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The core topic we study in this thesis is the concept of black hole instabilities. This in
essence means that if one probes a black hole background with any classical field, modes
scattering the black hole horizon which are growing in time are considered unstable.
There are many interesting questions which arise as a result of an unstable black hole
perturbation, such as; what is the endpoint of the instability? What does the solution
and phase diagram of such a black hole configuration look like? The answer in some
cases is that one finds hairy black hole solutions, which turn out to be even richer in
their structure as we will explore in the second part of this thesis. Sometimes however,
searching for an instability within the vast structure of black hole quasi-normal modes
is itself an interesting task which requires robust numerical methods. One needs to use
perturbative methods to guide the numerical search, which we discuss in the first half
of this thesis.
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CHAPTER

Introduction

1.1 Einstein’s equations and black holes.

Einstein’s equations are rich and diverse in their applications. This thesis explores dif-
ferent applications in one of the most fascinating solution-types to Einstein’s equations,
namely black holes. In their most general form, Einstein’s equations read

1
Ry, — §ng, + Agu = 87GNT 0, (L1y

where R,,, is the Ricci tensor and R is the Ricci scalar associated with the metric g,,,,
which describes the geometry of the spacetime manifold. The value of the cosmological
constant A depends on the asymptotic behaviour of our spacetime, A = 0 for asymptot-
ically flat spaces, A > 0 for de Sitter (dS), and A < 0 for Anti-de-Sitter (AdS) backgrounds.
On the right hand side is the energy-momentum tensor, which depends on the matter
content one wishes to consider. Equation (1.1.1) is normalised with Newton's constant
G so that in the weak-field, non-relativistic limit (1.1.1) reduces to Newtonian theory.

The equation (1.1.1) follows from extremising the Einstein-Hilbert action

1
167Gy

/ d*z\/—g (R —2A) + / d*zn/=g L. (1.1.2)

Sen =

In equation (1.1.2) £,, is the matter Lagrangian which gives rise to the stress energy tensor
in equation (1.1.1). There are many interesting solutions to (1.1.1), such as neutron stars or
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cosmological solutions describing the expansion of the universe. However, in this thesis
we focus on black hole solutions, which I will now describe. Black holes are well known
to be objects (or regions of spacetime) possessing a gravitational field that is so strong,
not even light rays can enter this region and escape . It is also necessary to define these
objects mathematically, in order to give a precise definition we restrict our attention to
asymptotically flat black holes for now. The following material can be found in much
greater detail in books such as [4, 5]. In physical terms, an asymptotically flat spacetime
is one which approaches the Minkowski metric at spatial infinity. Recall that future null
infinity in Minkowski spacetime is denoted .#* and that a spacetime manifold (M, g)
is asymptotically flat if there exists a spacetime (M, §) and a conformal function € on
M such that M C M where M is an extension of (M, Q2g) 2. Now suppose we have a
time-orientable, asymptotically flat spacetime manifold (M, g). Then the set of points
in M that can send a signal to .4+ is M N J~(#1) where J~ (#7) is the causal past of
the surface which is located at .#* and J is defined using the aforementioned metric
(M, g). The black hole region is therefore given by B= M\ {MNJ~(#1)}. The future
event horizon is defined by #* = B, which is the boundary of B on M. Now, to com-
plete the mathematical description of black holes we define the term Killing horizon. A
null hypersurface N is a Killing horizon if there exists a Killing vector field £# in a neigh-
bourhood of N such that £# is normal to V, that is for n* normal to the hypersurface A/
we have g, n*¢” = 0. This leads naturally to the following theorem by Hawking: For an
asymptotically flat, stationary, analytic, vacuum black hole spacetime, the future event
horizon H™ is a Killing horizon. To conclude our introduction to Einstein's theory and
black holes it is instructive to give an example, which will also be of relevance to this
thesis. Consider equation (1.1.1), for the pure vacuum one has 7},, = 0 and the unique
static black hole solution is given by the famous Schwarzschild solution [6] 3. Now sup-
pose we wish to consider the interaction of the gravitational field in an electromagnetic

vacuum, we have
1

1
T = in (FMaFya - 49MVF04BFQB> ) (1.1.3)

where F' = dA is the Maxwell field strength associated with the electromagnetic poten-
tial A. The field strength obeys Maxwell's (vacuum) equation in curved spacetime, given
by

VeF,5 =0, (1.1.4)

where V is the covariant derivative associated with the torsion-free Christoffel symbols
for the metric g. The static black hole solution to this theory is given by the Reissner-

'Equivalently but slightly more precisely, one cannot send a signal from inside the black hole region to
spatial infinity.

“There are further mathematical components of this definition, which can be found in [4, 5]. For example
(within M) M can be extended to M U OM and Q2 can be extended to a function on M such that Q = 0
and d Q # 0 on OM.

3This is the uncharged version of Birkhoff's theorem, which we will discuss in part IV
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Nordstrom (RN) solution, whose field content looks like:

2M 2
ds? = —fdt* + f'dr? +r2dQ3,  f=1-"—+ Q.
r 2r2

Q

Ay dxt = Ay(r) dt, A(r) = - + G, (1.1.5)

where d)3 is the line element of a unit radius 2-sphere, M and @ are the Arnowitt-
Deser-Misner (ADM) mass and charge of the black hole [7]. In (1.1.5), C is an arbitrary
integration constant and fixing it amounts to choosing a particular gauge. One common
gauge choice is C' = 0 where one has A|,, = 0 and the chemical potentialis u = —A|,, =
@Q/r4+. Another gauge that is commonly used is C' = p where we have A|,, = 0 and
Also = p. Note that Einstein’s equations hold in general d dimensions, however we focus

on black holes in 4 dimensions in this thesis.

1.2 Black hole perturbations

Black holes are similar to many other physical objects in the sense that subject to small
perturbations, they display a characteristic ‘ringing’ these characteristic frequencies are
known as quasi-normal modes (QNMs). The gravitational field itself has QNMs when
perturbed, however fields with any spin can probe a black hole background, such as the
scalar fields (spin 0)* or spinors (spin +1). These QNMs are intimately linked with the
stability of a black hole solution. Mathematically QNMs appear as eigenmodes of dissi-
pative systems and in practice (as we will see) the eigenvalue problems which appear in
black hole perturbation theory have solutions which cannot be written in closed form,
therefore requiring a numerical treatment. In general, field perturbations will inherit
symmetry properties from the symmetries of the background at hand which generally
leads to a separation of variables of the PDE perturbation equations so that they reduce
to ODE's which can then be solved by your method of choice. These ODEs must then
be supplemented by physically appropriate boundary conditions imposed at the black
hole horizon and at our asymptotic infinity. For the example of black holes which are
spherically symmetric (as we have in the case (1.1.5)), the associated perturbations can
be decomposed in terms of spherical harmonics as ) _,,, Y., (6), leaving just the radial
and time fields to be found. The RN solution also has 0; as a Killing vector, therefore
perturbations can be further Fourier decomposed as e, where w are the character-
istic frequencies. In empty spacetime these frequencies are real and the perturbation
is oscillating in time, these are normal modes. In the presence of a black hole, which
is dissipative, the frequencies are complex: w = wpg + iws. Therefore the time com-
ponent of the perturbation looks like e~“r!*@rt hence modes with w; < 0 decaying in

time, these are QNMs, on the other hand modes with w; > 0 are growing exponentially

*Scalar fields prove to be a good toy model for the more physically relevant case of the graviton (spin 2).
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in time, rendering the perturbation unstable. The mathematical reasoning for having
complex frequencies is down to the presence of the black hole horizon, which acts as
an absorbing membrane on classical field perturbations, this forces the corresponding
boundary value problem to be non Hermitian and the associated eigenvalues are com-
plex. For backgrounds with sufficient symmetry, there usually exists a Teukolsky master
equation® governing perturbations for general spin s fields. These equations can gener-

ally be written in Schrodinger form
2 Vs + (w? = V) Ty =0. (1.2.1)

In equation (1.2.1), r, represents the tortoise coordinate, which for the RN background

(1.1.5) is defined via the relation 4+ = % and V; is an effective potential, which depends
on the spin of the field and the radial coordinate. In general the equations for field per-
turbations that we will encounter in this thesis can be written in the above form, such
as in part II when we search for fermionic instabilities in charged AdS black holes- by
computing numerically the QNMs via Dirac’s equation. For a detailed review and col-
lection of results in black hole perturbation theory see the review [9] and references
therein. Now we give a detailed description of spinors and scalars in a general curved

background. For more detailed discussions see [10, 11, 12, 13, 14].

To start, consider spin-s fields in Minkowski spacetime. The spin of a field can be iden-
tified by looking into how the field transforms under a Lorentz transformation, z*# —
= A", z¥. Let M®P = — MP2 be the generators of Lorentz transformations (i.e. a basis
of six 4 x 4 antisymmetric matrices obeying the Lorentz Lie algebra). A finite Lorentz
transformation is described by A = exp (%Qag/\/lo‘ﬂ ) where Q.5 = —Qg, are six param-
eters describing the particular transformation A (boost, rotations) of the Lorentz group
S0O(3,1).

Undera Lorentz transformation a spin-s field ¥ (z) transforms as ¥(z) — ¥(z) = S[A]¥ (A~ '2).
Here, the matrices S[A] form a representation of the Lorentz group (i.e. S[A1]S[A2] =
S[A1A2), S[AY] = S[A]~! and S[I] = I) with group generators S% = —S5 such that
a finite Lorentz transformation is described by S[A] = exp (392,35%%).6 The matrices
S[A] depend on the spin of the field perturbation since the generators S(*®) depend
on whether we are looking into, for example, the scalar or spinor representation of the

Lorentz group, we will give more details on these two cases below.

In Minkowski spacetime, under Lorentz transformations the derivative of a spin-s field
transforms as 9,0 — 9,¥(z) = A,”S[A]0, ¥ (A~ x). If we want to couple the spin-s

®Named so due to the pioneering work of Teukolsky for field perturbations on the Kerr black hole back-
ground [8].

Note that we are applying the same Lorentz transformation to « and ¥; thus the coefficients Qs of the
transformations A and S[A] are the same although the bases of generators M*? and S*?, respectively, are
different.
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field to a curved background, while preserving general covariance, one needs to pro-
mote the partial derivative 9, to a covariant derivative D,,. This promotion is chosen
such that any function of ¥ and D,V that is a scalar under Lorentz transformations in
Minkowski spacetime remains a scalar — under general coordinate transformations and
local changes in the vierbein — in the curved background. This is the case if, under an
arbitrary Lorentz transformation, the covariant derivative D,, still transforms as a deriva-

tive of a spin-s field:
D,V (z) = D (z) = A,V SAD, T (A ). (1.2.2)

It follows that the covariant derivative of a spin-s field that preserves Lorentz invariance
in a curved background is
D, =08, — T, —igA, (12.3)

where we took the opportunity to allow the spin-s field to have a charge ¢ (that couples
to the Maxwell background field A4,,), and I, is a covariant spin connection

1
T, = _§wu(a)(b)5(a)(b)’ (1.2.4)
which depends on the spin of the field it acts on.

In more detail, for a scalar (spin-0) field ¥ = & the Lorentz group generator is sim-
ply S(@®) = 0. Therefore S[A] = 1 and the scalar covariant derivative (1.2.3) is sim-
ply D, = 0, — iqA,. The action for a massive charged complex scalar field is given by
So = [ d*z /=g (D@D ®* + m?*®®*) where * stands for complex conjugation. The
factor of \/—g is introduced to ensure that the Lagrangian L4 is a scalar density and thus
the action Sg = [, d*zLg is a scalar. Varying this action w.rt. ®* one gets the Klein-

Gordon equation for the scalar field
D, D'® — m*® =0 (1.2.5)
and similarly for ®*.

On the other hand, for a (spin-}) Dirac 4-spinor field” ¥ = ¢, out of the gamma matrices
~7(2) (2.2.8) that satisfy the covariant Clifford algebra (2.2.9) one can build the commutator
([A,B] = AB — BA)

1
s — [7<a>7,y<b>} : (1.2.6)

that satisfies the Lorentz Lie algebra.® S(®(®) is the generator of the Lorentz group in

"The Dirac spinor is a 4-component field ¢* with complex components A = 1,2, 3, 4. In our study we
will typically omit the spinorial indices and simply write ¢ = ¢*, v(*) = (4(2)4; and S[A] = S[A]%;.

8More precisely, Dirac 4-spinor fields are invariant under internal local Lorentz transformations of the
spinor representation of the SU(4) group. There are 15 Dirac matrices that provide a 4 x 4 fundamental

representation of the SU(4) group [13]. These are the four vectors 4(*) introduced in (2.2.8), the six tensors
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the spinor representation and replacing this (1.2.6) into (1.2.4) and then the latter I, into
(1.2.2) one gets the spinor covariant derivative D, namely (1.2.3), that acts on the Dirac
spinor .

The action that is Lorentz invariant and describes the coupling of a spin-3 fermion field
1 to a curved background M is

Sp = /M d'z /=g <; [%#DM — (Duv) fyul/,} - m¢¢> (1.2.7)

where we have introduced the Dirac adjoint 1/ = 97(© with ¢t = (¢¥*)T being the
Hermitian adjoint of the multi-component field 1. One needs to work with the Dirac
adjoint because the Fermi bilinears v and 1 transform covariantly (as a scalar and
as a vector, respectively) under the Lorentz group (while the Hermitian partner objects

do not).

Varying the action Sp w.r.t. 1 and v, respectively, one gets the Dirac equations

(iBM—m>@Z):0 & i D —mip =0,

&(i§u+m):0 & i (D) +myp=0. (1.2.8)

This concludes our introduction to black hole field perturbations, we will explicitly solve
the Dirac and Klein-Gordon equations in part II. In asymptotically AdS backgrounds,
there exists a special relationship between theories of gravity and conformal field the-
ories (CFTs) living on the boundary, this is known as the AdS CFT correspondence [15]
which we will introduce in the next section.

1.3 AdS/CFT correspondence.

The AdS/CFT correspondence is an example of a more universal physical concept called
the holographic principle, which states that the physics describing quantum gravity in
a d + 1-dimensional bulk volume of spacetime is encoded in a quantum field theory
(QFT) which resides on the d-dimensional boundary, or vice versa. Given that both the-
ories describe the same physics, the degrees of freedom on both sides must match, this
gives rise to the so called holographic dictionary. The AdS/CFT duality tells us that string
theory on an asymptotically AdS (AAdS) spacetime (and a direct product of a compact
manifold, such as a sphere) has the same physics as the CFT that lives on the boundary
of the bulk spacetime. In the case of AdS/CFT we have a strong/weak coupling dual-
ity, that is— a strongly coupled string theory on an AAdS background is dual to a weakly
coupled CFT living on the boundary and vice versa. This is particularly useful given that

S5(@)®) defined (1.2.6), the pseudoscalar 4*) introduced in (2.2.10), and four axial vectors ®~(®).
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generally, strongly coupled string theories are less well understood than some weakly
coupled CFTs. For example the theory of quantum chromodynamics (QCD): progress
has been made in understanding the QCD phase diagram at points which are hard to
access through traditional QFT techniques, through studying physics on the gravity side
via the AdS/CFT correspondence. See for example [16, 17, 18, 19]. Another major mile-
stone in the holographic programme is the method of holographic renormalisation [20]
(see also [21] for a real-time prescription), whereby one can compute renormalised QFT
correlation functions by performing computations exclusively on the gravity side. It is a
well-known fact that string theories on AAdS spacetimes reduce to supergravity in their
low energy limit, which involves classical solutions of supergravity coupled to an infinite
tower of Kaluza-Klein (KK) modes resulting from the dimensional reduction of super-

gravity in 11 dimensions®

. To understand what the low energy limit on the QFT side
means, it is useful to come back the the example of QCD. To be precise, QCD is a gauge
field theory which was formulated to describe the strong interaction of quarks and glu-
ons, it is constructed as an SU (3) gauge theory and is consistent with experimental data
(that which is accessible). The theory of QCD possesses a special property: it is asymp-
totically free. This means that at high energies (and short distances), the constituents of
QCD behave essentially as free particles, therefore allowing for perturbative methods
to illuminate key features. However at large distances the quarks and gluons interact
strongly (and with a low energy), therefore the theory is less compliant with traditional
gauge theory perturbation techniques. Two examples of properties that have been hard
to understand in the low energy regime are confinement and chiral symmetry break-
ing. Now consider a general SU(N) gauge theory, the low energy limit corresponds to
the 't Hooft large N limit [25], A = ¢%,,N > 1 where gy, is the Yang-Mills coupling.
What 't Hooft showed was that if one considers the integer number N as a parameter,
the SU(N) gauge theories simplify in the large N limit, giving rise to a perturbative ex-
pansion in 1/N. In taking the large N limit one must keep A fixed. This is in order to
keep leading terms in the beta function equation of the same order in the N' — oo limit

in the perturbative expansion'©.

We now proceed by presenting an example which was also discussed in the review [26],
where we derive the celebrated Breitenlohner-Freedman (BF) bound, of crucial impor-
tance to this research. It is well known that the AdS gravitational potential well acts as a
reflecting mechanism for classical fields. This is due to the fact that light rays can travel
to the AdS boundary! and back again— in finite time— as seen by an observer moving

along geodesics in AdS. Whereas massive particles moving along geodesics can never

Equivalently these KK modes are the result of reducing type ITB supergravity (or type IIA supergravity,
all of these supergravity theories are inextricably linked to one another via the web of string dualities. For
an excellent review on these dualities see for example [22] and for detailed reviews on KK reductions see
[23, 24].

“When the QFT is a conformal theory, other limits make sense, such as A\ — oo but this is beyond the
scope of this work, it is discussed however in the article [26] and references therein.

"In the discussion surrounding equation (1.3.4) we will define precisely the AdS boundary
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reach the boundary. This translates into imposing reflective boundary conditions at the
AdS boundary (which equivalently imply that there is no energy flux leakage’ through
the boundary) for whatever fields are probing the AdS background.

Consider a scalar field ¢ propagating in AdS;;1 spacetime. The field equation is given
by (V,V* —m?)¢ = 0, where V is the covariant derivative on AdS and m is the mass of

the scalar field. The metric of AdSy; in global coordinates z# = (7, p, Q;) is given by
ds? =17 (- cosh?(p)dr? + dp? + sinhQ(p)dQQ) , (1.3.1)

for p > 0and 0 < 7 < 27. The above metric represents a hyperboloid

d
Xg+ X5, - Y XP=1I? (1.3.2)
=1

embedded in d+2— dimensional flat space with metric ds? = —~dX3—dX2, ,+>¢ ; dX?.
The hyperboloid equation (1.3.2) is solved by

Xo = Lcosh(p)cos(r), Xgy1 = Lcosh(p)sin(7)

X; = Lsinh(p)$ (z =1, ,d;y_ O = 1) . (1.3.3)

Notice that the metric (1.3.1) is well behaved for all values of 7 therefore we can extend the
spacetime to —oo < 7 < co. We wish to study the causal structure of field perturbations
on AdS, therefore it is convenient to introduce the new coordinate 6 which is related to
pvia tan(@) = sinh(p) such that 0 < 6 < 7/2. The metric (1.3.1) becomes!'?

ds’? = —dr? + d6? + sin(0)dQ>. (1.3.4)

Above is the famous metric of the Einstein static universe except # € (0,7/2) rather
than the usual § € (0, 7) hence we say AdS;1 can be conformally mapped to half of
the Einstein static universe. The origin of our coordinate system is located at # = 0
and the conformal boundary is at # = 7/2. In the coordinates (1.3.4) scalar fields can be
decomposed as

P(zh) = e “TF(0)Ye(Q_1), (1.3.5)

where Y} are the d—1 dimensional spherical harmonics which satisfy AY, = ¢({+d—2)Y,
(here A represents the Laplacian on S%~1). The remaining ODE in terms of the radial
coordinate 6 resembles that of the standard hypergeometric ODE and the solution £'(6)
is

F(0) = (sin6)*(cos ) 5 F (a_, ay, c;sin ), (1.3.6)

2After a conformal rescaling x L2 cos?(6), recall that a conformal transformation does not change the
causal structure of spacetime



1.3. AdS/CFT correspondence. 1

where 2 F} is the standard hypergeometric function. The parameters a4, c and A1 are

given by

1
ai:§(€+)\i:|:wL),

1
c=/{+ g and M\p = g + 5\/ d? +4m?2L2. (1.3.7)

The total energy of the scalar field perturbation is given by E = [ d%z\/—¢T{ and it is
conserved if the energy momentum flux of the boundary term at # = 7/2 vanishes:

/d . de_l\/gniTé‘gzﬂ/z =0. (138)
gd—

Here n; is the unit normal to the hypersurface located at the boundary 6 = = /2. This
demonstrates how the aforementioned reflective’ boundary conditions are equivalent
to requiring vanishing flux at the boundary. The solution (1.3.6) holds iff either a4 or a_
is an integer, as defined in (1.3.7). If we further require the energy to be real we find

wlL=At+{+2n, (n=0,1,2,---). (1.3.9)

This is only possible if Ay, as defined in (1.3.7), are real. By looking at the expressions,
we find that this translates to requiring the term in the square root to be positive, which
implies
d2

m*L? > - (1.3.10)
The inequality (1.3.10) is the BF bound, [27, 28]. Notice that it already implies something
quite different about scalar fluctuations on AdS when compared to flat space, namely
scalar fields in AdS can still have positive energy even with a negative (mass)?, as long

as it is ‘not too negative. Whereas scalars on Minkowski space have the bound m? > 0.

We still have two choices for A+ which provides a good opportunity to introduce some
of the holographic dictionary for scalars. For scalar fields with mass satisfying m? >
—(d — 2)(d + 1)/4L? we choose \; since this term is normalisable whereas the \_ is
diverging at the boundary rendering it non-normalisable. This choice is usually referred
to as the standard quantisation. For scalar fields with mass in the range —% <m?<
—(d —2)(d+1)/4L? both )1 are normalisable and one can choose either. The choice \_
is referred to as the alternate quantisation. Near the boundary we can expand our scalar
field as

¢~ Gy ()0 — /2 4+ (@) (O — 7/ + - (1.3.11)

where z refers to the remaining coordinates other than 6. Consider scalar field masses
in the range m? > —(d — 2)(d + 1) /4L* where only the standard quantisation is possible.
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Through the non-normalisable A_ term one can define associated boundary fields via

do(z) = lim ¢(0,z)(0 —7/2) . (1.3.12)
0—m/2

Now, the gauge/gravity duality tells us that every field ® that propagates in the bulk
spacetime has a dual gauge invariant operator Og living on the boundary. It was pro-
posed in [15, 29] that the boundary values of fields (e.g. the scalar field boundary value
from equation (1.3.12)) are identified as sources for the boundary operator which is dual
to the normalisable field. In our case this translates to the following statement: the
normalisable mode ¢ is dual to a scalar field theory operator O, which has confor-
mal dimension A = A;. The source ¢y can then be identified as a vacuum expecta-
tion value for O or a one-point correlation function, with higher point functions com-
puted via functional differentiation with respect to the source. It should be noted how-
ever, that there are divergences on the gravity side due to the infinite volume of space-
time and QFT correlation functions diverge too, so in order for the formulae to make
sense one must renormalise. As mentioned before the holographic renormalisation
programme was rigorously developed in [20]. To complete our discussion I will outline
briefly the dualities of other bulk-boundary fields. Suppose we have a classical gravity
action S[¢, A, g, - - - |, owing to the procedure of holographic renormalisation there

exists one exact renormalised one-point function for each field

¢ — (O(z))s,
Ay — (Ji(2))s,
G — (Tij(x))s. (1.3.13)

Above is the scalar field which was already discussed. Then there is the boundary sym-
metry current J; which is dual to the gauge field in the bulk A4, and finally Tj; is the
boundary energy-momentum tensor that couples to the boundary metric. The results
described above hold in the saddle point approximation, where classical gravity is valid.
For a detailed discussion of renormalised correlation functions in holography see the

review [30].

1.4 Hairy black holes

Uniqueness theorems in General Relativity have been of interest since the pioneering
work of Israel, Penrose, Wheeler and others in the 1960's, many of these results became
known as no hair theorems. These results imply for instance that the unique asymp-
totically flat, stationary black hole (BH) solution to Einstein-Maxwell theory is the Kerr-
Newman solution. That is, the BH solution can be characterised by three parameters,
namely the mass, charge and angular momentum of the BH. In the case of static BH's,
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the no hair theorems imply that the unique solution to Einstein-Maxwell is the RN so-
lution (1.1.5) which is characterised by two parameters: mass and charge. For histor-
ical reviews on these theorems see for example [31, 32]. The latter case is known as
Birkhoff's theorem [33, 34] and is the one of relevance to this thesis. Birkhoff's theorem
for Einstein-Maxwell theory states that the unique spherically symmetric solution of the
Einstein-Maxwell equations with non-constant area radius function r is the Reissner-
Nordstrom solution. If r is constant then the theorem does not apply since one has the
Bertotti-Robinson (AdS, x S?) solution.

Consider a RN BH in asymptotically flat space as given in (1.1.5), it has been established
that the RN solution is linear-mode stable to scalar field and gravito-electromagnetic
perturbations, intuitively this is to be expected since the field perturbation scatters off
the BH horizon into the asymptotic region where it decays at the Minkowski boundary.
However, if one confines the BH to a ‘box’ or a ‘thin shell’ (which we soon describe), a
scalar field perturbation (for example) can drive the system unstable. This was first es-
tablished as Press and Teukolsky's black hole bomb system, where a scalar perturbation
(with reflecting boundary conditions imposed at the box outer layer) may extract energy
continuously from the BH horizon, leading to a superradiant instability [35]. In the case
of charged black holes superradiance occurs if the frequency of the scalar perturbation
satisfles w < eu [36]. More recently discovered was the near-horizon scalar condensa-
tion instability, whereby an (asymptotically stable) charged scalar field perturbation may
(under certain conditions) violate the AdS; Breitenldhner-Freedman (BF) mass bound in
the near horizon geometry, which is a direct product of AdSs x S2. This instability was
first found in the context of the AdS/CFT correspondence in the holographic supercon-
ductor programme, see for example [37, 38] where charged, planar AdS BH solutions
were considered. The instability is also present in the case of charged global AdS black
holes [39]. The superradiant and near horizon instabilities are in general entangled in
the phase diagram, however in certain limits (as we discuss in the next sections 1.4.1
and 1.4.2) they disentangle and reveal a difference in nature. Due to the similarity be-
tween the confining box and the AdS boundary, this instability also applies to RN BH's
in a box, as was shown in [40]. In the case of RN AdS, time evolutions of the afore-
mentioned theories were carried out in [41, 42] which indicate that the endpoint of the
instability should be a charged black hole with scalar hair floating above the horizon or
equivalently a BH solution to Einstein-Maxwell-scalar field theory with a negative cos-
mological constant. It is thus expected that in the case of RN confined to a Minkowski
box, the endpoint of the unstable RN configuration should be a charged black hole with
charged scalar hair floating above the horizon- where the electrostatic repulsion is bal-
anced by the tendency towards gravitational collapse. With this intuition, hairy black
holes in Einstein-Maxwell-scalar field theory confined in a box have been constructed
in a perturbative expansion in [43]. The goal of part IV is to extend these studies to higher

energies in order to illuminate the full phase diagram of hairy BH's in a Minkowski box.
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There are other interesting solutions to Einstein-Maxwell-scalar theory, namely solitons
or boson stars and they will play a role in the discussion of hairy BH's. The full discussion
of these soliton solutions turns out to be rather involved and we discuss it in detail in
part IIL. It should be noted that hairy BH's in AdS spacetimes have also been constructed
and they indeed display many similar properties to the BH's we present, see for example
(44, 45, 46, 47].

1.4.1 Superradiance

Let us now describe the conditions required for superradiance in the case of scalar field
perturbations (with electric charge ¢ and mass m) on a RN BH confined inside a box.
First, the presence of a confining box placed at r = L allows the system to acquire a

scaling symmetry

{t7rax7(p} — {Alta Al'f’,l’,@}, {f?At790} — {f7 At7§0}7

{¢, L,ry,m} — {q’ ML, Ay, m} (149
A1 A1
which leaves the equations of motion invariant and rescales the line element and the
gauge field 1-form as ds? — A2ds? and A;dt — \; Aidt. Above z = cos(f) and ¢ is the
azimuthal angular coordinate, together they parametrise S2. We use this scaling sym-
metry to work with dimensionless coordinates and measure thermodynamic quantities
in units of L (effectively this sets L = 1),

T=—, R:%; R+:%, e=qL, my=mL. (14.2)
The box is now located at R = 1. Recall that RN is a two-parameter solution, let us take
these to be the horizon radius R, and the chemical potential p. A charged scalar field in
this background obeys the Klein-Gordon equation (1.2.5). In order to solve Klein-Gordon
as a well-posed boundary value problem one must specify the boundary conditions that
the scalar field must obey, both at the horizon R = R, and at the outer boundary, namely
the box outerlayerat R = 1. Outside the box R > 1 we are in the conditions for Birkhoff’s
theorem and therefore the solution must be RN, hence ¢|r>1 = 0.

To explain the origin of the superradiant instability it is useful to first considerthe Ry =0
limit of equation (1.4.4) and choose the gauge where A;|gr, = 0. This translates into the
case of a scalar perturbation confined inside a box placed at R = 1 in Minkowski space
with a constant gauge field A = pdt. Naturally, the inner boundary for this case be-
comes the origin R = 0 and here we require regularity of our scalar field perturbations.
The outer boundary condition remains ¢(R = 1) = 0. In these conditions the frequency
spectrum of the scalar perturbations becomes quantised, let us now describe this in

more detail. The background at hand is time independent, therefore one has 0; as a
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Killing vector. This allows the Fourier decomposition of linear modes in the time coor-
dinate which introduces the dimensionless frequency 2 = wL. The background is also
axisymmetric (i.e. has 9, as a Killing vector), therefore one can also Fourier decompose

in the ¢ coordinate. An appropriate field ansatz is then given by
O(T, R, x, ) = e Meme? P (1)9)(R), (1.4.3)

where ¢™#?P;"?(z) is a representation of the spherical harmonics Y, , this is to be
expected since the system has spherical symmetry. Note that P,"* () are the usual Leg-
endre polynomials'®. The Klein-Gordon equation (1.2.5) in the coordinate system (1.1.5)

is given by
R2
Or (R*fORy) + (f (Q+ed)? — 00 +1) — méR2> Y =0. (1.4.4)

With the ansatz (1.4.3), in the R, = 0 limit, the Klein-Gordon equation can be solved by
the function [40]

R O A (N Creee) RS N Cawemmre)
(1.4.5)

where J,(2), Y, (z) are Bessel functions of the first and second kind, respectively (see

for example [48]), and «; 2 are arbitrary integration constants. Regularity of the field
perturbation at the origin requires that we set as = 0 (in order to avoid a divergence of
the order R~*~1). Now, at the location of the box we require the scalar field to vanish.
The Bessel function J,(z) has an infinite number of simple zeros for v € R, these are
denoted by j,, where n € N. Thus the boundary condition (1) = 0 quantises the

Qo = \/m —ep. (14.6)

In parts I1I and IV we will search for spherically symmetry hairy solutions, therefore we

frequencies as €2 ,, with

set ¢ = 0 and we also consider the perturbation with lowest energy, hencewe setn = 1in
(1.4.6). For concreteness let us also consider massless scalar fields mg = 0. These choices
give the smallest frequency for a scalar perturbation trapped in a Minkowski box with a
constant gauge field, it reads

Qo1 =m—ep. (14.7)

Suppose now we place our box and scalar perturbation in the RN background, we expect
the frequencies to become complex therefore they will differ from (1.4.6). However if we
consider small RN black holes!* the frequency can be approximated by a series expan-

sion in Ry. Similar expansions have been performed in AdS (which behaves similarly

BHere m, = 0,41,42,--- and £ = 0,1,2, - - - are such that |m.,| < £ (the integer ¢ also gives the number
of zeros of the eigenfunction in the polar direction x = cos(6)).
“Recall Ry = %= < 1 hence small black holes have Ry < 1.
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to our confining box), see [46, 39]. To be specific, we expand our fields as

R(R) =D R ¢F(R), Q=) R (14.8)

J=0 J=0

Above R refers to the region we are considering, since in these calculations we must
solve the radial equation separately in the near horizon and asymptotic regions (in part
[I'we will explain this more specifically). One must then impose (as before) that the scalar
field vanishes at the box (at every order in the expansion) and that the perturbations are
smooth in ingoing Eddington-Finkelstein coordinates at the RN horizon. It turns out
that the leading order term in the series expansion for Q is given by Qy = Qo1 = 7 — epu.
At next to leading order, one finds that the frequency acquires an imaginary term in the
expansion proportional to €1 o. To be precise, 1 = R(21) + iS(Q1) where I(Q;) ~
ay(ep — m) with g > 0. This gives rise to a prediction, namely that these ‘small BH’'
scalar perturbations are unstable to superradiance when (1) > 0 < e > 7/u. The
temperature of RN BHs confined to a box, in our coordinates (1.1.5) is given by Ty L =
L_(2— %) hence the extremal RN BH has i« = +/2. Putting all this together we can make

8mry
the statement that small extremal RN BHs confined to a box are superradiantly unstable

to charged scalar perturbations when the scalar field charge e satisfies

e > % ~ 2921 = eg. (14.9)
The above bound will be critical to our discussions in parts III and IV. This bound was
found within a perturbative expansion for small horizon radius R, therefore at the on-
set of this (linear) instability we expect that a non-linear back-reaction should find hairy
black hole solutions which bifurcate (continuously) from the onset of the RN instabil-
ity. Moreover, since the onset occurs for R, < 1 we expect these hairy black holes to
have a zero horizon limit. This R; — 0 limit describes a one-parameter family of so-
lutions that we call solitons. Solitons can therefore also be thought of as a non-linear
back reaction of the boxed Minkowski scalar field modes in (1.4.6). It turns out that the
above intuition only holds in certain regions of phase space when one considers the
full Einstein-Maxwell-Scalar field theory trapped in a Minkowski box. Solitons exist in
other regions of phase space where they are unrelated to hairy black holes, but the story

is more intricate and we leave further details for later discussions in parts III and IV.

1.4.2 Near horizon scalar condensation

The following limit was first presented in [49] where the near-horizon geometry of the
extremal Kerr solution in 4-dimensions was computed. This limiting procedure applies
to many known black hole solutions including RN confined to a box. The near horizon
geometry of the extremal RN solution (with ¢ = 1/2) is found by making a change of
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coordinate
.

T = Lad&x, R =R, + \p, (14.10)

and taking the limit A — 0. At leading order, the metric becomes

ds® = L2 —p?dr? dp? R2d0O2
—Ad5207+p2 + [ dils,

A dat = fLAdSQ[OdT7 with  Lags, = R+. (1.4.11)

The above geometry parametrises a direct product of AdSs with S? and it is still a so-
lution to the full Einstein-Maxwell gravity in 4 dimensions (this is because the metric
(1.4.11) that results from coordinate transformation (1.4.10) and the A — 0 limit, is well
behaved) as well as being a solution to AdS, gravity. Now, we can also take the near
horizon extremal limit on the Klein-Gordon equation (1.4.4)®. In these conditions, the

Klein-Gordon equation reads

8, (P20, + (;2 (Q + e\/iLAdS2p)2 —L(+1) - LAd52m¢> ¥ =0. (14.12)

Recall that expanding a field in AdS near the boundary gives rise to the BF bound, as
detailed in the previous section. Taking the large p expansion of the near horizon scalar
field ¢ gives

Blooroo ~ @_p™d - dapp S 4ooo | with Ai_fi \/1—|—4meff 2 15, (1413)

The above expansion describes a massive scalar field (with an effective mass m. s ¢) prop-
agating at the AdS, boundary and therefore the perturbation is unstable if the AdS; BF
bound is violated (i.e. the bound (1.3.10) with d = 1):

1
The effective mass is given by the expression [40]

Rearranging the inequality (1.4.14) and plugging in the expression (1.4.15) one finds that
extremal RN BHs confined to a box could be unstable to scalar condensation if the scalar

charge e satisfies:

\/(25 +1)2 + 4m2 R
e> VT . (14.16)
+

"This is equivalent to re-deriving the Klein-Gordon equation in the near horizon coordinates (1.4.11),
however one must remember to rescale the frequency in order to capture the time-dependence mforma—
tion correctly. The near horizon frequency is related to the frequency in the full geometry via Q = Q

AdS2

This follows from making the identification e ~**” = e T,
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Since our horizon radius takes the values Ry € (0,1) we can expand the bound (1.4.14)

as follows
elr,1 > \/ + ( ) (1—Ry)+0[(1-R)?
2v2 2\/5\/1+4(m§,+£(£+ 1))
20+ 1
~0 > +O(Ry). 1417
elr.~o0 > 2R, (Ry) ( )

Therefore it is clear to see that near horizon scalar condensation is suppressed for small
RN black holes!®, whereas large BHs (which have Ry ~ 1) can become unstable to scalar
condensation. In our case we want to restrict ourselves to massless scalars, therefore in
the limit where the black hole horizon approaches the box radius, scalar condensation

occurs for scalar charges
> 2041

(&
~o2V2

Furthermore, if one restricts again to the spherically symmetric case ¢ = 0 we find the

(1.4.18)

critical charge e 2 2%/5 ~ 0.35 = enxy. We will construct hairy black holes which are a
result of near horizon scalar condensation for RN in a box in part IV. We have shown
that in two corners of the phase diagram for RN BHs in a box, scalar perturbations can
drive the system unstable to two physically different mechanisms. We find that the hairy
black holes which bifurcate from the onset of these instabilities are also qualitatively
very different in these corners of phase space and indeed show a mixture of properties
as one ramps up the scalar field charge from ey to eg. We will make all of this much

more precise when we present our full numerical results in the main text.

1.4.3 Einstein-Maxwell-scalar gravity.

We expect hairy black holes to arise from solving the full non-linear Einstein-Maxwell-
scalar system, therefore let us give the physical set-up. The action for Einstein-Maxwell

gravity in four dimensions coupled to a complex scalar field with charge ¢ is given by

_ 1 4, /= 1 v ;
S = fgngy AV (R 3 Fun P = 2D,0(D"0) +V<¢\>), (1419)

where R is the Ricci scalar, Ais the Maxwell gauge potential, /' = dA,and D, = V,—iqA,,
is the gauge covariant derivative of the system. We fix Newton's constant Gy = 1.

Let us consider the quadratic potential V' (|¢|) = m2¢¢! where m is the scalar field mass.

The equations of motion which follow from extremising the action (1.4.19) with respect

'®This is because for small BHs 1/R; blows up and one requires an unphysical, large scalar field charge.
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to the gravitational field g,,, the Maxwell gauge field A, and scalar field ¢ are given by

1
R;U/ - ERQW/ =Tem + T¢a

V= igg" (61 Dyo — (D)) |
D, D"¢ —m?¢ =0,

1
where TEM = FMprp - ZgMVFpO'FpO-

and Ty = Dué(Dud)' + Dyo (Duo)' = 9u0g™ (D,p0)' Do (14.20)

The instabilities that we discussed in the previous sections are present even for massless
scalar fields, the electric charge that couples to the Maxwell field A is enough to drive
the system unstable, therefore from here onwards and in the main text we will fix m = 0.
Hairy solutions should exist for other values of the scalar field mass. We are interested
in solutions of (3.3.1) that are static, spherically symmetric and asymptotically flat. Using
reparametrisations of the time and radial coordinates, t — ¢ =t + H(t,r) and r — 7(r),
we work in the ‘radial/Schwarzschild gauge' where we fix the radius of a round S to be
the areal radius r and there is no cross term dtdr. An ansatzwith the desired symmetries
is

ds? = —f(r)dt® + g(r)dr? + r2dQ3, Aydat = Ag(r)de, o= =p(r), 14.21)

with dQ2 being the metric for the unit 2-sphere. We choose to work with the static
ansatz (1.4.21) where the scalar field is real. Horizonless solutions in this gauge are usually
called solitons. However, we can also perform a U(1) gauge transformation with gauge
parameter x = —wt/q,

¢ = |ple’® — |ple’PTI0 A 5 A+ Vix, (14.22)

to rewrite the scalar field as ¢ = |¢|e~!, in which case we would be in a frame where the
scalar field oscillates in time with a frequency w.”” Horizonless solutions in this gauge
are usually called boson stars. The solitons and boson stars of the theory are therefore
the same objects since they differ only by a U (1) gauge transformation.

Recall the dimensionless quantities (where thermodynamic quantities are measured in
units of the box radius L):

T=1" R=_. R, =" e=qL, my=mL. (14.23)

The box isnowat R = 1.

"However, since the energy-momentum tensor of the scalar field only depends on ¢t and 9¢(9¢)T, in
the new gauge the gravitational and Maxwell fields would still be invariant under the action of the Killing
vector field 9;.



20 Chapter 1. Introduction

We now plug the ansatz (1.4.21) into the equations of motion (1.4.20), this gives four in-

dependent equations:

: o (L €RAR)?(R)?*N )
(1) + g (3, = DI g (
2 41 2

+ R¢'(R)* + 12)(1.4.24)

=)+ A ) (5 - L0 - LU 2amgmyotr? (1426)
I (1) g s (

R o® TR =0. (1.4.27)

e?A(R)?g(R)
)

) +em =

Notice that the second equation above can be solved for g(R) in terms of the other fields:

R(RA(R)*+2f'(R)) +2f(R) (1 — R*¢'(R)?)

2 (2R2A(R)2H(R)% + f(R)) (1.4.28)

g(R) =

From this we can obtain a set of three differential equations which we can solve for the
fields f(R), A(R) and ¢(R). The solution for g(R) is then easily obtained via equation
(1.4.28). We must supplement these ODE'’s with relevant boundary conditions, but we
leave the discussion of this for the main text.

Recall that the RN solution (1.1.5) is a two-parameter solution to Einstein-Maxwell theory,
with parameters R and the chemical potential y (say). By continuity we expect the hairy
black holes that bifurcate from the unstable RN black hole to also be two-parameter
solutions. Recall from the linear problem (1.4.4) that we require the scalar field to vanish
at and outside the box by Birkhoff’s theorem, but its derivative when approaching the
box from the interior, ie. as R — 17, does not vanish (unless we have the trivial RN

solution). We will call this quantity €:'®

¢in‘R:1 — gbout‘R:l — 0’ ¢out(R) — 0’ ¢/ in‘RZl = ¢, (1.4’29)

where ¢ refers to the solution inside the box and ¢°* the solution outside. For R < 1
the scalar field is forced to have the Taylor expansion ¢i”|R:1, =e¢(R—1)+0O(R—-1)% We
are forcing ajump in the derivative of the scalar field normal to the timelike hypersurface
Y. located at R = 1. We will discuss the implications of this in section 3.3.2, essentially
the jump in the scalar field derivative gives rise to an energy-momentum tensor at the
box hypersurface layer R = 1. This tensor gives the energy-momentum content of the
box which confines the scalar hair.

Let us come back to the superradiant bound (1.4.9), suppose we have an extremal RN
BH and a scalar perturbation with charge e > eg. In these conditions the unstable RN

BH should evolve towards a charged hairy black hole. Furthermore, we expect these

"®Note that our theory has the symmetry ¢ — —¢ so we can focus our attention only on the case ¢ > 0.
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black holes (at least at small energies) to have a horizonless limit (i.e. Ry — 0) that is, the
soliton described above. Indeed hairy black holes and solitons were constructed under
these circumstances in [43]. This was achieved by a double expansion of the fields in
the parameters R and e for hairy BHs and by a single expansion in ¢ for solitons. We
define the chemical potential for hairy BHs by u = A" (1) — A™(R_.) therefore u will also
have an expansion for the black hole problem. To be precise, the fields f, A and ¢ from

equations (1.4.24) are expanded as

fRR) =D ¥fR(R), ARR)=)_ ¥AK(R)

320 J=0
R(R) = Z X |(R), p=A"|z—y forsolitons. (1.4.30)
Jj=0

Above the superscript R refers to fields inside and outside the box. Then for black holes

we have
fin,near(y) _ Z 62jR§_f2i;}€near(y)’ Ain,near Z 2]Rk Az27]z l;zear( )
§,k>0 k>0
, R T
m,near 2 +1 in, near _ - -
’ g%;o THRRAE O, v To Ry
(1.4.31)
fin,far(R) _ Z 62jRIJcrfzn far( )7 Ain,far(R) — Z 2]Rk A;rjb kfar(R),
3,k=0 3,k>0
oI (R) = Y S RL G TL(R), =D MR
3,k=0 3,k>0
(1.4.32)
fout(R) — Z EQjRI:Lfout( )’ Aout Z 2]Rk Ag;n‘k )
3,k=0 3,k>0
¢out(R) =0. (1433)

The fields have to be solved in the near horizon and far (i.e. close to the cavity layer
R = 1) regions separately and a matching procedure pieces together the solution. The
coordinates y = R—R+ and 7 = RT—+ are introduced because the Taylor expansion of the ‘in-
far’ fields breaks down at order R/R; ~ O(1). The junction conditions we will discuss
in section 3.3.2 then join the 'in"and ‘out’ fields. In these conditions the hairy black holes
as described above in (1.4.31) reduce to the solitons as described in (1.4.30) in the R, —
0 limit. We confirm these expectations in parts III and IV when we solve the system
numerically. Hairy black holes turn out to depend sensitively on the scalar field charge
away from eg (i.e. for e < eg), which is only revealed once we solve the equations of
motion in full. We also test the perturbative results from [43] in the main text, section
444
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This thesis is organised as follows, in part Il we show that there exists a similar argument
(as was presented for scalars in section 1.4.2) for spinors in a RN AdS background in 4-
dimensions, to develop a near horizon instability at the linear-mode level. Motivated by
this we rigorously search for unstable modes by solving the Dirac equation in RN AdS
numerically, we also guide our numerics with some perturbative calculations which can
be found in detail in the appendix A. However, we find no evidence of an instability,
which has some interesting implications as we will discuss in the main text. In part III
we discuss solitons confined in a Minkowski box, we introduced these solitons in section
1.4.3 but the phase diagram is plentiful and requires a detailed analysis. Finally in part
IV we complete the discussion of the phase diagram of the charged black hole bomb
by discussing in depth the hairy black holes of the theory. We also show that in certain
regions of phase space hairy black holes and RN black holes co-exist, hence there is a
non-uniqueness of solutions. However in these regions hairy black holes dominate the
micro-canonical ensemble (they always have higher entropy) which suggests that they
are the endpoint of the unstable RN configuration.
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Hunting for fermionic instabilities in
charged AdS black holes
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CHAPTER 2

Hunting for (linear) fermionic instabilities

2.1 Introduction

It is a well known fact that bosonic waves impinging charged or rotating black holes can
be amplified via superradiant scattering (see e.g. the review [50] and references therein).
It follows that black holes perturbed by bosonic fields in the presence of a gravitational
potential well — provided by, for example, an asymptotic anti-de Sitter (AdS) potential,
a physical cavity at finite radius or by the mass of the field — can develop a superradiant
instability. However, this is not the only instability that can be present in such systems.
Indeed, the family of superradiant black holes always has a configuration with zero tem-
perature. Typically, such extreme black holes have a near-horizon geometry that is the
direct product (or a fibration) of a base space (e.g. a sphere) and an AdS; space [49]. These
extreme (and near-extreme) black holes, when confined in a gravitational well, are un-
stable if the ‘effective’ mass of the perturbation (as seen by an AdS, observer) violates
the 2-dimensional Breitenlohner-Freedman (BF) bound for stability [28, 27, 51, 52] (even
though the asymptotic AdS, BF bound is obeyed). Recall that perturbations with a mass
below this bound are normalizable (i.e. they have finite conserved energy) but their en-
ergy is negative and, consequently, they can trigger an instability. The superradiant and
near-horizon instabilities have a different physical nature. But, in a non-extremal black
hole they are usually entangled. However, if L is the typical dimension of the gravita-
tional well (e.g. the radius of the cavity or the AdS radius), they disentangle for small

dimensionless horizon radius r /L since the near-horizon instability is suppressed for
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r+/L < 1, while the superradiant instability is still present [53, 54, 55, 56, 57, 39, 40].

Not less well known is the fact that fermionic waves, unlike bosons, cannot suffer from
superradiant scattering amplification [58, 59, 60, 61, 62, 50]. Perhaps less familiar is the
fact that fermions, like bosons [53, 54, 55, 56], can also violate the 2-dimensional sta-
bility bound of the near-horizon geometry of near-extremal black holes, if the fermion
charge is high enough (for fermions the stability bound is lower than the BF bound). In
particular, this can happen in a Reissner-Nordstrém (RN) black hole in an asymptotically
planar AdS background [55, 63, 64, 65, 66, 67, 68, 69] (see in particular section V of [55]
and sections 4.4 and 4.5 of [68]) or in an asymptotically global AdS geometry (section 2.4
below). This suggests that such a RN black hole might be unstable to condensation of
a fermionic cloud around the horizon. Moreover, if the features from the bosonic field

extend to the fermion case, then this might be a linear instability.

Motivated by these considerations, in the present chapter we will search for /inearmode
instabilities of Dirac fields in a global AdS, RN black hole. We will not find any such in-
stabilities. The absence of linear mode instabilities in the global AdS RN background is
consistent with the fact that they are also not present in the planar AdS limit, 7. /L — oo,
as found previouslyin [55, 63, 64, 65, 66, 67, 68, 69]. In view of these 'no-go’ findings, in the
conclusion remarks of section 2.5, we will argue that the absence of linear mode insta-
bilities in the AdS RN background still leaves room (but not necessarily) for the following
possibility: for a large number of fermions and in the semiclassical limit, the violation of
the AdSs BF bound might signal a non-linear instability of the system.

In this chapter, we also take the opportunity to improve the understanding of the near-
horizon condensation instability of scalar fields. In particular, following a similar analy-
sis for scalar fields in a Minkowsky cavity [40], we will explicitly show that the BF bound
criterion for instability in AdS-RN is quantitatively sharp (section 2.2.4). This scalar field
analysis will fit smoothly in our presentation since reviewing its details will also allow
to make a direct comparison with the Dirac field case and pinpoint major differences
between them. We further take the opportunity to show that the unstable modes be-
long to a family of near-extremal modes that are connected to the normal modes of AdS
when the dimensionless horizon radius shrinks to zero. (This is an interesting observa-
tion because in de Sitter black holes the normal mode de Sitter family'is distinct from
the ‘near-extremal family of modes, where we are using the nomenclature of [70, 71, 72]).

Necessarily, we will also clarify some misleading analyses and interpretations that were
presented in previous literature. Namely, the authors of [73]' missed that the vanishing
energy flux boundary conditions at the asymptotic boundary of AdS — that they propose
to be “novel” — are nothing else but the AdS/CFT correspondence no-source boundary

'See also Ref. [74], which appeared after the present chapter was submitted to the ArXiv.
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conditions — often denoted as ‘standard or, if allowed, ‘alternative’ quantizations (dis-
cussed, for s = 1/2, originally in [75, 76, 77, 78, 69] and specially in [28, 27, 51, 52, 79];
this discussion applies both to bosonic and fermionic fields). The vanishing energy flux
boundary condition is fundamental to guarantee that the energy is conserved. If and
only if this is the case, the Schrodinger operator that describes the (bosonic or fermionic)
wave equation in AdS is Hermitian?. It follows that finiteness of energy then boils down
to simply require that the wavefunctions of the system have finite norm in the usual
quantum mechanical sense, i.e. that the solutions are normalizable (square integrable).
In these conditions, the Schrodinger operator of the system is self-adjoint (the associ-
ated matrix is Hermitian) and we have a well-posed initial value problem (after imposing
regularity at the inner boundary). That is, the dynamical evolution of the system is de-
terministic.

If the energy is positive, the evolution is stable (this happens if we are above the stabil-
ity mass bound [52, 79]); on the other hand, if the energy is negative we should have a
dynamical evolution that develops an instability (this is the case if the mass of the pertur-
bation is below the stability mass bound [52, 79]).> The aforementioned homogeneous
Dirichlet (standard) or Neumann (alternative) AdS/CFT boundary conditions are special
in the sense that, by construction, they yield zero energy flux normalizable modes that
preserve the conformal symmetry group of AdS (and thus do not deform the bound-
ary conformal field theory). The zero-flux boundary conditions of [73, 74] are nothing
but these single-trace homogeneous boundary conditions [69, 75, 76, 77, 78, 79, 80, 81].
Besides these, the AdS/CFT correspondence literature identifies, for a certain range of
the boson/fermion masses, other normalizable modes (finite conserved energy modes
and thus with vanishing energy flux). This is the case of the inhomogeneous Dirich-
let and Neumann boundary conditions but also of the often denoted mixed, Robin or
multi-trace boundary conditions (see [52] for bosons and [79, 80, 81] for fermions). These
zero-flux boundary conditions break the AdS conformal symmetry while still preserving

its Poincaré symmetry subgroup.

The plan of this chapter is the following. In sections 2.2.1-2.2.2, we will review the Dirac
equation in a AdS-RN background and we will do the necessary field redefinitions in the
(physical) Dirac field that allow it to separate and even decouple. Then, in section 2.2.3 we
will analyse in detail the AdS/CFT standard and alternative quantizations of a Dirac field.
In particular, we will check that the requirement that the source vanishes implies that the
energy flux at the conformal boundary also vanishes. In this sense, these boundary con-
ditions can also be denoted as reflective boundary conditions. For a massive Dirac field

these no-source boundary conditions translate into homogeneous Dirichlet or Neu-

“Without the zero flux or energy conservation condition, the Schréedinger operator is only symmetric
[52].

3The stability mass bound for scalars is the BF bound m? = m% . [28, 27, 51, 52], while for Dirac fields it
is m? = 0 [79]; see discussion of (2.2.22).
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mann boundary conditions in the auxiliary decoupled Dirac radial fields. However, for
amassless fermion (a Weyl field) these no-source boundary conditions — which are ho-
mogeneous Dirichlet or Neumann conditions on appropriate projections of the original
physical Dirac field — translate into mixed (Robin) boundary conditions for the auxiliary
decoupled Dirac radial fields. The misleading focus on the boundary condition for the
auxiliary fields (and associated consequences) occurs recurrently. It is the case in [73]
and it is similar to the one taken on the boundary conditions of the Regge-Wheeler—Zer-
illi master fields (aka Kodama-Ishibashi fields) in the case of gravitational perturbations
of AdS black holes (as discussed in [82, 83]). In this context it is also important to clarify
that in [85, 86] massless Dirac quasinormal modes in Schwarschild-AdS were computed
imposing Dirichlet boundary conditions in the auxiliary decoupled fields. These bound-
ary conditions do not have vanishing energy flux at the asymptotic boundary, the energy
of the system is thus not conserved, and it is not known what deformation they produce.
Finally, in section 2.4.4 we will describe our strategy to search (unsuccessfully) for linear
mode instabilities (eventually sourced by the 2-dimensional stability bound violation) of
Dirac fields in global AdS4-RN black holes. We consider both the standard and alterna-
tive quantizations and we will highlight the differences between the scalar and fermion
systems. For a reader interested in a future detailed analysis of the frequency spectra,
we also compute (analytically) the normal modes of massive and massless Dirac field in
global AdS.

2.2 Global AdS Reissner-Nordstrém black hole and the Dirac equa-

tion
2.2.1 AdS-RN black holes and an orthogonal vierbein

The gravitational g,,,, and Maxwell 4,, fields of the AdS-RN BH are described by®

2 2
2 _ 2 -17.2 2 102 _r M Q .
ds® = —fdt” + f~dr® 4+ r=dQ3, f—ﬁ—i—l—T 5,2
Apde" = A(r) dt, A(r) = _% e (22.1)
where dQ3 is the line element of a unit radius 2-sphere, M and Q are the mass and charge
parameters. We will find convenient to replace M and @ by the event horizon radius

(where f(r;) = 0) and chemical potential 1. The relation between these two pairs of

*For a discussion that AdS/CFT no-source boundary conditions for bosonic fields yield (reflective’) so-
lutions with vanishing energy (and momentum) flux at the conformal AdS boundary see Appendix A of
[84].

°This is a solution of the Lagrangian £ = /=g (R — 2A — 1F?) with F = dA. Note that if we rescale
A — kA then the charge ¢ of the perturbation field (to be discussed in later sections) rescales as ¢ — £~ ¢
so that ¢A, and thus the gauge covariant derivative, remain invariant.
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parameters is
2

— T+ 1 2 —
M=r; <1—|—L2>+2r+,u , Q=pry. (2.2.2)
In (2.2.1), C'is an arbitrary integration constant and fixing it amounts to choosing a par-
ticular gauge. One common gauge choice is C = 0 where one has A|,, = 0 and the
chemical potential is 4 = —A|,, = Q/r; (we will typically use this one when presenting
our results). Another gauge that is also commonly used is C' = p whereby A|,, = 0 and

Aloo = pt.

The temperature of this black hole is
11 6r2
Tp=——|(24——p°). (2.2.3)

Thus, AdS-RN black holes exist for p < jiext Where pu = ety with

2

.
%m=¢§1+3ﬁ' (2.2.4)

describes the extremal AdS-RN black hole with zero temperature.

Later, we will consider the Dirac equation coupled to the curved spacetime (2.2.1) [10,
11, 12, 13]. For that, it will be useful to introduce the tetrad vector basis (vierbein) e(®) =

e(aldx“, with non-coordinate curved bracket Latin indices (a) = (0),-- -, (3):
e = f12qr, oM = f712qr 0 = pel0) (2.2.5)

where &) is the tetrad on the S2 manifold. This is an orthonormal basis since ge(*),e("), =
n@®) where n(@®) = diag(—1,1,1,1) is the Minkowski metric. The tetrad dual basis
€a) = e(agbau becomes e, = n(a)(b)e(b). Latin (Greek) letters will always be used for

tetrad (coordinate basis) indices.

The components of any tensor in the coordinate basis {dz*} can be obtained from the
components on the tetrad basis using the projectors e(® and e(q)- For example, T}V =
g”"e(b)UT#(b) = g””e(ale(bz,T(a)(b). This example also illustrates that we can have mixed-

index tensors with mixed components in the coordinate and tetrad bases.

The spin connection of non-coordinate based differential geometry can be introduced
interms of the affine connection T"” v of coordinate based differential geometry as v(¢)(a) (1) =

e(cﬁ‘ <8Ve(a) w— Pﬁuye(a) 5) €.,y - Equivalently, one can define the spin connection as

C 1 C
Wu@)®) = € WNamE = 5¢% Mmoo + Ao ~ Aeew) (2.2.6)
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with Aa)b)e) = €45 (98e(B)a — Oat)s) e(c)ﬁ, which allows to compute the spin connec-

tions without the use of the affine connection.

For a multi-index tensor with tetrad and coordinate indices the mixed-index covariant

derivative is defined as

@v  _ g plaw
Vol =0T,

5 pl@v e s @) plew © o
® e s T 1 gaT T

(
O T% o o Y ml ow
(2.2.7)

Onwards, we take the affine connection I'V, to be given by the Christoffel symbols that

)z

covariantly conserve the metric, Vag,,, = 0. It follows that the spin coefficients w4

defined in (2.2.6) are such that the vierbein is also covariantly conserved, Vae(aL = 0.

That the latter implies the first conservation follows from g, = n(a)(b)e(aze(b),,. Further

note that the spin coefficient is anti-symmetric in the tetrad pair of indices, w,,(q)) =

~Wu(b)(a):

To discuss the Dirac equation one necessarily needs to introduce the (coordinate in-
dependent) Dirac gamma matrices 7(*). Let ¢* be the Pauli matrices and I,, the n. x n
identity matrix. We choose to work with the Weyl (chiral) spinor representation of the
4-dimensional Clifford algebra:

7(0) _ 0 ’LIQ 7(1) _ 0 iUS 7(2) _ 0 'L.O'l 7(3) _ 0 iU2
ily, 0)° —igd 0 )’ —ict 0 )’ —ic2 0

(2.2.8)
which indeed obeys the anti-commutation relations of the Clifford algebra:

{,Y(a),,y(b)} = op@®) ], (2.2.9)

where {A, B} = AB+ BA s the usual anti-commutator, as well as the relations (7(?))2? =
—Iyand ()2 = I, fori =1,2,3.

Let us also introduce the pseudoscalar

I
,Y<z>7<3):< 2 0>, (2.2.10)

which obeys the relations (7(*)? = 1 and {y®), 4@} = 0.

The components of the (coordinate dependent) Dirac gamma matrices in the coordinate

6~() satisfies the 5-dimensional Clifford algebra {’y(A)ﬂ(B)} = 2B [ if we define 3 =

(74, ~)), which justifies its label (from an Euclidean perspective).
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basis can be obtained from the tetrad basis components (2.2.8) using
o afa)g K
Y= e(a) . (2.2.11)

and they obey the covariant Clifford algebra {y*,~+"} = 2¢#"1,.

2.2.2 Dirac equation in the AdS-RN background

In the introduction 1.2 we derived the equations that scalar fields and spinors must sat-
isfy in a curved background. Now we show explicitly how one separates variables in
the RN AdS background. To find solutions of (1.2.8) it is advantageous to write the Dirac
4-spinor 9 in terms of the left-handed and right-handed 2-spinors ¥_ and ¥, respec-

U
= ( \P+> . (2.2.12)

The chiral 2-spinors ¥ emerge naturally when we note that the pseudoscalar (%) de-

tively, as

fined in (2.2.10) obeys (7(®)? = 1. Therefore we can introduce the Lorentz invariant

projection operators Py that project the Dirac 4-spinor % into the chiral spinors:
1
Pey= Uy, with Pe=g (14 + fy<5>) (2.213)

and such that P? = Py and P, P_ = 0.7 Moreover, the task of finding solutions of the
Dirac equation in the AdS-RN black hole gets considerably simplified by the fact that
under the separation anstaz [87, 88]:

R1(r)51(0)
Ra(r)S2(6) )
- (
- (

( Ra(r) 51 9>> (2.2.14)
Rl(T)SQ 9) ’ o

the Dirac equations (1.2.8) reduce to a set of equations where the radial and angular func-

V. (t,7,0,0) = e “leMed(—gf) 75 (

=

U (t,r,0,0) = el (—g f)"

tions of the fermion field are decoupled. This separation ansatz exploits the fact that J;
and 0y are Killing vectors of the background AdS-RN solution. This allows to do a Fourier
decomposition in these directions which introduces the frequency w and azimuthal an-
gular momentum m of the fermionic wavefunction.®

’In 4 spacetime dimensions and in the chiral representation (2.2.8) in which we work, ¥4 are nothing
but the Weyl 2-spinors which transform in the same way under Lorentz rotations but oppositely under
Lorentz boosts, and obey the Weyl equations if the fermion mass vanishes.

8This frequency w is measured in the gauge A|. = 0 — see (2.2.1) — and we will work preferentially on
this gauge unless otherwise stated. In particular, all our numerical results will be using it. Note that in the
alternative gauge A|., = 0 (also often used) the associated frequencyis @ = w — qpu.
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Concretely, the radial functions R (r), Ra2(r) obey the coupled system of first order ODEs

I d iw)mm — A+ imr)Ra(r),

()
(2.2.15)
I (o i W)Rz(r) = (A —imn)Ri(r),

where ) is a separation constant, while the angular functions S (), S2(0) satisfy the cou-

pled system of first order ODEs

d mg cotd B
(d@ t5ne t— > So(0) = —AS1(6),

i_ me +cot9
df sinf 2

(2.2.16)

)smmzA&w»

Furthermore, the coupled pair of first order radial equations (2.2.15) can be decoupled in
a pair of second order ODEs, one for R;(r) and the other for Ry (r). For that we solve the
first (second) equation in (2.2.15) w.r.t. Rz (R;) and replace it in the second (first) equation.
We end up with two decoupled second order ODEs for R; and Ry,

VT (PO Ra()) 4+ Hi(r) S Ra(r) + Ha(r) Ra(r) =

d d d (2.217)
PV () Ra(r) ) + 7 (1) S Ralr) + H3 (r) Rar) = 0,

where * denotes complex conjugation and we have defined

m7’2 T
) =~
Hy(r) = —ir\/md%f((r) + K(r) <K(7’) — irH1;22)> — 2 —m%r? (2.218)

r
K = o) (w + qA(r)).
Of course, we are only interested in solutions of (2.2.17) that also solve the original first
order system (2.2.15). The requirement that (2.2.15) is solved imposes extra constraints
on solutions of (2.2.17). This is best illustrated if we consider the Taylor expansion about
the boundaries of the integration domain: the ODE pair (2.2.17) has four integration con-
stants about each boundary but only two of them are independent when we further re-
quire that the solution solves the two first order ODEs (2.2.15); see discussion of (2.2.20)
below.

Similarly, the coupled pair of first order ODEs for S 2(f) can be written as a decoupled
set of two second order ODEs for S;(6) and S2(6). They are hypergeometric equations
and S 2(0) are the spin-3 weighted spherical harmonics. Regularity at ¢ = 0 and 6 =
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7 quantizes the angular separation constant as (¢ is a harmonic number related to the

number of zeros of the wavefunction)

5

Z . 2.2.19
bl 27 ( )
with the azimuthal number being constrained as m, < ¢.

Unfortunately, the radial ODEs cannot be solved analytically’. We can however do a
Frobenius analysis about the asymptotic boundary » — oo to find the asymptotic be-
haviours of Ry (r) and Ry(r). One finds that (for m # 0, $)1°

(_gf)_%Rl"r—xx) ~ T_A7 (Oél +oe ) + T_A+ (61 + - ) )

(2.2.20)
(_gf)ilRQ‘rﬁoo ~rTA (i ) TR (B4 ),

where we used (—gf) 1|00 ~ L1/2r~3/2 and, anticipating the AdS/CFT discussion be-
low, we have introduced the conformal dimensions

Al = g + V22, (2.2.21)

As expected for a coupled system (2.2.15) of two first order ODEs, there are two inde-
pendent arbitrary constants (a1, £1) in the asymptotic decay (2.2.20), that is to say, the
decays of R, are fixed by the equations of motion as a function of (a1, 81). The dots in
(2.2.20) represent subleading terms that depend only on «; (in the A_ contribution) or
B1 (in the A, terms).

Before proceeding, one unavoidably needs to discuss the range of Dirac fermion masses
that allow for normalizable solutions, i.e with conserved finite energy. We also have to
distinguish the positive energy solutions (which are stable) from those negative energy
states (which should trigger an instability). It was proven in section II/Appendix B of [79]
(see also [80, 81, 52]) that the fermionic bound for stability (in any dimension) is given by

m? >0 (Dirac stability bound condition), (2.2.22)

with the lower bound being the solution for which A, = A_ in (2.2.21)."! To under-

For global AdS,i.e. M = 0 = Q these ODEs are hypergeometric equations and can be solved analytically:
see section 2.4.2.

For m = 1/2 one of the two independent solutions decays asymptotically as a power law in  and the
other as a power law multiplied by a logr. For this reason (since a similar logarithmic solution appears in
the scalar field case when m? = m% ), this case is often called the BF solution of the Dirac system. We do
not discuss further this special case (see [79, 63] for more details). It is however important to emphasize
that for the scalar field, m? = m% corresponds to Ay = A_ and is thus also the bound for stability while
in the Dirac case, the mass stability bound is (2.2.22) not the BF mass m = 1/2.

So, for m? > 0, Ay are real; otherwise they are complex numbers. Note that for a scalar field the con-
figuration Ay = A_ corresponds to the BF bound where one of the independent solutions is logarithmic.
However, for the Dirac field, the state A} = A_ is not the BF logarithmic solution (which occurs instead
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stand this bound it is useful to rewrite the radial Dirac equation (2.2.17) as a Schroédinger
equation [52, 79]. Without further conditions, the associated Schrodinger operator is
not self-adjoint (hermitian). It becomes self-adjoint if and only if we impose as bound-
ary condition that the energy-momentum flux at the asymptotic AdS boundary vanishes.
That s to say, it becomes Hermitian if and only if the energy is conserved. In these condi-
tions looking for (conserved) finite energy solutions boils down to look for normalizable
states in the standard quantum mechanical sense. That is to say, normalizable solutions

are those that are square integrable.

For m? < 0 there are normalizable solutions but they have negative energy. In a math-

2 < 0, the Schrédinger operator of the Dirac equation is un-

ematical language, if m
bounded below and thus it does not allow for a positive self-adjoint extension [52, 79].
Alike in any other negative energy Schrodinger states, this signals the existence of an

instability. We will explore further this in section 2.4.1.

On the other hand, if the mass is real, i.e. if it satisfies the bound (2.2.22), there are
stable normalizable Dirac fermion solutions that are selected by a choice of boundary
conditions. We will discuss in detail this issue of the boundary conditions in the next
section. The upshot is that if mL > 1/2 there is an unique complete set of normaliz-
able modes (and the non-normalizable modes must be fixed by boundary conditions;
e.g. no-source/homogeneous boundary conditions that eliminate them) [79]. On the
other hand, for 0 < mL < 1/2 there is a non-unique set of normalizable modes and
thus a wider band of boundary conditions that yield normalizable solutions (e.g. the
no-source/homogeneous Dirichlet or Neumann boundary conditions that we will use
later but also more general multi-trace boundary conditions) [79]. Further note that if
we take m — —m, we simply trade the role of the Ay contributions while preserving
condition (2.2.22). Therefore onwards we assume, without any loss of generality, m > 0

in our discussion.

For our purposes, but without loss of generality, we will be particularly interested in
the lower bound case of (2.2.22). For this m = 0 case and choosing the gauge A|,, =0, a
Frobenius analysis of the first order equations of motion about the asymptotic boundary

for m = 1/2). If follows that for the scalar field case the BF bound coincides with the bound for stability,
m? > m%p, but notin the Dirac case. Moreover, in the scalar case, there is a 1-parameter family of boundary
conditions that yield stable normalizable solutions for m%y < m? < m%y + 1/L* and a unique boundary
condition that generates stable normalizable solutions for m? > m%y + 1/L? [28, 27, 51, 52]. However,
in the Dirac case, normalizable stable states exist for: 1) a 1-parameter choice of boundary conditions for
0 < m? < mip (with mjp = 1/4), and 2) a unique boundary condition for m? > m% [80]. Further
note that, unlike in the scalar case, the Dirac stability mass bound is independent of the dimension of the
spacetime.
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yields!?

<Oé1 + B % + 0(7”_2)> ;

2.2.23

A A T

ie. we can take the two independent integration constants associated to the coupled
pair of first order ODEs to be a; and 3; and the equations of motion then fix the decay

of Ry as a function of a1 and 3.

2.2.3 Boundary conditions for the Dirac spinor in AdS-RN

To find the solution of the Dirac spinor field ¢ and its Dirac adjoint ) in the AdS-RN back-
ground we have to solve a system of two equations that are first order, namely (2.2.15),
subject to boundary conditions imposed at the event horizon » = r and at the asymp-
totic boundary r — oco. Before imposing boundary conditions, such a system of two first
order differential equations necessarily has two independent constants at the horizon
boundary and another two independent constants at the asymptotic boundary (namely,
aq and f1 in (2.2.20)), which can be identified doing a Frobenius analysis at these two
boundaries. To have a well posed formulation of the elliptic problem one should im-
pose two boundary conditions that fix two of the independent constants and solve the
equations of motion to find the other two. We certainly want the Dirac solutions to
be regular at the event horizon: this boundary condition fixes one of the constants 3.
One should then fix one of the asymptotic constants «; or f; (or a relation between
them) with an appropriate boundary condition [79, 80, 81]. But we certainly cannot fix
both asymptotic independent constants: once the first is fixed, the second one must be
found by solving the equations of motion in the bulk subject to the two aforementioned
boundary conditions. This poses the question: how do we choose a boundary condition
at the asymptotic boundary that is physically relevant? We should choose one that con-
serves the energy and thus yields a self-adoint Schrédinger operator for the system that
ensures that we have a well-posed hyperbolic evolution if we let the perturbed system
evolve in time. Next, we will review how two boundary conditions with these properties

2For a Dirac field (or scalar field) with phase ¢, ¢ = |¢|e*?, U(1) gauge transformations with gauge pa-
rameter  leave the action and equations of motion invariant and transform the Dirac (scalar) and Maxwell
fieldsas ¢ — ¢ = ¢+ qx, A: — Ay = A, + Vix. Thus, if in the gauge A|o. = 0 (ie. C = 0) we denote
the frequency of the Dirac (scalar) field by w then a transformation with gauge parameter x = pt into the
gauge Al = p(C' = ) changes the frequency into @ = w — qu. Thus, if we had chosen the gauge A|o = p,
then we would have to make the replacement w — & + g in (2.2.23) (and later in the boundary conditions
(2.2.36)-(2.2.37) and (2.4.22)). Further note that in (2.2.15)-(2.2.17) we are leaving the gauge choice arbitrary
because we do not fix A(r) introduced in (2.2.1).

1B Alternatively, since we have a ODE system, we could use two boundary conditions to fix the two asymp-
totic independent constants and solving the equations of motion would yield the behaviour of the Dirac
fields at the event horizon. However, this is not a good strategy because in general these solutions would
not be smooth at the event horizon.
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can be identified. They single out in the AdS-CFT context because they are single-trace
(no-source) boundary conditions that preserve the conformal symmetry group of AdS
(and thus do not deform the boundary conformal field theory) [75, 76,77, 78,79, 80, 69, 81]

Dirac spinor fields v are intrinsically quantum fields. The dynamics of such fields can be
naturally described by a path integral formulation whereby one sums over all possible
field configurations in configuration space to get the transition amplitude between two
states. In particular, the partition function Z (i.e. the generating functional of correlation
functions between operators) can also be naturally computed using the path integral
formulation. Schematically one has,

Z—:/MWMDMe%W@h (2.2.29)

where [D1)][ D] represents the integration measure, f is Planck’s constant and Sp 1), 9]
is the action (1.2.7) of the Dirac field.

In the classical limit, z — 0, the path integral reduces simply to Z ~ Sl ] where
Se[t, 1] is the action evaluated on a solution of the classical equations of motion, that
follow from the variation S = 0 subject to the boundary conditions. As emphasised
in [75, 76, 77, 78, 79, 80, 69, 81] this statement that the action must be stationary when
evaluated on a classical solution severely constrains the type of boundary conditions
we can impose on the field ¢. Indeed, if §S = 0 then it is not necessarily true that
d(S + B) = 0 where B is the boundary term describing the desired boundary conditions
(i.e. atotal derivative term that does not change the equations of motion). That is to say,
the physical choice we make for the boundary conditions must be such that 68 = 0. In
particular, in the context of the AdS/CFT correspondence, this condition fixes the form
of the boundary term that must be added to the standard Dirac action (1.2.7) to have

stationary solutions. Vice-versa, this boundary term fixes the boundary field theory.

To determine the boundary term B, one first notes that the “radial” Dirac gamma ma-
trix v() defined in (2.2.8) satisfies (y(1))2 = I, and v() = ~( T 1t follows that we can
decompose the Dirac spinor as

Y=ty +19_, Y=vp+¢_, (2.2.25)

where 14 (1) are 4-eigenspinors of v(!) with eigenvalue +1 (F1).! Using this property,
including the associated properties listed in footnote 14, one finds that the terms in the

“In more detail, Y Myr = 491 and YPPL = Foi and thus Y+ = % ([4 :t'y(l)) ¥ and P+ =
P (14 ¥ 'y<1)). A few properties follow that are useful. For example, Yy = —i + ¢, Papy =
5 (L~ (1)) &= 0.6y = Fihas = Oand day Dutos = 1 (I — (1)) 7Dy = 0

W= =
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Dirac action (1.2.7) that contain radial derivatives of the spinor are

Sp D Spl, =i /M d* /=g % (1 0p— — p_dyaby) (2.2.26)

where we used the fact that D, = f1/29,. It follows that if we vary the Dirac action (1.2.7)

w.r.t. 4 and ¢_ one gets, after integration by parts,
dSp = bulk terms + 6Spqyy , (2.2.27)

where the bulk terms describe a contribution that vanishes when the equations of mo-
tion — which are equivalent to (1.2.8) — are satisfied and 6Sp4,, is a boundary term re-

sulting from integrating by parts the radial derivative terms (2.2.26) given by

OSpdry = i /a Ny B =g f? (100 —b_6y) . (2.2.28)

As discussed above, to have a well-posed boundary value problem, after requiring that
the solution is regular at the event horizon we no longer have the freedom to fix both ¢
and 1)_ at the asymptotic boundary (these are the two independent asymptotic constants
of our pair of first order ODEs). Instead, we can either fix ¢} at the asymptotic boundary
(in which case §11 = 0) or fix the asymptotic value of ¢)_ (in which case di)_ = 0 at the
boundary).

Suppose we want to fix 1 at the asymptotic boundary (a similar analysis would apply if
we wanted to fix¢)_). In order to have a well-defined variational problem one should add
a boundary term that cancels the contribution 8% _ in (2.2.28). Adding the boundary
term [75, 76,77, 78, 69]

Sy = —i /8 y B/ =gf P, (2.2.29)

produces the desired effect since the total on-shell action becomes
880t = 6 (Sp +8p) = —i / B/ =g f? (p_6py + i), (2.2.30)
oM

which indeed vanishes when §¢; = 0 (and thus 47, = 0). We can also compute the mo-
mentum conjugate to 1, and v, by varying S;,; w.rt. ¢, and v, respectively, yielding

o 5St0t

- 0Stot
Iy =
oy

T gy

I, = —iv/—=gf'Y?y_,  and = —iv/=gf"?y_. (2230

Interms of the functions R;(r), Ra(r) and S1(6), S2(#) introduced in the separation ansatz
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(2.2.14), the 4-spinors 14 are given by

’i(Rl + iRz)Sl —i(R1 — iRz)Sl
by = e~ Wteimed —(R1 + iRQ)SQ b = e~ Wteimed —(R1 — iRg)SQ
T gcgnt | (Bi+iR)S | T o(—gf)i | (B —iR:)S
—i(Rl + iRQ)Sz i(Rl — iRQ)SQ
(2.2.32)

From the asymptotic decays of R; 5 in (2.2.20) (valid for m # 0, 1) or in (2.2.23) (valid for
m = 0) one finds that ¢;. decay as

D], oo ~ 200772 Fafan) 1T O (17872

~ _A+ —A_—-1 —A_—-2 . l (2233)
V|, ~ 2B +0(B1) 7 +0O(r ), if 0<mL < 3;
gy T2 (PR (A L) HESEEAL 1 O(r72) ) (2.2.34)
w*‘raoo ~rTh M—Fi()\—w[/)w%-{-@(r—?) . ifm=0;
Vi oe ~ 200778 Fa(an) 1A T2 4 O (AT,

7 —A_-1 AL _A__9 . 1) (2.2.35)
w“r—mo b(al) r + 2B +0 (7“ ) ) if mL > 5

where a1, 31 are the free constants introduced in (2.2.20) or (2.2.23) and the constants
a(an), b(B1), alen) and b(ay) are fixed as functions of a; or f; (as described by their ar-
gument) by the equations of motion (details are irrelevant for our aim). The asymptotic
decays of the Dirac adjoints 1) follow straightforwardly from (2.2.33) with the exchange
a; — a1, B1 — B, etc.

FormL >  the only normalizable mode (i.e. with finite energy) is .. [51,79, 80, 55, 63, 66,
81]. In the context of the AdS/CFT correspondence, the leading term of the asymptotic
expansion lim, r2-1, = 2a; is then identified with the source of the dual operator
O which has mass dimension A . We have a well-posed boundary value problem if we
impose smoothness of ¢ at the event horizon and a Dirichlet boundary condition for a;
at the asymptotic boundary. In particular, if we do not want to deform the boundary field
theory we impose the no-source/homogeneous Dirichlet boundary condition: «; = 0.
We have no freedom left to fix asymptotically ¢)_ ie. f_. Instead, f_ and thus ¥_| is
determined by solving the Dirac equations subject to the above boundary conditions.
The expectation value (O) of the dual operator is given by the conjugate momentum I,
defined in (2.2.31): (O) o lim, oo 7211 o By.

On the other hand for 0 < mL < % both modes v+ are normalizable [51, 79, 80, 55,
63, 66, 81]. Thus we can still impose the standard quantization where we identify the
lim, oo T2 1), = wf) as the source of the dual operator O. In particular, the no-source/ho-
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mogeneous standard boundary condition for all possible masses:

=0, if 0 <mL <1 L>1y
wO =0 & {al : mbszlormb2 2k gase)

ar(A+wl)—if; =0, if m=0;

But, since for this range of masses both modes are normalisable,'® we can also impose
the so-called alternative quantization; where we identify the lim, _, Aty = @Z)(_O) asthe
source of the dual operator O with mass dimension A_. In particular, if we do not want
to deform the boundary field theory we impose the no-source alternative boundary

condition:

(2.2.37)

90 o B =0, | %f0<mL<%;
ar(A—wl)+ipf; =0, if m=0;

The two quantizations (2.2.36) and (2.2.37) yield two distinct boundary conformal field
theories [51, 79, 81, 55, 63]. For m = 0, note that the Dirichlet boundary condition on ¢,
zpf) = 0, implies the Neumann condition in ¢_ (i.e. the next-to-leading order term in
the expansion for ¢_ vanishes) and vice-versa. This follows straightforwardly from an
inspection of (2.2.34).

We emphasize that the no-source standard and alternative boundary conditions (2.2.36)-(2.2.37)
that do not deform the boundary theory imply that the energy flux and fermion particle
flux vanish at the asymptotic boundary (this is also the case for more elaborated nor-
malizable AdS/CFT boundary conditions [79, 81]). In this sense we can regard these as
reflective’ boundary conditions. The Dirac action (1.2.7) (and (2.2.30)) is left invariant
if we rotate the phase of the Dirac spinor, ¢ — e~ ). The Dirac current associated
to this symmetry is j# = 1y*4 and one can check that it is conserved, V,,j* = 0 af-
ter using the first order equations of motion (1.2.8). This is an internal vector symme-
try since ¢4 transform in the same way under this symmetry. This current gives the
charge flux or particle number flux of fermions. The associated conserved charge is
Q = [, dad\/7j"é, = [, dad\ /7Yy where V is the volume of a constant ¢ hypersur-
face, v, is the associated induced metric, and £ = 0; is the Killing vector describing
time translations. In particular, j"|,_,~ gives the radial flux of particles at the asymptotic
spacelike boundary . One can also show that the energy flux across a spacelike bound-
ary is proportional to the Dirac current. The energy flux across the asymptotic boundary

*Besides the single-trace standard/alternative boundary conditions, we can also impose multi-trace de-
formations which are mixed boundary conditions; see, e.g. [28, 27, 51, 52, 79, 80, 81].
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®4, |0 is proportional to the particle flux ;7| and is given by®
5, |oo 0| Ra|~| Rof*. (2.2.38)
Inserting the asymptotic decays (2.2.20) for R; » this yields
Dy, |00 x alf1 + a1}, ifm #0, 3. (2.2.39)

That is, the energy flux at the asymptotic boundary vanishes if we impose the above
discussed no-source Dirichlet boundary conditions o; = 0 or, for the alternative quan-

tization, ;1 = 0 which do not deform the boundary conformal field theory.

Onthe other hand, for m = 0, inserting the asymptotic decays (2.2.23) for R; 2 into (2.2.38)
yields

Dy, |00 x Naya} — (b1 +ioqwl) (Bf —iajwl) , ifm =0. (2.2.40)

Again, this flux vanishes if we impose the standard (2.2.36) or alternative (2.2.37) quanti-
zations, 81 = —i (£X + wL) a3 (and thus g7 =i (£\ + wL) o).

Here it is important to recall the clarification about AdS/CFT boundary conditions and
vanishing flux conditions presented in the Introduction. The standard and alternative
boundary conditions that we use have, by construction, zero energy flux at the asymp-
totic boundary, as reviewed above and originally discussed in [75, 76, 77, 78, 79, 80, 81I.
Without noticing, these standard/alternative boundary conditions are also the boundary
conditions used in [73, 74] where the “generic physical principle of zero energy flux” was
used to motivate the boundary conditions originally established in [75, 76, 77, 78, 79, 80,
81] (using precisely the same rationale). But there is a broader family of zero-flux bound-
ary conditions. The AdS/CFT standard and alternative quantizations are a special class
of zero-flux boundary conditions that, additionally, preserve the conformal symmetry
group of AdS [75, 76, 77, 78, 79, 80, 81]. It is this property that singles them out among
other zero-flux boundary conditions that break this conformal symmetry [79, 80, 81].
Further note that zero-flux boundary conditions are sometimes denoted as reflective’
boundary conditions in some literature and both set of words encode the familiar idea

that ‘AdS behaves as a confining box’ (under these boundary conditions).”

'®Let again ¢ = 9, be the Killing vector field conjugate to the energy. The energy-momentum tensor for
the Dirac field is T}, = & [y Dyt — (D) 1] and it is conserved V,, T*" = 0. This conservation law
together with the Killing equation, V(,£,) = 0, imply that the 1-form 7, = —T,.,£" is conserved, d « J = 0,
where * is the Hodge dual. We can then define the energy flux across the asymptotic hypersurface X (like
the asymptotic boundary) as ®¢ = — [, x7 = — [(dVx T,..&"n” where n"” is the unit normal vector to X
and dVx is the induced volume on X.

"Note however that in AdS/CFT there are other sets of boundary conditions that yield a well-defined
boundary value problem but do not correspond to zero-flux boundary conditions (e.g. mass deforma-
tions describe sourced solutions with important physical interpretations where gauge field(s) have a non-
vanishing asymptotic flux).
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It is also important to emphasise that in the AdS/CFT language the standard classifica-
tion of Dirichlet/Neumann/Robin boundary conditions applies to the physical fields that
obey the original differential equation (in the present s = 1/2 case, the Dirac equation).
Often this classification does not then translate into the same type of boundary condi-
tions on auxiliary (or even gauge invariant) fields that one might introduce. The classi-
fication should focus on the physical fields and not on auxiliary fields (we can fabricate
many of these), unlike what is done for s = 1/2 in [73, 74]. For example, for a massless
Dirac fermion, no-source Dirichlet/Neumann boundary conditions wf ) = 0 translate
into 1 = —i (£A +wL) aj not a; = 0 or #; = 0. Facts like this are often missed:"® zero-
flux boundary conditions that preserve conformal symmetry require wf ) to vanish not
Ri2]se.®

2.2.4 Near-horizon geometry of the extreme AdS-RN black hole

The near-horizon geometry of the extremal AdS-RN black hole will play an important
role in our discussions in sections 2.3 and 2.4. Therefore, we review it here. The limiting
procedure described below was first presented in [49].

The extremal AdS-RN black hole is given by (2.2.1) with © = eyt given by (2.2.4). To
obtain the near-horizon geometry, it is convenient to work in the gauge A, = 0(C = 1
otherwise we can do a gauge transformation in the end). One first zooms in around the
horizon region by making the coordinate transformations:

T

r=ry+ep, t=L%g, (2.2.41)

g )
where L 44g, is the AdS; radius (to be defined below). Now the near-horizon geometry

is obtained by taking ¢ — 0 which yields

dp? Lr
dS?VH = L124d52 (—p2d7—2 + [)2> + Tidgg, LAdSQ = 7—’—,
p W/ L%+ 67&
Lias
Al]XHda:“ =apdr, «a=Lags,\[1+—5>. (2.2.42)

Ty

This geometry is the direct product of AdS> xS? and has a Maxwell potential that is linear
in the radial direction. As mentioned in the introduction, it is still a solution of the 4-
dimensional Einstein-Maxwell-AdS theory. On the other hand, the AdS; metric solves
the 2-dimensional Einstein-AdS equations, R, = —LZESQ 9. if L ags, is identified as a

BThis is e.g. the case in [85, 86] where massless Dirac quasinormal modes of Schwarschild-AdS are
computed with the Dirichlet boundary condition a1 = 0. This choice of boundary condition is not one of
the AdS/CFT zero flux boundary conditions for a massless Dirac field.

YFurther note that there are other boundary conditions (e,g. 81 = —i (4i A + wL) a1) that make the
flux (2.2.40) vanish. These should correspond to multi-traced (i.e. mixed or Robin) AdS/CFT boundary
conditions [79, 81] which deform the boundary theory in a way that might be interesting for other studies.
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function of the AdS, radius L and the horizon radius 7 as indicated in the first line of
(2.2.42).

2.3 Scalar fields in a AdS-RN background and their instabilities

Scalar fields confined inside the gravitational potential (like the AdS potential or a box in
an asymptotically Minkowski background) of a black hole can condense creating near-
horizon linear instabilities [53, 54, 55, 56, 44, 57, 39] (for planar AdS, this instability trig-
gered the holographic superconductor programme [53, 54, 55]). Essentially this happens
because we can have scalar fields that obey the asymptotically AdSs UV Breitenléhner-
Freedman (BF) bound but violate the 2-dimensional BF stability bound associated to the
AdS; x S? near-horizon geometry of the extremal black hole of the system. As we shall
discuss in section 2.4.1, a similar violation of the 2-dimensional stability bound can oc-
cur for Dirac fields. In spite of this, as we will find in section 2.4.4, it turns out that Dirac
fields are not linearly unstable to the near-horizon condensation mechanism. There-
fore, before we discuss the fermionic case, it is important to revisit the scalar field case.
This will allow to: 1) motivate the search of linear instabilities due to Dirac fields done in
this chapter, 2) eventually identify differences between the two spins that could help in
understanding the opposite outcomes. We also take the opportunity to demonstrate: i)
how remarkably sharp the near-horizon instability bound (2.3.7) is by comparing it with
the numerical solutions of the Klein-Gordon equation, and ii) that the unstable modes
are both peaked near the horizon but also connected to the AdS normal modes (that is to
say, in the language of [70, 71, 72] the AdS and near-extremal families of modes coincide

and describe the unstable modes).

Using the fact that the AdS-RN background (2.2.1) is static and spherically symmetric we
can consider a separation ansatz for the scalar field (with mass m and charge ¢) with the
Fourier decomposition

D(t,1,0,0) = e “e™mCY(0)p(r), (2.3.1)

where Y;(0) are the familiar (spin-0) spherical harmonics — which are regular when the
separation constant of the system is quantized as A = ¢(¢+1),£ =10,1,2,--- —and |mg| <
¢ is the azimuthal quantum number. The Klein-Gordon equation yields the following
equation for the radial function ¢(r):

<f¢> (f(erqA) _Tm_g(g_|_1)>¢:0, (2.3.2)

A Taylor expansion around the asymptotic boundary yields the two independent solu-
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tions

S(R) =~ (at )42 b)), with Al = g + Z +m2L2  (23.3)
being the conformal dimensions of the field. Such a scalar field in AdS, is normalizable
as long as its mass obeys the AdS, Breitenléhner and Freedman (BF) bound, m2 > mQBF =

9 1
—9 1 128, 271.

Such a scalar field that is stable in the UVregion can however be unstable in the IR region.
This is best understood if we take the near-horizon limit of (2.3.2). Concretely, apply-
ing the near-horizon coordinate transformation (2.2.41) together with the near-horizon
frequency transformation & — @e/L% g (so that e 7! — ¢~%7) followed by the near-
horizon limit e — 0 yields the radial Klein-Gordon equation in the near-horizon geom-
etry (2.2.42):

@ +qap)

P2 - m2LidS2> R=0, (2.34)

9y (p*0,R) + (

This is nothing else but the Klein-Gordon equation for a scalar field around AdS; with

an electromagnetic potential A; = «a p. A Frobenius analysis of (2.3.4) yields

1 7
2 2
:l:§ 1+m€ffLAdSQ7

(2.3.5)
which determines the effective mass of the scalar field from the perspective of a near-

Rl =p G+ ) ++p b+, with AY =

psoc — P

| =

horizon observer,

me ;o Lhas, = m*Ligs, — ¢ o (2.3.6)

Now, a scalar field with mass (2.3.6) in AdS, has unstable modes if it violates the AdS,
BF bound m? ) 2 m% 48, BF = —1 ﬁ It follows that extremal AdS-RN, black holes
should be unstable whenever the charge of the scalar field obeys

1 2 L2 4 6r2 2
¢ > I3 <1 + 4m?L? s > ( r+) (near-horizon instability bound) .

D467 ) 807 (2430

(2.3.7)
Note that scalar fields can also induce instabilities due to another mechanism that is
known as superradiance. Unlike the near-horizon instability — which is suppressed in
the limitr, /L — 0;indeed (2.3.7) goes as ¢*L? > % +O(1) — the superradiant instability
is present for small | /L < 1 black holes. For example, for m = 0, from the perturbative
results of [39] one finds that the superradiant instability in extremal AAS-RNy is present
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for scalar charges?°

3 9 r2 r L .
> - — T —L
qL > NRENAE +0 < 71) (superradiant instability bound) (2.3.8)

Next, we solve the Klein-Gordon equation numerically to confirm that the near-horizon
and superradiant instabilities are indeed present and to find how sharp the instability
bounds (2.3.7) and (2.3.8) are. We present results for scalar masses above the unitarity
bound m4p + 1 = —5/4 so asymptotically we impose the Dirichlet boundary condition
a = 0; see (2.3.3).2! On the other hand at the horizon we require that the solution is reg-
ular in the future horizon which discards outgoing modes. To present the results, note
that our system has a scaling symmetry [39] which means that the physical dimension-
less quantities that are relevant for the problem are (this effectively sets L = 1)

{%,u; mL,qL,wL,E} . (2.3.9)

r./L r./L

Figure 2.3.1: Onset scalar field charge as a function of the horizon radius for chemical
potential i1 = prext (1 — 10™%) with z = 2,3, 6, 15 (from top to bottom on the right of each
panel). The left panel corresponds to massless scalar fields; the right panel to massive
scalar fields with mL = 2. The red dashed line is the near-horizon condensation analytic
bound (2.3.7). In addition in the left panel we have the dashed blue line (for small horizon
radius) which is the superradiant bound (2.3.8).

First, we are interested in finding the onset of the instabilities namely, the scalar field
charge qonset (11, 74/ L; mL, £) above which the system is unstable. This onset occurs when

°This bound can be obtained from the expression for the frequency obtained in section IILD of [39].
Namely, the onset charge (2.3.8) of the superradiant instability is obtained by setting @ = 0 and p = prext in
equation (55) of [39] and solving for the charge ¢. For further discussions between the entanglement of the
superradiant and near-horizon instabilities and their different nature we ask the reader to see [39] and [40].

For mir < m? < mip + 1 both modes are normalizable and thus we could also impose the Neumann
boundary condition b = 0 (the so-called alternative quantization in the context of AdS/CFT) [28, 27].
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Figure 2.3.2: Scalar field frequency as a function of the dimensionless scalar charge gL
for a AdS-RN black hole with g = 0.99ucxt and 7. /L = 0.5 (mL = 0 and ¢ = 1). Left
panel: Imaginary part of the dimensionless frequency, Im(wL). The system becomes
unstable for ¢ > ¢, where ¢.L ~ 1.863. Right panel: Real part of the dimensionless
frequency, Re(wL), measured with respect to guL. This quantity changes sign at ¢ = ¢,
ie. when Im(wL) changes sign. In both plots, the black dashed curves describe the
analytic prediction of the asymptotic matching expansion (A.2.10). We find very good
agreement with the numerical results (blue curves) for ¢ < 1.1 (say). This is a further
justification of the crude assumption that we should match with O in the overlapping
region. However we find that these modes connect with the AdS normal modesasr; —
0.

the frequency satisfies @ = w — qu = 0. The Klein-Gordon equation (2.3.2) is then solved
as an eigenvalue problem for ¢ = gonset. For concreteness, we fix £ = 1 (we need my > 1
to have an instability). In the left plot of Fig. 2.3.1 we set m = 0 and we plot the dimen-
sionless onset charge gonset L as a function of the dimensionless horizon radius r; /L
for different values of the chemical potential 4 = pext(1 — 107%) that increasingly ap-
proaches the extremal value. From top to bottom, the green numerical curves describe
chemical potentials with x = 2, 3, 6, 15. We see that as we get closer to extremality these
onset curves increasingly approach (for values of r /L larger than ~ 0.25) the red dashed
curve which describes the near-horizon bound (2.3.7). This strongly suggests that the in-
stability, for large values of the horizon radius and near extremality, can be understood
as due to the violation of the AdS, BF and that the associated near-horizon bound (2.3.7)
is sharp (i.e. it is attained at extremality). On the other hand, as pointed out before, the
near-horizon red dashed curve diverges as ;. /L — 0. However, Fig. 2.3.1 shows that
JonsetL is finite for small 1 /L. Actually, in this regime the numerical onset curves are
well described by the superradiant bound (2.3.8) (blue dashed curve with negative slope).
This suggests that for small horizon radius and near extremality the instability has a su-
perradiant nature and the superradiant bound (2.3.8) is sharp. For finite values of . /L,
ie. away fromthery /L — 0and r; /L — oo regions, the superradiant and near-horizon
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instabilities are entangled. These features are not unique to the massless case. For ex-
ample, the onset charge plot for a scalar mass of mL = 2 is shown in the right panel of
Fig. 2.3.1. Again, as extremality is approached the numerical green curves increasingly
approach the near-horizon onset bound (2.3.7) (in this case we do not show the curve
corresponding to the perturbative superradiant curve because it was not computed in
[39] but we see that the behaviour of the onset curves for /L < 1 is similar to the

massless case).

To compare with what happens in the Dirac field case, it is enlightening to do the fol-
lowing exercise whose results are summarized in Fig. 2.3.2. We pick a particular AdS-RN
background with chemical potential i = 0.99ucy and horizon radius /L = 0.5. We
also fix the scalar mass to be mL = 0 and the scalar field harmonic number ¢ = 1. Then
we solve the Klein-Gordon equation to find the imaginary and real parts of the frequency
wL as a function of the dimensionless scalar field charge ¢L: these are shown in the left
and right panels, respectively, of Fig. 2.3.2. From the left panel we see that, in accordance
with the conclusions of Fig. 2.3.1, for small ¢ L the system is stable (since Im(wL) < 0) but
there is a critical charge ¢, L ~ 1.863 (vertical dotted line) above which the system be-
comes unstable. Precisely at this critical onset charge one has Re(w) — gqu = 0 and this
quantity is negative (positive) for ¢ < ¢, (¢ > ¢4+). The inset plot of Fig. 2.3.1 zooms-in
the region ¢ < ¢.. In section 2.4.4 we will find that the partner plot for Dirac fields is
substantially different.

We take also the opportunity to understand better the frequency spectrum of scalar
fields in AdS-RN. For global AdS RN black holes there are two quasinormal mode families
[89, 90, 91]: one whose imaginary part grows negative without bound as the horizon
radius r4 /L decreases, and another whose imaginary part vanishes as v, /L — 0 and
whose real part approaches the normal modes of AdS. The unstable modes are found
in this second family. This could well be the complete story. However, in de Sitter black
holes there is a third family of quasinormal modes — called the near-extremal family —
whose wavefunctions are spatially peaked near the horizon and that is distinct from the
de Sitter family (as the name suggests, the latter is connected to the normal modes of de
Sitter when the black hole shrinks). This naturally raises the question: could it be that
in AdS one also has a near-extremal family of quasinormal modes that is not connected
to the AdS family? If so, do the near-horizon unstable modes with bound (2.3.7) fit in
this near-extremal family? We find a negative answer to these questions: the unstable
modes belong to the AdS family of modes and the near-extremal family coincides with
the AdS family. To arrive to this conclusion we first use a matching asymptotic expansion
similar to the one used in de Sitter [70, 71, 72, 92] to find the frequency spectrum of the
near-extremal family of quasinormal modes. This is done in Appendix A.2 and here we

just quote the final result: near-extremality and for small scalar field charge one finds



2.3. Scalar fields in a AdS-RN background and their instabilities 47

that near-extremal modes have the frequency (for the lowest radial overtone p = 0)

61/1+3R3_ ]

A lam ((1 +6R%)(1 + 2p)

wL ~eu+o

+\/(1 +6R2) [1+6R% 4+ 4m?R2 + 400+ 1)] — 8¢?R%(1 + SRi)) + O(c42.3.10)

where Ry =r;/L,e=qLand o = % measures the distance away from extremality
with r_(r4, u, L) being the inner (Cauchy) horizon for which f(r_) = 0. In Fig. 2.3.2,
this analytical near-extremal frequency (with ¢ = 1) is described by the dashed black
curve. We find that it matches quite well the numerical result for small scalar charge.
This indicates that the unstable modes fit into the near-extremal family of modes. But
they also fit into the AdS family of normal modes. That is to say, unlike in the de Sitter
case, in AdS the near-extremal and AdS family of modes coincide. To see this is indeed
the case we pick two solutions in Fig. 2.3.2 that have ¢L. = 2.5 (orange diamond) and
gL = 2 and (keeping p = 0.99puext, fixed) we follow this family of unstable modes as . /L
decreases to zero.?? This is done in Fig. 2.3.3 for ¢L. = 2.5 and Fig. 2.3.4 for ¢L = 2. In
both cases we find that, as r. /L — 0, Im(wL) — 0 and Re(wL) — 3, which is indeed the

normal mode frequency of AdS with ¢ = 1 (and lowest radial overtone).

In Fig. 2.3.3 and Fig. 2.3.4 the magenta dashed lines departing from the normal mode of
AdS describe the frequency that one obtains when we consider a perturbative expansion
in 71 /L and near-extremality about global AdS (and ¢ = 1, m = 0). This result is taken
from [39] (we already mentioned it to get the bound (2.3.8)):

Loy T+ (6 — dep + 3u?) N 3| 4 (—dep +3p% +6) (—52ep + 454% + 90)
v L 37 L2 272
1 2 2 2 - 16(3 — ep) i
o [108+u(224e j— 264e (1 +2) + 9 (3u +52))} —i 05
Y

(2.3.11)

where e = ¢L. So we see that not only the unstable modes approach the normal modes
of AdS but they also do it at the expected rate in an expansion in /L. The matching
of our numerical results with the perturbative results (2.3.10) and (2.3.11) represents a
non-trivial check of our results and illustrates the regime of validity of the perturbative
results.

Now that we have highlighted the key features of the near-horizon (and superradiant)

“Note that ¢L = 2.5 is well above the onset curves of Fig. 2.3.1 for any r; / L while the I, = 2 line is above
the onset curves only above a certain horizon radius. So, for the latter charge, the system is unstable only
above a critical value of r /L, as shown in Fig. 2.3.4.
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Figure 2.3.3: Scalar field frequency as a function of the dimensionless horizon radius
r+/L for a AdS-RN black hole with @ = 0.99pext and ¢L = 2.5 that is always above the
near-horizon bound (2.3.7) (nL = 0 and ¢ = 1). Left panel: Imaginary part of the di-
mensionless frequency, Im(wL). Right panel: Real part of the dimensionless frequency,
Re(wL). In both plots, the magenta dashed curves describe the analytic prediction of
the perturbative expansion in r /L about AdS. The unstable modes are thus connected
to the AdS normal modes when r, — 0 (brown disk). For reference, the blue disk with
r+/L = 0.5 is shown (which makes contact with Fig. 2.3.2).

instabilities due to scalar perturbations in AdS-RN, we can proceed to the study of per-
turbations of Dirac fields in AdS-RN.

2.4 Searching for aninstability of Dirac fields in the AdS-RN back-

ground

In section 2.3 we have seen that scalar fluctuations in the AdS-RN background give rise
to the near-horizon scalar condensation instability. Moreover, we have seen that this
instability is closely associated to the violation of the AdS; scalar BF stability bound. So
much that the associated stability bound (2.3.7) for the onset of the instability is sharp.
This naturally invites the questions: in the fermionic case can we also have a range of
parameters where the AdSs fermionic stability bound is violated? If so what is the equiv-
alent bound to (2.3.7) for the onset of the instability?

In this section we will address these questions. We will find that a near-horizon analysis
of the Dirac equation indeed indicates that the AdS, fermionic stability bound can be
violated near-extremality if the charge of the fermion is above a critical value (subsec-
tion 2.4.1). Encouraged by this result we will do a numerical analysis that will search for
unstable modes in the region of parameters of interest (subsection 2.4.3). However, we



2.4. Searching for an instability of Dirac fields in the AdS-RN background 49

0.005f

. 4.0
0.000 g - - === 1 3.8
K
36
2 -0.005- n
3 3
E Q
= T34
-0.010}
3.2
-0.015} 3.0[0e.,
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 \6.2 0.3 0.4 0.5 0.6

r./L r/L

Figure 2.3.4: Similar to Fig. 2.3.3 but this time for a scalar field charge ¢ = 2 that is above
the near-horizon bound (2.3.7) only for r /L above a certain value as seen in the left plot
of Fig. 2.3.1.

will find no trace of instabilities, unlike in the scalar field case.

2.4.1 Argument for a near-horizon instability of Dirac fields

The Dirac equation in the near-horizon geometry (2.2.42) of the extreme AdS-RN black
hole can be obtained taking the near-horizon limit of section 2.2.4 directly on the Dirac
equation (2.2.17) for the extreme AdS-RN black hole. Concretely, applying the near-
horizon coordinate transformation (2.2.41) together with the near-horizon frequency
transformation & — @e/L% 4 (so that e — ¢7%7) followed by the near-horizon

limit e — 0 yields the Dirac equation in the near-horizon geometry (2.2.42):23
d ( dRi(p) @+qap)? & 2, N
,0dp<p dp + 724-15—[/146152 m +T7

p +
where the AdS; radius L 445, and the Maxwell near-horizon parameter « are defined in

Ri(p) =0 (2.4.)

(2.2.42) and X is the angular eigenvalue quantized as in (2.2.19). Also, recall that m and ¢
are the mass and charge of the fermionic field.

Asymptotically, as p — oo, a Frobenius analysis of (2.4.1) finds that the solution R;(p)
decays as

p_%Rl‘p*)oo ~ p—A, (al 4. ) + p—AJr (B\l + .. ) , (242)

where a7, Bl are two arbitrary constants and we have introduced the AdSy; conformal

“The field R obeys a similar near-horizon Dirac equation that is just the complex conjugate of (2.4.1).
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Figure 2.4.1: Predicted Dirac field charge for the onset of an instability as a function of
the horizon radius for an extremal AdS-RN black hole (11 = pext). In both plots the red
dashed curve is the lower bound of (2.4.4). The plot in the left (right) panel is for fermion
mass mL = 0 (mL = 4) and harmonic number ¢ = 1/2. The near-horizon analysis
of the 2-dimensional stability bound violation leading to (2.4.4) predicts that region B
should be unstable while region A should be stable (at least with respect to the stability
mass bound mechanism). Note that for small 7, /L the system is not unstable because
there is no superradiance for fermions and the predicted near-horizon instability is also
suppressed. These Dirac figures can be (qualitatively) compared with Fig. 2.3.1 for the
scalar field.

dimensions
~ 1 )2 2.2
Ay =—-+ MegrL Ads, with  meg = m2 + — — q20z (2.4.3)
2 T Liags
2

The s = 1/2 stability bound is independent of the spacetime dimension and still given
by (2.2.22), m? > 0 [79, 81]. Thus, the 2-dimensional fermionic stability bound is obeyed
if m%; > 0in (2.4.3). It follows that we can have situations where the Dirac field obeys the
4-dimensional fermionic stability bound (2.2.22), m? > 0, but violates the 2-dimensional
stability bound. When this happens, i.e. when m2; < 0, one might expect an instabil-
ity. This condition can be rewritten: the 2-dimensional stability bound is violated if the

charge of the fermion is larger than

1 L2 + 67“?Ir 5 o
> \ / A\2) . 244
C_I_\/ir+ L2+3ri(mr++ ) ( )

The equality applies strictly to the extremal case; as we move away from extremality, by

continuity the instability should still be present but a higher fermion charge is needed
to trigger it. Fig. 2.4.1 illustrates the regions where (2.4.4) predicts instability/stability.

At this level, we see that the near-horizon analysis of the possible violation of the AdS»
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stability bound for a Dirac field parallels very much the partner analysis done for a scalar
field in section 2.3, with the minimum value for the charge (2.3.7) for the scalar case
just replaced by the fermionic minimum value (2.4.4). In the scalar field case, we found
(through a numerical study of linear perturbations in the AdS-RN background) that the
violation of the 2-dimensional stability bound translates into the existence of a linear
scalar condensation instability. Moreover, the near-horizon scalar bound (2.3.7) turns
out to be very sharp, as best illustrated in Fig. 2.3.1. This scalar condensation linear in-
stability indicates that non-linearly the AdS-RN black hole, when perturbed by a scalar
field evolves towards a new configuration — a hairy black hole (with a scalar condensate
floating above the horizon) — with the same UV asymptotics (since the 4-dimensional
stability bound is satisfied) but with a different near-horizon geometry where the 2-
dimensional stability bound is no longer violated [46, 57, 93, 39].

These considerations motivate the study done in this chapter for a Dirac field. In this
case the AdS; stability bound can also be violated: at extremality this occurs fora fermion
charge that saturates (2.4.4). From the lessons learned in the scalar field case one might
well expect that the AdS-RN black hole, when perturbed by a Dirac field, is linearly un-
stable. To confirm whether this is the case, in the rest of this section we will solve nu-
merically the Dirac equation in the AdS-RN background to hunt for a signature of the
near-horizon linear instability. However, unlike the scalar field case, we will not find any
evidence of a /inear instability.

2.4.2 Dirac normal modes of global AdS

Before looking for potential instabilities (or frequency spectrum of damped oscillations)
of Dirac modes in the global AdS-RN black hole it is convenient to first compute the
normal mode spectrum of Dirac fields in global AdS. Indeed, some families of AdS-RN
perturbations must reduce to these in the limit where the horizon shrinks to zero. Mas-

sive (section 2.4.2.1) and massless (section 2.4.2.2) Dirac fields require a distinct analysis.

2.4.2.1 Massive normal modes

For massive fermions in global AdS, it is not easy to solve directly the Dirac equations to
get the radial functions Ry 5. There is however an appropriate combination of R, > that
yields equations of motion that are explicit hypergeometric equations. The linear com-
bination for R; 5 that we use below is motivated by a similar analysis done to compute

the massive normal modes of fermions for de Sitterin [94].

For m # 0 and in global AdS, we introduce the new radial variable y = —ir/L and make
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the following field redefinitions

»Jk\»—‘
N|=

Ri(y) = (1-9*)"
Ra(y) = (1~ y*)~

(1=9)3[i) - )],
(1+9)? [A) + L) (2.45)

MH

where f; 2(y) are functions to be determined. In these conditions, the coupled system

of Dirac equations (2.2.15) yields

1+y

(=) (1= 8) + (w2 - 3) (i o)+ [mia) - 222 (e D)+ 12 =0,
(1—y2><f{+fé)—<wL—><f1+f2> { <1—y>+1‘yy(e+;>]<f1_f2>—o

Adding and subtracting these two ODEs yields

(=) fi+ [mLy =1 (e4+3)] ) = L= mL+ 00,
(1- y?) foly) — [mLy — 31/ (ﬁ + ;)] fo(y) = (WL +mL —£—1) fi(y). (24.6)

This pair of coupled first order ODEs can be straightforwardly rewritten as a decoupled
pair of second order ODEs for f; and f». Moreover, if we introduce the new radial coor-

dinate z = y? and the field redefinitions

+1/2

filz) =277 (1= 2)10720 py (),
folz) = 2732 (1 — 2)80-20) gy (24.7)

each of the ODEs becomes a hypergeometric ODE with the standard form
2(1—2)F{(2) + [¢i — (a; + b + 1)2] F{(z) — a;b; Fi(z) =0, fori=1,2 (24.8)

with parameters a;, b; and ¢; given by

(1+¢—wL—-mL), by

a; = (2+4¢—wL+mL), aa=1+4¢; (24.9)

wa—t
[\')M—‘[\DM—‘

as (3 +{—wL—mL), by (24 ¢—wL+mlL), co=2+¢ (24.10)
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The most general solutions of (2.4.8) are [48]
1 1
Fl(z) = A12F1 (2(E—mL—wL—|—1),2(€+mL—Lw+2);€+1;z>
y 1 1
+Agz7" o 5(1—mL—E—wL),i(mL—E—wL+2);1—ﬁ;z ,
1 1
Fy(z) = BiaFy <2(£—mL—wL—i—3),2(€—|—mL—wL—|—2);€—|—2;z)
o1 1 1
+Bsz oFy 5(1—mL—E—wL),§(mL—€—wL);—€;z , (2411

where 2F(a,b,¢; z) is the Gaussian (ordinary) hypergeometric function and Aj; 2, Bi 2
are arbitrary amplitudes. We can now plug (2.4.11) into (2.4.7) and then into (2.4.5) to get
the most general solution for R;(r) and Ra(r). Finally, we can insert this most general
solution for Ry 2(r) into (2.2.32) to get the most general solution for the Dirac fields ¢4 (7).
These are the physical fields that have to be regular everywhere and this constrains some
of the amplitudes A; 2 and B 2 and the frequencies. Namely, at the origin, » = 0, one
finds that both 11 have two divergent terms of the form By /r/*+3/2 and (245 — By) /rt*1/2.
Regularity at the origin thus requires that one sets Ay = 0 and By = 0 and the other two
amplitudes A; and B are left arbitrary. It follows that the regular normal eigenmodes
are

wlL
roor N [ e ir\*
o= L(LZ)(Z;?Jrl) <L)

1 1 2
A1 o FY (2(€—mL—wL—|— 1), i(é—i—mL —wL—|—2);€+ 1; —;)

r 1 1 r?
iB1—oF [ =(¢ — mL — wL - L—wL+2)l+2——
+1 1L2 1<2(€ m w +3),2(€+m wl + ),E‘F ) LQ)],
wlL 1
ir (12 EERVARTANAE
= 1——(—+1 -
e () ()
1 1 r?
A12F1 i(f—mL—UJL—F1),§(£+’I’I’LL—(/JL+2);€+1;—ﬁ

r 1 1 r?
—tB1—oF1 | (4 —mL —wL - L —wL +2); 2;—— ] (2412
1B17 2 1<2(€ mL —w +3)a2(5+m wL +2);+2; L2>} )

We have not yet imposed the asymptotic boundary condition. A Frobenius analysis of
(2.4.12) near the conformal boundary together with the use of (2.2.32) finds that ¢+ be-
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haves as (2.2.33) or (2.2.35) with

Ay (=)' L™ T+ 1)T (mL + 1)
I'[3(0+2+mL—wL)|]T[3(¢+1+mL+wl)]
iB1(—i)*L™FT (0 4 2)T (3 — mL)
I'[3(¢+3—mL—wL)|T[3({+2-mL+wl)]

o] =

pr= (2.4.13)

Form > 0(m # 1/2) the no-source standard boundary condition (2.2.36) requires a; = 0.

Using I'|—p] = oo for p =0, 1,2, - - - this quantizes the frequency as

wL=¢+2+mL+2p or wL=-{+1+mL+ 2p), (standard quantization)
(2.4.14)

For 0 < mL < % we can also impose the alternative quantization (2.2.37), i.e. 81 = 0. This

quantizes the frequency spectrum as (also with radial overtone p = 0,1,2,---)

wL=04+3—mL+2p or wL=—-{(+2—-—mL+2p), (alternative quantization)
(2.4.15)

2.4.2.2 Massless normal modes

In this section we find the normal modes in global AdS for a massless fermionic field.
These have been previously discussed in [95, 73] but these references have not identified
the full spectra of frequencies.

For m = 0 in global AdS, introducing the change of coordinates and field redefinition

2r
= — 0<2<2;
T rsiL’ =E=9
Ri(z) = 22 (1 — 2)29FF(2), (2.4.16)

the radial equation (2.2.17) can be rewritten as a hypergeometric ODE in the standard
form z(1 — 2)F"(z) + (¢ — (a + b+ 1)2)F'(z) — abF'(z) = 0, with

1
a:£+§, b=(+1+wL, c=2({+1). (2.4.17)
Its most general solution is [48]

F(z) =0 2F1(% FlwL+0+1,201 —|—€),z) Oy z—l—%Fl( _ % WL — 1, =2, z)
(2.4.18)

Introducing this into (2.4.16) one gets R; 2(r) (note that Ry = R as discussed in the next
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section). Plugging this into (2.2.32) one finds the most general solution for the Dirac fields
¥4 (r). At the origin, r = 0, these 1+ have a divergent term proportional to Cyr—¢=3/2.
Regularity at the origin thus requires that we set C, = 0. Now we need to impose the

asymptotic boundary condition. One finds that asymptotically vy decays as (2.2.34) with
1
o] = CliwLQEJr% o F <€+ §,£+wL+ 1;254-2;2) s

1
e 2[—2 ZwL—I—l

A

1
(2wL+2€+1)2F1 <£+ 2,€+WL+1;2£+2;2)

(20 + 1)(wL + € + 1)
(+1

o F <£+ ;,€+wL+2;2€+3;2> ] (2.4.19)

As explained previously, for m = 0 we can impose either the standard or alternative
boundary conditions. The no-source standard boundary condition (2.2.36), a (A+wL) —
81 = 0, quantizes the frequency spectrum as

wL=0+2+4+2p and wL=-({+1+2p), p=0,1,2,..., (Standard quantization)
(2.4.20)
On the other hand, for the no-source alternative quantization (2.2.37), ay (A—wL)+if =

0, the normal mode frequencies of a massless Dirac field in global AdS are:

wL =/4+142p and wL=—-((+2+2p), p=0,1,2,..., (Alternative quantization)

(2.4.21)
The positive frequencies in (2.4.20) and (2.4.21) were computed in [73] using vanishing
flux boundary conditions that, as explained in the end of section 2.2.3, are exactly the
AdS/CFT standard and alternative boundary conditions. However, [73] missed the ex-
istence of half of the normal mode spectrum, namely the half part that has negative
frequencies. The relevance of the full spectrum (and associated relations between stan-
dard/alternative quantizations) is further analysed in the discussion of Fig. A.4.1. Further
note that in RN, the four families of modes that reduce to (2.4.20)-(2.4.21) in the AdS limit
become completely independent (i.e. they are not related by complex conjugation and
the “degeneracy” is broken). This is further discussed in the next subsection.

2.4.3 Setup of the numerical problem

In this section we solve numerically the Dirac equation and search for linear instabilities
of the Dirac solution in the AdS-RN background. Before proceeding it is important to
note that: 1) the Dirac radial equation (2.2.17) for Ra(r) is just the complex conjugate
of the radial equation for R;(r) so if R;(r) is a solution one automatically has Ra(r) =
Ry(r)* and 2) the Dirac angular equations for S s are related by the symmetry § —
m — 6 so if S1(0) is a solution then S3(0) = Si(m — 0). Therefore, we just need to find
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the solutions Ry (r) (S1(#) are just the spin-weighted s = 1/2 spherical harmonics with

quantum number /).

Further note that if R; has charge ¢ then Ry = R} has charge —¢, and complex conju-
gation maps quasinormal modes to quasinormal modes. It follows that if w = w, + iw;
is a linear mode frequency of R; then —w* = —w, + iw; is a linear mode frequency of
Ry = R;. Thus, if we compute the frequency spectrum of R;, we have the spectrum of
R too. It also follows that there is no loss of generality in assuming that ¢@) > 0 in our
analysis: results for ¢QQ < 0 are obtained simply by reversing the sign of the real part of
the frequencies. Finally note that when we compute w we have to allow both positive
and negative values of w,, i.e. if w, = Re(w) is a frequency of R; there is no symmetry
in the system that requires —w, to be also a frequency of R;. The only exception is if
1=0 (or e = 0) and m = 0 i.e. a massless Dirac field in Schwarzschild-AdS. In this case if
w = wy + iw; is an eigenvalue of R; so is —w* = —w, + iw;, although with the opposite
quantization: see (2.2.17) and (2.2.36)-(2.2.37) or (2.4.20)-(2.4.21).

For concreteness, we will set the mass of the fermion to zero, i.e. we solve the Dirac
equation (2.2.17) for Ry with m = 0 (and in the gauge A|c = 0 where the frequency
of the fermionic wave is w; see footnote 12) subject to the physically relevant boundary
conditions. The asymptotic decay of Ry (r) is given in (2.2.23). For reasons discussed pre-
viously, we impose the asymptotic boundary condition (2.2.36) (standard quantization,
w@ = 0) or (2.2.37) (alternative quantization, ¢@ = 0). At the horizon, for a non-extreme
black hole, a Frobenius analysis finds that the two pairs of independent solutions are

Ry|

r=ry

= Ain (r — r+)%_i% (1 +O(r — r+)> + Bout (1 — T+)i% (1 +O(r — r+)).
(2.4.22)

Rewriting this in ingoing Eddington-Finkelstein coordinates (v, 7,6, ¢), with v = ¢ +

[ f~tdr, which are smooth across the future event horizon H*, we find that regular-

ity of R1(r) at HT requires that we impose the boundary condition B,,; = 0. %

For the numerical solution it is convenient to redefine

Ry(r) = ( - m>é_iﬁi q(r), (2.4.23)

r

and to work with the compact radial coordinate

JO P (2.4.24)
T

such that the horizon is now at z = 0 and the asymptotic infinity at z = 1. This has the

#For scalar fields, [96] used the real-time holography formalism [21] to show that imposing ingoing
boundary conditions in the bulk horizon translates on the CFT side of the AdS/CFT correspondence to
study retarded two-point functions.
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advantage that analytical solutions that are smooth at the horizon simply have to obey
the horizon Neumann boundary condition ¢’(z = 0) = 0. The asymptotic boundary
condition for ¢(z) follows straightforwardly from (2.2.36)-(2.2.37) and (2.4.23)-(2.4.24).

The numerical methods that we use are very well tested [97, 98, 99,100, 101,102, 56, 44, 83,
84,103] and reviewed in [104]. To discretize the field equations we use a pseudospectral
collocation grid on Gauss-Chebyshev-Lobbato points. The eigenfrequencies and asso-
ciated eigenvectors are found using Mathematica's built-in routine Eigensystem. For a
given /, this method has the advantage of finding several modes (i.e., from distinct fam-
ilies and with distinct radial overtones) simultaneously. However, to increase the accu-
racy of our results at a much lower computational cost we use a powerful numerical
procedure which uses the Newton-Raphson root-finding algorithm discussed in detail
in section III.C of the review [104]. All our results have the exponential convergence on
the number of gridpoints, as expected for a code that uses pseudospectral collocation.
In particular, all the results that we present are accurate at least up to the 10th decimal
digit.

The Dirac equation in AdS-RN also has the scaling symmetry that determines that the

physical dimensionless quantities are those listed in (2.3.9).

2.4.4 Main results

As discussed in section 2.4.3, for fermion mass m = 0, we can have two independent
homogeneous boundary conditions that yield normalizable modes: the standard (1/158) =
0) and alternative (1/1@ = 0) boundary conditions. Moreover, for each of these boundary
conditions, the eigenvector R; can have negative or positive real part of the frequency.
It follows that, for a given harmonic ¢, m, (and m = 0) we have a total of two frequency

spectra to discuss for each one of the two possible boundary conditions.

Before proceeding to the actual physical analysis of the frequency spectrum and insta-
bilities of the system, in Appendix A.4 we first test our numerical code by comparing
the associated numerical results with some analytical perturbative expansions that are
derived in Appendix A.3. This confirms that our numerical code is generating physical
data and we can now proceed and discuss our main physical findings.

Our aimis notto present the full spectrum of frequencies of a Dirac field in AdS-RN black
hole. Instead, we are motivated to search for unstable modes, i.e. on eventually finding
modes that, in some range of parameters, have Im(wL) > 0. There is a wide window of
parameters to explore although the instability, if it exists, should appear near extremal-
ity for fermion charges ¢ above a critical value. Thus one needs a good strategy to hunt
efficiently for unstable modes. We proceed as follows. From the near-horizon bound
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(2.4.4) arguing for the existence of an instability, we see that this bound is lower if we set
m = 0and ¢ = 1/2. So, first, we either: 1) fixed m = 0,/ = 1/2 and pu close to pieyxt, and
varied {ry/L,qL}, or 2) fixed m = 0,¢ = 1/2 and ¢L and varied {r; /L, u}. In both cases,
as described in the end of section 2.4.3, we solved our system as an eigenvalue problem
for wL. This finds “all” the solutions of the system (as long as the hierarchies do not grow
large, e.g. |wL| > 1, which makes the numerical problem hard). This allows to eventually
identify unstable modes with Im(wL) > 0 or, in the worst case, to identify modes with
Im(wL) < 0 that are closest to the marginal case for instability (Im w = 0). Once these in-
teresting modes are identified we then used a Newton-Raphson root-finding algorithm

to follow efficiently the modes to other values of the parameter space.

In spite of our efforts, we have found no sign of an instability. Recall that for mL = 0
both the standard (2.2.36) and the alternative (2.2.37) boundary conditions yield normal-
izable modes. In general, we do find that the stable modes with smallest |Im(wL)| are
those that reduce to the alternative normal modes of AdS (2.4.21) or to the standard AdS
normal modes (2.4.20), when the horizon radius shrinks to zero. Among these, we fur-
ther find that the modes with smallest |[Im(wL)| are, for both quantizations, the ones that
reduce to the positive normal mode frequencies when r, /L — 0, i.e. wL = 3/2 (alter-
native boundary condition) and wL = 5/2 (standard quantization). Therefore, to avoid
distraction from the main point, in the rest of this chapter we only discuss these two
families of modes.

Probably the plots that best illustrate the main conclusions of our Dirac study are those of
Fig. 2.4.2 (for alternative quantization) and of Fig. 2.4.5 (for standard quantization). Recall
that in the best case scenario the expectation is that, close to extremality, modes should
become unstable above a fermion charge ¢ that should be higher than the near-horizon
bound (2.4.4). Thus, in these figures we fix the black hole horizon to be r, /L = 0.5 and
choose a chemical potential close to extremality, i = 0.99pext. Starting from gL = 0,
where Im(wL) < 0, we then increase this charge to see if there is a critical value above
which Im(wL) becomes positive. (That is to say, we adopt a similar strategy as the one
followed in the scalar field case to get Fig. 2.3.2).

For the alternative quantization, the left panel of Fig. 2.4.2 shows that, starting from g = 0,
as gL grows, Im(wL) < 0 increases and approaches Im(wL) = 0 very closely. However,
no matter how large ¢L is we never reach a situation where Im(wL) > 0. Interestingly,
there is a critical value of ¢, namely gL = gmaxL ~ 0.9390 (vertical brown dashed line)
where Im(wL) reaches a maximum value of Im(wL) ~ —0.000548 (see the inset plot
which zooms-in around this maximum). But increasing ¢L further, Im(wL) becomes
again increasingly more negative (instead of becoming positive). The Dirac field system
behaves therefore substantially distinctly from the scalar field case of Fig. 2.3.2 (left panel)
where there was a critical gL above which Im(wL) becomes positive. To complete the
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Figure 2.4.2: Dirac field frequency with alternative quantization (2.2.37) as a function
of the dimensionless scalar charge ¢L for a AdS-RN black hole with 4 = 0.99pcx and
r+/L = 0.5 (also, mL = 0 and ¢ = 1/2). Left panel: Imaginary part of the dimensionless
frequency, Im(wL) which attains a maximum for ¢ = gmax ~ 0.9390/L (vertical brown
dashed line). The inset plot zooms-in around this maximum and shows that Im(wL) < 0
for any L. Right panel: Real part of the dimensionless frequency, Re(wL), measured
with respect to guL. This quantity changes sign at ¢ = ¢, ~ 0.9344/L with ¢, < gmax, i.€.
for a smaller ¢L than the one where Im(wL) attains its maximum value (vertical brown
dashed line): this is better seen in the inset plot which zooms-in the relevant region.

analysis, in the right panel of Fig. 2.4.2, we plot Re(wL)—quL. We find that for small ¢ L this
quantity is positive but becomes negative above ¢ = ¢, ~ 0.9344/L. Interestingly, this
occurs at a charge that is smaller than gpax where the maximum of Im(wL) is reached
(vertical brown dashed line): this is better seen in the inset plot which zooms-in the
relevant region. Again we note the difference to the scalar field case displayed in the
right panel of Fig. 2.3.2 where Re(wL) — quL changes sign precisely at the critical value
of gL where Im(wL) = 0. Further note that these plots also show that for a Dirac field
we do not have a value of gL for which we simultaneously have Re(wL) — guL = 0 and
Im(wL) = 0. Therefore, we cannot set wL = guL in the equations of motion and solve
these as an eigenvalue problem for the instability onset charge. That is to say, unlike the
scalar field case, we do not have an onset charge that would produce the partner plots
of the scalar field onset plots of Fig. 2.3.1. The predictions of Fig. 2.4.1 do not hold (at least
at the linear mode level).

We have done similar experiments as those of Fig. 2.4.2 for other black hole parameter
values p and r4 /L. Keeping p fixed, black holes with distinct . /L have plots similar to
Fig. 2.4.2 with the feature that larger values of r /L reach the maximum of Im(wL) (but
remaining negative) at smaller critical values of ¢ = gmax. On the other hand, keeping
r+/L fixed, black holes with distinct y also have similar plots to Fig. 2.4.2 with the prop-
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erty that larger values of u reach the maximum of Im(wL) (but still negative) at smaller
critical values of ¢ = gmax and this maximum of Im(wL) is increasingly closer to zero as
p approaches the extremal value prext.
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Figure 2.4.3: Imaginary part of the frequency as a function of the horizon radius for
chemical potential i = 0.999ext for different values of the fermion field charge. In the
left panel the charges are (from bottom bump to top) ¢L = 0.7 (black), ¢L = 0.8 (green),
gL = 0.9 (brown). In the right panel the charges are ¢L = 1 (red) and ¢L = 1.1 (yellow).
Notice the different regions scanned by the axes in the two plots.

To have a complementary perspective of the system’s properties, in Fig. 2.4.3 and in
Fig. 2.4.4 we illustrate other attempts we have made to find an instability. In Fig. 2.4.3,
we keep the alternative quantization and fix the chemical potential at g = 0.9991ext, and
plotIm(wL) as afunction of r1 /L for five different values of ¢ L, namely, ¢L = 0.7, 0.8, 0.9
(from bottom to top in the left panel) and ¢L = 1, 1.1 (right panel). (The two plots are
needed for the presentation of the results because the relevant gL = 1 case in the right
panel reaches a maximum that is approximately two orders of magnitude higher than
the first three cases on the left panel). The main feature in these plots is the typical
presence of a local minimum and local maximum (bump). As we increase the fermion
charge from zero to a value slightly above 1, the relative minimum and relative maxi-
mum of Im(wL) raise and shift to lower values of r /L. But the local maximum always
has Im(wL) < 0, i.e. there is no instability. However, for charges ¢L above a value that
is in between 1 and 1.1, the local minimum and maximum are no longer present and
Im(wL) decreases monotonically with r /L (see eg. ¢L = 1.1 displayed as the yellow
curve in the right panel; higher values, ¢L > 1.1, have a similar monotonic behaviour).

Asyetanotherillustration of experiments we made, in Fig. 2.4.4 we fix the fermion charge
to be gL = 1 (which was already analysed in Fig. 2.4.3 for u = 0.999u.xt) and we study
the effect that changing the chemical potential has by considering a total of 5 curves
with 5 different values of . Namely, in the left plot we consider the cases = 0.9text
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Figure 2.4.4: Imaginary part of the frequency as a function of the horizon radius for
fermion field charge ¢L = 1 and different values of the chemical potential. In the
left panel the chemical potentials are (from bottom to top) 1 = 0.9uext (orange) and

= 0.95/text (black). In the right panel the chemical potentials are closer to extremal-
ity, namely (from bottom to top curves): u = 0.99ext (green), u = 0.995pcxt (blue) and
p = 0.999pext, (red). Notice the different regions scanned by the axes in the two plots.

and g = 0.95ext. These cases have no bump (no local maximum) and illustrate that it
only appears close to extremality. In the right panel we show three more cases where
we fix g = 0.99%ext, 1t = 0.995ext and g = 0.999 eyt (from bottom to top). The bump
is now present and the local maximum increases as one approaches extremality but
never becomes positive. For the case ;1 = 0.999 ey this local maximum is at Im(wL) ~
—5.93 x 1076

So far we have focused our discussion of the results for the alternative quantization case
because, typically, for the same values of black hole parameters this is the case where
Im(wL) approaches Im(wL) = 0 the most. Nevertheless, we have also tried hard to find
an instability in the standard boundary condition (2.2.36) case. Again without success.
To illustrate briefly this conclusion, in Fig. 2.4.5 we give the partner plot of Fig. 2.4.2 but
this time for the standard quantization. Although the features of Fig. 2.4.5 are clearly
more elaborated than those of Fig. 2.4.2 (e.g. there are several local maxima and minima),
the main conclusions are still the same: i) one always has Im(wL) < 0; ii) there is a
¢ = (max Where the solution approaches Im(wL) = 0 the most (vertical brown dashed
line); ii) Re(wL) — gLy changes sign at ¢ = ¢« < @max. It follows that we find no sign
of an instability and the standard boundary condition case, much like the alternative
quantization case, also gives results that are very different from the scalar field case of
Fig. 2.3.2.

Altogether, all our attempts — best illustrated in Figs. 2.4.2-2.4.4— to find an instabil-
ity due to Dirac field perturbations with alternative boundary condition (2.2.37) failed
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Figure 2.4.5: Dirac field frequency with standard quantization (2.2.36) as a function of
the dimensionless scalar charge gL for a AdS-RN black hole with 1 = 0.99pext and
ry/L = 0.5 (also, mL = 0 and ¢ = 1/2). Left panel Imaginary part of the dimen-
sionless frequency, Im(wL) which attains a maximum of Im(wL) ~ —0.0037491 for
¢ = gmax ~ 3.3555/L (vertical brown dashed line). The main inset plot zooms-in around
this maximum and shows that Im(wL) < 0 for any ¢L. The secondary inset plot shows
the detail of the curve around gL ~ 1.45 to show that the apparent cusp in the main plot
is smooth. Right panel: Real part of the dimensionless frequency, Re(wL), measured
with respect to guL. This quantity changes sign at ¢ = ¢, ~ 3.2873/L with ¢, < gmax. L.€.
for a smaller ¢L than the one where Im(wL) attains its maximum value (vertical brown
dashed line): this is better seen in the inset plot which zooms-in the relevant region.

miserably. The outcome is similar when we consider the standard boundary condition
(2.2.36). This is best summarized in Fig. 2.4.5 where we show the partner plots of the
alternative quantization Fig. 2.4.2 but this time for the standard quantization. Again, and
essentially, we find that Im(wL) reaches a maximum at a critical gmax but never crosses
the borderline Im(wL) = 0 that would signal an instability.

2.5 Discussion and conclusions

A scalar field in an asymptotically AdS; Reissner-Nordstréom black hole can satisfy the
asymptotically AdS, UV Breitenlohner-Freedman (BF) stability bound but violate the in-
frared 2-dimensional BF stability bound associated to the AdSs x S? near-horizon ge-
ometry of the extremal black hole of the system, as reviewed in section 2.3. When this
is the case, the AdS-RN black hole is unstable to scalar condensation and the system
evolves to a new configuration in the phase diagram of solutions that preserves both
the UV BF bound and the near-horizon 2-dimensional stability bound. Such a solution
is a hairy black hole with a charged scalar field floating above the horizon [54, 55, 105,

46, 44, 106, 93]. Coulomb repulsion balances the gravitational force and the system is
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static. There is no doubt that the violation of the AdS, stability bound is the physical
mechanism responsible for the near-horizon scalar condensation instability since the
associated minimum bound (2.3.7) on the scalar field charge that triggers the instability

is sharp (at extremality) as best demonstrated by Fig. 2.3.1.

Given these considerations, the study done in this part for Dirac field perturbations in
the global AdS4 RN black hole was motivated by the following observation. Dirac fields
in AdS-RN can also preserve the UV fermionic stability bound (2.2.22) [79, 81] but vio-
late the near-horizon infrared fermionic stability bound, as seen in section 2.4.1. From
the scalar field case lessons, this suggests that the system might be unstable to fermion
condensation. However, in spite of our efforts to scan the relevant parameter space near
extremality, we found no sign of a /inear mode instability. The sharp distinction between
the scalar and Dirac field cases is best illustrated comparing the scalar Fig. 2.3.2 with the
Dirac Fig. 2.4.2 (for alternative quantization) or Fig. 2.4.5 (for standard quantization). Of
course our numerical study does not prove linear stability but we did such a detailed
scan that we are very confident that no linear instability is present. Our stability results
are also consistent with the stability study of fermions in planarAdS, where no instability
was found [55, 63] (see also [64, 69, 65, 66, 67, 68]).2° Indeed, the planar AdS case is the
r+/L — oo limit of the global AdS system.

So, the planar AdS studies [55, 63, 64, 69, 65, 66, 67, 68] and our present study in global
AdS establish that the violation of the 2-dimensional stability bound of a Dirac field in
AdS-RN does not lead to a linear mode instability. However, such solutions correspond
to negative energy Schrodinger states: without a positive self-adjoint extension for the
Schrodinger operator the dynamical evolution of the system should develop an insta-
bility... In particular, the system might indeed still be unstable if non-linear effects play a
role in the discussion. That is to say, if we perturb a AdS-RN black hole with a Dirac field
in a region of parameter space where the infrared stability bound is violated, it could
still be the case that the system evolves non-linearly to a new configuration that has a
charged Dirac field floating above the horizon and that preserves both the UV and IR

stability bounds. How difficult would it be to prove whether this scenario is correct?

One must proceed with caution. To begin with one needs to first formulate more pre-
cisely the setup of the problem. It is certainly much harder to find, if they exist, the
proposed Dirac hairy black holes than it was to construct the scalar hairy black holes
[54, 55, 105, 46, 44, 106, 93]. There is a fundamental difference between fermionic and
bosonic fields. The fermion has no classical limit: Planck’s constant % is present in the

stress tensor and associated equations of motion for a fermion. As discussed in detail in

“This sharp difference between the stability conclusion of scalar and Dirac fields in RN-AdS is probably
due to the fact that the Dirac equation is originally a first order PDE. We acknowledge Don Marolf for this
observation (private communication).
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section 14.3 of Wald's textbook [5], the absence of a classical limit means that in Einstein’s
equation we have to promote the differential Einstein and energy-momentum opera-
tors G and T' to quantum operators and the quantum version of Einstein's that gives
the back-reaction of a fermion on the gravitational field is (G ,) = SW((T%aX) + (Tow)).
where Tgﬁax and 7}, stands for the Maxwell and Dirac stress tensor contributions and

(-- ) stands for the expectation value of the corresponding operator.

Thus, to find the backreaction that fermions induce on the gravitoelectromagnetic back-
ground one needs to first compute the expectation value of the fermion energy momen-
tum tensor (7},,). This is a highly non-trivial task. Even worse, once we consider the
quantum backreaction of fermions one also needs to consider the quantum backreac-
tion of gravitons and photons, i.e. one also needs to compute (G,,) and <T}L\f,ax> [5]. Ina
best case scenario, where we have a large number N of Dirac fields, one might be able to
assume that, roughly speaking, the effects of N Dirac fields are N times as relevant as that
of the gravitons and photons [5]. For a fermionic hairy black hole’ the fermionic con-
densate should be made of a large number of fermions. In these conditions, for large
N, one might be able to neglect the quantum backreaction of gravitons and photons
and work in the semi-classical limit whereby the backreaction of the Dirac field on the
gravitoelectromagnetic background is simply governed by G, = Sle%aX + 87N (Ty).
This semi-classical system should be viewed as the leading term of a 1/N expansion of
the full theory [5]. But this semi-classical computation still requires that one computes
(T),). And this is still a formidable task. An overview on the physical and technical tools
required to accomplish this task can be found in [107, 108, 68] (and references there-in)
where asymptotically planar AdS quantum electron stars are discussed as semi-classical
solutions of Einstein-Maxwell theory.

Finally note that in the present part we focused our attention on modes that could even-
tually become unstable. We have not studied in detail the full spectrum of quasinormal
mode frequencies of the Dirac field in AAS-RN. Moreover, we focused on the case of a
massless fermion because, as explained previously, this was enough for our purposes.
However, the equations of motion and relevant boundary conditions for any fermion
mass and any sector of perturbations are given in section 2.2. We have also computed
the normal modes of massive fermions in AdS (previously only the massless spectrum
was computed). It might be useful to have a more complete frequency spectra study
for future studies/applications. It might also be interesting to look for perturbations of
spin 3/2 Rarita-Schwinger fields about AdS-RN black holes. In this case, there are also
normalizable solutions that become unstable for negative square masses [80]. Probably
there will be no linear near-horizon instabilities when the effective 2-dimensional mass

violates the AdS; stability bound but, as far as we know, this was never checked.
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CHAPTER 3

Boson stars in a Minkowski box.

3.1 Introduction

Confining gravitational boxes became notorious in the context of superradiant instabil-
ities when Press and Teukolsky introduced the black hole bomb system [35] (see also
[109]). A scalar wave impinging on a rotating black hole may extract energy from the
black hole provided its frequency w satisfies the superradiant bound w < m,Q g, where
my, is the azimuthal quantum number and Q4 is the angular velocity of the horizon. In
standard conditions this scalar wave would then disperse to the asymptotic region and
die off. However, when surrounded by a reflecting cavity, the scalar wave undergoes
multiple superradiant amplifications and reflections and an instability builds up. Simi-
lar superradiant instabilities occur for charged scalar fields confined around Reissner-
Nordstrom black holes (RN BHs), whereby the superradiant frequency bound now reads
w < ep, where e is the charge of the scalar field and p is the chemical potential of the
black hole [36]. In both black hole bomb systems, the onset or zero-mode of the super-
radiant instability signals a bifurcation to a novel family of hairy black holes: the solution
outside the box is described by the Kerr or RN solution but, inside the box, there is also
a non-trivial scalar field floating above the horizon. The scalar field cloud is station-
ary because either centrifugal effects or Coulomb repulsion balance the system against

gravitational collapse.
Consider now this very same gravitational box confining a charged scalar field but, this

67
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time, it is simply placed in Minkowski background (eventually also with a radial electric
field) with no event horizon. As is well known, at linear order in perturbation theory,
the scalar field frequencies that can fit inside the box radius are quantized; these are the
normal modes of the system. Interestingly, beyond linear order in perturbation theory,
there is nothing impeding us from back-reacting a normal mode to higher orders while
keeping the solution regular everywhere and still confined as a stationary configuration
inside the box [43]. In this case we have an asymptotically Minkowski soliton or boson

star confined in a box.

In [43], the authors constructed some of the above static charged hairy solitons (boson
stars) and hairy black holes in perturbation theory (with the amplitude of the scalar field
and the ratio between the horizon and box radius as expansion parameters). By con-
struction, such solutions are valid only for small energy and charge and they are pertur-
batively connected to the Minkowski box solution. In the present part we complete the
analysis initiated in [43] and solve the full nonlinear Einstein-Maxwell-scalar field equa-
tions to find the exact numerical solution, that describes the solitons (boson stars) of the
theory confined in a box, also in the non-perturbative regime. At low energies/charges
our solutions are well described by the perturbative predictions of [43]. However, at
intermediate and large energies (when compared to the box lengthscale) the phase di-
agram of solutions develops an intricate structure that was not anticipated at all by the
perturbative analysis. In particular, we will find a main branch of boson stars (solitons)
that, in the small charge regime, is described within perturbation theory but that has
(at higher charges) a Chandrashekhar mass limit and multi-branched structure that was
not captured within perturbation theory. Additionally, we also find a secondary family
of boson stars that is not captured at all by perturbation theory. Finally, we will find that
the properties of boson stars have a non-trivial dependence on the electric scalar field
charge e, most of which were not anticipated by the perturbative analysis.

Some key properties of asymptotically flat caged solitons turn out to be similar to those
observed in asymptotically anti-de Sitter solitons [110], [46, 45, 44, 93, 47, 111, 39]. We thus
identify features that seem to, or might be universal to charged scalar condensates (or
other bosonic field condensates) confined in a potential well.

3.2 Summary of phase diagram

For clarity, in this section we summarize our main results since some of the plots that
we will present in section 4.4 are elaborated. We find charged scalar boson stars (a.k.a.
solitons) confined inside a gravitational box in an asymptotically Minkowski background.
These are regular, static, horizon-free solutions to Einstein-Maxwell theory coupled to

a scalar field that vanishes outside a box but not inside it (the latter has an Israel stress
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tensor that supports the pressure of the scalar field and keeps the solution stationary).

Asdiscussed in the perturbative analysis of [43], the properties of charged hairy solutions
on a box depend on the charge of the scalar field e. In particular, one identifies the
following four critical scalar charges (two of them, e and e, are not captured within
perturbation theory [43]):

ec = ey = 2—\1/5 ~ 0.354. This is the charge above which scalar fields can trigger

a violation of the near horizon AdS; Breitenlohner-Freedman bound of the ex-
tremal RN black hole whose horizon radius approaches, from below, the box ra-
dius. This violation renders (near-)extremal RN BHs unstable. This is the so-called
near horizon scalar condensation instability first studied in the context of AdS
black holes and the holographic gravity/condensed matter correspondence pro-
gramme [53, 37, 38, 56]. We ask the reader to see Section IIL.B of [40] for a detailed
analysis that gets this critical charge. As far as we could perceive, this charge does

not play a relevant role in the discussion of the solitons of the theory.

oec=¢5 = % ~ 2.221. This is the critical charge that saturates the superradiant bound
w = ey for an extremal RN BH (which has ;1 = v/2) when we take the frequency
to be the lowest frequency, w = 7, that can fit inside a box of (dimensionless) unit
radius in Minkowski spacetime [35, 36]. We ask the reader to see the introduction
for a derivation of this critical charge.

ec =e,and e = e, with eyy < e < e, < es. In the present part we find that the system
has a third and a fourth critical charges, that we find within numerical error to be
ey ~ 1.13 and e, ~ 1.8545 + 0.0005 (unlike the other two charges, we are not aware
of a heuristic analysis that allows to capture analytically these two critical values
without solving the full equations of motion). These charges are not captured by
the perturbative analysis of [43]. We will find that our system has (at least) two
distinct families of ground state solitons (there is then an infinite tower of excited
soliton families that, in the perturbative regime, correspond to the backreaction
of excited normal modes with higher radial overtones). One — that we call the
main soliton family — can be seen as the backreaction of the charged ground state
normal mode of a scalar field in a Minkowski box [43] since it exist for small ener-
gies/charges up to a Chandrashekhar limit. On the other hand, the second family
— that we denote as the secondary soliton family — exists only for intermediate
or large energies/charges and thus it is not captured in the perturbative analysis of
[43]. The secondary soliton family exists only for e, < e < e.. In a phase diagram of
soliton solutions, as we approach the critical charge e, from above, the secondary
soliton family ceases to exist because it no longer fits inside the box. On the other
hand, as we approach the critical charge e, from below, the main and secondary
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families of solitons approach each other and they connect precisely at e = e..

In the present chapter, we solve numerically the full Einstein-Maxwell equations for a
charged scalar field confined in a covariant box with dimensionless radius R = 1. There-
fore, our analysis is now fully nonlinear and not restricted to small energies/charges. We
focus our attention on soliton solutions (and leave the study of hairy BHs for the next
chapter, this work was also published in [3]) since the phase diagram of these solutions
is already very intricate. We will recover the main soliton family of solutions of [43] for
small energies/charges (which exists for any e > 0), thereby confirming and setting the
regime of validity of the perturbative analysis, but also solutions with intermediate and
large energies with a Chandrasekhar mass limit and multi-branched structure not cap-
tured by [43]. In particular, we will find the secondary family of solitons and reveal the

existence of the critical charges e, and e..!

By Birkhoff's theorem, outside the box (in particular, in the asymptotic region), our solu-
tions are necessarily described by the RN solution [33, 34].2 It follows that we cannot use
the Arnowitt-Deser-Misner (ADM) mass M and charge @) (measured by a Gauss law at
infinity [7]) to distinguish the several solutions of the theory. Instead, we need to resort
to the Brown-York quasilocal mass M and charge Q [112], measured at the box location,
to display our solutions in a phase diagram of the theory. These quantities satisfy their
own first law of thermodynamics that we use to (further) check our solutions. Dimen-
sionless quasilocal mass and charge are given in units of the box radius L, M /L and Q/L,
respectively. A natural reference in this quasilocal phase diagram is the extremal RN BH
I-parameter family with horizon inside the box. However, above a certain scalar charge
e, the solitons have a mass/charge that can be very close to the ones of the extremal RN.
For this reason we will find useful to plot AM/L vs Q/L where AM = M — M ‘ext RN IS
the mass difference between the hairy solution and the extremal RN that has the same
Q/L. So, in this phase diagram the horizontal line with AM = 0 identifies the extremal
RN BH solution. Its dimensionless horizon R = r /L can fit inside the box of radius
Lif Ry <1 (which corresponds to Q/L < 2-1/2) and non-extremal RN BHs exist above
this line. But the horizon of non-extremal RN BHs fit inside the box (R < 1) only if
these solutions are to the left of the red dashed line that will be displayed in our plots.
We will find that this line represents the maximal quasilocal charge that solutions that

fit inside the box can have (with or without scalar condensate).

'The perturbative analysis of [43] also finds that hairy BHs that are perturbatively connected to a boxed
Minkowski spacetime exist only for e > es; by construction, the zero horizon radius limit of such hairy BHs
is one of our hairy solitons. Perturbative theory [43] does not capture the existence of hairy BHs with e < es.
In the next chapter we will show that a full nonlinear analysis finds that hairy BHs also exist in the range
enn < e < es but, typically, they are no longer necessarily connected to the solitons of the theory in their
zero entropy limit.

“Recall: Birkhoff's theorem for Einstein-Maxwell theory states that the unique spherically symmetric
solution of the Einstein-Maxwell equations with non-constant area radius function r (in the gauge (4.3.1))
is the Reissner-Nordstréom solution. If r is constant then the theorem does not apply since one has the
Bertotti-Robinson (4dS2 x S?) solution.
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Figure 3.2.1: Sketch of the quasilocal phase diagram for solitons as we span relevant win-
dows of scalar field charge e. The critical charges are such that 0 < ey < e. < es. The
quantity AM is the quasilocal mass difference between the soliton and an extremal RN
BH that has the same quasilocal charge Q/L. Hence the orange line at AM = 0 de-
scribes the extremal RN solution that must have Q/L < 2-1/2 {5 fit inside the box. The
red dashed line represents the maximal quasilocal charge of solutions that can fit inside
the box. It intersects the extremal RN line at Q/L = 2-1/2. Non-extremal RN BHs con-
fined in the box have AM > 0 and fill the triangular region bounded by Q@ = 0 and by
the orange and red dashed lines. The main soliton family is always given by black curves
that start at O. The secondary soliton family is given either by magenta or blue curves.
Top-left panel: case e < e,. Top-right panel: case e, < e < e.. Bottom-left panel: case
e < e < es. Bottom-right panel: case e > es.

Using this phase diagram, a summary of our main findings is (see sketch in Fig. 3.2.1):

1. e < ey ~ 1.13. Later, we will give data for the case e = 0.23 (section 3.4.1; Figs. 3.4.1-3.4.3).
Solutions with e < e, are qualitatively similar and blind to the critical charge eyy.
Here, we sketch a phase diagram that highlights the main properties of these solu-
tions in the top-left panel of Fig. 3.2.1. We simply have the ‘main soliton family (or
‘perturbative soliton family represented by the black line OABCDE - --). Nearby
O, the properties of the branch OA for small charge were already captured by the
perturbative analysis of [43] but this soliton then develops an intricate series of
cusps A, B,C, D, E, - - - that could not be anticipated by the analysis of [43]. In par-
ticular, this main soliton family has a Chandrasekhar limit at A. As we move from
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the main branch OA, along the sequence of secondary zig-zagged branches AB,
BC, CD, .., we find that the Kretschmann curvature invariant at the origin of the
soliton is growing without bound. For this reason, it becomes increasingly hard to
follow this solution beyond a certain point (say, point E) but we gathered enough
evidence to predict that this solution might well develop an infinite number of
cusps as it approaches a singular limit where the curvature invariants blow up. At
a physical level, nothing wrong happens at the cusps. Actually, these cusps are sim-
ply smooth turning points if we plot M /L, Q/L, or the values of the gravitational
field f = g4, electric potential A; or scalar field ¢ at the origin as a function of the
derivative € = ¢/(R = 1) of the scalar field at the box radius (see Appendix). De-
pending on which of these functions we look at we can have a curve with damped
oscillations or a spiral curve with a series of turning points A, B,C, D, E,-- - (see
e.g. Figs. 3.4.2-3.4.3 for e = 0.23).

As e increases from e = 0 to e = e, ~ 1.13, the qualitative features of the solutions
do not change significantly. These main solitons always have more quasilocal mass
than the extremal RN BH with the same quasilocal charge and their slope in the
Q-AM is positive but decreases as e grows. This discussion is best illustrated in
Fig. 3.2.2 where we plot the main soliton family for different values of the electric
scalar field charge e. In particular, we give three cases, e = 0.23,0.5 and e = 1 that

have e < e,.

ey < e < e. ~ 1.8545 £ 0.0005. Later, we will give data for the case e = 1.854

(section 3.4.2; Figs. 3.4.4-3.4.6). Here, we summarize the analysis with a sketch of
the phase diagram in the top-right panel of Fig. 3.2.1, that emphasizes the main
properties of these solutions. As for e < e,, we have the ‘main soliton family (or
‘perturbative soliton family represented by the black line OABCDE - - -). But, un-
like for e < e, after a gap Aa in Q/L, we now also have a ‘secondary soliton family

B'abed - - - (that we might also call the ‘non-perturbative soliton family).

The main soliton family OABCDE - - - fore, < e < e. has similar properties to the
ones already found in the e < e, case. The only minor difference is that, as e grows
well above e, at a certain point the main soliton family bends downwards as Q/L
grows. And at a certain critical charge, e ~ 0.5, we can have portions of the main
soliton in the neighbourhood of its Chandrasekhar point A with less quasilocal
mass than the extremal RN BH with same Q/L: see the sequence of solitons in
Fig. 3.2.2 for different values of ¢ in this range.

The top-right panel of Fig. 3.2.1 also sketches the secondary family 'abed - - - of
solitons (magenta line). This family only exists above a critical charge Q/L (point

a) that depends on e and extends all the way up to the maximal charge that can
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fit inside the box (represented by the point 5’ on the red dashed line). Thus, this
family is not captured by the perturbative analysis of [43]. As we move from 3’ to
cusp @ and continue through the cusps b, ¢, d, - - - one finds that the Kretschmann
curvature at the origin of the soliton is growing without bound and we find evi-
dence that the solution will terminate on a singular solution where the curvature

diverges, probably after going through an infinite number of cusps.

For scalar charge e = e,, point a coincides with point 5’ (see top-right panel of
Fig. 3.2.1). Just above e,, point a is very close to 5’ and the gap Aa between the
main and secondary solitons is very large. The secondary soliton that we found
with smallest e has e = 1.144. We take this and the findings summarized in the right
plot of Fig. 3.2.2 to extrapolate that e, ~ 1.13. For our purposes it is not necessary
to determine e, with higher accuracy. As e keeps increasing away from e, the gap
Aa decreases very quickly and, quite importantly, it goes to zero preciselyat e = e,
where the main and secondary solitons merge. This evolution of the Q-AM phase
diagram with e is best illustrated in the right panel of Fig. 3.2.2 where we display the
main and secondary family of solitons for different values of e in the window e, <
e < e.. Note that, consistent with the description given above, secondary solitons
exist only in the Q-AM region bounded by the closed curve a.(.7 (see auxiliary
dashed gray curve of the right panel of Fig. 3.2.2). Just above e,, e.g for e = 1.15,
the secondary soliton family is described by a very short segment (red diamonds)
very close to point « (i.e. 5’ is close to 7). That is to say, secondary solitons with
e < ey do not exist because they would not fit inside the box with radius R = 1
(the red dashed line S3.7). On the other hand just below e., e.g. e = 1.854, the main
soliton (black disks) family is very close to the secondary soliton family (magenta
triangles that almost coincide with the limiting curve a.f., i.e. 3/ — f.). Precisely
at e = e, these two families merge at point A = a = a.

3. e. < e < es. Later, we will give data for the case e = 1.855 that fits in this window
(section 3.4.3; Figs. 3.4.7-3.4.9). Precisely at e = e, we find that the previously dis-
cussed main and secondary soliton families merge: point A of top-right panel of
Fig. 3.2.1 merges with point a at e = e.. This happens in a curious way since above
e. the branch O A merges to the branch a3’ (of the top-right panel) and they now
form the main soliton family of solitons that, this time, is cusp-free: this is the black
line curve O in the bottom-left panel of Fig. 3.2.1. On the other hand, the old (i.e.
top-right panel) sequence of secondary branches/cusps ABCD --- of the main
soliton family is now connected to the old sequence of secondary branches/cusps
abcd - - - of the secondary soliton family: this is the blue line - - - DC'Bbed - - - in the
bottom-left panel of Fig. 3.2.1. So, precisely at e = e, one has 4 families of soli-
tons “bifurcating” from the merger A = a, i.e. the black and blue curves of the

bottom-left panel intersect at A = a (equivalently, approaching e. from below,
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Figure 3.2.2: Quasilocal phase diagram for solitons with different scalar condensate elec-
tric charges. The quantity AM is the mass difference between the soliton and an ex-
tremal RN BH that has the same charge Q/L. Hence the orange line at AM = 0 de-
scribes the extremal RN solution. The dashed vertical line in the inset plot describes the
line Q = 272 which is the maximum local charge that an extremal RN BH can have
whilst fitting inside a box with radius R = 1. The red dashed line represents the max-
imal quasilocal charge of solutions that can fit inside the box. Left panel: here we give
several examples of the main soliton family only. Notice the change in appearance of the
curves as we increase the scalar field charge above e, ~ 1.8545 (see also inset plot). Right
panel: here we concentrate our attention only in cases with e, < e < e, but, this time, we
present both the main and secondary solitons. The secondary solitons only exist in the
region bounded by the auxiliary gray dashed closed curve a..7. The secondary soliton
curve with e just above e, is close to point 7, while the soliton with e = 1.854, just below
ec, is the magenta curve (very close to a.3.). Note that the gap in Q/L between the main
soliton and the secondary one starts very large at e = e,, but then decreases and goes to
zero precisely at e = e.. We also present a secondary soliton curve with constant scalar
field condensate, e = 35, to illustrate how we can march in e to obtain different solutions
and further conclude that secondary solitons are bounded by the auxiliary lines a.y and

acfe.

the black and magenta curves of the top-right panel intersect at A = a). Then, as
we increase e above e, the black and blue curves disconnect and their distance
increases as e grows. This merging and interactions between the black/magenta
and black/blue curves as we approach e = e, from bellow/above is observed not
only on the quasilocal phase diagram but also undoubtedly confirmed when we
analyse e.g. the plots for the Kretchsmann curvature invariant at the origin, K | R0’
as a function of the scalar condensate € = ¢/(R = 1): compare latter Fig. 3.4.6 (for
e = 1.854 < e.) with Fig. 3.4.9 (for e = 1.855 > e,).

The sharp transition of the properties of the main soliton family when e changes
from a value below e, into one above e, is also illustrated in Fig. 3.2.2 where we
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plot the main soliton family for different values of the electric scalar field charge
e. In this plot the black disk curve has e = 1.854 < e, while the blue square (e = 2)
and red diamond (e = 2.3) curves have e > e.. The inset plot of this figure clearly

shows that the Chandrasekhar limit seen for e < e, is no longer present for e > e,.

4. e > e = % ~ 2.221. Later, we will give data for the case e = 2.3 that fits in this
window (section 3.4.4; Figs. 3.4.10-3.4.12). Solitons with charges in this range have
properties that are very similar to those displayed by solitons with e, < e < es.
In particular, as sketched in the bottom-right panel of Fig. 3.2.1, we still have sim-
ilar main soliton (black curve Op) and secondary soliton (blue curve ---CBbc- - -)
families (these curves become more separated apart as e grows). But charges in
this range also leave their unique footprint. Indeed, the main difference that jus-
tifies distinguishing the cases e, < e < es and e > es is that, for the latter case, the
main soliton family O always has smaller quasilocal mass than the extremal RN
BH with the same charge, no matter how small Q/L is. That is to say, these solitons
always have AM < 0, with the slope of the black curve O at Q@ = 0 being zero
precisely at e = es and negative for e > es (so, this slope at the origin for e < e is
positive). Moreover, for e > es and only in this case, extremal RN BHs are unstable
all the way down to @ = 0 [40]. These two facts suggest that for this regime of
e, as confirmed in the perturbative analysis of [43], the zero horizon radius limit
of the hairy black holes of the theory should be our soliton and thus they can be
constructed perturbatively for arbitrarily small scalar condensate amplitude and
horizon radius.

The secondary family of solitons (the magenta curve ---CBbc- - - in the bottom-
right plot of Fig. 3.2.1) still exists for e > es but it is further separated from the main
soliton family (black curve Op). It becomes increasingly much more difficult to
follow this family beyond the cusps B, b for values of e > e.. Soitis hard to explore
more energetic soliton families for values of e much larger than e.. However, one
real possibility (we found evidence for this) is that there is a sequence of critical
charges e.,, e, - - -. Here, e., would be the charge above which the cups C and ¢
would merge (very much like the cusps A and @ merged at e = e, ~ 1.8545) and
form a closed line family in the phase diagram (C' Bbc with ¢ = C) together with a
third open family of solitons that would have higher mass and that would corre-
spond to the extension to higher e of the open curve - - - DCe¢d - - - in the bottom-left
plot of Fig. 3.2.1. If so, as the charge grows we could have not only two ground
state families of solitons but a sequence of them: first 3 families (one of them
closed), then 4 families (two of them closed), etc. For this reason we leave the curve

-+ Bb--- incomplete a bit beyond the cusps B and b in the bottom-right panel of
Fig. 3.2.1.



76 Chapter 3. Boson stars in a Minkowski box.

Once we have found the hairy solitons that are confined inside the Minkowski box we
can study the properties that the box must have to support the pressure exerted by the
scalar condensate that is inside it. As mentioned above, the box must have an Israel
stress tensor (that accounts for the extrinsic curvature jump at the box) that prevents
the scalar field from expanding all the way to the asymptotic region where it would die
off. In section 3.5, we compute this Israel stress tensor and find that there are boxes with
an energy density and pressure that obey several or all forms of the energy conditions
[5]. We will also compute the ADM mass and charge of our solitons as measured at the
asymptotic boundary [7]. These ADM charges include the contributions from the hairy
soliton and the box and we will find that, quite often, the ADM mass can be negative. Re-
call that Schwarzschild and RN BHs with negative ADM mass are singular solutions, but

our solitons with negative mass are regular everywhere (except at the box outer layer).

Many of the above physical features observed in boson stars (solitons) confined in a
box in an asymptotically flat background are similar to those observed in asymptoti-
cally anti-de Sitter solitons [110] (see also [46, 45, 44, 93, 47, 111, 39]). In this case, the AdS
boundary conditions act as a natural gravitational box with radius inversely proportional
to the cosmological length that provide confinement. Therefore, we have good reasons
to expect that many of the features that we identify in the present study are universal

properties of charged scalar fields subject to some sort of confining mechanism.

3.3 Einstein-Maxwell gravity with a confined scalar field

3.3.1 Theory and setup

For completeness let us repeat the action for Einstein-Maxwell gravity in four dimen-

sions coupled to a charged scalar field:

1 1
= TonCy / d'ev=g (R = g EwF" = 2D, 9(D")' + V<¢|>>, (3.3

where R is the Ricci scalar, A is the Maxwell gauge potential, /' = d4, and D, = V,, —
igA, is the gauge covariant derivative of the system. We consider the potential V'(|¢|) =
m2¢¢T with m the mass of the scalar field. For concreteness we will take m = 0 but

solitons with m > 0 should also exist. We fix Newton's constant G = 1.

We are interested in solitonic solutions of (3.3.1) that are static, spherically symmetric

and asymptotically flat. Recall the ansatz we made for our fields in the introduction:
ds? = —f(r)dt® + g(r)dr? + r2dQ3, A, dat = Ay(r)dt, ¢ =of = o(r), (3.3.2)

Recall also the dimensionless coordinates where thermodynamic quantities are mea-
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sured in units of the box radius L,

t
=2 r="L R+:%e:qL,ﬁ1:mL (3.3.3)

In these units the box is placed at R = 1. The equations of motion for the fields f(R), A:(R), g(R)
and ¢(R) obtained from extremising the action (3.3.1) with m = 0 can be found in the in-
troduction, equations (1.4.24). We have a system of three second order ODEs for f, A¢, ¢

and g is given by an algebraic relation of the other three functions (1.4.28). To have a
well-posed boundary value problem we need to specify the boundary conditions at the

origin and asymptotic boundary of our spacetime. Moreover we must also impose junc-

tion conditions at the timelike hypersurface ¥ at R = 1 where the box is located. Our
solitons have vanishing scalar field at and outside this box, p(R > 1) = 0.

The system is described by three second order ODEs which means that there are six
arbitrary integration constants when we do a Taylor expansion around the origin, R = 0.
Regularity, requires that we impose Dirichlet boundary conditions whereby we set three
of the above integration constants to zero in order to eliminate terms that would diverge
at this boundary [104]. We are thus left with only three constants fy, Ao, ¢o (say) such that
the regular fields have the Taylor expansion around the origin:

fO)=fo+O(R?),  A4(0)=Ag+O(R?,  ¢(0)=¢+ O(R?). (3.3.4)

Take now the asymptotic boundary of our spacetime, R — oo. Outside the box the
scalar field vanishes, ¢ = 0, and the solutions of the equation of motion are: f°“(R) =
cp— Moy %, A" (R) = ca + % and ¢”"(R) = ¢;/f*"*(R) (henceforward, the super-
script ?“* represents fields outside the box). Here, ¢, My, c4 and p are arbitrary integra-
tion constants which are not constrained, i.e. we have an asymptotically flat solution for
any value of these constants. But the theory has a second scaling symmetry,

{Ta Ra z, QO} — {)‘ZTa Ra Z, Qp}a {fag7At, (10} — {A52fag’ AglAta Qp}a {6, R+} - {6, R+}a
(3.3.5)

that we use to set ¢y = 1 so that f|, ;oo = 1 (and ¢°* = 1/f°*). Outside the box the
solution to the equations of motion is then
My

2
ou p ou ou
B gy =1 +5mzr AV (B)poy=cat g, 0"(B)|ps, =0, (336)

which is the Reissner-Nordstrém solution as required by Birkhoff's theorem for the
Einstein-Maxwell theory [33, 34]. However, (3.3.6) has three free integration constants,

Moy, ca, p, which will be determined only after we have the solution inside the box.

Our solutions are asymptotically flat. Therefore, some of the parameters in (3.3.6) are
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related to the ADM conserved charges [7]. Namely, the adimensional ADM mass and

electric charge of the system are given by (setting Gy = 1):

M/L = lim 2f,<R) = %7
2 A/ o
Q/L= lm AR _ p

These ADM conserved charges measured by a Gauss law at the asymptotic boundary
include the contribution from the energy-momentum content of the box that confines
the scalar hair.

In these conditions, solitons of the theory are a 1-parameter family of solutions that we
can take to be, eg. fy as defined in (3.3.4), or the value of the (interior) derivative of the

scalar field at the box, e = ¢/ * ‘ r1 as discussed in the next subsection.

As mentioned in section 3.2, it follows from Birkhoff's theorem that in the asymptotic
region our solutions are necessarily described by the RN solution and we cannot use the
ADM mass M and charge @ to distinguish the several solutions of the theory. Instead,
we need to resort to the Brown-York quasilocal mass M and charge O, measured at the
box to display our solutions in a phase diagram of the theory [112]. From section II.C of
[43] (which we ask the reader to visit for details), the Brown-York quasilocal mass and

charge contained inside a 2-sphere with radius R = 1 are (Gy = 1)

M/L = R(l— ! >] .
g(R) ) 'R=1
o _ A

2\/9(R)f(R) ‘Rzl'

To complete the thermodynamic description of our solutions we still need to define the

(3.3.8)

chemical potential of the soliton which is given by the value of the gauge potential at the

box,

|p=1:

and the quasilocal quantities must satisfy the quasilocal first law of thermodynamics

(see for example [43] and references therein):
dM = pdQ. (3.3.10)

We will use this law as a non-trivial check of our solutions.

® Note that the Maxwell term in action (3.3.1) is /', not the perhaps more common F* term. It follows

that the extremal RN BH satisfies the ADM relation M = /2|Q)|, instead of M = |Q| that holds when the
Maxwell term in the action is F”.
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As explained before, for reference we will often compare the soliton families of solu-
tions against extremal RN BHs. RN BHs confined in a box can be parametrized using
the dimensionless horizon radius R and the chemical potential x, and their quasilocal

mass and charge are [43]

V2(1 - Ry)
V2 - (2- )Ry

where 0 < R, < 1 (for the horizon to be confined inside the box) and 0 < p < prext,

. Q)L = iy . (33.11)

M Pl =12 N

with extremality reached at jie; = v/2. Note that at extremality one has M/L = R,
and Q/L = Ry /+/2. On the other hand, for any y, when R, = 1 one has M/L = 1 and
Q/L =212

3.3.2 Junction conditions and Israel stress tensor at the box

Above, we discussed the boundary conditions at the origin and asymptotic boundaries.
However, solitons are solutions that glue an interior spacetime (R < 1; with superscript
n) with the known RN exterior background solution (3.3.6) (R > 1; with superscript °*) .
So all we need to do is to find the interior solution. But for that we must specify appro-
priate physical conditions at the outer boundary of our numerical integration domain,
namelyat R = 1.

Recall from the introduction that we require the scalar field to vanish at and outside the

box, i.e. for R > 1 (by Birkhoff’s theorem), hence we defined the quantity e:
¢in}R:1 — ¢out|R:1 — 0, ¢out(R) — 0, ¢lin‘R:1 =, (3312)

ie. for R < 1 the scalar field is forced to have the Taylor expansion ¢|,_,_ = e(R—1) +
O(R—1)%. We are forcing a jump in the derivative of the scalar field normal to the cavity
time-like hypersurface 3. The latter is defined by f(R) = R—1 = 0 and has outward unit
normal n,, = 0,,f/|0f| (n,n* = 1). Naturally, this forcing condition on the scalar field has
consequences: we need to impose junction conditions at ¥ on the other fields. Ideally,
we would like to have a smooth crossing, whereby the gravitational and gauge fields and
their normal derivatives are continuous at ¥. But this is not possible when we have a
non-vanishing scalar field inside the box. It follows that the Israel junction conditions

require a non-vanishing jump in the extrinsic curvature across the box.

Itis a good idea to set some notation to discuss this issue further. Adopting the viewpoint
of an observer in the interior region, the layer surface ¥ is parametrically described by
R=1andT = T™(r) = 7 and the induced line element and gauge 1-form of the shell &
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read

ds?|gin = hInderdeb = — | p_ydr? 4 dQ3,
Aglsin = ad€? = AM|g_ydr, (3.3.13)

where ¢* describe coordinates in ¥, 2% is the induced metric in ¥ and " is the induced
gauge potential in 3. On the other hand, from the perspective of an observer outside
the cavity, ¥ is parametrically described by R = 1 and T' = T°%(7) = N7 (so, N is a
reparametrization freedom parameter) so that the induced line element and gauge 1-

form are

ds?|gou = hQ'dE*de® = — N2 o | pydr® 4 03,
Aplsour = a2"de* = NAY | p_ydr, (3.3.14)

The junction conditions required to join smoothly two backgrounds at a timelike hyper-
surface ¥ were studied by Israel [113, 114, 115, 116] built on previous work of Lanczos and
Darmois. A solution is smooth at ¥ if and only if: 1) the induced metric hy, and induced
gauge potential a, are continuous (i.e. ds?|gin = ds?|seut and A|sin = Alsout), and 2) the
extrinsic curvature K, (essentially the normal derivative of the induced metric) and the
normal derivative of the induced gauge field, f,r, are continuous. Denoting, as we have
been doing, the solution inside (outside) ¥ by the superscript ©* (°*%), the Israel junction
conditions are

ag| gy = ad" gy s (3.3.15a)
eyl gy = has' | ey (3.3.15b)
c?}% R=1 = fg}%t R=1" (3315C)

Kiplpoy = K@ gy (3.3.15d)

where hqp = gap — nanp is the induced metric at ¥ and K, = h,“V.ny, is the extrinsic

curvature.

In the absence of the scalar condensate, we can set N = 1 and all the junction conditions
(3.3.15) are satisfied. However, our hairy solitons are continuous but not differentiable
at R = 1. Namely, they satisfy the 3 conditions (3.3.15a)-(3.3.15¢) but not (3.3.15d). Since
the latter extrinsic curvature condition is not obeyed, our hairy solitons are singular at
Y. But this singularity simply signals the presence of a Lanczos-Darmois-Israel surface
stress tensor S, at the hypersurface layer proportional to the difference of the extrinsic

curvature across the hypersurface. This Lanczos-Darmois-Israel surface stress tensor
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induced in ¥ is [113, 114, 115, 116]

1

8

Sup = ([Ka ] — [K]hab), (3.3.16)

where K is the trace of the extrinsic curvature and [Kq] = K|, — K| ,_ . This
surface tensor is the pull-back of the energy-momentum tensor integrated over a small
region around the hypersurface ¥ i.e. itis obtained by integrating the appropriate Gauss-
Codazzi equation [113, 114, 115, 116, 117] and it is also given by the difference between the
Brown-York surface tensor just outside and inside the surface layer [112] (see also dis-
cussion in [43]). Essentially, (3.3.16) describes the energy-momentum tensor of the cav-
ity (the “internal structure” of the box) that we have to build to confine the scalar field
inside. With our explicit construction of the hairy solutions of the system we will be able
to compute this Lanczos-Darmois-Israel stress tensor. Note that since the two Maxwell
junction conditions (3.3.15a)-(3.3.15b) are obeyed, our solitons will have a surface layer

that has no electric charge.

Our strategy is now clear. To find the soliton solution inside the box, we integrate numer-
ically the Einstein equation in the domain R € [0, 1] subject to the boundary conditions
(3.3.4) at the origin and, at the box, we impose ¢(17) = 0 and use the scaling symme-
try (3.3.5) to set f(17) = 1. With this information we can already read univocally the
quasilocal charges (4.3.3) of the system. We then impose the three junction conditions
(3.3.15a)-(3.3.15¢) at the box to match the interior solution with the outer solution de-
scribed by the RN solution (3.3.6). This allows to find the parameters My, Cy4, p in (3.3.6)
as a function of the reparametrization freedom parameter N introduced in (3.3.14). The
Israel stress tensor S? is just a function of N and, if ™ # 0, there is no choice of N
that kills all the components of S? (there are two non-vanishing components, S} and
S = 8%). The fact that we have arbitrary freedom to select N simply reflects the freedom
we have in the choice of the energy-momentum content of the box needed to contain
the scalar condensate inside it. We will show that there are choices that preserve some
or all the energy conditions [5]. Once we make a choice for N, we can also compute the
ADM mass and charge (3.3.7) of the solution which includes the contribution from the
box.

3.3.3 Numerical schemes

The solitons we search for are a 1-parameter family of solutions. We will generate these
solutions numerically following one of two routes that differ on the choice made for
the marching parameter along the family: 1) we march varying the value of the scalar
condensate quantity e = ¢'(R = 1), or 2) we march changing the value of the function f
at the origin, fo = f(0). In both cases, the marching parameter that we give as an input

to our numerical code appears as a boundary condition.
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We will use these two marching approaches because numerical convergence of each
one is different at different regions of the parameter space. The first marching strategy is
chosen essentially because € = ¢/(R = 1) is the expansion parameter of the perturbative
construction of [43] thus we can straightforwardly use the perturbative solution of [43] as
a seed for the numerical scheme. However, we will find that away from the perturbative
regime, e no longer uniquely parametrizes the family of solutions (see plots in Appendix).
This is because for a given e there will be more than one soliton (the two or more solitons
differ in their charges M and Q). This happens in the neighborhood of the cusps of
Fig. 3.2.1. For thisreason, itis good to use an alternative parametrization where we march
along the soliton branch using the value of the function f = gy at the origin: we find
that physical/thermodynamic quantities are a monotonic function of fy = f(0) as we
move along any of the soliton families even when we cross any of the cusps sketched in
Fig. 3.2.1.

When we use € as a marching parameter we find convenient to introduce the field redef-

initions,
f(R)=a(R), AR)=¢@(R), ¢R)=(1-R?) gR). (3.3.17)

These redefinitions automatically impose the condition ¢(1) = 0 when we search for
smooth functions ¢ 2 3. Additionally, we also impose the normalization condition ¢; (1) =
1. All other boundary conditions discussed in the previous two subsections follow from
requiring that the equations of motion are also valid at R =0 and R = 1.

On the other hand, when we use the marching parameter fy, it is useful to introduce the
field redefinitions

fR)=(1-R*) fo+R*(1-(1-R*) qi(R)), (3.3.18)
A(R) = ¢2(R), (3.3.19)
¢(R) = (1 - R?) g3(R

which have the advantage of introducing explicitly the marching parameter fy in the
problem and that smooth functions ¢; and g3 automatically satisfy the boundary con-
ditions f(0) = fo, f(1) = 1 and ¢(1) = 0. The other boundary conditions for ¢; 2 3 are
derived boundary conditions in the sense that they follow directly from the equations

of motion evaluated at the boundaries [104].

To solve numerically our boundary value problem, we use a standard Newton-Raphson
algorithm and discretise the coupled system of three ODEs using pseudospectral collo-
cation (with Chebyshev-Gauss-Lobatto nodes along the R). The resulting algebraic lin-

ear systems are solved by LU decomposition. These numerical methods are described
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in detail in the review [104]. Since we are using pseudospectral collocation, our results
should display exponential convergence with the number of grid points. We check this
is indeed the case and the thermodynamic quantities that we display have, typically, 8
decimal digit accuracy. We further use the quasilocal first law (3.3.10) (typically, obeyed

within an error smaller than 10~3%) to check our solutions.

3.4 Phase diagram for charged solitons confined in a Minkowski

box

As discussed in our summary of results (section 3.2), a system with a scalar field with
charge e confined inside a box has two natural critical charges: ey = 2—\1/5 ~ 0.354 and
es = % ~ 2.221. Moreover, we also find the existence of two other important critical
charges, ey ~ 1.13 and e. ~ 1.8545 + 0.0005, that we could not predict using heuristic
or perturbative analysis. These charges satisfy the relations eyy < e, < e, < es. The
charge ey plays no special role in the discussion of the phase diagram of solitons of the
system. Thus, we do not discuss it further, and in the next subsections, we describe the
properties of solitons in the following 4 windows of scalar charge: 1) e < e,, 2) ey <
e < e,3e < e < e, and4) e > e. For concreteness we will display results for a
particular value of e for each one of these windows: 1) e = 0.23 (section 3.4.1), 2) e = 1.854
(section 3.4.2), 3) e = 1.855 (section 3.4.3), and 4) e = 2.3 (section 3.4.4). Altogether, these
results (and others not presented) will allow to extract the conclusions summarized in

section 3.2.

It follows from an analysis of the RN quasilocal charges (4.3.6) that, in the quasilocal Q —
M plot, the region that represents RN BHs whose horizon radius fits inside the box is the
triangular surface bounded by the lines @ = 0, M/L = 1 and M = v/2Q. When plotting
the adimensional quasilocal mass M /L as a function of the dimensionless quasilocal
charge Q/L we will often find that soliton curves are very close to the extremal RN curve
that we use for reference. Therefore, we will also plot AM as a function of Q, where AM
is the quasilocal mass difference between the soliton and the extremal RN BH that has
the same quasilocal charge. For reference, in our plots the orange curve describes this
extremal RN BH solution which must have quasilocal charge Q < 27!/2 to fit inside the
covariant box with dimensionful radius L (and thus adimensional radius R = 1).

In the @ — AM plane, non-extremal RN BHs exist in the triangular region with bound-
aries @ = 0, AM = 0and AM =1 — v/2Q/L. The latter curve is

R
(Q/L, AM/L) = (L7Q|, pr ] — L 'M|_, ) = (\/g 1- R+) (34.1)
where M‘extRN and Q‘extRN are given by (4.3.6) with 1 = fiexy = V2. In our @ — AM
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plots, the red dashed line is the parametric curve (4.4.1) with R allowed to take also
values above 1. It turns out that the most charged solitons that we will find seem to ap-
proach this dashed red line (in the limit where scalar condensate amplitude e approaches
infinity). In this sense, for a given quasilocal mass (smaller than 1), this red dashed line
represents the maximal quasilocal charge that solutions that can fit inside the box can
have.

To test our numerical results and to set the regime of validity of the perturbative analysis
of [43], in many of our plots we will also display the perturbative prediction of [43] (which
is valid only for small solitons) using green curves.

341 e<e,~113

We illustrate the properties of solitons in this range using the case e = 0.23 (other exam-
ples can be found in Fig. 3.2.2). As discussed in our summary section 3.2, for this range

of e the system only has the main family of solitons.*

In Fig. 3.4.1 we plot the dimensionless quasilocal mass M /L as a function of the dimen-
sionless quasilocal charge Q/L of the main soliton branch. As a first observation, note
that our full nonlinear numerical construction of solitons (black curve) agrees well with
the perturbative construction of [43] at small values of the charge Q (green curve). How-
ever, for larger charges the elaborated zig-zagged structure that is developed is not cap-

tured by the perturbative analysis.

The zig-zagged structure in the quasilocal charge-mass plot translates into a damped
oscillatory behaviour, when we plot the fields f and ¢ (or even the Kretschmann) at the
origin as a function of the scalar condensate amplitude € = ¢/(1) (see Figs. 3.4.2-3.4.3), or
into a spiral motion in the A(0) — € plane (see right panel of Fig. 3.4.2); see also plots in the
Appendix. Altogether, this reveals the existence of aa Chandrasekhar limitat @ = Q¢y, ~
0.0094L (point A in Figs. 3.4.1-3.4.3). We can understand this limit as follows. For very
small e, the soliton is essentially an almost neutral boson star and the latter is expected to
have a Chandrasekhar limit at a critical mass. Expanding in e, the soliton charge Q can
be measured by the gauge field sourced by the above weakly charged boson star and
so it should be of order e, ie. the Chandrasekhar quantities (M¢p, Qcr) should grow
linearly with e (for small e) and then keep growing with e. We find this is indeed the case
(as partially illustrated in Fig. 3.2.2) as long as e < e, (to be discussed later; as we cross e,
into e > e., Qcp, jumps discontinuously to the maximum charge that can fit inside the

box).

*We cannot exclude the existence of a second family but if it exists, it is not connected to the secondary
soliton family present for e > e, and that we discuss in the following subsections. Also note that beyond
the ground state, there is also an infinite tower of excited solitons that are the nonlinear backreaction of
the normal mode radial overtones of the system.
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Figure 3.4.1: Main soliton family with e = 0.23 (e < e,). The orange curve describes the
extremal RN BH solution, and the green curve is the perturbative prediction of [43]. Left
panel: Quasilocal mass M /L as a function of the quasilocal charge Q/L. Right panel:
AM is the mass difference between the soliton and an extremal RN BH that has the
same quasilocal charge. For larger e this quantity will distinguish better some solitons
from the extremal RN BH solution. The inset plots reveals a zig-zag structure along the
cusps A,B,C,D, - --

At the Chandrasekhar limit (point A in Fig. 3.4.1) the family of solitons reaches a regular
cusp and afterwards, it develops a sequence of zig-zagged branches AB, BC, - - - splitted
by new regular cusps B,C, D, --- As we move along these, the parameter fy = f(0) is
increasingly approaching zero, which signals that one is approaching a naked singularity
(see left panel of Fig. 3.4.2). This conclusion is further corroborated by the fact that the
Kretschmann curvature at the origin, K| R0 = Rapea R¥| R 18 growing unboundedly
as we follow the path OABCD ---. It becomes increasingly harder to follow this soli-
ton family beyond point D but the above results suggest that the soliton might well go
through an infinite sequence of cusps (in the charge-mass plot) and an infinite sequence
of damped oscillations or spirals in the plots of Figs. 3.4.2-3.4.3, before it finally reaches
a naked singularity configuration where f|,_ — 0and K|,_, — .

The main soliton family of solutions has similar properties to the ones displayed in
Figs. 3.4.1-3.4.3 for any e < e, although it becomes harder to capture higher order cusps

as e increases.

34.2 e, <e<e.~1.854540.0005

We now describe the solitons of the system for a scalar field charge in the window
ey < e < e.~1.8545+0.0005. We choose to discuss the particular case e = 1.854 < e, for
reasons that will soon be clear (further examples all the way down to e — e, ~ 1.13 can
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Figure 3.4.2: Main soliton family with e = 0.23 (e < e,). Left panel: As we ramp up the
value of the amplitude e = ¢/(1) the core value of the metric function f is (very) slowly
approaching zero. The inset plot zooms in the damped oscillations around the turning
points B, C, D. Right panel: Contrast this with the core value of the gauge field A which
is spiralling inward indefinitely as € is ramped up. The inset plot zooms in the spirals
around the turning points B, C, D.

be found in the right panel of Fig. 3.2.2). For the plots associated with this scalar charge,
the black curve represents what we call the ‘main family’ (as mentioned in the intro-
duction this family is perturbatively connected to a Minkowski box) and the magenta
curve represents a distinct ‘secondary family’ which is not perturbatively connected to
a Minkowski box but still describes genuine regular solitonic solutions to the theory.

The main soliton family for these values of the charge is qualitatively similar to what we
had for e = 0.23: in the quasilocal charge-mass plane of Fig. 3.4.4, this black disk curve
extends from the origin O, developing cusps A4, B, C - - -. The discussion presented for
e = 0.23 applies mutatis mutandis to the present case. As a minor observation, note
however that there is now a window of quasilocal charges (around the Chandrasekhar
point A) for which the main family has a lower mass than an extremal RN BH with the

same charge.

Unlike for e < e,, fore = 1.854 (and any e, < e < e.) there is 'secondary family’ of
solitons. This is the magenta triangle curve #'abc- - - in Figs. 3.4.4-3.4.6. In Fig. 3.4.4, we
see that the main soliton family achieves a maximum charge (the Chandrashekhar point
A) which is less than the minimum charge (at point a) reached by the secondary soliton
family. From this plot, we also infer that the secondary family of solitons extends all
the way up to ' (which is a point in the red dashed “wall” that describes the maximum
quasilocal charge that a solution confined in the box of radius R can have). In terms of
the € parameter that we use to construct these solutions, this 8’ configuration is only
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Figure 3.4.3: Main soliton family with e = 0.23 (¢ < e,). Left panel: As we ramp up
the value of the amplitude ¢ = ¢'(1) the core value of the scalar field ¢ is increasing
seemingly without bound. The inset plot zooms in the damped oscillations around the
turning points B, C, D. Right panel: Kretschmann invariant at the origin as a function of
e. The turning points A, B, C, D are seeing a substantial increase in the curvature as we
go from one to the next. This is despite the fact that they lie close to each other in the
phase diagram. The inset plots zoom in around the point B and then around the point C'
to be able to show more clearly the large growth that K experiences (note the different
scales in which plot).

reached in the limit ¢ — oo and this is why it is difficult to extend the magenta curve
all the way till it hits the dashed red line (but when we analyse the e = 2.3 case we will
see that solitons indeed extend all the way to the dashed red line). Still in Fig. 3.4.4, we
also see that the secondary family of solitons has a cusp/zig-zagged structure abc- - -
that is very similar to the one found in the main family but this time around the regular
cusps a, b, ¢, - -. In particular, this structure also translates into damped oscillations or
spirals in the quantities plotted in Figs. 3.4.5-3.4.6. As we move along the cusps a, b, ¢, - - -,
fo = f(0) is approaching zero and the Kretschmann curvature is growing unbounded.
This suggests that this secondary soliton family also ends in a naked singularity after,
possibly, going though an infinite sequence of cusp/oscillations/spirals. On the other

hand fy and K | R_o F€Main finite as we approach /. In particular, fy g < 1.

The gap Aa between the main and the secondary families of solitons in the Q—AM plane
of Fig. 3.4.4 is a quantity that deserves special attention. We find that this gap decreases
as e increases, approaching zero when e — e, from below. A similar gap Aa present in
the several plots of Figs. 3.4.5-3.4.6 also decreases and approaches zero as e — e.. In the

next subsection we will further discuss what happens for values of e at e. and above.

Note that we can have hairy solitons with higher quasilocal charge than the maximum

charge that a RN confined inside a box can have. Indeed, the maximum quasilocal
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Figure 3.4.4: Soliton families with e = 1.854 (e, < e < e.). Top panel: quasilocal mass
vs charge. The main family (black curve OABC' - - -) looks to be on top of the extremal
RN BH (orange line) which is why we find it useful to plot the quantity AM which is
shown on the bottom panel. Bottom-left panel: the main black soliton curve starts more
massive (AM > 0) than the extremal RN but then becomes less massive (AM < 0)
above a certain charge. The secondary soliton family (magenta curve) eventually hits
the dashed red line at 8’ and extends to a finite lower charge Q where it develops a
series of cusps a,b, ¢, - - -. Bottom-right panel: zoom of the left plot to amplify the gap
Aa between the main and secondary families (magenta) and the cusp structure abc - - -
of the secondary family.

charge that a RN confined inside a box (i.e. with horizon radius Ry < 1) can have is
the one of an extremal RN BH with horizon radius R, = 1, namely Q/L = 2~'/2. This is
identified by the vertical dashed grey line in Fig. 3.4.4. But this figure also demonstrates
that we can have secondary solitons with a charge that is above this value.

Other examples of solitons with scalar charge in the window e, < e < e. can be found
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Figure 3.4.5: Soliton families with e = 1.854 (e, < e < e.). As in previous plots, the
black curve represents the main family and the magenta line represents the secondary
family. In both figures, the inset plots zooms in around the region where the two soliton
families approach the most. As e — e, the gap between A and a decreases until these
two points merge precisely at e = e.. Left panel: The function f evaluated at the origin
of the soliton is plotted as a function of the amplitude e. The two families seem to be on
top of each other for a small range of € but the inset plot shows that this is not the case
and a small gap is still present while e # e.. Right panel: The gauge field A, evaluated at
the origin as a function of e. Both families spiral inward towards a singularity in one of
their endpoints: this corresponds to the cusp structure observed in the @ — AM plot.

in the right panel of Fig. 3.2.2. From the several cases considered, we conclude that sec-
ondary solitons (that extend to the red dashed line) exist only for e, < e < e, and inside
the region bounded by the closed auxiliary dashed line a. 3. of Fig. 3.2.2 (these auxiliary
lines are inserted to guide reader’s eye). As e — e., the secondary soliton approaches the
auxiliary line a.f,, i.e. the equivalent of point a and /3’ of Fig. 3.4.4 approach point a. and
.. respectively, of Fig. 3.2.2. On the opposite end of the window, as e — e, one finds
that the equivalent to points a and /8’ of Fig. 3.4.4 collapse to a single point denoted as v
in Fig. 3.2.2.

343 e.<e<e = \% ~ 2.221

So, what changes when we cross e = e, ~ 1.8545 £ 0.0005? To address this question
we compare the phase diagram for the charge e = 1.854 just below e, (Fig. 3.4.4) with
the one of Fig. 3.4.7 for a charge e = 1.855 just above e.. From this comparison we can
infer the following. Approaching e. from below, precisely at e = e, the cusp A of the
main soliton (black disk curve) merges with the cusp a of the secondary soliton (magenta
triangle curve) in Fig. 3.4.4. That is to say, at e = e, the black and magenta curves of
Fig. 3.4.4 merge at A = a, and this becomes a bifurcation point that irradiates a total of
four branches.
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Figure 3.4.6: Soliton families with e = 1.854 (e, < e < e.) with the main (black disks)
and secondary (magenta triangles) families. In both figures, the inset plots zooms in
around the region where the two soliton families approach the most. As e — e_, the gap
between A and a decreases until these two points merge precisely at e = e.. Left panel:
The core value of the scalar field is plotted as a function of e. Right panel: The value of
the Kretschmann at the origin is plotted as a function of e. Both families have diverging
Kretschmann as one moves along the damped oscillation trenchs.

But as e grows above e, two new independent families emerge. Old point A = a and two
of the four branches that irradiate from it at e = e. are now absorbed in the main soliton
family (around the region that we vaguely identify as « in our plots of Fig. 3.4.7) that is
described by the black disk curve Of of Fig. 3.4.7. This extends from the origin all the
way down to point 5 in the dashed red line (which is reached as € — o0). That is to say, for
e > e., the main soliton family no longer has a Chandrashekhar mass limit neither cusps:
the Kretschmann curvature is now always finite along this family as it extends from the
origin all the way to 3, where the family terminates because it reaches the maximum
quasilocal charge that can fit inside the box with dimensionless radius R = 1. Also note
that for e > e, hairy solitons within the main family can have a quasilocal charge that
is higher than the maximum charge Q/L = 2~1/2 (identified by the vertical dashed grey
line in Fig. 3.4.7) that a RN confined inside a box can have.

On the other hand, the system now has a novel secondary soliton family (the blue dia-
mond curve - -- DC'Bbc- - - in Fig. 3.4.7) that exists only in a window of quasilocal charge
Q/L bounded from below by cusp B (that used to belong to the main family for e < e.)
and from above by the cusp b (that used to belong to the old secondary magenta triangle
family for e < e.). (The distinction between the main black disk family and the secondary
blue diamond family is better seen in the plots of Figs. 3.4.8-3.4.9). This new secondary
family absorbs the old point A = a and the two (out of four) branches that irradiate from
it at e = e, that were not embodied in the main family. Further confirmation that this
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Figure 3.4.7: Soliton families with e = 1.855 (e, < e < es). Top panel: the quasilocal
charge-mass diagram is now much different from the e < e, case as better seen in the
bottom plots. Bottom-left panel: for e > e, the main soliton curve (black disks) no longer
has a Chandrasekhar limit; instead it extends from the origin all the way down to point
on the red dashed line. On the other hand, the secondary soliton family (blue diamonds
curve) is now confined in a window (Bb) of quasilocal charge and with mass above the
main soliton. Bottom-right panel: zoom of the left plot to amplify the cusp structures
BCD--- and bc- - - that appear on both sides of the secondary soliton family.

new secondary family of soliton derives from connecting the old trench ABCD - -- of
the main black disk branch with the old trench abc- - - of the secondary magenta trian-
gle branch of Fig. 3.4.4 can be obtained as follows. Starting at a point in the old trench
ABCD--- orabc--- of Fig. 3.4.4, we can run a code where we fix € or fy and, this time,
we march the electric scalar charge e in very small steps from e = 1.854 < e all the way
up to e = 1.855 > e.. Doing this exercise we find that we indeed end on solutions of the
blue diamond curve of Figs. 3.4.7-3.4.9.
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Figure 3.4.8: Soliton families with e = 1.855 (e, < e < e5). Comparing with the e < e,
case of Fig. 3.4.5 we identify main differences: the black curve is still the main soliton
family but it now extends to arbitrarily large e. On the other hand, the secondary soliton
family — blue diamond curve — is now confined to a small window of scalar condensate
amplitude e. Note that as e — e, the gap between the two curves, in the region vaguely
signalled as «, decreases until it vanishes precisely at e = e.. Left panel: f(0) as a function
of the amplitude e. Right panel: The gauge field evaluated at the origin A4;(0) as a function
of e. This time the secondary family only exists for a small range of scalar field amplitudes
and develops a ‘double-spiral’ structure, i.e. a cusp structure develops at either end of
the curve, in the trenches Abc--- and BCd - - -.

Both around B and b, the blue diamond secondary soliton family of Fig. 3.4.7 displays a
complex zig-zagged structure that we are already familiar with. In particular, on both
sides of this curve, as we move along the several cusps B,C, D, --- or b,c,---, we find
that the Kretschmann curvature is growing unbounded (see Fig. 3.4.9) and fy = f(0) is
approaching zero (see Fig. 3.4.8). Altogether, this suggests that the secondary family of
solitons undergoes a sequence of possibly infinite damped oscillations/spirals before it

reaches a naked singularity at both sides of its domain.

The property that, at e = e, the black and magenta curves of Figs. 3.4.4-3.4.6 merge at

A = aand then two distinct new soliton families (the black and blue curves of Figs. 3.4.7-3.4.9)

emerge for e > e. is inferred not only from the quasilocal charge-mass plots. Indeed we
arrive to the same conclusion analysing the plots for the fields f, A;, » and Kretschmann
when we compare Figs. 3.4.8-3.4.9 for e = 1.854 < e. with Figs. 3.4.8-3.4.9 fore = 1.855 >

ec (see in particular their inset plots).

Aswe keep increasing e above e, we find that the window of quasilocal charge Q € [0, Qo]
where AM > 0, ie. where solitons have a quasilocal mass higher than the extremal
RN solution with the same Q/L, decreases and approaches zero as e — e (see next
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Figure 3.4.9: Soliton families with e = 1.855 (e, < e < es). Alike in the previous figure,
comparing the current plots with those of Fig. 3.4.6 for the e < e, case, we find major
differences: the black disk curve is still the main soliton family but it now extends to
arbitrarily large e. On the other hand, the secondary soliton family (blue diamond curve)
is now confined to a small window of €. As e — e, the gap between the two curves,
in the region vaguely signalled as «, decreases until it vanishes precisely at e = e.. Left
panel: Core value of the scalar field as a function of € with damped oscillations seen in
both ends of the secondary soliton family. Right panel: The Kretschmann evaluated at
the origin as a function of € for both soliton families. Comparing with Fig. 3.4.6 for the
e S ec case, we see that now the main soliton family exists for any € and its curvature at
the origin is finite in all its domain of existence. On the other hand, the curvature of the
secondary soliton family now diverges at both of its ends.

section 3.4.4). We also find that the distance of closest approach between the secondary
blue diamond family of solitons and the main black disk family increases in all the plots
Figs. 3.4.7-3.4.9. There is a scenario that is highly probable: one should expect further
critical charges e., > e. (i > 2) where extra splits in the secondary blue diamond curve
will occur. Indeed, at e = e, we found that the cusps A and a of Fig. 3.4.4 merge. Similarly,
ata new critical charge e., > e. we might expect that the cusps C and ¢ in the secondary
blue curve - -- DC'Bbcd - - - of Fig. 3.4.7 will also merge. If so, above this new merger, i.e.
for e > e.,, we should have the main family of solitons, then a closed curve secondary
family of solitons C' Bbc with C' = ¢ and then a third family of solitons with the “leftover”

-+ Dd- - that should have an infinite sequence of cusps. We could then have a third
critical charge e., > e., where a new merger of cusps would occur. Then, above it we
would end with the main family of solitons, then two closed families of solitons and a
fourth open family of solitons with an infinite sequence of solitons and so on fore,,, i > 4
(additionally, as discussed before there is also an infinite tower of excited families of
solitons besides this ground state families). It is very hard to numerically confirm this
scenario. But, starting with our solutions with e = 1.855, fixing fy or € and varying e to
march the solutions in the blue curve of Fig. 3.4.7, we found evidence that this scenario is
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very plausible. Further evidence in favour of this scenario is provided by the fact that in
the context of hairy AdS solitons, closed families of solitons were found (see e.g. Figs. 5
and 7 of [110]).

344 e>e= \% ~ 2.221

Strictly speaking the only critical charge that marks a substantial qualitative difference
on the phase diagram of solitons is e = e.. In this sense, for our discussion it would be
enough to provide the illustrative cases e = 1.854 < e, (Figs. 3.4.4-3.4.6) and e = 1.855 >
ec (Figs. 3.4.7-3.4.9). However, in this section we also discuss a change that occurs in the
main soliton family of solitons when e increases above es = % ~ 2.221. Although from
a pure soliton perspective this difference seems to be minor, it turns out to have a large
impact when we consider the phase diagram of the theory that includes not only the

solitons and RN BHs but also the hairy BHs.

We choose scalar field charge e = 2.3 to illustrate the properties of solitons with e > es.
The associated quasilocal charge-mass phase diagram for the main soliton is displayed
in Fig. 3.4.10. Unlike for e < es, the main solitons now have less quasilocal mass than
the extremal RN BH with the same quasilocal charge, i.e. one always has AM < 0. For
e < e, in a neighbourhood of the origin one has AM > 0 but precisely at e = e, one
finds that the slope AM/Q vanishes at the origin and then becomes negative for e > es.
Why is this feature relevant? Well, precisely for e > es extremal RN BHs are unstable
for M > 0, i.e. the instability onset curve extends all the way down to M = 0 (while for
e < es, this onset curve starts at the extremal RN BH at a finite value of M).

These two properties (solitons have AM < 0 and RN BHs are unstable all the way down
to M = 0) strongly suggests that for e > eg, in the charge-mass phase diagram, the
hairy charged BHs that emerge from the instability onset of the RN solution —which is a
curve in Fig. 3.4.10 with positive AM that approaches AM = 0at Q = 0and Q = 271/2
(see. Fig. 3 of [40]) — should extend all the way down to the soliton (black curve Of in
Fig. 3.4.10) when the hairy BH horizon radius goes to zero. This was confirmed for small
charges in the perturbative analysis of [43] and this expectation will also prove correct
for higher quasilocal charges. On the other hand, for e < es hairy BHs should only exist
above a critical quasilocal charge and the main family of hairy solitons is not the zero
entropy limit of the hairy BHs of the theory, at least for small charges (and thus these
hairy BHs cannot be constructed within perturbation theory for small charges [43]; one

needs a full nonlinear numerical analysis that will be provided in part IV).

In Fig. 3.4.10 we also find strong evidence to a claim we made previously: as € — oo
the main soliton extends all the way to point 5. This point is along the red dashed line

that describes the maximal quasilocal charge that solutions confined inside a box of
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Figure 3.4.10: Main soliton family with e = 2.3 (¢ > es). The soliton extends smoothly
from the origin to 5 and, unlike for e < e, the main soliton is now always less massive
than its extremal RN counterpart. This case also demonstrates better a claim that we
made for other cases e: as the scalar condensate amplitude grows unbounded, ¢ — oo,
the main soliton approaches point 5 in the red dashed line. As in other plots, the inset
plots show the good agreement between the full result and the analytic prediction (green
curve) at small charges.

dimensionless radius R = 1 can have. For smaller e, it is much harder to construct
solutions with higher e (compare the maximum values of € in the several plots). This is
why in the plots for smaller e that we have shown previously, the ‘last’ solution is not so
close to § as in Fig. 3.4.10.

Overall, the reader can find a broad overview of the evolution (as e increases from a
small value e < e all the way above es) of the phase diagram for the main soliton family
in Fig. 3.2.2.

For completeness, we also display the evolution of the fields f, A;, ¢ and of the Kretschmann

scalar with the scalar condensate amplitude in Figs. 3.4.11-3.4.12. We see that the gradi-
ents, observed in the similar plots of Figs. 3.4.8-3.4.9 for smaller e, become more pro-
nounced.

3.5 [Israel surface stress tensor and energy conditions

So far, we were able to construct the phase diagram of hairy solitons inside a box with-
out needing to detail the matter content of the box. Indeed, to get the quasilocal phase
diagrams of the previous section, we just had to integrate numerically the equations of

motion in the domain R € [0, 1] subject to regular boundary conditions and vanishing
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Figure 3.4.11: Main soliton family with e = 2.3 (e > e).
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Figure 3.4.12: Main soliton family with e = 2.3 (e > es).

scalar field at the box. For this, no further details are required. But the description of the
solution is only complete once we discuss the full solution all the way up to the asymp-
totically Minkowski boundary.

In the literature one already has some studies of scalar fields confined in a Minkowski
cavity: 1) at the linear level [118, 119, 41,120, 121, 122, 123, 124, 125, 126, 127], 2) within a higher
order perturbative analysis of the elliptic problem [40, 43], 3) as a nonlinear elliptic prob-
lem (although without having asymptotically flat boundary conditions [128, 129, 130] or
without discussing the exterior solution [131]), and 4) as an initial-value problem [132,
133, 134]. However, except in the perturbative analysis of [43], the properties of the “in-
ternal structure” of the cavity or surface layer that is necessary to confine the scalar field
and its contribution to the ADM mass and charge that ultimately describe, by Birkhoff’s
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theorem, the exterior RN solution are not discussed.

With the interior hairy soliton fields found in the previous section, we can now compute
the Lanczos-Darmois-Israel surface stress tensor (3.3.16) which describes the energy-
momentum content of the box ¥. If this satisfies relevant energy conditions, in practice,
we can indeed build a physical box that confines the scalar fields and impedes that it
disperses to infinity. In our construction we imposed the three Israel junction condi-
tions (3.3.15a)-(3.3.15¢) on the gravitoelectric fields on the surface layer ¥. With these
conditions, the fields are continuous across ¥ and the component of the electric field
orthogonal to ¥ is also continuous across 3. This means that we are allowed to choose
a surface layer that confines the charged scalar field without needing to have a surface
electric charge density. Altogether, the three conditions (3.3.15a)-(3.3.15¢) match the in-
terior and exteriors solutions, i.e. they determine the parameters My, c4, p in (3.3.6) as a
function of the reparametrization freedom parameter N introduced in (3.3.14):
M0:1<1_A7/5(1)2>_1’ CA:M’ pz—@. (3.5.1)
N? 2 N N
That is to say, these junction conditions fix the exterior RN solution as a function of the
interior field content but also as a function of the box energy-momentum content. And
we have a 1-parameter freedom (V) to choose the box content that is able to confine the
scalar condensate.

How can we fix N? Well, ideally we would choose it so that the gravitational field was
also differentiable across the box, i.e. so that the fourth junction condition (3.3.15d) were

also obeyed and thus the extrinsic curvature

Kt _ f,(R) Kl

1 Co
" 2f(R)Ve(R) j_Ri\/g(sj’ (4,7) = (0,9), (35.2)

were also continuous across the box. But for our system there is no choice of N that
simultaneously makes [K{] = 0and [K!] = 0, unless the scalar field vanishes everywhere.
But we can fix N requiring that [K}{] = 0 (at the expense of having [K?] # 0) or vice-versa,

or any other combination.

Our choice of N fixes the energy density and pressure of the box since the surface tensor
of the box can be written in the perfect fluid form, S(4)) = Eua) ) +P(h(a) @)+t @)Uw)).
with u = f1/29; and local energy density £ and pressure P given by

E=-84, P=5,=5%. (3.5.3)

Our choice should be such that relevant energy conditions are obeyed in order to be
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physically acceptable. Different versions of these energy conditions read (i = 6, ¢) [5]:

Weak energy condition: E>0 AN E+P;>0; (3.5.4)
2
Strong energy condition: E+Pi>0 AN E+ ZPi >0; (3.5.5)
i=1
Null energy condition: £+ P; > 0; (3.5.6)
Dominant energy condition: £+ |P;| > 0. (3.5.7)
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Figure 3.5.1: Properties of a box for a choice of reparametrization normalization N such
that the Israel stress tensor satisfies the energy conditions (system with e = 2.3). Top
panel: Energy density £ and pressure P. Bottom panel: ADM mass M vs ADM charge
Q of the soliton solution (measured at the asymptotic region) includes the contribution

from the scalar condensate confined inside the box, the energy-momentum content of
the box layer and the exterior RN solution.

To illustrate that it is definitely possible to build boxes that obey these energy conditions,
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let us take the main soliton family with e = 2.3 constructed in section 3.4.4. Let us further
choose N such that one has no pressure, N = N ‘79:0' Then the evolution of box's energy
density £ as we move along the soliton family is always negative.®> So the energy condi-
tions are not obeyed for this choice of normalization N. Let us now insist that we want
that all energy conditions (4.5.4) are obeyed. This is achieved, for example, if we choose
Ntobe N =N ‘P:O + %. Then the energy density and pressure of the box are always
positive along the whole soliton family, as displayed in the top panel of Fig. 3.5.1. Given
this choice, we can also compute the ADM energy and charge of our solutions as read
at the asymptotic region. These quantities are displayed in the bottom panel of Fig. 3.5.1.
This case illustrates a feature that we found to be common in similar exercises we did
(for other choices of N and e): the ADM mass of hairy solitons can be negative, although
our solutions are regular everywhere except across the box (where the extrinsic curva-
ture has a discontinuity). For reference, recall that Schwarzschild and RN solutions with
negative ADM mass are singular solutions. This might well be a general feature of hairy
solutions confined by generic gravitational potentials (e.g. hairy solutions, not necessar-
ily with spin O, that are confined by more realistic potentials like the one of a massive

scalar field or an accretion disk wall).

®This pressure vanishes in the limit ¢ — 0 because in this case the interior solution is simply Minkowski
space with no scalar hair and thus the box is not necessary.
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Part IV

Phase diagram of charged black hole
bomb system
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CHAPTER 4

Hairy black holes in a Minkowski box

4.1 Introduction

The black hole bomb setup was designed by Zel'dovich [135] and Press and Teukolsky
[35] (see also [109]) very much in the aftermath of having understood the mathemati-
cal theory of black hole perturbations around a Kerr black hole. It emerged naturally
from the fact that the wave analogue of the Penrose-Christodoulou process [136, 137] —
superradiant scattering — unavoidably occurs in rotating black holes with non-zero an-
gular velocity Q. If a scalar wave with frequency w and azimuthal number m satisfying
w < mfis trapped near the horizon by the potential of a box (for example), the multiple
superradiant amplifications and reflections at the cavity lead to an instability. The wave
keeps extracting energy and angular momentum from the black hole interior and these
accumulate between the horizon and the cavity. Press and Teukolsky assumed that this
build-up of radiation pressure would rise to levels that could no longer be supported
by the box and the latter would eventually break apart. But the black hole bomb system
does not necessarily need to have such a dreadful end. Actually, more often than not,
a black hole instability is a pathway to find new solutions that are stable to the original
instability, have more entropy (for given energy and angular momentum) and are thus
natural candidates for the endpoint or metastable states of the instability time evolution.
This is certainly the case for superradiant fields trapped by the anti-de Sitter (AdS) grav-
itational potential [138, 139, 140, 141, 142, 143] or massive fields in asymptotically flat black
holes [144]. So we can expect the same in the original black hole bomb system.

103
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Motivated by these considerations, we would like to find the full phase diagram of so-
lutions that can exist in the original black hole (BH) bomb system. By this we mean to
find all possible stationary solutions of the theory with boundary conditions that con-
fine the scalar field inside the box. These would be the non-linear version of the floating
solutions in equilibrium that are described in [35]. This certainly requires solving PDEs.
Therefore, in this paper, we start by considering a simpler system that still has a superra-
diant scalar field trapped inside a box but those properties can be found solving simply
ODEs. This is possible if we first place a Reissner-Nordstrém black hole (RN BH) with
chemical potential i inside a box and then perturb it with a scalar field with charge ¢
and frequency w. As long as w < qu, a superradiant instability will also develop leading
to the charged version of the black hole bomb system [36]. We thus want to find the
phase diagram of static solutions of this system, including those with a scalar conden-
sate floating above the horizon. The latter hairy solutions might have higher entropy than
the original RN BH for a given energy and charge where they coexist. If so they would
be a natural candidate for the endpoint of the charged black hole bomb instability, as
long as it is checked that one can in principle build boxes — with an Israel stress tensor
[113, 114, 115, 116] that satisfies the relevant energy conditions [5] — that holds the inter-
nal radiation pressure without breaking apart. This will further guarantee that we can
insert this boxed system in an exterior Reissner-Nordstrom background, as required by
Birkhoff’s theorem [33, 34].

Looking into the details of this programme we immediately find new physics. Indeed,
a linear perturbation analysis of the Klein-Gordon equation in an RN BH finds that the
system is not only unstable to superradiance but also to the near-horizon scalar con-
densation instability [40]. These two instabilities are typically entangled for generic RN
BHs but there are two corners of the phase space where they disentangle and reveal
their origin. Indeed, extremal RN BHs with arbitrarily small horizon radius only have
the superradiant instability since the near-horizon instability is suppressed as inverse
powers of the horizon radius. On the opposite corner, RN BHs with a horizon radius
close to the box radius only have the near horizon instability. Essentially, this instability
is triggered by scalar fields that violate the near horizon AdS; Breitenléhner-Freedman
(BF) bound [28] of the extremal RN BH. It was originally found by Gubser [53] in planar
AdS backgrounds (in a study that initiated the superconductor holographic programme)
but it exists in other BH backgrounds (independently of the cosmological constant sign)

with an extremal (zero temperature) configuration (see e.g. [56, 44]).

Analysing the setup of the black hole bomb system leads to the observation that the
theory also has horizonless solutions if we remove the RN BH but leave the scalar field
inside a box with a Maxwell field. Indeed, we can certainly perturb a Klein-Gordon field
in a cavity and the frequencies that can fit inside it will be naturally quantized and real.

This suggests that, within perturbation theory, we can then back-react this linear solu-
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tion to higher orders where it will source non-trivial gravitoelectric fields that are regular
inside (and outside) the box [43]. These are the boson stars of the theory, also known as
solitons (depending on the chosen U(1) gauge; see e.g. [145] for a review on boson stars).
This perturbative analysis is bound to capture only small mass/charge boson stars. But
a full numerical nonlinear analysis can identify the whole phase space of boson stars
[2]. This analysis further reveals that the phase diagram of boson stars is quite elaborate
with distinct boson star families. In particular, it finds that the phase diagram of solitons
depends non-trivially on a total of four critical scalar field charges. Two of them can be
anticipated using simple heuristic arguments on the aforementioned superradiant and
near-horizon instabilities, but the two others only emerge after solving the non-linear

equations of motion.

Coming back to our main subject of study, an RN BH placed inside a box is also the
starting point to discuss and find the hairy BHs of the theory. The latter have a scalar
condensate floating above the horizon that is balanced against gravitational collapse by
electric repulsion. A box with appropriate Israel junction conditions and stress tensor
(113, 114, 115, 116] should be able to confine the scalar condensate in its interior, and it
should then be possible to place the the whole boxed system in a background whose
exterior solution is the RN solution. In the present paper, we confirm that this is indeed
the case and we find the full phase diagram of static solutions of the charged black hole
bomb system. It turns out that the aforementioned four critical scalar electric charges
play a relevant role also in the phase diagram of hairy BHs. Indeed, this diagram is quali-
tatively distinct depending on which one of the four available windows of critical charges
the scalar charge ¢ falls into. Ultimately, the reason for this dependence follows from
the fact — that we will establish— that all hairy BHs that have a zero horizon radius limit
choose to terminate on the boson star of the theory (which is fully specified once ¢ is
given), in the sense that the zero entropy hairy BHs have the same (Brown-York [112]
quasilocal) mass and charge as the boson star. In our system, this materializes the idea
that, often, small hairy BHs can be thought of as a small BH (RN or Kerr BH) placed on top
of a boson star, as long as they have the same thermodynamic potential (chemical po-
tential or angular velocity) to have the two constituents in thermodynamic equilibrium.

One of the four hairy BH families that we find in this paper was already identified in the
perturbative analysis of [43]. This is the only family of hairy BHs that extends to arbitrarily
small mass and charge, thus making it prone to be captured by the perturbative analysis
about an empty box with an electric field. But the other three families and their intri-
cate properties cannot be captured by such a theory because they are not perturbatively
connected to the zero mass/charge solution.

Perhaps the most important property of the hairy BHs of the charged black hole bomb
is that, when both coexist, they always have higher entropy than the RN BH that has
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the same mass and charge. Therefore, we will conclude that hairy BHs are always the

preferred thermodynamic phase of the theory in the microcanonical ensemble.

Very much like black holes confined in a box can be a starting point to discuss certain
aspects of black hole thermodynamics [146, 147, 148, 149, 150, 151, 152] they should also
be useful to understand generic superradiant systems where distinct (including perhaps
some astrophysical) potential barriers confine fields [35]. These two are related since the
hairy solutions describe non-linear systems where the central solution is in thermody-
namic equilibrium with the floating scalar radiation. In particular, we can expect that
hairy solutions of the charged black hole bomb provide a toy model with some univer-
sal features for the phase diagram of other confined unstable systems. Actually, we find
that the present phase diagram shares many common features with the phase diagram
of superradiant hairy black holes in global anti-de Sitter [46, 45, 110, 44, 93, 47, 111, 39].

The plan of this part is as follows. In section 4.2 we summarize in two figures the main
properties of the phase diagram of hairy black holes and boson stars. In section 4.3
we formulate the exact setup of our system. The discussion only includes aspects that
guarantee that our exposition is self-contained and more details can be found in [43].
In section 4.4 we explicitly construct the hairy black hole solutions in the four relevant
windows of scalar charge that, together with the boson star study of [2] (and of the pre-
vious chapter), allow us to arrive to the conclusions summarized in section 4.2. Finally,
in section 4.5 we explain how data of the hairy solution inside the box can be used to
find the Israel stress tensor of the cavity surface layer and be matched with the exterior
Reissner-Nordstom solution.

4.2 Summary of phase diagram of boson stars and black holes

in a cavity

The Einstein—Maxwell—Klein-Gordon theory, whereby the scalar field is confined in-
side a box of radius L in an asymptotically flat background, is fully specified once we
fix the mass and charge ¢ of the scalar field. We consider massless scalar fields with di-
mensionless electric charge e = ¢L (the system has a scaling symmetry that allows us to
measure all physical, i.e. dimensionless, quantities in units of L). By Birkhoff's theorem
[33, 34] !, outside the cavity the hairy solutions we search for are necessarily described
by the RN solution. Thus, we just need to find the hairy solutions inside the box and then
confirm that the Israel junctions conditions required to confine the scalar condensate
inside the cavity, while having an exterior RN solution, correspond to an Israel energy-

'Birkhoff’s theorem for Einstein-Maxwell theory states that the unique spherically symmetric solution
of the Einstein-Maxwell equations with non-constant area radius function r (in the gauge (4.3.1)) is the
Reissner-Nordstréom solution. If r is constant then the theorem does not apply since one has the Bertotti-
Robinson (AdS2 x S?) solution.
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momentum stress tensor (proportional to the extrinsic curvature jump across the box

layer [113, 114, 115, 116]) that is physical, i.e. that satisfies relevant energy conditions [5].

Since the solution outside the box is described by the RN solution, we cannot use the
Arnowitt-Deser-Misner (ADM) mass M and charge @ [7] to differentiate the several solu-
tions of the theory. However, we can use the Brown-York quasilocal mass M and charge
Q [112], computed at the box location and normalized in units of L, and associated phase
diagram Q-M to display and distinguish the solutions of the theory. These quasilocal
quantities obey their own first law of thermodynamics that is used to (further) check
the results. In the quasilocal phase diagram, the extremal RN 1-parameter family of BHs
(with horizon inside the box) provides a natural reference to frame our discussions. In
particular, because distinct solutions often pile up in certain regions of the phase dia-
gram, for clarity we will find it useful to plot AM/L vs Q/L where AM = M —M|__ o
is the mass difference between the hairy solution and the extremal RN that has the same
Q/L. Therefore, in this phase diagram Q-AM, the horizontal line with AM = 0 rep-
resents the extremal RN BH solution. Its horizon at R fits inside the box of radius L
if R, < 1 (which corresponds to Q/L < 27'/2) and non-extremal RN BHs exist above
this line. However, horizons of non-extremal RN BHs fit inside the box (R, < 1) if and
only if their quasilocal charges are to the left of the red dashed line that we will display
in our Q-AM diagrams. Actually, it turns out that this line also represents the maximal
quasilocal charge that hairy solutions enclosed in the box can have.

We find that the spectrum of hairy black holes and boson stars of the theory is qual-
itatively distinct depending on whether e is smaller or bigger than four pivotal critical

scalar field charges — ey, e, . and es — which obey the relations 0 < ey < ey < e, < és.

Two of these critical charges, ey, and es, can be identified simply studying linear scalar
field perturbations about an RN BH in a box. Such RN BHs can be parametrized by the
chemical potential i and dimensionless horizon radius Ry = ry/L. These parame-
ters are constrained to the intervals 0 < p < pext (with the upper bound being the ex-
tremal configuration) and 0 < R4 < 1. Boxed RN BHs become unstable — the black hole
bomb system — if e is above the instability onset charge e,....(1, R+ ). Instead of display-
ing €,neet (11, R4), it proves to be more clear to display the 2-dimensional plot egnee(R+)
for fixed values of u. A sketch of this plot is given in the left panel of Fig. 4.2.1 (which
reproduces the exact results in Fig. 2 of [40]). The minimal onset charge is attained for
extremal RN black holes (1 = pext): this is the orange curve that connects points (0, es)
and (1,eyy). For completeness, in the left panel of Fig. 4.2.1 we also sketch the onset
charge curves (green dashed) for two non-extremal RN BHs at fixed p < piext. Naturally,
this onset charge increases as we move away from extremality. Moreover, we see that
the (extremal) minimal onset curve terminates at two critical charges that, actually, can
be computed analytically:
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oe=ey = ﬁ ~ 0.354. This is the charge above which scalar fields can trigger a viola-
tion of the near horizon AdSs Breitenldhner-Freedman (BF) bound [28, 53, 56, 44]
of the extremal RN black hole whose horizon radius approaches, from below, the
box radius. For details on how to derive this critical charge please see the intro-

duction, section 1.4.2.

ec = ¢ = % ~ 2.221. This is the critical charge above which scalar fields can drive
arbitrarily small RN BHs unstable via superradiance. For a detailed analysis that

leads to this critical charge, please see the discussion surrounding section 1.4.1.
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Figure 4.2.1: Left panel: Sketch of the scalar field electric charge €.t = ¢L|onser @s @
function of the horizon radius Ry = r;/L of RN BHs in a box (sketched from Fig. 2
of [40]). The orange curve in the bottom — that starts at (R, e) = (0, es) and terminates
at (R4+,e) = (1,eyu) — describes the minimal onset charge (which occurs at extremal-
ity, = pext). That is, (non-)extremal RN BHs can be unstable if an only if e is higher
than the one identified by this orange onset curve. On the other hand, if we pick an RN
family with constant u < pext, for instability, we need e to be higher than the associ-
ated green dashed line e(R)|const . also shown. In particular, we see that if we chose a
charge in the range eyy < e < e5, RN BHs are unstable if and only if they are between
the orange minimal onset curve and the horizontal line to the right of point P (gold di-
amond). Right panel: a survey of boson stars for different values of e, for e > e, [2]. For
agiven e € [e,, e[ we have the main (perturbatively connected to (0,0)) and secondary
(non-pertubative) solitons (which only exist in the region bounded by the auxiliary grey
dashed closed curve a.(.7). The secondary soliton curve with e just above e, is close to
the point -, while the soliton with e = 1.854, just below e,, is the magenta curve (very
close to a.f3.). Note that the gap in Q/L between the main soliton and the secondary one
starts very large at e = e, but then decreases and goes to zero precisely at e = e.

The system has two other critical charges, e, and e, that are uncovered when we do a
detailed scan of the boson stars (a.k.a. solitons) of the theory. This task was completed in
detail in the previous chapter. A phase diagram that summarizes the relevant properties
for the present study is displayed in the right panel of Fig. 4.2.1 [2]. Note that it stores
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in a single plot the solitons for different theories, ie. for several distinct values of e.
Two families of ground state boson stars (i.e. with smallest energy for a given charge)
where found in part III. One is the main or perturbative boson star family which can
be found within perturbation theory if we back-react a normal mode of a Minkowski
cavity to higher orders. In the right panel of Fig. 4.2.1, these are the solitons that are
continuously connected to (Q, AM) = (0,0). The other one is the secondary or non-
perturbative soliton family. In Fig. 4.2.1, these are the solitons that exist only above a
critical @ and terminate at the red dashed line. The main/perturbative soliton family
exists for any value of e > 0 (the system has a symmetry that allows us to consider only
e > 0). However, the secondary/non-perturbative soliton only exists for scalar field
charges that are in the window e, < e < e.. These are the solitons enclosed in the
region a.f3.7 (i.e. inside the auxiliary grey dashed closed line with these vertices). They
only exist above e, ~ 1.13 (see point v) and below e, ~ 1.854 + 0.0005 (see line a.f, just
below the magenta line). Below e, the non-perturbative solitons do not exist because
they no longer fit inside the box. Above e, the gap between the two soliton families
ceases to exist, i.e. the non-perturbative soliton merges with the perturbative soliton,
and the ground state boson stars of the theory extend from the origin all the away to the
red dashed line (see e.g. the red diamond curve with e = 2 or the blue circle curve with
e = 2.3 in Fig. 4.2.1). Summarizing, the main/perturbative soliton has a Chandrasekhar
limit for 0 < e < e, but extends from the origin all the way to the red dashed line for
e > e.. On the other hand, the ground state secondary/non-perturbative soliton only

exists in the window e, < e < e..

In the following sections we will find the hairy black holes of the Einstein—Maxwell—Klein-
Gordon theory. We will conclude that, whenever the hairy black holes have a zero hori-
zon radius limit, they terminate on a soliton. Accordingly, the phase diagram of solutions
depends on the above four critical scalar field charges. Our main findings are summa-
rized in the phase diagram sketches of Fig. 4.2.2 and the properties of these phase dia-
grams depend on the following 5 windows of scalar charge e:

Le<ew= 21% ~ 0.354. From the left panel of Fig. 4.2.1, one concludes that RN
is stable for e < ey and thus no hairy BHs exist. The only non-trivial solutions
of the theory are the RN BH and the main/perturbative boson star which has a

Chandrasekhar limit (see details in part III).

2. ey < e < ey ~ 1.13. The phase diagram Q-AM of solutions for this window
is sketched in the top-left panel of Fig. 4.2.2. The only boson star of the theory
is the main/perturbative family OABC'- - - (already present for e < eyy) with its
Chandrasekhar limit A and a series of cusps A, B, C, - - - and associated zig-zagged
branches whose properties were studied in detail in part III. As the left panel of
Fig. 4.2.1 indicates, RN BHs are now unstable for sufficiently large Ry (ie. Q) if
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AMIL , AMI/L A

Figure 4.2.2: Sketch of the quasilocal phase diagram for black holes and solitons and as
we span relevant windows of scalar field charge e. The critical charges are such that 0 <
exn < €y < €. < es. The quantity AM is the quasilocal mass difference between a given
solution and an extremal RN BH that has the same quasilocal charge Q/L. Hence the
orange line at AM = 0 describes the extremal RN solution that must have Q/L < 2-1/2
to fit inside the box. The red dashed line represents the maximal quasilocal charge of
solutions that can fit inside the box. It intersects the extremal RN line at Q/L = 2~1/2.
Non-extremal RN BHs confined in the box have AM > 0 and fill the triangular region
bounded by Q@ = 0 and by the orange and red dashed lines (not shown completely).
The main soliton family is always given by black curves that start at O. The secondary
soliton family is given either by magenta or purple curves. Hairy black holes exist in
the region Paf enclosed by the yellow merger line Pa (between hairy and RN BHs), the
blue curve PS where the curvature grows large and the red line a3. Top-left panel:
case eyy < e < e,. Top-right panel: e, < e < e.. Bottom-left panel: case e, < e < es.
Bottom-right panel: case e > es.

sufficiently close to extremality (see diamond point P and region bounded by the
horizontal line to the right of P and the minimal onset curve). The onset of the
instability translates into the yellow curve P« in the top-left panel of Fig. 4.2.2 and
RN BHs below this onset curve P« (and above the extremal horizontal straight line
OPa) are unstable. Hairy BHs exist inside the region bounded by the closed curve
Paf. They merge with RN BHs at the onset Pa of the instability and they extend for
lower masses all the way down to the blue dashed line P where they terminate

at finite entropy and zero temperature because the Kretschmann curvature at the
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horizon blows up. They are also constrained to be to the left of the red dashed
line af because the horizon of the hairy BH must fit inside the cavity with unit
normalized radius. Note that for this window of e there is no dialogue between
the hairy boson star and the hairy BH families.

A representative example of a black hole bomb system with a charge e = 1 in this

window ey, < e < ey will be discussed in detail in section 4.4.1 and Fig. 4.4.1.

3. ey < e < e~ 1.854 £0.0005. The phase diagram Q-AM of solutions for this
window is sketched in the top-right panel of Fig. 4.2.2. Besides the main/pertur-
bative family OABC'- - - of boson stars (black line), the system now has the sec-
ondary/non-perturbative family Sabc- - - of boson stars (magenta line) and there
is a gap Aa between these two families. Precisely at e,, this gap Aa is the largest
and the non-perturbative boson star family reduces to a single point 8 on top of
the red-dashed line (i.e. it coincides with point v in right panel of Fig. 4.2.1). As e
grows beyond e, the gap Aa decreases and it vanishes precisely at e = e. where
the two ground state soliton families merge into a single one (as discussed in the
previous chapter). As before, hairy BHs exist in the region enclosed by the closed
line Paf with the yellow curve Pa being again the instability onset curve where
the scalar condensate vanishes and hairy BHs merge with the RN BH family. As be-
fore, the hairy BHs also extend for smaller masses all the way down to the singular
blue dashed line P where the Kretschmann curvature at the horizon diverges.
But this time, this singular curve P35 = P « j3 splits into two segments. Hairy BHs
terminating in the trench Px do so at finite entropy and zero temperature, as all
the hairy BHs with e < e.. However, hairy BHs terminating at the trench %/ do so at
zero entropyand unbounded temperature. In such a way that in the 9-AM phase
diagram, this hairy BH trench % coincides with the secondary/non-perturbative
soliton (magenta line between x and ). In this sense, we can say that hairy BHs
with large charge (Q > Q,) terminate on the non-perturbative soliton. This point
* coincides with § in the limit e — e, and it diverges away from /3 as e moves away

from e towards e.

A representative example of a black hole bomb system with a charge e = 1.85 in
thiswindow e, < e < e.willbe discussed in detail in section 4.4.2 and Figs. 4.4.2—4.4.4.

4. e. < e < e = % ~ 2.221. The phase diagram Q-AM of solutions for this win-
dow is sketched in the bottom-left panel of Fig. 4.2.2. At e = e. the perturbative
and non-perturbative boson star families merge and for e > e. the boson star
ground state is always the perturbative family Of (black curve) that extends from
the origin to the red dashed line. There is also a secondary family of boson stars
---CBbc--- (purple curve) but it is not the ground state family and it plays no role
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in the description of hairy BHs for this window of charges.

Hairy BHs exist inside the closed line Pa/3. Again, the yellow curve Pa is the in-
stability onset curve where hairy BHs merge with the RN BH family. The hairy BHs
extend for smaller masses all the way down to the singular blue dashed line P x 8
where the Kretschmann curvature at the horizon diverges. Hairy BHs terminating
in the trench Px do so at finite entropy and zero temperature, while hairy BHs ter-
minating at the trench x5 do so at zero entropy and unbounded temperature. In
the Q-AM phase diagram, this hairy BH trench x5 coincides with the perturba-
tive soliton (black line between * and f). In this sense, hairy BHs with large charge
(Q > Q,) terminate on the perturbative soliton. As e increases above e., points
P and * move to the left of the phase diagram, i.e. to lower values of Q and they

approach the origin O as e — es.

A representative example of a black hole bomb system with a charge e = 2 in this

window e, < e < es will be discussed in detail in section 4.4.3 and Figs. 4.4.5—4.4.7.

. € > es. The phase diagram Q-AM of solutions for this window is sketched in the

bottom-right panel of Fig. 4.2.2. Precisely at e, the slope dAM/dQ of the main/
perturbative boson star family (black curve O ) vanishes at the origin and fore > e,
perturbative boson stars always have AM < 0. Not less importantly, at and above
es, all extremal RN BHs are unstable, i.e. point P seen in the plots for e < e hits
the origin O. Consequently, hairy BHs now exist for all values of Q (that can fit
inside the cavity), i.e. in the 2-dimensional region with boundary Oaf. And, for
any Q, hairy BHs bifurcate from RN at the instability onset O« (yellow curve) and
extend for smaller masses till they terminate — with zero entropy, and divergent
temperature and Kretschmann curvature — along a curve (blue dashed line) that

coincides with the boson star curve O (black curve).

Arepresentative example of a black hole bomb system with a charge e = 2.3 in this
window e > es will be discussed in detail in section 4.4.4 and Figs. 4.4.8—4.4.10.

In the summary above we alluded to points in the phase diagram where the solution has

zero entropy and unbounded temperature. Classically, for example in Schwarzschild

spacetime, when the black hole shrinks to zero entropy, it also does so with an un-

bounded temperature, this corresponds to a naked curvature singularity (and the space-

time becomes Minkowski). Therefore we will interpret our zero entropy, unbounded

temperature solutions in the same way, as a naked curvature singularity (note that the

Kretschmann curvature invariant also blows up here, as we will show in the main text).

Further support for this physical interpretation is Independently of e, a universal prop-

erty of hairy BHs is that, when they coexist with boxed RN BHs, they always have higher
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entropy than the boxed RN BH with the same quasilocal mass and charge. That is to say,
in the phase space region where they exist, hairy BHs are always the dominant phase
in microcanonical ensemble. Moreover, hairy BHs are stable to the superradiant mode
that drives the boxed RN BH unstable. It follows from these observations and the second
law of thermodynamics that the endpoint of the superradiant/near horizon instability
of the boxed RN BH, when we do a time evolution at constant mass and charge, should
be a hairy BH. It would be interesting to confirm this doing time evolutions along the
lines of those done in [132, 133, 134].

The present work can be seen as the final study of a sequence of works on the charged
black hole bomb system. Ref. [40] started by studying the linear superradiant and near-
horizon instabilities of the boxed RN BH. This identified the zero-mode and growth rates
of these instabilities. The hairy boson stars and hairy BHs were found within perturba-
tion theory in [43]. As expected, this perturbative analysis is valid only for small con-
densate amplitudes and small horizon radius and thus it is able to capture only small
energy/charge hairy solutions. Therefore, for the solitons, the perturbative analysis can
capture the main or perturbative boson star family at small mass/charge. But it misses:
1) the existence of the Chandrasekhar limit and cusps of this family, 2) the existence of
the secondary or non-perturbative boson star family, and 3) it misses the existence of
two important critical charges e, and e, where the non-perturbative soliton starts exist-
ing and merges with the perturbative family. These properties were only identified once
the Einstein—Maxwell—Klein-Gordon equation was solved fully non-linearly in [2]. On
the other hand, the perturbative analysis of [43] also finds the hairy BHs that, for e > e,
are perturbatively connected to a Minkowski spacetime with a cavity. By construction,
these perturbative hairy BHs reduce, in the zero horizon radius limit, to the boson star of
the theory. However, the perturbative analysis of [43] says nothing about the hairy BHs
of the theory when e < es. In the present chapter, we fill this gap.

In the introduction we already mentioned that the potential barrier that confines the
scalar condensate in our boxed or black hole bomb system might be a good toy model
for other systems with potential barriers that provide confinement. In particular, we
find that the phase diagram of hairy boson stars and BHs in the black hole bomb sys-
tem is qualitatively similar to the one found for asymptotically anti-de Sitter solitons
[46, 45, 110, 44, 93, 47, 111, 39]. In this latter case, the AdS boundary conditions act as a
natural gravitational box with radius inversely proportional to the cosmological length
that provides bound states. In this sense, our work also complements and completes
previous AdS studies since the existence range of the secondary/non-perturbative bo-
son star family, its merger with the main/perturbative soliton at e = e., and the fact that
hairy BHs can also terminate on this soliton family for e, < e < e. was not established
in detail in [46, 45, 110, 44, 93].
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4.3 Setting up the black hole bomb boundary value problem

The setup of our problem was already discussed in the perturbative analysis of the prob-
lem in [43]. Here, to have a self-contained exposition, we discuss only the key aspects
needed to formulate the problem and the strategy to compute physical quantities with-
out ambiguities. We ask the reader to see [43] for details.

4.3.1 Einstein-Maxwell gravity with a confined scalar field

We already described Einstein-Maxwell theory with a confined scalar field in section 3.3.
We want to find black hole solutions of (3.3.1) that are static, spherically symmetric and
asymptotically flat. U(1) gauge transformations allow us to work with a real scalar field
and a gauge potential that vanishes at the horizon. Further choosing the Schwarzschild
gauge, an ansatz with the desired symmetries is then

ds? = —f(r)dt* + g(r)dr® +72dQ3,  A,dat = A(r)dt, d=¢' =¢(r), (431

with d©Q2 being the metric for the unit 2-sphere (expressed in terms of the polar and
azimuthal angles z = cosf and ¢). The scalar field is forced to be confined inside a
box of radius L. The system then has a scaling symmetry that allows us to normalize
coordinates (T' = t/L, R = r/L) and thermodynamic quantities in units of L, and place
the box at radius R = 1 [43].

In these conditions, the equations of motion that follow from (3.3.1) can be found in
the introduction, equations (1.4.24) after plugging in the algebraic relation for the field ¢
(1.4.28). These are a set of three ordinary differential equations for the fields f(R), A(R)
and ¢(R), and an algebraic equation that expresses g(R) as a function of the other 3 fields
and their first derivatives. Well-posedness of the boundary value problem requires that
we give boundary conditions at the horizon and asymptotic boundary of our spacetime.
Additionally, we must specify Israel junction conditions at the timelike hypersurface ¥ =
R — 1 = 0 where the box is located. Again, our hairy BHs have vanishing scalar field at
and outside this box, (R > 1) = 0.

The horizon, with radius R = R, = 3+ is the locus f(Ry) = 0. We have three second
order ODEs and thus there are six free parameters when we do a Taylor expansion about
the horizon. Regularity demands Dirichlet boundary conditions that set three of these
parameters to zero. We are thus left with only three constants fy, Ao, o (say) such that
the regular fields have the Taylor expansion around the origin:

f(Ry) = fo(R— Ry) + O((R— Ry)?),

(4.3.2)
A(Ry) = A)(R— Ry) + O((R—Ry)?),  ¢(Ry) = ¢o+ O((R— Ry)?).
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The boundary conditions at the asymptotic boundary of our spacetime are no different

from those described for the soliton.

In these conditions, hairy BHs of the theory are a 2-parameter family of solutions that
we can take to be the horizon radius R and the value of the (interior) derivative of the
scalar field at the box, e = ¢/ ™| _.

As mentioned in section 4.2, it follows from Birkhoff’s theorem that in the asymptotic
region our solutions are necessarily described by the RN solution. Therefore, the ADM
mass M and charge @) cannot be used to distinguish the several solutions of the theory.
It is thus natural to instead use the Brown-York quasilocal mass M and charge Q, mea-
sured at the box, to display our solutions in a phase diagram of the theory [112]. From
section II.C of [43], the Brown-York quasilocal mass and charge contained inside a 2-

sphere with radius R = 1 are (G = 1)?

_ 1 _ R?A|(R)
M/L =R (1 g(R)) )Rzl, Q/L = NI ‘R:r (4.3.3)

The thermodynamic description of our solutions is complete after defining the chemical
potential, temperature and entropy:

pw=A(1)—A(Ry), TyL = lim f'(R)

By dmy/f(R)g(R)

where we work in the gauge A(R;) = 0. These quantities must satisfy the quasilocal

S/L* = nR%, (4.3.4)

form of the first law of thermodynamics:
dM =Ty dS + pdQ, (4.3.5)
which is used to check our solutions.

As explained before, for reference we will often compare the hairy families of solutions
against extremal RN BHs. RN BHs confined in a cavity can be parametrized by the hori-
zon radius R and the chemical potential y, and their quasilocal mass and charge are
[43]

V20 -Ry)
V2— (2R,

where 0 < R, < 1 (for the horizon to be confined inside the box) and 0 < 1 < fext,

_ plRy
V2y/2 - (2 - )Ry

M/L[py =1 . QL Ly (4.3.6)

with extremality reached at piext = V2. Note that at extremality one has M/L = R,
and Q/L = R, /+/2. On the other hand, for any y, when R, = 1 one has M/L = 1 and
Q/L =212

’The Brown-York quasilocal quantities reduce to the ADM ones when we evaluate the formerat R — oc.
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The strategy to find the hairy BHs of the theory can now be outlined. The hairy solu-
tion inside the box is found integrating numerically the coupled system of three ODEs
in the domain R € [R4, 1]. This is done while imposing the boundary conditions (4.3.2)
at the horizon and, at the box, we impose ¢(17) = 0 and use the scaling symmetry (3.3.5)
to set f(17) = 1. After this task, we can compute the quasilocal charges (4.3.3) and the
other thermodynamic quantities (4.3.4) of the system. To find the solution in the full
domain R € [R;,oo] we impose the three junction conditions (3.3.15a)-(3.3.15¢) at the
box to match the interior solution with the outer solution (described by the RN solu-
tion (3.3.6)). This operation finds the parameters M, C4, p in (3.3.6) as a function of the
reparametrization freedom parameter N introduced in (3.3.14). The Israel stress tensor
S isjusta function of N and, if ¢ # 0, we cannot choose N to kill all the components of
S! (there are two non-vanishing components, Sf and S§ = S%). In this process, we have
arbitrary freedom to choose N. This simply reflects the freedom we have to select the
energy-momentum content of the box needed to confine the scalar condensate. We
should however, make a selection that respects some or all the energy conditions [5].
Once this choice is made, we can finally compute the ADM mass and charge (3.3.7) of
the hairy solution which, necessarily, includes the contribution from the box.

4.3.2 Numerical scheme

The hairy BHs we seek are a 2-parameter family of solutions, that we can take to be the
horizon radius R4 and the scalar field amplitude € = ¢/(R = 1) as defined in (3.3.12). In
practice, we set up a two dimensional discrete grid where we march our solutions along
these two parameters. In other words, we give R, and ¢ as inputs of our numerical
code, and in the end of the day we read the horizon parameters fy, Ao, ¢o in (4.3.2), and
the values of the derivative of f and the value of A and its derivative at the box, R = 1.
Typically, we start near the merger with the RN BH where a good seed (approximation)
for the Newton-Raphson method we use is the RN BH itself but with a small perturbation
that also excites the scalar field.

We find it convenient to introduce a new radial coordinate

_ R-R,

= 4.3.7
A (43.7)

Y

so that the event horizon is at y = 0 and the box at y = 1. The equations of motion now
depend explicitly on R.

Moreover, we also find useful to redefine the fields as

f=valy), A=yaqy), ¢=—(1-y)ay) (4.3.8)
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which automatically imposes the boundary conditions (4.3.2) at the horizon. We now
use the scaling symmetry (3.3.5) to set f(17) = 1 and introduce the scalar amplitude
(3.3.12) at the box. This can be done through imposing the boundary conditions

(1) =1, g3(1) = e (4.3.9)

The other boundary conditions for ¢; 2 3 are derived boundary conditions in the sense
that they follow directly from evaluating the equations of motion at the boundaries y = 0
and y = 1 [104]. Under these conditions, the hairy BHs are described by smooth func-

tions ¢ 2,3 that we search for numerically.

To solve numerically our boundary value problem, we use a standard Newton-Raphson
algorithm and discretise the coupled system of three ODEs using pseudospectral col-
location (with Chebyshev-Gauss-Lobatto nodes). The resulting algebraic linear systems
are solved by LU decomposition. These numerical methods are described in detail in
the review [104]. Since we are using pseudospectral collocation, and our functions are
analytic, our results must have exponential convergence with the number of grid points.
We check thisis indeed the case and the thermodynamic quantities that we display have,
typically, 8 decimal digit accuracy. We further use the quasilocal first law (4.3.5) (typically,
obeyed within an error smaller than 1073%) to check our solutions.

4.4 Phase diagram of the charged black hole bomb system

The properties of the hairy black holes of the charged black hole bomb system are
closely linked to the superradiant/near-horizon instability of RN black holes?, so we first
highlight some features of this instability to provide the context needed to interpret the
hairy black hole phase diagram (see [40] for details).

In the left panel of Fig. 4.2.1 we sketch (from [40]) the scalar field instability onset charge
€onset = QGonset L @s a function of R, for three families of RN black holes with constant
chemical potential y, i.e. the minimum scalar charge needed fora black holewith (R, )
to be unstable. We can see that the near-horizon charge ey is a lower bound for an RN
instability, i.e. caged RN BHs are always stable when e < ey;. Correspondingly, we also
find no hairy black holes when e < eyy. At the other end, all extremal RN black holes, no
matter their R, are unstable at or above the superradiant charge es. In between these
two critical charges eyy < e < es we have awindow of horizonradii Ry € [Ry|p, 1] within
which sufficiently near-extremal RN black holes are unstable. In equivalent words, for
exs < e < es, extremal RN BHs are unstable for quasilocal charges in the range Q/L €

[(Q/L)|p, 2*%]. In the upcoming phase diagrams we will indicate the instability onset

3For a general RN black hole the superradiant and near-horizon instabilities are entangled, so we will
simply refer to an RN instability, regardless of the origin.
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curve as ayellow curve Pa and, when applicable, we will also use a gold diamond point P
to identify the minimum charge for instability. The onset curve starts at point P where it
intersects the extremal RN curve and terminates at point a with Q/L = 273 (ie. Ry =1)

where it intersects again the extremal RN curve.

In all our plots M and Q are the Brown-York quasilocal mass and charge (4.3.3) of the
system, measured at the location of the box. Different solutions tend to pile up in cer-
tain regions of the Q-M diagram (as illustrated in Fig. 4.4.8). Thus, the distinction be-
tween different solutions becomes clearer if we use instead AM = M —M|_, - which
is the quasilocal mass difference of a hairy solution with an extremal RN that has the
same quasilocal charge Q. Thus, in our @-AM plots, the horizontal orange line Oa with
AM = 0 describes the extremal RN BH. It is constrained to have Q/L < 2-32 (point @) in
order to fit inside the box (this extremal line will be represented by a dark red line in the

3-dimensional plots Q-AM-S).

From the RN quasilocal charges (4.3.6), in the quasilocal @ — M plot, the region that
represents RN BHs with horizon radius inside the box is the triangular surface bounded
by the lines @ = 0, M = v/2Q and M/L = 1. Therefore, in the Q@ — AM plane, non-
extremal RN BHs with Ry < 1 are those inside the triangular region bounded by Q = 0,
AM =0and AM/L =1 —+/2Q/L. The boundary Q = 0 describes the Schwarzschild

limit, AM = 0 is the extremal RN boundary and the latter curve is

R
(Q/L, AM/L) = (L71Q|  gas 1 = L7 M ) = (\/g» 1 - R+) (4.4.1)
where M ‘ext RN and Q’ext Ry ar€ given by (4.3.6) with it = fieyx; = v/2. The red dashed line

in the forthcoming Q@ — AM plots is this parametric curve (4.4.1) with R, allowed to take
alsovalues above 1. Indeed, it turns out that the most charged solutions we find approach
this dashed red line (4.4.1) (in the limit where scalar condensate amplitude approaches
infinity). In this sense, for a given quasilocal mass (smaller than 1), this red dashed line
(4.4.1) represents the maximal quasilocal charge that confined solutions can have, with
or without scalar hair.

As discussed in our summary of results (section 4.2), the charged black hole bomb sys-
1

es = % ~ 2.221 discussed above, the two others are e, ~ 1.13 and e, ~ 1.8545 £ 0.0005.

Accordingly, the phase diagram of hairy boson stars and hairy black holes depends on

tem has a total of four critical scalar field charges. Besides ey, =

the value of e compared to these four fundamental critical charges of the system. Thus,
in the next subsections, we describe the properties of hairy solutions in the following
four windows of scalar field charge: D) eyy < e < ey, 2) ey, < e < €. 3)e. < e < e,
and 4) e > es. For concreteness, we will display results for a representative value of e for

each one of these windows, namely: 1) e = 1 (section 4.4.1), 2) e = 1.85 (section 4.4.2), 3)
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e = 2 (section 4.4.3), and 4) e = 2.3 (section 4.4.4). Altogether, these results (and others

not presented) will allow us to extract the conclusions summarized in section 4.2.

00 01 02 03 04 05 06 ’
Q/L ~0.0

Figure 4.4.1: Phase diagrams for Einstein-Maxwell theory with a scalar field charge e =1
(exn < € < e4) in a Minkowski box. Left panel: Quasilocal mass difference AM/L as
a function of the quasilocal charge Q/L. The black disk curve is the main/perturbative
soliton family, the orange line is the extremal RN BH (RN black holes exist above it), and
the blue circles describe hairy black holes. The yellow curve is the superradiant onset
curve of RN (just above but very close to the extremal RN curve with the two merging at
P and o). It agrees with the hairy solutions in the limit where these have ¢ = 0 (no scalar
condensate) and thus merge with RN family. The red dashed line with negative slope
signals solutions with AM/L =1 — /2Q/L i.e. black holes with horizon radius R, = 1
(above this value they do not fit inside the cavity). Right panel: Dimensionless entropy
S/L? as a function of the quasilocal charge and mass difference. RN BHs are the two pa-
rameter red surface with extremality described by the 1-parameter curve AM = 0 (dark
red). The instability onset is described by the yellow curve (very close to extremality) and
RN between these two curves are unstable. When they coexist with RN BHs, for a given
(Q, M) /L, hairy BHs (blue dots) always have more entropy than RN, i.e. they dominate
the microcanonical ensemble. For ey; < e < e,, hairy BHs terminate at an extremal BH
(i.e. with zero temperature) and finite entropy (and divergent horizon curvature). The
soliton (black dots) with zero entropy is also shown.

4.41 Phase diagram forey, <e <e,

The left panel of Fig. 4.4.1 is the phase diagram Q-AM for e = 1, representative of the
range eyy < e < e,. The black disk curve describes the only family of boson stars of the
theory for this (range of) e which is the main/perturbative family. This corresponds to the
black curve OABC'- - - (already present for e < eyy) with its Chandrasekhar limit A and a
series of cusps A, B, C, - - - and associated zig-zagged branches sketched in the top-left
panel of Fig. 4.2.2. The properties of this boson star were already studied in much detail
in the previous chapter therefore we do not expand further. Our interest here are the
hairy BHs.
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The horizontal orange curve OPa with AM = 0 is the extremal RN BH family with
Q/L < 9-7 and boxed non-extremal BHs exist above this line and to the left of the
red dashed line (4.4.1) to fit inside the cavity, as detailed above. The yellow curve Pq, that
intersects and terminates at the extremal RN curve precisely at P and «, describes the
instability onset curve of RN BHs as computed using linear analysis in [40]. It coincides
with the merger line of hairy BHs with RN BHs, as it had to. Indeed, recall that hairy BHs
can be parametrized by their horizon radius R, and the scalar field amplitude e. When
e = 0 we recover the 1-parameter family Pa of RN BHs at the onset of the instability. RN
BHs are unstable below this onset curve P« all the way down to the horizontal extremal
line also labelled Pa. This region is extremely small for this value of e but it will be wider

as e increases.

Hairy BHs (blue circles) exist inside the closed line Paj. That is, they exist below the
onset curve Pa and to the left of the red a3 dashed line (4.4.1), all the way down till
they reach a line P58 where the Kretschmann curvature scalar evaluated at the horizon
Kly = RabcdR“de‘ R, 8rOWs large without bound. This occurs at finite R4 and thus at
finite entropy S/L? = wR%, and the temperature vanishes along this boundary curve
Pp. The entropy is however not constant along this singular extremal boundary curve
(in practice, the last curve we plot has R4 = 0.1 but it should extend a bit further down
in the region close to a3). We typically find that lines of constant R, extend all the way
to the red a3 dashed line (4.4.1), but the latter is only reached in the limit ¢ — co. This
makes it harder to extend our solution to regions even closer to af (a fixed step in €
corresponds to an increasingly smaller progression in Q as af is approached). Hairy
BHs do not exist for Q < Q|p, in agreement with the linear analysis of the left panel of
Fig. 4.2.1, and there is clearly no relation between the hairy BHs and the boson star of the

theory when e = 1 and, more generically, for eyy < e < e,

Because point P does not coincide with the origin O, hairy BHs with eyy < e < e, were
not found in the perturbative analysis of [43]. Indeed, this perturbative analysis only
captures hairy BHs that have small mass and charge.

The right panel of Fig. 4.4.1 plots the same phase diagram as the left panel but this time
with the entropy S/L? on the extra vertical axis. The latter is the appropriate thermody-
namic potential to discuss the preferred thermal phases of the microcanonical ensem-
ble: for a given quasilocal mass M /L and charge Q/L fixed, the dominant phase is the
one with the largest entropy. The red surface represents (a subset?) of RN BHs, both sta-
ble and unstable with the boundary line of stability being again the yellow dotted curve,
here very close to the extremal RN BH (dark red with AM = 0). In the S = 0 plane
we find the perturbative boson star (black curve). The blue dots fill the 2-dimensional

*We just plot the portion of the RN surface with AM < 0.085 that covers the region where the boson
star also exists.
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surface that describe hairy BHs (which merge with RN along the yellow line). Again we
see (not very clearly but it will be more clear for higher e) that hairy BHs coexist with RN
black holes in the region between the onset and extremal RN curves. In this case, we
find that hairy black holes always have a larger entropy than the corresponding RN BHs
with same M/L and Q/L. So they are the thermodynamically preferred phase in the

microcanonical ensemble.

Hence, it follows from the second law of thermodynamics that hairy BHs with (Q, M)
between the RN onset and extremality curves are natural candidates for the endpoint of
the RN superradiant/near-horizon instability when we do a time evolution of the insta-

bility where we preserve the mass and charge of the system.

4.4.2 Phase diagram fore, <e <e,
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Figure 4.4.2: Phase diagram for Einstein theory with a scalar field charge e = 1.85
(e4 < e < e) in a Minkowski box. The blue circles describe hairy black holes, the black
disk (magenta circle) curve is the soliton main (secondary) family, and the orange line is
the extremal RN BH (non-extremal RN BHs exist above it). The yellow curve is the super-
radiant onset curve of RN. As it could not be otherwise, it agrees with the hairy solutions
in the limit where these have ¢ = 0 and thus merge with RN family. The dashed vertical
line is at Q = 2~/2 which is the maximum local charge that an extremal RN BH can have
while fitting inside a box with radius R = 1. The red dashed line (4.4.1) describes the
boundary for black holes that can fit inside the cavity with radius R = 1. The green solid
square labelled with a star (x) has (Q,, M,, AM,) ~ (0.545,0.678, —0.093). The auxiliary
blue dotted curve P« 3 in the bottom describes the line where hairy BHs terminate with
unbounded horizon curvature. Hairy BHs that terminate in the trench Px of this auxil-
iary curve do so at finite entropy and vanishing temperature. On the other hand, hairy
BHs that terminate in the trench segment x£ (that coincides with magenta soliton line)
do so at zero entropy and large (possibly unbounded) temperature.

In Fig. 4.4.2 we display the phase diagram when e = 1.85, which is representative of the
range e, < e < e, that we sketched in the top-right panel of Fig. 4.2.2. As a first ob-
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Figure 4.4.3: Kretschmann curvature at the horizon (left panel) and temperature (right
panel) as a function of the entropy (S/L? = wR?) for several hairy BH families with con-
stant scalar amplitude € and scalar field charge e = 1.85 (e, < e < e.).

servation we note that, besides the main or perturbative boson star family (black curve)
already present for e < e, the diagram now also has the magenta line that starts at finite
Q, passes though point %, and terminates at point 5 on the red dashed line. This is the
secondary or non-perturbative family of boson stars. On its left side, this family has itself
a series of cusps and zig-zagged secondary branches denoted as B, C, - - - in the sketch
of the top-right panel of Fig. 4.2.2 (not displayed in Fig. 4.4.2). These details are not rel-
evant here, and we ask the reader to see part III for an exhaustive study of boson stars’
properties. It is however important to emphasize that this secondary/non-perturbative
family exists (as a ground state family) only for e, < e < e, thus explaining the origin
of the critical charges e, and e.. At e = e, the magenta line of Fig. 4.4.2 merges with the
black line (see section 4.4.3). On the other hand, as we decrease e below e, one finds that
the gap AQ between the black and magenta families increases, and the “length” of the
magenta line decreases because the left endpoint of this curve approaches j. It keeps
doing so till it only exists on a very small neighbourhood of the red dashed line and, at
e = e,, this line shrinks to the single point 3. Below e,, the non-perturbative family
ceases to exist (as seen in section 4.4.1). Essentially because it no longer fits inside the
cavity. This discussion is better illustrated in the right panel of Fig. 4.2.1: 1) if we collect
all non-perturbative solitons in a single plot, we find that they exist only in the window
ey < e < e. and they fill the area bounded by the auxiliary dashed lines a.f.7; 2) very
close to e. the non-perturbative soliton is almost on top of the auxiliary curve a.f.; and
3) on the opposite end, as e — e, the perturbative soliton line shrinks to the point v on
the red dashed line.

What are the consequences of these boson star discussions for the hairy BHs? Hairy BHs
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Figure 4.4.4: Entropy as a function of the quasilocal charge and mass difference for Ein-
stein theory with a scalar field charge e = 1.85 (e, < e < e.) in a Minkowski box. The red
surface represents RN BHs in the range 0 < AM < 0.02 (they extend for higher AM)
with the dark red line with AM = 0 being the extremal RN BH family. The yellow line
describes the merger line between RN BHs and hairy BHs, and RN BHs between this line
and the dark red extremal line are unstable. The blue disks describe hairy BHs and the
black (magenta) lines with S = 0 describe the main (secondary) soliton family. When
they coexist with RN BHs, for a given (Q, M)/L, hairy BHs always have more entropy
than RN, ie. they dominate the microcanonical ensemble.

with e = 1.85 are the blue circles in Fig. 4.4.2. As before, they exist in the area bounded by
Paf, where Pa is the merger yellow line with RN BHs and coincides with the instability
onset curve of [40], and af is a segment of the red dashed line (4.4.1). Starting at the
onset curve Pa and moving down, e.g. along constant Q lines, we find that that hairy
BHs terminate at the line Pj (or P % (). This is the blue dashed line in Fig. 4.4.2 which
describes hairy BHs with minimum entropy/horizon radius for a given charge. Along
this line, the Kretschmann curvature scalar evaluated at the horizon K|y grows very
large (most probably, K|z — o). To illustrate this, in the left panel of Fig. 4.4.3 we plot
K|y as a function of the entropy S/L? = mR? as we approach the line P3 (at small )
along curves of constant scalar amplitude e (shown in the legends). Indeed, for small
S/L? the curvature is growing very large.

So far the phase diagram of hairy BHs looks similar to the one for ey < e < ey (sec-

tion 4.4.1). However, for e, < e < e, we now find that the way hairy BHs terminate
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along the singular curve differs substantially depending on whether it ends to the left
or to the right of the green square point  in Fig. 4.4.2 (with Q,/L ~ 0.545 for e = 1.85).
When the hairy BHs terminate along P, they do so at finite entropy and vanishing tem-
perature. On the other hand, hairy BHs that terminate along x5 do so at vanishing en-
tropy and large (possibly unbounded) temperature. To illustrate this, in the right panel
of Fig. 44.3 we plot the temperature T'L as a function of the entropy S/L? = nR2 as
we follow hairy BH families that approach the singular line Pg at (different; see legends)
constant scalar amplitude e. Point x has (Q,, AM,) ~ (0.545, —0.093) which corresponds
to (R4, €) ‘* = (0,1.55+0.05). Hairy BHs with € < ¢, terminate at Px, while hairy BHs with
€ > ¢, end at 4. The right panel of Fig. 4.4.3 indeed shows that hairy BHs with ¢ < ¢,
approach P« at finite S/L? and with TL — 0 (like all hairy BHs of section 4.4.1), while
those with € > ¢, approach x8 with § — 0 and T'L — oc.

Anotherimportant conclusion that emerges from Fig. 4.4.2, is that hairy BHs which have a
zero horizon radius limit terminate precisely along the segment /3 of the secondary/non-
perturbative soliton family. This means that hairy BHs terminate with the same Q and
M as the non-perturbative soliton (but the gravitoelectric and scalar fields of the two
solutions are different). On the other hand, those that end at Px do so in a manner that
is very similar to the way the hairy BHs with ey < e < e, terminate (section 4.4.1).

We find that the critical charge Q. (e) decreases as e grows from e, till e.. As explained
when discussing the right plot of Fig. 4.2.1, the non-perturbative soliton line shrinks to
the point S when e — e,. Thus, our expectation is that the critical charge Q, also reaches
Q| 5 when e — e That is to say, we expect that hairy black holes are connected to the
non-perturbative soliton as soon as it exists. However, determining numerically Q, in
this limit is very difficult, since hairy BHs near  have very large values of e.

The hairy BHs with e, < e < e, we find were not captured by the perturbative analysis
of [43] because they do not extend to arbitrarily small mass and charge.

In Fig. 4.4.4, we plot the thermodynamic potential of the microcanonical ensemble — the
entropy S/L? — as a function of Q and AM. In the S = 0 plane we find the perturbative
boson star (black curve) and, for larger Q and after a gap, the non-perturbative boson star
(magenta curve). As before, the red surface describes the RN BH family parametrized by
Ry and pasin (4.3.6) and with §/L? = wR%. It terminates at the dark red extremal curve
with AM = 0. We only plot the portion of the RN surface with AM < 0.02 that cov-
ers the region where the perturbative boson star also exists. Unstable RN BHs are those
between the instability onset (yellow dotted curve) and the extremal RN dark red curve.
The blue dots fill the 2-dimensional surface that describes hairy BHs. It merges with RN
BHs along the yellow dotted curve and then extends to lower AM with an entropy that
is always larger the the RN BH with the same Q and M (when they coexist). Therefore,
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hairy BHs are the thermodynamically dominant phase in the microcanonical ensemble.
Consequently, from the second law of thermodynamics, hairy BHs with (Q, M) between
the RN onset and extremality curves are candidates for the endpoint of the RN superra-
diant/near-horizon instability when in a time evolution of the RN instability at constant

mass and charge.

4.4.3 Phase diagram fore. <e < ¢

In Fig. 4.4.5 we give the phase diagram for e = 2. This is the case we choose to illustrate
the solution spectra in the range e, < e < e, that we sketched in the bottom-left panel
of Fig. 4.2.2. Comparing with the diagram of Fig. 4.4.2 we immediately notice that the
magenta line representing the non-perturbative soliton family is no longer present in
Fig. 44.5. This is because at e = e, the perturbative and non-perturbative boson star
families (i.e. the black and magenta lines of Fig. 4.4.2) merge and for e > e. the main
or perturbative boson star family no longer has a Chandrasekhar mass limit and now
extends from the origin O all the way to § in the red dashed line. This merger at e,

occurs in an interesting elaborated manner. In particular, going back to top-right sketch
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Figure 4.4.5: Phase diagram for Einstein theory with a scalar field charge e = 2 (e, <
e < es) in a Minkowski box. As before, the blue circles describe hairy black holes, the
black disk curve is the soliton main family, and the orange line is the extremal RN BH
(RN black holes exist above it). The gray and red dashed curves have the same interpre-
tation as in Fig. 4.4.2. The green solid square labelled with a star (x) has (Q,, M., AM,) ~
(0.466, 0.659, —0.0886). The auxiliary blue dotted curve P 3 in the bottom describes the
line where hairy BHs terminate with unbounded horizon curvature. Hairy BHs that ter-
minate in the trench Px of this auxiliary curve have zero temperature (I = 0) and finite
entropy S/L = mR%. On the other hand, hairy BHs that terminate in the trench segment
*[3 (that coincides with the black soliton line) have zero entropy and large (possibly un-
bounded) temperature. Note that these /3 terminal hairy BHs have the same (Q, AM)
as the main soliton family with @ > Q,.
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of Fig. 4.2.2, at e = e, the secondary zig-zagged branches - -- CBA of the perturbative
(black) soliton also merge with the secondary zig-zagged branches abc- - - of the non-
perturbative (magenta) soliton. As a consequence, for e > e, there is also a secondary
soliton - -+ CBbc- - - (purple line in bottom-left of Fig. 4.2.2) that has higher energy than
the perturbative (black) soliton PS. This secondary family is not displayed in Fig. 4.4.5
because it plays no role on the discussion of hairy BHs of the theory. The reader can find

a detailed discussion of soliton’s properties across the transition at e = e, in [2].

Since the colour code and associated labelling in Fig. 4.4.5 is the same as in Figs. 4.4.1
and 4.4.2 we can now immediately discuss the hairy BHs. Again they exist in the area
enclosed by Pag filled with the blue circles. They merge with the RN family along the
yellow dotted line Pa when the scalar condensate vanishes, which agrees with the RN
instability curve found in [40]. The hairy BHs then exist all the way down to the blue
dashed line Pg (or P ) which, for a given charge, identifies the hairy BH that has mini-
mum entropy/horizon radius. The Kretschmann curvature evaluated at the horizon K|y
diverges. For a given charge, P identifies the hairy BHs with minimum entropy/horizon
radius and K|y grows very large along it. This is confirmed in the left panel of Fig. 4.4.6:
as we approach Pf (at small S) along lines of of constant scalar amplitude ¢ (identified

in the legends), K |3 is growing very large.

Point » with charge Q, ~ 0.466 describes a transition point. Hairy BHs that end to the left
of this point along P do so at finite S with 7" — 0. However, one has S — 0 and 7" — oo
when the hairy BHs terminate along 3 with Q@ > Q,. This is confirmed in the right
panel of Fig. 4.4.6 where we plot the temperature T'L as a function of the entropy S/L? =
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Figure 4.4.6: Kretschmann curvature at the horizon (left panel) and temperature (right
panel) as a function of the entropy (S/L? = 7R?2) for hairy BH families with fixed € and
scalar field charge e = 2 (e, < e < e).
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mR% aswe follow different families of constant scalar amplitude hairy BHs that approach
the singular line P3. Point x has (Q,, AM,) ~ (0.466,—0.0886) which corresponds to

(R4, e)‘* = (0,1.175 £ 0.005). Hairy BHs with ¢ < ¢, have Q < Q, and terminate at Px,
while hairy BHs with € > ¢, have Q > Q, and end at xf.

From Fig. 4.4.5 and the right panel of Fig. 4.4.6, it should not go without notice that the
hairy BHs that have a zero horizon radius limit terminate along the trench /3 of the
perturbative soliton family. That is, when the hairy BHs have zero entropy, they have
the same charge Q and mass M as the perturbative soliton. In a nutshell, hairy BHs
with e, < e < es have a behaviour that is qualitatively similar to those of e, < e < e,
(section 4.4.2). However, the zero entropy BHs now terminate on top of the perturbative
soliton in the Q- M phase diagram instead of ending on the non-perturbative soliton
(which is now an excited solution - - - CBbc - - - in the bottom-left panel of Fig. 4.2.2). We

also find that the critical charge O, (e) decreases and approaches Qp as e grows from e,
to es. Moreover, we find that 9, — Op =+ 0ase — es.
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Figure 4.4.7: Entropy as a function of the quasilocal charge and mass difference for Ein-
stein theory with a scalar field charge e = 2 (e, < e < e5) in a Minkowski box. When they
coexist with RN BHs, for a given (Q, M)/L, hairy BHs always have more entropy than
RN, ie. they dominate the microcanonical ensemble. For e, < e < es, when Q > Q,(e),
hairy BHs have a zero entropy limit where they coincide with the soliton (black disk)
curve in the sense that they have the same (Q, M)/L as the soliton (the temperature
and horizon curvature diverges). However, when 0 < Q < Q,(e), hairy BHs terminate
at an extremal BH (i.e. with zero temperature) and finite entropy (and divergent horizon
curvature) along a line that does not coincide with the black disk one for the soliton.
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Fig. 4.4.7, displays the phase diagram of the microcanonical ensemble for e = 2: the
entropy S/L? as a function of Q and AM. The colour code of this diagram is the same
as Fig. 4.4.4. Because ¢ is bigger than the cases considered before, we see that the region
between the onset yellow curve and the extremal RN dark red curve where RN BHs are
unstable is now quite visible. Again we find that the hairy BHs (blue circles) that bifurcate
from the yellow onset curve always have higher entropy that the RN BHs with the same
(Q/L, M /L) when they coexist. It follows that also for e, < e < e, hairy BHs are the
preferred thermodynamic phase in the microcanonical ensemble. As expected from
Fig. 44.5, for Q > Q, ~ 0.466, the hairy BHs terminate with zero entropy on top of the
perturbative boson star (black curve).

It is natural to expect that the hairy BHs we find should be the endpoint of the RN insta-
bility if we perturb an RN BH in the unstable region (where they always coexist with hairy
BHs) and do a time evolution at constant charge and mass. The system would evolve to
a final configuration that is stable against the original perturbation while respecting the
second law of thermodynamics. Finally note that the hairy BHs with e, < e < es de-
scribed in this section were not studied in the perturbative analysis of [43] because the

latter can only capture solutions that have a zero mass and charge limit.

4.4.4 Phase diagram for e > ¢

The critical charge e = es = 75 ~ 2.221 is special for two main (related) reasons. First, it
is the minimal charge above which scalar fields can drive arbitrarily small extremal RN
BHs unstable via superradiance, as observed in the instability onset charge plot of the left
panel of Fig. 4.2.1. Indeed, the extremal onset curve e,,..(R+) reaches e = es as R4 — 0.
The value of es can be predicted analytically as done in Section III.A of [43]. For e > e,
we can also have near-extremal BHs unstable for arbitrarily small R, or, equivalently,
for arbitrarily small mass and charge.

This scalar charge es is also special because at e = es the slope of the perturbative soli-

SAM
0Q 19=0

always have (some) perturbative solitons with higher quasilocal mass than the extremal

ton at the origin vanishes, i.e. = 0. For e < e, this slope is positive and we

RN (for sufficiently small Q). On the other hand, for e > es the slope is always negative,

IAM

55" | o—o < 0. and thus perturbative solitons never coexist with RN BHs.

Ultimately as a consequence of these two properties, two important changes occur in the
phase diagram of Fig. 4.4.5 as we follow its evolution across es and land on Fig. 4.4.8. First,
the minimal charge for instability — that we have been denoting as Qp — approaches
zeroase — e; and Qp = 0 for e > e,. This is illustrated in Fig. 4.4.8 for the case e = 2.3.
Second, we find that the hairy BHs (blue circles inside O«a3) now always terminate on

top of the perturbative boson star (black line O3) as we move down, e.g. at constant Q,
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Figure 4.4.8: Phase diagram for Einstein theory with a scalar field charge e = 2.3 (e > )
in a Minkowski box. In the left panel we have the Q- M phase diagram: we see that
the solutions pile up and this is why we have instead been plotting the phase diagram
Q-AM (right panel). The blue circles describe hairy black holes, the black disk curve is
the perturbative soliton family and the orange line is the extremal RN BH (RN black holes
exist above it). The yellow curve is the superradiant onset curve of RN. As it could not be
otherwise, it agrees with the hairy solutions in the limit where these have ¢ = 0 and thus
merge with RN family. The gray and red dashed curves have the same interpretation as
in Fig. 44.2. For e > es, the zero entropy limit of the hairy BH is the soliton (black disk
curve) in the sense that they have the same (Q, M)/L as the soliton.

from the onset curve Oa. That is to say, one also has Q, = 0 for e > es. As hairy BHs
approach this perturbative soliton curve, the Kretschmann curvature at the horizon, the
entropy and temperature have the same behaviour as the one observed in Fig. 4.4.2 for
BHs terminating along x3: K|y — 00, S — 0and T — oo.

Since for e > es the hairy BHs exist all the way down to (Q, M) — (0, 0) one might expect
that their properties can be captured by a perturbative analysis (to higher orders) around
Minkowski space with gauge field in a box. This is indeed the case and such analysis was
performed in [43]. This is a double expansion perturbation theory with the expansion
parameters being the horizon radius R and the scalar amplitude e. Of course, here one
assumes that R, < 1and e < 1which translates into Q@ < 1 and M « 1. The analysis of
[43] culminates with explicit expansions for the thermodynamic quantities of the hairy
BHs, which are listed in (5.27) of [43]. In particular, the expansion for the quasilocal mass
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and charge are:

2 2
M/L = % (; + 2) + 3};; <7r4 <8[Ci(27r) — v —1In(2m)] + 5) +4(e* +7°) e2> + O(RY)
+é % + 1; = (9773 {7 —Ci(2r) — 2+ 1n(27r)} + (87% — 3¢%) {251(%) - Si(47r)}>
2 2 . B .
+ORY)| + ¢ lm bc” + 16;4[:21(4”) 2512m)] | ORL)| + O, 4.4.2)
2
Q/L = 7r2R;+ 5@‘; <ﬂ'3 (2[Ci(2ﬂ') —~ —In(27)] + 1) + 271'62) +O(RY)| + € %

+ 15:2@ (1%3 (v - cie2m) + m(2m) - Z) + (8% = 3¢%) [2si(2m) — Si(“”) +O(R)

812 — e?) (2Si(27) — Si(4 4me? — 873
_ [646(( ™ — ¢?) (25N ”)87r4 (4m) +47¢* =37) | yp | 2 o), 4.4.3)
where Ci(z) = — [ ©22dz and Si(z) = [; #22dz are the cosine and sine integral func-

tions, respectively, and v ~ 0.577216 is Euler’s constant. This perturbation scheme as-
sumes that R, and e do not have a hierarchy of scales. When R, = 0, (4.4.2)-(4.4.3)
reduces to the soliton thermodynamics and, when e = 0, (4.4.2)-(4.4.3) yields the expan-
sion of the caged RN BH thermodynamics. In [43] it was argued that (4.4.2)-(4.4.3) should

1.0
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M
L p );)
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Figure 4.4.9: Comparing the exact numerical results (blue circles) with the perturbative
analytical predictions (4.4.2)-(4.4.3) (green curve) for a family of black holes with constant
Ry = 0.05and e = 2.3. As expected, the perturbative analysis matches the exact results
only for small Ry and small € (i.e. close to the origin and in the neighbourhood of the
merger, yellow diamond, line which has ¢ = 0). That is to say, for the R, = 0.05 family
shown, good agreement occurs for small Q, say @ < 0.2.
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provide a good approximation (as monitored by the first law) fore < 0.1, R} < 0.1. Now
that we have the exact (numerical) results for the hairy BHs in all their domain of ex-
istence we can use (4.4.2)-(4.4.3) to further check our numerics while, simultaneously,
testing the regime of validity of (4.4.2)-(4.4.3) . As an example of this exercise, in Fig. 4.4.9
we compare the perturbative prediction (4.4.2)-(4.4.3) — the green curve— to our exact
numerical results (blue circles) for the 1-parameter family of hairy BHs with R, = 0.05
parametrized by e (with e = 0 at the merger with RN; the yellow curve). As expected,
we observe good agreement for Q@ < 0.2, say. Of course, the fact that the perturbative
analysis does not differ much from the exact results for higher values of Q is to be seen

as accidental; the perturbative is certainly not valid for such high charges.

As in the previous cases, we end our discussion of the e > es case with the plot of Fig.
4.4.10 of the entropy as a function of the charge and mass. The colour coding is the same
as in previous cases so it suffices to emphasize that again the hairy BHs (blue circles) are
the preferred phase in the microcanonical ensemble. Indeed, in the region between the
onset yellow curve and the extremal RN dark red curve with AM = 0 where they coexist
with (unstable) RN BHs, hairy BHs always have higher dimensionless entropy for a given
charge Q/L and mass M/ L. It further follows from the second law, that the unstable RN
BHs should evolve in time towards the hairy BH we find with the same Q/L and M /L.

/0.2

AM/L
02 U

Figure 4.4.10: Entropy as a function of the quasilocal charge and mass difference for
Einstein theory with a scalar field charge e = 2.3 (e > ¢;) in a Minkowski box. When
they coexist with RN BHs, for a given (Q, M)/L, hairy BHs always have more entropy
than RN, i.e. they dominate the microcanonical ensemble. For e > es, the zero entropy
limit of the hairy BH is the soliton (black disk curve) in the sense that they have the same
(Q, M)/L as the soliton (the temperature and horizon curvature diverges).
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4.5 Conclusions and discussion

Recapping what we did so far, we integrated the equations of motion in the domain R €
[R4+,1] subject to regular boundary conditions at horizon and vanishing scalar field at
the box. This is all we need to get the quasilocal phase diagrams of the previous section.
But the description of the solution is only complete once we give the full solution all the
way up to the asymptotically flat boundary.

Studies of scalar fields confined in a Minkowski cavity are already available in the lit-
erature: 1) at the linear level [118, 119, 41, 120, 121, 122, 123, 124, 125, 126, 1271, 2) within a
higher order perturbative analysis of the elliptic problem [40, 43], 3) as a nonlinear el-
liptic problem (without having asymptotically flat boundary conditions [128, 129, 130]
or without matching with the exterior solution [131]), and 4) as an initial-value problem
[132, 133, 134]. However, with the exception of the perturbative analysis of [43], the prop-
erties of the “internal structure” of the cavity required to confine the scalar field and its
contribution to the ADM mass and charge that ultimately describe, by Birkhoff's theo-
rem, the exterior RN solution are not discussed.

However, having the interior solution, we can compute the Lanczos-Darmois-Israel sur-
face stress tensor (3.3.16) that describes the energy-momentum of the box 3. We impose
the three Israel junction conditions (3.3.15a)-(3.3.15¢) on the gravitoelectric fields on the
surface layer . The fields f, A¢, ¢ are then continuous across ¥ and the component of
the electric field orthogonal to ¥ is also C? across X. The latter means that we can con-
fine the charged scalar condensate without needing to have a surface electric charge
density on X. The three conditions (3.3.15a)-(3.3.15¢) permit us to match the interior and
exterior solutions, ie. they fix the parameters My, c4, p in (3.3.6) as a function of the
reparametrization freedom parameter N introduced in (3.3.14):

1 < A2(1)2> A1) + Ai(1) A (1)

1-— —1, cp = —F"—7T—"7"-

= > p=—tL (4.5.1)

M,
0 N ’ N

Effectively, these conditions fix the exterior RN solution as a function of the interior
solution and of the box’s energy-momentum. Not surprisingly, we have a 1-parameter
freedom (V) to choose the box content that is able to confine the scalar condensate.

Several cavities can do the job.

Ideally, we would fix N requiring that the gravitational field is not only C? but also dif-
ferentiable across the box. That is, the fourth junction condition (3.3.15d) would also be
obeyed and thus the extrinsic curvature

¢ /'(R) i L o

K= v T wg Gl 68D



4.5. Conclusions and discussion 133

would also be continuous across the box. But, except when ¢(R) = 0, no choice of N
allows us to simultaneously set [K{] = 0 and [K}] = 0. All we can do is to fix N requiring

that [K}] = 0 (at the expense of having [K!] # 0) or vice-versa, or any other combination.

A choice of N fixes the energy density and pressure of the box since its stress tensor
can be written in the perfect fluid form, Sg)) = Eu@yue) + P(ha)p) + U@)ue)). with
u = f~1/29, and local energy density £ and pressure P given by

E=-8%, P=5,=5°

. (4.5.3)

We are further constrained to make a choice such that relevant energy conditions are
obeyed. Ultimately, failing these would mean that we cannot build the necessary box
with the available materials. Different versions of these energy conditions read (i = 6, ¢)
[5]:

Weak energy condition: E>0 N E+P;>0; (4.5.4)
2
Strong energy condition: £+P; >0 A &+ ZPi >0; (4.5.5)
i=1
Null energy condition: E+P; >0; (4.5.6)
Dominant energy condition: £+ |P;| > 0. (4.5.7)

We have experimented with different choices of N and found that are many selections
that indeed satisfy (4.5.4) (and equally many others that don't). An example of this exer-
cise is given in part III for the boson star case. Given that there seems to be no preferred
choice, we do not do a further aleatory illustration here. Instead, we approach the prob-
lem from an experimental perspective. That is to say, in practice, we are given a cavity
(that obeys the energy conditions or else it could not have been built with available ma-
terials). In principle, we can identify its stress tensor and hence compute N. We then
insert this into the Israel matching conditions (4.5.1) to find the exact RN exterior solu-
tion and, in particular, the asymptotic ADM charges. We end up with an asymptotically
flat static black hole solution (or boson star) that is regular everywhere except across
the box (where the extrinsic curvature has a discontinuity) and that describes confined
scalar radiation floating above the horizon and in thermodynamic equilibrium with it.
That is to say, we have established that the configuration originally envisioned (in the ro-
tating case) by Zel'dovich [135], Press-Teukolsky [35] and [146, 147, 148, 149, 150, 151] using
linear considerations indeed exists as a non-linear equilibrium solution of the Einstein-
Maxwell-scalar equations. And we further established that this is the thermal phase that
dominates the microcanonical ensemble. In an ongoing programme, we are extending

the current analysis to the rotating BH bomb system.
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The hairy BHs we find are stable to the RN instabilities (since they merge with RN pre-
cisely at the onset of the original instability; see also [128, 129]) and have higher entropy
than the RN BHs. It follows from this and the second law of thermodynamics that the
charged black hole bomb does not need to break apart: in a time evolution at fixed en-
ergy and charge, the unstable RN BH should simply evolve towards the hairy BH we find.
It would be interesting to confirm this doing time evolutions along the lines of those
performed in [132, 133, 134] in the precise setup we described.

Not less interestingly, Minkowski space in a box (no horizon) with a scalar perturbation is
itself non-linearly unstable to the formation of a BH for arbitrarily small amplitude [153],
very much alike the pure global AdS spacetime [154, 155, 156, 157, 158, 159, 160, 140]. The
weakly turbulent phenomenon is responsible for this instability [154, 155, 156, 157, 158, 161,
162, 163]. It would be interesting to study this non-linear instability when the scalar field
is charged. Unlike the neutral case, for certain windows of charge and energy, there are
now two possible families of BHs and not just the RN one. Therefore a time evolution
of the non-linear instability along the lines of [156, 159, 160, 153, 164, 165, 166, 167, 140]
should lead in some cases to gravitational collapse into an RN BH and in others into a
hairy BH (there should also be a wide class of initial data for which no BH should form
at all). Accordingly, the evolution details should differ in these different cases.
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APPENDIX A

Further properties of spinors and scalars in AdS

A.1 Dirac and Weyl Spinors

Depending on the dimensionality and the signature of spacetime one can have different
types of spinors. We work in four spacetime dimensions in the bulk and three spacetime
dimensions at the boundary. Let’s first see the types of fermions that one has on the
four dimensional space-time. The most general spinor is the Dirac spinor which in four
dimensions has four complex components. Introducing the following basis for the v -

matrices:

o [0 1 ;i ([0 o
v = (1 0) v = (—ai 0) (A11)

one sees that the generators of the Lorentz group become block diagonal. Here indices
i represent the spatial coordinates. This means that the Dirac spinor representation of

the Lorentz group is reducible into two pieces and the Dirac spinor can be decomposed

U = (1“) (A12)
W

as

137
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now the Lorentz group acts on each two component spinors ¢+ independently. If one
works in even dimension, one can always make a Weyl decomposition of the spinor.
If moreover the spinor is massless it can be shown that the two Dirac equations are

decoupled and they are reduced to the Weyl equation.

The Dirac spinor has four degrees of freedom and the Weyl spinor has two degrees of

freedom.

A1l Spin connection

For a metric of the form g, = diag(—gu(r), grr(7), go6(r), gos(r,0)). one can define the

following tetrad basis

e =ou, € =\, €=\, €=U (A.L3)
then using de® = —w? A € = —(wl)ce A e, we can read off the spin connection com-

ponents, where the Latin indices are referring to the orthonormal basis and the Greek

ones to the spacetime metric. The non trivial spin connections are

wop = — git,r 0, Wy = MGQ’ wsy = Mgﬁ - _ 9600 3 (A14)
2/t 2900/ Grr 296/ 9rr 295p+/900
and using (wj)cej, = wp, we have
Jit,r 9600.r 9op,r 96,0
woit = — , Wl = =, W3l = e, W32 = 5 — (ALD)
2 2,/960/Grr ¢ 2/966/Grr ¢ 2,/Gsp+/ 900
as well as the ones that are related by antisymmetry wap, = —wWpap-
A.1.2 Useful formulae
The components of '™ D, are given by
1 1 Gttr . 1
‘D, = Itg, + Te= 220 ItA (A.1.6)
' G 4/90  /9u s
1
I'"D, = —I%0 (A17)
' Vo
1 11 r
Dy = T gy +1I" Jee, (A18)

y+ T
V900 4\/9rr oo

1 L1 9oor el 1 Goos
r’D, = I'%——§,+I= Ty oo — 2% (A.1.9)
¢ N7 4\/Grr 9o 4\/900 9oo
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The following relations are useful for the calculations involving the boundary conditions

which were discussed in detail in the main text, section 2.2.3:

1
Yy = 5(1 +TM)W, My =9y
o = %(1 TN, Tl = —1)_ (A.1.10)

1 _
Yy = \115(1—1“7), Pyl = —1py

b = \If%(l FT7), " = (A.111)

the above follow from the anticommutation relations for the gamma matrices and the
fact that ()2 = 1and I'" =TT,

Vi, = @%(1 — FT)%(I + T = @%(1 —T")¥ =0
Yo = \Il%(l + r?")%(l TN = @%(1 ~T") ¥ =0
R _@%(1 - m%u I = _@%(1 2y =
p_TTp_ = @%(1 + r?‘)%(l —T"¥ = @%(1 —T") ¥ =0 (A112)
Yy T Dinp_ = UT(1 —T"™)D; ¥ = 0. (A.113)

A.2 Near-extremal scalar field modes in AdS

For a Reissner-Nordstrom de Sitter (A > 0) background, in [70, 71, 72] it was found that
there is a family of quasinormal modes — denoted as the near-extremal family of modes
— that is distinct from the ‘de Sitter’ family quasinormal mode, where the latter connects
to the normal modes of de Sitter when the horizon radius shrinks to zero size, r;. — 0.

This naturally raises the question of whether there is also such a near-extremal’ family
of modes in AdS and, if so, wether they do or not coincide with the AdS family of modes.
In this appendix, we address this question in the simplest case, namely in the case of a
(charged) scalar field that obeys the Klein-Gordon equation (2.3.2). More concretely, we
arrive to the near-extremal frequency (2.3.10) which is used in the main text (see section
2.3 and the discussion there-in of the dashed curves of Fig. 2.3.2) to show that in AdS the

‘near-extremal and AdS families of modes coincide (unlike in the de Sitter case).
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The near-extremal modes we seek obey (2.3.2) in the background (2.2.1) (we will work
with the gauge choice C' = 0) and, at least in the near extremal limit, are expect to be
highly peaked near the horizon. So we want to simultaneously zoom into the horizon

and approach extremality. For that we first introduce the dimensionless quantities

r=1-—"1, o=1-'=. (A.2.1)
T4+ [
For x < 1 one is close to the outer horizon and for ¢ < 1 the inner and outer horizon
are very close, i.e. one is close to extremality. Next, we take the limit ¢ — 0 whilst
keeping z = 7 fixed. From [70, 71, 72] the 'near-extremal modes are expected to saturate
the superradiant bound w = qu at extremality so onwards we measure the frequency
difference dw with respect to this bound via the redefinition
e
w= cQ +odw. (A.2.2)
T+
Using the condition f(r_) = 0 for the location of the inner horizon one can find r_ =
r_(r4+, @, L) which is then inserted into (A.2.1) to express @ as a function of (ry, o, L).

In these near-extremality conditions, we are ready to find the near-horizon solution of
the Klein-Gordon equation. Concretely, introducing the above redefinitions into the

Klein-Gordon equation (2.3.2), to leading order in o, we obtain:

2 3
(1—2)2026(2) + (1 — 22) 0,6(2) + f(l = 1| #e) =0, (A2.3)
where
R 6w
Y= T ap3
1+ 6R2
. 20R3[00v2\/14 3R —e(1+ 3R]
A=
2 bl
(1+6R?%)
1 9o 2¢% (1+ 3R%) R%
= | Wm2RE 1+ 1) — , A2.4
7 6R2++1<m IR 1+ 612 (A24)
where we have introduced the dimensionless quantities Ry = ri/L,e = gL,m =
mL, 00 = L dw.

With the field redefinition

6(2) = 27 (1 — )V f(z), (A.2.5)
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(A.2.3) is rewriten as a standard hypergeometric ODE

(1—2)zf"(z) + [1 — 2ip — 2iz <—i — o+ \/Eﬂ F(2)
+ [n — A —(i+2¢) <—tp + \/Eﬂ f(z)=0. (A26)

The regular (i.e. ingoing) solution at the future event horizon is given by
6(2) = 27 (1 — 2V By (a_,ap, 1 — 2ip, 2), (A.2.7)

where 1 F5(a, b, ¢; 2) is the standard hypergeometric function and a_, a are defined by:

1 N
ax =3 (1:|: 1+477—2ig0+2i\/g02—)\>. (A.2.8)

In the context of a matched asymptotic expansion, the near-region (near-horizon) solu-
tion (A.2.7) must now be matched with the far-region solution of (2.3.2) (in near-extremality
conditions). As explained above we expect the ‘near-extremal modes we are looking
into to have wavefunctions that die-off very quickly away from the black hole horizon (at
least near-extremality). Therefore, as a first rude approximation we take the far-region
to be described by a vanishing wavefunction. That is to say, in the overlapping region,
we match the near-region solution (A.2.7) with ¢ = 0. In the end of the day, this ap-
proximation turns out to be quite good because the analytical approximation for the
‘near-extremal’ frequency that we obtain —see (A.2.11) — matches remarkably well the
numerical solution of (2.3.2). This is best seen comparing the black dashed analytical
curve of our expansion in Fig. 2.3.2 with the numerical blue dot results. For this reason,
we do not try to improve further our matching asymptotic approximation.

Proceeding in these conditions, the leading order behaviour of the large R = r/L series
expansion (z — —o0) of ¢, namely ¢ ~ (—z)TV1H¥, needs to be matched with the far-
region solution ¢ = 0. Before we can do it, we still need to distinguish the cases 1+4n > 0
and 1 + 4n < 0. For our proposes (comparing with the numerical results of section 2.3),
we want to consider the small scalar field charge case for which one finds that 1 +47n > 0

holds as long as e < e. where

) 14 6R%

= - 2 2 2
Ce = 8R2 (1 + 3R%) [(6+4m ) RE 4+ (1+20) } (A.2.9)

(the reader also interested in the case 1 + 47 < 0 can follow the steps detailed in [72]). In
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these conditions, from the matching condition one finds that

5 .
o = £e 1+3R2 — o (14+6R%)(1+ 2p)
2 4R,

+\/(1 +6R%) [1+6R% +4m2R2 +4((¢ +1)] — 8e2R% (1 + 3Ri)> , (A.2.10)

where p = 0,1,2,- - is the radial overtone of the mode. Replacing this into (A.2.2) one
finally finds that ‘near-extremal’ modes have a frequency given by:

wL ~ e+ 06 + O(a?). (A.2.11)

This is (2.3.10) in the main text when we set the radial overtone p = 0.

A.3 Perturbative results for spinors in AdS

Although we solve the Dirac equation numerically in the main text, it is very good prac-
tice to testify the numerical results against analytical predictions that can be obtained
within perturbation theory in some region of the parameter space. Therefore, in this
appendix we find some useful analytical perturbative approximations for the Dirac fre-
quencies. More concretely, this Appendix is divided in two parts. In Appendix A.3.1
we use a matching asymptotic expansion approach to find the frequency approxima-
tions (A.4.1)-(A.4.2) that, in Fig. A.4.2 of Appendix A.4, are compared against our numer-
ical results. Then, in Appendix A.3.2 we use a systematic perturbative expansion in the
dimensionless horizon radius r; /L < 1 (with no further approximations) to find the
analytical frequency approximations (A.4.3)-(A.4.4) which, in Fig. A.4.3 of Appendix A4,
are also compared with our numerical results. In both cases, there is agreement be-
tween the analytical approximation predictions and the numerical results in the regime
of parameter space where the former are valid.

In this appendix, as in the main text, we solve the Dirac equation (2.2.17) in a AdS-RN
background (2.2.1) (gauge choice C' = 0) with regular (ingoing) boundary conditions at the
future event horizon and the standard (2.2.36) or alternative (2.2.37) boundary conditions
at the conformal boundary. We will work exclusively with vanishing fermion mass, m =
0.

A.3.1 Matched asymptotic expansion

In this section we derive an analytical expression for the imaginary part of the Dirac fre-
quency using the method of matched asymptotic expansion introduced in [168, 169] (see
also e.g. [170, 109, 171]). We assume r < L and split our spacetime into two regions; an
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asymptotic globally AdS far region where the effects of the black hole can be neglected
and a near region about the black hole outer horizon where the effects of the cosmo-
logical constant can be neglected. In each region the associated perturbation equation
can be solved analytically, then matching the near and far region solutions in their over-
lapping region will fix the integration constants as well as the imaginary part of the per-
turbation frequency w. More concretely, the near region is defined by r — r, <« 1/w and
the far region is defined by r — r > . It follows that the overlapping region exists for
wry < 1. A further assumption we must make is that the Coulomb interaction is weak,
Qq < 1, where ¢ (Q) is the fermion (black hole) charge.

A.3.11 Farregion solution

Since in the far region the effect of the black hole (BH) is assumed to be negligible, we
effectively have a fermion field in the global AdS background. Thus, the general solution
for the massless fermionic field R; is given by (2.4.18) that we reproduce here:

1 2
F(r)y = 21«1(5 + LWL+ 41,214 0), - +T¢L)

Oy (T iriL)_l_% 2F1< - % Wl — 0, -2, ri?;L) (A31)

where C} 7 are two arbitrary amplitudes to be determined below. Asymptotically this

solution decays as (2.2.23), namely Rl‘ ~ai + f1 % + O(r~2) with

r—00
WL ol+1 1 1
a;p = P22 [ Cra €+§,€+wL+1;2€—|—2;2 + Cy o —8—5,—€—|—wL;—2£;

. _3_
,61 — 02Z1+Lw2 5 ¢

1
(1+20—2Lw) oF, <—€— 5,—€+wL; -2, 2> +
1
(1+20) (£ — Lw) o (—£+2,—£+wL+1;_2£+1;2>] _

1
Cy 2072 L (2w + 20 + 1) o Fy (6 + 5,@ +wL +1;20 4+ 2; 2>

(20 + 1)(wL + € + 1)
r+1

oI <€+§,E+wL+2;2€+3;2>

This solution has to satisfy the asymptotic boundary condition (for a massless fermion).
For the standard quantization this is (2.2.36) while for the alternative quantization the

boundary condition is (2.2.37) which fix §; as a function of «; or, equivalently, C; as a

2)).

(A.3.2)
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function of Cy. This yields

oA+ wl) Fifi =0 & Cp=0Cy(—1)"%2717%y,  where
(A.3.3)

(1+20+4Lw)2 Fy (—%—z,—qu,—zm) F(1420)2 Fy (;—e,wL—ﬁ,—2£,2>

T+ =

Y

(142044 Lw)o Fy <;+£,1+£+wL,2(1+4),2> +(1420)o Fy <§+£,wL+£+1,2(1+5),2>

where the upper sign refers to the standard quantisation (2.2.36) and the lower sign to
the alternate quantisation (2.2.37).

Note that we do not impose any boundary condition at an inner boundary since this far
region solution does not extend to there.

A.3.1.2 Near region solution

In the near region we can approximate A(r) = 72 f(r) by:

Alr)y= (r—ry)(r—r_) (A.3.4)
where r_ =~ % This follows from the assumption that ry < L and therefore in the
near region we have r ~ O(r;) < L, so we can neglect the r2/L? term in f(r). Further
applying the near region assumptions to the Dirac equation (2.2.17) we can neglect terms
of order wr4 or higher powers. Other terms appear which are dominated by a 1/A term
in the small black hole (BH) approximation near the horizon; therefore we can evaluate
the numerators of these terms at r ~ r..

With these approximations, and the coordinate transformation

=" g<a<, (A.3.5)
T—Tr_

(the horizon r = r, is at z = 0) the Dirac equation is approximately given by the near

region equation,

_ 2
(6127 - 2R + 50 - 39RI) 4 (1- 2)2RE) =0, (A36)

where
r3w(ry(i+ 2riw) —ir_)

T (A.3.7)

W=

Making the field redefinition

Ri(z) = 2%(1 — 2)PR(2) (A.3.8)
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where

1 -1 1
~:Z+z'6, 5:§+£, &:Z\/mw—L (A.3.9)

the near horizon equation is rewritten in the standard hypergeometric form — see (2.4.8)
— with parameters a, b and ¢ given by

a=1+4+4¢, b=14+0+2ic, c=1+2i0c. (A.3.10)
The most general near horizon solution is

erlear(z) — O[Ziii&(l — Z)ng% 2F1(]_ +4,1+0—2i6,1 — 2i0, Z)
FB2ATT (1 — )45 o F (14 0,1 + £ + 25,1 + 2i6, 2) (A.3.11)

Using the property of the hypergeometric function 2F(a,b,c,0) = 1 we find that the
= — 0 behaviour of the near region solution is R (z) ~ 21 (a2~ + 327%). Requiring

regularity (only ingoing modes) at the horizon implies that we must set 3 = 0.

A.3.1.3 Matching

To find the large r (z= — 1) behaviour of the near region solution (A.3.11) with § = 0, we

use the z — 1 — z transformation law of the hypergeometric function [48]:

I'(e)l'(c—a—10)

I'(c—a)l(c—-b)
)

I(cl(a—l—b—c)

c—a—b

F —a,c—b,c—a—-b+1,1—2). (A312
F( )F() 2 1(0 ,C ,C N ) ( )

2F1(a7 b7 c, Z) =

2F1((1,b,(1+b—6+1,1—2)

+(1—2)

T+ T—

We again use that 2Fj(a,b,c,0) =laswellas1 — z = (when r — o), to obtain:

1 1
. e — ) I 20) 1 (= )IT(C1-20)
earl (-2
B ger ST 20 pa a0 —2i3) © t Teorci—2e) |
(A.313)

This needs to be matched (in the overlapping region) with the small » behaviour of the
far region solution (A.3.1) subject to the asymptotic boundary conditions (A.3.3).

Rgar ~ Oy 22+€(2L) 2+é +Cy2” Q‘M(ZL) T %—é. (A.3.14)

small r

In the overlapping region, one must have R} = R{ar‘

must match independently the rzt and r~2 ¢ terms of (A.3.13) with those of (A.3.14).

That is to say, we

‘ larger smallr’
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This matching yields:

C’Q(i)%H _I'i+4ri-1 —2q7T {%+£— -

2 TH+2AT-0 ply ¢ 22, (Fz7) wem

2

where we have used (A.3.9) and (A.3.7) for & to restore the explicit dependence on the
frequency w. The ratio g—f follows straightforwardly from (A.3.3). We want to solve the
transcendental equation (A.3.15) to get an analytical expression for the frequency. There
is no closed form solution, unless we do some educated approximations that we now
discuss. Since we are working with very small and weakly charged RN-AdS black hole,
one expects that the mode frequencies in such a background are close to the massless
Dirac normal modes frequencies of AdSj, already computed in (2.4.20) (standard quan-
tization) or (2.4.21) (alternative quantization). Denote this normal mode frequency by
wads,- However, since the background now has a horizon, the system becomes dissipa-
tive and with respect to the normal modes of AdSy, the frequency of the system should
acquire a small imaginary contribution. Denote it by i 4. In (A.3.15), it is thus a good ap-
proximation to replace the frequency w by w = wagg, + 7 with [§| < wags,. Our target
now is to solve (A.3.15) at leading order for 6 < waqs, ~ O(1). A posteriori, we compare
the prediction of our analytical computation with the numerical result to confirm that

this approximation is valid.

Equation (A.3.15) has the additional challenges that: 1) the frequency appears in the ar-
gument of the Gamma functions and 2) I' [—1 — 2/] in the numerator diverges for the al-
lowed values (2.2.19) of the harmonic number ¢ (recall that I'|—p| = oo for non-negative
p). To deal with these obstacles, we use the Gamma function property I'[z + 1] = 2I'[z]
and the assumptions of our problem, wr, < 1and § < waqgs, ~ O(1). This allows to
expand the Gamma functions whose argument depends on w (and thus on 6) to extract
0 out of the argument of the Gamma functions. In particular, this permits to find that
the divergence of ' [—~1 — 2/] in the numerator is cancelled by the Gamma function in

the denominator that depends on 4.

In these conditions, one finds that the leading order solution for § is

o i(—n)eszgat2g TR gy o g, = T,)zm

Rom = =yl | 7 (A.3.16)

where K is a positive real number for each ¢, n. For the alternative boundary condition
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(2.2.37) it is given by (for overtone p = 0)

et (B0 (04 3,2042,2042,2) + o, F" 00 (04 4,204+ 2,20+ 2,2) )

oFy (1,—0— 1, -20;2) — o Fy (1,5 — ¢, —26;2) ’
(A.3.17)

K=

whereas for the standard boundary condition (2.2.36) we have (for p = 0)

gdimt (- GO0 (14 1904 32042,2) + oMY (048 20432042, 2))

K= oF (2,—0— L —20:2) + oy (2,1 — ,—26;,2)

(A.3.18)
Thus the two boundary conditions (2.2.37), (2.2.36) yield different values of 4. As a con-
crete example (that we use to compare our numerics with), for £ = 1/2, p = 0 we have

for the alternative boundary condition (2.2.37),

1 /ry —r_\2
~_ 1 31
5 47T( . ) : (A.319)

while for standard boundary condition (2.2.36),

5,~¢_%(”;'”‘)2. (A.3.20)

These are the analytical predictions we use in (A.4.1)-(A.4.2) of Appendix A.4 to compare
against the numerical results: see Fig. A.4.2. We expect these analytical predictions to
be valid only for small horizon radius and away from extremality and for Q¢ < 1, which
we are able to confirm numerically in section 2.4.4. An added bonus for this method is
that we have an expression for general /. The method we present in the next Appendix
below has to be done for each ¢ individually, but it is more systematic than this one,

since it only requires an expansionin r; /L < 1.

A.3.2 Perturbative expansion in R

In this section we find an analytical prediction for the frequency using a systematic per-
turbative expansion in r; /L. Unlike in the previous subsection, the only approximation
that will be made is that the expansion parameter of this expansion is small, r, /L < 1.
We will do this expansion up to the order that finds the first correction (in the real part
of the frequency) to the global AdS normal mode frequency. Should we wish, we could
go one order higher in the analysis and find also the correction to the imaginary part of
the frequency (although this is computationally more demanding). For our purposes of
comparing with the numerical results, it is enough to have the correction to the real part
of the frequency (the results of appendix A.3.1 already allow us to test independently the

imaginary part).

The systematic perturbative expansion in /L < 1 used in this Appendix was first
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introduced in [46] and further explored in [45, 138, 57, 39, 40] where the reader can find
full details of the method (we will be very succinct in our exposition). In short, we split
our spacetime into a near and far regions. We expand the frequency 2 = wL and the

field Ry in each region in a power series in Ry = r/L:

Q:

NE

QR Rpfer =Y "ypgrRrE RV = Zw{;{Ri . (A.3.21)
k=0 k=0

B
Il

0

We now series expand the Dirac equation (2.2.17) in small R;.. The leading, zeroth order
equation is simply the Dirac equation in global AdS, for a massless fermion (A.3.1) (that
we already studied in sections 2.4.2.2 and A.3.1.1). Not surprisingly, the small R = r/L
expansion of this leading order solution breaks down at order R, /R. This motivates
splitting our spacetime into a far region, R > R, and a near region, Ry < R < 1. Inthe
far region we work with the radial coordinate R but in the near region we work instead
with the radial coordinate y = R/R (since the far region small R expansion breaks
down at order Ry /R).

In the far region, at each order in R, we impose the standard boundary condition
(2.2.36) or the alternative boundary condition (2.2.37). In the near region we impose
boundary conditions that only allow for ingoing waves at the horizon. We then perform
a matching procedure at each order in R, in the region where the far and near region
overlap, to determine the frequency coefficients €;), as well as amplitudes that were
not fixed by the two boundary conditions. At leading (zeroth) order, we fix Qo) to be the
normal mode frequency for a massless fermion already obtained in (2.4.21) or (2.4.20) for
the boundary conditions (2.2.37) or (2.2.36), respectively. We will do this for the mode
with harmonic number ¢ = 1/2, and radial overtone to be p = 0. Our aim is then to
find the first frequency correction €2y due to the presence of the black hole. For con-
creteness, in most of our discussion below we only explicitly present details of the case
where we impose the alternative boundary condition (2.2.37). We then present the final

result also for the standard boundary condition (2.2.36).

In the far region the leading order R solution is (A.3.1) and imposing the asymptotic
boundary conditions amounts to repeat mutatis mutandis the analysis done in (A.3.1)-(A.3.3).
With our choice of £ = 1/2 and p = 0 this fixes the frequency at order zero to be Q) = 3,
see (2.4.21). To fix the normalization, we set the amplitude of the Dirac field at infinity to

be 1 atall orders in R : R{GT|R—>OO =14+ O(1/R).

Introducing the near region radial coordinate y = R/Ry, still at leading order R, the

near region Dirac equation (for ¢ = 1/2) reads

1 2 2, near /1,2
*<y—1)(2y—ﬂ)8y1/}(o) + Yy=5- o

2 Jawis —vigm =0 @322
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The solution which is regular at the horizon (y = 1) is

Yoy = ) cosh (2 log (QW + \/W))

+if(g) sinh (2 log (%/ﬁ n \/W)) , (A.3.23)
with ,
. 14+14 (u2 — 2)
= —iag) 2. (A.3.24)
By ==l T, (2 2)?

We must now match the far and near regions solutions at order RY in their overlapping
region R, <« R < 1. This procedure, typically fixes all other constants of the prob-
lem that were not fixed by the boundary conditions. The large R expansion of Py is
w%e)“rharge R = (o) + BoyR + - - - whereas the small R expansion of w{oa)r is 1/1{51)7”|5mauR -
(=1)**R + ---. Therefore, matching Vi harge B = w{gﬂsman g requires that we set
o) = 0and B(g) = (—1)3/%. Collecting the results at order O for the alternative quanti-

zation (2.2.37) we have:

near __ far _ (71)3/4R\/1+7iR . . 3
T =0 e =i mpr 0 f0=g (A.3.25)

For the standard quantisation one has a similar result with €y = 5/2.

We can now proceed to the first order R} contribution that enables us to find Q).
We repeat the procedure outlined above for the far and near regions, imposing the al-
ternative boundary condition in the far region and ingoing boundary condition at the
horizon in the near region. The near region equation for Py is the same as at order
RY (i.e. there is no source). After imposing the horizon boundary condition, we find that

the large R expansion of the near region solution gives

Rnear ~ (_1)3/4R + B(l)R-l— 4. (A.3.26)

harge R

The far region equation at order R can also be solved analytically for w{l‘gr. As usual,

we find a solution with two integration constants, say C1 and Cs. These constants will
in general depend on , e and €2(yy. Firstly by imposing the alternative quantisation we
find an expression for C; in terms of p, e and €2(;y. Then we again impose that our field
has amplitude 1 at infinity, yielding an expression for C; in terms of y, e and €2(y). After

doing this we find the small R behaviour of the far region solution to be

Rior| e~ (“1)¥AR+ Ry (—14 + 2epu — T — 67Q))
R, (A.3.27)

§(2—4e,u—|—,u2—|—27rﬂ(1))—1—---,
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In the overlapping region R} < R < 1, (A.3.27) must match (A.3.26). A straightforward
matching of the terms R R fixes the constant B(1y in (A.3.26). On the other hand, there
isno R, /R term in the large R series expansion of the near region solution. It follows
that ;) must be such that it eliminates the corresponding R, /R term in the small R
expansion of the far region solution (A.3.27). This fixes ;) to be

w2 — 4pe + 2

A.3.28
5 ( )

Q) =
Thus for the alternative boundary condition (2.2.37), the frequency up to O(R+.) is

3 2_4 2
wL:,Jﬁw

2
5 5 + O(R?). (A.3.29)

On the other hand, repeating the above analysis the standard boundary condition (2.2.36)
yields the frequency:

5 112 — 20 22
wL=—-+R, a pe+

2
- — +O(R2). (A.3.30)

The frequencies (A.3.29) and (A.3.30) are the analytical frequency approximations (A.4.3)
and (A.4.4) that we reproduce in the main text and that we compare against the numerical
data in Fig. A.4.3 of section A 4.

A.4 Comparing numerical results with analytical expansions for

spinors in AdS

To test our numerical code we first compute the quasinormal mode frequencies for a
massless Dirac field in global AdS and in Schwarzschild-AdS: see Fig. A.4.1 for the stan-
dard (2.2.36) and alternative (2.2.37) quantizations. When r, = 0 our frequencies re-
duce to the normal mode frequencies of global AdS (2.4.20) and (2.4.21) for the standard
and alternative quantizations, respectively. Recall that ¢ is the spin-weighted harmonic
number and n is the radial overtone (related to the number of nodes of the wavefunc-
tion along the radial direction). So the smallest |w| is obtained for ¢ = 1/2 and n = 0. For
the alternative boundary condition these are wL = 3/2 and wL = —5/2, while for the
standard quantization these are wL = 5/2 and wL = —3/2). All the numerical results we
will present describe solutions with £ = 1/2 and n = 0. If there is an instability it should

already be present in this sector of perturbations (see the argument in section 2.4.1).

On the other hand, for finite r /L our numerical curves reproduce the values first com-
puted in [73]. As explained in the end of section 2.2.3, this is because the AdS/CFT stan-

dard (2.2.36) and alternative (2.2.37) quantizations have vanishing energy flux and corre-
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Figure A.4.1: Real (left) and imaginary (right) part of the QNM frequencies as a function
of the horizon radius for the two families of boundary conditions in Schwarzschild-AdS
background (m = 0, £ = 1/2). The black curve that reduces to the normal mode of
AdS wL = 5/2 has the standard quantization (2.2.36) while the red curve (that reduces
to the normal mode of AdS wL = 3/2) has the alternative quantization (2.2.37). Not
plotted, if we take the black curve data then —Re(w) + ¢ Im(w) is also a solution with
alternative quantization (2.2.37) (which reduces to the AdS normal mode wL = —5/2
when the horizon shrinks). Similarly, if we take the red curve data then —Re(w) +4 Im(w)
is also a solution with standard quantization (2.2.36).

spond precisely to the boundary conditions imposed in [73]. To complete the spectrum
of Schwarzschild-AdS (and global AdS) note that frequencies that are the negative of the
complex conjugate of the frequencies (—w*) plotted in Fig. A.4.1 are also eigenvalues of

the system (which was missed in [73]).

Next we test our numerical code for AAS-RN. As a first test, in Appendix A.3.1 we use
a matching asymptotic expansion method to find that for wr; <« 1 and ¢@Q < 1 (and
m = 0,¢ = 1/2,n = 0) the imaginary part of the frequency is approximately given by

1 —rN2 —r_\3

Im(wL) ~ ~in <r+ 7 r ) + 0O ((h’ 7 r ) ) ) Alternative quantization; (A.4.1)
3 N2 —r_\3

Im(wL) ~ 1 <T+ 7 ! ) +0 ((“ 7 r ) > ) Standard quantization.  (A.4.2)

In Fig. A4.2 we plot Im(wL) as a function of ;. /L, for u = %Mext and a fermion charge
gL = 1 (blue dots). We compare these numerical results with the analytical result (A.4.1).
Both agree for small r /L, i.e. in the regime were the matching expansion (A.4.1) is valid.

As asecond test, in Appendix A.3.2 we use a perturbative expansion in r; /L about global
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Figure A.4.2: Imaginary part of the frequency as a function of the horizon radius for
fixed chemical potential 1 = #§% (m = 0,/ = 1/2 and alternative quantization). The red
dashed line is the analytical approximation (A.4.1). The inset plot zooms-out the main

plot.

AdS to find that the real part of the frequency behaves as

3 2 — 4pe +2 2

Re(wL) = 3 % % +0 <Z;> , Alternative quantization; (A4.3)
5 1142 — 20pe + 22 4

Re(wL) = 2 + % H 67:66 + +0 <ZJ;> , Standard quantization. (A.4.4)

The plots for the real part of the frequency are displayed in figure A.4.3. The analytical
perturbative results are (A.4.3) and (A.4.4). An important feature of this result is that for
a fixed chemical potential, the slope of the real part of the frequency (the term propor-
tional to R ) changes sign for a certain electric charge. This coincides with our numer-
ical findings. In the top panels we show the real part of the frequency for the boundary
condition (2.2.37) with ¢L = 0.7, 0.8 and 1 = fiext(1 — 1073). In the bottom panels of
figure A.4.3 we show the real part of the frequency for the boundary condition (2.2.36)
as a function of the horizon radius for fixed chemical potential 1 = #§* and fermion
charges ¢L = 1.9, 2 from left to right. The dashed red lines are the analytical results
(A.4.4) and (A.4.3) respectively. Note that for these parameters the change of sign occurs
for charges gL ~ 1.95 and gL ~ 0.71 respectively.

As a general comment, it is perhaps worthy to comment that we find that matching
asymptotic and perturbative analysis like the ones provided in Appendices A.3.1 A.3.2
are valid for smaller windows of r /L in the Dirac field case when compared with sim-

ilar analysis done for the scalar field.

We have confirmed that our numerical code is generating physical data. Our main phys-
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Figure A.4.3: Real part of the frequencies as a function of the horizon radius. Top panel:
Alternative quantization (2.2.37) and fixed chemical potential 1 = pieyt(1 — 1072) and
charges gL = 0.7 (left panel) and ¢L = 0.8 (right panel). The red dashed line describes
the perturbative result (A.4.4). Bottom: Standard quantization (2.2.36) and fixed chemical
potential 4 = #%* and charges ¢L = 1.9 (left panel) and ¢L = 2 (right panel). The red
dashed line describes the perturbative result (A.4.3).

ical results are reported in section 2.4.4 of the main text.
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APPENDIX B

Charged black hole bomb

B.1 Further properties of solitons in a Minkowski box

For completeness, in this appendix we plot the soliton quasilocal mass M, charge Q and
chemical potential x as a function of the marching parameters e = —¢'(1) or fo = f(0).
We do this for the two most representative cases studied in the main text. Namely, for
the solitons with e = 1.854 < e, (in Fig. B.1.1) and e = 1.855 2 e, (in Fig. B.1.2).

These quantities display the spiral behaviour already described in the main text. In par-
ticular, the turning points of these spirals translate into the regular cusps in the quasilocal
charge plots: compare e.g. Fig. B.1.1 with Fig. 3.4.4 or Fig. B.1.2 with Fig. 3.4.7. Comple-
menting the discussion given in the main text, these plots also illustrate how points A
of the main (black) curve and point a of the secondary (magenta) curve) approach each
other as e tends to e, from below (Fig. B.1.1) and then give origin to a new branch of main
(black) and secondary (blue) soliton families (Fig. B.1.2)

155
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Figure B.1.1: Soliton families with e = 1.854 (e, < e < e.). Top panel: The quasilocal
thermodynamic quantities, namely mass, charge and chemical potential of the main
(black disks) and secondary (magenta triangles) soliton families are shown as functions
of the scalar field amplitude e¢. Bottom panel: This time the mass, charge and chemical
potential are plotted as functions of fo = f(0).
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Figure B.1.2: Soliton families with e = 1.855 (e, < e < es). Top panel: The quasilocal
thermodynamic quantities, namely mass, charge and chemical potential of the main
(black disks) and secondary (blue diamons) soliton families are shown as functions of the
scalar field amplitude €. Bottom panel: Quasilocal mass, charge and chemical potential
plotted as functions of f.
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