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Abstract

We demonstrate the predictive power of a parametrised DoyleFullerNewman (DFN)
model of a commercial cylindrical (21700) lithiumion cell with NCA/GrSiOx chem
istry. Model parameters result from the deconstruction of a fresh commercial cell to deter
mine/confirm chemistry and microstructure, and also from electrochemical experiments
with halfcells built from electrode samples. The simulations predict voltage profiles for
(i) galvanostatic discharge and (ii) drivecycles. Predicted voltage responses deviate from
measured ones by <1% throughout at least ∼95% of a full galvanostatic discharge, whilst
the drive cycle discharge is matched to a ∼13% error throughout. All simulations are
performed using the online computational tool DandeLiion, which rapidly solves the DFN
model using only modest computational resource. The DFN results are used to quantify
the irreversible energy losses occurring in the cell and deduce their location. In addition
to demonstrating the predictive power of a properly validated DFN model, this work pro
vides a novel simplified parametrisation workflow that can be used to accurately calibrate
an electrochemical model of a cell.
Keywords: Liion battery modelling, Newman model, P2D model, Drivecycles simula
tion.

1 Introduction
Lithium ion batteries (LiBs) are likely to remain the main energy storage technology power
ing portable electronics, stationary energy storage units and electric vehicles over the next few
decades. Furthermore, the share of the automotive market held by electric vehicles is predicted
to carry on growing precipitately. The continued rapid growth in the LiB market has provided
the drive for a swift expansion in lithium battery subtechnologies that are being brought from
the lab onto the market; these include the development of new electrode materials, cell designs
and cell chemistries. Despite these new developments in materials and cell architecture, the
physics underpinning the operation and ageing of these devices, remains essentially unchanged.
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The efficient design of LiBs requires a fundamental understanding of the key physical phenom
ena, and mathematical models encapsulate the interactions between these phenomena within
the complex structure of the device.

In this context, accurate physicsbased models of battery performance are extremely valu
able and have the potential to yield significant competitive advantage to battery developers with
an active R&D program. The seminal works of Doyle, Fuller and Newman in the 90’s [1, 3, 2]
led to the development of thermodynamically consistent pseudotwo dimensional (P2D) battery
models. At the battery pack scale, or even that of a cylindrical or a pouch cell, phenomenological
equivalent circuit models (EQC) [4] are often used (instead of physicsbased models) because
of the high computational cost of simulating multiple copies of the P2D model in a thermally
heterogeneous threedimensional structure. However these phenomenological models, often
termed as ”black boxes”, cannot be directly related to the chemistry occurring within the bat
tery microstructure and lead to increased errors especially at the extremes of stateofcharge
(SoC). [5] They are thus restricted to a narrow range of current draws and, furthermore, do not
allow the possibility of exploring how changes to the cell design affect overall battery perfor
mance. The P2D model, which we hereafter referred to as the DoyleFullerNewman (DFN)
model, is widely employed in commercial toolboxes such as COMSOL Multiphysics or Das
sault’s Dymola software and solves the governing equations with algorithms that are carefully
designed to ensure the overall conservation of lithium within the device [6, 7]. At an even more
detailed level simulations of lithium transport can be performed on electrode particle geome
tries extracted from microscopy measurements conducted on real electrode geometries, see for
example [8], though these are extremely computationally expensive and certainly are no better
at fitting to discharge data from real cells than is the DFN model.

In contrast to other modelling approaches, the implementation of DFNmodels guarantees i)
higher accuracy over other traditionally faster and easier simulation approaches, such as equiv
alent circuits, and ii) does not require large datasets, a fundamental aspect of purely datadriven
approaches using machine learning algorithms, for instance. P2D models are limited however,
by the user‘s access to an extensive list of input parameters describing the internal components
of the system in terms of design and geometry, transport and kinetics properties [9].

Extracting the parameters and functions required by the DFN model is an expensive and
timeconsuming task but nonetheless necessary for full physicsbased simulations. Studies
that conduct such parameter estimation can be divided into two broad groups: those that as
sume linear diffusivity of lithium ion transport in the electrode materials (see, for example,
[10, 11, 12, 13, 14, 15, 16, 17]) and those that assume a nonlinear diffusion law in the electrode
materials (see, for example, [18, 19]). Adopting the former approach leads to a relatively sim
ple parametrization problem. However, it cannot be expected that the DFN (thus parametrised)
will agree well with experiment across the full spectrum of battery operation, simply because
lithium transport in most electrode materials is highly nonlinear. Some authors try to overcome
this limitation by introducing an element of nonphysical fitting; thus, for example, [11] uses
the concept of a current dependent electrode particle radius while [17] uses current dependent
weighting factors. Despite some success achieved by adopting these strategies, the optimal
parametrization techniques require that lithium diffusivity in the electrode materials is quanti
fied as a function of local lithium concentration. This is usually achieved by performing gal
vanostatic intermittent titration technique (GITT) or electrochemical impedance spectroscopy
(EIS) (see, for example, Ecker et al. [19]), potentiostatic intermittent titration technique (see,
for example, Oca et al. [18]) or by applying the Randle‘s Sevick equation on cyclic voltammetry
data obtain at different sweep rates. The linear diffusivity approximation can work well without
adhoc nonphysical fitting procedures but only where comparison is made to a restricted range
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of the batteries state of charge, for example for drive cycles which operate in a constrained
region (e.g. [10, 13, 16]).

Physicsbased modelling has often been claimed to be ‘too computationally expensive’, and
therefore impractical, for battery management systems (BMS). However, the recent develop
ment of linear scaling algorithms, with compiled language and cloudbased data management
to solve the DFN model means that this is no longer true. In this context, we mention the
package DandeLiion [20, 21] which overcomes the aforementioned limitations and provides a
standalone solution to solve the DFN model in a userfriendly way.

Besides, P2D models can be potentially combined to other modelling techniques creating
corrugated models of even faster performance. The research has seen substantial increased in
terest for the hybridisation of modelling techniques since physicsbased models are known to
improve accuracy and do not require large datapools, ultimately yielding decreased degrada
tion rates of the batteries with obvious financial and environmental implications [22]. It has
been recently reported that the coupling of P2D solvers to electrochemical observers in state of
charge and remaining useful life (SOC/RUL) algorithms for instance, evidencing the enormous
potential of physicsbased modelling for the battery industry [23].

The purpose of this paper is twofold: firstly, to demonstrate how the DFN model param
eters can be determined efficiently by experiments conducted on a real cell; and, secondly, to
show that solutions obtained from a DFN model parametrised in this fashion are capable of
accurately predicting the cell’s dynamic behaviour for different discharge protocols, including
both constant current discharges and full drive cycles, which encompass both fully charged
and fully discharged states of the battery. Our work thus extends that of Ecker et al. [19, 24]
which performs a careful parametrisation but does not make the comparison to full drive cycles.
In order to accomplish these goals we parametrised a 21700 cell composed of lithiumnickel
cobaltaluminium oxide (NCA) as cathode and graphitesilicon oxide (GrSiOx) as anode ma
terial and then used our parameter set in DandeLiion to make predictions of galvanostatic and
a drivecycle discharges. The accuracy of the parametrised model is quantified via the absolute
differences between simulated and experimentally measured voltage profiles during discharge.
To our knowledge, no other DFN parametrisation of a complete NCA/GrSiOx system exists
in the literature, despite these batteries being widely employed in the automotive sector, e.g.
on Tesla’s model 3 cars [25]. We also discuss the main approximations made in our model
and introduce a simplified experimental workflow for the required parametrisation process. By
providing relevant data and a set of comprehensive guidelines on the parametrisation and us
age of DandeLiion, we hope to catalyse the widespread use of electrochemical models in both
academic research and industry alike.

2 The DFN model
The internal structure of LiB electrodes are intricate and the processes that allow them to store,
and release, energy effectively comprises of various length scales. As shown in figure 1, both
the anode and cathode are comprised of relatively small (∼10−6 m) electrode particles bound to
gether by a polymer binder network, into which carbon black particles are embedded to improve
its electrical conductivity. The resulting porous material (comprised of electrode particles and
binder) is bathed by a liquid electrolyte. Both electrodes have typical thicknesses on the order
of ∼10−4 m, and are therefore many times wider than the dimensions of the electrode particles
that are incorporated into their structure, which have typical diameters of a few microns or less.
Obtaining solutions to partial differential equations posed on a geometry with such disparate
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Figure 1: Schematic of a planar Liion battery cell

length scales is computationally expensive and, even where this is possible, is hindered by the
difficulty in obtaining a precise specification of the geometry of the electrode structure from
microscopy data. DFN is a multiscale modelling framework that circumvents some of these
difficulties by posing the model on representative (usually spherical) electrode particles and
using an averaged (or homogenised) representation of the electrolyte. The microscale of this
multiscale model is associated with lithium transport taking place within individual electrode
particles while the macroscale is associated with transport processes taking place on the cell
scale, in particular in the electrolyte. The complexity of the pore geometry is retained in the
multiscale equations in the form of ‘effective’ coefficients which are determined by the mi
crostructure. In the original papers by Newman and coworkers [1, 3, 2] the multiscale system
was posited on an adhoc basis, but the model equations have since been systematically derived
from much more rigorous arguments in asymptotic homogenisation [26, 27]. In the remain
der of this section we shall outline the model and briefly discuss the physical principles that
underpin each of the equations.

Macroscopic equations There are two important charge transport processes that must be cap
tured on the macroscopic scale, namely: (i) ionic conduction in the electrolyte, and (ii) electron
conduction in the solid network of electrode particles, binder and additives. The former process
is captured in the following equations:

ϵl(x)
∂c

∂t
+

∂N−

∂x
= 0, N− = −B(x)De(c)

∂c

∂x
− (1− t+0 )

j

F
in L1 < x < L4. (1)

∂j

∂x
= b(x)jn, j = −B(x)κ(c)

(
∂Φ

∂x
− 2RT

F

1− t+0
c

∂c

∂x

)
in L1 < x < L4, (2)

in which c is the concentration of both the positive lithium and negative anions, j is the (aver
aged) ionic current density, jn is the transfer current density (from electrode material to elec
trolyte per unit surface area of electrode material), Φ is the electrolyte potential measured with
respect to a lithium reference electrode and N− is the flux of the negatively charged anions.
Our choice to work with N− is motivated by the fact that anions do not undergo reactions and
therefore the anion conservation equation requires no source/sink terms as would be the case
for the Liion conservation equation;the resulting PDEs are thus more readily discretised, us
ing a finite element method, so as to ensure no artificial loss of lithium occurs in the cell. We
note that the DFN model is often stated in an equivalent form in terms of N+, the flux of Li+
ions. The parameters ϵl, B, b, t+0 and F are the electrolyte volume fraction, the inverse Mac
Mullin number, the Brunauer–Emmett–Teller (BET) surface area of the electrode particles (i.e.
the reactive surface area of electrode particles per unit volume of electrode), the transference
number and Faraday’s constant, respectively. In addition, the functions De(c) and κ(c) are the
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electrolyte diffusivity and the electrolyte conductivity, respectively. Notably ϵl, B and b are
effective coefficients that are determined by the properties of the microstructure. Thus, for
instance, more tortuous microscale geometries lead to smaller values of B which captures the
retardation of the transport process caused by the tortuosity of the electrolyte paths. Physically,
(1a) is a conservation equation for anions whilst (1b) is a constitutive equation for the anions
flux N−. Moreover, (2a) is a charge conservation equation within the electrolyte while (2b) is
the constitutive equation for the electrolyte current density, which, in the electrolyte, plays an
role analogous to Ohm’s Law.

Electron conduction in the solid parts of the electrode matrices are modelled by charge
conservation equations and Ohm’s Law

∂ja
∂x

= −b(x)jn, ja = −σa
∂Φa

∂x
in L1 < x < L2, (3)

∂jc
∂x

= −b(x)jn, jc = −σc
∂Φc

∂x
in L3 < x < L4, (4)

Here, ja is the current density in the solid anode matrix, Φa is the electric potential in the anode
matrix, and σa is the effective conductivity in the anode. The analogous variables in the cathode
are distinguished by the subscript c.

The transfer current density jn induced by the redox reactions on the interfaces between the
electrode particles and electrolyte are, as usual, given by ButlerVolmer kinetics

jn =


2Fkac

1/2 (ca|r=Ra)
1/2 (cmaxa − ca|r=Ra)

1/2 sinh
(
Fηa
2RT

)
in L1 ≤ x < L2,

0 in L2 < x < L3,

2Fkcc
1/2 (cc|r=Rc)

1/2 (cmaxc − cc|r=Rc)
1/2 sinh

(
Fηc
2RT

)
in L3 ≤ x < L4,

(5)

ηa = Φa − Φ− Ueq,a(ca|r=Ra), ηc = Φc − Φ− Ueq,c(cc|r=Rc), (6)

where R is the universal gas constant, T is absolute temperature, ka is the reaction rate con
stant in the anode,ca is the concentration of Li within the anode material, cmaxa is the maximum
concentration of lithium within the anode material and we assume that the anode particles are
spherical with radiusRa. The overpotential and equilibrium overpotential of the anode particles
are denoted by ηa and Ueq,a respectively. Notably, the condition in which ηa = 0 is equivalent
to equality between the electrochemical potential of a lithium ion in the anode material and that
in the electrolyte and so, in turn, is equivalent to the Nernst equation as would be expected
when the redox reaction has reached an equilibrium. This may, at first, appear counterintuitive
until one recalls that Φ is not the (Maxwell) electric potential, in the electrolyte, but rather one
measured with respect to a lithium reference electrode, from which it follows that FΦ is the
electrochemical potential of a lithium ion in the electrolyte. Counterparts to the anode variables
in the cathode are denoted similarly, but with a subscript c.

Macroscopic boundary and interface conditions At the extremities of the cell where the
electrodes meet the current collectors there is no flux of anions, no ionic current, and the current
in the solid network is equal to that provided/extracted by the external circuit. At the internal
interfaces where the anode and cathode meet the separator the current density in the solid net
work must be zero because the separator is electronically insulating. As such the macroscopic
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equations are supplemented by the following boundary conditions

ja|x=L1 =
I(t)

A
, N−|x=L1 = 0, j|x=L1 = 0, (7)

ja|x=L2 = 0, (8)
jc|x=L3 = 0, (9)

jc|x=L4 =
I(t)

A
, N−|x=L4 = 0, j|x=L4 = 0. (10)

where I is the current leaving/entering the cell and A is the area of the contact between the
anode/cathode and the current collector.

Microscopic equations and boundary conditions The interfacial current density jn depends
strongly on the concentration of Li on the surface of the electrode particles necessitating that at
every location in the macroscopic dimension, x, we solve an appropriate transport model for the
Li within the particles. The transport within the particles occurs on much smaller microscopic
scale and we denote radial position within the particle by r. There is considerable debate about
the most appropriate equations for describing solidstate transport. In the original papers by
Newman and coworkers [1, 3, 2] a linear (Fickian) diffusion model was assumed, but since
most sophisticated models, including CahnHilliard [29, 30, 31, 32], and nonlinear diffusion
models [33] have all been proposed. Here we opt to take the latter approach and use a nonlinear
diffusion equation noting that multiple studies have demonstrated the effectiveness of this model
in fitting experimental trends [34]. Here we opt for the very simplest microscopic model by
assuming that all particles in the anode (or cathode) are identical spheres of equal radius Ra

(or Rc). We argue that the SiOx particles in the anode occur in sufficiently small numbers
(4.6%) that they do not significantly undermine this assumption. The microscopic equations
and boundary conditions are

∂ca
∂t

=
1

r2
∂

∂r

(
r2Da(ca)

∂ca
∂r

)
in 0 < r < Ra

∂ca
∂r

∣∣∣∣
r=0

= 0, −Da(ca)
∂ca
∂r

∣∣∣∣
r=Ra

=
jn
F

 in L1 < x < L2, (11)

∂cc
∂t

=
1

r2
∂

∂r

(
r2Dc(cc)

∂cc
∂r

)
in 0 < r < Rc

∂cc
∂r

∣∣∣∣
r=0

= 0, −Dc(cc)
∂cc
∂r

∣∣∣∣
r=Rc

=
jn
F

 in L3 < x < L4, (12)

whereDa(ca) andDc(cc) are the lithium diffusivities in the anode and cathode particles respec
tively. Equations (11) and (12) are the nonlinear diffusion equations for the lithium ion con
centration in the electrode particles with boundedness conditions on the concentrations which
ensure symmetry and zero lithium ion flux at the particle core, and the Neumann boundary con
ditions on the surfaces of the particles that ensure the fluxes of lithium leaving the electrolyte
balances those entering the electrode particles.

Initial conditions The initial conditions are required for the ionic concentration in the elec
trolyte as well as the Li concentration in the anode and cathode particles. We set

c|t=0 = c0, ca|t=0 = ca,0, cc|t=0 = cc,0. (13)

6



The full cell potential The results of solution to the full cell DFN model can be used to
compute the potentials at the anode and cathode current collectors Va and Vc, respectively via
the relations

Va(t) = Φa

∣∣
x=L1

, Vc(t) = Φc

∣∣
x=L4

. (14)

and hence V (t), the potential drop across the full cell,

V (t) = Vc(t)− Va(t). (15)

It is this cell voltage that we shall use to make comparisons between the model and experimental
data. In the equation above we neglect the ohmic drop between the current collectors since it is
relatively small in comparison with the potential difference given by equation 15.

Table 1: The DFN model parameters: (*) measured, (**) fitted, (†) derived analytically, (‡)
provided by the manufacturer. The subscript s should be read as s = a in the anode and s = c
in the cathode.

Parameter Units Anode Cathode Separator
Anode/Cathode/Separator
thickness (*) m 7.5× 10−5 5.0× 10−5 1.65× 10−5

Effective particle radius Rs (*) m 11.2× 10−6 5.0× 10−7 
Cell crosssectional area A (‡) m2 0.14112

Electrolyte volume fraction ϵl (*)  0.2082 0.2753 0.4914

Inverse MacMullin number B (†)  0.0950 0.1444 0.3445

Transference number t+0 [24]  0.26

Particle surface area per unit
volume electrode b (†) m−1 212089 4348000 

Diffusivity of electrolyte De(c) [19] m2s−1 Function (Fig. 3)
Conductivity of electrolyte κ(c) [19] S m−1 Function (Fig. 3)
Conductivity in solid σs [24] S m−1 14 91 
Maximum Li concentration
in solid cmaxs (**) mol m−3 29400 43100 

Reaction rate constant ks (**) m5/2mol−1/2s−1 1.40× 10−11 5.0× 10−10 
Equilibrium potential Ueq,s(cs) (*) V Fig. 4 (top) 
Lithium diffusivity in
electrode particlesDs(cs) (*)

m2s−1 Fig. 4 (bottom) 

Absolute temperature T (*) K 298.15

Initial concentration of Li
in electrolyte c0 [24]

mol m−3 1000

Initial concentration of Li
in particles cs,0 (**)

mol m−3 24800 400 

Model parameters. The DFN model described above requires an extensive list of input pa
rameters and functions. Other than universal gas constant R and Faraday’s constant F these
are listed in Table 1. A primary focus of this work is to obtain these parameters and func
tions for the cylindrical lithiumion cell (21700), which has a mixed graphiteSiOx anode and
an NCA cathode. Indeed, the parameter values and input functions determined by the exper
imental component of this study are also given in Table 1. While some of the parameters are
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relatively straightforward to obtain, such as Anode/Cathode/Separator thicknesses, others such
as the inverse MacMullin number B are more difficult to ascertain. Accurate parametrisation of
the input functions, which represent variables that vary importantly with lithium concentration,
such as lithium diffusivities in the anode and cathode particles Da(ca) and Dc(cc), presents an
even greater challenge.

Solution of the DFN model using DandeLiion We use the highly accurate (secondorder)
solverDandeLiion [21], which is available online at [20], to solve theDFNmodel. This software
readily allows the user to simulate the discharges that we investigate here, namely constant
current, GITT and drivecycle discharges. Furthermore, it is straightforward to reparametrise
and to output simulation data in a suitable form to use for comparison plots against experiment.

3 Experimental characterisation
Cylindrical cells (21700) with 4.8 Ah rated capacity at 25°C upon C/3 discharge rate were used
in the present investigation. The main technical specifications as given by the supplier are
shown in Table 2 and the experimental workflow used for parametrisation is illustrated by the
diagram in Fig 2.

Figure 2: Simplified experimental workflow used for parametrisation of the DFN model.

A thorough parametrisation is time consuming and expensive. Hence it is sensible to first
identify the critical model parameters in the particular operating scenario that is to be simu
lated. By performing a oneatatime parameter sensitivity analysis Li et al. [35] concluded
that simulated drive cycle curves generated by DFN are very sensitive to parameters related
to the overall capacity of the battery, such as cathode electrode thickness and active material
volume fraction, but are nearly insensitive to electrolyte and separatorrelated parameters. In
contrast, for the simulation of constant current curves, the authors reported different sensitiv
ity depending on the voltage window and Crates simulated. For instance, the thickness of the
cathode has high impact on the simulation of curves at low Crates, but separator lengths and
particle radius are more important at higher Crates. Motivated by these observations, the ex
perimental workflow proposed here is designed to obtain parameters to a sufficient degree of
precision to enable accurate simulations to carried out over a wide range of conditions, such as
lowtomoderate constant current discharges and drivecycles.

1Mass range as percentage of the total cell mass (g/g) stated in the safety datasheet provided by the supplier.

8



Table 2: Technical specification

Properties Specification
Cell type Cylindrical 21700

Cathode chemistry Nickel cobalt aluminum oxide (NCA)
[2050% g/g1]

Anode chemistry Graphite/Silicon [10–30% g/g1]

Electrolyte salt Lithium Hexafluorophosphate
[0.05–5% g/g1]

Electrolyte solvent
Ethylene carbonate,

Ethyl methyl carbonate,
Dimethyl carbonate [520% g/g1]

Typical capacity (4.2 V, C/3 discharge) 4.8 Ah
Typical energy (4.2 V, C/3 discharge) 17.4 Wh

Nominal voltage 3.62 V
Lower voltage limit, Vmin 2.5 V
Upper voltage limit, Vmax 4.2 V

Energy density 256 Wh/kg;
717 Wh/L

Standard charging current rate C/3
Maximum charging current rate 1C
Standard discharging current rate C/5
Maximum discharging current rate 2C
Peak discharging current rate

(30 s, 10 s) at 50% SOC and BOL 42 A / 54 A

Cell weight 68 g

Cell dimension
Max. height to top: 70.15 mm

Max. height to crimping: 70.15 mm
Max. upper diameter: 21.1 mm

Geometric parameters and physical characterisation The first stage of the parametrisation
consists in the tear down of a representative battery sample to reverseengineer its materials
properties. One full cell was completely discharged to 2.5 V, using constant current at C/25,
followed by disassembly in a dedicated argonfilled glove box with oxygen content and humid
ity below 1 ppm (MBraun, MBUnilab Plus SP). Tear down process begins with the careful
removal of the top and insulation caps. Subsequently, the can is cut with a pipe cutter near
the groove. The top tabs are disconnected first and carefully peeled off using ceramic pliers.
After peeling only, the bottom tabs are disconnected. The electrode foils are then separated
from the separator film by unfolding the jellyroll, having their lengths and masses measured.
In our sample, both cathode and anode present doubleside coating of total geometric surface
area of 1411.2 cm2 and 1562.4 cm2 , respectively. Anode electrode foils are typically over
sized with regards to the cathode in order to achieve the energy requirement and to limit risks
of lithium plating. In this way, anodetocathode ratios in commercial cells are always larger
than 1. The anode region which has no cathode counterpart is often called overhang area, and
lithium movement from/to these regions are known to cause reversible capacity effects taking
place at varied timescales [36].

The chemistry of the active material in the cathode was confirmed to be lithium nickel
cobaltaluminium oxide by using powder Xray diffraction (PXRD, Rigaku Smartlab, 9 Kw
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Cu source generator, λ ∼ 1.54051 Å). The resulting diffraction spectrum is displayed against
a reference spectrum for NCA80 (LiNi0.8Co0.15Al0.05O2) in the Supplementary Information
Fig.S1.

Results from elementalmapping using energydispersiveXray spectroscopy(EDX)/scanning
electron microscopy (SEM, JEOL JSM7800F) confirm that the anode is a mixture of graphite
and (SiOx). Association of other elements allow us to also infer about the presence of (LiPF6)
and carboximethylcellulose, commonly used as electrolyte salt and binder material, respec
tively. In order to estimate the (SiOx) content, 15 mg of the anode material was mechanically
scraped off from the copper current collector foil, using a ceramic scalpel, and placed in a
cleaned and tared Al2O3 crucible for thermal gravimetrical analysis (NETZSCH STA 449 F3
Jupiter) in N2/O2 from 0 to 1100 at 5°C/min. The content of silicon was estimated as 4.6% w/w
from the residual mass at T > 800°C inferred by TGA (Figure S2) In terms of moles propor
tionality, this analysis suggest that there is around 45 moles of graphite (carbon graphite, MM
= 12 g/mol) to every mol of Si in the anode. Electrodes and separator thicknesses, in addition to
particle sizes, were measured from crosssectional and topview scanning electron microscopy
(SEM). Representative micrographs are displayed in Figure S3. Raw SEM images were turned
into binary files and then processed using a conventional image processing software (ImageJ)
in order to obtain the distribution of particle sizes by choosing the proper sphericity level for the
material being analysed. As the anode is a mixture of graphite and silicon oxide, the average
diameter of the GrSiOx composites was chosen as the effective (average) anode particle size
assuming the Gr/SiOx particles ratio to be 95/5. As part of the set of sensitive information about
the product composition, we do not have access to the exact proportion of binder conductive
carbon and active material present on the electrodes, so we assume a commonly reported recipe,
as 95% of active material for both electrodes. The volume fraction of the electrolyte in the ma
terials was estimated from a combination of topview and crosssectional SEM micrographs.
This is accomplished by first identifying and confirming the active particle content using the
elemental mapping information obtained from the EDX/SEM (Figure S4). EDX/SEM can only
be used qualitatively to confirm which elements are present. Subsequently, a threshold range
analysis is applied to the binary images to distinguish active particles from the background, to
reveal the porosity. Active content of NCA in the cathode inferred by three different images
show results varying from 56 up to 73 per cent. Imagebased analysis for active content is not a
quantitative method and should therefore be used only as an estimate. Using the average back
ground from three different micrographs we estimate the volume fraction of electrolyte ϵl to be
0.2082, 0.2753 and 0.4914 for anode, cathode and separator, respectively. We stress that these
values should be crosschecked whenever possible, with values from porosimetry analysis.

Electrolyte The inverse MacMullin number B of the the electrode matrix, which is the re
ciprocal of the MacMullin number (see e.g. [38]) and appears in the electrolyte equations, is
estimated from the Bruggeman relation [37]. It is thus related to the volume fraction of elec
trolyte via

B(x) = (ϵl(x))
1.5.

Particle surface area per unit volume can then be derived analytically assuming spherical parti
cles with radius R(x),

b(x) = 3(1− ϵl(x))(R(x))−1.

We note that the use of the Bruggeman relation to estimate theMacMullin numberB−1 has been
criticised, e.g. in [38], and in particular it tends to overestimate the real value of B.
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It is experimentally inaccessible to harvest the electrolyte from the full cell during the tear
down process. Conductivity and diffusivity in the electrolyte (Figure 3) were obtained from the
data available in Ecker et al. [19, 24] bymaking the assumption that both systems use electrolyte
of very similar composition (in both cases LiPF6 dissolved in a carbonatebased solvent).The
complete electrolyte composition including the ratio of different solvents and additives are pro
prietary information, and therefore not available.

Figure 3: Conductivity (left) and ionic diffusivity (right) of the electrolyte using data provided
from [19, 24]

Electrochemical characterisation In order to extract data on the electrode thermodynamics,
kinetics and transport properties we fabricated halfcells in coin cell configurations. This was
accomplished by mechanically punching out anode and cathode circles of diameter d = 19mm
from the electrode foils (doubleside coating) and reassembling them into CR2032 cells with a
metallic lithium counterelectrode. All electrode and separator discs were cut using a small man
ual die cutting punching machine and assembled by hydraulic crimping (TOB Energy). Fiber
glass was used for the separator and a battery grade 1 M LiPF6, in ethylene carbonate/dimethyl
carbonate (LP30, Sigma Aldrich), was employed as the electrolyte. No solventbased cleaning
of the electrode foils was conducted in order to avoid removal of the solid electrolyte interphase
(SEI) and guarantee minimum interference with the resulting electrochemical response. After
a 12hour rest period for proper wetting of the internal components, three consecutive cycles
at C/12 (determined with regards to the active material mass) and 25°C were undertaken for
conditioning between 0.05 V and 1.0 V for the anode halfcell and from 3.0 to 4.3 V for the
cathode halfcell. PseudoOCV curves were then obtained at sufficiently slow constant current
and at 25°C. We confirm that a current rate of C/25 yields nearequilibrium voltage profiles by
comparing it with the curves at even slower rates, such as C/60 where identical electrochemical
signatures are obtained. (Figure S5) The halfcells made from intact harvested material can
be used for DFN parametrisation but show poor cyclability, hence can only be used for a few
cycles. Only the first five, consecutive and reproducible cycles after conditioning of the coin
cells were used in this work. We show the comparison of pseudoOCV curves obtained at the
same very low Crate and temperature for cathode, anode and full cell as Supplementary Mate
rial (Figure S6). Analytical fits for the halfcell anode and cathode (dis)charge voltage profiles
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Figure 4: Equilibrium potentials of graphite anode (top left) and NCA cathode (top right), and
diffusion coefficients in solid particles as a function of full cell SOC for anode (bottom left) and
cathode (bottom right)

are obtained by averaging the pseudoOCV curves for charge and discharge and are provided
in Supplementary Material as well (Eqs. (SE1)(SE2), Tables ST1 and ST2). We note that the
hysteresis implied by the presence of different pseudoOCVs for charge and discharge cannot
be explained by the nonlinear diffusion model for lithium transport in the electrode particles but
could be adequately modelled by a phasefield model as propounded in [29]. However this adds
very significant extra computational complexity which is not justified by the relatively small
degree of hysteresis.

Galvanostatic intermittent titration technique (GITT) was employed using 5 min titration
pulses of 1.25 mA and 1.30 mA for the anode and cathode, respectively, with subsequent 45 min
of relaxation. Diffusion coefficients were calculated based on Sand‘s equation as derived by
ChangHui et al. [12]. All electrochemical tests including the validation experiments were
performed using a Biologic BCS 815 system with the cells kept under aircooling at 25°C (Spec
PU2J) having their surface temperature monitored via Ktype thermocouples in all experiments.
The equilibrium potential is taken as the voltage obtained at C/25 (pseudoOCV) and the full
cell response is compared with the half cells for an evaluation of the individual electrode’s
utilisation in the full cell. In figure 4, the equilibrium potentials and diffusion coefficients for
both electrodes are shown as a function of the SoC. By identifying the central graphite peak
on the differential voltage analysis,[40] the anodetocathode ratio was estimated as 1.2. The
initial and maximum concentrations of lithium on the particles were derived by fitting the full
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cell voltage during lowcurrent (C/25) discharge, and the reaction rate constants were obtained
from fitting to the voltage profile obtained from the GITT experiment (see section 4 below).
Additional constant parameters taken from the literature are the transference number and the
conductivity of the solid, which are not expected to vary considerably in systems of similar
chemical composition. The complete list of parameters used in our simulations can be found in
Table 1.

4 Model fitting
For the purposes of the model, maximum and initial lithium concentration on the individual
electrodes are independent inputs. Effectively, they represent an absolute quantity in moles of
lithium per unit volume of active material and can be estimated theoretically if the true crystal
density and stoichiometries are known. The maximum theoretical concentration of lithium in
the cathode (cmaxc ) can be calculated using the formula cmaxc = ρz/µ, where z (the fraction of
lithium per mole of cathode material) is 1 and the molar mass of the lithiated compound is
found to be µ = 95.96 g/mol. If we assume a crystal density of ρ = 4.45 g/cm3 (NCA 80,
CAS No. 193214243), this yields a maximum lithium concentration of 46371 mol/m3. For
the anode material, we disregard the presence of SiOx and take the crystal density and molar
mass of the lithiated graphite only, yielding a maximum lithium concentration in the anode of
25348 mol/m3.

As disparities between the theoretical and practical values are to be expected, the identi
fication of parameters is made unequivocally by fitting the DFN model to the pseudoOCV
experimental curves obtained at low current (C/25). This is accomplished by fitting initial and
maximum concentrations so that the shape of the voltage versus the total capacity curve for the
battery corresponds to the measured values as closely as possible. Using a good initial guess for
the initial/maximum concentrations we performed a set of simulations with different ca,0, cc,0,
cmaxa and cmaxc and by comparing the output voltage to the full cell measurement (with the aid
of a root mean square deviation formula) adjusted the values of these parameters appropriately.
The values obtained from such fitting (See Table 1) are remarkably similar and were used on
our simulations. Initial concentration of Li in the particles are calculated in the same way  for
simulating a discharge, initial Li concentration in the anode will be close to its maximum Li
concentration, reflecting the almost fully lithiated state.

Likewise, initial guesses for the ButlerVolmer reaction rate constants for delithiation in the
anode and lithiation in the cathode were taken from the COMSOL library of materials (Graphite
MCBM: 2× 10−11 and NCA80: 5× 10−10 m/s; COMSOL Multiphysics 5.4) and adjusted by
fitting the DFN model output to the experimentally determined GITT curves. GITT consist in
monitoring the voltage response upon a series of short current pulses followed by an extended
relaxation phase, throughout the entire charge or discharge event. Using the appropriate values
of current pulses and relaxation times, resistances and diffusion coefficients can be estimated as
a function of a discrete number of SoCs [41, 42]. To reproduce a GITT experiment in DandeLi
ion [20], the user has to provide the desired profile of current versus time, following a square
wave pattern of current either constant or zero. This is demonstrated in figure 6 where the input
current is shown as a purple solid line, and the total voltage obtained numerically (red line) is
compared with the experimental data (black line). Four zoomedin fragments of the plot are
given in figure 7. Our results clearly show excellent agreement, confirming that the model still
captures the shape of the entire experimental total voltage profile as well as the shape of each
voltage spike throughout the experiment from the beginning of discharge (figure 7, top left) till
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Figure 5: Constant current discharge curves for slow (C/24) discharge (a) and relatively fast
(C/3.2) discharge (b). Simulation (red lines), experiment (black lines), and relative deviation of
simulation results from the experiment (orange lines) are shown in time.

the end (figure 7, bottom right).

5 Results
After populating our parameters table, we solve the DFN model to predict the cell voltage
from (i) a constant current discharge under different (slow and fast) discharge rates, and (ii)
a drive cycle with a highly nonuniform current distribution. In all cases the initial conditions
correspond to the fully precharged state (see initial concentrations of lithium in anode and
cathode particle in table 1). The predictions were then compared to experimental results and
used to estimate the absolute error between the cell voltage obtained from the fully parametrised
model and that obtained from the equivalent experimental fullcell discharge.

5.1 Galvanostatic discharge
We investigated constant current discharges at a low rate, C/24 (200 mA), and at a higher rate,
C/3.2 (1.5 A). The higher rate is the standard maximum discharge rate given in the battery
specification, which if exceeded will likely result in a shortened battery lifetime of below 1,000
charge/discharge cycles. In both simulation and experiment the cell was discharged from full
until the cell voltage dropped to the lower voltage limit, of 2.5 V, at which point it was consid
ered fully discharged. While the C/24 discharge takes 24 hours, and is clearly slow, the C/3.2
discharge would still be considered relatively fast when compared to the standard discharge
current rate, of C/5 (960 mA), that is found in the specification document (table 2).

Comparison of the simulation results against the experimental ones, for both constant cur
rent discharges, are made in figure 5. It can be seen that there is close agreement between the
experimental and simulated total voltages curves, except for right at the end of the discharge
this is less than 3%. The error is shown as the relative deviation on a voltage basis, calculated
as (VSimulation − VExperiment)/VExperiment · 100% at each point in time.

For both the slow and fast discharges we used an identical parameter set, which is given
in table 1. For the slow discharge (figure 5, left plot), the relative error does not exceed 1%,
except for the last few minutes of discharge when the battery is almost fully discharged. For the
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Figure 6: Full cell GITT simulation in comparison with the measurements. Full discharge
profile and the current.

relatively fast discharge (figure 5, full agreement is seen in the initial first hour of test. How
ever, with time, the model increasingly underestimates the voltage, although it is still within an
acceptable error range. As the model considers isothermal conditions throughout the whole ex
periment (here at 25 °C), these deviations almost certainly result from the temperature increase
seen in the middletoend of discharge; this is aggravated by increasing current. Selfheating of
the batteries is negligible for low current discharges, e.g. C/24, but much more significant for
higher rates, such as C/3.2. This is true even when the experiment is carried out in a thermal
chamber [43], as shown in Figure S7. To account for the variations in temperature observed ex
perimentally, we display the simulated discharge profile for C/3.2 and at 30°C, and significantly
improved agreement between prediction and experiment (see figure 5 b, solid lines).

5.2 Drive cycles
In contrast to laboratory measurements where a constant current, or series of constant current
pulses, is typically applied to a cell in order to characterise its performance, the operation of
batteries in real world applications gives rise to highly nonuniform loads. From an applica
tion point of view, it is imperative that physicsbased models can reproduce battery behaviour
during practical operation say, for example, in electric vehicles. In order to illustrate the use of
our parametrised model under conditions akin to that in the operation of an electric vehicle we
simulate battery performance when subject to a drive cycle load based on a standardized test
protocol. Figure 8 shows the current patterns for a singlecommute time based on a world har
monized lightduty vehicles test procedure (WLTP, class 3, version acceleration [44]), which
we used to validate our model. Again, the same set of parameters used in the previous simu
lations (table 1) are used to simulate a drivecycle pattern based on the periodic repetition of
the current pattern shown in figure 8. Simulation results for the cell voltage (red) are compared
to experimental ones (black) in figure 9. The relative error is shown in yellow. The top plot
shows the entire discharge cycle, comprised of the periodically repeated current pattern plotted
in Fig. 8), from the fully precharged state until the cell is fully discharged (i.e. when the cell
voltage drops to 2.5 V). Figure 9(b) and (c) are two 1/2 hour fragments of the top plot, which
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Figure 7: Four fragments of the full discharge curve shown in Figure 6. Beginning of discharge
(a), middle of discharge (b), near the end of discharge (c), and at the end of the experiment (d).
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Figure 8: A single pattern of the total current that mimics a drive cycle of an electric vehicle.

correspond to approximately the middle and the end of discharge. According to the plots, the
model reproduces experimental data with a very high accuracy over the whole discharge inter
val. The relative error does not exceed 2% except in the last fewminutes of discharge (out of 7.5
hours) when the battery is almost fully discharged and the total voltage fluctuations increase.
Again, the deviation at the end of discharge can be attributed to a nonnegligible increase in
battery temperature due to selfheating.

5.3 Energy dissipation
The results in the §5.1 and §5.2 demonstrate that remarkably good agreement can be obtained
between a properly calibrated DFNmodel and experiment. This should give the user confidence
that the DFN model provides a very good approximation of the physical and electrochemical
processes occurring within the battery. A natural question to ask is how the information gained
by performing a careful, but relatively costly and time consuming, parametrisation can be lever
aged to improve its design and usage. Since lithiumion batteries are energy storage devices a
key indicator of their efficiency, for a particular task, is the size and location of the energy dissi
pation occurring within the device. Indeed this is a good way of assessing the fitness of the cell
for a particular purpose and of improving its design. A recent rigorous mathematical analysis
of the DFNmodel [28] has been used to develop and exact energy conservation law for a device
described by the DFN model, which shows that GA, the Gibbs free energy of a cell of area A,
evolves according to an energy conservation law of the form

−A
dG

dt
= IV + A

(
Q̇(elyte) + Q̇(a)

part. + Q̇(a)
ohm + Q̇(a)

pol. + Q̇(c)
part. + Q̇(c)

ohm + Q̇(c)
pol.

)
. (16)

Here IV (current times voltage) is the useful power extracted from the cell while the terms
bracketed on the righthand side of this equation are the irreversible energy losses (per unit area
of cell and per unit time). These terms have been divided up into seven location within the
cell, where losses can occur, see Table 3; thus Q̇(elyte) is the loss in the electrolyte, Q̇(a)

part. is that
due to the heat of mixing in the anode particles, Q̇(a)

ohm is that due to Ohmic losses in the carbon
binder domain in the anode, Q̇(a)

pol. are the polarisation losses resulting from the overpotential
between the anode particles and the surrounding electrolyte, Q̇(c)

part. is that due to the heat of
mixing in the cathode particles, Q̇(c)

ohm is that due to Ohmic losses in the carbon binder domain
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Figure 9: Drive cycle simulation full discharge curve in comparison with the experiment (a),
and two zoomedin fragments in the middle of discharge (b) and at the very end of discharge
(c). Orange line is the relative deviation of simulation results from the experiment.
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in the cathode, Q̇(c)
pol. are the polarisation losses resulting from the overpotential between the

cathode particles and the surrounding electrolyte. In [28] it is shown how these loss terms
should be computed from integrals of the solution to the DFN model so that equation (16) is
satisfied exactly. Notably, the result obtained in [28] differs significantly from the standard (and
incorrect) methods that have been used to compute the irreversible energy losses from solutions
to the DFN model.

All the heating terms in equation (16) are summarised in Table 3, where the dissipative
effects in the electrolyte Q̇(elyte) and the heat of mixing in particles (Q̇(a)

part. and Q̇(c)
part.) can be

expressed via the following integrals:

Q̇(elyte) =

∫ L4

L1

(
2B(x)De(c)

dµe

dc

(
∂c

∂x

)2

+
1

κ(c)B(x)
⟨j⟩2

)
dx, (17)

Q̇(a)
part. = −4πF

∫ L2

L1

b(x)

4πR2
a(x)

(∫ Ra(x)

0

Da(ca)

(
∂ca
∂r

)2
dUeq,a

dca
r2dr

)
dx, (18)

Q̇(c)
part. = −4πF

∫ L4

L3

b(x)

4πR2
c(x)

(∫ Rc(x)

0

Dc(cc)

(
∂cc
∂r

)2
dUeq,c

dcc
r2dr

)
dx, (19)

where µe(c) is the chemical potential of the electrolyte and ⟨j⟩ is the averaged electrolyte current
density. The current j̄n in Table 3 is the component of current density on electrode particle
surface in direction of outward normal to particle. The rest of the parameters were introduced
in section 2 above.

Table 3: A summary of all heat dissipation terms used in the energy conservation law (16)

No. Term Description Formula

1 Q̇(elyte) Dissipative effects in the electrolyte (17)

2 Q̇(a)
part.

The heat of mixing in the anode
particles (18)

3 Q̇(c)
part.

The heat of mixing in the cathode
particles (19)

4 Q̇(a)
ohm

Ohmic dissipation in the solid parts
of the anode

Q̇(a)
ohm =

∫ L2

L1

σa

(
∂Φa

∂x

)2

dx

5 Q̇(c)
ohm

Ohmic dissipation in the solid parts
of the cathode

Q̇(c)
ohm =

∫ L4

L3

σc

(
∂Φc

∂x

)2

dx

6 Q̇(a)
pol.

The polarisation losses at the surfaces
of the anode particles

Q̇(a)
pol. =

∫ L2

L1

b(x)ηaj̄ndx

7 Q̇(c)
pol.

The polarisation losses at the surfaces
of the cathode particles

Q̇(c)
pol. =

∫ L4

L3

b(x)ηcj̄ndx
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Figure 10: Cumulative irreversible energy losses (per unit area of cell) as a percentage ofEtot(t)
the cumulative energy use (per unit area of cell) for constant current (C/3.2) discharge.

In figures 10 and 11 we show the cumulative energy losses (per unit area), for both C/3.2
constant current discharge and drive cycle, as a percentage of Etot(t) the total chemical energy
consumed by the cell (per unit area) throughout the discharge, until time t, as defined by the
relation

Etot(t) =

∫ t

0

{
IV

A
+
(
Q̇(elyte) + Q̇(a)

part. + Q̇(a)
ohm + Q̇(a)

pol. + Q̇(c)
part. + Q̇(c)

ohm + Q̇(c)
pol.

)}
dt, (20)

or equivalently (on using the identity (16)) Etot(t) = G(0)−G(t). In figure 12b we show the
the cumulative electrical work (per unit area) done by the cell as a percentage ofEtot(t) the total
chemical energy consumed by the cell (per unit area).

Notably in both cases, constant current discharge and drive cycle, this is a fairly efficient
cell which which only loses roughly 2.5% and 4% of its chemical energy irreversibly. However,
it is still interesting to compare where these losses predominantly occur within the cell. For the
constant current discharge, the dominant losses are heat of mixing in the cathode particles (a
term usually neglected in standard treatments of heating in Liion batteries) and polarisation
losses in the anode. In contrast, for the drive cycle polarisation losses in the anode, are by some
distance, the most pronounced source of unwanted energy dissipation.

6 Conclusion
In this work we have shown that a carefully parametrised DFN model is capable of accurately
predicting the behaviour of a cell for a wide variety of cell discharges and, in particular, could
accurately predict cell voltage profiles during both galvanostatic and drivecycles discharges.
We were also able to use the solutions to the DFN model to accurately compute the irreversible
energy losses occurring within the cell, for different discharge patterns, and infer their location.
In performing these tasks, we have shown that such wellparametrised DFN models are an ex
tremely useful engineering tool to support control systems or to inform new cell designs. In
particular knowledge of the location of the major energy losses can be used to point to compo
nents of the cell that should be redesigned. We illustrated a simplified experimental workflow to
effectively extract the model key parameters from a physical cell. This was based upon a careful

20



0 1 2 3 4 5 6 7
0 . 0

1 . 0

2 . 0

3 . 0

4 . 0
Irre

ve
rsi

ble
 lo

sse
s a

s %
 of

 E t
ot 

(t)

t i m e  ( h )

 

 

 

 

 

 

 

( b )

Figure 11: Cumulative irreversible energy losses (per unit area of cell) as a percentage ofEtot(t)
the cumulative energy use (per unit area of cell) for drive cycle simulation.
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Figure 12: Cumulative electrical work (per unit area of cell)
∫ t

0
IV /Adt as a percentage of

Etot(t),the cumulative energy use (per unit area of cell), for (a) constant current (C/3.2) dis
charge and (b) drive cycle simulation.
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assessment of the critical parameters that most influence the cell’s behaviour; these turn out to
be those that are related to its total capacity and its transport properties (e.g. particle radius, elec
trode thicknesses, active material content and diffusion coefficients). Finally, we remark that
DandeLiion solver has the potential to be leveraged for onboard battery management systems
in electric vehicles and used to perform real time computations, given its subsecond timescale
resolution.
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