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MODELLING AND PROJECTING MORTALITY RATES USING ADAPTIVE P-SPLINES

by Kai Hon Tang

In this thesis we propose models for estimating and projecting mortality rates using adaptive

splines. Mortality modelling has various applications from social planning to insurance. How-

ever, raw mortality data often exhibits irregular patterns due to randomness. The data at the

oldest ages are also very scarce and unreliable as there are only very little survivors at these

ages, adding difficulty to estimation. Graduation refers to the act of smoothing crude mortal-

ity rates, during which extrapolation to older ages where data is non-existent is usually also

performed. We first propose a flexible and robust model for mortality graduation of static life

tables using adaptive splines. Male and female mortality rates are graduated jointly, as opposed

to previous English Life Tables (ELTs) where they were smoothed independently. Therefore our

model borrows information across sexes, which is especially helpful at the oldest ages. Often

when male and female mortality rates are estimated independently, implausible age patterns may

occur, such as intersecting male and female mortality schedules. This has been addressed using

rather ad hoc procedures in previous ELTs, for example, by calculating the weighted average of

the estimated mortality rates starting at the age where they intersect or by discarding data at the

oldest ages. By utilising the locality of B-spline basis, constraints can be imposed effectively

such that female mortality rates are always lower than or equal to male mortality rates at all

ages, even at extrapolation ages, hence does not involve subjective adjustments.

We then extend the model to forecast mortality rates. Building upon models by Dodd et al.

(2020) and Hilton et al. (2019), we jointly model and project male and female mortality rates of

England Wales and Scotland. The joint sex model produces more reasonable long term male and

female mortality projections that are non intersecting. Information is borrowed at the highest

ages where exposures are small. By doing so the extrapolation to higher ages beyond data range

gives more plausible estimates, especially for the mortality improvement rates for females at the

oldest ages where a worsening mortality is otherwise projected. We also jointly model mortality

rates of the same sex across the two countries, as they are expected to have similar mortality

structures for the same sex. England Wales populations have a wider age range with available

data, therefore the joint country model provides a way for the smaller Scottish populations to

borrow information and learn from the bigger English Welsh populations. The joint country

model is able to produce non-divergent long term projections between the countries for both

males and females.

Finally, a joint model for all of the four populations is proposed. The model combines features

of the joint sex and joint country models, and borrows strength across sexes and countries.
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Chapter 1

Introduction

Mortality modelling has seen rapid developments in the past decades, different models have

been proposed for the purpose of smoothing and forecasting mortality rates. Mortality mod-

elling is necessary for studying the demography of countries such as population estimation and

reconstruction, male-to-female ratios and life expectancies etc. Mortality modelling also has

various applications from social planning to insurance and they are especially crucial in the in-

surance sector as many of the insurance products are related to the longevity risk. Huge amounts

are invested in longevity risk and pensions. These often relate to the old age mortality, where

uncertainty and variability are the highest. The data at these ages are also usually very scarce,

adding difficulty to estimation. In addition, these actuarial products often rely on future mortal-

ity rates which, of course, are unknown. Therefore, mortality projection has a significant impact

in actuarial applications.

For most countries, it is well-established that the mortality is generally decreasing in the past

decades (Wilson, 2011). Typically, it is observed that infants experience exceptionally higher

mortality due to neo-natal causes. After that, the child mortality rates decrease steadily until

they reach late teenage and young adulthood, where a bump can be observed. This temporary

increase in mortality can be attributed to teenage activities and accidents, which is often more

prominent in males. For females, there is also excessive maternal mortality at these ages. Then

the mortality rates increase steadily into old ages due to senescence. Given this unique shape,

there is hardly any simple parametric function that could provide adequate fit to the whole age

range. Researchers have proposed several models that involve quite complicated forms in order

to fully capture the age pattern in mortality schedules, which will be explored in more details in

Chapter 3.

Another feature that is often observed in mortality is the excess of male mortality over females,

i.e. male mortality are often higher than female mortality. In fact, the female life expectancies

are higher than male life expectancies across almost all the world (Barford et al., 2006). The

gender gap has been widening in the period 1950-1970 and declining afterwards (Schünemann

et al., 2017; Luy, 2003). Luy (2003) provides a review of the potential explanations of the male

1
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excess mortality in the literature, which can be divided broadly into two basic categories: the bi-

ological approach and the non-biological approach. The biological approach states that women

are less prone to disease due to physiological and genomic reasons (Smith and Warner, 1989;

Waldron, 1985; Lopez, 1983), while the non-biological attempts to explain the sex differences

based on behavioral factors such as smoking and alcohol consumption (Oksuzyan et al., 2008;

Waldron, 1985). Sex differences in mortality exist even among infants and children, where the

higher male mortality rates could not have been caused by behavioral differences, hence con-

firming the biological contribution to the female mortality advantage. It is concluded that suf-

ficient explanation should be based on both biological and non-biological factors (Schünemann

et al., 2017; Oksuzyan et al., 2008; Luy, 2003). Nonetheless, it is evident that there exists a sex

differential in mortality, in particular, female mortality is lower than male mortality, which is a

fundamental assumption used in the thesis and a key criteria that is used to assess the reason-

ableness of the mortality estimates.

In addition to the peculiar age patterns in mortality, a challenge often associated with mortality

modelling is the lack of data at old ages. As mortality at these ages is the highest, there are much

lower or even no exposures. Mortality modelling at old ages have been explored and analysed

(Pitacco, 2016; Saikia and Borah, 2014), and there are controversies about whether the human

lifespan is limited (Rootzén and Zholud, 2017; Antero-Jacquemin et al., 2015; Couzin-Frankel,

2011; Oeppen and Vaupel, 2002; Olshansky et al., 1990). A decelerating rate of increase in

mortality at the oldest ages has been noted in the literature (Rootzén and Zholud, 2017; Pitacco,

2016; Saikia and Borah, 2014; Carriere, 1992). Rootzén and Zholud (2017) focused on the

mortality of supercentenarians using Extreme Value Theory and found that for most developed

countries the mortality rates after age 110 can be adequately described by a constant. In addition,

they found that there are no significant differences in survival at extreme ages between sexes,

between lifestyles or genetic backgrounds, between different time periods or between countries.

The concept of ‘frailty’ has been introduced to account for heterogeneity in mortality as well

as to explain the decelerating rate of increase at the oldest ages (Pitacco, 2019; Wienke, 2014;

Vaupel et al., 1979; Beard, 1959). The core idea of frailty is that the population consist of

mixtures of sub-populations with different frailties, i.e. different levels of mortality. As the

cohort advances to higher ages, the more frail individuals/populations would be more suscep-

tible to dying. Therefore as age increases, the frailty of the whole population becomes more

concentrated. At the oldest ages where frailty of the surviving population is the lowest and most

concentrated, a levelling-off trend or a ‘mortality plateau’ can then be observed. While frailty

is not addressed in this thesis, we acknowledge the potential implications it may have on the

estimates. When frailty is taken into account, a more dispersed marginal distribution will be

allowed. For example, under the usual Poisson assumption on the number of deaths, this would

allow a variance higher than the mean on the marginal distribution, which otherwise maybe too

restrictive as over-dispersion is usually observed in mortality data. If frailty is considered, then

one should expect the over-dispersion to decrease in age, as frailty is most concentrated at the
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oldest ages. For a more detailed discussion on different forms of frailty and heterogeneity, see

Pitacco (2019).

Forecasting on the other hand is also challenging due to the many factors involved, such as

medical advancements, natural disasters, epidemics, political changes and climate changes etc.

Explanatory modelling and forecasting has found little success (Booth and Tickle, 2008). Mod-

elling mortality by exogenous covariates is in fact being recommended against by several in-

stitutions such as the UK Government Actuary’s Department and the USA Social Security Ad-

ministration (Booth and Tickle, 2008). The main reason for this is that the decomposition of the

driving force in mortality is difficult in practice as it is impossible to exhaust all possible covari-

ates and hence leads to high risk of model misspecification. Another reason is that at the oldest

ages, the reported causes of death maybe unreliable. McNown and Rogers (1992) concluded

that there is no consistent gain in accuracy from cause-of-death decomposition. Thus, models

using age and time as covariates are far more popular and accepted, unless it is cause-specific

mortality that is of interest.

A key issue when projecting mortality is that the future mortality rates will not always be a

continuation of the past trends, and having more historical data does not necessarily improve

the quality of the projections. In the literature a somewhat linear trend is usually assumed when

projecting mortality rates, with the fitting period chosen such that the linearity fits. In this

thesis it is also demonstrated a way to incorporate expert opinion into mortality projection, such

that projected trends are moderated by experts that produce more robust and sensible forecasts.

Another issue to consider is the plausibility of the projections, or ‘biological reasonableness’

as described by Cairns et al. (2008). As mentioned above, female mortality rates are expected

to be lower than that of males, as a gender gap in mortality is observed across almost all the

world. In addition, a global convergence in mortality is also observed (Wilson, 2011), therefore

divergences in mortality trends of the same sex across countries considered in this thesis are

unlikely. Finally, the mortality age pattern is expected to be monotonically upwards, albeit

possible flattening at the oldest ages.

In the following, definitions and notations in mortality modelling are introduced, followed by a

discussion of the data used in this thesis.

1.1 Mortality Rate, Probability of Death and Force of Mortality

Let dx denotes the number of deaths of individuals aged x last birthday andEx the total exposure

of individuals exact age x within some period of time (a year in our case). Then the central

exposed to risk at age x is defined as

ECx =

∫ 1

0
Ex+s ds, (1.1)



4 Chapter 1 Introduction

which is an averaged total exposure within the year. Ex is sometimes also called the initial

exposed to risk or denoted by E0
x .

Let T be the time to death of a newborn (i.e. aged exactly 0). Define px = P (T > x+1|T > x)

as the probability of an individual aged x surviving for 1 year, then the ‘probability of death’

of an individual aged x within a year is defined as qx = 1 − px = P (T < x + 1|T > x).

Generalisation of the survival and death probability of an individual aged x for t years are

pt x = P (T > x+ t|T > x) and qt x = P (T < x+ t|T > x), respectively. Then the ‘force of

mortality’ is defined as

µx+t = lim
δt→0

P (T ≤ x+ t+ δt|T > x+ t)

δt
, (1.2)

= lim
δt→0

P (x+ t < T < x+ t+ δt|T > x)

δt

1

P (T > x+ t|T > x)
, (1.3)

=
1

pt x

lim
δt→0

pt x − pt+δt x

δt
, (1.4)

=
1

pt x

lim
δt→0

−( pt+δt x − pt x)

δt
, (1.5)

= − 1

pt x

d

dt
pt x, (1.6)

= − d

dt
log pt x. (1.7)

Force of mortality is a transition intensity or a hazard rate. Therefore, the probability of death

qx and force of mortality µx+t are related through

qx = 1− px = 1− e−
∫ 1
0 µx+s ds. (1.8)

The central mortality rate is then defined as

mx =

∫ 1
0 Ex+tµx+t dt∫ 1

0 Ex+t dt
=
E(dx)

ECx
, (1.9)

which can be viewed as the average of the force of mortality weighted by the corresponding

exposures in [x, x+ 1).

Throughout the thesis the term ‘mortality rate’ refers to the central mortality rate, not to be

confused with ‘probability of death’ or ‘force of mortality’ (hazard).

The crude mortality rates m̃x are obtained by substituting E(dx) with the observed numbers of

deaths and ECx with the exposed-to-risk (or mid-year population) estimates. However the mid-

year population estimate sometimes may not be a good approximation to the central exposed

to risk when the death distribution is highly asymmetric. Pointed out by Cairns et al. (2014),

the cohort born around 1920 displays high unevenness in their death distribution. Cairns et al.
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(2014) coined the term ‘phantom effect’, due to the fact that the unevenness results in an over-

estimation of the central exposed to risk by the mid-year population estimate, resembling the

existence of ‘phantoms’ inflating the exposure size.

Often simplifying assumptions are made for the relationships between the mortality rate, the

probability of death and the force of mortality. For instance, a constant force of mortality can

be assumed such that µx+t = µx+1/2 = mx ∀t ∈ [0, 1), hence the death probability qx =

1−exp(−
∫ 1
0 µx+1/2 ds) = 1−exp(−mx). Another assumption that is often used is the uniform

distribution of deaths assumption (UDD), under which we have qx = mx
1+ 1

2
mx

.

The number of deaths are usually assumed to have a Poisson distribution with mean ECx mx,

dx ∼ Poisson(ECx mx). (1.10)

In the literature it is acknowledged that the Poisson assumption for the number of deaths might

be too restrictive as this assumes equal mean and variance. Often an over-dispersion can be

noticed. To allow for over-dispersion, the number of deaths can be assumed to have a Negative

Binomial distribution, where there is an extra dispersion parameter which allows variance to be

different than the mean. This can also be expressed as a Poisson-Gamma mixture as follows

z ∼ Gamma(s, s) (1.11)

dx|z ∼ Poisson(z · ECx mx). (1.12)

Then the marginal distribution for dx will be a Negative Binomial with mean ECx mx and vari-

ance ECx mx(1 +ECx mx/s). Here s is the dispersion parameter. Comparing to a Poisson where

the mean and variance are equal, the Negative Binomial distribution allows a different variance

than the mean.

1.2 Data

The data is obtained from the Human Mortality Database (HMD) which contains the number of

deaths and the size of the exposures at risk for both males and females at each age in England and

Wales (EW) and Scotland (SC) from 1961 to 2016 for ages 1 to 109. However, sometimes at the

highest ages there are no exposures, rendering the central mortality rates undefined. Therefore,

ages with no exposure in any year within the time period are discarded, resulting in a data set

spanning from age 1 to 104 for England and Wales and from age 1 to 99 for Scotland.
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Figure 1.1: Crude mortality rates of EW males and females 1

Figure 1.2: Crude mortality rates of SC males and females 1

Figures 1.1 and 1.2 present the crude mortality rates for males and females in EW and SC

respectively. Some features can be immediately noticed. For each year, the early childhood

mortality rates are exceptionally high, which then decrease to the lowest level at around age

10, followed by a bump at late teenage and young adulthood called the ‘accident hump’, and

steadily increasing mortality rates into the oldest ages. The accident hump is more prominent

in males, regardless of the country. The youngest and the oldest mortality rates display more

random variations than adult mortality rates (about ages 40 to 80). In addition, the variations in
1Data obtained from the Human Mortality Database. Accessed on 22nd July, 2019.



Chapter 1 Introduction 7

males are larger than that of females and the variations in Scotland are much larger than that in

England and Wales, possibly due to lower exposures.

Figure 1.3: Crude mortality rates of EW males and females in some selected years 2

Figure 1.4: Crude mortality rates of SC males and females in some selected years 2

Figures 1.3 and 1.4 present the mortality profiles for males and females in years 1966, 1976,

1986, 1996, 2006 and 2016, for EW and SC respectively. It is evident that mortality rates

at most ages are decreasing in all populations. For each country, mortality improvements in

males seem to be larger at about ages 1-20 and 60-80 than remaining ages, while the mortality

improvements in females are more even across ages. There is little mortality improvement at

the oldest ages. The mortality rates for Scottish males at ages around 40 seem to be stagnated.
2Data obtained from the Human Mortality Database. Accessed on 22nd July, 2019.
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Figure 1.5: Crude mortality rates of EW males (blue), EW females (red), SC males (black) and SC females (green) at some selected ages between 1961 and 2016
3

3Data obtained from the Human Mortality Database. Accessed on 22nd July, 2019.
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Figures 1.5 presents the male and female crude mortality rates at some selected ages between

1961 and 2016, for EW and SC respectively. Some aforementioned features can be noticed

again: the difference between male and female mortality rates ( blue against red / black against

green ) is smaller at higher ages and the variations in male mortality rates are higher especially

at the oldest ages compared to that of females. This is because female exposures are higher

than male exposures. The male and female mortality rates of each country also seem to be

correlated. For both males and females, the difference between the mortality rates of EW and

SC ( blue against black / red against green ) gets smaller as age increases. The Scotland mortality

seems to be improving at a slightly slower rate for mid ages (about ages 30 to 80). In addition, it

can be confirmed that female mortality rates of each country are almost always lower than that

of males and mortality trends of the same sex are non-divergent.

The death counts have been pre-processed by HMD, which are minor corrections and would not

impact the results substantially. For England and Wales data, age-heaping problem is observed

in data during World War I and between the two World Wars (Philipov et al., 2020). However

since the analysis is using data since 1961, this does not have any impact on the results. For

Scotland, the documentation is still in preparation. However, a cross check on the input raw

data and the HMD death counts verifies that two adjustments have been made. Firstly, for year

1961 and 1962, only the total death counts for 5-year age groups are available in the raw data,

HMD disaggregated them into corresponding death counts in single year of age. Secondly,

for year 1996, 1998, 2002 and 2003, the HMD death counts at some ages differ from the raw

data by 0.01-0.07, which could possibly be the result of distributing deaths of unknown age.

Nonetheless these minor differences occur only at some ages and would have little to none

impact on estimation.

1.3 Agenda

The rest of the thesis is organised as follows. In Chapter 2, the statistical preliminaries are

discussed. In particular, a brief introduction is given on Generalised Linear Model (GLM),

Generalised Additie Model (GAM) and Spline, with a focus on P-spline and its estimation. In

Chapter 3, a review is given on the state-of-the-art mortality models, beginning with models

for static mortality age patterns, followed by mortality forecasting models as well as coherent

mortality forecasting models. In Chapter 4, the proposed model for mortality graduation is

introduced, which is then extended to mortality projection models in Chapters 5 and 6. In

Chapter 7, the proposed models are estimated in the Bayesian framework. Chapter 8 concludes

and gives possible further work on the thesis.





Chapter 2

Introduction to Generalised Linear
Model, Generalised Additive Model
and Spline

In this chapter some preliminary background knowledge is briefly reviewed. It serves as an

introduction but not a detailed discussion on the topics.

2.1 Generalised Linear Model and Generalised Additive Model

Generalised Linear Models (GLMs) are used widely in statistical analyses. A GLM has three

main important ingredients, namely an exponential family distribution EF , a link function g

and a linear predictor η. It has the basic structure

Yi ∼ EF (µi) and g(µi) = ηi = Xiβ, (2.1)

where µi = E(Yi), g is a smooth monotonic function,Xi is the i-th row of the design matrixX

and β is a vector of parameters. Yi’s are assumed to be independent and follow an exponential

family distribution.

The link function is usually chosen such that the transformation on the linear predictor is mean-

ingful with respect to the exponential family distribution. For example, for a Poisson distribution

a log link function is usually used so that the inverse transformation of the linear predictor is

always positive.

Estimation of the parameters is carried out by maximising the (log)likelihood, which can be

achieved efficiently by Iteratively Re-weighted Least Squares (IRLS). Given the observed data

vector y and the current estimates of the mean µ[t] at iteration t, estimate β[t+1] for the next

iteration t + 1 by minimising the sum of squares ‖
√
W [t](z[t] − Xβ)‖2, where z[t] is the

11
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‘pseudo-data’ at iteration t and W [t] is a diagonal matrix with entries equal to the ‘working

weights’ at iteration t given by

z
[t]
i = g′(µ

[t]
i )(yi − µ[t]i ) + η

[t]
i , (2.2)

W
[t]
ii =

1

V (µ
[t]
i )g′(µ

[t]
i )2

, (2.3)

V (µ
[t]
i ) = V AR(Yi)/φ. (2.4)

where φ is the scale parameter of the exponential family distribution (e.g. for a Poisson distri-

bution, φ = 1). The process is iterated until convergence is reached.

Generalised Additive Models (GAMs) are similar to GLMs in a way that the expected values

of the response variables are again described by a linear predictor through a link function, and

the response variables Y are assumed to be independently distributed of some exponential fam-

ily distribution. The main difference between a GAM and a GLM is that while in a GLM a

pre-defined parametric structure on the relationship between the response and the covariates is

ncecessary, a GAM allows a more flexible framework. Specifically, a GAM assumes that the

linear predictor η is a linear sum of smooth (and parametric) functions of the covariates, i.e.

g(µi) = ηi = Xiβ + s1(z1i) + s2(z2i) + s3(z3i, z4i) + . . . , (2.5)

whereXi is the i-th row of the model matrix containing covariates of parametric structure, and

sj(z) are smooth functions of covariate(s) z. The smooth functions are usually estimated using

splines.

2.2 Introduction to Spline Smoothing

In this section, splines are briefly introduced. Splines are non-parametric smoothers for curve

estimation. A spline is a piece-wise polynomial of degree p − 1 joined together at n knots

t : {t1, t2, ...., tn}, in a way such that it is continuous up to the l-th derivative, l ≤ p − 2.

In analogue to the notation used by De Boor et al. (1978), we denote the space of splines of

order p (the order of a spline is defined as the degree of the constituent polynomials plus one)

and knot sequence t with $p,t. For example, the most commonly used splines are the cubic

splines that are continuous up to the second derivative, and therefore the cubic spline space

$4,t = {f : f, f ′, f ′′are continuous}. If we define fi to be the i-th piece of polynomial that

constitutes the cubic spline, then we have

f ′i(ti+1) = f ′i+1(ti+1),

and

f ′′i (ti+1) = f ′′i+1(ti+1).

(2.6)
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2.2.1 B-spline

There are many different ways to set up a basis for a spline space. One of the most popular

basis is the B-spline basis, which will be used throughout this paper. Each B-spline basis func-

tion is only non-zero over the p + 1 neighbouring knots. The locality of the B-spline basis

functions means that each basis function exerts only little effect on basis functions that are far

away, hence improving numerical stability and efficiency. De Boor et al. (1978) provided a

recursive algorithm of setting up such a basis easily. Figure 2.1 shows a B-spline basis with

40 basis functions of order 4 with equally spaced knots. Note that the B-spline spans the space

$p,t:{t1,t2,....tk+p}[tp, tk+1] where k is the number of basis, that is, to have a spline spanning the

interval [a, b] we need to specify 2p − 2 knots outside the interval, p − 1 knots at each end. At

every point in the domain, the B-spline basis functions sum to unity.

Figure 2.1: cubic B-spline basis

From Figure 2.1 we can see that each basis function is non-zero only over a fixed interval. For

cubic splines, at any age that is not a knot, there are exactly 4 basis functions that are non-zero;

while at each knot there are exactly 3 non-zero basis functions.

Let Bi(x) denotes the i-th B-spline basis functions, then the spline is the sum of the basis func-

tions,
∑k

i=1 βiBi(x) where βi is the coefficient of the i-th basis function. Given that the B-spline

basis functions sum to unity and that they are only local over some knots, the function value at

any point can be viewed as a weighted average of neighbouring coefficients, with weights given

by the basis function.

The high flexibility makes splines susceptible to over-fitting. For example, in Figure 2.2, the

mortality rates are fitted with a B-spline with k=60 (this is chosen to highlight the over-fitting

behavior). It is clear that fitted values are erratic and implausible, especially at the youngest and

oldest ages where the mortality rates are highly variable.
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Figure 2.2: Fitted values using a rank 60 B-spline with equally spaced knots

2.2.2 Spline fitting

2.2.2.1 Optimal Knot Selection

It is seen that naive fitting of splines may suffer from over-fitting. One remedy would be to use

fewer knots and hence a smaller basis. As a result the basis functions will span a larger interval,

thus relying on more data. Conceptually this is equivalent to having a wider bandwidth in kernel

estimation. However, a too sparse basis might lead to over-smoothing. Therefore choosing the

appropriate number and position of knots is essential. Information criteria such as AIC, BIC or

GCV can be used when choosing the optimal knot sequence as they are objective measures that

take into account both the goodness of fit and parsimony. This then becomes a variable selection

problem where the relevant basis functions from a candidate set that minimises the criterion are

chosen. Some adaptive knot searching methods have also been developed to estimate the optimal

number and position of knots, such as the evolutionary algorithm, with mutation, insertion and

deletion of knots.

2.2.2.2 Penalised Splines

The decision of an optimal knot sequence (both the number and location) can be a complicated

and time consuming task. Another approach is to set up a basis with a dimension generous

enough to capture all the variations in the function, and then introduce a penalty term to the

fitting objective such that over-fitting is penalised. These are called penalised splines. Currie

and Durban (2002) and Currie et al. (2004) suggest placing one knot for every four or five data

points. The penalty controls the parsimony and smoothness of the fitted curve. A commonly
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used smoothness penalty is the integrated squared second derivatives
∫

[f ′′(x)]2dx, which mea-

sures the total curvature of the spline (Wood, 2006). In other words, rapid changes in the slope

of the function are penalised. Under this approach, the fitting objective is to maximise the pe-

nalised (log)likelihood, given by l(x)− 1
2λ
∫

[f ′′(x)]2dx, where l(x) is the log-likelihood of the

data and λ is a positive constant. The λ is called the ‘smoothing parameter’ and it controls how

heavily the fitting is penalised and hence how much weight is given into producing a smooth

curve. This new fitting objective represents and balances two often conflicting aims in curve

fitting, namely data fidelity and function smoothness.

Estimation of the coefficients of penalised splines with squared penalty (symmetric penalty)

is straightforward provided that the smoothing parameters are known or fixed. The squared

penalty can be incorporated into a GAM in a natural way. Having set a fixed basis, a GAM can

be expressed as a GLM, where the design matrixX are columns of the B-spline basis functions.

For normally distributed data, the penalised likelihood can be written as

‖y −Xβ‖2 + λβ′Sβ (2.7)

where S is the penalty matrix. Let P ′P = S, then we can write the penalised likelihood as

∥∥∥(y
0

)
−

(
X√
λP

)
β
∥∥∥2. (2.8)

Therefore, to incorporate the squared penalty into estimation, one simply needs to augment the

data with zeroes and append the square root of the penalty matrix to the design matrix when

maximising the penalised likelihood. For non-Gaussian data, this can be done by Penalised

Iteratively Re-weighted Least Squares (P-IRLS) and within each working model, estimation

is the same as the Gaussian case but with weighted design matrix and weighted pseudo-data

instead (Equation 2.4).

2.2.3 P-splines

The integration of the squared second derivative of a B-spline can be complicated. Eilers and

Marx (1996) proposed a discretised version of the penalty to be used with the B-spline basis, the

squared second differences of the coefficients, λ
∑

(52(βi))
2. This penalised B-spline, hence

the name ‘P-spline’, has been widely used due to its simplicity and ease of implementation. It

also has some interesting properties. For example, unlike kernel smoothers, P-splines show no

boundary effects, i.e. the fitted curve outside the domain of the data does not bend towards zero.

Another attractive property of the P-spline is that the moments in the data are conserved, which

is particularly useful in density estimation. According to Eilers and Marx (1996), ‘B-splines

and difference penalties are the ideal marriage.’
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When using P-splines, the square root of the penalty matrix P is then the (k − 2) × k second

order difference matrixD2, that is

P = D2 =


1 −2 1 0 0 0 · · ·
0 1 −2 1 0 0 · · ·
0 0 1 −2 1 0 · · ·
...

...
...

. . .

 , (2.9)

and

S = P ′P =



1 −2 1 0 0 0 0 · · ·
−2 5 −4 1 0 0 0 · · ·
1 −4 6 −4 1 0 0 · · ·
0 1 −4 6 −4 1 0 · · ·
0 0 1 −4 6 −4 1 · · ·
...

...
...

...
. . .


. (2.10)

2.2.4 Estimation of Smoothing Parameters

When estimating the smoothing parameters it is preferred to have an automated and objective

method. As mentioned before, criteria such as the AIC, BIC or GCV are often used for this pur-

pose. When fitting penalised splines, the coefficients are not entirely ‘free’ anymore, in the sense

that they are constrained or shrunk in a way to produce smooth functions. Intuitively, under pe-

nalisation, one parameter does not always enjoy a full degree of freedom, its effective degree of

freedom is reduced to somewhere between 0 and 1. Therefore, contrary to the usual cases where

the complexity of the model can be measured by the number of parameters, in penalised likeli-

hood estimation, the complexity of the model is measured by the ‘effective number of parame-

ters’, which is essentially the sum of effective degrees of freedom of all the parameters, defined

as the trace of the hat matrix (or influence matrix) tr(A), where A = X(X′X + λS)−1X ′.

Therefore when calculating scores such as the BIC, the number of parameters has to be replaced

by the effective number of parameters. Here we choose to minimise the BIC.

Estimation of smoothing parameters can be based on performance iteration (Gu, 1992) or outer

iteration (O’Sullivan et al., 1986). Performance iteration estimates the smoothing parameters

by minimising the BIC (or other scores) within each working model of the P-IRLS, while outer

iteration estimates the smoothing parameters by minimising the BIC at the final estimates of the

coefficients. The advantage of performance iteration is that the gradient and the Hessian can be

calculated analytically with less computational cost and hence optimisation of the BIC can be

done efficiently, however it does not exactly minimise the BIC of the actual model (see Wood

(2006) for a more detailed discussion about these two methods). Our investigations suggest

that the estimates from the two methods do not differ a lot, hence we prefer to use performance

iteration in this thesis as it is computationally more efficient.
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2.2.5 Adaptive Penalty

As discussed in section 2.2.3, a commonly used penalty for P-spline is the sum of squared sec-

ond differences of the spline coefficients with a smoothing parameter λ controlling the weight.

Therefore, we have one smoothing parameter controlling the overall smoothness. The disad-

vantage of this is that when the underlying function displays varying smoothness, an overall

smoothness penalty may not suit well. Therefore, instead of having just one smoothing param-

eter governing the global smoothness, the penalty can be made to vary along the domain, i.e.∑
λi(52(βi))

2. In other words, different regions are penalised with different weights, allowing

varying smoothness throughout the domain. We shall call this the ‘local penalty’ or ‘adaptive

penalty’, and the opposite the ‘global penalty’. Ruppert and Carroll (2000) show that adaptive

smoothing is more effective and gives better results than ordinary splines, especially when the

underlying function has varying smoothness and performs at least as well as traditional splines

even when the underlying function is uniformly smooth.

Different approaches have been suggested to model the varying smoothing parameters λi. Pin-

tore et al. (2006) and Liu and Guo (2010) used piece-wise constant functions for the varying

penalty. Ruppert and Carroll (2000) and Krivobokova et al. (2008) proposed to use a second

layer of linear spline (with less knots) for the penalty. Storlie et al. (2010) suggested to estimate

the changing smoothness from an initial fit with ordinary spline while Yang and Hong (2017)

recommended to weight the penalty inversely to the volatility of the data in proximity. Bayesian

adaptive splines have also been investigated, see Baladandayuthapani et al. (2005), Crainiceanu

et al. (2007), Jullion and Lambert (2007), Scheipl and Kneib (2009) and Yue et al. (2012).

In our models we propose to simply use an exponential function for the smoothing function λi,

because firstly it has only two parameters and secondly we believe that the mortality rates are

smoother as age increases, i.e. the λi should be increasing in age and penalises roughness at

the older ages more than the younger ages. In addition, at the very old ages data are often very

scarce and the exposures are extremely low, which are very unreliable and display high random

variations. By assigning heavier penalty at the old ages the fitted spline is more parsimonious

and more strength can be borrowed from neighbouring ages, hence improves robustness and

stability.

2.2.6 Parameter Uncertainty

It is important to incorporate uncertainty in our estimates. Interval estimates reflect uncertainty

around the estimates and thus give a better illustration of the fitted values. For Gaussian ho-

moskedastic data, the estimated coefficients are given by β̂ = (X′X + S)−1X′y, therefore

β̂ ∼ N(E(β̂), (X′X+S)−1X′X(X′X+S)−1σ2), where σ2 is the variance of the response

variable. However, since splines are biased smoothers, E(β̂) 6= β in general, confidence inter-

vals based on this result may not be accurate. An alternative is to use a Bayesian approach to

incorporate uncertainty in a natural manner (Wood, 2006). Expressing the penalty as a normal
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prior on the coefficients, it can be shown that the posterior distribution of the coefficients is

β|y ∼ N(β̂, (X′X + S)−1σ2). In this way we can obtain credible intervals of the parame-

ters. For non-Gaussian data, the posterior distribution can be approximated by the final working

model at convergence of the P-IRLS algorithm, i.e. β|z ∼ N(β̂, (X′WX + S)−1φ), where

z and W are the pseudo-data, iterative weights of the final working model in P-IRLS and φ is

the scale parameter of the data distribution. Wood (2006) provides a more detailed explanation

and proofs of the distributional results.



Chapter 3

Models of Mortality Graduation and
Forecasting

In this chapter a review of the state-of-the-art mortality models is given, starting from models

for static age patterns of mortality, then models for mortality forecast, followed by models for

coherent mortality forecast. The chapter finishes by a section outlining the main contributions

of this thesis.

3.1 Mortality Graduation

3.1.1 Adult Mortality Graduation

Crude mortality rates often exhibit natural randomness and irregular patterns, graduation of

mortality rates refers to the act of smoothing crude mortality rates. Sometimes extrapolation to

higher ages is also performed during the process since the usual assumed maximum lifespan of

mankind (e.g. 125) is often beyond the range of available data. Mortality graduation models,

sometimes also called ‘laws of mortality’, have become more and more sophisticated over time.

One of the earliest attempts is the Gompertz law (Gompertz, 1825). The Gompertz law of

mortality states that the mortality rates is an exponential function of age, i.e. the log of mortality

rates is linear in age,

log(µx) = a+ bx,

which is then modified by Makeham to the Gompertz-Makeham model (Makeham, 1860) where

an age invariant constant is added to capture age-independent mortality (e.g. age-independent

risk of accidents):

µx = A+BCx.

19
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The Gompertz and Gompertz-Makeham laws are simple and straightforward that fit well to adult

mortality, however, at the oldest ages the log-linearity assumption may not be suitable. Carriere

(1992) noted that the log-linearity is only applicable to adult ages up to 94, thereafter the (log)

mortality trend becomes non-linear. In fact, a decelerating rate of increase is often observed at

these ages, therefore the Gompertz and the Gompertz-Makeham model may over-estimate the

mortality rates at the oldest ages. Coale and Kisker (1990) proposed to model the rate of change

as a linear function in age, which is equivalent to adding a quadratic term to the Gompertz law

(Pitacco, 2016; Saikia and Borah, 2014),

m(x) = AeBx+Dx
2
.

This does provide a decelerating rate of increase in mortality rates, however, the applicable age

range is restricted to the oldest ages due to the quadratic term (after age 85 as suggested by the

authors).

Perks (1932), Beard (1959) and Thatcher (1999) suggested the use of logistic functions,

µx =
cz

1 + z
+ γ,

where z = ea+bx. The logistic model produces mortality rates that level-off to an asymptote, c,

at the highest ages. In addition to the decelerating increase in mortality rates at the highest ages,

at younger adult ages where mortality rates are lower, the logistic curves behave similarly to the

Gompertz or Gompertz-Makeham laws, hence is able to capture not only the decreasing rate of

increase in mortality rates at the oldest ages but also the steadily increasing adult mortality rates.

Instead of using a logistic function, Lindbergson (2001) suggested a piecewise model such that

for ages between a cut-off age w the mortality rates follow the Gompertz-Makeham law, while

after the cut-off age they are modelled by a linear function, i.e.

m(x) =

{
AeBx + C for x ≤ w
AeBw + C +D(x− w) for x > w

.

After the cut-off point, the Linbergson model behaves as the Weibull function with rate 1, there-

fore the Lindbergson model can be viewed as a compromise between the Gompertz-Makeham

and Weibull model. Saikia and Borah (2014) did a comparative study on these models for the

oldest ages and showed that the logistic model is the most reasonable choice among the laws

mentioned above. Pitacco (2016) provides an excellent and comprehensive review of a range of

old age models, and discussed the age pattern of mortality from different perspective.

3.1.2 Full Age Range Mortality Graduation

The aforementioned models are relatively simple and are only applicable to adult ages. Yet,

the extension to the whole age range is not so straightforward due to the shape of the infant
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and child mortality rates and the presence of the accident hump at teen years. Several more

complicated mathematical functions have been proposed to model mortality rates for the whole

range. Thiele (1871) proposed the following function:

m(x) = ϕe−ψx︸ ︷︷ ︸
negative exponential

+ λe−δ(x−ε)
2︸ ︷︷ ︸

normal

+ AeBx︸ ︷︷ ︸
Gompertz

ϕ,ψ, λ, δ, ε > 0,

where the negative exponential, normal and Gompertz functions capture the decreasing child

mortality, the accident hump and the senescent mortality, respectively. It decomposes the age

pattern of mortality into 3 stages, the declining infant-child mortality, the accident hump and

the Gompertzian adult mortality. Another model is the 8-parameters Heligman-Pollard Model

proposed by Heligman and Pollard (1980) which shares a similar concept. Instead of modelling

the mortality rates, they model the log odds of death probability,

qx
1− qx

= A(x+B)C +De−E(lnx−lnF )2 +GHx,

where qx is the one-year death probability at age x. Likewise, the function can be viewed

as a decomposition of the mortality schedule into three terms capturing the child mortality,

accident hump and adult mortality. Carriere (1992) again decomposes mortality into 3 stages

and proposed the Carriere Model,

S(x) = ψ1S1(x) + ψ2S2(x) + ψ3S3(x)

S1(x) = exp{−
( x
m1

)m1
σ1 }

S2(x) = 1− exp{−
( x
m2

)−m2
σ2 }

S3(x) = exp{e−
m3
σ3 − e

x−m3
σ3 }and

ψ3 = 1− ψ1 − ψ2.

Here S(x) is a survival function, S1(x), S2(x) and S3(x) are survival functions of the Weibull,

Inverse-Weibull and Gompertz distributions, respectively. The Carriere Model is a mixture of

survival functions, that correspond to the child (S1(x)), young adult (S2(x)) and adult mortality

(S3(x)), respectively. The model has eight interpretable parameters of the scales and locations

of each of the survival functions. This parametrisation is also equivalent to a multiple-decrement

life table (Booth and Tickle, 2008), as the survival function is a mixture of three survival func-

tions that correspond to mortality at different stages. Despite the ability to model mortality

rates of the whole range with interpretable parameters, these models are often difficult to fit

in practice, due to the high correlation in the estimated parameters. The high correlation also

compromises interpretability.
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3.1.3 Non-parametric Mortality Graduation

Recent advancement in non-parametric smoothing provides a flexible methodology for smooth-

ing mortality rates. For example, since the 13-th English Life Table (ELT13), subsequent ELTs

are all produced using spline-based methods. In ELT14, variable knot cubic spline is adopted

and the optimal number and location of knots are estimated. In ELT15 weighted least squares

smoothing spline is used, with a twist that the user specifies a set of weights based on their judg-

ment in respect of the regions where the closest fit to the observed data is desired. In addition,

some data at the highest ages are discarded to maintain a monotonic (upward) progression in

the graduated mortality rates. In ELT16 Geometrically Designed variable knot regression spline

(GeDS) (Kaishev et al., 2006) is used. It is a 2-stage method where they first fit a variable knots

linear spline, and then estimate the optimal control polygon of higher order splines, resulting

in estimates of the optimal knot sequence, the order of the spline and the spline coefficients

all together. Detailed information on methods used in the production of previous ELTs can be

found in Gallop (2002). In the latest English Life Table, ELT17, Dodd et al. (2018) suggested

a hybrid function for mortality graduation. Specifically, the mortality schedule is partially non-

parametric (at the younger ages) and partially parametric (at the older ages). Mortality rates

before some cut-off age w are modelled using splines while mortality rates after the cut-off age

are modelled using a parametric model (log-linear or logistic), i.e.

log(m(x)) or logitc(m(x)) =

{
s(x) for x ≤ w
a+ bx for x > w.

At younger ages there is sufficiently dense data, therefore the flexibility of spline makes it a very

effective tool in graduating mortality rates at these ages, whereas at the oldest ages a parametric

function helps produce more robust estimates and extrapolation. The cut-off point is chosen

from a candidate set by minimising the cross-validation error. In other words, the model requires

multiple fit depending on the size of the candidate set.

Several mortality graduation models have been introduced, parametric models often have the

advantage of having interpretable parameters, however they are usually of complicated non-

linear forms and the estimated parameters are usually highly correlated, hence compromising

the interpretability. There is no guarantee that a unique minimum exists and the high correlation

also means that it is difficult to find the minimum. The parametric form also means that there

is a pre-determined structure to the mortality schedule, for instance the previous models all de-

compose the age pattern into 3 stages: child, young adult (accident hump) and adult mortality.

Should there be fundamental changes in the structure of mortality age pattern that these decom-

position cannot capture, these models might fail. Non-parametric models offer higher flexibility,

with usually more local basis functions. However the high flexibility may introduce robustness

problems and over-fit at ages with sparse and unreliable data. This has been dealt with in most

of the previous ELTs by rather subjective judgments, such as down-weighting ages with sparse

data or discarding data at the oldest ages. In the latest ELT17, a parametric model is used at the
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oldest ages to maintain robustness while a non-parametric model is used at younger ages given

its flexibility.

3.2 Mortality Forecasting

In section 3.1 some laws of mortality have been discussed, they are useful in smoothing the static

age pattern of mortality and therefore producing period life tables. However, more information

could be learnt from considering the mortality schedules over time as a whole. It is also neces-

sary to understand the evolution of mortality schedules for the purpose of mortality forecasting.

A straightforward and intuitive approach is to repeatedly fit the laws of mortality to each year,

then forecast each of the model parameters. For example, McNown and Rogers (1992) fitted the

Heligman-Pollard model to the US data and projected each of the eight parameters using time

series independently. The use of stochastic processes has the advantage of producing probabilis-

tic intervals for forecasts instead of deterministic ones. However, the neglect of the correlations

between parameters when McNown and Rogers (1992) projected the parameters independently

might introduce biases and under-estimate the variances of the forecasts.

3.2.1 The Birth of Age-period Factor Models

Instead of repeatedly fitting the annual data and then projecting all the parameters from the

mortality laws, Lee and Carter (1992) proposed the Lee-Carter (LC) Model which condenses all

time-dependent developments into a single index. The model is non-parametric and employs a

very simple yet effective structure,

log(mxt) = αx + βxκt.

The αx is the baseline mortality that describes the overall age pattern of mortality, while κt is the

period effect and βx measures the age-specific sensitivity to changes in the period effect. The

model can be viewed as a principle-component decomposition with only the first component

included, and it is shown that this is usually sufficient to explain most of the variations in the

data. The LC Model has gained popularity quickly due to its simplicity and ease of parameter

interpretation. It has also made forecasting readily available by simply forecasting the only

time-dependent parameter κt. The LC Model pioneered the use of age and period effects and

since then a lot of the models have been built around it. However, several drawbacks have been

pointed out. As it can be seen, the model produces perfectly correlated mortality forecasts across

ages over time. In addition, the LC model lacks smoothness. For example, the baseline mortality

profile αx can be jagged and hence non-smooth age patterns might be obtained. Delwarde et al.

(2007) also noticed that the βx exhibits irregular patterns. Cairns et al. (2008) showed that the

lack of smoothness in the βx might result in irregular patterns in the residuals. It is also criticised

that the LC Model is not robust to the fitting period, meaning that using different fitting periods
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might result in quite drastically different estimates. Smoothing techniques have been suggested

in order to increase the robustness of the model and reduce the risk of over-fitting. Delwarde

et al. (2007) fitted the LC Model with the βx smoothed out using P-splines, while Richards and

Currie (2009) smoothed out the βx as well as the κt. Other several variants and modifications

to the LC Model have also been proposed, such as adjusting the κt to match the life expectancy

or calibrating the parameters against the mortality rates in the jump-off year for better forecasts

(Lee and Miller, 2001), while Booth et al. (2002) investigated the optimal estimation period as

well as the inclusion of higher order terms to the model in the form,

log(mxt) = αx + β(1)x κ
(1)
t + β(2)x κ

(2)
t + . . . .

In the original LC Model, Lee and Carter (1992) estimated the parameters by minimising the

squared differences of log mortality rates. Statistically this is equivalent to assuming a normal

distribution on the log of mortality rates, therefore errors are assumed to be homoskedastic,

which is quite unrealistic as the observed mortality rates are often more variable at older ages

due to the much smaller number of deaths at older ages. Brouhns et al. (2002) assumed a Poisson

distribution for the number of deaths and proposed a Poisson parallel approach to the LC Model,

hence introducing a more natural framework accounting for the heteroskedasicity. Specifically,

mortality rates are modelled through a Poisson distribution on the number of deaths dxt with

mean ECxtmxt, where ECxt and mxt are the central exposure and mortality rate at age x in year

t, respectively. Alternatively, a Binomial distribution on number of deaths dxt with counts E0
xt

and probability qxt are also sometimes used, where E0
xt and qxt are the initial exposure and

death probability at age x in year t, respectively. Moreover, it is often observed that the Poisson

variance (which is equal to the mean) is too restrictive, therefore a dispersion parameter can be

introduced. A particular choice of parametrisation leads to a Negative Binomial distribution.

The LC model and its variants have been applied widely, for example to the G7 countries (Tul-

japurkar et al., 2000), Australia (Tickle and Booth, 2014), Netherlands and Belgium (Antonio

et al., 2017) and Italy (D’Amato et al., 2011).

Using age and period effects, Cairns et al. (2006) focused only on higher ages (60 to 89) and

proposed the CBD Model,

logit qxt = κ
(1)
t + κ

(2)
t (x− x̄).

It can be thought as collection of Gompertz models, i.e. repeatedly fitting a linear model to each

annual data. The intercept and slope parameters κ(1)t and κ(2)t are then modelled as a bivariate

random walk time series. The model offers advantages over the LC Model such as having non-

trivial correlation of future mortality rates and a smooth pattern of the age effect (the linear

term). The model can also be fitted within a linear model framework as there is not any bi-linear

terms as in the LC models. However, the applicable range is limited to older ages due to the

linearity assumption. Several variants of the CBD model have also been proposed (Cairns et al.,

2006, 2009; Cairns, 2013), such as adding a quadratic age term for a better fit to the very old

ages and including a cohort effect, which is discussed below. Instead of a parametric linear (and

quadratic) age term, Currie (2011) proposed to use a non-parametric smooth function, a smooth
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CBD model, i.e.

logit qxt = κ
(1)
t + κ

(2)
t s(x− x̄),

where s(·) is a smooth function that is estimated using P-splines by the authors. This method

avoids the rigid parametric structure while allowing extrapolation in the age direction by means

of penalty.

3.2.2 Inclusion of Cohort Effects

In addition to the age and period effects, Willets (2004) noticed patterns in the data that relates

to the year of birth which cannot be easily explained by age-period terms. Researchers have

found that the inclusion of cohort effects is necessary in some populations, such as the United

Kingdom. Cairns et al. (2009) demonstrated that adding a cohort effect provides a statistically

significantly better fit to these populations and the standardised residuals display more random-

ness. Mortality models generally incorporate any of these three factors, namely age, period and

cohort effects. These models are sometimes categorised into one, two or three-factor model. For

instance, The LC Model and the CBD Model is a two-factor model with age and period effect.

However, Age-Period-Cohort (APC) models suffer a common drawback of non-identifiability,

such that the age, period and cohort effects are inestimable. The root cause for the non-

identifibaility lies in the fact that the age, period and cohort effects are exchangeable, one cannot

move along any of the two dimensions without moving in the third one. This is best understood

if one imagines a Lexis diagram, with age being the horizontal direction and period the vertical

direction, then the cohort travels in the diagonal direction. It is then apparent that these three

effects are always confounded, rendering any three-factor (age, period and cohort) models not

identifiable. The non-identifiability means that there exist infinitely many possible solutions to

the problem, and interpretation to the estimated age/period/cohort effects could be corrupted

and compromised.

In order to circumvent this issue, constraints are usually placed on the coefficients to regain

identifiability. Several estimation techniques have been proposed, such as the Constrained Gen-

eralized Linear Model (CGLM) (Mason et al., 1973) which imposes constraints on the age,

period and cohort effects or more recently the Intrinsic Estimator (IE) (Yang et al., 2004) that

utilises principal component approach to separate the null-space of the age-period-cohort space

and assigning it with zero mass when estimating the effects, which is essentially equivalent to

applying certain implicit constraints on the coefficients (Luo, 2013). Random effect approach

(Luo and Hodges, 2020; Yang and Land, 2006, 2008) and Bayesian framework (Schmid and

Held, 2007) have also been used to estimate APC models, where they both handle the non-

identifiability problem by assigning distributions (priors) over the age/period/cohort effects,

which can be viewed as adding regularisations to the original problem. In Fienberg’s com-

ment (2013) on Luo’s paper (2013), it is argued that there is no technical way to solve the

APC problem, since the issue lies in the heart of the APC model formulation (i.e. the linear
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dependency between the three effects) instead of the methods of estimation. Fienberg (2013)

as well as Smith (2008, 2004) and Mason and Smith (1985) argued that substantive judgment

and knowledge are required when resolving the APC issue. Therefore, one has to be cautious

whether all three effects together would give significantly better fit than either one or two of the

effects alone, which do not suffer from any non-identifiability problems. It should also be noted

that the age, period and cohort effects are only exactly linear dependent, meaning that non-linear

trends in these effects are still estimable.

A classic three-factor model is the simple APC Model, which is simply

log(µxt) = βx + κt + γt−x.

Renshaw and Haberman (2006) also extended the LC Model by adding a age-cohort interaction

term to account for the cohort effects:

log(µxt) = αx + β(1)x κt + β(2)x γt−x,

where αx, β(1)x and κt are again the baseline mortality schedule, age-specific sensitivity to period

changes and period effect, respectively. β(2)x is the age-specific response to the cohort effect,

γt−x, of the cohort born in year t−x. However, Cairns et al. (2009) and CMI (2007) found that

this model lacks robustness. Cairns et al. (2011a) also noted that the age-cohort term appears

to be compensating for the lack of a second age-period term, hence suggested replacing the

age-cohort term with a second age-period term and simply a cohort effect (instead of an age-

cohort interaction) for better robustness . If one think of the mortality surface with age as the

horizontal direction and time the vertical, then the year-of-birth (cohort effect) would affect

the surface diagonally. It is obvious how the age-period-cohort effects may compromise each

other hence introducing robustness problems and optimisation difficulties. Some authors have

experienced difficulties in estimating and projecting the cohort effects in a robust way (Plat,

2009a; Renshaw and Haberman, 2006). Antonio et al. (2017) have even opted out not to include

cohort effects into their mortality model for Netherlands and Belgium as they are deemed not as

significant and that they would complicate their other objectives.

3.2.3 Non-parametric Mortality Models

Currie et al. (2004) took a fully non-parametric approach and modelled the mortality surface

using a two-dimensional (2-D) P-spline. Being totally structure-free means that the model is

able to capture age-time interactions more flexibly. The model also produces smooth mortality

trends in both the age and time direction. Forecasting is done by extrapolating the mortality

surface in the time direction. However the forecasts are highly dependent on the penalty used

for the P-spline, for example, a second order difference penalty would produce linear-trend like

mortality forecasts while a first order difference penalty would produce flat mortality forecasts.

Another possible drawback is that the forecasts produced this way are deterministic, instead of
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stochastic. CMI (2006) has shown that the model produces good in-sample fit, but Cairns et al.

(2009) revealed that there is a genuine random period effect that is over-smoothed in the model.

Richards et al. (2006) later proposed an alternative 2-D P-spline model that models mortality in

the age-cohort surface instead of the age-period surface. Camarda (2019) has also employed the

2-D spline approach to mortality modelling, with constraints imposed on the coefficients such

that the forecast age profiles and improvement rates do not deviate from past historic trends

significantly.

Hilton et al. (2019) extended the hybrid model by Dodd et al. (2018) in section 3.1 for mortality

forecast, which takes the form:

mxt =

{ exp(sα(x) + sβ(x)t+ κt + sγ(t− x)) for x < w

exp(β0+β1x+β2t+β3xt)
1+exp(β0−log(ψ)+β1x+β2t+β3xt) exp(κt + sγ(t− x)) for x ≥ w,

where sα(x), sβ(x) and sγ(x) are smooth functions estimated by P-splines representing the

baseline, the age-specific improvement rates and the cohort effect. Therefore, similarly to the

Dodd et al. (2018) semi-parametric mortality graduation model, at younger ages splines are

used in explaining variations while after a certain cut-off point w, mortality pattern takes the

shape of a logistic form tending towards the asymptote ψ. Contrary to the usual assumption

of the LC Model that κt follows a random walk with drift, Hilton et al. (2019) decomposed it

into a deterministic linear trend t plus the random walk κt. This avoids estimating the bi-linear

age-period term, making the fitting process easier.

3.2.4 Structural Breaks

Many of the stochastic mortality models assume linear trends in mortality rates (the main period

effect) and project them forward to obtain forecasts. However, recent literature have started to

examine the propriety of this assumption. O’Hare and Li (2014) investigated 30 countries and

found that structural breaks (departure from the linearity assumption) are present in some coun-

tries. O’Hare and Li (2015) as well as Coelho and Nunes (2011) proposed measures and strate-

gies for identifying structural breaks and modelled the period effects as broken linear trends in

the event of structural breaks.

A number of mortality forecasting models have been discussed, along with some of their vari-

ants. In particular, the LC Model notably serves as a ‘base’ from which various other models

are derived. It has a simple form that pioneered the use of age and period effects. Mortality

projection is done by forecasting the period effects with the assumption that future period ef-

fects are expected to be a continuation of the present trend. More recent literature has advocated

the inclusion of cohort effects, which is found to be significant in some countries. Some au-

thors have encountered a lack of robustness in their estimation and have found it difficult to

project and forecast cohort effects in a reliable way. Forecasting mortality rates mainly rely



28 Chapter 3 Models of Mortality Graduation and Forecasting

on projecting current trends forward, yet the assumption that the same trend holds throughout

the whole fitting period seems less likely the longer the fitting period. One way to circumvent

this is to select an optimal fitting period such that the linear trend holds, as mentioned above.

Scholars have also tried to find ways to identify significant changes in mortality trends, some-

times called structural breaks, such that the fitting period can be split up into sub-periods with

different trends. When forecasts of different populations are compared, more problems arise.

For example, divergences in mortality forecasts among populations are usually unappealing as

a global convergence has been observed in the past (Wilson, 2011). This is particularly true

when the populations considered are a main population and its sub-population (e.g. an insured

population and the national population), as characteristics are shared between them to some

extent. Moreover, female mortality rates are expected to be always less than or equal to the

male mortality rates at each age, based on empirical data. When mortality of populations are

modelled independently, they may fail to satisfy the aforementioned notions. This give rise to

numerous joint population models, sometimes called ‘coherent models’, stemming from many

of the single population models introduced in this section. Not only does jointly modelling dif-

ferent populations avoid said problems, but it also enjoys the advantage of pooling data sets,

hence allows sharing of information among populations.

3.3 Coherent Models

Benefits can often be gained when different populations are modelled jointly, these are some-

times called coherent models. Coherent modelling of mortality is of more recent endeavours.

When populations are modelled independently, implausible results are sometimes obtained,

such as diverging mortality trends. For example, Jarner and Kryger (2011) observed that small

populations such as Denmark are generally more irregular and that they are very sensitive to

the fitting period, hence naive extrapolation of historic trends is likely to produce unrealistic

forecast, such as a lower old age mortality than that of the younger ages. Booth et al. (2006) has

also pointed out the lack of fit of the LC Model for small populations. Modelling mortality of

different populations jointly has the advantage of borrowing strength, this is particularly useful

in age range with scarce or even missing data. Coherent modelling is also very logical and sen-

sible especially when the mortality of a sub-population is of interest, as the sub-population and

the main population are expected to share some similar characteristics.

3.3.1 Common and Specific Factor Models

In order to coherently model and forecast mortality rates of multiple populations, Li and Lee

(2005) extended the single population LC Model and proposed the Common Factor LC Model,

which assumes a common βxκt term among different populations, i.e. log(mj
xt) = αjx + βxκt

where the superscript j indicates the population. This means that, starting from their respec-

tive mortality baselines, mortality rates of different populations have the same evolution over
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time hence effectively avoids divergent mortality trends. In fact, mortality forecasts of different

populations will be parallel to each other at each age. Clearly this common factor could be

too restrictive and might lead to lack of fit to historical data, therefore Li and Lee (2005) also

proposed a variant, the Augmented Common Factor Model, which includes population-specific

age and period effects:

log(mj
xt) = αjx + βxκt + βjxκ

j
t .

The population-specific period effects κjt ’s are assumed to be mean-reverting in the long run

to maintain the non-divergence, while allowing for short term variations. Other variants of this

type include the Common Age-effect Model (Kleinow, 2015) which assumes a common βx but

different κjt ; and the joint-κ Model (Lee and Carter, 1992; Delwarde et al., 2006) which on the

other hand assumes a common κt but different βjx for different populations. Zhou et al. (2013)

adopted the Common Age-effect Model and further assumed that the difference between the

period effects of the two populations follow a mean-reverting AR(1) process, hence the pro-

jected mortality rates are non-divergent in the long run. Instead of having additive population-

specific age-period terms as in the Common Factor Model and its variants, Russolillo et al.

(2011) constructed a multi-population model with a multiplicative population-specific factor to

the age-period effect, the three-way Lee-Carter Model,

log(mj
xt) = αjx + βxκtϕj .

3.3.2 Associated Mortality Indices Model

Alternative to jointly modelling multiple populations using common effects, Cairns et al. (2011b)

focused on forecasting period effects (and cohort effects) of multiple populations coherently.

Using a simple age-period-cohort model as example, Cairns et al. (2011b) modelled the pe-

riod and cohort effects jointly as correlated time series such that they produce non-divergent

mortality trends. They focused on modelling mortality rates between a large population and a

sub-population, and assumed that the difference of the period and cohort effects between the

large population and sub-population are mean-reverting, so that the projected rates at each age

are non-divergent over time. Specifically, let j = 1 be the (larger) main population and j = 2

be the (smaller) sub-population and let c = t− x be the year of birth, then

log(mj
xt) = αjx + n−1a κjt + n−1a γjc , for j = 1, 2

κ1t = µ1κ + κ1t−1 + ε1t ,

κ1t − κ2t = (1− ψ2
κ)µ2κ + ψ2

κ(κ1t−1 − κ2t−1) + ε2t ,

γ̃1c = γ1c − µ1γ − ρ1γ(c− c̄),

γ̃1c+1 = ψ1
γ,1γ̃

1
c + ψ1

γ,2γ̃
1
c−1 + δ1c ,

γ1c+1 − γ2c+1 = (1− ψ2
γ,1 − ψ2

γ,2)µ
2
γ + ψ2

γ,1(γ̃
1
c − γ̃2c ) + ψ2

γ,2(γ̃
1
c−1 − γ̃2c−1) + δ2c .
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Here na is the number of ages and c̄ is the average year of birth, µ1γ and ρ1γ are the parameters

for the linear trend of the cohort effect of the large population, µ1κ, µ
2
κ, µ

2
γ , ψ

2
κ, ψ

1
γ,1, ψ1

γ,2, ψ2
γ,1,

ψ2
γ,2 are parameters of the time series processes, and (ε1t , ε

2
t ) and (δ1c , δ

2
c ) are bivariate normal

error terms. The period effect of the larger population κ1t follows a random walk with drift and

the spread of the period effect κ1t − κ2t is a mean-reverting AR(1) process. The cohort effect of

the larger population γ1c is an AR(2) process around a linear trend and the spread of the cohort

effect γ1c − γ2c is a mean-reverting AR(2) process. Therefore, in the long run the projected

mortality rates of the sub-population would not diverge from that of the main population. In

addition to modelling a main and sub population, they have also considered the case for two

equal populations in the paper.

A similar approach is proposed by Dowd et al. (2011), which in addition to producing non-

divergent trends, the period effect (and cohort effect) of the smaller population, labelled as 2

is actually being ‘pulled’ towards the period effect (and cohort effect) of the larger population,

labelled as 1,

κ1t = µ1κ + κ1t−1 + ε1t ,

κ2t = µ2κ + κ2t−1 + φ2κ(κ1t−1 − κ2t−1) + ε2t ,

γ̃1c − γ̃1c−1 = (1− ψ1
γ)µ1γ − ψ1

γ(γ̃1c−1 − γ̃1c−2) + δ1c ,

γ̃2c − γ̃2c−1 = (1− ψ2
γ)µ2γ − ψ2

γ(γ̃2c−1 − γ̃2c−2) + φ2γ(γ̃1c−1 − γ̃2c−1) + δ2c .

Similarly, µ1κ, µ
2
κ, µ

1
γ , µ

2
γ , ψ

1
γ , ψ

2
γ , φ

2
κ, ψ

2
γ are parameters of the time series processes and (ε1t , ε

2
t )

and (δ1c , δ
2
c ) are bivariate normal error terms. The φ2κ and φ2γ are parameters that dictates how

heavy the pull is between the period and cohort effects of the two populations. The larger the

gap is between the period (cohort) effect of the two populations, the stronger the pull is, hence

in the long run the projected mortality rates of the two populations will converge.

3.3.3 Relational Models

Instead of introducing common or correlated effects, Jarner and Kryger (2011) proposed the

SAINT Model, where they first model the mortality surface of a larger population as the refer-

ence schedule and then model the ratio of the sub-population mortality rates to the reference,

mref
xt = Hθ(x, t), (3.1)

msub
xt = Hθ(x, t) exp(

n∑
i=1

β(i)x κ
(i)
t ). (3.2)
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In their paper they chose the βix’s to be some fixed functions of age as regressors and regard κit as

parameters to be estimated. Specifically, they modelled the ratio by three orthogonal regressors,

β(1)x = 1,

β(2)x = (x− 60)/40,

β(3)x = (x2 − 120x+ 9160/3)/1000,

and modelled the {κ(1)t , κ
(2)
t , κ

(3)
t } as a VAR(1) process. Plat (2009b) also considered a re-

lational model in the form of 3.2 where he focused on modelling an insured sub-population

relative to the country population. The author suggested various possible ways of specifying

the regressors β(i)x , and further imposed a constraint on the spread such that at the closing age

(say 120) the ratio of the insured population mortality rates to that of the country population

is exactly 1. This is because differences between the portfolio mortality and main population

mortality is expected to wear off at higher ages. In other words, the modelled mortality rates

of the main and sub-population converge in the age direction. Villegas and Haberman (2014)

also proposed a relational model for the mortality of different socio-economic sub-populations.

Similarly, a larger population is treated as the reference schedule and the ratio of each socio-

economic group to the reference is then modelled. The Villegas and Haberman (2014) model is

similar to the Augmented Common Factor LC Model but the additional age effect is assumed to

be the same among different groups, i.e

log(mref
xt ) = αrefx + βrefx κreft + γrefc ,

log(mj
xt) = log(mref

xt ) + αjx + βxκ
j
t ,

where j indicates the population. The period effects κreft and κjt are assumed to be random walk

with drifts.

The Product-ratio Model by Hyndman et al. (2013) can also be viewed as a relational model,

instead of treating a single population as the reference schedule, the geometric mean of all the

populations considered is taken as the reference, and the ratios of each population to the mean

are then modelled. One of the strength of the Product-ratio Model is that if the populations

have approximately equal variances, then the product (geometric mean) and each of the ratios

will have approximately zero correlation, making forecasting more efficient. The product and

ratios are each modelled using functional analysis methods and then forecast using time series

processes. In addition, the ratio model forecasts are assumed to follow stationary time series

processes so that the projected mortality rates are non-divergent at each age.

3.3.4 Non-parametric Models for Multi-population

Biatat and Currie (2010) extended the 2-D spline model by Currie et al. (2004) to a joint model
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by adding another 2-D spline for the spread between a population and a reference population.

They introduced the concept of ‘similarity’ among populations and specified conditions in which

a more parsimonious surface should be used in describing the gap between populations. More

specifically, when the two populations are ‘similar’ in some sense, then a uniform (across age

and/or period) spline surface is used for the spread, resulting in a more parsimonious structure.

This can also be used to classify whether the populations are in anyway ‘similar’ to each other.

Shang et al. (2016) proposed a functional approach to jointly model mortality of different popu-

lations. The model has a similar structure to the augmented common factor model (Li and Lee,

2005), with more principal components included. Shang and Hyndman (2017) also adopted the

functional approaches but focused on mortality rates of disaggregated populations. A main goal

is to produce forecasts that are consistent at all aggregation levels, also called ‘forecasts rec-

onciliation’. They analysed the mortality time series of different aggregation levels using two

grouped time series forecasting methods, namely the ‘bottom-up’ approach and the ‘optimal

combination method (Hyndman et al., 2011)’ and found that the ‘bottom-up’ approach gives

more accurate forecast in their example. The bottom-up approach first forecasts mortality rates

at each age at the lowest aggregation level independently, then forecasts higher level mortality

from these base level forecasts, such that the aggregated estimates are ensured to be consistent

with the lower level estimates. The optimal combination method on the other hand forecast

mortality at all aggregation levels independently, then revise the estimates by fitting a regression

model.

The aforementioned hybrid model by Hilton et al. (2019) also modelled males and females

jointly by assuming a common asymptote of the logistic function for both sexes, hence the

mortality rates of males and females tend to the same level at the highest ages.

De Jong et al. (2016) provided an entirely different and interesting angle to coherent mortality

modelling: a complex number framework is introduced to jointly model male and female mor-

tality. More specifically, the male and female mortality rates at each age in each year are first

condensed complex numbers, with one representing the real part and the other the imaginary

part. The mean of them are then subtracted and complex number SVD is applied to the complex

number data matrix as in the LC model. The age and period effects can then be extracted from

the components of the SVD. The procedure is very similar to the usual LC model, the main dif-

ference being that in the complex LC model, optimisation is done in the age and time direction

as well as across sex.

Coherent modelling of mortality has gained increasing attention in the literature. Coherent mod-

els are able to produce more reasonable forecasts, as opposed to fitting single population models

to different populations separately. For example, divergent mortality trends are often resulted

when populations are forecast independently, which contradicts to the global demographic con-

vergence observed in the past. Jointly modelling mortality of multiple populations also has

the advantage of pooling data, and borrowing strength across populations. Researchers have

suggested various way to achieve coherent modelling, such as using common factors among
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populations or modelling the mortality rates using correlated time series. Relational models

have also been proposed and are especially effective when the populations of interest are a large

population an its sub-population. The spread between the sub-population and a large popula-

tion can then be modelled and quantified. Splines models have proven to give satisfactory fit to

the data due to the high flexibility. When multiple populations are considered, a parsimonious

structure should be employed whenever it is sufficient as it is crucial to avoid over-fitting. A

complex number framework has also been adopted for male and female mortality modelling

which performs optimisation across age, time and sex at the same time.

3.4 Main Contributions of the Thesis

Computational advancements have made more sophisticated models feasible. Researchers have

constructed advanced models for mortality graduation attempting to fit the whole age range

with interpretable parameters. However these models often involve complicated functions such

that estimation of the parameters are difficult. In addition, the estimated parameters are of-

ten highly correlated which compromises their interpretability. Splines have also been used in

mortality graduation which offers higher flexibility and computation convenience, yet it usually

suffers lack of robustness at the highest ages where data is sparse. Several approaches have

been adopted to circumvent the said problem such as discarding or down-weighting data at the

oldest ages. Dodd et al. (2018) on the other hand proposed the semi-parametric model, which

exploits the high flexibility of splines for younger ages while maintaining a parsimonious and

robust parametric structure for the oldest ages.

Building upon the Dodd et al. (2018) model, instead of switching from a spline to a parametric

function, we suggest using adaptive P-spline for mortality graduation in Chapter 4. In other

words, a spline is used for the whole age range with varying smoothness in age. This avoids

the need to estimate or specify a cut-off point at which the spline transitions into a parametric

function. At higher ages the adaptive spline should be smoother, and hence more parsimonious

and robust. This method is suitable for the whole age range that can be estimated efficiently

under the generalised linear models framework, as opposed to the more difficult non-linear op-

timisation of complicated parametric functions which often involve highly correlated estimated

parameters. Moreover, most of the English Life Tables are produced by smoothing male and

female mortality rates separately, this might create unreasonable trends such as divergence at

the highest ages or male mortality rates being higher than that of females. Previously this is

eliminated with ex post ad-hoc fixes. We propose a way to borrow information from each sex to

further increase the robustness of the estimation at the oldest ages, and avoid divergence and in-

tersection of male and female mortality rates, thus producing more plausible smooth schedules.

We utilise properties of the B-spline basis and impose hard constraints on the parameters such

that cross-over of male and female mortality rates is strictly prohibited. The proposed method

performs better than traditional splines.
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We then extend the model for mortality projection in Chapters 5 and 6. The model has a similar

structure as the Hilton et al. (2019) model, however we use adaptive splines instead of a semi-

parametric model. Therefore the model does not require us to choose an ‘optimal age’ to switch

between models and therefore we obtain smooth estimates for the whole age range.

In this thesis we jointly model English-and-Welsh and Scottish males and females moratlity

rates. Following Li et al. (2014), models discussed in Section 3.3 can be broadly categorised

into three broad classes: Common and Specific Factor Model, Associated Mortality Indices

Model and Ratio Model. Common and Specific Factor Models assume common trends for mul-

tiple populations and model the population-specific deviations from the common trend. Associ-

ated Mortality Indices Models focus on correlation of the projected mortality rates of different

populations and aim at producing non-diverging trends in the long run. Ratio Models usually

start with modelling the mortality rates of a large reference population and then model the ra-

tio or spread of a smaller or sub-population to the reference population. We model mortality

rates of different populations by means of penalty. This can be viewed as a halfway between

jointly modelling them through a common factor models and modelling them independently.

The proposed model is not as restrictive as the common factor models in the sense that multiple

populations are allowed to have their own respective age/period/cohort effects, but is stronger

than the independent models in the sense that the shapes of the effects of different populations

depend on each other.

There has been little focus on mortality forecasts at the oldest ages (extrapolation in the age di-

rection) where data is non-existent, however sensible and plausible forecasts of mortality rates

at these ages are crucial. Extrapolation to higher ages where data is sparse or non-existent often

results in implausible trends. One main challenge is that since data is non-existent at these ages,

extrapolation relies heavily on the model structure. Assessments on these projections are mainly

based on their plausibility and reasonableness. For example, Cairns et al. (2008) introduced and

explained the concept of ‘biological reasonableness’. Since period mortality tables have histor-

ically exhibited increasing rates of mortality with age at higher ages, decreasing mortality age

patterns after the young adulthood may be deemed implausible. In addition, as discussed in

Chapter 1, evidence is shown supporting the male excess mortality from both a biological and

behavioral points of view, hence female mortality rates should be expected to be lower than that

of males. Divergences in estimated mortality trends are also often deemed to be unappealing, as

historical data has shown otherwise. As in mortality graduation, information can be borrowed

from each sex especially at the oldest ages. We expect the mortality improvement rates of males

and females are similar at the oldest ages. This is supported by empirical data that similar mor-

tality levels tend to have similar improvement rates. This also avoids divergences in male and

female mortality rates in the mid to long run, particularly at the oldest ages where the forecasts

are most susceptible to cross-over. We also model mortality rates across countries, specifically

England-and-Wales’ and Scotland’s populations are considered. These two populations are ex-

pected to have similar mortality structures for the same sex. England-and-Wales has a wider age
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range of available data, therefore by borrowing information from this population, the extrap-

olation for Scottish population can be made more reliably. This is especially important at the

highest ages where there are significant social and financial implications such as pensions and

health care.

We demonstrate a way to incorporate expert opinion into the projections. Following Dodd et al.

(2020), weights are assigned between the current mortality improvement rates and the expert-

determined target rates such that future mortality improvement rates will approach the expert-

determined target rates. The incorporation of expert opinion avoids the unlikely assumption of

perpetual linear improvement trends at current rates and improves the plausibility of projection

mortality rates. It also ensures the projections are non-divergent as the target rates are the same

for both sexes and countries.





Chapter 4

Mortality Graduation for Static Life
Tables

In this chapter a method for robust mortality graduation using penalised adaptive splines is

proposed. In Section 3.1 various mortality graduation models have been introduced. In order to

model the mortality rates over the entire age range, these models incorporate functions of quite

complicated forms, such as the Heligman-Pollard 8-parameter model (Heligman and Pollard,

1980). They often require non-linear optimisation and the estimated parameters are often highly

correlated, adding difficulties to the estimation. On the other hand, splines are well known

for their flexibility and have been used widely as a smoothing tool. The local support of B-

spline basis also offers computational efficiency. Nonetheless, when splines are used to smooth

mortality rates, a lack of robustness is observed at the oldest ages where data is scarce. Figures

4.1 and 4.2 show the smoothed mortality rates of England and Wales males and females in 2010,

2011 and 2012 using rank 40 uniform P-splines (i.e. 40 basis functions with equally spaced

knots), extrapolated to age 120. The lack of robustness at the oldest ages is more apparent in

males, as we do not expect the yearly mortality schedule to vary a lot over consecutive years.

The splines are then re-fitted discarding the last 5 data points for each year, from age 1 to

100, again revealing the lack of robustness at the oldest ages. The exclusion of the last 5 data

points changes the mortality profiles quite drastically. Extrapolations based on these mortality

schedules are very sensitive to the unreliable data at the oldest ages. In addition, sometimes

an unreasonable mortality schedule is produced. For example, Figure 4.3 plots the estimated

mortality rates for England and Wales males in 1980. The fitted mortality rates are decreasing at

the highest ages, which is not ‘biologically reasonable’ also pointed out by Cairns et al. (2008).

37
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Figure 4.1: P-spline fit of the England and Wales males in 2010, 2011 and 2012, extrapolated
to age 120. The solid lines are the estimated mortality rates using data from age 1 to 105, while
the dotted lines are the estimated mortality rates using data from age 1 to 100.

Figure 4.2: P-spline fit of the England and Wales females in 2010, 2011 and 2012, extrapolated
to age 120. The solid lines are the estimated mortality rates using data from age 1 to 105, while
the dotted lines are the estimated mortality rates using data from age 1 to 100.

Dodd et al. (2018) acknowledged this lack of robustness at the oldest ages and constructed the

semi-parametric model (as discussed in Section 3.1). They proposed switching from a spline

to a parametric model at some cut-off age, therefore a more robust and parsimonious model is

used for the oldest ages. The cut-off point has to also be estimated or specified. They have fitted

the model with different cut-off ages from a candidate set and performed model averaging. This

requires multiple fittings of the model and smoothness at the transition from the spline to the

parametric model is not guaranteed.
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Figure 4.3: P-spline fit of the England and Wales males in year 1980, extrapolated to age 120.

The main reason of the lack of robustness at the oldest ages is that conventional penalised splines

has only one smoothing parameter governing the overall smoothness, resulting in either over-

smoothed mortality rates at the young ages (less likely due to much bigger exposures compared

to older ages) or a lack of robustness at the oldest ages, as shown in Figures 4.1 - 4.3. This

motivates the use of adaptive P-splines.

Under an adaptive splines, the degree of smoothness can vary over the domain. It has been

shown that adaptive splines perform at least as good as ordinary splines when the true underlying

function has uniform smoothness and perform better when the true underlying function has

changing smoothness over the domain (Ruppert and Carroll, 2000). Using adaptive P-splines,

instead of having a single parameter governing the global smoothness penalty, we assumed that

the penalty function is an exponential function.

log(m(x)) = B(x)β (4.1)

with penalty

Ps =

k∑
i=3

ζ(i)(52(βi))
2, (4.2)

where

ζ(i) = λ1 exp(λ2 i), λ1 > 0. (4.3)

HereB(x) is the design matrix of B-spline basis functions, λ1 and λ2 are parameters controlling

the smoothness and k is the number of basis functions. To ensure the penalty is positive λ1 has

to be positive. The penalty can be written more compactly as β′P ′ΛPβ where P is the second
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order difference matrix with appropriate dimension and Λ is a diagonal matrix with entries

Λii = λ1e
λ2 i.

4.1 Basis Dimension

When using P-splines, the number of basis has to be chosen prior to model fitting. There are no

fixed rules on how to select the basis dimension, as the essence of penalised splines is that the

user construct a basis that is generous enough to capture variations of the underlying function

and then penalise the roughness. One could have as many basis functions as the number of

distinct data points and the smoothness penalty would then control the optimal smoothness and

hence prevent over-fitting. Currie and Durban (2002) and Currie et al. (2004) suggested placing

one knot for every four or five data points. Here the basis dimension is chosen according to

preliminary analysis. The data is fitted with ordinary P-splines of dimension 20, 25, 30, 35, 40,

45, 50, 55, 60, 65 for each sex and the total effective degrees of freedom for males and females is

examined. Males and females have the same knots sequence and hence the same B-spline basis.

Figure 4.4 plots the total effective degrees of freedom (males + females) against the total basis

dimension. It can be seen that the effective degrees of freedom increases steadily from 20 basis

functions for each sex (40 in total) to 40 basis functions for each sex (80 in total), indicating

that a basis dimension of at least 40 is needed. After that, the total effective degrees of freedom

starts to level-off at around 40 basis functions for each sex (80 total dimension), indicating that

further increase in the dimension has limited benefits and might not be necessary. Therefore we

choose the basis dimension to be 40 for each sex.

Figure 4.4: The total effective degrees of freedom against the total number of basis dimension
for males and females.
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4.2 Results

Figure 4.5 plots the graduated mortality rates using the proposed adaptive P-splines. It is evident

that the proposed adaptive P-splines are more robust at the oldest ages compared to ordinary P-

splines with global penalty. The yearly mortality schedules display less irregular variations.

Figure 4.6 plots the smoothed male mortality rates in 1980. With the global penalty, the esti-

mated mortality rates seem to be under-smoothed and are decreasing at the oldest ages, while

with the adaptive penalty the mortality schedule is much more reasonable and smooth.

Figure 4.5: The smoothed mortality rates of England and Wales males and females in year
2010, 2011 and 2012. The solid lines are the estimated rates using adaptive P-splines with
exponential penalty function, while the dotted lines are the estimated rates using P-splines with
global penalty.
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Figure 4.6: The smoothed mortality rates of England and Wales males in 1980. The solid line is
the estimated rates using adaptive P-splines with exponential penalty function, while the dotted
line is the estimated rates using P-splines with global penalty.

Figure 4.7 shows the adaptive P-spline fit for males in 2011 and the corresponding estimate of

the exponential smoothness penalty (λ1 exp(λ2 i)). The smoothness penalty is relatively low

at younger ages and it rapidly increases at about age 90. This is desirable as the exposures and

the reliability start to decrease at ages beyond 90.

Figure 4.7: P-spline with exponential penalty fit for 2011 England and Wales males and the
corresponding adaptive smoothness penalty
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4.3 Joint Mortality Graduation of Males and Females

It is shown in section 4.2 how a locally adaptive penalty for splines can largely eliminate implau-

sible trends and improve parsimony and robustness. Nonetheless, it is still possible to obtain un-

realistic mortality schedules when male and female mortality rates are modelled independently.

For example, the estimated mortality rates for males and females might sometimes diverge or in-

tersect at the oldest ages. Figure 4.8 plots the estimated mortality rates using adaptive P-splines

in 2007 and 2017. It is generally expected that female mortality rates are lower than that of

males at all ages and that the differences between male and female mortality rates decrease as

age increases. Although the possibility of divergent or intersecting mortality rates can not be

ruled out, we would not expect this to happen at ages where we have very sparse or no data.

Figure 4.8: The estimated mortality rates of England and Wales males and females in 2007 and
2017.

4.3.1 Preventing Divergences of Male and Female Mortality Rates

Since there are more female data at the oldest ages, by jointly modelling male and female mor-

tality rates we can borrow information and avoid divergence. To do this we introduce a cross-sex

penalty in addition to the adaptive smoothness penalty for males and females. Assuming that

the splines for males and females have the same knot sequence (i.e. the same B-spline basis),

we penalise the squared differences of the coefficients of males and females with an exponential

penalty, i.e.

Pd =
k∑
i=1

ζD(i) (βM i− βFi )2, (4.4)
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where

ζD(i) = λD1 exp(λD2 i). (4.5)

The superscriptsM , F andD indicate that the corresponding quantities relate to males, females

and their differences, respectively. At younger ages, the splines shall enjoy more freedom as

data at this region is more reliable. It is also believed that there is genuine difference in the

levels and patterns of mortality between male and female mortality (especially at the accident

hump). At adult ages the differences between male and female mortality rates seem to diminish

gradually as age increases. Therefore an exponential penalty function is used for the cross-

sex difference penalty. Thus, the joint graduation model has three penalties, an exponential

smoothness penalty for males, an exponential smoothness penalty for females and an exponen-

tial penalty for the differences between male and female mortality rates. We found that when

the differences between the first few male and female coefficients are left un-penalised, the es-

timation of smoothing parameters is easier and more stable. One of the reasons for this might

be the apparent converging trends in infant mortality, which adds difficulty to the estimation of

the difference penalty. Hence we are only penalising the differences between males and females

after the 8-th coefficient (around age 24, which is just after the accident hump). Results suggest

that the selection of this coefficient is immaterial as long as the childhood mortality is excluded.

Our proposed model then becomes,

log
(
m∗(x)

)
= log

(
mM(x)

mF (x)

)
=

(
B(x) 0

0 B(x)

)(
βM

βF

)
, (4.6)

with the following three penalties

Ps,M =
k∑
i=3

ζM (i)(52(βMi ))2, (4.7)

Ps,F =

k∑
i=3

ζF (i)(52(βFi ))2, (4.8)

and Pd =

k∑
i=9

ζD(i)(βMi − βFi )2, (4.9)

where

ζj(·) = λj1 exp(λj2 ·) and λj1 > 0. (4.10)

Here the first two penalties relate to the smoothness of male and female mortality rates while

the third penalty corresponds to the difference between male and female mortality rates. The

penalties can be written more compactly as β′P ′Pβ where the overall coefficient vector is β =

( βM βF ) and the overall penalty matrix isP =

(√
ΛMPM
√

ΛFPF
√

ΛDPD

)
,PM = (∇2 0 ),P F = ( 0 ∇2 ).



Chapter 4 Mortality Graduation for Static Life Tables 45

Here∇2 is the second order difference matrix, PD = ( 1 −1 )⊗ I and 0 is simply a null matrix

of appropriate dimension.

Figure 4.9 plots the estimated mortality rates of the joint model in 2007 and 2017. Comparing

the graduated rates of the joint and separate models, we can see that the difference penalty is

effective in preventing divergences between male and female mortality rates. Figure 4.10 plots

the estimated mortality rates of the joint model in 2007 alongside with the estimated cross-sex

penalty function, ζD(i). The cross-sex difference penalty ζD(i) is increasing in age, resulting

in a diminishing gap between male and female estimated mortality rates. Even though the cross-

sex difference penalty is able to prevent divergences, there is no guarantee that female mortality

rates will always be lower than male mortality rates (for example, the graduated mortality rates

at the oldest ages in 2017 in Figure 4.9).

Figure 4.9: The estimated mortality rates of England and Wales males and females in 2007 and
2017. The solid lines are the estimated rates from the joint model while the dotted lines are the
estimated rates from smoothing male and female mortality rates separately.
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Figure 4.10: The estimated mortality rates of England and Wales males and females in 2007
and the estimated penalty on the difference between male and female spline coefficients.

4.3.2 Preventing Cross-overs of Male and Female Mortality Rates

By introducing the difference penalty in section 4.3.1, we solved the problem of divergent mor-

tality trends at the oldest ages. However, this does not necessarily guarantee that the female

mortality rates will always stay lower than the male mortality rates. One further improvement is

to prevent male and female mortality rates from crossing each other. Figure 4.11 plots the grad-

uated mortality rates from the joint model in 2010, 2011 and 2012. Sometimes the estimated

male mortality rates are lower than that of females, for example, the child mortality in 2010 and

2012.

As mentioned before, we do not expect male and female mortality rates to cross over at ages

where we have very little or no data. In order to avoid this, a hard constraint is imposed on the

spline coefficients such that the each of the spline coefficients of females are smaller than or

equal to the corresponding spline coefficients of males, i.e. βFi ≤ βMi ∀i. Since it is assumed

that males and females have the same knots sequence, this is a sufficient condition such that

mF (x) ≤ mM (x) ∀x. This constraint is implemented by using Non-Negative Least Squares

(NNLS) instead of least squares within each P-IRLS iteration. The NNLS is done using the lsei

package in R.

To proceed, the parameter vector β∗ =

(
βM

βF

)
is first transformed to β∗∗ =

(
βM − βF

βF

)
=(

βD

βF

)
=

(
I −I
0 I

)(
βM

βF

)
= Dβ∗. The constraint βFi ≤ βMi ∀i is equivalent to

βMi − βFi ≥ 0 ∀i, hence the non-negative constraint is only applied to βD, i.e. βDi ≥ 0 ∀i.
The design matrix and penalty matrix have to be transformed accordingly. Since this is not a



Chapter 4 Mortality Graduation for Static Life Tables 47

Figure 4.11: The estimated mortality rates of England and Wales males and females in 2010,
2011 and 2012 from the joint model.

Figure 4.12: The estimated mortality rates of England and Wales males and females in 2010,
2011 and 2012 from the joint model with non-negative constraints.

linear smoother, i.e. it cannot be written as the general form ŷ = Ay, the gradient and Hes-

sian for the minimisation of the BIC cannot be found analytically. In addition, to the best of

our knowledge, the effective degrees of freedom of a non-negative least square model is not

known. We believe that adding the non-negative constraints shall not change the overall opti-

mal smoothness considerably, therefore the smoothing parameters in the constrained model are

fixed at the estimated smoothing parameters from the unconstrained joint model. Figure 4.12

plots the graduated mortality rates under the non-negative constraints. As expected, the male

mortality curve now always lies above female mortality curve.
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4.4 Conclusion

Crude mortality rates often exhibit irregular and wiggly patterns, due to natural randomness.

Therefore the crude rates have to be smoothed before they are used, this process is sometimes

called mortality graduation. The core objective of graduating mortality rates is to produce a

smooth mortality schedule, as well as eliminating any trends that are deemed unreasonable,

such as decreasing mortality rates at high ages, or male mortality rates being lower than female

mortality rates. The latter issue is addressed using rather ad-hoc methods in previous ELTs. For

example, In ELT15 the data at the oldest ages are discarded such that a monotonic mortality

scheulde would be obtained at these ages. In this chapter we proposed a robust method for

mortality graduation for the entire age range using adaptive P-splines. We assumed that the

smoothness penalty is an exponential function, hence at younger ages where more reliable data is

available, the model enjoys higher freedom, whereas at the oldest ages where data is sparse, the

heavier penalty improves robustness. Under this penalty, the model benefits from the flexibility

offered by P-splines and is robust at ages with low exposures, making extrapolation to higher

ages more stable.

Joint graduation of male and female mortality rates was also performed. Borrowing information

in this way is useful especially for males at the highest ages since there are usually more female

data at these ages compared to males. In addition, by introducing an additional penalty for the

difference between male and female spline coefficients and constraining the spline coefficients,

we could avoid divergences and cross-overs between male and female mortality rates. As a

result, the approach described in this thesis provides a coherent way of modelling mortality

across the whole age range even in regions where data is sparse or non-existent.

One potential drawback of our model is that mortality rates at ages beyond available data is ex-

trapolated almost linearly, while in the literature there is evidence showing a decreasing increase

in the log mortality rates at the oldest ages (Pitacco, 2016). A remedy would be to use a logistic

model instead of a log-linear model, so that an asymptotic limit is introduced.

An alternative way of modelling mortality would be to use a fully Bayesian approach. That

way the prior beliefs of the increasing smoothness and increasing similarity between male and

female mortality rates can be incorporated into the model in a more natural framework.



Chapter 5

Mortality Projection - Joint Sex and
Joint Country Model

Forecasts of mortality rates are necessary in many situations, for example it is needed for the

estimation of future life expectancies and sizes of the old age population. Many insurance

products such as life annuities also depend on these forecasts. Existing models for mortality

forecast are generally based on extrapolations of historic trends (see Section 3.2). The LC model

(Lee and Carter, 1992) pioneered the form log(mxt) =
∑

i α
i
xκ

i
t for mortality forecasting.

Several models have built upon the LC model and proposed amendments focusing on different

aspects. It is then realised that for some populations such as England and Wales, the year of

birth has a significant effect on mortality rates, leading to a more general form of the age-

period-cohort effect models log(mxt) =
∑

i α
i
xκ

i
tγ
i
t−x. In these models, future mortality rates

are produced by forecasting the time-relevant effects, i.e the period and cohort effects.

Renshaw and Haberman (2003) proposed a parallel GLM approach to the LC model. In this

model, they model mortality improvements as deterministic linear trends; avoiding the bi-linear

age-period term. Hilton et al. (2019) also modelled mortality improvements as deterministic

linear trends under a GAM framework, and further added a simple period effect as random walk

without drift to capture the stochastic behaviour and allow for probabilistic forecast intervals.

The cohort effect has found to be significant in the United Kingdom (Cairns et al., 2009) and

therefore it will also be considered in our model. In this chapter, we extend our mortality

graduation model presented in Chapter 4 to mortality projection using adaptive P-splines. Our

proposed model is

log(mj
xt) = sjα(x) + sjβ(x)t+ κjt + sjγ(t− x), (5.1)

where sjα(·), sjβ(·) and sjγ(·) are smooth functions representing the baseline mortality, age-

specific mortality improvement rates and the cohort effects for population j. The period effect,

κjt , is assumed to be either an AR(1) or ARIMA(1,1,0). The model structure is similar to the

spline component of the model in Hilton et al. (2019), except that in our case the splines are

49
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fitted to the whole age range with specially constructed penalties, avoiding the necessity of es-

timating a ‘threshold age’ to switch from splines for the majority of ages to a parametric model

for the oldest ages. All the smooth functions sjα(·), sjβ(·) and sjγ(·) are estimated by P-splines,

therefore we can write

log(mj
xt) = B(x)αj +B(x)βj t+ κjt +Bγ(t− x)γj , (5.2)

where B(x) is the B-spline basis at age x and Bγ(t− x) is the B-spline basis for year-of-birth

t − x. All the B-spline bases are of dimension 40 with equally spaced knots. αj ,βj and γj

are spline coefficients of the baseline mortality schedule, improvement rates and cohort effects,

respectively. For each smooth term, sjα(·), sjβ(·), and sjγ(·), the same knot sequence is used for

different populations, hence the same basis.

Since there is a linear relationship between age, period and cohort terms, the model is unidentifi-

able under some affine transformations. For example, for any constant c, we have the following

relationships:

{sα(x), κt} 7−→ {sα(x) + c, κt − c},

{sα(x), sγ(t− x)} 7−→ {sα(x) + c, sγ(t− x)− c},

{κt, sγ(t− x)} 7−→ {κt + c, sγ(t− x)− c},

{sβ(x), κt} 7−→ {sβ(x) + c, κt − ct},

{sα(x), sβ(x), sγ(t− x)} 7−→ {sα(x) + cx, sβ(x)− c, sγ(t− x) + ct− cx},

{sα(x), κt, sγ(t− x)} 7−→ {sα(x) + cx, κt − ct, sγ(t− x) + ct− cx},

{sα(x), sβ(x), κt, sγ(t− x)} 7−→ {sα(x) + cx2, sβ(x)− 2cx, κt + ct2, sγ(t− x)− c(t− x)2}.

In each line, the set of coefficients on the left hand side and the set on the right after the trans-

formations will give the same estimates. In order to overcome this unidentifiability problem, we

impose the following constraints: ∑
κt = 0,∑
tκt = 0,

sγ(1) = 0,

sγ(nc) = 0,∑
sγ(t− x) = 0,

where nc is the total number of cohort years.

With these constraints, we ensure that information about mortality improvements are contained

in sβ(x) with κt capturing yearly variations around it, sα(x) is the mortality schedule on average
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and the cohort effect sγ(t− x) is zero on average. Without loss of generality, the age and year-

of-birth are rescaled to [0, 1], and the year is rescaled and centered to [−0.5, 0.5].

5.1 Penalties

As discussed in Section 2.2.2, the essence of penalised splines is that the user supply a generous

enough basis to capture variations and then introduce a penalty to prevent over-fitting. In this

section the penalties used in our model are discussed.

5.1.1 Smoothness penalties

The baseline sjα(·) captures the average mortality profile in age, therefore it is expected to behave

similarly to the period mortality schedules (see Chapter 4), i.e. smoother at the higher ages. The

smoothness penalty function is assumed to be an exponential function as given in (5.3) such that

the penalty varies across ages.

On the other hand, for the age-specific improvement rates, sjβ(·), a global smoothness penalty

is assumed as given in (5.4). This is because the empirical data does not show a considerable

change in smoothness over the age range. Similarly, the smoothness penalty for the cohort effect

sjγ(·) is also global as given in (5.5).

Therefore, for each population j, there are three smoothness penalties,

Pj,α =
k∑
i=3

λj,α1 exp(λj,α2 i)(52(αji ))
2, (5.3)

Pj,β =λj,β
k∑
i=3

(52(βji ))
2 (5.4)

and Pj,γ =λj,γ
k∑
i=3

(52(γji ))
2, (5.5)

where Pj,α, Pj,β and Pj,γ are the smoothness penalties applied on the baseline mortality sched-

ule sjα(·), age-specific-improvement rates sjβ(·) and cohort effect sjγ(·) for population j respec-

tively.

5.1.2 Cross-sex penalties

As with mortality graduations of period life tables, a divergence in male and female mortality

rates in the oldest ages where data is sparse or non-existent is undesirable. If the populations

of interest are the males and females of the same country, additional cross-sex penalties are
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introduced as follows. Let the superscriptsm, f denote males and females respectively, then the

cross-sex penalties are

Pd,α =
k∑
i=9

λd,α1 exp(λd,α2 i)(αmi − α
f
i )2 (5.6)

and Pd,β =
k∑
i=9

λd,β1 exp(λd,β2 i)(βmi − β
f
i )2, (5.7)

where Pd,α and Pd,β are the cross-sex penalties applied on the baseline mortality schedules

and the age-specific improvement rates respectively, and the superscript d indicates that the

smoothing parameters are related to the cross-sex difference penalties. The cross-sex penalty is

again only penalised from the 9-th basis function onwards (which is approximately right after

the accident hump) for easier estimation of the smoothing parameters.

To avoid divergences in the baseline mortality rates, we employ the penalty given in (5.6), i.e.

the squared differences between the male and female P-spline coefficients are penalised. Here

the penalty function is exponential hence allows a lighter penalty at younger ages, where data is

abundant and the levels and patterns of male and female mortality rates are expected to be less

similar.

The same has to be applied to the improvement rates to maintain a non-divergent trends over

time. Generally, if the mortality rates are already low, the improvement will be at a slower

rate. Therefore if the male and female mortality improvement rates were to be modelled and

extrapolated to higher ages independently, the projection of male mortality rates will eventually

take over the projection of female mortality rates even in a short period of time. By penalising

the differences between the male and female spline coefficients of the improvement rates as

given in (5.7), this can be avoided. This also serves as a means to borrow information at ages

with unreliable and scarce data. At the highest ages where the male and female mortality levels

are very similar, we expect the improvement rates also to be similar.

5.1.3 Cross-country penalties

When populations of different countries are considered, in addition to the smoothness penalties

for each term (5.3), (5.4) and (5.5), we introduce a cross-country penalty. For each sex, let the

superscriptsEW and SC denotes the England and Wales and Scotland populations respectively.

Then we have the cross-country penalties

Ps,α =

k∑
i=2

λs,α1 exp(λs,α2 i)(5αEWi −5αSCi )2 (5.8)

and Ps,β =
k∑
i=2

λs,β1 exp(λs,β2 i)(5βEWi −5βSCi )2, (5.9)
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where Ps,α and Ps,β are the cross-country penalties applied on the baseline mortality sched-

ules and the age-specific improvement rates respectively, and the superscript s indicates that

the smoothing parameters are related to the cross-country shape difference penalties. For each

sex, the squared differences between the first differences of the England and Wales and Scot-

land P-spline coefficients are penalised, both in the baseline mortality (5.8) and the age-specific

improvement rates (5.9). In other words, any discrepancy in the shapes of the baseline and

improvement rates is penalised. Therefore even in ages where Scottish data is non-existent, in-

formation can be learnt from the larger England and Wales population. A global cross-country

penalty is assumed hence we can learn how ‘similar’ the two populations are for the whole age

range.

To simplify the estimation process, common smoothing parameters for the smoothness of sα(x),

sβ(x) and sγ(t − x) are assumed for EW and SC males and females. In our application with

Scottish male data when they are modelled independently, the estimated smoothness penalty of

the baseline mortality schedule is very large at the oldest ages (5.3). This is possibly due to

the fact that we only have data up to age 99 with very low exposures, where the log mortality

rates are still quite linear. Therefore the smoothness penalty would dominate and render the

cross-country shape penalty ineffective. Hence, by assuming common smoothing parameters

for the smoothness penalties between the two countries, we reduce the number of parameters to

be estimated, and also avoid the possibility of a dominating Scottish males smoothness penalty.

5.2 Period and Cohort Effects

In our proposed model (5.1), period and cohort effects can be interpreted as the accumulated

period shocks and cohort development to the annual mortality improvement. To see this, for a

given population, consider

log(mx,t)− log(mx,t−1) = sα(x)− sα(x) + sβ(x)t− sβ(x)(t− 1) + κt − κt−1
+ sγ(t− x)− sγ(t− 1− x)

= sβ(x) + (κt − κt−1) + (sγ(t− x)− sγ(t− x− 1))

= sβ(x) + κ∗t + s∗γ(t− x) (5.10)

where κ∗t and s∗γ(t − x) are the first differences of the period and cohort effects respectively.

Once written out in the form of (5.10), it can be seen that κ∗t and s∗γ(t − x) are the period and

generational impact on mortality improvement respectively.

In the literature, to forecast the period and cohort effects, relatively simple time series mod-

els are used. For example, in most of the LC type models, the main period effect is forecast

using a random walk with drift. However, since there is already a linear term for mortality

improvements in our model, the period effect should capture annual variations around the de-

terministic trend. We consider projecting the period effect using relatively simple time series,
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either an AR(1) process or an ARIMA(1,1,0) process without intercept. The advantage of using

an AR(1) process is that it produces stationary forecasts. On the other hand, the ARIMA(1,1,0)

has the meaning that the expected future period shocks to the annual mortality improvement are

zero, which maybe a desirable feature.

In the literature the cohort effect is also forecast using time series methods similar to the period

effect. Here we model the cohort effect as a smooth term. In other words, mortality changes

for cohorts born in different years is a smooth process. We assume the generational impact of

future cohorts to be zero (i.e. s∗γ(·) in (5.10) for future cohorts is zero), therefore the we let the

first difference of future cohort effects tail off to zero. This can be achieved easily by setting

the coefficients of the B-spline basis functions of the future cohorts to be the same as the last

coefficient of the estimated sγ(t− x).

5.3 Forecast Uncertainty

In Section 2.2.6, the parameter uncertainty and approximations to the distributions of the esti-

mated parameters have been discussed. However, when mortality forecasts are considered, the

forecast uncertainty also has to be taken into account. More specifically, recall that in our model,

mortality projection reduces to projecting the period effect, therefore the uncertainty about the

projected period effect has to be quantified. When the historic period effect is known or given,

the forecast uncertainty can be calculated in a relatively straightforward way, however, when the

historic period effect is also being estimated with uncertainty, as well as being correlated with

other estimated parameters such as the splines coefficients and the cohort effects, quantifying

the uncertainty of the projected period effect becomes a complicated task. Therefore we resort

to bootstrapping techniques in order to measure the uncertainty of the projected mortality rates.

As the joint distribution of the estimated parameters is available, we first draw samples from this

distribution. After that a time series model (AR(1) or ARIMA(1,1,0)) is fitted to the sampled

historic period effect to obtain an estimate of the variance of the innovations and estimates of the

mean and variance of the estimated time series coefficients. The time series coefficients are then

sampled as well as the projected period effects. Finally the quantiles of these forecast samples

are obtained.

5.4 Results

5.4.1 Independent Models

In this subsection we first present the results of individual models for each population. When

we model each population independently we only need the smoothness penalties (i.e. (5.3),

(5.4) and (5.5)). Figure 5.1 shows the parameter estimates for each population when they are
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modelled individually. A slight curvature (decelerating rate of increase) can be observed at the

oldest ages in the estimated baseline mortality schedules for EW males and females, while the

same cannot be noticed for SC males and females. As discussed in Section 3.1, studies in the

literature have pointed out that a decreasing rate of increase in the log mortality rates is often

observed at the highest ages (approximately after age 94 according to Carriere (1992)). The

linearity in the highest ages of the SC populations is possibly due to the limited data range the

SC population has. Recall that for SC males and females only data up to age 99 is available,

where within this range the log mortality rates are still relatively linear, therefore the decelerat-

ing rate of increase may not show. Figure 5.1b shows the estimated age-specific improvement

rates. Note that the more negative the estimates, the higher the mortality improvement. Some

common characteristics seem to be shared among the populations. Mortality improvement is

the fastest at the youngest ages, then slowing down until it reaches young adulthood, especially

for males. From late 30s to late 70s there is a huge mortality improvement for both males and

females in EW and SC. Finally the mortality improvement slows down up to the oldest ages.

The age-specific improvement rates of the male and female have similar shapes between coun-

tries. However, note that the estimated mortality improvement is above zero for SC young adult

males and at the extrapolated ages for EW and SC females, meaning that mortality is worsening.

From Figure 5.1c we see that the period effects for males and females for both countries are very

similar to each other, and that they are highly correlated. Figure 5.1d presents the estimated co-

hort effects for these populations. The cohort effects for EW males and females have a similar

structure.
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(a) estimated baseline mortality schedules extrapolated to age 120

(b) estimated age-specific improvement rates extrapolated to age 120
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(c) estimated period effects

(d) estimated cohort effects

Figure 5.1: The parameter estimates for EW males (blue), EW females (red), SC males (black)
and SC females (green).

More insights can be gained by looking at the period and cohort effects on the difference scale

(5.10), as they resemble their impacts on the annual mortality improvement. Figure 5.2 plots

the estimated period and cohort effects on a difference scale. The estimated κ∗t ’s are oscillating

around zero, indicating that the linear mortality improvement trend is a suitable assumption,

although in the most recent years there seems to be a deviation from the linear trend. The esti-

mated s∗γ(t−x)’s show significantly better mortality improvement for cohorts born around years

1931 and 1944. The first trough is a well documented phenomenon in the literature (Willets,

2004; Richards et al., 2006; Murphy, 2009) and the second one is also pointed out by Willets
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(2004). A better mortality improvement is also observed for cohorts born around 1988, except

for SC females.

(a) estimated period effects on a difference scale

(b) estimated cohort effects on a difference scale

Figure 5.2: The estimated period and cohort effects for each population on a difference scale.

5.4.2 Joint Sex Models

In this subsection we present the results of the joint sex model for EW and SC. Male and female

mortality rates are expected to converge at the oldest ages. In addition, at ages where data is

non-existent, it is essential to borrow information from the two sexes about the extrapolation

trends. Therefore to model males and females jointly, we employ the smoothness penalties
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given in Section 5.1 as well as the cross-sex penalties given in Section 5.1.2. The penalties that

are used in the joint model of males and females are then given in Table 5.1.

Function Smoothness Penalty Cross-sex Penalty

sα(x)

∑
eλ

m,α
1 +λm,α2 i(52αmi )2 ∑

eλ
d,α
1 +λd,α2 i(αmi − α

f
i )2+∑

eλ
f,α
1 +λf,α2 i(52αfi )2

sβ(x)

∑
λm,β(52βmi )2 ∑

eλ
d,β
1 +λd,β2 i(βmi − β

f
i )2+∑

λf,β(52βfi )2

sγ(t− x)

∑
λm,γ(52γmi )2

+∑
λf,γ(52γfi )2

Table 5.1: The penalties for the Joint Sex Model

In the estimation of the smoothing parameters for EW, some computational challenges are expe-

rienced. Specifically, the estimated penalty function of the differences between male and female

improvement rates was very high at old ages, approaching infinity (i.e. the exp(λd,β1 + λd,β2 i)),

causing numerical issues in the optimisation. Comparing the age-specific improvement rates of

EW males and females when they were fitted independently (Figure 5.1b), it can be seen that

the improvement rates are very similar to each other after around age 85. This is the reason why

the estimated cross-sex difference penalty function is approaching infinity after a certain basis

function when they are jointly modelled. In order to avoid the computational issues, instead of

estimating these smoothing parameters, we fix λd,β1 and λd,β2 at -55 and 85. Once these parame-

ters are fixed at these levels, the remaining smoothing parameters are optimised successfully.

Figure 5.3 plots the estimated baseline mortality schedules sα(x), improvement rates sβ(x),

period effects κt and cohort effects sγ(t − x) of the joint model, for EW males and females

while Figure 5.4 plots the same for SC males and females. The corresponding estimates from

the single sex model (i.e. without the cross-sex penalties) are also shown for comparison. The

corresponding estimates from the independent models (i.e. without the cross-sex penalties) are

also plotted for comparison.
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(a) estimated baseline mortality schedules and age-specific improvement rates

(b) estimated period and cohort effects

Figure 5.3: The parameter estimates of the joint sex model for EW males (blue) and females
(red). The solid and dotted lines correspond to estimates of the joint sex model and the inde-
pendent models respectively.
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(a) estimated baseline mortality schedules and age-specific improvement rates

(b) estimated period and cohort effects

Figure 5.4: The parameter estimates of the joint sex model for SC males (black) and females
(green). The solid and dotted lines correspond to estimates of the joint sex model and the
independent models respectively.

Comparing the joint sex and single sex (independent) models (solid and dotted lines respec-

tively) for EW males and females, for the baseline mortality schedules the difference is almost

indistinguishable, except at the oldest ages where the estimated curves start to converge in the

joint model. For the age-specific improvement rates, the effect of the cross-sex penalty is more

apparent, the male and female improvement rates tend to a common level at high ages. Under

the independent model (dotted lines), at old ages where male and female baseline mortality rates

are similar, the faster male improvement rate compared to that of females means that the projec-

tion of male mortality rates will drop below that of female mortality rates even in a short period
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of time. On the other hand, this problem is not experienced in the joint sex model, providing

more reasonable future mortality rates for both males and females. For Scotland, the data shows

less convergence in both the baseline mortality and improvement rates compared to the England

and Wales. The estimated penalties on the cross-sex differences are also relatively smaller. The

estimated period effects from the joint sex and single sex models are very similar and the male

and female period effects seem to be correlated. This is sensible as they are of the same country,

hence exposed to similar shocks in mortality rates. The cohort effect changes slightly while

maintaining the overall shape.

(a) estimated baseline mortality schedules extrapolated to age 120

(b) estimated age-specific improvement rates extrapolated to age 120

Figure 5.5: The extrapolated baseline mortality schedule and age-specific improvement esti-
mates of the joint sex model for EW males (blue) and females (red). The solid and dotted lines
correspond to estimates of the joint sex model and the independent models respectively.
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(a) estimated baseline mortality schedules extrapolated to age 120

(b) estimated age-specific improvement rates extrapolated to age 120

Figure 5.6: The extrapolated baseline mortality schedules and age-specific improvement rates
for SC males (black) and females (green). The solid and dotted lines correspond to estimates
of the joint sex model and the independent models respectively.

Figures 5.5 and 5.6 plot the baseline mortality schedule and the improvement rates extrapolated

to age 120 under both the joint model and the independent model for EW and SC respectively.

For EW, the female improvement rates are almost unchanged in the two models, except at the

oldest ages where the exposure of males is comparable to that of females. The extrapolated EW

male improvement rates are faster than that of EW females under the independent model. As

a result, projections based on these trends will be implausible whereas under the joint model,

strength is borrowed and the projected mortality rates are much more reasonable at these ages

(Figure 5.15b). For SC males and females, under the joint model the male and female baseline
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mortality profiles still tend to a common level, although less significant than the EW males and

females. The SC male mortality improvement rates are also way lower than that of SC females

at adult ages even with the presence of the cross-sex difference penalty, but eventually converge.

Figure 5.7: The estimated period and cohort effects for EW males (blue) and females (red) on
a difference scale. The solid and dotted lines correspond to estimates of the joint sex model
and the independent models respectively.

Figure 5.8: The estimated period and cohort effects for SC males (black) and females (green)
on a difference scale. The solid and dotted lines correspond to estimates of the joint sex model
and the independent models respectively.

Figures 5.7 and 5.8 plot the estimated period and cohort effects on a difference scale for EW and

SC respectively. For both EW and SC, the κ∗t ’s oscillate around 0 for both males and females,

indicating that the linearity assumption for mortality improvement is appropriate (i.e. sβ(x)t
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in (5.1)). It can also be noted that the κ∗t for males and females are correlated, which is not

surprising as males and females of the same country are likely to experience common mortality

shocks.

The s∗γ(t−x)’s oscillate around zero. There is a pronounced trough for cohorts born about 1932

for EW males, EW females and SC males, which agrees with the well documented cohort effect

(Willets, 2004; Richards et al., 2006; Murphy, 2009), where they experience higher mortality

improvements than neighbouring cohorts. Another trough could be observed for cohorts born

about 1944, which is also pointed out by Willets (2004). For SC females, there is only one big

trough spanning around 1925 to 1950. In addition, cohorts born around 1988 also seem to have

better mortality improvement rates, except for SC females. The relatively larger discrepancy

between the joint and independent model in the earliest and latest cohorts is possibly due to lack

of data, as we have only less than few years of data for those cohorts, hence the variability.

5.4.2.1 Backtesting

We conduct backtests on the models excluding data from the last 10 years, i.e. data from 1961 to

2006 are used to train the model while data from 2007 to 2016 are used as validation. Following

Booth et al. (2006), accuracy is measured by the mean absolute error (MAE) of the log mortality

rates as given in (5.11).

MAE =
∑
x

∑
t

| log m̃xt − log m̂xt|. (5.11)

Here m̃xt is the crude (observed) mortality rates at age x in year t and m̂xt the corresponding

estimate.

Figures 5.9 and 5.10 plot the fitted (1961 to 2006) and projected mortality rates (2007 to 2016)

at some selected ages for EW and SC respectively using an AR(1) process on the period effects

together with the 95% CI. The black solid and dotted lines correspond to the projected mortality

rates produced by the joint and independent models, respectively. There are little differences

between the joint model and the independent model except at the oldest ages for EW males and

females where the contrasts become more noticeable. Tables 5.2 and 5.3 show the MAE of the

joint model and the independent model for EW and SC respectively. The joint models have

slightly higher MAE except at the youngest ages. An ARIMA(1,1,0) is also fitted to the period

effects instead of an AR(1), and the projections are shown in Figures 5.11 and 5.12. This is

equivalent to fitting an AR(1) process to the first differences of the period effects. As shown

above, the first differences of the period effects resemble the shocks to the annual mortality

improvement rates, therefore the ARIMA(1,1,0) means that the expected future shocks to annual

mortality improvements will gradually revert to zero. Contrary to the results for EW when using

an AR(1), the MAE of the joint model using an ARIMA(1,1,0) is lower than the MAE of the

independent model in all but the 31-60 age group. The MAE of the models with ARIMA(1,1,0)

is also lower in all age groups compared to the models with AR(1). For SC, the results are
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similar when an ARIMA(1,1,0) is used compared to the AR(1) process, with ARIMA(1,1,0)

having a slightly higher MAE than the AR(1). Table 5.4 shows the coverage of the estimated

95% intervals of the joint sex model. On average, the intervals produced using AR(1) are too

narrow. On the other hand, ARIMA(1,1,0) produces wider intervals and hence higher coverage.

The overall coverage of the intervals using ARIMA(1,1,0) are still below 95%, however, for

older age groups, the coverage are much closer to 95%, especially for EW males aged 61-90.

The EW populations also have better coverage than the SC populations.

(a) EW males

(b) EW females

Figure 5.9: Estimated mortality rates and the projected 95% intervals at some selected ages
from 1961 to 2006 (training) and from 2007 to 2016 (validation) using an AR(1). The points
are the observed mortality rates.
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(a) SC males

(b) SC females

Figure 5.10: Estimated mortality rates and the projected 95% intervals at some selected ages
from 1961 to 2006 (training) and from 2007 to 2016 (validation) using an AR(1). The points
are the observed mortality rates.
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(a) EW males

(b) EW females

Figure 5.11: Estimated mortality rates and the projected 95% intervals at some selected ages
from 1961 to 2006 (training) and from 2007 to 2016 (validation) using an ARIMA(1,1,0). The
points are the observed mortality rates.
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(a) SC males

(b) SC females

Figure 5.12: Estimated mortality rates and the projected 95% intervals at some selected ages
from 1961 to 2006 (training) and from 2007 to 2016 (validation) using an ARIMA(1,1,0). The
points are the observed mortality rates.
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EW males and females

Age
MAE of Joint Model

AR(1)

MAE of Independent Model

AR(1)

MAE of Joint Model

ARIMA(1,1,0)

MAE of Independent Model

ARIMA(1,1,0)

1 to 30 0.1537691 0.1546165 0.1376645 0.1391921

31 to 60 0.08711875 0.086363 0.06133899 0.06077347

61 to 90 0.04220626 0.04166751 0.03567749 0.03597661

91+ 0.06147689 0.06051831 0.0479942 0.04903926

all ages 0.08993749 0.08967949 0.07449548 0.07499984

Table 5.2: The mean absolute error of log projected mortality rates for EW males and females

SC males and females

Age
MAE of Joint Model

AR(1)

MAE of Independent Model

AR(1)

MAE of Joint Model

ARIMA(1,1,0)

MAE of Independent Model

ARIMA(1,1,0)

1 to 30 2.824223 2.844317 2.84601 2.86908

31 to 60 1.574693 1.574558 1.59648 1.599322

61 to 90 1.014488 1.006697 1.036275 1.03146

91+ 0.3062166 0.302636 0.3212329 0.3211467

all ages 1.668263 1.671625 1.689435 1.69582

Table 5.3: The mean absolute error of log projected mortality rates for SC males and females

95% intervals coverage

Age
EW males EW females SC males SC females

AR(1) ARIMA(1,1,0) AR(1) ARIMA(1,1,0) AR(1) ARIMA(1,1,0) AR(1) ARIMA(1,1,0)

all ages 0.4576923 0.6163462 0.4865385 0.7644231 0.302020191 0.434343403 0.331313127 0.536363633

61-90 0.7666667 0.9633333 0.63 0.89 0.4833333 0.5833333 0.4133333 0.6466667

91+ 0.6285714 0.7428571 0.4571429 0.8857143 0.3111111 0.5111111 0.4444444 0.8333333

Table 5.4: The coverage of the 95% intervals of the joint sex model

5.4.2.2 Projection

We present the projections (from 2016) of the joint sex model in the age and time direction,

alongside with the projections of the single sex models. The male and female mortality rates

should be non-intersecting such that the female mortality rates are always below male mortality

rates at each age in any time. Figures 5.13 and 5.14 plot the 1, 25 and 50-year ahead projections

of the models for EW and SC respectively. The joint sex model largely eliminates the problem

of female mortality rates overtaking male mortality rates at older ages. At younger ages, the

differences between the two models are smaller and the female childhood mortality eventually

takes over the male childhood mortality in the 50-year ahead projections for EW males and

females.
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Figure 5.13: The projected mortality schedules in 1, 25 and 50 years ahead. The blue and red
lines are the projections for male and female mortality rates respectively while the solid and
dotted lines correspond to the projections of the joint and independent models respectively.

Figure 5.14: The project mortality schedules in 1, 25 and 50 years ahead. The black and green
lines are the projections for male and female mortality rates respectively while the solid and
dotted lines correspond to the projections of the joint and independent models respectively.

Figures 5.15a and 5.16a plot the 50-year ahead projected mortality rates at some selected ages

for EW and SC respectively. At younger ages the differences between the two models are rela-

tively small. At the oldest ages, the joint sex model produces much more reasonable long term

projections compared to the independent model for EW males and females. For example, the

EW male and female mortality projections at age 104 of the independent models intersect at
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around 2030; whereas in the joint sex model the female mortality projections are always lower

than that of males. By modelling male and female mortality rates jointly we avoided divergences

and cross-overs of the mortality trends, especially at high ages where male and female mortality

rates are very similar. For SC, the differences between the two models are relatively small due

to the small estimated cross-sex penalty. It should also be noted that there are relatively less

changes in the female projections compared to the male projections between the joint model

and the independent model, reflecting the fact that the female population gives more informa-

tion due to having bigger exposures. Figures 5.15b and 5.16b plot the estimated and projected

mortality rates at the extrapolated ages. The joint model largely improves the plausibility of

the projections. Even though the male and female projections in these extrapolated ages still

cross-over in some years, the gap between them are much smaller compared to the independent

models and they are non-divergent. For example, at age 110 the projected EW female mortality

rate becomes higher than that of males in around year 2040 in the joint model, while in the inde-

pendent model it happens in about year 2010. Note that the extrapolated mortality improvement

rates after about age 115 are positive for SC males and females, meaning that mortality is wors-

ening over time. Although we can not rule out this possibility, we do not have a strong reason to

believe this, especially in the area where we have extrapolated. Therefore expert opinions play

a more important role here for the smaller SC population.
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(a) age 10, 30, 50, 70, 90 and 104

(b) age 105, 110, 115 and 120

Figure 5.15: 50 years ahead projections of EW male (blue) and female (red) mortality rates at
selected and extrapolated ages along the time horizon. The solid and dotted lines correspond
to estimates of the joint sex model and the independent models respectively.
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(a) age 10, 30, 50, 70, 90 and 99

(b) age 105, 110, 115 and 120

Figure 5.16: 50 years ahead projections of SC male (black) and female (green) mortality rates
at selected and extrapolated ages along the time horizon. The solid and dotted lines correspond
to estimates of the joint sex model and the independent models respectively.

5.4.2.3 Expert Opinions

It is unrealistic to have perpetual constant mortality improvement rates based on the historical

data. In our example, the age-specific mortality improvement rates are estimated using around

50 years of data, long term projections using these estimated improvement rates maybe un-

reasonable. To avoid risks of implausible projections, expert opinion can be incorporated into
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mortality projections. The expert opinion moderates the effect of the model and model mis-

specification on long term forecasts and produces more robust and sensible estimates. The prin-

cipal mortality assumptions used in the Office for National Statistics (ONS) for the 2016-based

UK national population projections are that annual mortality improvement rates will converge

to 1.2% for most ages in 2041, which is the 25-th year of the projections, and remains at 1.2%

thereafter for both males and females. For the oldest ages there is little past evidence of the

rates of improvement, therefore in order to avoid implausible numbers surviving to extreme

ages, the target rates of improvement for those born before 1924 are assumed to decline from

1.1% to 0.1% for those born in 1906 and earlier. The transition from the current mortality im-

provement rates to the target rates is not assumed to happen linearly over the forecast horizon,

but the speed is assumed to be the same for males and females. Following Dodd et al. (2020),

the convergence to the target rates is incorporated using a weight function w that assigns more

weight to the target rates over the forecast horizon,

w(t) =

{
1− 3( t

25)2 + 2( t
25)3 for 0 ≤ t ≤ 25

0 for t > 25,
(5.12)

and as a result the rate of improvement at age x in forecast year t equals to

βx,t =

{
(1− w(t))βex + w(t)ŝβ(x) for 0 ≤ t ≤ 25

βex for t > 25,
(5.13)

where βex is the experts advised target rate of improvements at age x and ŝβ(x) is the estimated

current mortality improvement rates at age x. Therefore in each forecast year the improvement

rates are getting closer to the target rates and eventually reach the target improvement rates in

the 25-th forecast year.
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Figure 5.17: The project mortality schedules in 1, 25 and 50 years ahead with the incorporation
of expert opinion. The blue and red lines are the projections for male and female mortality
rates respectively while the solid and dotted lines correspond to the projections of the joint and
independent models respectively.
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(a) age 10, 30, 50, 70, 90 and 104

(b) age 105, 110, 115 and 120

Figure 5.18: 50 years ahead projections of EW male (blue) and female (red) mortality rates with
the incorporation of expert opinion at selected and extrapolated ages along the time horizon.
The solid and dotted lines correspond to estimates of the joint sex model and the independent
models respectively.
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Figure 5.19: The projected mortality schedules in 1, 25 and 50 years ahead with the incorpo-
ration of expert opinions. The black and green lines are the projections for male and female
mortality rates respectively while the solid and dotted lines correspond to the projections of the
joint and independent models respectively.

Figures 5.17 and 5.19 plot the projected mortality profiles in the 1-st, 25-th and 50-th forecast

year for EW and SC respectively while Figures 5.18 and 5.20 plot the 50-year ahead projections

at some selected ages and the extrapolated ages with expert opinions adjustments. As expected,

the mortality projections are now non-divergent in the long run as the improvement rates even-

tually tend to a common value. Incorporating expert opinion largely improves the plausibility

of the long term mortality forecasts. Specifically, when the current mortality improvement rates

are continued indefinitely, the male and female childhood mortality rates eventually cross-over

as depicted in Figure 5.13, while after the incorporation of expert opinion, this is effectively

avoided. The SC male mortality rates still drop below SC female mortality rates at some ages

in the long term, but the gaps are much smaller and with fewer ages experiencing this problem

after incorporating expert opinion.
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(a) age 10, 30, 50, 70, 90 and 99

(b) age 105, 110, 115 and 120

Figure 5.20: 50 years ahead projections of SC male (black) and female (green) mortality rates
with the incorporation of expert opinion at selected and extrapolated ages along the time hori-
zon. The solid and dotted lines correspond to estimates of the joint sex model and the indepen-
dent models respectively.

5.4.3 Joint Country Models

In this subsection we present the result of the joint country model for males and females. It is

evident and reasonable that the EW and SC males (females) have similar mortality structures.

Having a wider age range of available data in England and Wales, it would be beneficial to

jointly model EW males (females) with SC males (females), which has data only up to age 99.
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The penalties employed for the joint country model of England and Wales’ males (females) and

Scotland’s males (females) are given in Table 5.5.

Function Smoothness Penalty Cross-country Penalty

sα(x)

∑
eλ

c,α
1 +λc,α2 i(52αEWi )2 ∑

λs,α 5 (αEWi − αSCi )2+∑
eλ

c,α
1 +λc,α2 i(52αSCi )2

sβ(x)

∑
λc,β(52βEWi )2 ∑

λs,β 5 (βEWi − βSCi )2+∑
λc,β(52βSCi )2

sγ(t− x)

∑
λc,γ(52γEWi )2

+∑
λc,γ(52γSCi )2

Table 5.5: The penalties for the Joint Country Model

Here the superscript c indicates that the smoothing parameters are common between EW and

SC.

Figures 5.21 and 5.22 plot the estimated terms of the joint country model alongside that of the

independent models. Comparing the joint country model and independent models, we can see

that information is shared between the England and Wales and Scotland’s populations. Being

the larger population, the estimates of the EW populations are less affected by the cross-country

penalties. The shapes of the baseline mortality profile and improvement rates of SC males and

females are now more similar to that of the EW populations. Despite the mortality improvement

rates for SC adult males around age 30 are still above zero (worsening mortality), it is less ex-

treme than those obtained in the independent model. The estimated cross-country shape penalty

in the improvement rates (5.9) for females is much stronger than that for males, hence the shape

of the mortality improvement rates of the smaller SC female population is very close to that of

the larger EW female population. The period effects do not show significant differences between

the two models but the cohort effect for SC females display more variability.

Figures 5.23 and 5.24 plot the extrapolated baseline mortality profiles and improvement rates up

to age 120. Instead of linearly projecting SC baseline mortality after age 99 as in the single pop-

ulation model, information is learnt from the EW data about the shape of the mortality schedule

at higher ages and the extrapolated SC baseline mortality schedules now show a deceleration

in mortality increase in age, a feature that is well established in the literature (Carriere, 1992;

Thatcher, 1999; Saikia and Borah, 2014; Pitacco, 2016). The shape of the improvement rates

are now more in line with each other even in the extrapolation range.
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(a) estimated baseline mortality schedules and age-specific improvement rates

(b) estimated period and cohort effects

Figure 5.21: The parameter estimates of the joint country model for EW (blue) and SC (black)
males. The solid and dotted lines correspond to estimates of the joint country model and the
independent models respectively.
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(a) estimated baseline mortality schedules and age-specific improvement rates

s
(b) estimated period and cohort effects

Figure 5.22: The parameter estimates of the joint country model for EW (red) and SC (green)
females. The solid and dotted lines correspond to the estimates of the joint country model and
independent models respectively.
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(a) estimated baseline mortality schedules extrapolated to age 120

(b) estimated age-specific improvement rates extrapolated to age 120

Figure 5.23: The extrapolated baseline mortality schedules and age-specific improvement rates
of the joint country model for EW (blue) and SC (black) males. The solid and dotted lines
correspond to estimates of the joint country model and the independent models respectively.
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(a) estimated baseline mortality schedules extrapolated to age 120

(b) estimated age-specific improvement rates extrapolated to age 120

Figure 5.24: The extrapolated baseline mortality schedule and age-specific improvement rates
for EW (red) and SC (green) females. The solid and dotted lines correspond to estimates of the
joint country model and the independent models respectively.
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Figure 5.25: The estimated period and cohort effects for EW (blue) and SC (black) males on a
difference scale. The solid and dotted lines correspond to estimates of the joint country model
and the independent models respectively

Figure 5.26: The estimated period and cohort effects for EW (red) and SC (green) females on a
difference scale. The solid and dotted lines correspond to estimates of the joint country model
and the independent models respectively.
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Figures 5.25 and 5.26 plot the period and cohort effects on the difference scale. The κ∗t ’s oscil-

late around 0 evenly. It can also be noted that the κ∗t ’s between EW and SC populations seem to

be correlated. The κ∗t ’s between the joint and independent model are indistinguishable.

The differences between the s∗γ(t−x)’s of the joint and independent models are relatively small,

except for SC females. Three pronounced troughs can be observed for cohorts born about 1931,

1944 and 1987 as in the joint sex model, meaning that these cohorts enjoy a faster mortality

improvement rates. The generational effect for cohorts born about 1931 is well acknowledged

in the literature (Willets, 2004; Richards et al., 2006; Murphy, 2009), and generational effect

for the cohorts born about 1944 is also noted in Willets (2004). In the independent model for

SC females and the joint sex model for SC males and females, only a single broad trough is

observed for cohorts born around 1925 to 1950, whereas in the joint country model two troughs

for cohorts born around 1932 and 1945 are observed. In addition, SC female born around 1987

is also identified as having faster improvement rates. This result of faster improvement for

SC females born around 1987 is consistent with our results for EW males, EW females and

SC males. Note that there is no cross-country penalty for the cohort effects, this is merely

a consequence of the cross-country penalty on the baseline mortality schedules and the age-

specific improvement rates.

5.4.3.1 Backtesting

Figures 5.27 and Figure 5.28 plot the fitted and projected mortality rates for males and females

respectively at some selected ages from 1961 to 2016. The black solid and dotted lines corre-

spond to projections produced by the joint and independent models respectively and the MAE

are shown in Table 5.6 and 5.7. The MAE of the joint model in older ages groups (61+) are

lower than that of the independent model for both males and females, indicating that the cross-

country penalty does indeed produces more accurate predictions at older ages, as information is

now shared between populations at these ages where the exposures are relatively small. How-

ever the penalty may be too heavy and restrictive on the freedom of the model at younger ages,

where data is more abundant. One possible modification would be to use an exponentially vary-

ing cross-country penalty instead of a global one. Similar conclusions can be drawn when an

ARIMA(1,1,0) is used (Figures 5.29 and 5.30). Table 5.8 shows the coverage of the estimated

95% intervals of the joint country model. On average, the intervals produced using AR(1) are

too narrow. On the other hand, ARIMA(1,1,0) produces wider intervals and hence higher cov-

erage. The overall coverage of the intervals using ARIMA(1,1,0) are still below 95%. However,

for older age groups, the coverage are much closer to 95%, especially for EW males aged 61-90.

The coverage of the intervals produced by the joint country model for SC males have improved

compared to the independent model, especially at the older age groups (61+), while for EW

males, EW females and SC females, the coverage are quite similar to that of the independent

models.
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(a) EW males

(b) SC males

Figure 5.27: Estimated mortality rates and the project 95% intervals at some selected ages from
1961 to 2006 (training) and from 2007 to 2016 (validation) using an AR(1). The points are the
observed mortality rates.
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(a) EW females

(b) SC females

Figure 5.28: Estimated mortality rates and the project 95% intervals at some selected ages from
1961 to 2006 (training) and from 2007 to 2016 (validation) using an AR(1). The points are the
observed mortality rates.
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(a) EW males

(b) SC males

Figure 5.29: Estimated mortality rates and the project 95% intervals at some selected ages
from 1961 to 2006 (training) and from 2007 to 2016 (validation) using an ARIMA(1,1,0). The
points are the observed mortality rates.
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(a) EW females

(b) SC females

Figure 5.30: Estimated mortality rates and the project 95% intervals at some selected ages
from 1961 to 2006 (training) and from 2007 to 2016 (validation) using an ARIMA(1,1,0). The
points are the observed mortality rates.
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EW and SC males

Age
MAE of Joint Model

AR(1)

MAE of Independent Model

AR(1)

MAE of Joint Model

ARIMA(1,1,0)

MAE of Independent Model

ARIMA(1,1,0)

1 to 30 1.357501 1.311118 1.365819 1.314342

31 to 60 0.7154661 0.7108316 0.7178916 0.7090071

61 to 90 0.4636356 0.4815504 0.4790211 0.4931601

91+ 0.1747451 0.1835653 0.1840951 0.1913881

all ages 0.7695336 0.7607488 0.7783156 0.7654801

Table 5.6: The mean absolute error of log projected mortality rates for EW and SC males

EW and SC females

Age
MAE of Joint Model

AR(1)

MAE of Independent Model

AR(1)

MAE of Joint Model

ARIMA(1,1,0)

MAE of Independent Model

ARIMA(1,1,0)

1 to 30 1.720643 1.687815 1.729588 1.695103

31 to 60 0.9545456 0.9500895 0.9583566 0.9510878

61 to 90 0.5587298 0.566814 0.5691109 0.5742768

91+ 0.1201981 0.1269547 0.1147334 0.1196441

all ages 0.9694566 0.9615916 0.9756758 0.9654181

Table 5.7: The mean absolute error of log projected mortality rates for EW and SC females
AR(1)

95% intervals coverage

Age
EW males EW females SC males SC females

AR(1) ARIMA(1,1,0) AR(1) ARIMA(1,1,0) AR(1) ARIMA(1,1,0) AR(1) ARIMA(1,1,0)

all ages 0.4567308 0.6048077 0.4634615 0.7721154 0.369696982 0.497979782 0.280808073 0.516161609

61-90 0.7633333 0.9566667 0.6166667 0.9033333 0.6 0.7333333 0.4333333 0.71

91+ 0.65 0.7357143 0.45 0.9071429 0.4777778 0.5555556 0.1777778 0.7666667

Table 5.8: The coverage of the 95% intervals of the joint country model

5.4.3.2 Projections

Figures 5.31 and 5.32 plot the projected mortality schedules of males and females in the 1-st,

25-th and 50-th forecast year. At the oldest ages the shape of the SC mortality profiles ARE

now more similar to that of Ew. The young-adulthood humps for SC females are also more

pronounced under the joint model. Looking at the observed Scottish female mortality rates

in the most recent years in Figure 5.33, the crude mortality rates of the teenage and young

adulthood display a big uncertainty and it is difficult to conclude This is possibly due to the

sparse data at these ages are so dispersed and it is difficult to conclude which model has a more

appropriate illustration.

Figures 5.34 and 5.35 plot the 50-year ahead mortality projections of EW and SC male and

female mortality rates. The joint models produce non-divergent projections within the 50-year

forecast window, the main difference being that at high ages the two mortality trends are closer

to each other. This is reasonable as divergences in mortality forecasts are usually criticised

based on historical data and the general understanding of a global mortality convergence.
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Figure 5.31: The projected mortality schedules in 1, 25 and 50 years ahead. The blue and black
lines are the projections for EW and SC male mortality rates respectively while the solid and
dotted lines correspond to the projections based on the joint and independent models respec-
tively.

Figure 5.32: The projected mortality schedules in 1, 25 and 50 years ahead. The red and green
lines are the projections for EW and SC female mortality rates respectively while the solid
and dotted lines correspond to the projections of the joint country model and the independent
models respectively.
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(a) crude SC female mortality rates from year 2006 to 2016

(b) yearly crude SC female mortality profile from year 2011 to 2016

Figure 5.33: The curde mortality rates of Scottish females in the most recent years
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(a) age 10, 30, 50, 70, 90 and 99

(b) age 105, 110, 115 and 120

Figure 5.34: 50 years ahead projections of EW (blue) and SC (black) male mortality rates at
selected and extrapolated ages along the time horizon. The solid and dotted lines correspond
to estimates of the joint country model and the independent models respectively.



Chapter 5 Mortality Projection - Joint Sex and Joint Country Model 95

(a) age 10, 30, 50, 70, 90 and 99

(b) age 105, 110, 115 and 120

Figure 5.35: 50 years ahead projections of EW (red) and SC (green) female mortality rates at
selected and extrapolated ages along the time horizon. The solid and dotted lines correspond
to esimates of the joint country model and the independent models respectively.

5.4.3.3 Expert Opinions

We incorporate expert opinion as explained in Section 5.4.2.3. The resulting adjusted projec-

tions are shown in Figures 5.36, 5.37, 5.38 and 5.39. After the incorporation of expert opinion,

the mortality projections are now non-divergent at all ages in the long run and the mortality

schedules in each year now maintain a more regular structure over time. Note that under the
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Figure 5.36: The projected mortality schedules in 1, 25and 50 years ahead with the incorpo-
ration of expert opinion. The blue and black lines are the projections for EW and SC male
mortality rates respectively while the solid and dotted lines correspond to the projections based
on the joint and independent models respectively.

independent model, even after incorporating the expert opinion, the projected mortality trends

of EW and SC females still diverge in the extrapolated age range in short-to-mid term.

5.5 Conclusion

In this chapter we first introduced a mortality model using adaptive P-splines for single popu-

lation, then we introduced a joint sex model for male and female mortality rates, followed by a

joint country model. We also presented a method to incorporate expert opinion as we believe

that the long term projections would benefit from moderation by experts.

The joint sex models have shown to be able to produce more reasonable long term male and

female mortality projections that are non intersecting, a quality that single sex models often fail

to achieve and requires ad-hoc adjustments. Information is borrowed at the highest ages where

exposures are small. By doing so the extrapolation to higher ages beyond data range gives more

plausible estimates, especially for the mortality improvement rates for females at the highest

ages where a worsening mortality is otherwise projected. The linear mortality improvement

assumption is suitable except for the most recent years in which there seems to be a deviation

from the linearity. An AR(1) and an ARIMA(1,1,0) processes have been used for projecting

the period effects. The evidence suggests that the ARIMA(1,1,0) is more suitable for the EW

population, while we do not find strong evidence that they differ for the SC population. While

the AR(1) is a stationary process, it gives prediction intervals that are seemingly too narrow.

The ARIMA(1,1,0) on the other hand is non-stationary and gives wider prediction intervals,



Chapter 5 Mortality Projection - Joint Sex and Joint Country Model 97

(a) age 10, 30, 50, 70, 90 and 99

(b) age 105, 110, 115 and 120

Figure 5.37: 50 years ahead projections of EW (blue) and SC (black) male mortality rates with
the incorporation of expert opinion at selected and extrapolated ages along the time horizon.
The solid and dotted lines correspond to estimates of the joint country model and the indepen-
dent models respectively.
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Figure 5.38: The projected mortality schedules in 1, 25 and 50 years ahead with the incorpo-
ration of expert opinion. The red and green lines are the projections for EW and SC female
mortality rates respectively while the solid and dotted lines correspond to the projections of the
joint and the independent models respectively.

and has a meaning that the expected future period shocks to annual mortality improvements are

zero in the long run. The models have identified the well-known generational effect for cohorts

born about 1932 (Willets, 2004; Richards et al., 2006; Murphy, 2009) as well as cohorts born

about 1944 (Willets, 2004), these cohorts have better mortality improvement than neighbouring

cohorts. The cohort born around 1988 has also experienced better mortality improvement as

indicated by our models. In terms of the forecast accuracy, a backtest have been conducted

leaving out the last 10 years of data as the validation set. For EW males and females, when an

ARIMA(1,1,0) is in place, the forecast accuracy has slightly improved for most of the ages in the

joint sex model, however when an AR(1) is used the accuracy has slightly worsened except for

the youngest age group, according to the MAE. For SC males and females, the forecast accuracy

has slightly improved only in the younger age groups but the magnitude of the differences in the

MAE are relatively small.

The joint country model provides a way for the smaller SC population to borrow strength and

learn from the bigger EW population. The model is constructed based on the belief that EW and

SC male (female) mortality have similar structures. By jointly modelling the two countries, es-

timation and extrapolation of the SC baseline mortality schedule and age-specific improvement

rates make use of information provided by the EW population which has a wider data range.

Instead of linearly extrapolating the baseline mortality schedule, the estimated SC baseline can

then follow the baseline mortality schedule of EW, with a decelerating rate of increase at the

highest ages. The decelerating rate of increase in mortality rates at the highest ages is a feature

has been noted by researchers (Carriere, 1992; Perks, 1932; Beard, 1959; Thatcher, 1999; Saikia
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(a) age 10, 30, 50, 70, 90 and 99

(b) age 105, 110, 115 and 120

Figure 5.39: 50 years ahead projections of EW (red) and SC (green) female mortality rates
with the incorporation of expert opinion at selected and extrapolated ages along the time hori-
zon. The solid and dotted lines correspond to estimates of the joint country model and the
independent models respectively.
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and Borah, 2014; Pitacco, 2016). When Scottish mortality is modelled independently, we ob-

serve positive improvement rates (worsening mortality) at some ages, which becomes a problem

in long-term projections. Under the joint model this issue is largely avoided or even eliminated.

Similarly the linear improvement assumption seems to be suitable except for the most recent

years. The generational effects for cohorts born about 1931 and 1944 are identified in the joint

country model. An additional cohort with better mortality improvement is identified in the joint

country model for SC females born around year 1988, a pattern that is not captured in the single

population model. Considering the EW males, EW females and SC males born around 1988

all have better mortality improvement, it is highly likely that SC females born around that time

also enjoys better mortality improvement, meaning that the single population model has pos-

sibly failed to identify this feature. The joint country model is able to produce non-divergent

long term projections between the countries for both males and females. The forecast accuracy

has improved for both males and females except for the younger age groups, regardless of the

underlying time-series structures (AR(1) or ARIMA(1,1,0)). This indicates that a lighter cross-

country penalty at younger ages may perform better as data at these ages are more abundant and

reliable. In other words, instead of a global cross-country penalty penalising all coefficient at

the same degree, a varying local cross-country penalty may potentially increase the accuracy of

predictions.



Chapter 6

Mortality Projection -
England-and-Wales and Scotland
males and females Joint Model

In this chapter we jointly model the four populations we considered so far, i.e. EW males, EW

females, SC males and SC females. To further allow the sharing of information among popula-

tions and to simplify estimation, common smoothing parameters are assumed for the cross-sex

penalties for each male-and-female pair, regardless of the country; and common smoothing pa-

rameters are assumed for the cross-country penalties for each EW-and-SC pair, regardless of the

sex. As in Section 5.4.3, common smoothing parameters for the smoothness penalties of the

splines between countries are also kept. In other words, the penalty functions that are shared

across sexes are the smoothness penalties of the splines and the cross-country shape penalties;

and the penalty functions that are shared across countries are the cross-sex difference penalties.

Therefore, the penalties that are used in the joint model of all of the 4 populations are as follow,

given in Table 6.1.
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Chapter 6 Mortality Projection - England-and-Wales and Scotland males and females Joint

Model

Function Smoothness Penalty Cross-sex Penalty Cross-country Penalty

sα(x)

∑
eλ

m,α
1 +λm,α2 i(52αEW,mi )2∑

eλ
m,α
1 +λm,α2 i(52αSC,mi )2∑

eλ
f,α
1 +λf,α2 i(52αEW,fi )2∑

eλ
f,α
1 +λf,α2 i(52αSC,fi )2

∑
eλ

d,α
1 +λd,α2 i(αEW,mi − αEW,fi )2∑

eλ
d,α
1 +λd,α2 i(αSC,mi − αSC,fi )2

∑
λs,α 5 (αEW,mi − αSC,mi )2∑
λs,α 5 (αEW,fi − αSC,fi )2

sβ(x)

∑
λm,β(52βEW,mi )2∑
λm,β(52βSC,mi )2∑
λf,β(52βEW,fi )2∑
λf,β(52βSC,fi )2

∑
eλ

d,β
1 +λd,β2 i(βEW,mi − βEW,fi )2∑

eλ
d,β
1 +λd,β2 i(βSC,mi − βSC,fi )2

∑
λs,β 5 (βEW,mi − βSC,mi )2∑
λs,β 5 (βEW,fi − βSC,fi )2

sγ(t− x)

∑
λm,γ(52γEW,mi )2∑
λm,γ(52γSC,mi )2∑
λf,γ(52γEW,fi )2∑
λf,γ(52γSC,fi )2

Table 6.1: The penalties for the joint model of 4 populations

The {λm,α1 , λm,α2 } and {λf,α1 , λf,α2 } control the smoothness of male and female baseline mor-

tality schedules respectively, regardless of the country. λm,β and λf,β control the smoothness

of male and female improvement rates respectively, regardless of the country. λm,γ and λf,γ

control the smoothness of male and female cohort effects respectively, again regardless of the

country.

The {λd,α1 , λd,α2 } and {λd,β1 , λd,β2 } control the penalty of the differences between male and fe-

male baseline mortality schedules and improvement rates respectively, regardless of the country.

The λs,α and λs,β control the penalty of the differences between the shapes of EW and SC

baseline mortality schedules and improvement rates respectively, regardless of the sex.

The same problem discussed in Section 5.4.2 persists, the {λd,β1 , λd,β2 } estimates tend to extreme

values during the optimisation. The estimated cross-sex penalty function for the age-specific

improvement rates tend to infinity at older ages. Therefore we fix them at -55 and 85 as in

Section 5.4.2, and proceed to estimate the remaining smoothing parameters.

6.1 Results

6.1.1 Overview

Figure 6.1 plots the parameter estimates of the joint model alongside the estimated terms of

the independent models. The baseline schedules and the age-specific improvement rates tend

to a common value at the oldest ages in the joint model. Note that the baseline schedules and

improvement rates of SC males and females are not penalised towards that of EW males and
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females. It is interesting that by penalising the cross-country shape differences and cross-sex

differences, we obtain converging trends in all four populations (see Figure 6.1a). The estimated

period effects from the joint model remain similar as those from the independent models. The

estimated EW male and female cohort effects from the joint model also maintain similar struc-

tures to that from the independent models. The estimated SC male and female cohort effects

show more considerable variability before and after jointly modelling the populations, due to

having smaller exposures (see Figure 6.1b). Figures 6.2 and 6.3 plot the baseline schedules

and the improvement rates extrapolated up to age 120. The effect of the penalties are apparent

and the estimates are more plausible. Instead of having the SC baseline schedules extrapolating

upwards linearly, information is borrowed from the bigger EW population which has data of a

wider age range, capturing the deceleration in mortality increase in age. The age-specific im-

provement rates of different populations are now more consistent with each other especially at

older ages, as opposed to them going in different directions under the independent models. The

joint model has also largely eliminated unreasonable trends such as worsening mortality (posi-

tive sβ(x)) in the oldest ages for SC females (dotted green line) and around age 30 for SC males

(dotted black line) when they are modelled independently. As we will see in later Sections 6.1.2

and 6.1.3, the joint model also effectively avoids implausible projections such as intersecting

male and female mortality rates and divergent trends.

Figure 6.4 plots the first differences of the estimated period effects of each population individu-

ally. The estimated period shocks to annual mortality improvements (κ∗t ’s) under the joint model

and the independent models are extremely similar to each other. The dotted lines and the solid

lines are almost superposed. The first differences oscillate around zero, indicating the linearity

mortality improvement assumption is appropriate.

Figure 6.5 plots the first differences of the estimated cohort effects of each population individu-

ally. Similar conclusion as in Chapters 5 can be drawn. That is, several troughs can be identified

in years around 1932, 1945 and 1988. These cohorts are all identified under both the joint

and independent models, except of SC females where the joint model located a better mortality

improvement for cohorts born around 1988 that is not observed under the independent model.

Considering the EW males, EW females and SC males born around 1988 all have faster mor-

tality improvement, it is highly likely that SC females born around that time also enjoys better

mortality improvement, meaning that the single population model for SC females has failed to

capture this pattern. The first and the last few cohorts are more variable due to the lack of data.

A backtest is conducted as in Chapter 5 and data from the most recent 10 years is excluded as a

validation set, i.e. data from 1961 to 2006 are used to train the model while data from 2007 to

2016 are used as validation. Figure 6.6 plots the projections of each population using an AR(1)

process on the period effects while Figure 6.7 plots the projections using an ARIMA(1,1,0).

The differences in the projections between the joint model and independent models for EW

males and females are less noticeable compared to SC males and females. Both the joint and

independent models over-estimate the male mortality rates at middle ages. The MAE figures

which give a quantitative measure of the forecast accuracy, are presented in Table 6.2. According
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(a) estimated baseline mortality schedules and age-specific improvement rates

(b) estimated period and cohort effects

Figure 6.1: The parameter estimates of the joint model for EW males (blue), EW females (red),
SC males (black) and SC females (green). The solid and dotted lines correspond to estimates
of the joint model and the independent models respectively.
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(a) estimated baseline mortality schedules extrapolated to age 120

(b) individual estimated baseline mortality schedules

Figure 6.2: The estimated baseline mortality schedules extrapolated to age 120. The baselines
for each population are also plotted individually for a clearer illustration. The solid and dotted
lines correspond to estimates of the joint model and the independent models respectively.
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(a) estimated age-specific mortality improvement rates extrapolated to age 120

(b) individual estimated age-specific mortality improvement rates

Figure 6.3: The estimated mortality improvement rates extrapolated to age 120. The trends
for each population are also plotted individually for a clearer illustration. The solid and dotted
lines correspond to estimates of the joint model and the independent models respectively.
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Figure 6.4: The estimated period effects of each population plotted individually on a difference
scale.

Figure 6.5: The estimated cohort effects of each population plotted individually on a difference
scale.

to this, the forecast accuracy has improved under the joint model at most ages except for the

youngest age group (1-30) when an AR(1) is used; and for ages 61+ when an ARIMA(1,1,0)

is used. Table 6.3 shows the coverage of the estimated 95% intervals of the joint model. On

average, the intervals produced using AR(1) are too narrow. On the other hand, ARIMA(1,1,0)

produces wider intervals and hence more satisfactory coverage. The overall coverage of the

intervals using ARIMA(1,1,0) are still below 95%, however, for older age groups, the coverage

are much closer to 95%, especially for EW males aged 61-90. Focusing on older age groups

(61+), the coverage of the intervals produced by the joint model for SC males has improved

a lot, compared to the independent model. For SC males aged 61-90, the intervals produced
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using ARIMA(1,1,0) is about 83% in the joint model, while in the single population model it is

only 57%. For SC males aged 91+ using ARIMA(1,1,0), the joint model has a coverage of 67%

against a coverage of only 46% in the single population model.

(a) EW males

(b) EW females
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(c) SC males

(d) SC females

Figure 6.6: Estimated mortality rates and the projected 95% intervals at some selected ages
from 1961 to 2006 (training) and from 2007 to 2016 (validation) using an AR(1). The points
are the observed mortality rates.
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(a) EW males

(b) EW females
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(c) SC males

(d) SC females

Figure 6.7: Estimated mortality rates and the projected 95% intervals at some selected ages
from 1961 to 2006 (training) and from 2007 to 2016 (validation) using an ARIMA(1,1,0). The
points are the observed mortality rates.

Age
MAE of Joint Model

AR(1)

MAE of Independent Model

AR(1)

MAE of Joint Model

ARIMA(1,1,0)

MAE of Independent Model

ARIMA(1,1,0)

1 to 30 1.553095 1.498843 1.563237 1.504025

31 to 60 0.8275105 0.8310234 0.8323145 0.8305121

61 to 90 0.5067144 0.5242525 0.5211037 0.5337053

91+ 0.1417191 0.1549504 0.1441549 0.1558011

all ages 0.869452 0.8611379 0.8783984 0.8654089

Table 6.2: The mean absolute error of log projected mortality rates for all populations
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95% intervals coverage

Age
EW males EW females SC males SC females

AR(1) ARIMA(1,1,0) AR(1) ARIMA(1,1,0) AR(1) ARIMA(1,1,0) AR(1) ARIMA(1,1,0)

all ages 0.4480769 0.5961538 0.4663462 0.7634615 0.351515139 0.498989912 0.289898979 0.519191942

61-90 0.77 0.9466667 0.6233333 0.89 0.64 0.8266667 0.4233333 0.7066667

91+ 0.65 0.75 0.45 0.8785714 0.5222222 0.6666667 0.2111111 0.7666667

Table 6.3: The coverage of the 95% intervals of the joint model

6.1.2 Pairwise Comparison - Males and females

It may be more illustrative and informative to examine the estimated terms in pairs. In this sec-

tion, the male-and-female pairs are considered. Figure 6.8 shows the estimated baseline mor-

tality schedules and the improvement rates of the EW and SC male-and-female pairs. Contrary

to only jointly modelling SC males and females (Figure 5.4), the estimated cross-sex penalty

for the age-specific improvement rates is much stronger due to the presence of EW males and

females. The cross-country penalty also indicates that the shape of the EW and SC baselines and

improvement rates are similar. Hence the estimated trends for SC males and females resemble

the EW trends, especially outside the SC data range.

6.1.2.1 Backtesting

Tables 6.4 and 6.5 show the MAE of EW and SC populations respectively. For EW populations,

the fit of the projections has slightly worsened under the joint model except for the age group

61-90 when using an ARIMA(1,1,0) process. However, the magnitudes of the differences in the

MAE are very small except for the youngest age group. On the other hand, forecast accuracy

has improved for all but the youngest age group for SC males and females. This indicates that

the EW information is indeed beneficial to SC. One possible improvement to our model would

then be to first model EW males and females jointly, and then model SC males and females

jointly using this information.

EW males and females

Age
MAE of Joint Model

AR(1)

MAE of Independent Model

AR(1)

MAE of Joint Model

ARIMA(1,1,0)

MAE of Independent Model

ARIMA(1,1,0)

1 to 30 0.1639079 0.1534538 0.1484186 0.1392333

31 to 60 0.08808014 0.08648498 0.06191506 0.0608769

61 to 90 0.04222944 0.04168126 0.03523491 0.03600139

91+ 0.0608055 0.05952919 0.04911866 0.04907227

all ages 0.0930558 0.08925009 0.07744922 0.074715

Table 6.4: The mean absolute error of log projected mortality rates for EW males and females
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(a) estimated baseline mortality schedules for EW and SC male-and-female

(b) estimated age-specific improvement rates for EW and SC male-and-female

Figure 6.8: The estimated baseline mortality schedules and improvement rates extrapolated to
age 120 for each country. The solid and dotted lines correspond to estimates of the joint model
and the independent models respectively.
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SC males and females

Age
MAE of Joint Model

AR(1)

MAE of Independent Model

AR(1)

MAE of Joint Model

ARIMA(1,1,0)

MAE of Independent Model

ARIMA(1,1,0)

1 to 30 2.942282 2.844232 2.978055 2.868818

31 to 60 1.566941 1.575562 1.602714 1.600147

61 to 90 0.9711995 1.006824 1.006973 1.031409

91+ 0.2675848 0.3033834 0.2919891 0.3218237

all ages 1.68506 1.67201 1.7198 1.696037

Table 6.5: The mean absolute error of log projected mortality rates for SC males and females

6.1.2.2 Projections

Figures 6.9, 6.10 and 6.11 plot the mortality projections of the joint model for male-and-female

pairs of each country. The joint model produces much more reasonable long term projections,

especially for SC males and females, when compared to projections obtained from either the

independent models or the SC male-and-female joint sex model. Recall in Section 5.4.2 when

only the SC males and females are jointly modelled (joint sex model), even with the incorpo-

ration of expert opinion, the male mortality projections still fall below that of females at some

ages within the data range (Figure 5.16a). Whereas when all four of them are modelled jointly,

this does not happen. The projections of EW males and females are very similar to that ob-

tained from the EW male-and-female joint sex model (Section 5.4.2) due to the fact that the

cross-country penalties exerts less influence on EW populations, as they have higher exposures.

The projected SC mortality schedules are also more reasonable especially at older ages when

compared to either the single population models (dotted lines) or the SC male-and-female joint

sex model (Figure 5.14) where male and female intersections are still obtained.
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(a) EW males and females

(b) SC males and females

Figure 6.9: The projected mortality schedules in 1, 25 and 50 years ahead. The blue, red,
black and green lines are the projections of EW males, EW females, SC males and SC females,
respectively while the solid and dotted lines correspond to the projections of the joint model
and the independent models respectively.

The 50 years ahead mortality projections for EW males and females (Figure 6.10) are similar to

those obtained from the EW male-and-female joint sex model (Figure 5.15). The 50 years ahead

mortality projections for SC males and females (Figure 6.11) are more plausible compared to

those obtained from either the single population models (dotted lines) or the SC male-and-

female joint sex model (Figure 5.16). Both the single population models and the SC male-and-

female joint sex model produce male and female mortality forecasts that intersect and diverge
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at most ages. However, in the four-population joint model the projected male mortality rates

always stay above the projected female mortality rates at all ages within data range within the

forecast horizon. At the extrapolation age range, the four-population joint model produces SC

male and female forecasts that are much closer to each other, this is due to the fact that the SC

male and female baseline mortality schedules are now learning from the diminishing gap in age

between EW male and female mortality rates.

(a) age 10, 30, 50, 70, 90 and 104

(b) age 105, 110 115 and 120

Figure 6.10: 50 years ahead projections of EW male (blue) and female (red) mortality rates at
selected and extrapolated ages along the time horizon. The solid and dotted lines correspond
to estimates of the joint model and the independent models respectively.
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(a) age 10, 30, 50, 70, 90 and 99

(b) age 105, 110 115 and 120

Figure 6.11: 50 years ahead projections of SC male (black) and female (green) mortality rates
at selected and extrapolated ages along the time horizon. The solid and dotted lines correspond
to estimates of the joint model and the independent models respectively.

6.1.2.3 Expert Opinions

The expert opinion is incorporated in the way described before in Sections 5.4.2.3 and 5.4.3.3.

After the incorporation of expert opinion, the long term forecasts are strictly non-divergent as

the improvement rates eventually tend to a common value. However, intersections of male and

female mortality rates still occurred at the oldest extrapolated ages in the long run.
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(a) estimated baseline mortality schedules for EW-and-SC

(b) estimated age-specific improvement rates for EW-and-SC

Figure 6.12: The estimated baseline mortality schedules and improvement rates extrapolated
to age 120 for each sex. The solid and dotted lines correspond to estimates of the joint model
and the independent models respectively.

6.1.3 Pairwise Comparison - England Wales and Scotland

In this section the EW-and-SC pairs are inspected. Figure 6.12 plots the pairwise estimated

baseline mortality schedules and improvement rates for males and females. The estimated SC

terms are more consistent with the EW estimates under the joint model. The cross-country

penalties have less impact on the EW, due to it being a larger population.
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6.1.3.1 Backtesting

Tables 6.6 and 6.7 show the MAE of the male and female populations respectively. The projec-

tions for males have improved all but the youngest age group for both the AR(1) and ARIMA(1,1,0),

while the female projections have seen only a modest improvement in age groups over 60.

EW and SC males

Age
MAE of Joint Model

AR(1)

MAE of Independent Model

AR(1)

MAE of Joint Model

ARIMA(1,1,0)

MAE of Independent Model

ARIMA(1,1,0)

1 to 30 1.402152 1.304688 1.414957 1.307595

31 to 60 0.7016268 0.7143507 0.7087438 0.7117318

61 to 90 0.4509867 0.4829384 0.4708807 0.4936692

91+ 0.1624962 0.183911 0.1730395 0.192056

all ages 0.773514 0.7603379 0.7864768 0.7645174

Table 6.6: The mean absolute error of log projected mortality rates for EW and SC males

EW and SC females

Age
MAE of Joint Model

AR(1)

MAE of Independent Model

AR(1)

MAE of Joint Model

ARIMA(1,1,0)

MAE of Independent Model

ARIMA(1,1,0)

1 to 30 1.704038 1.692998 1.711517 1.700456

31 to 60 0.9533941 0.9476961 0.9558851 0.9492924

61 to 90 0.5624422 0.5655666 0.5713268 0.5737415

91+ 0.120942 0.1259898 0.1152703 0.1195462

all ages 0.9653899 0.9619378 0.97032 0.9663003

Table 6.7: The mean absolute error of log projected mortality rates for EW and SC females

6.1.3.2 Projections

Figure 6.13 plots the projected mortality schedules for each sex. The 50 years ahead projections

of the EW-and-SC pairs are presented in Figures 6.14 and 6.15. The joint model is able to pro-

duce non-divergent projections at extrapolation range. The estimates for EW females between

the joint and independent model are very similar, possibly due to the fact that it has the largest

exposures among the four populations. The estimates for EW males between the two models

are also quite similar within the data range (age 1 to 104), whereas estimates for SC males and

females are more variable.
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(a) EW males and females

(b) SC males and females

Figure 6.13: The projected mortality schedules in 1, 25 and 50 years ahead. The blue, red,
black and green lines are the projections of EW males, EW females, SC males and SC females,
respectively while the solid and dotted lines correspond to the projections of the joint model
and the independent models respectively.

6.1.3.3 Expert Opinions

The expert opinion is incorporated in the way described before in Sections 5.4.2.3 and 5.4.3.3,

similar conclusion can be drawn. After the incorporation of expert opinion, the long term fore-

casts are strictly non-divergent as the improvement rates eventually tend to a common value.
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(a) age 10, 30, 50, 70, 90 and 99

(b) age 105, 110 115 and 120

Figure 6.14: 50 years ahead projections of EW (blue) and SC (black) male mortality rates at
selected and extrapolated ages along the time horizon. The solid and dotted lines correspond
to estimates of the joint model and the independent models respectively.
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(a) age 10, 30, 50, 70, 90 and 99

(b) age 105, 110 115 and 120

Figure 6.15: 50 years ahead projections of EW (red) and SC (green) female mortality rates at
selected and extrapolated ages along the time horizon. The solid and dotted lines correspond
to estimates of the joint model and the independent models respectively.
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6.2 Conclusion

In Chapter 5, a joint sex model and a joint country model are introduced. It is shown that the

joint sex model is able to produce much more reasonable long term male and female mortal-

ity projections that are non-intersecting, a property that single population models often fail to

achieve. Information is borrowed at the highest ages where exposures are small. The EW and

SC joint country models provide a way for the smaller SC population to borrow strength and

learn from the bigger EW population. By jointly modelling the two countries, estimation and ex-

trapolation of the SC baseline mortality schedules and age-specific improvement rates make use

of information provided by the EW population, which has a wider data range, resulting in more

plausible estimates. In addition, the joint country model also largely reduces or even eliminates

the problem of producing worsening mortality of the SC populations when they are modelled

independently. The joint country model is able to produce non-divergent long term projections

between the countries for both males and females. The forecast accuracy has improved for both

males and females except for the younger age groups.

In this chapter, a joint model for all four populations, i.e. EW males, EW females, SC males

and SC females, is proposed, which combine features of both the joint sex and joint country

models and borrow strength across sexes and across countries. To simplify estimation process

and further allow exchange of information among populations, a common cross-sex penalty is

assumed for the male-and-female pairs, regardless of the country; and a common cross-country

penalty is assumed for the EW-and-SC pairs, regardless of the sex. Common smoothness penal-

ties are also assumed for the same sex of each country. For each male-and-female pair, the

estimated baseline schedules and the mortality improvement rates tend to a common value. The

SC male-and-female pair is able to utilize information offered by the EW populations especially

when extending to ages beyond the data range. The joint model is able to produce projec-

tions that are non-divergent and without intersections of males and females trends. The overall

MAE has decreased in all but the youngest age group, meaning that the forecast accuracy has

improved, regardless of the time series process used to forecast the period effects (AR(1) or

ARIMA(1,1,0)). A possible amendment maybe to have a locally varying cross-country penalty

as discussed before. A finer breakdown of the MAE reveals that the improvement in the forecast

accuracy mainly comes from the SC populations, as the MAE of the EW male-and-female pair

has slightly worsened. When the same sex pairs are considered, the EW and SC males pair has

seen larger improvement in the forecast accuracy than the EW-and-SC females pair. In light of

the MAE results, a possible improvement maybe to first jointly model EW males and females,

and then jointly model the SC males and females together with the results obtained from the

EW joint model.





Chapter 7

Bayesian Mortality Projection

The classical approach we used so far has some common aspects with the Bayesian approach.

Specifically, the distributional result of the estimated spline coefficients stems from a Bayesian

point of view of the smoothness penalty (Section 2.2.6). In addition, as mentioned in Section

5.3, quantifying the forecast uncertainty is not so straightforward. We relied on bootstrapping

in order to obtain estimates of the quantiles. A more natural way to incorporate all uncertainty

into the forecasts would be to use a fully Bayesian approach.

7.1 Prior Specifications

The smoothness penalty can be viewed as a particular prior on the spline coefficients as shown

in Section 2.2.6, a prior that has higher density for smooth functions. To see this, consider the

penalised log-likelihood `(y) − 1
2β
′Dλβ, where β is the vector of coefficients and Dλ is the

penalty matrix that depends on the smoothing parameter(s) λ. This is equivalent to having a

multivariate normal prior on the spline coefficients, β ∼ N (0,D−1λ ). Thus the penalty matrix

can be viewed as a precision matrix, the higher the penalty, the more concentrated is the prior

on smooth functions. This is an improper prior due to the fact that the penalty matrix Dλ is

often rank deficient. For example, with a squared second difference penalty, the penalty matrix

is lacking two ranks that correspond to the null space of constants and linear functions, as these

are deemed ‘completely smooth’ under the squared second difference penalty (their roughness

is zero measured by the penalty). Different approaches have been taken to circumvent the rank

deficiency. For instance, for simple splines with squared second difference penalty, the improper

multivariate normal prior can be expressed in terms of a second order random walk, with the

first two coefficients having an improper uniform prior (Lang and Brezger, 2004). The impro-

priety means that the normalising constant calculated will always be zero, since the determinant

of the rank deficient penalty matrix is always zero. Yue et al. (2012) calculated the normalising

constant by only multiplying the non-zero eigenvalues of the penalty matrix, |Dλ|+, which is

also equivalent to having improper uniform priors on the null space. Intuitively, another solution

125
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is to complete the rank, by giving some mass to the null space. This can be done by introducing

a small penalty on the null space. Following Wood (2016), let U be columns of eigenvectors

of the penalty matrix with zero eigenvalues, then UU ′ is the un-penalised null space. There-

fore, to complete the rank, a small penalty is added to this null space, i.e. adding cUU ′ to the

penalty with some small constant c. In other words, the eigenvalues for these vectors are now no

longer zero, but c. We have taken this approach as it is the most straightforward to implement in

Stan software. Here we choose c to be 0.001. Bayesian adaptive splines have also been investi-

gated. Baladandayuthapani et al. (2005) demonstrated the adaptive penalty using a polynomial

spline basis (albeit in the paper the author used the misleading and confusing term of ‘P-spline’

as a synonym for penalised spline) for homoskedastic data, where they assumed normal priors

on the coefficients each with their own variances, which are themselves realisations of another

spline. Crainiceanu et al. (2007) then extended the approach to heteroskedastic data. Scheipl

and Kneib (2009) did not assume any underlying smoothness on the prior variances across the

domain and proposed piece-wise constant variances with multiple levels of hyperprior. Jullion

and Lambert (2007) on the other hand studied the robustness of the hyperprior on non-adaptive

peanlised splines and showed that the usual assumption of a Gamma hyperprior on the smooth-

ness parameter (i.e. precision of the prior on spline coefficients) induces potential impact on the

posteriors. The authors then suggested placing certain hyperpriors on the Gamma parameters

as well as using a mixture prior on the smoothness parameter. In the following we use bounded

proper uniform priors on all smoothness-related parameters.

To help with the identifiability problem, the same constraints are applied as in the classical

approach, only now they are expressed in terms of conditional distributions on the priors of the

period and cohort effects. Specifically, let T and C be matrices such that

κ? = Tκ = T



κ1

κ2

κ3
...

κT


=



∑
κi∑
iκi

κ3
...

κT


and γ? = Cγ = C



γ1

γ2

γ3
...

γk


=



sγ(1)∑
sγ(i)

κ3
...

sγ(nc)


,

where sγ(1) and sγ(nc) are the first and last cohort effect. Then the constraints are equivalent to

conditioning the prior distributions receptively, i.e. κ|∑κi,
∑
iκi=0 and γ|sγ(1),sγ(nc),∑ sγ(i)=0.
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Therefore for the single population models we have the following priors,

α ∼ N (0, (P ′W αP + P null)
−1),

β ∼ N (0, (λβP ′P + P null)
−1),

κ|∑κi,
∑
iκi=0 ∼ N (0, σ2κ Σκ),

γ|sγ(1),sγ(nc),∑ sγ(i)=0 ∼ N (0,Σγ),

σ2κ ∼ U(0, 100)

ρ ∼ U(−1, 1)

λα1 , λ
β, λγ ∼ U(−50, 30)

λα1 + λα2 = λαsum ∼ U(−50, 30)

where P is the second order difference matrix of appropriate dimension (i.e. the penalty ma-

trix), P null is the small penalty added to the null space and ρ is the time series coefficient,W α

is a diagonal matrix with weights W α
ii = eλ

α
1+λ

α
2 i = eλ

α
1+(λαsum−λα1 )i, Σκ and Σγ are the con-

ditional variance matrices of the constrained period effect κ and cohort effect spline coefficients

γ. The re-parameterisation λαsum is to prevent overflow of the smoothness penalty at the highest

ages (the last entry of the diagonal of W α is λαsum = λα1 + λα2 since we scale i [-1, 1]). The

remaining smoothing parameters λα1 , λ
β and λγ are also given uniform prior between -50 and

30. Let V be the variance matrix of the unconstrained period effect, the AR(1) variance, then

Σ−1κ = (T ′−1V −1
ρ T−1)[−(1,2),−(1,2)] where the subscript means that the first and second rows

and columns are excluded. Similarly, Σ−1γ = (C ′−1(λγP ′P + P null)C
−1)[−(1,2,k),−(1,2,k)]

where the first, second and the last rows and columns are excluded.

7.2 Posterior Sampling

Posterior sampling is done using ‘Stan’ (Stan Development Team, 2020) with the R interface,

the rstan package (Stan Development Team, 2018). Stan is a modelling language that allows full

Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling techniques. In partic-

ular, it uses Hamiltonian Monte Carlo (HMC) to sample from the posterior distribution. HMC is

a powerful tool in the sense that it can handle correlated parameters and usually mixes relatively

quickly. Each proposal step is generated from the No U-Turn Sampler (NUTS) exploring the

Hamiltonian system formed by the negative log posterior and approximating the trajectory using

discrete time steps (leapfrog algorithm). The NUTS is an algorithm that generates proposals by

tracing out trajectory in the Hamiltonian system that doubles in length in each step, creating a

binary tree. The iteration is halted when the trajectory starts to make a ‘U-Turn’, and the pro-

posal is accepted with the standard Metropolis acceptance probability. As the NUTS algorithm

doubles the trajectory length in each step, a large number of log-probability and gradient evalu-

ations maybe potentially needed if the region is difficult to sample from, therefore a maximum

number of steps (treedepth) is set for the NUTS algorithm, which is 10 by default in Stan.
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In our practice, however, even with such a powerful tool we still experience difficulties in sam-

pling from the posterior. The samples do not mix well with seemingly poor adaption. There

were warnings about the estimated Rhat and Effective Sample Size (ESS) in Stan. In addition,

most of the iterations have either resulted in divergent transitions (when the simulated trajec-

tory departs from the true trajectory measured by Stan) or exceeded the maximum treedepth

of 10 of the No U-Turn Sampler (NUTS) in Stan, which maybe an indication that the pos-

terior contains regions with high curvatures or is very difficult to sample from. One could

decrease the step size for a closer approximation to the trajectory of the Hamiltonian system,

or increase the maximum treedepth allowed and see if this problem persists, however this is

extremely inefficient as hitting even just one more treedepth means doubling the computation

time. Instead, we try to make use of the distributional results from the classical approach (P-

IRLS) and re-parameterise the model. More specifically, in Section 2.2.6, it is shown that

the distribution of the estimated parameters from the classical approach is approximated by

β|z ∼ N((X′WX + S)−1X′
√
Wz, (X′WX + S)−1φ), where z andW are the pseudo-

data, iterative weights of the final working model in P-IRLS and φ is the scale parameter of

the data distribution. For Poisson responses with log-link, the scale parameter φ is simply one

and the iterative weights w are the estimated numbers of death. We set the weights to be the

observed deaths plus one. During each iteration of the HMC, we let M = (X′WX + Sλ)−1

and LλL
′
λ = M be the Cholesky decomposition. Here the subscript λ indicates that the ma-

trix varies with the sampled smoothing parameters at each iteration. Then we re-parameterise

η∗ = L−1(η−(X′WX + S)−1X′
√
Wz), where η is the concatenated vector of parameters

η′ = (α′,β′,κ′,γ′)′. Note that the Jacobian adjustment of the re-parameterisation has to be

included accordingly. After the re-parameterisation, the HMC is more efficient.

7.3 Incorporation of Expert Opinion

Expert opinion is incorporated into long-term projections in a similar fashion to the frequentist

approach in Chapters 5 and 6. The same function 5.13 is used to weigh between the estimated

current improvement rates and the target rates over the projection horizon. In a Bayesian setting,

however, the target rates are given a normal prior to reflect the uncertainty around these expert-

based mortality improvement rates, i.e.

βex ∼ N(cex, σ
e
x). (7.1)

The principal mortality assumptions used in the Office for National Statistics for the 2016-based

UK national population projections are that annual mortality improvement rates will converge

to 1.2%. Following Dodd et al. (2020), we assume the uncertainty around these target rates

cex = −0.012 to be expressed by σex = 0.006.
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7.4 Results

7.4.1 Independent Model

The posterior means of the parameters calculated from the Monte Carlo are similar to the fre-

quentist point estimates. The posterior means of the smoothing parameters are also very close

to that estimated from the classical approach except for SC males, where the posterior means

of the smoothing parameters for the baseline in the Bayesian setting is less extreme than the

frequentist estimates. Note that this specific group has the fewest data among all groups. Figure

7.1 plots the posterior means of the baseline schedules, age-specific improvement rates, period

effects (interval estimates omitted for clarity) and cohort effects of EW males, EW females,

SC males and SC females individually, while Figure 7.2 plots the first differences of their pe-

riod and cohort effects. The solid lines plot the posterior means of the Bayesian models while

the dotted lines plot the frequentist maximum likelihood estimates. The 95% credible intervals

are also plotted. Clearly, the 95% intervals in the fully Bayesian model are wider due to the

fact that the smoothing parameters are now themselves random variables, instead of constants.

For EW males and EW females, the posterior means and the frequentist maximum likelihood

estimates are very similar, except for the baseline schedules and improvement rates at the ex-

trapolation range. For SC males and SC females, even within the data range there seems to

be larger discrepancies between the posterior means from the Bayesian approach and the fre-

quentist maximum likelihood estimates. Of course, the posterior means and intervals from the

Bayesian approach and the maximum likelihood estimates from the frequentist approach are

not directly comparable. The most notable change is the cohort effects of SC females, where a

better mortality improvement is observed for cohorts born around 1988 in the Bayesian model.

This pattern is also observed in the Bayesian model of the remaining three populations and all of

the joint models in Chapters 5 and 6. Therefore we conclude that the classical single population

model for SC females seems to be failing to capture this generational effect.
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(a) baseline mortality schedules

(b) age-specific improvement rates
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(c) period effects

(d) cohort effects

Figure 7.1: Posterior means and 95% credible intervals of the baseline mortality schedules,
age-specific improvement rates, period effects and cohort effects (solid lines) of the Bayesian
single population model for EW males, EW females, SC males and SC females. The intervals
of the period effects are omitted for clarity. The corresponding maximum likelihood estimates
from the frequentist approach are also plotted for comparison (dotted lines).



132 Chapter 7 Bayesian Mortality Projection

(a) first differences of the period effects

(b) first differences of the cohort effects

Figure 7.2: Posterior means and 95% credible intervals of the first differences of the period
effects and cohort effects (solid lines) of the Bayesian single population model for EW males,
EW females, SC males and SC females. The intervals of the first differences of the period
effects are omitted for clarity. The corresponding maximum likelihood estimates from the
frequentist approach are also plotted for comparison (dotted lines).

7.4.2 Male and Female Joint Sex Model

7.4.2.1 England and Wales

The posterior means and the 95% intervals of the baseline mortality schedules, age-specific im-

provement rates, period effects and cohort effects of the EW male-and-female joint Bayesian

model are shown in Figure 7.3. Within the data range, the posterior means of the parameter
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estimates are very similar to the corresponding maximum likelihood estimates under the clas-

sical approach, except for the earliest and latest cohort effects, where there is only little data.

The intervals of the splines are wider due to the fact that the smoothing parameters are now

variables. At the extrapolated ages, the posterior means of the age-specific improvement rates

from the Bayesian model are flatter, i.e. bigger mortality improvement compared to the classical

approach.

(a) baseline mortality schedules

(b) age-specific improvement rates
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(c) period effects

(d) cohort effects

Figure 7.3: Posterior means and 95% credible intervals of the baseline mortality schedules, age-
specific improvement rates, period effects and cohort effects (solid lines) of the Bayesian joint
sex model for EW males (blue) and females (red). The corresponding maximum likelihood
estimates from the frequentist approach are also plotted for comparison (dotted lines).

Figure 7.4 plots the posterior means of the first differences of the period and cohort effects.

For the first differences of the period effects, the posterior means and the 95% intervals of the

Bayesian model are almost the same as those from the frequentist approach. The posterior

means and intervals of the differenced cohort effects from the Bayesian and classical approach

are also similar, except at the earliest and latest cohorts.
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(a) first differences of the period effects

(b) first differences of the cohort effects

Figure 7.4: Posterior means and 95% credible intervals of the first differences of the period
effects and cohort effects (solid lines) of the Bayesian joint sex model for EW males (blue) and
females (red). The corresponding maximum likelihood estimates from the frequentist approach
are also plotted for comparison (dotted lines).

Figure 7.5 presents the posterior means and the 95% credible intervals of the 50-year ahead fore-

casts of EW male and female mortality rates at some selected ages. The maximum likelihood

estimates and the interval estimates from the frequentist approach are also plotted for compari-

son. The posterior means are very similar to the maximum likelihood estimates obtained from

the classical approach, while the 95% credible intervals are wider than the intervals from the

classical approach, due to the fact that the smoothing parameters are variables instead of con-

stants, although for EW females the intervals from the two approaches are very similar. Figure

7.6 shows the projections after incorporating expert opinion in the way discussed in Section 7.3.
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The Bayesian intervals are much wider (solid lines) than the frequentist intervals (dotted lines)

due to the fact that the target rates are now also given priors, instead of deterministic constants.

Figure 7.5: Posterior means and 95% credible intervals of the 50-year ahead forecasts of EW
male and female mortality rates (solid lines). The corresponding maximum likelihood esti-
mates from the frequentist approach are also plotted for comparison (dotted lines).

Figure 7.6: Posterior means and 95% credible intervals of the 50-year ahead forecasts of EW
male and female mortality rates with the incorporation of expert opinion (solid lines). The
corresponding maximum likelihood estimates from the frequentist approach are also plotted
for comparison (dotted lines).
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7.4.2.2 Scotland

The posterior means and the 95% intervals of the baseline mortality schedules, age-specific im-

provement rates, period effects and cohort effects of the SC male-and-female joint Bayesian

model are shown in Figure 7.7. The posterior means of the baseline mortality schedules are

very similar to the frequentist maximum likelihood estimates. However, the age-specific im-

provement rates show more discernible differences between the posterior means and the fre-

quentist maximum likelihood estimates: the male and female mortality improvement rates are

more similar at older ages in the Bayesian model. As in the independent models, the Bayesian

joint sex model picks up a bigger mortality improvement for SC females born around 1988 that

is not identified in the classical joint sex model. The posterior means of the period effects are

also quite different from the maximum likelihood estimates. Nonetheless, if we inspect the first

differences of the period effects (Figure 7.8), it can be seen that they are very similar in the

Bayesian and classical model, meaning that period shocks to the annual mortality improvement

rates are similar under the two models. The intervals of the splines are wider due to the fact that

the smoothing parameters are now variables.
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(a) baseline mortality schedules

(b) age-specific improvement rates
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(c) period effects

(d) cohort effects

Figure 7.7: Posterior means and 95% credible intervals of the baseline mortality schedules, age-
specific improvement rates, period effects and cohort effects (solid lines) of the Bayesian joint
sex model for SC males (black) and females (green). The corresponding maximum likelihood
estimates from the frequentist approach are also plotted for comparison (dotted lines).

The posterior means of the first differences of the period and cohort effects are shown in Figure

7.8. In the Bayesian approach, there are two distinct troughs in the posterior means of the

differenced cohort effects (around years 1932 and 1945), meaning that these cohorts have better

mortality improvement, while in the classical approach these are merged into one big trough.



140 Chapter 7 Bayesian Mortality Projection

(a) first differences of the period effects

(b) first differences of the cohort effects

Figure 7.8: Posterior means and 95% credible intervals of the first differences of the period
effects and cohort effects (solid lines) of the Bayesian joint sex model for SC males (black)
and females (green). The corresponding maximum likelihood estimates from the frequentist
approach are also plotted for comparison (dotted lines).

Figure 7.9 presents the posterior means of the 50-year ahead forecasts of SC males and females

and their corresponding 95% intervals. The intervals produced by the Bayesian approach are

much wider. Figure 7.10 shows the projections after incorporating expert opinion. Similar to the

EW joint sex model, the Bayesian intervals are wider (solid lines) than the frequentist intervals

(dotted lines).
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Figure 7.9: Posterior means and 95% credible intervals of the 50-year ahead forecasts of SC
male and female mortality rates (solid lines). The corresponding maximum likelihood esti-
mates from the frequentist approach are also plotted for comparison (dotted lines).

Figure 7.10: Posterior means and 95% credible intervals of the 50-year ahead forecasts of SC
male and female mortality rates with the incorporation of expert opinion (solid lines). The
corresponding maximum likelihood estimates from the frequentist approach are also plotted
for comparison (dotted lines).

Table 7.1 shows the empirical coverage of the estimated 95% intervals from the Bayesian ap-

proach, backtested on data in the most recent decade. The coverages of the frequentist intervals

are also shown for comparison. As expected, the coverages of the intervals under the Bayesian

approach are higher as the Bayesian intervals are wider than the frequentist intervals.
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95% intervals coverage

Age
EW males EW females SC males SC females

Bayesian Frequentist Bayesian Frequentist Bayesian Frequentist Bayesian Frequentist

all ages 0.6009615 0.4576923 0.5442308 0.4865385 0.3757576 0.302020191 0.4151515 0.331313127

61-90 0.9433333 0.7666667 0.7 0.63 0.6 0.4833333 0.54 0.4133333

91+ 0.7785714 0.6285714 0.5357143 0.4571429 0.4 0.3111111 0.5777778 0.4444444

Table 7.1: The coverage of the 95% intervals of the Bayesian joint sex model

7.4.3 England-and-Wales and Scotland Joint Country Model

7.4.3.1 Males

The posterior means and the 95% intervals of the baseline mortality schedules, age-specific

improvement rates, period effects and cohort effects of the Bayesian joint country model for

EW and SC males are shown in Figure 7.11. The posterior means of the parameter estimates for

EW males are very similar to the frequentist maximum likelihood estimates, except for the age-

specific improvement rates at extrapolated ages where the posterior means from the Bayesian

approach are lower (i.e. bigger improvements). For SC males, the differences between the

posterior means from the Bayesian approach and the maximum likelihood estimates from the

classical approach are relatively larger.
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(a) baseline mortality schedules

(b) age-specific improvement rates



144 Chapter 7 Bayesian Mortality Projection

(c) period effects

(d) cohort effects

Figure 7.11: Posterior means and 95% credible intervals of the baseline mortality schedules,
age-specific improvement rates, period effects and cohort effects (solid lines) of the Bayesian
joint country model for EW (blue) and SC (black) males. The corresponding maximum likeli-
hood estimates from the frequentist approach are also plotted for comparison (dotted lines).

The posterior means of the first differences of the period and cohort effects are shown in Fig-

ure 7.12. Although there are discernible differences in the Bayesian posterior means and the

frequentist maximum likelihood estimates of the period and cohort effects of SC males, the

differenced period and cohort effects are from the two approaches are quite similar.
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(a) first differences of the period effects

(b) first differences of the cohort effects

Figure 7.12: Posterior means and 95% credible intervals of the first differences of the period
effects and cohort effects (solid lines) of the Bayesian joint country model for EW (blue) and
SC(black) males. The corresponding maximum likelihood estimates from the frequentist ap-
proach are also plotted for comparison (dotted lines).

Figure 7.13 presents the posterior means and 95% intervals of the 50-year ahead forecasts of the

EW and SC males at some selected ages. As expected, the Bayesian approach produces wider

interval forecasts. Figure 7.14 shows the projections after incorporating expert opinion. Similar

to the joint sex models, the Bayesian intervals are wider (solid lines) than the frequentist inter-

vals (dotted lines). The long-term projections are non-divergent as the mortality improvement

rates converge to the expert advised rates.
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Figure 7.13: Posterior means and 95% credible intervals of the 50-year ahead forecasts of EW
and SC male mortality rates (solid lines). The corresponding maximum likelihood estimates
from the frequentist approach are also plotted for comparison (dotted lines).

Figure 7.14: Posterior means and 95% credible intervals of the 50-year ahead forecasts of
EW and SC male mortality rates after the incorporation of expert opinion (solid lines). The
corresponding maximum likelihood estimates from the frequentist approach are also plotted
for comparison (dotted lines).

7.4.3.2 Females

The posterior means and the 95% intervals of the baseline mortality schedules, age-specific

improvement rates, period effects and cohort effects of the Bayesian joint country model for
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EW and SC females are shown in Figure 7.15. Similar to the male joint country model, the

posterior means of the parameter estimates for EW females are very similar to the frequentist

maximum likelihood estimates, except for the age-specific improvement rates at extrapolated

ages. On the other hand, the differences between the two approaches are more apparent, and the

sampled smoothing parameters for the cross-country penalty for sβ(·) are much lower than that

of the maximum likelihood estimates, hence the shape of the age-specific improvement rates of

SC females are less similar to that of EW females under the Bayesian model.

(a) baseline mortality schedules

(b) age-specific improvement rates
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(c) period effects

(d) cohort effects

Figure 7.15: Posterior means and 95% credible intervals of the baseline mortality schedules,
age-specific improvement rates, period effects and cohort effects (solid lines) of the Bayesian
joint country model for EW (red) and SC (green) females. The corresponding maximum like-
lihood estimates from the frequentist approach are also plotted for comparison (dotted lines).

The posterior means of the first differences of the period and cohort effects are shown in Figure

7.16. The first differences of the period and cohort effects between the two approaches are

similar.
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(a) first differences of the period effects

(b) first differences of the cohort effects

Figure 7.16: Posterior means and 95% credible intervals of the first differences of the period
effects and cohort effects (solid lines) of the Bayesian joint country model for EW (red) and
SC(green) females. The corresponding maximum likelihood estimates from the frequentist
approach are also plotted for comparison (dotted lines).

Figure 7.17 presents the posterior means and 95% intervals of the 50-year ahead forecasts of the

EW and SC females at some selected ages. As expected, the Bayesian approach produces wider

interval forecasts. Figure 7.18 shows the projections after incorporating expert opinion. Similar

to the joint sex models, the Bayesian intervals are wider (solid lines) than the frequentist inter-

vals (dotted lines). The long-term projections are non-divergent as the mortality improvement

rates converge to the expert advised rates.
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Figure 7.17: Posterior means and 95% credible intervals of the 50-year ahead forecasts of EW
and SC female mortality rates (solid lines). The corresponding maximum likelihood estimates
from the frequentist approach are also plotted for comparison (dotted lines).

Figure 7.18: Posterior means and 95% credible intervals of the 50-year ahead forecasts of
EW and SC female mortality rates after the incorporation of expert opinion (solid lines). The
corresponding maximum likelihood estimates from the frequentist approach are also plotted
for comparison (dotted lines).

Table 7.2 shows the empirical coverage of the estimated 95% intervals of the joint country model

from the Bayesian approach, backtested on data in the most recent decade. The coverages of the

frequentist intervals are also shown for comparison. For all populations except SC males, the

coverage has improved in the Bayesian setting.
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95% intervals coverage

Age
EW males EW females SC males SC females

Bayesian Frequentist Bayesian Frequentist Bayesian Frequentist Bayesian Frequentist

all ages 0.5846154 0.4567308 0.5365385 0.4634615 0.3555556 0.369696982 0.3929293 0.280808073

61-90 0.9333333 0.7633333 0.6966667 0.6166667 0.5766667 0.6 0.5466667 0.4333333

91+ 0.7785714 0.65 0.4857143 0.45 0.3444444 0.4777778 0.4888889 0.1777778

Table 7.2: The coverage of the 95% intervals of the Bayesian joint country model

7.4.4 England-and-Wales and Scotland males and females Joint Model

Figures 7.19, 7.20, 7.21 and 7.22 present the posterior means and 95% intervals of the baseline

mortality schedules, age-specific improvement rates, period effects and cohort effects of the

Bayesian four-population joint model. The intervals from the Bayesian approach are wider than

that from the frequentist approach except for the period effects. The posterior means of the

baseline mortality schedules and period effects from the Bayesian approach are very similar

to the frequentist maximum likelihood estimates. However, the differences between the two

approaches are larger in the age-specific improvement rates and cohort effects, most notable for

SC males and females. For EW males and females, the fitted terms are still consistent between

the two approaches, however, the age-specific improvement rates for SC males and females

at ages around 20 to 50 in the Bayesian approach are higher (smaller improvement) than the

frequentist maximum likelihood estimates.
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(a) baseline mortality schedules extrapolated to age 120

(b) individual baseline mortality schedules

Figure 7.19: Posterior means and 95% intervals of the baseline mortality schedules extrapo-
lated to age 120. The baselines for each population are also plotted individually for a clearer
illustration.
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(a) age-specific mortality improvement rates extrapolated to age 120

(b) individual age-specific mortality improvement rates

Figure 7.20: Posterior means and 95% intervals of the age-specific mortality improvement rates
extrapolated to age 120. The baselines for each population are also plotted individually for a
clearer illustration.
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Figure 7.21: Posterior means and 95% intervals of the period effects of each population plotted
individually.

Figure 7.22: Posterior means and 95% intervals of the cohort effects of each population plotted
individually.

Figure 7.23 shows the first differences of the period and cohort effects. The posterior means

and the 95% intervals from the Bayesian approach almost superpose the maximum likelihood

estimates from the classical approach. The means of the first differences of the cohort effects

from the Bayesian approach are also very similar to the maximum likelihood estimates, except

at the first and last few cohorts.
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(a) first differences of the period effects

(b) first differences of the cohort effects

Figure 7.23: Posterior means and 95% credible intervals of the first differences of the period
effects and cohort effects (solid lines) of the Bayesian approach. The corresponding maxi-
mum likelihood estimates from the frequentist approach are also plotted for comparison (dotted
lines).

For clarity, the forecasts obtained under the Bayesian model are shown pairwise. Figures 7.24

and 7.25 plot the 50-year ahead mortality forecasts of the male-and-female pairs of EW and

SC respectively. Figures 7.26 and 7.27 plot the forecasts of the EW-and-SC pairs of males and

females respectively. The posterior means of the forecasts under the Bayesian approach are

consistent with the classical approach and intervals are generally wider. For EW females, the

forecast intervals from the two approaches are very similar. In addition, the Bayesian model
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produces forecasts that are decreasing at a faster rate than the maximum likelihood estimates for

SC males and females at old ages.

Figure 7.24: Posterior means and 95% credible intervals of the 50-year ahead forecasts of
EW male and female mortality rates (solid lines). The corresponding maximum likelihood
estimates from the frequentist approach are also plotted for comparison (dotted lines).

Figure 7.25: Posterior means and 95% credible intervals of the 50-year ahead forecasts of
SC male and female mortality rates (solid lines). The corresponding maximum likelihood
estimates from the frequentist approach are also plotted for comparison (dotted lines).
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Figure 7.26: Posterior means and 95% credible intervals of the 50-year ahead forecasts of EW
and SC male mortality rates (solid lines). The corresponding maximum likelihood estimates
from the frequentist approach are also plotted for comparison (dotted lines).

Figure 7.27: Posterior means and 95% credible intervals of the 50-year ahead forecasts of EW
and SC female mortality rates (solid lines). The corresponding maximum likelihood estimates
from the frequentist approach are also plotted for comparison (dotted lines).

Figures 7.28, 7.29, 7.30 and 7.31 show the projections pairwise after incorporating expert opin-

ion. The Bayesian intervals are much wider (solid lines) than the frequentist intervals (dotted

lines). The long-term projections are non-divergent as the mortality improvement rates converge

to the expert advised rates.
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Figure 7.28: Posterior means and 95% credible intervals of the 50-year ahead forecasts of EW
male and female mortality rates after the incorporation of expert opinion (solid lines). The
corresponding maximum likelihood estimates from the frequentist approach are also plotted
for comparison (dotted lines).

Figure 7.29: Posterior means and 95% credible intervals of the 50-year ahead forecasts of SC
male and female mortality rates after the incorporation of expert opinion (solid lines). The
corresponding maximum likelihood estimates from the frequentist approach are also plotted
for comparison (dotted lines).
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Figure 7.30: Posterior means and 95% credible intervals of the 50-year ahead forecasts of
EW and SC male mortality rates after the incorporation of expert opinion (solid lines). The
corresponding maximum likelihood estimates from the frequentist approach are also plotted
for comparison (dotted lines).

Figure 7.31: Posterior means and 95% credible intervals of the 50-year ahead forecasts of
EW and SC female mortality rates after the incorporation of expert opinion (solid lines). The
corresponding maximum likelihood estimates from the frequentist approach are also plotted
for comparison (dotted lines).

Table 7.3 shows the empirical coverage of the estimated 95% intervals of the joint model from

the Bayesian approach, backtested on data in the most recent decade. The coverages of the

frequentist intervals are also shown for comparison. For all populations except SC males, the
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general coverage has improved in the Bayesian setting, most notable for EW males aged 61-90

and SC females aged 91+. Nonetheless, the Bayesian intervals still under-state the uncertainty

at most age groups. As mentioned, this might be an indication of over-dispersion and a negative

binomial model could be explored instead which allows more variability.

95% intervals coverage

Age
EW males EW females SC males SC females

Bayesian Frequentist Bayesian Frequentist Bayesian Frequentist Bayesian Frequentist

all ages 0.5875 0.4480769 0.5355769 0.4663462 0.3575758 0.351515139 0.4090909 0.289898979

61-90 0.93 0.77 0.7 0.6233333 0.59 0.64 0.5533333 0.4233333

91+ 0.7785714 0.65 0.5071429 0.45 0.3777778 0.5222222 0.5666667 0.2111111

Table 7.3: The coverage of the 95% intervals of the Bayesian joint country model

7.5 Conclusion

In this chapter we used a Bayesian framework as it provides a natural and comprehensive man-

ner to include parameter uncertainty and any prior beliefs. Compared to the estimates obtained

under the classical approach, the interval forecasts are wider under the Bayesian approach. Al-

though not directly comparable, the posterior means of the baseline mortality schedules, age-

specific improvement rates, period effects and cohort effects are very similar to their maximum

likelihood estimates for EW males and females. For SC males and females, the Bayesian ap-

proach gives slightly worse mortality improvement rates at around ages 20 to 50.



Chapter 8

Conclusion and Further Work

8.1 Conclusion

In this thesis we have proposed stochastic models for estimating and projecting mortality rates

for different populations jointly using adaptive P-splines. In particular,we proposed models for

mortality graduation as well as mortality projection in both the age and time directions that are

suitable for the whole age range and robust.

Crude mortality rates often exhibit irregular and wiggly patterns, due to natural randomness.

Therefore the crude rates have to be smoothed before they are used, this process is sometimes

called mortality graduation. In Chapter 4 a model for mortality graduation for the whole age

range is proposed. The model is flexible at younger ages where data is abundant and robust at

the oldest ages where data is scarce. The local penalty also improves the adaptivity of the spline,

as the age pattern of mortality is less smooth at younger ages, which then follows quite a smooth

log-linear trend. We also borrowed strength at the oldest ages by jointly graduating male and

female mortality rates, which further increases the robustness. In addition, utilising the locality

of B-spline basis functions, we demonstrated an efficient and easy way to impose constraints

on the spline coefficients such that graduated female mortality rates are always less than or

equal to that of males, a feature that is noted and studied in the literature (Schünemann et al.,

2017; Oksuzyan et al., 2008; Barford et al., 2006; Luy, 2003; Smith and Warner, 1989; Waldron,

1985; Lopez, 1983). In this way, our model does not require subjective/ad-hoc adjustments to

the graduated rates in order to enforce non-intersection between male and female mortality rates.

In Chapter 5 the mortality graduation model is extended to a joint sex and joint country model,

strength is borrowed between the two populations especially at the highest ages where exposures

are small. In particular, the age effects between populations are related. We also demonstrated a

way to incorporated expert opinion into projection so that the long term forecasts could be mod-

erated by these judgments. Following Dodd et al. (2020), weights were assigned between the
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current mortality improvement rates and the expert-determined target rates such that future mor-

tality improvement rates will gravitate towards the expert-determined target rates. Specifically,

at the 25-th forecast year, mortality improvement rates coincide with the expert-determined

rates and remain constant thereafter. The incorporation of expert opinion avoids perpetual lin-

ear improvement trends at current rates, which is unlikely. It also ensures the projections are

non-divergent as the target rates set by experts are the same for both sexes and countries. The

joint sex models have shown to be able to produce more reasonable long term male and fe-

male mortality projections that are non intersecting, a quality that single sex models often fail

to achieve. At the extrapolation age range the joint model also gives more plausible estimates,

especially for the mortality improvement rates for females where a worsening mortality is oth-

erwise projected under the single population model. One benefit of jointly modelling EW and

SC populations is that information could be learned from the bigger EW population which also

has data of a wider age range. In the extrapolation age range for SC, the estimates capture the

decelerating rate of increase in mortality age patterns, a phenomenon that is often observed at

the oldest ages. Backtests on the most recent 10 years of data show that the projection and

projection intervals of the joint country model has improved, especially for SC males.

In Chapter 6, we modelled all of the four populations jointly, i.e. EW males, EW females, SC

males and SC females. This model combines features of both the joint sex model and joint

country model, information is borrowed across sexes, and across countries. For each male-

and-female pair, the estimated baseline schedules and the mortality improvement rates tend

to a common value and SC males and females are able to utilize information offered by the

EW populations, especially when extending to ages beyond the available SC data range. The

four-population joint model is able to produce forecasts that are more sensible, which are non-

divergent and non-intersecting male and female mortality trends within the data range. Backtests

have been conducted on data in the most recent decade and it is shown that the projection and

projection intervals has improved in all but the younger age groups. A finer breakdown of the

forecast errors reveals that the improvement in the forecast accuracy mainly comes from the SC

populations, as the forecast errors of EW males and females have slightly increased.

Finally, in Chapter 7, the models in Chapters 5 and 6 are fitted in a Bayesian framework. The

main advantage of this is that the parameter and forecast uncertainty can be incorporated in a

natural and comprehensive manner. The estimated smoothing parameters under the Bayesian

approach are consistent with those obtained under the classical approach. However, compared

to the mortality estimates obtained under the classical approach, the interval forecasts are wider

under the Bayesian approach, which is intuitive as the smoothing parameters are now variables

instead of constants.
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8.2 Discussions and further work

Even though the joint models are able to produce reasonable projections, there are still some

shortcomings. First of all, as indicated by the backtests, the short term forecast accuracy may

not necessarily improve, especially for younger age groups where there is relatively large data.

However, note that the magnitude of the differences in the forecast errors is relatively small.

For example, when the joint sex models are considered, the forecast accuracy of EW males and

females aged 31-60 has slightly worsened in terms of MAE. Albeit having a low to none cross-

sex penalty at the youngest ages, the projections are still influenced by the cross-sex penalty at

later ages due to the presence of cohort effects that interacts with the age and period effects.

In fact, some authors have also experienced difficulties in estimating and projecting the cohort

effects in a robust way (Plat, 2009a; Renshaw and Haberman, 2006). Antonio et al. (2017) have

even opted out not to include cohort effects into their mortality models for Netherlands and

Belgium.

Another issue to consider is that while the linear mortality improvement trend appears to be

suitable for most of the years, there seems to be a deviation in the most recent years, where the

first differences of the estimated period effects drift away from zero. Some researchers have

looked into structural changes and proposed methods of detecting and breaking down the time

into periods of different mortality improvement trends (O’Hare and Li, 2015; Coelho and Nunes,

2011). Therefore, structural breaks in period effects maybe incorporated into the model.

The stochasticity of the forecasts of our model comes from the single period effect. In other

words, mortality forecasts at all ages will have the same variability and perfect correlation.

Therefore, the prediction intervals will have the same width if parameter uncertainty were ig-

nored. One could forecast the cohort effects using time series for a non-trivial correlation struc-

ture. Inclusion of higher order period effects have also been considered in the literature.

The estimated period effects in all of the models we have investigated seem to be correlated

among populations. Therefore, a possibility to improve forecast accuracy is then to use corre-

lated time series for the period effects of different populations instead of forecasting each of

them individually. Such work has been investigated by researchers, for example the two popula-

tion model by Cairns et al. (2011b) and the gravity model by Dowd et al. (2011), among others

discussed in Section 3.3.

The assumption of Poisson deaths often exhibits over-dispersion. The one-parameter Poisson

distribution may be too restrictive on the variance, especially for large, heterogeneousus popula-

tions. One remedy would be to introduce an over-dispersion parameter to account for the extra

variability. As shown in Section 1.1, a particular convenient choice of parametrisation leads to

a negative binomial distribution, which is not of the exponential family.

Instead of jointly modelling multiple populations, the model could be fitted to a large population

and its sub-populations (e.g. a national population and the insured population). The shape and
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difference penalties are then simply intuitive and natural as the sub-populations and the main

population would undoubtedly share characteristics in their mortality schedules. At higher ages

the differences are also expected to wear off, hence the mortality levels (the baseline mortality

rates) and the trends (the improvement rates) should be similar at these ages. This is in line with

the relational model by Plat (2009b) (Section 3.3) where the authors enforced the ratio between

the main and sub-population to be exactly 1 at the oldest age (i.e. the mortality rates of the main

and sub-population converge to a common value at the oldest age).

The incorporation of parameter uncertainty into the prediction intervals is also not a straight-

forward task under the classical approach, even though simulation techniques can be used. The

intervals obtained for the estimated parameters are also not purely classical due to the presence

of penalties. As discussed in Section 2.2.6, the interval estimates rely on a Bayesian point of

view on the spline parameters. That said, the parameter intervals are somewhat midway between

the classical and Bayesian approaches. An obvious way to capture parameter and forecast uncer-

tainty in a more natural and systematic fashion would be to use a Bayesian approach. In this way

the time series likelihood can also be incorporated as a prior, which is often neglected during

the fitting process under the classical approach. In Chapter 7 we fitted the models in a Bayesian

framework, however we have assumed an AR(1) prior on the period effects. It is shown in

Chapters 5 and 6 that an ARIMA process may give better and more reasonable forecasts.

An attractive feature of the Bayesian framework is that prior beliefs can be incorporated into

the model easily. For instance, if one believes that the baseline mortality schedule is smoother

at older ages, one could put more weight in the prior of λα2 where λα2 > 0. The magnitude of

the smoothing parameters often depends on the range of the data and the spacing between the

spline knots. Nonetheless, if prior knowledge is available this can also be reflected in the prior

distributions. The smoothing parameters were given uniform priors in our model, however other

distributions could be used. In the literature some authors have found that the prior specification

of the smoothing parameters may affect the posterior (Jullion and Lambert, 2007) and suggested

more robust prior specifications. For example, Jullion and Lambert (2007) proposed a mixture

prior as well as adding another layer of hyperprior. Scheipl and Kneib (2009) on the other hand

used the Normal-Exponential-Gamma prior for the spline coefficients that allows spatial adap-

tivity and computational convenience. Therefore other prior distributions could be considered

for our model and the prior sensitivity could be explored.

In this thesis we proposed models for joint mortality graduation and projection. Splines have

been used increasingly in mortality modelling, we proposed a way to flexibly model the age

effects of different populations jointly using P-splines, therefore borrowing information across

the populations. We showed that the estimates are more robust and the projections are more

reasonable. We have also demonstrated a way to incorporate expert opinion into long-term

forecasts, which helps moderate projections produced by the models and improves credibility.
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