plus a penalty as

follows:

L̃S(θ(sk)) = −LS(θ(sk)) + λPπ(θ(sk)), (5.13)

where Pπ(θ) = 1−π
2
‖θ‖2

2+π‖θ‖1=
∑M

j=1[1−π
2
θ2
j + πθj] with M = P +Q+D,

and λ is the tuning parameter to be adjusted. We are seeking the coefficient

vector θ̂(sk) for each location that minimises the penalised log-likelihood

function:

θ̂(sk) = arg min
θ
−

n∑
t=1

[Yt(sk)[f(t̃, sk) + (θ(sk))
′Zt(sk)]

− exp(f(t̃, sk) + (θ(sk))
′Zt(sk))− log(Yt(sk)! )] + λPπ(θ).

We consider the popular LASSO estimation with π = 1, i.e., we only use

the l1 norm (Pπ(θ) = π‖θ‖1), which automatically estimate the coefficients
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of unimportant covariates being zero. In order to find out the best λ as

well as penalised coefficients θ̂(sk), we are actually facing a model selection

problem here for different λ. The candidates models with different values

of λ are normally evaluated by various information criteria, such as AIC as

discussed above. For this purpose, we use AIC to find out the best λ and

the associated estimated coefficients θ̂(sk).

Therefore, after variable selection, only the non-zero parameters remain.

The coefficients of other parameters would be forced to equal to zero. As a

consequence, we then extract the information from the data that shows what

are the important factors to consider. It is noted that such technique can

be implemented by R package glmnet of Friedman et al. (2010) (although

the i.i.d data situation is considered in their paper).

5.4 Empirical findings

In this section, we aim to provide a rigorously empirical analysis to under-

stand spatio-temporal dynamic behaviour of the UK COVID-19 daily cases

with the mentioned issues above being properly handled, the analysis of

which is hence more comprehensive than those in the literature. For ex-

ample, existing spatio-temporal studies of COVID-19, e.g., Gayawan et al.

(2020) and Giuliani et al. (2020) for the Italy and African data, respectively,

do not include the extraneous factors such as population mobility and only

consider the spatio effects as a component of the autoregressive model in

a simpler manner. As to other conventional epidemic studies, e.g., Unwin

et al. (2020), the spatio effects are ignored, even though spatial data is used.

Also, it is not well addressed that the data is actually non-stationary in raw,

which needs to be carefully dealt with.

We believe it is of practical interest to consider micro variables to reveal

the importance of different intervention actions or behaviours. In the per-

spective of pandemic control, the findings of our analysis will provide deeper

understanding of the dynamic spread of COVID-19 and the effects of inter-

ventions adopted in Great Britain that are local authority level based. The

numerical results for 8 local authorities, namely Birmingham, Cardiff, Ed-

inburgh, Glasgow, (City of) London, Leeds, Liverpool and Manchester, are
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particularly presented. These selected cities cover the most areas in the UK

except for Northern Ireland.

5.4.1 Initial model selection

We first consider an initial model selection for taking nonlinear time trends

and spatial neighbouring into account or not. For stating convenience, we

denote our proposed Model (5.3) as ST, standing for spatial model with the

consideration of nonlinear trends. Similarly, Model NS refers to the model

without the terms of spatial effects, i.e., Y s
t , in Model (5.3). Model NT

would assume no temporal trend and thus the term f(t̃, sk) is ignored in

Model (5.3). Finally, Model NSNT omits both the terms Y s
t and f(t̃, sk) in

Model (5.3), which is commonly adopted in the relevant literature of COVID-

19 analysis (c.f., Wu et al. (2020)). The temporal lag order P and spatial

neighbouring lag order Q are optimally selected as seen in Section 5.3.3.1.

In particular, to measure the performance of a model in estimation and

prediction, we define the mean absolute error (MAE) and absolute error

(AE) as follows:

MAE =

∑n
i=1|Yi − Ŷi|

n
, (5.14)

AEi = |Yi − Ŷi|, (5.15)

where Ŷi is the estimated or predicted daily number of confirmed cases given

in (5.1), obtained by the corresponding estimated models. In this sense,

both AE and MAE give an indicator of how good the model performs in the

context of estimation and prediction.

We now generate the box-plot given in Figure 2 and 3 for the AE obtained

from the four models mentioned for the whole period of 324 days. We can

summarise that the model considering spatial effects as well as nonlinear time

trends would perform consistently better for all locations when compared

with the other models mentioned above. In particular, as understandable,

the impact of nonlinear time trends seem to be larger than the impact of

spatial effects, characterising the changing dynamic nature of daily confirmed

cases. For all locations, adopting Model NSNT would lead to the largest
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error for a poor estimation. This is also further confirmed in Table 5.1,

which summarises the MAE of the 324 estimates compared to true values.

Figure 2: Boxplot of Absolute Error of estimations for Edinburgh, Glasgow,
Birmingham and Cardiff with four different models, namely ST, NS, NT and

NSNT.

Table 5.1: Mean Absolute Error (MAE) of estimations for 8 selected
locations with four different models, namely ST, NS, NT and NSNT

(The orders for temporal lag effects, P , and for spatial neighbouring lag
effects, Q, are optimally selected by AIC).

Model/Location
Birmingham
P=21,Q=21

Cardiff
P=21,Q=21

Edinburgh
P=21,Q=18

Glasgow
P=21,Q=21

(City of) London
P=20,Q=21

Leeds
P=21,Q=17

Liverpool
P=21,Q=21

Manchester
P=20,Q=21

ST 30.1780 12.6959 7.7395 12.2162 7.6367 18.7671 16.1971 13.0598
NS 34.8147 13.0159 9.51804 14.2291 11.2405 23.7226 23.6703 20.3178
NT 76.6852 17.6132 11.9138 26.5844 12.1871 37.0070 25.4384 24.5482
NSNT 89.1189 21.1876 12.4761 29.9867 18.2338 42.1779 29.9730 30.2575

Now we turn our attention to focus on Model ST. We notice that not all

variables are statistically significant according to the estimated model. In

order to extract the important information, we apply the variable selection
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Figure 3: Boxplot of Absolute Error of estimations for (City of) London,
Leeds, Liverpool and Manchester of estimations with four different models,

namely ST, NS, NT and NSNT.

technique LASSO here (recall Section 5.3.3.2). By solving the Model ST

with LASSO (5.13), coefficients of important variables are extracted. The

fitted values of 324 days for each location are then depicted in Figure 5

to 8 (We will illustrate the predictions in the last subsection). To make

comparison, the fitted value of Model ST (5.3) is also provided. It is clear

that the estimations after variable selection are more accurate compared to

those without variable selection.

5.4.2 Time trend and lockdown effect

Recall that UK had implemented three lockdowns up to January 2021, as

mentioned in the Introduction section. It is of interest to investigate what
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Figure 4: Effects correspond to the first lockdown, the lifting period and the
second and third lockdown.The fitted time trend f(t̃, sk) are given on

right-hand side, which performs very closely to the true pattern given on the
left-hand side.
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are the impacts of such lockdowns.

Taking City of London for example, we sort the data into three different time

periods, which correspond to the first lockdown, the lifting period and the

second and third lockdown. We then fit the data to Model ST with LASSO

(5.13). This is because we are curious about two things: (1) can we observe

different patterns of the time series for different periods of time (that are

impacted by the lockdown); (2) and if so, can we capture such time trends

with our proposed spline functions. For ease of comparison, we take the log

of daily confirmed cases Y plus 1 to avoid the situations where Y = 0. The

patterns for the three time periods considered are depicted in Figure 4 on

the left-hand side, where the estimated time trends from Model ST with

LASSO (5.13) are given on the right-hand side. Here we estimate the time

trends by summing up the basis (curves) functions given in (5.5) with the

coefficients µl(sk) obtained from Model ST with LASSO (5.13).

According to Figure 4, the nonlinear structure of data is noticeable. The

fitted time trend f(t̃, sk), which can be viewed as a nonlinear function of

time t, performs closely to the true pattern. This, therefore, indicates that

the trend term has been captured well, and thus the model remaining (i.e.,

when deducting the time trend term) can be considered stationary.

In particular, the patterns of trends are very different for all time periods.

The daily increase number of the first lockdown period (the first row in

Figure 4) quickly reaches its peak and then decrease slowly everyday, which

is consistent to the expectations according to epidemiology studies. When

the lockdown has been lifted (the second row in Figure 4), we notice a

trough between two peaks, which happens around Summer, at which the

first lockdown has been (partly) lifted while the second lockdown has not yet

been fully implemented. For the last period, the festival of family reunion

brings the sharp peak at the end of December.

It now seems that the lockdowns do have an impact on the spread of COVID-

19, and therefore result in these different patterns of daily increase number.

Moreover, we notice that, the implementation of lockdown is often delayed

compared to the outbreak of COVID-19, and policies in different locations,

as well as different time periods, would be subjected. It is, as to a macro

variable itself, not good enough to provide us more information in details.
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Therefore, in this chapter, we use the micro variables introduced in Sec-

tion 5.2 for further analysis.

5.4.3 Feature variable selection

By the analysis of feature variables with the help of our Model ST with

LASSO (5.13), the coefficients of important variables are summarised in

Table 5.2 for the time period of 324 days at selected locations. The first

six terms S(tn) are the coefficients assigned to the basis functions of time

trends. It is noted that the time trends at different locations varied.

We can now summarise the results as follows:

• Autoregressive Effects: The time series of the daily new cases (or

death) of an uncontrolled epidemic are roughly symmetric and bell-

shaped (Farr, 1840), as further adopted in Ferguson et al. (2020). This

gives an intuition that the temporal effect may have a cluster effect

that the number observed for tomorrow is likely to be high, if it is high

today, but not likely if it was high a month ago. As expected, we do

observe this property by finding the negative coefficients for medium

and large time lags as indicated from Table 5.2. For Cardiff, such

negative relationships are also identified in small time lags, however,

with the coefficients being close to zero.

Indeed, different cities have different significant time lags as seen from

Table 5.2. This may be a result of the incubation period and diagnosis

as it is now known that it takes on average 5 days (range 1-11 days and

the maximum is 14 days) for the patient to show symptoms and then it

may take some time for him or her to be treated and confirmed by NHS.

It may therefore also be affected by the availability of local healthcare

resources as well as the local level of COVID-19 outbreak. For example,

in Edinburgh, the daily increase number depends on its past values of

1-2, 5-12, 14-15 and 17 days ago, while in City of London, which is a

small district of the Greater London, it is sensitive to a different and

smaller range of time lags, including 1-2, 3, 6-7 and 21 days ago.

• Spatial Effects: It is expected that both the transportation volumes

and origins of these cities are different. Though intuitively one would

expect a similar result (e.g., cluster effect) as observed for temporal
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Table 5.2: Model ST with variable selection for selected local authorities

Birmingham Cardiff Edinburgh Glasgow London Leeds Liverpool Manchester
S1(tn) -82.04113 -24.02168 -10.26135 -55.42546
S2(tn) -33.20170 -7.89398 -12.20415 2.21372
S3(tn) -31.40977 -21.36209 -3.63540 -0.46822 -12.42109
S4(tn) 27.94630 36.18937 22.10380 80.92337 103.75950 -3.60122
S5(tn) 222.80925 99.51638 22.52940 36.25856 76.06458 0.45148 10.18499 74.23492
S6(tn) 2.35191 12.43009 36.26249 27.45319 73.83587
Yt−1 0.25647 0.57550 0.36679 0.61484 0.23629 0.57354 0.39210 0.19412
Yt−2 0.10967 0.08178 0.18025 0.06174 0.09187 0.14452 0.00276 0.13729
Yt−3 0.07724 0.00841 0.00014
Yt−4 0.02528 -0.00942 0.10928 0.07447 0.12908 0.08377
Yt−5 0.05359
Yt−6 0.18616 0.12310 0.11318 0.00571 0.01359 0.12396
Yt−7 0.03578 0.15177 0.30046 0.15940 0.19434 0.16837 0.18703
Yt−8 -0.00292 -0.00983 -0.18532 -0.00073 0.01486
Yt−9 -0.10498 -0.02723 -0.04720 -0.00374
Yt−10 0.02029 -0.00852 -0.01925 -0.07322
Yt−11 -0.02543 -0.12234
Yt−12 -0.00899 0.09052
Yt−13 0.05893 0.01521 0.03120 0.00007
Yt−14 -0.06501 0.03537 0.01262 0.15802
Yt−15 -0.05861 -0.00996 -0.11750 -0.02168
Yt−16 -0.02732 -0.02137
Yt−17 0.00064
Yt−18

Yt−19 -0.00319
Yt−20 -0.11038 -0.03170
Yt−21 -0.00589 -0.05104 -0.07083
News Index 0.00461 0.01501 0.00305 -0.00001
Driving -0.04490 -0.89792 -0.28084 -0.17296
Transit 0.47460 0.31224 0.02869 1.04618 0.02502 0.62448 0.65237 0.30250
Walking -0.35153 -0.06937 0.09292 -0.17927 -0.33310 -0.15872
Retail&Receation 0.07281 0.00181 0.16486 0.00037
Grocery&Pharmacy -2.16797 -1.21571 -0.52264 -1.16849 -0.68130 -0.65893 -0.72166 -0.84669
Parks 0.02147 0.10101 0.07058 0.23340 0.09713 0.09830 0.01510
Transit Stations -0.03511 0.14548
Workplace 0.05348 0.00895 0.07890 0.09913 0.07025 0.15079
Residential -0.07994 -0.28307 -0.02893
Y S
t−1 1.88134 0.16000 0.32715 0.35654 1.26303 0.40870
Y S
t−2 0.00505
Y S
t−3 0.31705 0.05630
Y S
t−4 -0.09938 -0.13002
Y S
t−5 -0.00861 -0.01192 0.04338 -0.53373 0.03793
Y S
t−6 0.68604 0.18276 0.01043 0.20813 0.20967
Y S
t−7 1.73824 0.41208 0.15347 0.20106 0.87037 1.88149
Y S
t−8 -0.21439 -0.92061 -0.00121 -0.95371
Y S
t−9 -0.01280 -0.10891 -0.20787
Y S
t−10 -0.72425 -0.42295 -0.08480 -0.61870 -0.23529 -0.24593 -0.13900 -0.31148
Y S
t−11 -0.06478 -0.13365 -0.00005 -0.12930
Y S
t−12 0.01743
Y S
t−13 0.00018 0.01002 0.00019
Y S
t−14 0.08959 -0.00003 -0.50969
Y S
t−15 0.00011
Y S
t−16 -0.05583 -0.38683
Y S
t−17 -0.42047 0.00609
Y S
t−18 -0.35707 -0.01812 -0.04056 -0.00015
Y S
t−19 0.02058 -0.29319
Y S
t−20 -0.65820 0.00186 0.00276 -0.00009
Y S
t−21 -0.00703 -0.00241

effects, we now observe from Table 5.2 many negative coefficients for all

ranges of time lags. For example, there are 4-5 day negative lag effects

for cities of Cardiff, Edinburgh and Liverpool, while longer day negative

lag effects are observed for other cities. This may, perhaps, be partially

credited to the increasing of self-protection awareness boosted by the

bloom of epidemic in nearby areas. However, for transportation hubs,

e.g., Birmingham and Liverpool, the main spatial effects of COVID-19

are positive and stronger than other areas, with lag-1 coefficients as
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large as 1.88134 and 1.26303. Here we would like to call for further

research to investigate such spatial neighbouring effects with links to

social studies, transportation research and epidemiology.

• Google data - Mobility in Areas: Our finding generally agrees

with the common sense that virus would spread with close contacts

especially in the areas where people are crowed with no fresh air. For

example, from Table 5.2, we find the daily increase number positively

depends on mobility in retail areas for Cardiff, Glasgow, (City of) Lon-

don and Manchester. However, no further evidences are observed for

other cities. Similarly, such positive effects are observed in work place.

As to the residential areas, staying at home is shown to help reducing

the increase of daily confirmed cases in cities, such as Edinburgh, Glas-

gow and Liverpool. It is expected that for different locations, the living

style of residents would also lead to some kinds of variety, which may

call for future study of such social links.

It is not very surprising to see from Table 5.2 that mobility in groceries

and pharmacies at all locations would actually decrease the number

of infections, as people are required to shop there with medical equip-

ments, e.g., masks, for protection. The access to pharmacies also pro-

vides people the chance to get such medical equipments, and thus help

preventing the spread of COVID-19.

For the mobility data of ’Parks’, the coefficients are positive except City

of London as shown in Table 5.2. It looks surprising. This has now been

explained by updated medical research that the virus could still be alive

and therefore spread in the air (c.f., The Lancet Respiratory Medicine

(2020)).

Surprisingly, for mobility at transit stations, the coefficient is mildly

negative for Glasgow. On one hand, the reduce of mobility in transit

stations may lead to the increase of mobility in other areas. On the

other hand, it could be actually a result of lockdown that people use

public transportation more often when the spread of COVID-19 is under

control and avoid it when the situation is bad.

• Apple data - Mobility by transport: As expected, from Table 5.2,

we do observe significantly positive relationships for ‘Transit’ from Ap-

ple Data. Especially, in the areas like Glasgow, such relationship is
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identified strongly positively correlated with the coefficient for ’Tran-

sit’ as large as nearly 1.05. It shows consistent impacts on the daily

increase number that it is still very risky for people to take public

transportation in general. We thus would like to suggest limiting the

mobility of public transportation as the first priority.

The effect of the ‘walking’ from Apple data, mostly believed by people

to be safe as it is an open space with fresh air, is shown in Table 5.2

to be negatively correlated to the number of daily new cases in most

cities except Edinburgh, Glasgow and City of London. Note that it is

positive for ‘walking’ in City of Glasgow.

Driving , according to the results, seems to be safe and can even con-

tribute to reduce the spread of COVID-19. This can be understood as

it would reduce the chance of people using public transportations, and

avoid contacts.

• UK News Index: The Index value is positively correlated to the

spread of COVID-19 for locations like Edinburgh, Glasgow and Liver-

pool, mainly in the northern part of England and in Scotland. These

cities with large populations have witnessed the serious local outbreak

of COVID-19 and local lockdown, which should in general be reflected

in the News index. However, we observe a negative coefficient with

News index for Manchester, which is close to 0. To better study the

impact of media promotion of self-protection awareness in the combat of

epidemic of COVID-19, more detailed data other than UK News Index

is needed. Research in this direction may provide further information

and deeper understanding that guide the government to better react to

these emerging events.

5.4.4 Forecasting comparison

In order to further examine the advantage of the feature variable selection

technique, we apply both Model ST (5.3) and Model ST with variable se-

lection (5.13) to predict the number of daily new cases for the last available

week in the data, i.e., from 7th March 2020 to 24th January 2021. This

is done by a one-step ahead prediction for 7 days in total, i.e., from 25th

January 2021 to 31st January 2021.
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The prediction with the variables other than time trend is rather straight-

forward (as they are accessible in data). However, for the time trend term,

we need to first forecast its value before calculating the predicted number of

confirmed cases. It is argued that the spline method only uses one side of

past time points when forecasting, e.g., at t = n+ 1, so the extrapolation of

the future may not work well. However, for a relatively short term period,

say next day, it is fair to assume that the current time trend would last.

Recalling Section 5.3.2.1, we use cubic spline to first obtain the time trend

at time n, and then feed its value to the model for prediction at time (n+1).

We can thus make prediction for time (n+ 1) from our models.

We calculate the MAE of predictions based on model 5.13 for each location

and present it in Table 5.3 (see also Figure 5 to 8). It is noted that some

of the values predicted by the Model ST without variable selection would

actually lay outside of the plot, i.e., exceeding the maximum of y-axis in the

figures. It is clear that Model ST with variable selection has much smaller

MAE values of the predictions, and thus a stronger prediction power, for

all cities indicated in Table 5.3. For Birmingham, it has the largest number

of accumulated confirmed cases, and the trends there are rather volatile.

Clearly, Model ST without variable selection fails to capture the true pattern

well and is impacted by the outliers instead, as seen in Figure 5. It is also

confirmed by Figures 5 to 8 that Model ST without variable selection often

overestimates the daily confirmed cases in prediction.

Finally we make a comment before ending this subsection. We turn our at-

tention back to Table 5.2 for explaining the predictions given in Table 5.3.

The obtained coefficients for Model ST with variable selection in Table 5.2

indicate that the time trend term actually plays an important role in ex-

plaining the daily number of new cases. For some locations, e.g., Cardiff,

City of London, Leeds and etc., not every basis function of time trends is

selected. In fact, as one can observe from Figures 5 to 8, the time trend

patterns of daily new cases are quite different at different locations. This

agrees with the epidemiology consensus that the investigations of COVID-19

need to be done on a location to location basis.
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Figure 5: Estimation and Prediction of Model ST for Birmingham and Cardiff

Table 5.3: Mean Absolute Errors of predictions of 7 days by Model ST
with/without variable selection.

Birmingham Cardiff Edinburgh Glasgow City of London Leeds Liverpool Manchester
ST without variable selection 682.5164 144.4767 223.6387 3534.29 220.9273 349.0468 713.9196 189.745
ST with variable selection 114.3103 18.3848 5.9312 25.3739 12.4171 19.9994 26.0801 17.2645
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5.4.5 Implications

From the above analyses, we believe the proposed model is acceptable in

accuracy and robustness for analysing the UK COVID-19 data. The time

trends of COVID-19 are not negligible across different time periods, though

without interventions, the development of pandemic is roughly bell shaped.

Also, the empirical findings reveal that the development of COVID-19 in

each city depends on its role in the national (or international) transporta-

tion network. As a consequence, lockdown is the effective action to limit

the neighbouring effects identified. However each local authority should im-

plement individual policies based on its own status. For example, it may

be beneficial to keep the access to Grocery & Pharmacy for the public. In-

deed, the key of lockdown is not to limit the activity of people to certain

areas, but to limit the contacts and promote self-awareness of prevention.

Our findings therefore support the epidemic consensus that the limitation of

public transportation is the most important action from the perspective of

pandemic control.

5.5 Conclusion

In this chapter, we have presented a spatio-temporal model with the consid-

eration of nonlinear trends, temporal lag and spatial neighbouring effects of

the daily cases as well as the mobility effects for the empirical modelling of

the COVID-19 data in the UK. The key findings include:

(1) The daily confirmed number has strong time trends across different time

periods of interventions. It also has interesting strong temporal lag effects,

with strongly positive lag effect lasting for about one week in the past but

with a self-recovering of negative lag effect after more than one week up to

3 weeks (in particular 3 weeks lag effect identified for Birmingham, City of

London and Manchester).

(2) A neighbouring effect is also identified that the areas of key role in a

transportation network often suffer more serious infection of COVID-19, and

thus the action of lockdown is indeed an effective measure in the combat of

pandemic.
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(3) The media effects are significant, which may well promote self-protection

awareness in controlling the spread of pandemic. The mobility data classified

by either areas or means of travel can provide further guidance on how to

implement the multi-level lockdown for different locations.

(4) We demonstrate that all these effects identified are however varied with

locations, so different local authorities may need to implement varied policies

regarding control measures such as lockdown, not only because of the varied

population size and medical resources, etc., but also depending on their roles

in a transportation network.

These findings imply that limiting public transportation and using media

advertisement of COVID-19 information to promote the publics awareness of

self-protection (e.g., wearing masks) should be of the first priority in the sense

of preventing the spread of this pandemic, in particular in view of the one-

week strongly positive lag effect. We need to pay more attention to public

transportation rather than walking or driving. The increase of mobility to

pharmacies actually reflects the awareness of individual protection, and thus

can help limit the spread of COVID-19. We can expect these findings and

the suggested methods will be useful in guiding and supporting the policy

making and allocation of the resources that are location based for pandemic

controls.

We comment that our modelling is based on the conditional Poisson distri-

bution of the daily new cases given the past available information. It means

that unconditional distribution of the daily new cases is a mixture of Pois-

son, or a non-Poisson, distribution, so our model distribution is in general

reasonable. However, study of spatio-temporal dynamic behaviour of the

daily new cases under other model distributions such as negative binomial

(c.f., Giuliani et al. (2020)) could also be further investigated, which is left

for future consideration.

The investigation into COVID-19 is still an active area for many disciplines.

We believe both the methods and the findings in this chapter thus can further

contribute to the related studies.
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Figure 6: Estimation and Prediction of Model ST for Edinburgh and Glasgow
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Figure 7: Estimation and Prediction of Model ST for (city of) London and
Leeds



128

Figure 8: Estimation and Prediction of Model ST for Liverpool and
Manchester



Chapter 6

Conclusion, Challenges and

Future Work

6.1 Conclusion

In this research, we have proposed several novel estimation procedures for the

discrete-valued time series data. The theoretical works of asymptotic prop-

erties contribute to the literature of high and ultra-high dimensions time

series data of discrete-valued response and maximum likelihood estimations.

The numerical examples of empirical applications have shown the great ro-

bustness and prediction ability of the proposed procedures for dealing real

world problems. We thus demonstrate the main contributions as follows:

• A class of discrete-valued time series models have been developed with

flexibility to incorporate also exogenous variables that are easy to in-

terpret and compute.

• To cope with the unknown nature of data, we consider nonlinear struc-

ture instead of commonly adopted linear assumptions. This makes sure

that the models are “data-driven”, which is important for situations

where human experiences are absent.

• Conventional techniques, such as local linear regression (see Chapter 2)

and adapted LASSO (see Chapter 4), are adapted from i.i.d assumption

to β-mixing conditions. It further allows researchers in the filed of time

series to adopt these classic methods in related studies.

129
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• “Curse of dimensionality”, which is often faced in large scale data prob-

lems, has been avoided by the proposed semi-parametric model GMA-

MaR. Therefore, it provides the solid foundation for further applica-

tions of our proposed models to real world problems, e.g., in the field

of epidemiology, finance and etc.

6.2 Challenges and future works

Though the models developed in this thesis are proved to be elegant and

efficient theoretically, in practice, there are still some challenges to be solved:

(a) We have examined the impact of spatial effects in a simple model given

in Chapter 5, which shows great potentials. A challenge is the spatial

effect caused by the economic globalisation that countries are coming

together as one large economy to make international trading easier.

This is to say, the possible dependency of space has to be considered if

we want to estimate or to predict the complex responses such as default

rate and market evolution probability.

(b) As partly examined in this thesis, the developed models are robust and

powerful, when dealing with discrete time series data in high and ultra-

high dimension. Therefore, another possibility is to apply these models

to other practical applications such as credit scoring.

In the next stage of research, we would like to extend our novel estimations

procedures for discrete-valued β-mixing time series data to a broader area

that could possibly solve the challenges mentioned above.

6.2.1 Spatial-temporal modelling

Empirical studies in econometrics and statistics often find spatio-correlations

in time series data, due to the development of globalisation. For instance,

they are in wide range of disciplines, such as environmental economics and

industrial organisation economics. We aim to extend our proposed GMA-

MaR method to the domain of spatio-temporal models. For example, the

logistic spatio-temporal model will have a form as follows:
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logit(p(s, t)) = c(sk) + b(s, t)x(s, t) +W(s, t), (6.1)

where p(s, t) = P (Y (s, t) = 1|It−1), s is the index of location and t is the

index of time, b(s, t) is the coefficient, W is a spatial-temporal process and

c(sk) is the intercept term.

Unlike t, which is one dimension, the location can have different directions

and it depends on how we measure it. There are two different methods found

in literature. The first one is to assume that s can go through every location.

This is the case where continuous x-axis and y-axis coordinates are assigned

with s, e.g., in Al-Sulami et al. (2017). The other way is to assume the

spatial sites are of the form of countable lattices, e.g., in Besag (1974) and

Lee (2004). This can be considered as a simplified case, where the directions

are often restricted to, e.g., north, south, west and east.

The linear relationship of spatial(-temporal) models has been widely stud-

ied in literature, see Cox and Isham (1988), Yang et al. (2005) and Cressie

and Wikle (2015). In recent years, we notice an increasing interest of the

investigation of the nonlinear structure Xu and Lee (2015). For instance,

Lu and Chen (2004), Hallin et al. (2004) and Gao et al. (2006) study some

statistical properties of a spatial regression under mixing conditions. Jenish

(2012) establishes asymptotic properties of local linear estimators under spa-

tial near-epoch dependence (NED). It is recognised that allowing nonlinear

relationships can improve the performance of models as it better captures the

true relationship of the data. Among the spatial-temporal models, the study

of discrete-valued dependent variable is not as extensive as the continuous-

valued cases. (c.f., Zhu et al. (2008), Wang et al. (2013) and Cressie and

Wikle (2015).)

In the context of discrete-valued time series modelling procedure, the exten-

sion to spatio-temporal models would require careful checks of the assump-

tions and novel designs of estimation methods. Here we consider a situation

given as follows.

Let Yt(sk) and Xt(sk) denote two spatio-temporal processes at discrete time

point t = 1, ..., n, where Yt(sk) is binary taking on value of 0 or 1, and

Xt(sk) contains d dimensional covariate variables, which may involve the

spatial-temporal lag and variables of different time series data. A spatial

unit is defined as sk := (uk, vk) ∈ R2, where uk, vk are x and y coordinates
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at discrete time point t = 1, .., n and location index k = 1, ..., r. At a given

spatial location sk, we consider a semi-parametric nonlinear regression time

series model as follows.

Denote It−1(sk) for the information up to time t−1 about time series Yt(sk).

The regression is to estimate the following conditional probability:

pt(sk) = P (Yt(sk) = 1|It−1(sk)). (6.2)

Because of the curse of dimensionality, we would like to first look at the

marginal effects of each covariate. Here we define the marginal probability

of the jth covariate (xjt(sk)) as follow:

pjt(sk) = P (Yt(sk) = 1|xjt(sk)), j = 1, ..., d; k = 1.., r. (6.3)

Let F be the logistic cumulative distribution function(c.d.f), i.e., F (u) =
eu

1+eu
. Then the marginal non-parametric logistic regression is logit(pjt(sk)) =

fj(xjt(sk), sk), and therefore, we have:

pjt(sk) = F (fj(xjt(sk), sk)), (6.4)

where fj(.) is the j-th marginal smooth function.

Our second step is then to combine the marginal logistic regressions by using

the idea of model averaging as follows:

logit(pt(sk)) = c(sk) +
[
α1(sk), · · · , αd(sk)

]
logit(p1t(sk))

...

logit(pdt(sk))



+ γ1(sk)ω(sk)


Yt−1(s1)

...

Yt−1(sr)

+ ...+ γq(sk)ω(sk)


Yt−q(s1)

...

Yt−q(sr)

 (6.5)

where α(sk) = (α1(sk), ..., αd(sk)) and γ(sk) = (γ1(sk), ..., γq(sk)) are the

vectors of coefficients to be estimated. This can be seen as the model

averaging. The α can be seen as the temporal weights assigned to tem-

poral models and γ can be seen as the spatial weights of spatial models.
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ω(sk) = (ω1(sk), . . . , ωr(sk)) is the corresponding spatio weight vector given

location sk, which is often assumed to be a priori is popular in economet-

rics (c.f., Al-Sulami et al. (2017) ). c(sk) is the constant term that will be

estimated simultaneously, which reflects the long term average of Yt(sk).

This is an example of logistic model with the asymptotic properties of pro-

posed estimation method left for future work. We hope the development

of such model for discrete-valued time-series of exponential family can po-

tentially contribute both in theoretical and practical way by providing the

uniform consistency properties and showing accurate estimation and predic-

tion results for solving real world problems. For instance, an application to

COVID-19 data, as what we have studied in Chapter 5, can be expected

with the new model designed.

6.2.2 Credit scoring

As to the existing time series models, an application to credit scoring appears

to be of great potential. Credit scoring is an important method widely used

in todays business where a lender (or such a decision maker) would decide

whether or how to offer credits to the borrower (or a consumer specified).

One of the most critical processes in a credit decision system is to evaluate

the credit. To assess such decision, it is necessary to collect, analyses and

classify different credit attributes. This process to evaluate the credit, aiming

to minimise the expected loss of the loan defaults, is normally referred to as

credit scoring. It is also said to be the modelling of assessing creditworthiness

by Hand and Jacka (1998).

The decision maker normally would have two questions: first, how to deal

with new applicants and then, how to cope with existing customers. This

would include questions such as ”shall we accept a new application?” or ”how

to decide their credit limits (could be increase or decrease)”. No matter what

kinds of models are used to answer the listed question, it is crucial to have

a big data of previous applicants with associated detailed information and

significant credit history. Credit scoring models all use the given sample to

investigate the connection between the attributes of the consumer and the

subsequent performance in history. Each attribute would be given a score

and the total score summed up describes the risk of the particular consumer

and whether it is too bad to accept.
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Table 6.1: Statistical Models for Credit Scoring

Methods Main technique Summary
Discriminant analysis Decision theory Use the conditional probability to minimize the expected loss of default
Discriminant analysis Classify two groups Classify cases into groups, by drawing the perpendicular cut-off line
Discriminant analysis Linear regression Find the best linear combination of variables to minimize the mean square error
Logistic regression Maximum likelihood estimation Use the MLE method to find the best coefficients of the log transferred regression
Probit and tobit analysis Nonlinear regression Use individual approach to minimize the total sum of error
Classification tree Recursive partitioning algorithm Uses decision tree to maximise differences between sub-sets
Nearest-neighbour Nonparametric Choose metric to find the nearest neighbours

Table 6.2: Non-statistical Models for Credit Scoring

Methods Summary
Linear programming Minimize the sum of absolute errors (MSAE) or maximum error (MME)
Integer programming Minimize the number of misclassification or the total cost associated
Neural network Minimize the average mean of all trained samples
Genetic algorithm Search the set of possible solutions and find out the local or global optimum

An increasing number of literatures in the last few years indicates that the

research and application of credit scoring is developing rapidly. The most up

to data review paper is proposed by Lessmann et al. (2015) that aims to give

a benchmark to the classification algorithms using credit data as an update

of their previous work of Baesens et al. (2003). Crook et al. (2007) earlier

had introduced the history and its following development of credit scoring

techniques with a comprehensive review. All of their work are based on the

ground of previous research such as a review of different classification models

given by Rosenberg and Gleit (1994), the result comparison review done by

Hand and Henley (1997) and the additional introduction of behaviour scoring

techniques proposed by Thomas (2000) as well as a further discussion of

Thomas et al. (2002) on this topic. Abdou and Pointon (2011) then provided

a review 214 related publications as a continued work of Thomas et al. (2002).

According to these reviews, the credit scoring models could be divided into

statistical scoring methods, non-statistical scoring methods and the repay-

ment behaviour methods. The representatives of them are linear/ logistic

regression, mathematical programming and survival analysis respectively,

see also Table 6.1 and 6.2.

Except for standard methods mentioned above, research of credit scoring has

been carried on with many newly developed techniques. These new models

are aimed to answer the question such as “how to score with limited sample

set”, “can the conventional classifiers be combined”, “what if there exists

more than one scorecard”, “what if one estimates the inter-media variables

before making a binary decision” and “how about predict when would default

happen rather than whether it will happen or not”. All the mentioned



135

questions being investigated lead the proposed techniques to include more

outcome variables and allow them to be continuous rather than traditional

answer as yes or no.

Such trend shows an increasing interest in the study of credit scoring in

a more complex environment in a timely manner, which could hardly be

explained or included using the existing statistical and non-statistical models

such as logistic regression. Since credit scoring also reflects the lender’s

prediction of the future economic scenario, one may consider to include the

economic environment and other important variables related. These financial

data are often needed to be analysed using time-series analysis both for

predicting the future and study the underlying laws of economic. Hence,

there is a potential to combine and investigate the credit scoring methods

and time series analysis methods. As a consequence, it would ideal to apply

our proposed discrete-valued time series models (e.g., MAMALOR ) into the

field of credit scoring.
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