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Kingdom
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Abstract: This paper proposes a novel on-chip optical pulse train generator (OPTG) based
on optomechanical oscillation (OMO). The OPTG consists of an optical cavity and mechanical
resonator, in which OMO periodically modulates the optical cavity field and consequently
generates optical pulse trains. The dimensionless method are introduced to simulate the OMO-
based OPTG with reduced analysis complexity. We investigate the optomechanical coupling
and the dynamic back-action processes, by which we found a dead zone that forbids the OMO,
and derived the optimal laser detuning and the minimum threshold power. We analysed the
OMO-based OPTG in terms of the pulse shape distortion, extinction ratio (ER) and duty-cycle
(DC). Increasing input power, mechanical and optical Q-factors will increase ER, reduce DC and
produce sharper and shorter optical pulses. We also discuss the design guidance of OMO-based
OPTG and explore its application in distributed fibre optical sensor (DFOS).

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical pulse train generators (OPTG) are essential for many applications, such as optical
communication [1], microwave photonics [2] and sensing system [3]. For instance, OPTG
with a repetition rate lower than ~10GHz is highly desired for distributed fibre optical sensors
(DFOS) [4]. Recently, integrated optical pulse generation is achieved by a few approaches,
including mode-locked semiconductor lasers [5, 6], microresonator-based Kerr soliton frequency
comb [7, 8] and on-chip optical modulator [9, 10]. The approach of semiconductor mode-locked
laser does not need an extra laser, but requires phase-lock design and heterogeneous integration,
which needs a complicated process flow and is usually not CMOS compatible. In addition, an
external DC or RF source is also needed to activate the pump and tune the laser. The approach of
microresonator-based Kerr soliton frequency comb inputs a narrow-band laser source into an
optical microresonator with high quality factor, and uses the cascaded four-wave-mixing process
to generate optical pulses. The soliton threshold power increases with decreasing repetition
rate [8]—this power scaling leads to high power consumption for a repetition rate below ~10GHz.
In addition, repetition rate reduction needs a larger cavity length, a higher Q-factor and precise
dispersion control, resulting in a more challenging fabrication process. The approach of the
on-chip optical modulator generates optical pulses by modulating input laser source with the
electrical-optical or the thermal-optical effects. In addition to the complex fabrication process
involving metallisation and doping, an external bulky radio frequency (RF) source is also needed,
which are the bottleneck for the system-on-chip applications.

Recently, [11] proposed to use optomechanical systems to generate optical frequency sidebands.
This method involves a parametric process and potentially can be utilised to generate time-domain
pulse trains based on Fourier transformation. In [12], the author proposed to generate high-order
frequency sidebands by exploring the discrete optomechanical attractors. However, the tuning is
noncontinuous and pulse shape is distorted. Optomechanical systems explore the interaction
between a mechanical resonator and an optical cavity [13, 14], in which a plethora of interesting
optomechanical effects have been observed, including optical spring [15], bistability [16], normal-
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mode splitting [17], optomechanical induced transparency [18], optomechanical cooling [19] and
optomechanical oscillation (OMO) [20]. Impressive applications of OMOwere also demonstrated,
such as high-sensitivity force-sensing [21], photonic clock [22], microwave-optic conversion [23],
and quantum information [24].
OMO is caused by the optomechanical dynamic back-action [25, 26]. The back-action

reduces the overall effective damping rate of the mechanical resonator, which is the ratio
of the damping coefficient to the effective mass of the mechanical resonator. It then starts
the mechanical oscillation when the overall effective damping rate becomes negative. The
mechanical oscillation simultaneously modulates the optical cavity field and forms a range of
frequency sidebands to generate the optical pulse trains. Recently, OMO ranging from ~KHz to
~GHz has been demonstrated in various on-chip platforms using state-of-the-art nanofabrication
process [22,27–30]. In addition, no external RF source is required to maintain the oscillation.
The OMO process thus provides a promising method to generate optical pulse trains.

This paper investigates the novel approach of realising on-chip OPTG with OMO and is
organised as follow: Section 2 introduces the theoretical model based on four independent
dimensionless parameters to analytically and numerically investigate the OMO process. We
found that a dead-zone forbids the onset of OMO and derives the optimal detuning value and the
minimum threshold power. Section 3 investigates the OMO-based OPTG performance regarding
shape distortion, ER and DC. The resolved-sideband regime can be chosen for short optical pulse
generation with less shape distortion. Pulses with targeted ER and DC can be designed with
different laser detuning, optical and mechanical Q-factors, and input powers. Section 4 discusses
the OMO-based OPTG design using various dimensionless parameters and considers its potential
applications in DFOS.

2. Optical pulse generation

2.1. Theoretical model based on dimensionless parameters

We consider a theoretical model of optomechanical coupling as shown in Fig.1(a), in which
the displacement of the mechanical resonator modulates the resonance frequency of the optical
cavity. For a small mechanical displacement G(C), the optomechanical coupling coefficient is
defined as � = −mlcav/mG, where lcav is the resonance frequency of the optical cavity. The
field amplitude inside the cavity is 0(C), such that |0(C) |2 can be normalised as the number of
photons circulating within the cavity. When neglecting all the thermal fluctuations(including the
photon shot noise and the intrinsic thermal noise), the following coupling equations describe the
time evolution of the optical mode amplitude 0(C) and mechanical motion G(C) [31],

30(C)
3C

= 8(Δ + �G(C))0(C) − ^
2
0(C) + √^exB, (1)

3G2 (C)
3C2

+ Γ<
3G(C)
3C
+Ω2

<G(C) =
ℏ� |0(C) |2
<eff

. (2)

Eq.(1) describes the dynamics of the optical field [32], in which ^ is the photon cavity decay rate
and ^ex represents the part associated with the external coupling. The effective drive amplitude
of the pump laser is B and can be normalised as B =

√
%in/(ℏl!), where %in is the input laser

power, l! is the laser frequency, ℏ is the reduced Planck Constant). Here, we have introduced a
rotating frame with the laser frequency l! , i.e., 0real (C) = 0here (C)4−8l! C , and laser detuning
Δ = l! − lcav. The term �G(C) represents the optical resonance frequency shift induced by
the mechanical motion. Eq.(2) describes the temporal motion of a mechanical resonator with
effective mass <eff , resonance frequency Ω< and energy damping rate Γ<. The term on the
right side of Eq.(2) is the radiation pressure force acting on the mechanical resonator. Eq.(1)
and Eq.(2) can theoretically describe the physical process of optomechanical coupling and have
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Fig. 1. (a) Schematic diagram of an optomechanical system in the WGM form with
cavity resonant frequency lcav and damping rate ^. The mechanical resonator with
resonant frequency Ω<, damping rate Γ<, and effective mass <eff is coupled with
the optical cavity through a coupling coefficient �. The optomechanical system is
excited with an input light through a coupling rate ^ex/2, and the transmitted optical
field through the drop port is the output. (b) An on-chip WGM optomechanical system
composed of a microdisk resonator and two bus waveguide.

proved many optomechanical experiments with high precision, both in the linearised regime and
nonlinear regime [33, 34].

In this work, we discuss an optomechanical system whose optical output field only depends on
the intracavity field, for instance, the transmitted field of the drop port in an add-drop whispering
gallery mode (WGM) optical cavity composed of a microdisk resonator and two bus waveguides
as shown in Fig.1(b). According to the input-output relation [32], the output field can then be
written as a linear relation 0out =

√
^ex/20. Therefore, the optical output field is proportional to

the intracavity field, and we use the intracavity field to calculate the optical pulse train generation
in the later sessions.
For generality, it is desirable to non-dimensionalise the above coupled equations (Eq.(1)

and Eq.(2)) [34, 35]. Here, we rescale the variables C, 0, G as C̃ = Ω<C, 0̃ = 0Ω</(2B
√
:ex),

G̃ = �G/Ω<, and introduce a new set of dimensionless parameters Δ̃ = Δ/Ω<, ˜̂ = ^/Ω<,
Γ̃< = Γ</Ω<, ˜̂ex = ^ex/Ω<. For simplicity, we assume ˜̂ex/ ˜̂ = 0.5, which refers to the "critical
coupling" situation, and in the experiment we can vary this ratio by changing the coupling rate of
the optical resonator to input/output waveguide. It deserves noting that Γ̃< = Γ</Ω< is a direct
inverse of the mechanical quality factor &<. The original coupled equations can thus be reduced
to the Eq.(3) and Eq.(4) shown below:

30̃

3C̃
= 8(Δ̃ + G̃)0̃ − ˜̂

2
0̃ + 1

2
, (3)

32G̃

3C̃2
+ Γ̃<

3G̃

3C̃
+ G̃ = ˜̂%̃ |0̃ |2

2
, (4)

Where %̃ is the normalised input laser power and is given by,

%̃ =
4ℏ�2 |B |2

<effΩ
4
<

=
4%in�

2

<effΩ
4
<l!

. (5)

In the above equations, we have included the real input power %in, optomechanical coupling
coefficient�, mechanical effective mass<eff , mechanical frequencyΩ< and input laser frequency
l! into the dimensionless input power %̃. The effects of these parameters can thus all be taken
into account in the variation of %̃. By this means, the quantitative dynamics of this system will
only depend on four dimensionless parameters: normalised input power %̃, normalised optical



cavity decay rate ˜̂, normalised laser detuning Δ̃, normalised mechanical damping rate Γ̃<, which
greatly eases the complexity of the following analysis.

2.2. Dynamic back-action and OMO threshold

It is well known that the above optomechanical coupling would lead to dynamic back-action due
to the retarded nature of the radiation pressure force [25, 36]. We can first linearise the above
inherently nonlinear equations Eq.(1) and Eq.(2) around a steady-state solution and keep only
the linear terms, and then solve them in the frequency domain analytically [31]. The resulting
optomechanical damping rate is then non-dimensionalised and given by,

Γ̃opt =
Γopt

Ω<
=

˜̂%̃ | ˜̄0 |2
4

{
˜̂

˜̂2

4 + (1 +
˜̄Δ)2 − ˜̂

˜̂2

4 + (1 −
˜̄Δ)2

}
, (6)

where ˜̄0 is the averaged field amplitude in the cavity, and ˜̄Δ = Δ̃ + ˜̄G is the modified laser
detuning caused by the averaged mechanical displacement offset ˜̄G due to the constant optical
radiation force on the mechanical resonator. They can be obtained by first linearising the coupled
equations Eq.(1) and Eq.(2) and solving the resulting steady state equations,

˜̄G =
˜̂%̃ | ˜̄0 |2

2
=

˜̂%̃
2

����� 1
:̃ − 28(Δ̃ + ˜̄G)

�����2 = ˜̂%̃
8(Δ̃ + ˜̄G)2 + 2:̃2

. (7)

We then use the above Eq.(7) to eliminate the parameter ˜̄G in Eq.(6), thus the dimensionless
optomechanical damping rate Γ̃opt can be obtained as a function of only three parameters: %̃,
˜̂ and Δ̃. It can also be seen from Eq.(6) that an effectively red-detuned laser(˜̄Δ < 0) results in
positive Γ̃opt and extra damping, while an effectively blue-detuned laser(˜̄Δ > 0) leads to negative
Γ̃opt and anti-damping. The extra-damping on the mechanical resonator leads to optomechanical
cooling [19, 26] where the mechanical vibration is suppressed, while anti-damping leads to
optomechanical heating where the mechanical vibration is amplified. Eventually, the OMO
emerges when the overall damping rate Γ̃opt + Γ̃< is reduced to be negative. In order to find
the OMO threshold, as shown in Fig.2, we plotted the optomechanical damping rate Γ̃opt as a
function of %̃ and Δ̃ under four different values of ˜̂, namely ˜̂ = 0.1, ˜̂ = 0.5, ˜̂ = 2 and ˜̂ = 10.
In each of the figures, contours for Γ̃opt = −0.001,−0.01,−0.1,−1 are shown, which depict the
threshold for OMO when Γ̃< = 0.001, 0.01, 0.1, 1.

It is clear that Γ̃opt has its maximum and minimum value for each ˜̂. Therefore, there exists a
maximum cooling or heating rate for a given value of ˜̂, even though the input power %̃ varies
monotonically. This can be explained by looking at Eq.(6) and Eq.(7). Input power %̃ and effective
laser detuning ˜̄Δ both contribute to the optomechanical damping rate Γ̃opt through the dynamic
back-action (Eq.(6)). In the meantime, %̃ changes the static displacement ˜̄G of the mechanical
resonator, i.e. the effective laser detuning ˜̄Δ, through the optical radiation-pressure force (Eq.(7)).
Therefore, the value of Γ̃opt would not be monotonically modified when monotonically varying
%̃. The existence of a minimum value of Γ̃opt could lead to a situation where the overall damping
rate Γ̃opt + Γ̃< is always positive when Γ̃< is large enough. We named this situation "dead-zone
effect", where no OMO can be excited under any detuning Δ̃ and %̃ for certain given values of
˜̂ and Γ̃<. In the “dead zone”, the mechanical resonator still can be heated and the thermal
Brownian motion is amplified. However, due to the large intrinsic mechanical damping, these
optomechanical heating simply is not large enough to reduce the effective damping rate to zero,
thus the optomechanical oscillation can not happen. This can be observed from Fig.2, in which
we found the threshold contours for all the four different Γ̃< when ˜̂ = 0.1, ˜̂ = 0.5 and ˜̂ = 2.
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Fig. 2. (a-d) The optomechanical damping rate Γ̃opt as a function of %̃ and Δ̃ for ˜̂ = 0.1,
˜̂ = 0.5, ˜̂ = 2 and ˜̂ = 10, respectively. The contours in the figure show the parametric
oscillation threshold for Γ̃< = 0.001, 0.01, 0.1, 1.

However, we found no oscillation at all for ˜̂ = 10 and Γ̃< = 1. The absence of the threshold
contour for ˜̂ = 10 and Γ̃< = 1 suggests that this set of parameters lies in the dead-zone for OMO.
We conducted an analysis for a wide range of ˜̂ and Γ̃< and the resulting dead zone is plotted
in Fig.3. As shown in the figure, the dead zone appears at a combination region of low optical
Q-factor and low mechanical Q-factor. When designing an OMO-based OPTG, dead zones
should be avoided.
Apart from the dead-zone effect, we can also found from Fig.2 that there exists a minimum

threshold power %̃min
thres and a corresponding optimal laser detuning Δ̃opt for each ˜̂ and Γ̃<. We

here consider the situation far away from the dead-zone, which is usually the preferred case in the
experiment. As shown in Fig.4(a), the OMO threshold power %̃thres as a function of Δ̃ and ˜̂ when
Γ̃< = 1/5000 is plotted as a surface. In the valley of the curve, the minimum threshold power is
marked as a black line. The projection of this line to the side and bottom can be viewed as the
minimum threshold power %̃min

thres and corresponding optimal laser detuning Δ̃opt. In Fig.4(b), we
have introduced a normalised optimal detuning factor defined as Δ̃norm

opt = Δ̃opt/(1 + ˜̂), which is
plotted as a function of ˜̂ with a blue line. It can be found that in the resolved sideband regime
( ˜̂ � 1), the laser detuning associated with the minimum threshold power is approaching Δ̃ = 1,
while in the unresolved sideband regime( ˜̂ � 1), the optical laser detuning is around 0.2 ˜̂. This
suggests an optimal detuning Δopt = Ω< in the resolved-sideband regime, and Δopt = 0.2^ in
the unresolved-sideband regime. The associated minimum power %̃min

thres is also plotted along
with ˜̂. The minimum threshold power increases with ˜̂ in unresolved sideband regime, while
keeping as a constant in the resolved sideband regime. It shows that an optomechanical system in
the resolved sideband regime requires less optical input power to start OMO. This is because
smaller ˜̂ means higher optical Q-factor, which enhances the cavity field and leads to a larger
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field amplitude. A larger field amplitude would then lead to a larger optomechanical heating rate
as derived in Eq.(6) and make the OMO easier to start.

As a summary, here, we analysed the optomechanical dynamic back-action effect and the OMO
threshold. A dead-zone is found with a combination of low optical Q-factor and mechanical
Q-factor. Minimum optical threshold power and the corresponding optimal laser detuning are
derived.

2.3. Frequency sideband formation and optical pulse generation

When the overall damping rate Γ̃eff = Γ̃opt + Γ̃< becomes negative, the mechanical resonator
starts to oscillate when small initial fluctuations occur, for instance, originated from the Brownian
thermal noise induced random vibrations. Due to the nonlinear saturation effect which balances
the gain and loss of the mechanical resonator, a steady-state regime is reached and the mechanical
resonator oscillates at a fixed amplitude.
An ansatz can be made that the mechanical resonator is oscillating with an approximately

sinusoidal pattern as G̃(C̃) = ¯̃G + �̃cos(t̃), where ¯̃G is the averaged displacement and �̃ is the



oscillation amplitude. The intracavity field can then be analytically derived through solving the
differential equation Eq.(3), and we can get [37],

0̃(C̃) =
∞∑

==−∞

�= (−�̃)
˜̂ − 28(Δ̃ + ˜̄G − =)

48=C̃+8 �̃sin( t̃) . (8)

Here, �= is the Bessel function of the first kind, so that the photon number inside the cavity is
given by,

|0̃(C̃) |2 =
∞∑

=,<=−∞

�= (−�̃)�< (−�̃)48 (=−<) C̃{
˜̂ − 28(Δ̃ + ˜̄G − =)

} {
˜̂ + 28(Δ̃ + ˜̄G − =)

} . (9)

The resulting cavity field consists of a range of frequency sidebands at mechanical harmonics
±=Ω<, where = is an integer. These frequency sidebands can lead to time-domain optical pulses
generation according to Fourier transformation theory.
In summary, the optomechanical dynamic back-action can lead to the generation of OMO

when the dead-zone is avoided, and the threshold condition is exceeded. The OMO process can
then generate multiple frequency sidebands in the optical cavity and form the optical pulse trains
in the time domain. In the next section, we will evaluate the performance of the OMO-based
OPTG and provide design guidance.

3. Optical pulse characteristics and parameter analysis

The coupled differential equations Eq.(3) and Eq.(4) can be solved using the explicit Runge-
Kutta method based on Dormand-Prince pair [38] to characterise the OMO based optical pulse
characteristics with system parameters variations.
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Fig. 5. (a-d) Optical pulse generation with normalised optical cavity decay rates
˜̂ = 0.1, 0.5, 2, 10, respectively. Other parameters are kept as constant: Γ̃< = 1/1000,
Δ̃ = 1, %̃ = 100.

As shown in Fig.5, we plotted the normalised output optical photon flux |0̃out |2 = ^ex |0̃ |2/2with
time under different ˜̂ and constant value of Γ̃< = 1/1000, Δ̃ = 1, %̃ = 100, in which two optical
pulses are generated during one mechanical oscillation period, and the mechanical frequency Ω<
determines the repetition rate of the optical pulse. On the other hand, Ω< significantly affects the
normalised input laser power %̃ as derived in Eq.(5), which means an optomechanical system



with a large mechanical frequency Ω< requires higher real power %8= to obtain the optical pulse
with the same ER and DC.

In the resolved-sideband regime ( ˜̂ � 1), the generated optical pulse has many ripples, which
is not desired for practical applications. With the increase of ˜̂, the ripples gradually disappear,
and short and smooth optical pulses can be obtained with the repetition rate at 2Ω< in the
unresolved-sideband regime ( ˜̂ � 1).

This can be explained from two aspects. On the one hand, in the unresolved-sideband regime,
the optomechanical oscillation amplitude can be substantial. The corresponding cavity detuning
between input laser wavelength and optical cavity resonance wavelength oscillates between
large negative and positive values [33, 39]. On the other hand, the optical cavity can respond
instantaneously to the fast mechanical oscillation in the unresolved-sideband regime due to the
low cavity decay rate. Therefore, during an oscillation period, the cavity field is very low most
of the time due to large detuning. When the cavity detuning oscillates back to the resonant
condition, the cavity field rapidly builds up and kicks the resonator out of resonance. By this
means, the sharp optical pulse is generated, and OMO continues. Therefore, we will focus on the
optical pulse analysis in the unresolved-sideband regime ( ˜̂ � 1).
To evaluate the OMO-based OPTG and provide guidance for OMO-based OPTG design,

we plot the simulated mechanical oscillation amplitude �̃, the ER and DC of the generated
optical pulse under different system parameter in Fig.6. Normalised input power %̃ with value
from 10−1 to 104, normalised mechanical damping rate Γ̃< from 10−6 to 10−2 are simulated
for optomechanical system with ˜̂ = 10, 40, 100 respectively. The laser detuning Δ̃ is set to an
optimised value associated with a minimum threshold power(see Section 2.2). Fig.6 thus shows
explicitly the characteristics of the generated optical pulse. Larger ER and smaller DC represent
a sharper and shorter optical pulse.

It is clear that both the �̃ and ER increase linearly with input power %̃, while the DC decreases
with %̃. This means a higher input power is needed to produce a sharper and shorter optical
pulse. As shown in the figures for oscillation amplitude �̃ and ER of the generated pulse, the
direct correlation between �̃ and ER can be understood that larger oscillation amplitude leads to
deeper modulation of the optical field and thus a sharper optical pulse. When comparing the
parallel lines with different colours representing different Γ̃<, it is clear that smaller Γ̃< (larger
mechanical Q-factor &<) leads to larger �̃, ER, and smaller DC. Quantitatively, �̃ and ER both
increase by 3dB when Γ̃< decreases by one order of magnitude. The discrepancies for large %̃
are caused by the insufficient simulation time due to the limited computational resources when
solving the differential equations. From the figures with varying ˜̂, even though larger ˜̂ leads to
better pulse shape with suppressed ripples, it decreases �̃ and ER when other parameters remain
the same. This is because larger ˜̂ represents lower optical Q-factor, lower cavity enhancement
and weaker field amplitude, which will decrease the OMO amplitude and ER.
Regarding the laser detuning Δ̃, we know from Section 2.2 that there exists an optimal value

of Δ̃ for each ˜̂ in terms of minimising the threshold power for OMO. This optimal value for
threshold is not necessarily the same as the optimal value for OMO-based OPTG. To illustrate the
role of Δ̃, we derived the amplitude-dependent effective optomechanical damping rate Γ̃opt ( �̃),
which was introduced in [35] to analyse the optomechanical multistability effect. It is defined as:

Γ̃opt ( �̃) =
Γopt ( �̃)
Ω<

=
− < � ¤G >

<effΩ< < ¤G2 >
, (10)

Where � is the radiation pressure force acting on the mechanical oscillator. For low amplitude
with �̃→ 0, Eq.(10) can be simplified to Eq.(6). In the steady-state, the time-averaged power
into the mechanical oscillator by optical force � has to equal the loss due to damping Γ<, which
is Γ̃opt = −Γ̃<.
Fig.7 plotted the Γ̃opt as a function of Δ̃ and �̃ when ˜̂ = 10 and %̃ = 1. The contour lines
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Fig. 6. The characteristics of the generated optical pulse under different parameters.
(a,d,g) The mechanical oscillation amplitude �̃ variation with %̃ and Γ̃< when ˜̂ = 10,
˜̂ = 40, ˜̂ = 100, respectively. (b,e,h) The ER variation with %̃ and Γ̃< when ˜̂ = 10,
˜̂ = 40, ˜̂ = 100, respectively. (c,f,i) The DC variation with %̃ and Γ̃< when ˜̂ = 10,
˜̂ = 40, ˜̂ = 100, respectively. The laser detuning Δ̃ is set to a constant at the optimal
value associated with a minimum threshold power.

Γ̃opt = −14 − 4 indicates the possible steady state when Γ̃< = 14 − 4. Note that stable solutions
are given by the upper part of the contour line where Γ̃opt increases with increasing �̃ (the upper
solid continuous half of the line). The maximum heating rate when �̃→ 0 appears around Δ̃ = 2,
which agrees with the numerical simulation results in Section 2.2.

The steady-state mechanical oscillation amplitude �̃ increases with Δ̃, so as the ER from the
above analysis for Fig.6. For the small value of Δ̃ (0 to 10 in Fig.7), we can see the onset of OMO
starts from � = 0, which is an example of a Hopf bifurcation. However, for a larger value of Δ̃,
the mechanical resonator cannot oscillate from �̃ = 0, but have to start from a nonzero initial
value. This is similar to what has been experimentally demonstrated in mechanical parametric
vibration energy harvesters [40, 41]. Based on the feature, we can gradually adjust the Δ̃ to
increase the oscillation amplitude and generate a shorter and sharper optical pulse to the extent
that can not be acquired from zero initial condition.
Here, we have analysed OMO-based OPTG characteristics and evaluated its performance in

shape distortion, ER and DC under different system parameters. Pulses with various ER and DC
can be designed with different laser detuning, optical and mechanical Q-factors, and input power.



Fig. 7. The amplitude-dependent effective optomechanical damping rate Γ̃opt as a
function of Δ̃ and �̃ when ˜̂ = 10 and %̃ = 1. The contour line shows the possible
steady-state when Γ̃< = 14 − 4.

4. Optomechanical pulse generation for DFOS application

4.1. Optomechanical system design

In the above sessions, we used four dimensionless parameters to analyse the OMO-based OPTG
with different system parameters in terms of power threshold, ER, DC and pulse shape. In reality,
the optomechanical system needs to be sophisticatedly designed to obtain the desired optical
pulse that suits the practical application requirements. During the design of an OMO-based
OPTG, we can decouple and independently design the optical and mechanical resonator. In this
way, which significantly improve design flexibility and efficiency.

A large number of previously demonstrated devices can work as roadmaps when designing an
application-oriented optomechanical system. Mechanical frequencyΩ<–decides the optical pulse
repetition rate, with values varying from ~KHz (suspended mirror), ~MHz (suspended nanobeam,
microtoroid) to ~GHz (photonic crystal cavity) have been demonstrated. Optomechanical devices
with effective mss <eff ranging from g to zg have been realised [31], and remarkably large
optomechanical coupling coefficient � of around 100 GHz nm−1 have been obtained in the
photonic crystal structure [42]. It should be noted that Ω<, <eff and � are all part of the
normalised input power %̃ from Eq.(5). Increasing � and decreasing Ω< or <eff result in a larger
value of %̃.

In addition, the Q-factor of the on-chip optical cavity can be very high in the order of
millions, such as the silica microtoroid structure [43] and the Si3N4 microresonator fabricated
using the Damascene process [44]. The Q-factor of micro-nano mechanical resonator also saw
breakthrough these years by sophisticated elastic phononic engineering [45], and an exceptionally
low mechanical dissipation and Q-factor as high as 800 million was realised [46]. Therefore, we
have flexible design space for the OMO-based OPTG to suit various applications.

4.2. Pulse generation for DFOS

Here, we offer a design example to realise OMO-based OPTG for the DFOS application. In some
DFOSs, we send a set of pulses to the fibre and measure the backscattered optical signal to sense
the measurands along the fibre distributedly [4].

The criteria for DFOS can include sensing range, measurement time, measurand resolution and
spatial resolution. The sensing distance is the length of the sensing fibre under test and dictates



the maximum repetition rate of the OPTG, which should be low enough to avoid overlapping the
backscatter signals between the pulses from the fibre. The measurement time is the data reading
and analysis time of DFOS to achieve the required measurand resolution. It sometimes needs
to cover many cycles of averaging to improve the signal-to-noise ratio. It can be reduced by
enhancing the ER [47,48]. For our OMO-based OPTG, both the repetition rate and ER can be
varied significantly to fit the various DFOS system requirements.

The measurand resolution and spatial resolution are the ability of the sensor to distinguish small
measurand value changes and the measurand values at closely spaced locations, respectively. It
has been proved that measurand resolution and spatial resolution are correlated to each other, and
there is a trade-off between them [4]. A finer spatial resolution requires a narrower optical pulse,
which, however, requires a wider detection bandwidth and degrades the measurand resolution.
Therefore, the single optical pulse must be evaluated cooperatively in both the time(T)–domain
and frequency(F)–domain. In [49], the author proposed to use the Time-Frequency (T-F)
localisation to evaluate the optical pulse quality for DFOS. T-F localisation describes the extent to
that a pulse signal is restricted in both the T–domain and F–domain. The mean square deviation
of the time and frequency distribution of a signal is defined as,

Δ)2 =

∫ +∞

−∞
C2 | 5 (C)2 |, (11)

Δ�2 =

∫ +∞

−∞
5 2 |� ( 5 )2 |, (12)

Where Δ) and Δ� are the variance of the signal 5 in T–domain and F–domain, respectively.
Smaller Δ) and Δ� means the pulse performs better in time and frequency localisation. The
product Δ) × Δ� can be used as an evaluation factor for the pulse performance evaluation.
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Fig. 8. Comparison between OMO based optical pulse and the traditional optical pulses
(a) in time-domain. (b) in frequency-domain. The pulses all have 50 ns FWHM and
1`s period. The OMO based optical pulse is generated in an optomechanical system
with ˜̂ = 100.

We compare the optical pulse generated in OMO-based OPTG with Rectangular, Gaussian
and Lorentzian pulse shape to evaluate their T-F localisation. The pulses all have 50 ns FWHM
and 1 `s period, and the OMO-based optical pulse is generated with an optomechanical system
with ˜̂=100. The T–domain and F–domain of the pulses were plotted in Fig.8. The T–domain
and F–domain variances obtained by Eq.(11) and Eq.(12) for the four pulse shapes and their
product are given in Table 1. In terms of T-F localisation, the OMO based optical pulse is close
to Lorentzian and Gaussian shapes, which are much better than the widely used Rectangular



shape in DFOS. The OMO-based OPTG is also much more straightforward than the traditional
pulse generator used in DFOS, which usually requires function generators, EOM or AOM.

Table 1. Variance in the time-domain and frequency-domain with the product of
the two variances for different optical pulse shapes

Rectangular Gaussian Lorentzian OMO based

Δ) 3.23e-12 2.91e-12 4.79e-12 4.86e-12

Δ� 8.38e+10 1.03e+9 8.92e+8 9.48e+8

Δ) × Δ� 0.2706 0.003 0.0043 0.0046

As shown in Fig.9, we use the Brillouin Optical time domain reflectometer (BOTDR) as an
example to consider a real OMO-based OPTG for DFOS applications. The function generator
and EOM which are used to generate the optical pulses in traditional BOTDR can be replaced by
the proposed OMO-based OPTG. The OMO-based OPTG is formed by suspending part of a
racetrack-shape microresonator, where the suspended beam serves as the mechanical resonator
and coupled to the optical cavity. Similar structure has been experimentally demonstrated to
exhibit large amplitude optomechanical oscillation [39].

Laser EOM

Function 
generator

Photodetector
Signal 

processing

Traditional OPTG

OMO-based 
OPTG

Sensing 
fibre

Replace

PS

FC

FC

Fig. 9. The schematic of a BOTDR system, in which the optical pulse generation using
function generator and EOM can be replaced by the proposed OMO-based OPTG. The
OMO-based OPTG is formed by suspending part of a racetrack-shape microresonator,
where the suspended beam serves as the mechanical resonator and coupled to the optical
cavity. FC: Fibre coupler, PS: Polarisation scrambler.

We consider a BOTDR application with a 50< fibre sensing range, a typical pulse shape with
10 ns pulse width and repetition rate of 2 MHz, which maps the DC as 0.02. We assume the
device is made on a commercially available SOI wafer with 110 =< thick top silicon layer. To
generate a pulse with 2 MHz, we thus need a mechanical frequency at 1 MHz, which can be
realised by using a suspended beam with dimensions of 30 `< × 500 =< × 110 =< through the



Finite Element Analysis (FEA). The effective mass is calculated to be 3.8 ?6. By under-etching
the beam by 250 =<, we can get an optomechanical coupling coefficient � = 1 GHz nm−1. We
assume other system parameters are ˜̂ = 100, Γ̃< = 14 − 6, which map the optical quality factor
to be 1.93 × 106 and mechanical quality factor at 1 × 106. By looking at the blue line in Fig.6
(i), it is inferred that a normalised input power at around %̃ = 344 is needed to generate such an
optical pulse. The real input power %8= is thus found to be 2.8 `, according to the Eq.(5). The
optomechanical system parameters to realise such a BOTDR application is summarised below,

Table 2. Optomechanical parameters to generate OMO based optical pulse for a
BOTDR application

Mechanical resonator dimension 30 `< × 500 =< × 110 =<

Mechanical frequency (Ω</2c) 1 MHz

Mechanical Q-factor (&<) 1 × 106

Optical Q-factor (&$) 1.93 × 106

Laser wavelength (_!) 1550 nm

Effective mass (<eff) 3.8 pg

Optomechanical coupling coefficient (�/2c) 1 GHz/nm

Input power (%8=) 2.8 `,

Here, we demonstrated numerically that the OMO-based OPTG can fulfil the pulse generation
requirement of a BOTDR [50] for short distance sensing applications, for instance, structure
health monitoring and battery safety management.

5. Discussion and conclusion

In summary, we proposed to use the OMO process to realise an on-chip OPTG. We conducted
an extensive analysis by introducing and solving a set of dimensionless equations describing
the optomechanical coupling process, by which we limit the discussion to only four system
parameters: normalised input power %̃, normalised optical cavity decay rate ˜̂, normalised laser
detuning Δ̃ and normalised mechanical damping rate Γ̃<.
The dynamic back-action of the optomechanical system and the threshold of optical pulse

generation is analytically and numerically investigated. We found that there exists a dead-zone
for a certain value of ˜̂ and Γ̃<, where no OMO can be observed under any Δ̃ and %̃. Outside
the dead-zone, there is an optimal laser detuning Δ̃opt for each ˜̂ and Γ̃< where the threshold
power %̃thres is minimum. We then study the optical pulse performance in terms of pulse shape,
ER, DC for various system parameters. The shape of the pulse turns out to be ideal in the
unresolved-sideband regime ( ˜̂ � 1), while in the resolved-sideband( ˜̂ � 1) regime, the pulse is
a distorted shape with ripples. Increasing %̃ and decreasing Γ̃< both lead to pulse generation with
larger ER and smaller DC. We also derived the amplitude-dependent effective optomechanical
damping rate change with Δ̃, it was found Δ̃ can be gradually adjusted to generate a shorter and
sharper optical pulse to an extend which is not accessible from zero initial value. Lastly, we
discuss the flexible design space when we use these dimensionless parameters to design such an
optical pulse generator. We consider its potential applications and benefits for the on-chip DFOS
system.

Compared to the traditional integrated optical pulse generationmethods usingmode-locked laser
which involves complicated fabrication process, this method provides simple and straightforward



fabrication process. However, we also need to note that this OMO-based OPTG needs an extra
narrow-band laser, which is not required in the mode-locked laser. The full-integration of
the OMO-based OPTG would require an on-chip laser source. Compared to the Kerr soliton
frequency comb and on-chip modulation method, the OMO-based OPTG provides a larger
variation range on repetition rate and requires no external RF source. It is intriguing that the
unresolved sideband regime (low optical Q factor, ˜̂ � 1) is preferable to pursue better optical
pulse shape, which greatly reduces the requirement of high-precision fabrication.
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