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Abstract

Transseries expansions build upon ordinary power series methods by including additional basis elements
such as exponentials and logarithms. Alternative summation methods can then be used to “resum” series to
obtain more efficient approximations, and have been successfully widely applied in the study of continuous
linear and nonlinear, single and multidimensional problems. In particular, a method known as transasymp-
totic resummation can be used to describe continuous behaviour occurring on multiple scales without the
need for asymptotic matching. Here we apply transasymptotic resummation to discrete systems and show
that it may be used to naturally and efficiently describe discrete delayed bifurcations, or “canards”, in
singularly-perturbed variants of the logistic map which contain delayed period-doubling bifurcations. We
use transasymptotic resummation to approximate the solutions, and describe the behaviour of the solution
across the bifurcations. This approach has two significant advantages: it may be applied in systematic
fashion even across multiple bifurcations, and the exponential multipliers encode information about the
bifurcations that are used to explain effects seen in the solution behaviour.

1 Introduction

Transseries are a natural extension to classical asymptotic power series which are used to study systems
in which the solution behaviour depends on multiple distinct exponential scales. A transseries represents
the solution to a system as the sum of multiple power series, each multiplied by a different exponential
prefactor [28]. The value in this approach is that a transseries developed in one region of parameter space
can typically be extended into regimes in which the solution depends on different scales, simply be applying
different summation methods to the transseries itself, without the need to rebalance the equation terms and
apply matched asymptotic expansions to connect the regimes.

Transseries and summation techniques have been used to study the behaviour of a wide range of
parameter-dependent continuous systems. Applications include the study of general nonlinear ordinary
differential equations [12, 13, 42, 48], the first Painlevé equation [4, 35, 49], topological string theory [18, 38],
field theory and semi-classical quantum mechanics [3, 8, 23, 26, 37, 44], relativistic hydrodynamics and
Einstein partial differential equations [2, 11, 41], and q−series and knot invariants [25, 34]. More recently
transseries methods have been been extended to study of discrete problems, such as particular matrix models
governed by the first discrete Painlevé equation [4, 19, 45, 50, 51]. The role of exponential scales in discrete
maps and chaos has been previously analysed in the context of Stokes phenomena [36, 39, 46, 52].

The transasymptotic method introduced in [13, 14, 15] consists of constructing a transseries in terms of
some small parameter ε. The transseries terms are then reordered, and higher-order exponential terms at each
order of the small parameter are summed. This change of summation order, or “resummation”, captures the
behaviour of the system in regions where different exponential terms dominate the solution. Transasymptotic
methods have been been used to determine the location of moveable poles in Painlevé equations directly from
asymptotic solutions [5, 15] (see also [16, 17]). In this work, we show that these transseries and summation
approaches can be used in a systematic fashion to identify complicated bifurcations in discrete systems that
typically require careful application of multiple scales [40] or renormalisation methods [7].

In this study, we demonstrate that transseries resummation can be used systematically to accurately
capture the behaviour of the solution to a discrete equation containing a periodic-doubling cascade with
delayed bifurcations. Delayed bifurcations may occur in dynamical systems where an underlying parameter
is itself slowly varying and the solution initially clings to a metastable branch of the solution before eventually
jumping to the stable branch. They have been studied widely in systems of ordinary differential equations
(see, for example, [55]). These “slow-fast” systems have behaviour occurring on two (or more) distinct
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timescales, with the solution trajectory remaining near to an unstable solution for a significant distance
after stability has been lost; solutions containing this behaviour have been termed “canards”.

There has been a significant volume of work studying the asymptotic behaviour of canards in continuous
settings, see for example, using composite asymptotic expansions in [9, 32, 27], and Borel summation methods
in [24]. Borel summation methods are closely connected to transseries resummation methods (see [1]), and
have been used to study discrete problems, as in [47]. This motivates the idea that transseries resummation
methods could be a useful technique for studying delayed bifurcation behaviour; in this study, we will focus
on delayed bifurcations appearing in discrete systems, and in particular, singularly perturbed variants of the
logistic map.

We will show that period doubling bifurcations depend on the interaction between different exponential
factors, and it is therefore advantageous to represent them explicitly using transseries. By expanding in
the asymptotic limit, we may determine terms in the algebraic power series to determine the initially stable
non-periodic solution. The next step will be to reorder the transseries terms and perform a transasymptotic
resummation, which will produce an accurate description of the doubling phenomena. This approach has the
additional advantage that it allows us to determine further subdominant exponential scales in the transseries
explicitly which dictate subsequent doubling bifurcations present in the solution.

By incorporating a multiple scales ansatz into the transseries expression, we will shown that transseries
resummation – which was developed to describe continuous behaviour – can be used to calculate discrete
variation without any further analysis to the transseries method.

We study here two variants of the ubiquitous (and generic) standard logistic map

y(n+ 1) = λy(n) [1− y(n)] , 0 < y(0) < 1, (1)

where λ is a dimensionless bifurcation parameter 0 < λ ≤ 4.
This system contains a period-doubling route to chaos, found by allowing the parameter λ to vary. In

the range 1 < λ < 3, this system tends to a stable equilibrium without periodic effects. In the range
3 < λ < 1 +

√
6, the system tends to a 2-periodic stable equilibrium. Increasing λ beyond 1 +

√
6 produces

systems that tend to stable equilibria with higher periodicity.
The earliest study of the delayed bifurcations in the slowly-varying logistic map is [7], who applied

renormalisation methods to derive asymptotic scaling laws for the delays between period doubling, and
performed analysis and numerical experiments to determine the location of the bifurcation points. In addition
to establishing specific results about the slowly-varying logistic map, this study established that delayed
bifurcations can play an essential role in the behaviour of discrete systems. Similar methods were used to
study delayed bifurcations in more general unimodal maps [20], as well as discrete maps with noise [6, 21, 22].

Further studies of this system appeared in subsequent years. In [29, 30, 32], the existence of canard
solutions was rigorously proven in general classes of discrete maps that include the slowly-varying logistic
map. Further discussions of canard solutions to both discrete continuous and discrete dynamical systems
are given in [31, 33].

In more recent years, this system was studied using matched asymptotic expansions and multiple scales
methods [40]. The purpose of this previous work was to show that the method of multiple scales could be used
to combine a “fast” discrete timescale with a slow time variable that could be treated as continuous, while
still capturing the essentially discrete-scale behaviour present in the problem. By carefully balancing terms,
the authors were able to identify the bifurcation points and produce accurate asymptotic approximations
to the solution behaviour on both sides of the delayed bifurcation. In the works described here, the slowly-
varying logistic equation has provided a useful testing ground for treatments of discrete systems, due to the
complicated behaviour that it produces.

It has been shown in [42] that transseries approaches may be used to improve upon asymptotic results
obtained using matched asymptotic expansions. In that study, transseries resummation methods were used
to obtain a uniform approximation to a continuous problem that had been previously solved using multiple
scales methods. The transseries approach was able to naturally incorporate higher exponential terms, and
thereby improve on the accuracy of the results, even for values of the perturbation parameter that were
not extremely small. Motivated by this result, we will show that transseries resummation can be used to
improve on existing multiple scales results in discrete systems.

In section 2 we will first study the “static” logistic map, corresponding to λ = 3 + ε for a fixed choice
of (small) real parameter ε. This will be used to introduce and to demonstrate the technical details of the
transseries process

The second variant, studied in section 3, is the “dynamical” logistic equation, which has a slowly increas-
ing bifurcation parameter λ = 3 + εn. In this case, the bifurcation parameter grows, with different solutions
becoming stable and unstable as n increases. In Figure 1,

Apart from the pedagogical aspects of demonstrating the applicability of transseries to such problems to
recover and extend existing results, in this work we demonstrate four main enhancements.

Firstly, we show that transseries resummation can capture the behaviour of solutions to both a static and
slowly-varying logistic map in a systematic and efficient fashion. The multiple scales method used by [40]
was able to produce asymptotically valid approximations to the solution, but the process requires a careful
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Figure 1: Solution to logistic equation 1, where λ = 3 + εn with ε = 0.0122. The period-doubling cascade is
apparent; the transition between non-periodic and 2-periodic behaviour is visible, as is the transition between
2-periodic and 4-periodic behaviour. As the solution continues, it eventually becomes chaotic. The 2-periodic
behaviour in the solution begins to contribute immediately, but is not immediately visibly apparent due to the
delay in the bifurcation behaviour. Similarly, from the analysis in Section 3, we will determine that solution
begins to display 4-periodic behaviour at n ≈ 3455, shown as a red line, but it is also not immediately visibly
apparent.

expansion and asymptotic matching each time a bifurcation occurs. The transseries resummation approach
used here is systematic, without any need for matching, and can be applied in largely identical fashion to
capture each successive bifurcation.

Secondly, transseries resummation allows us to capture behaviour when the bifurcation parameter is not
necessarily small. In [40], the static logistic map was studied in the limit that the bifurcation parameter was
close to three, leading to 2-periodic behaviour in the static map. In this study, the transseries resummation
approach allows for the study of larger values of the bifurcation parameter, describing 4- and 8-periodic
behaviour in the static map.

Thirdly, we demonstrate that transseries can capture and control the onset of period-doubling behaviour
through in terms of exponential weights in the transseries coupled with their resummation. By studying
these exponential terms, we are able to determine precisely when higher-periodicity behaviour appears in
the solution, and when the bifurcation starts to grow. We will show that transseries resummation can
approximate the behaviour of 2- and 4-periodic solutions, and that calculating the transseries exponential
terms can explain the onset of higher 4- or even 8-periodic behaviour as the bifurcation parameter grows.
In principle the method could be continued in the same fashion to determine this behaviour as the dynamic
map sweeps through subsequent bifurcations.

Fourthly, we are able to use transseries summation to significantly improve the approximation accuracy
of the solutions over and above that afforded by matched asymptotics in several parameter regimes, with
minimal, if any, additional effort. The increase in accuracy is a consequence of the inclusion of multiple
exponential scales in the solution approximation, and is most apparent in parameter regimes in which
different exponential scales all contribute to the solution behaviour.

2 Static Logistic Equation

First we consider the static logistic equation, given by

y(n+ 1) = (3 + ε)y(n) [1− y(n)] , y(0) = 2/3. (2)

We will write the solution as a continuous transseries in terms of ε > 0. We first produce an asymptotic
expansion in the limit 0 < ε � 1 but as we shall see later, the transseries approach will be used to extend
this result to produce an accurate approximation for ε = O(1). We will then show that this continuous
transseries is capable of capturing discrete period-doubling effects seen in this system, and approximating
higher periodicity behaviour for values of ε that lead to 2-, 4- and even 8-periodic solutions.

In [40], the authors studied the asymptotic behaviour of this system for small ε using multiple scales
methods. This showed the manner in which the behaviour approached the 2-periodic stable manifold asso-
ciated with λ > 3. Using transseries methods, we can extend this approach to consider systems in which ε is
not asymptotically small, and demonstrate the manner in which the solution approaches the stable solution
for higher periodicities.

3



In order to first determine the non-periodic and 2-periodic solutions, we ignore the initial condition
and solve (2) with the condition that y(n + 2) = y(n). This gives three unique solutions. One solution is
non-periodic, and is given by

y(n) =
2 + ε

3 + ε
. (3)

The remaining two solutions are 2-periodic, and are given by

y(n) =
4 + ε± (−1)n

√
ε(4 + ε)

2(3 + ε)
. (4)

For ε > 0, the non-periodic solution is unstable. For 0 < ε <
√

6− 2, the 2-periodic solution is stable. If ε
exceeds

√
6−2, the 2-periodic solution is unstable, and the stable solution to the system becomes 4-periodic,

and can be identified by solving y(n+ 4) = y(n), however this solution cannot be expressed in closed form.
Continuing to increase ε leads to the periodicity of the stable solution increasing until chaotic behaviour is
eventually obtained.

2.1 2-periodic solution

2.1.1 Transseries ansatz

We begin by applying a transseries ansatz, including a continuous variable x and the small parameter ε. We
set x = εn, assuming for now ε� 1, and R(x) = y(n) obeys

R(x+ ε) = (3 + ε)R(x)[1−R(x)], R(0) = 2
3
. (5)

We formulate an ansatz for the solution behaviour in terms of both ε and a transseries parameter σ0. The
preliminary ansatz is given as the standard (non-logarithmic) transseries:

R(x, ε;σ0) =

∞∑
m=0

σm0 e−mA(x)/εRm(x, ε), Rm(x, ε) = εβm
∞∑
k=0

εkRm,k(x), (6)

where βm will be chosen such that Rm,0 takes a nonzero value. Applying this expression to (5) allows for
the system to be matched in powers of σ0. At leading order, we find

R0(x, ε) =
2 + ε

3 + ε
. (7)

This expression gives the non-periodic manifold, which is stable for 1 < λ < 3. For values of λ greater than
three, corresponding to positive ε, we expect to see additional periodic effects emerge from the transseries
expression. Continuing to the next order in σ0, we find that

e−[A(x+ε)−A(x)]/εR1(x+ ε, ε) = −(1 + ε)R1(x, ε). (8)

By expanding R1 as a power series in ε, (6) gives

e−[A(x+ε)−A(x)]/ε
∞∑
k=0

εkR1,k(x) = −(1 + ε)

∞∑
k=0

εkR1,k(x). (9)

Expanding as a Taylor series in ε gives A(x+ ε) = A(x) + εA′(x) + · · · . Matching equal powers of ε on both
sides in (9) therefore requires exp(−A′(x)) = −1, or

A(x) = (2p+ 1)πix, p ∈ Z. (10)

The arbitrary constant in A(x) may be absorbed into the transseries parameter σ0, and is therefore set to
be zero for convenience. The solution will only be evaluated for n ∈ Z, which corresponds to x/ε ∈ Z. The
choice of p has no effect at these values, and we therefore set p = 0 without loss of generality.

Using the expressions for R0 in (7) and A in (10) in (5) and tracking orders of σ0, we obtain a recurrence
relation for Rm:

(−1)mRm(x+ ε, ε) = −(1 + ε)Rm(x, ε)− (3 + ε)

m−1∑
j=1

Rj(x, ε)Rm−j(x, ε), (11)

for m ≥ 1, where we take the convention that the summation term is zero when m = 1. It is straightforward
to show by direct substitution that the solution to this recurrence takes the form

Rm(x, ε) = emx log(1+ε)/εRm(ε), Rm(ε) = εβm
∞∑
k=0

εk Rm,k, (12)
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where the functions Rm(ε) can be computed directly. R1(ε) may be chosen to be an arbitrary constant,
which again can be absorbed into σ0. For algebraic convenience, we can select R1(ε) = ε. The subsequent
terms may hence be obtained using the recursion (11), which gives the first few terms as

R2(ε) = − (3 + ε)ε2

(1 + ε)(2 + ε)
, R3(ε) =

2(3 + ε)2ε2

(1 + ε)2(2 + ε)2
, R4(ε) = − (3 + ε)3 (ε− 4) ε3

(1 + ε)3(2 + ε)3 (1 + ε+ ε2)
. (13)

By analysing the form of the recurrence solution, it is straightforward to determine βm in general, giving
βm = (m+ 1)/2 for m even, and βm = (m+ 2)/2 for m even. It can also be seen by direct calculation that

R2m+1,0 =
(−9)mΓ

(
m+ 1

2

)
√
πΓ (n+ 1)

, R2m,0 =
(−9)m

6
. (14)

2.1.2 Computing the terms in the resummed transseries

The alternating behaviour of (14) combined with the general form of Rm(x, ε) described in (12) suggests
that the ansatz may be conveniently re-written to incorporate these elements explicitly. In particular, the
fact that we have two different sub-series in (14) depending on the parity of m suggests that we should split
the series into odd and even powers of m. We therefore write the ansatz (6) as

R(x, ε;σ0) = R0(ε) +
√
ε

∞∑
k=0

εk
∞∑
m=0

(
σ0

√
εe−A(x)/ε+x log(1+ε)/ε

)2m+1

R2m+1,k

+ε

∞∑
k=0

εk
∞∑
m=1

(
σ0

√
εe−A(x)/ε+x log(1+ε)/ε

)2m
R2m,k, (15)

where we have switched the order of summation, noting that the exponential terms are all of the same order
in ε. Note that in the static case both sums in (15) are convergent. We define a new series parameter τ0, as
well as odd and even power series in this parameter, such that

τ0(x, ε) = σ0

√
εe−A(x)/ε+x log(1+ε)/ε, Ωo,k(τ0) =

∞∑
m=0

τ2m+1
0 R2m+1,k, Ωe,k(τ0) =

∞∑
m=0

τ2m0 R2m,k.

(16)
The transseries expression is now given by (the x, σ0 dependence is encoded in τ0):

R(τ0, ε) = R0(ε) +
√
ε

∞∑
k=0

εkΩo,k(τ0) + ε

∞∑
k=0

εkΩe,k(τ0). (17)

We may apply this ”resummed” transseries to the logistic equation (5) and equate powers of ε to obtain
expressions for Ωo,k and Ωe,k. This process is somewhat technical, and is shown explicitly in Appendix A.
Equating terms of order ε and ε3/2 respectively gives

Ωe,0 = −3

2
(Ωo,0)2, τ0

dΩo,0
dτ0

= Ωo,0 − 9(Ωo,0)3. (18)

Solving the ordinary differential equation gives Ωo,0(τ0) = ±τ0(C + 9τ20 )−1/2. The sign and constant may
be chosen arbitrarily, as this choice again can be absorbed into σ0, which is yet to be determined. In order
to maintain consistency with (13), we select the positive sign and C = 1, giving

Ωo,0(τ0) =
τ0√

1 + 9τ20
, Ωe,0(τ0) = −3

2

τ20
(1 + 9τ20 )

. (19)

Continuing this process and equating terms of order ε2 and ε5/2 respectively gives

Ωe,1 =
τ20
(
14− 9τ20

)
8(1 + 9τ20 )2

− 3Ωo,0Ωo,1, τ0
dΩo,1
dτ0

=
1− 18τ20
1 + 9τ20

Ωo,1 +
3τ20 (28− 45τ20 )

4 (1 + 9τ20 )5/2
. (20)

Solving these equations gives

Ωo,1(τ0) = −τ0(45τ20 − 33 log(1 + 9τ20 ))

24(1 + 9τ20 )3/2
, Ωe,1(τ0) =

τ20
(
14 + 36τ20 − 33 log

(
1 + 9τ20

))
8(1 + 9τ20 )2

, (21)

where yet again the arbitrary constant of integration can be chosen arbitrarily with the choice being absorbed
into σ0, and was therefore selected in order to maintain consistency with (13). In principle, this process can
be continued to higher transasymptotic order indefinitely by matching at higher orders of ε.

We can compare these expressions to the multiple scales expansion obtained in [40]. A straightforward
comparison shows that the expression Ωo,1 gives the first correction to the composite expansion, denoted
P (s), from [40]. The expression for P (s) contains an exponential multiplier es, which corresponds to the
exponential scaling in τ0. This confirms that the resummed transseries identifies the region in which the
power series expression breaks down, and allows for the expansion to be continued past this region even
without the use of matched asymptotic expansions.
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2.1.3 Initial value problem

In order to complete the approximation, we must determine the value of σ0 using the initial condition in
(5), which requires that R(x = 0, ε;σ0) = 2/3. Noting that τ0(x = 0, ε) =

√
εσ0, this corresponds to solving

R0(ε) +
√
ε(Ωo,0(σ0

√
ε) + εΩo,1(σ0

√
ε)) + ε(Ωe,0(σ0

√
ε) + εΩe,1(σ0

√
ε)) +O(ε4) = 2

3
. (22)

By expanding σ0 as a power series in ε such that

σ0(ε) =

∞∑
j=0

εjσ0,j . (23)

Matching powers of ε in (22) now gives

σ0,0 = − 1
9
, σ0,1 = 4

81
, σ0,2 = − 19

648
. (24)

This process may be continued as Ωo,k and Ωe,k are computed for higher values of k, giving the increasingly
complete expression for the 2-periodic behaviour.

2.2 4-periodic solution

2.2.1 Transseries ansatz

To obtain the 4-periodic solution requires an adaptation of the previous process. We now take a four-periodic
perturbation about the 2-periodic solution obtained in (22). This allows us to form a transseries that can
be used to capture solutions which tend to a four-periodic stable manifold. In [40], this would have required
solving a challenging multiple scales problem, as the asymptotic solution obtained therein is only valid for
small ε. Using the transseries approach, we obtain a significant more general result.

We write the solution as a perturbation around the non-period behaviour and the 2-periodic behaviour
captured by the transseries expression (17), in terms of the variable τ0, here written as R̂(τ0, ε).

R(x, ε) = R0(ε) +
√
ε

∞∑
k=0

εkΩo,k(τ) + ε

∞∑
k=0

εkΩe,k(τ) + S(x, ε) = R̂(x, ε) + S(x, ε). (25)

We will then show that this perturbation starts contributing for values of ε large enough. We can see by
direct substitution into (5) that

S(x+ ε, ε) = (3 + ε)(1− 2R̂(τ0, ε)− S(x, ε))S(x, ε). (26)

In order to identify the correct scaling for S(x), we note the form of the 2-periodic manifold, given in
(4). We represent the 2-periodic behaviour in terms of the continuous variable x by writing (−1)n as
α = sign(cos(πx/ε)), such that

R̂(τ0, ε) =
4 + ε− α

√
ε(4 + ε)

2(3 + ε)
+O(τ−1

0 ) as x→∞, (27)

where the asymptotic order of this expression can be obtained by rewriting (22) in powers of τ−1
0 and

equating terms. We may now follow similar methods to the 2-periodic case, and formulate an ansatz for the
solution in terms of ε and a new transseries parameter, denoted σ1. Motivated by (12), we choose the ansatz

S(x, ε) =

∞∑
m=1

σm1 e−mB(x,ε)/εSm(ε), (28)

noting that we now allow an ε dependence on the exponential scale. The exponential scaling B(x, ε) may
then be determined by considering the large-x behaviour. This is convenient, as we have the form for R(x)
in this limit, given in (27), and we know from the asymptotic order of this expression that the solution
approaches this limit exponentially as x becomes large. Using (27) in (26) and matching powers of ε in an
identical fashion to (9) gives

∂

∂x
B(x, ε) = −πi− log

(
1− α

√
ε(4 + ε)

)
. (29)

This may be solved to give
B(x, ε) = f(ε)x− εg(x, ε), (30)

where
f(ε) = − 1

2
log(1− ε(4 + ε))− πi, (31)

6



À Á Â
ε = −2 +

√
5 ε = −2 +

√
6

−1

0

2

4

1

3

−π

−3π/2

Re[f(ε)]

Im[f(ε)]

ε

0 0.50.25 0.75 1

Figure 2: This figure shows the real and imaginary parts of f(ε) = − 1
2 log(1−ε(4+ε))−πi, where the exponential

weight B(x) is given in (30). If Re[f(ε)] > 0, the 4-periodic exponential contribution is exponentially small in
ε, while if Re[f(ε)] < 0, the contribution is large, and must be incorporated into any approximation in order to
accurately describe the system behaviour. In parameter regime À, this exponential contribution is not present
in the transseries, and is therefore denoted as a dashed curve. In regime Á, the 4-periodic exponential terms
appear, but are exponentially small. In regime Â, the exponential contributions become large, and 4-periodic
behaviour becomes apparent in the solution. The 4-periodicity of the solution arises due to Im[f(ε)]. This
represents a multiplicative factor in B(x) of −i, corresponding to 4-periodic behaviour in the exponential term.

and g(x, ε) is a bounded function that vanishes for x = εn for n ∈ Z, given by

g(x, ε) = α

(
x

2ε
− 1

2

⌊
x

ε
+

1

2

⌋)
log

(
1−

√
ε(4 + ε)

1 +
√
ε(4 + ε)

)
. (32)

As g(nε, ε) = 0 for n ∈ Z, this expression could be ignored and the result will still give the correct value of
B(x, ε), and hence the correct exponential scaling, on x = εn. This therefore suggests that we can capture
the 4-periodic solution by defining a new variable τ1, such that

τ1(x, ε) = σ1

√
εe−B(x,ε)/ε. (33)

In subsequent analysis, it will be useful to have a convenient expression for the value of τ1 at x + ε and
x+ 2ε. Through direct substitution, we find that

τ1(x+ ε, ε) = −i(ε(4 + ε)− 1)1/2e−2g(x,ε)τ1(x, ε), (34)

τ1(x+ 2ε, ε) = −(ε(4 + ε)− 1) τ1(x, ε). (35)

2.2.2 Exponential Weights

The form of B(x, ε) provides insight into the behaviour of the solution as ε increases outside of the range of
validity of the original small-ε transseries. The behaviour of this term is shown in Figure 2, which identifies
three distinct ranges of ε which must be considered separately.

From the form of (33), we see that B(x, ε) is the exponential controlling factor for S, and therefore
determines how this series will contribute as x grows. If Re[B] > 0, corresponding to Re[f(ε)] > 0, the
exponential contribution will decay as x grows, while if Re[B] < 0, corresponding to Re[f(ε)] < 0, the
exponential part will grow and become the most significant contribution for large x.

This change in sign occurs at ε = −2+
√

6. At this point, Re[f(ε)] becomes negative, and the exponentials
in (28) therefore grow as x becomes large, rather than decaying. This means that in Region Â the S term
is no longer a small decaying perturbation around R̂, but rather plays a significant role in the limiting
behaviour as x → ∞. If S is ignored, this behaviour is not captured in the transseries, and the resultant
expression for R is an inaccurate description of the solution behaviour.

We note that Im[f(ε)] = −3π/2 for ε > −2+
√

5. This has the effect of making τm1 4-periodic in m ∈ Z+,
due to having a factor of −i, rather than the 2-periodic behaviour associated with a factor of −1. Hence,
this exponential behaviour represented by B(x, ε) corresponds to 4-periodic effects in the solution.

In order to include this behaviour in the transseries expression, we cannot simply expand the solution
about ε = 0. We must instead expand S about some point ε0 such that the 4-periodic behaviour is present
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in the expansion. This requirement suggests that ε0 = −2 +
√

6 is a sensible choice, as 4-periodic effects are
apparent in the solution at this value.

Finally, we must consider the region in which the series terms obtained by expanding about ε0 are valid.
If we examine the behaviour of B(x, ε) for ε > ε0, we see that the real part of f(ε) becomes infinite as
ε→ −2 +

√
5. This corresponds to the exponentials disappearing, as every exponential term tends to zero.

The series expansion about ε0 is not valid for ε smaller than this value. Consequently, region Á contains
exponentially small 4-periodic behaviour, while no such behaviour exists in region À. In Figure 2 we have
represented f(ε) in region À as a dashed curve, to indicate that it does not have any effect on the transseries.

Consequently, simply by studying B(x, ε), we are able to describe the onset of 4-periodicity in the
solution. In region À, there are no 4-periodic effects present. In region Á, there are 4-periodic effects caused
by the appearance of new exponential terms, but they are exponentially subdominant compared to the
2-periodic behaviour. In region Â, these effects grow to become the most significant effect in the solution
behaviour. Note that the switching of the 4-period exponentials is independent of the initial data, the latter
only determines how quickly they grow to dominate the solution. For higher values of ε, there must be values
for which higher-periodicity behaviour appears. We discuss the onset of 8-periodic behaviour in Section 2.4.

Finally, we note that the change in exponential contribution has a parallel with a Borel transform ap-
proach to asymptotic expansions. Borel transforms encode the different exponential weights of an asymptotic
series as singularities in a complex domain known as the “Borel plane”. There, a change in the number of
exponential contributions corresponds to singularities moving across a branch cut onto a different Riemann
sheet of the Borel plane, giving rise to behaviour known as the “Stokes phenomenon” [10] as the number of
exponential contributions in an asymptotic series abruptly changes. A similar, but not identical, behaviour
occurs in this system at ε = −2+

√
5, where Re[f(ε)] becomes infinite and Im[f(ε)] changes instantaneously,

corresponding to a branch point in the f -plane. For more information on Borel transform methods, and
their links to transseries and transasymptotic summations, see [1, 13, 15, 43, 48, 49].

2.2.3 Computing the terms in the resummed transseries

Writing an appropriate form for the 4-periodic ansatz is slightly more involved than in the 2-periodic case,
given in (15). Recall from Section 2.2.2 that the significant change in the behaviour of the exponential
contribution occurs for values of ε greater than ε0 = −2 +

√
6. We therefore define a new series variable√

6η = ε− ε0, where the
√

6 term is included for subsequent algebraic convenience.
In analogous fashion to (17), we again divide the ansatz up into separate power series. In the 2-periodic

case, it was clear from the form of the previously calculated terms that splitting the odd and even powers
of τ0 would capture the discrete variation effectively. From the analysis in Section 2.2.2, we determine that
the power series for the 4-periodic solution should instead be split into four parts, such that

S(τ1, η) =
√
η

∞∑
k=0

ηk
∞∑
m=0

τ4m+1
1 S4m+1,k + η

∞∑
k=0

ηk
∞∑
m=0

τ4m+2
1 S4m+2,k

+
√
η
∞∑
k=0

ηk
∞∑
m=0

τ4m+3
1 S4m+3,k + η

∞∑
k=0

ηk
∞∑
m=0

τ4m+4
1 S4m+4,k. (36)

Consequently, we now write each split power series as functions Θj,k, j = 1, 2, 3, 4, giving

S(τ1, η) =
√
η

∞∑
k=0

ηkΘ1,k(τ1) + η

∞∑
k=0

ηkΘ2,k(τ1) +
√
η

∞∑
k=0

ηkΘ3,k(τ1) + η

∞∑
k=0

ηkΘ4,k(τ1). (37)

Noting that each series consists only of powers τm1 with the same m mod 4, and comparing this with the
expression for τ1 in (33) indicates that the functions Θj,k for j = 1, . . . , 4 must have the symmetries

Θ1,k(−iτ1) = −iΘ1,k(τ1), Θ2,k(−iτ1) = −Θ2,k(τ1), (38)

Θ3,k(−iτ1) = iΘ3,k(τ1), Θ4,k(−iτ1) = Θ4,k(τ1). (39)

At this stage, it might be expected that we should express the governing equation (26) in terms of η, and
perform an expansion in this variable; however, a comparison of the terms in (34) and (35) suggests that
iterating the map once leads to a simplification. Writing the x dependence explicitly, the equation becomes:

S(x+ 2ε, ε) = (3 + ε)2[1− 2R̂(x+ ε, ε)− (3 + ε)(1−2R̂(x, ε)− S(x, ε))S(x, ε)]

× (1− 2R̂(x, ε)− S(x, ε))S(x, ε), (40)

This expression does not contain any S(x+ ε, ε) terms, and instead only contains the double iteration term,
S(x+ 2ε, ε). This is convenient, as the expression for τ1(x+ 2ε, ε) is substantially simpler than τ1(x+ ε, ε),
as it does not contain g(x, ε). This simplifies significantly the subsequent analysis.

Expressing the left-hand term in (40) in terms of τ1 and η gives

S(x+ 2ε, ε) = S(−(ε(4 + ε)− 1) τ1, ε) = S(−(1 + 12η + 6η2)τ1, η). (41)
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Rewriting (40) in terms of τ1 and η therefore gives

S(−(1 + 12η + 6η2)τ1, η) = S(τ1, η)
(

1−α
√

2 + 12η + 6η2 + (1 +
√

6(1 + η))S(τ1, η)
)

×
(

1 + α
√

2 + 12η + 6η2 − (1 +
√

6(1 + η))2S(τ1, η)2

− S(τ1, η)(1 +
√

6(1 + η))
(

1− α
√

2 + 12η + 6η2
))
. (42)

Analogously to the analysis of the 2-periodic case in Appendix A, the next step is to expand this expression
as a power series in η, and apply the series expression for S(τ1, η) given in (36). Matching powers of ηj/2 for
j = 1, . . . 4 produces a system of four equations – two of these equations are algebraic, and two are nonlinear
ordinary differential equations in τ1. We omit the details of this step here, as it requires only algebraic
manipulations, and the intermediate mathematical expressions are quite lengthy. These four equations may
be simplified using the symmetry relations in (38)–(39), resulting in the following system of equations

Θ4,0(τ1) = 2aΘ1,0(τ1)Θ3,0(τ1), (43)

Θ2,0(τ1) = aΘ1,0(τ1)2 + aΘ3,0(τ1)3, (44)

τ1Θ′1,0(τ1) = Θ1,0(τ1)− b(Θ3,0(τ1)3 + 3Θ1,0(τ1)2Θ3,0(τ1)), (45)

τ1Θ′3,0(τ1) = Θ3,0(τ1)− b(Θ1,0(τ1)3 + 3Θ3,0(τ1)2Θ1,0(τ1)), (46)

where

a =
1

2

(
2 + 2

√
6− 3α(

√
2 + 2

√
3)
)
, b =

5

6

(
14 + 4

√
6− α(7

√
2 + 4

√
3)
)
. (47)

By substituting the power series (36) into the governing equation (42), it can be seen at leading order as
η → 0 and τ1 → 0 that S1,0 = −S3,0, providing one initial condition for the system (43)–(46). The second
initial condition may be chosen arbitrarily, as this choice may be absorbed into the expression for σ1, in the
same manner as the constant C in (18). For algebraic convenience, and without loss of generality, we select
S1,0 = 1. These conditions are sufficient to uniquely solve (43)–(46). The solution to this system is given by

Θ1,0(τ1) =
ατ1√

2− 2b2 τ41

√
1 +

√
1− b2τ41 , Θ2,0(τ1) =− aτ21

1− b2τ41
, (48)

Θ3,0(τ1) =− αbτ31√
2− 2b2 τ41

(√
1 +

√
1− b2τ41

)−1

, Θ4,0(τ1) =
abτ41

1− b2τ41
. (49)

In principle, we can match the expansion of (42) at higher powers of η in order to obtain Θj,k for j = 1, . . . 4
with k > 0. For the purposes of this example, however, the first four terms of the series will produce a useful
approximation for the solution behaviour.

The final step is to determine the behaviour of the transseries parameter σ1. This is slightly more
complicated than in the 2-periodic problem, as we must incorporate the behaviour of R̂(x, ε) into the
calculations. We include the details of this process in Appendix B, where we show that

σ1 = − 1

50

(
3
√

2− 16
√

3− 7
√

6 + 12
)

+
η

500

(
297
√

2− 709
√

3− 189
√

2 + 399
)

+O(η2), (50)

We have now determined enough transseries terms to accurately approximate the solution behaviour in the
4-periodic regime.

2.3 Error comparison

As a consequence of the preceding analysis, we are able to derive an approximation for the solution to
the logistic equation in the 2-periodic and 4-periodic parameter regimes, which we denote as R2,app(x) and
R4,app(x) respectively. Combining (16), (17), (19), (21), and (24), we find that in the 2-periodic parameter
regime

R(x) ≈ R2,app(x) =
2 + ε

3 + ε
+ ε1/2Ωo,0(τ0) + εΩe,0(τ0) + ε3/2Ωo,1(τ0) + ε2Ωe,1(τ0), (51)

where τ0 and σ0 are approximated as

τ0 = σ0ε
1/2e−x(πi+log(1+ε))/ε, σ0 ≈ −

1

9
+

4ε

81
− 19ε2

648
. (52)

A comparison of the exact solution against the approximation is shown for ε = 0.05 in Figure 3(a). The
exact solution is shown as red circles, while the approximation is shown as blue dots. The two curves are
visually indistinguishable. The approximation error is shown in Figure 3(c). It is clear from this figure
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Figure 3: The plot in (a) compares the 2-periodic approximation R2,app, from (51), against the exact solution for
ε = 0.05. The plot in (b) compares the 4-periodic approximation R4,app, from (53), against the exact solution
for ε = 0.51, or

√
6η ≈ 0.0605. The approximation errors, given by the difference between the exact solution

R(x) and the approximations are shown in (c) and (d). The 2-periodic approximation has maximum error in the
region just before reaching the 2-periodic steady solution. The 4-periodic approximation has maximum error
in the initial region; this is to be expected, as the initial condition was obtained directly from the 2-periodic
solution, and is not expected to be highly accurate in the 4-periodic regime.

that the error has a peak at the end of the transition region, just before the solution settles into the stable
2-periodic behaviour.

In the 4-periodic parameter regime ε > −2 +
√

6, the approximated transseries is given combining the
expressions in (33), (48)–(50), and the previous approximation (51), to give

R(x) ≈ R4,app(x) = R2,app(x) +
√
η(Θ1,0(τ1)+Θ3,0(τ1)) + η(Θ2,0(τ1) + Θ4,0(τ1)), (53)

where τ1 and σ1 are approximated as

τ1 = σ1ε
1/2ex(log(1−ε(4+ε))/2+πi)/ε, (54)

σ1 ≈ −
1

50

(
3
√

2− 16
√

3− 7
√

6 + 12
)

+
η

500

(
297
√

2− 709
√

3− 189
√

2 + 399
)
. (55)

Note that we do not include the term containing g(x, ε) in B(x, ε) from (30). This term disappears for
integer values of n, and therefore can be omitted at this stage without altering the approximation.

In Figure 4(a), we show the approximation error for a range of values of ε, where the error is measured
as the maximum difference between the exact solution and the transseries approximation, shown as a blue
curve. This error measure was chosen to allow for direct comparison with equivalent results from [40],
which are shown as a red curve. The transseries approximation is more accurate than the multiple scales
approximation in this parameter regime, and the error decays faster in the limit that ε → 0. The reason
for this behaviour is that the transseries approach allowed for higher-order exponential corrections to be
easily computed and retained. The maximum approximation error occurs at the end of the transition region
between non-periodic and 2-periodic behaviour, where the exponential contributions contribute significantly
to the solution behaviour. Computing these exponential corrections using multiple scales methods would be
an algebraically significantly more demanding task, requiring matched asymptotic expansions to be applied
at higher orders of the expansion.

2.4 8-periodic solution

We may continue this process to understand the emergence of the next period doubling bifurcation. While
we will not include a full explicit, algebraic analysis here, we will show that the exponential factor can be
used to identify the appearance of 8-periodic stable solutions as ε is increased further.
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Figure 4: The plot in (a) shows the resummed transseries approximation error in blue, corresponding to the
maximum difference between the approximated and exact value. This measure of the error was chosen to
be consistent with the error measure provided in [40]; this error is shown as a red curve. Due to the ease
with which the transseries method captures higher-order exponential behaviour, which plays an important
role in the transition region between non-periodic and 2-periodic behaviour, it outperforms the multiple scales
approximation. In (b), we show the error of the four solution branches as n → ∞, approximated by taking
|R−R4,app| on each of the four branches for a value of n sufficiently large that the error is not visibly changing.
For each of the four branches, the error decreases as η → 0, as would be expected.

The method from Section 2.2 can be applied again in order to obtain approximations for solutions
with even higher periodicity. We can now write the next term in the transseries such that R(x, ε) =
R̂(x, ε) + S(x, ε) + T (x, ε). The quantity T (x, ε) is defined in terms of a new transseries parameter σ2 to be

T (x, ε;σ2) =

∞∑
m=1

σm2 e−mF (x,ε)/εTm(ε). (56)

The transseries terms R̂ + S capture the 4-periodic solution behaviour, and therefore must tend to the
4-periodic solution in the limit that τ0 and τ1 become large. We denote this solution as R4(ε). Hence, we
apply the expression R(x, ε) = R4(ε) + T (x, ε) to the governing equation (5) and find an expression for the
exponential weights, in similar fashion to the process for obtaining (10) or (29).

The exponential weights may again be written in the form F (x, ε) = f(ε)x+εg(x, ε), where g disappears
on n ∈ Z. The behaviour of f(ε) is illustrated in Figure 5. A very similar set of inferences may be drawn
from this image as for Figure 2. In region À, the 8-periodic behaviour does not contribute to the solution,
as discussed for the 4-periodic case in Section 2.2.2. This 8-periodic contribution appears in the transseries
as ε moves into region Á. In this range of ε, there are 8-periodic contributions to the solution, but they
are smaller than the 4-periodic solution contribution, as the exponential term is relatively small compared
to those in S(x, ε), decaying exponentially as x → ∞. Finally, in region Â, the 8-periodic solution grows
exponentially, and the behaviour of T (x, ε) dominates the solution behaviour.

It is therefore clear that we can explain the onset of these higher periodicity solutions by explicitly
studying the exponential weights of the transseries solution; while the algebraic complexity of the process
increases after each doubling, the steps for identifying this behaviour remain essentially the same. The
resummed transseries therefore provides a systematic approach to studying bifurcations even for larger
values of the bifurcation parameter, where classical asymptotic methods typically fail.

3 Dynamical Logistic Equation

In the previous section, we studied the classical logistic equation, and showed that the higher periodic-
ity solutions may be obtained directly using a transseries approach. In this section, we consider a more
complicated variant of this problem, known as the slowly-varying logistic equation.

y(n+ 1) = (λ0 + εn)y(n)[1− y(n)], 0 < y(0) < 1, (57)
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Figure 5: This figure shows the real and imaginary parts of f(ε), where F (x, ε) = f(ε)x+εg(x, ε). The behaviour
of the transseries depends on both the real and imaginary part of this quantity, in the same fashion as Figure 2.
The exponential contribution is not present in the transseries in parameter regime À. In regimes Á and Â the
contribution is present, and must be 8-periodic, due to the value of Im[f(ε)] in these regimes. In regime Á, the
8-periodic contribution is small, due to the positive sign of Re[f(ε)], and this contribution becomes significant
in regime Â, as the sign of Re[f(ε)] becomes negative.

with ε > 0. The bifurcation parameter is given by λ = λ0 + εn, and in this case, it changes slowly
over time. In previous studies [31, 33, 29], this has been shown as an example of a “canard” solution, in
which the behaviour appears to remain near the unstable solution for an extended period of time, before
rapidly jumping to approach the stable solution with higher periodicity. As n increases, this parameter
will pass through values across which the solution stability is known to change. When λ0 + εn = 3, the
1-periodic equilibrium becomes unstable, and the 2-periodic equilibrium becomes stable. As n increases
further, eventually λ exceeds 1 +

√
6, and the 2-periodic equilibrium becomes unstable, with the 4-periodic

equilibrium becoming stable. This process continues until the bifurcation parameter becomes sufficiently
large that the solution becomes chaotic. For the problem studied here, we will set λ0 = 3 and y(0) = 2/3.

In [40], it was shown that a discrete multiple scales approach can be used to describe this behaviour
asymptotically. This approach required balancing several different timescales, and using asymptotic match-
ing to connect the solutions in each different asymptotic region.

In this section, we will show that this process can be described using a transseries approach, with
the resulting expansion to be valid even as the solution behaviour changes dramatically, and increases in
periodicity. We will now show that transseries provide a systematic and generally more accurate approach
than the multiple scales procedure of [40] in describing the solution behaviour as it transitions from an
unstable to a stable manifold; this will demonstrate that transseries expansions can be used to effectively
capture canard behaviour in discrete systems.

We will show the first stability transition in detail. We will subsequently provide an outline of how this
method can be extended to describe the second transition, together with some results; however, the algebraic
manipulations for this process are quite involved, and the precise details will be omitted.

3.1 2-periodic solution

3.1.1 Transseries ansatz

The difference from (5) above is that in the prefactor of the r.h.s. the perturbative parameter ε is replaced
now by x. We again begin by applying a multiple scales ansatz, and expanding as a transseries in a continuous
variable x. Setting x = εn and R(x) = y(n) gives

R(x+ ε) = (3 + x)R(x)[1−R(x)], R(0) = 2
3
. (58)

We again formulate an ansatz for the solution in terms of ε and a transseries parameter σ0. The ansatz is
identical to that given in (6), but has been included below for convenience:

R(x, ε;σ0) =

∞∑
m=0

σm0 e−mA(x)/εRm(x, ε), Rm(x, ε) ' εβm
∞∑
k=0

εkRm,k(x), (59)

where βm will again be chosen such that Rm,0 takes nonzero value. It is straightforward to compute the first
few terms of the algebraic portion of the series expression, corresponding to m = 0 in (59), which gives a
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power series expression for the non-periodic manifold. The recursion relation is given obtained by expanding
R(x+ ε) using a power series in ε, and matching powers of ε in the resultant expression. This process gives

R0,0(x) =
2 + x

3 + x
, (60)

R0,k(x) = − 1

(2 + x)

[
k∑
n=1

1

n!
R

(n)
0,k−n(x) + (3 + x)

k−1∑
n=1

R0,n(x)R0,k−n(x)

]
, k ≥ 1. (61)

The first few iterations of this recurrence relation give

R0,1(x) = − 1

(x+ 2)(x+ 3)2
, R0,2(x) =

x2 + x− 4

(x+ 2)3(x+ 3)3
, R0,3(x) = −x

4 − 2x3 − 28x2 − 33x+ 24

(x+ 2)5(x+ 3)4
.

(62)
This process may be continued indefinitely in order to continue calculating terms in the power series for the
non-periodic manifold. This process will not, however, capture the transition to the 2-periodic manifold. In
order to obtain an approximation for this behaviour, we are required to consider terms in the ansatz (59)
with m 6= 0. Continuing to the next order in σ0, we find that

e−[A(x+ε)−A(x)]/εR1(x+ ε, ε) = (3 + x)R1(x, ε)[1− 2R0(x, ε)]. (63)

As before, the argument of the exponential may be determined by expanding R1 as a power series in ε, as
well as expanding A(x+ ε) = A(x) + εA′(x) + · · · . At leading order in ε, this gives the differential equation

e−A
′(x) = − (x+ 1) = e−(2p+1)πi+log(x+1), p ∈ Z. (64)

Hence, we obtain
A(x) = (2p+ 1)πix+ x− (x+ 1) log(x+ 1), (65)

where we follow the same reasoning as the analysis used to determine (10), and absorb the constant into the
series parameter. We may again set p = 0; this choice will have no effect on the behaviour of the solution
for integer values of n.

Once A(x) has been determined, it is possible to obtain a recurrence relation for Rm(x) by applying
the first ansatz expression in (59) to the governing equation (58), and matching powers of the transseries
parameter σ0. This gives

(−1)m(1 + x+ ε)mem((1+x) log(1+ε/(1+x))/ε−1)Rm(x+ ε, ε)

= (3 + x)Rm(x, ε)[1− 2R0(x, ε)]− (3 + x)

m−1∑
n=1

Rn(x, ε)Rm−n(x, ε). (66)

It is now possible to apply the second part of the ansatz in (59) and to match powers of ε in this expression.
By direct substitution, we find that βm = m gives the result that Rm,0 is nonzero. By subsequently matching
terms which are O(ε) in the small ε limit, it is possible to generate an equation for R1,0 and a recurrence
relation for Rm,0 for m ≥ 2. We find that

(x+ 1)R′1,0(x) = −
(

2

x+ 2
− 2

x+ 3
+

1

2

)
R1,0, (67)

The initial condition in (67) may be chosen arbitrarily, as this choice may be absorbed into the transseries
parameter. Choosing R1,0(0) = 1 gives

R1,0(x) =
3(x+ 2)2

4(x+ 1)3/2(x+ 3)
. (68)

The recurrence relation for subsequent terms is given by

[(−1)m(1 + x)m + (1 + x)]Rm,0(x) = −(3 + x)

m−1∑
n=1

Rn,0(x)Rm−n,0(x), m ≥ 2. (69)

Continuing to match higher powers of ε allows for the direct computation of terms further terms such as
Rm,k, obtained by matching terms which are O(εk) in the small ε limit. The direct computation of further
terms is not required for the present analysis.
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3.1.2 Computing terms in the resummed transseries

Motivated by the analysis of the static system, and in particular the form of (15), we switch the order of
summation in the transseries (59), writing it as

R(x, ε;σ0) '
∞∑
k=0

εk
∞∑
m=0

(
σ0εe

−A(x)/ε
)m

Rm,k. (70)

A main difference from the static one is that the expansion in powers of eps is asymptotic, while the sum
over the exponentials (m ≥ 0) is convergent. Thus (70) is a formal expansion.

As for the static system, we define a new series parameter τ0, and new quantities Ωk(τ0) such that

τ0 = σ0εe
−A(x)/ε, Ωk(τ0) =

∞∑
m=0

τm0 Rm,k. (71)

It will be helpful later to note that

τ0(x+ ε) = e−(A(x+ε)−A(x))/ετ0(x) = τ0(x)
[
e−A

′(x) +O(ε)
]

as ε→ 0. (72)

The transseries expression in (70) is now given by

R(τ0, ε) '
∞∑
k=0

εkΩk(τ0). (73)

We can now apply this expression to (58) and match orders of ε. At leading order, we find that

Ω0

(
e−A

′(x)τ0
)

= (3 + x)Ω0(τ0)(1− Ω0(τ0)), (74)

where (72) was used to obtain the leading-order on the left-hand side. At this stage, we could mechanically
obtain the function Ω0 as a Taylor series in τ0, which is convergent, with some finite radius of convergence.
It happens, however, that there exists a particularly convenient variable transformation that converts the
right-hand side from a dilation to a translation. If we define a new variable y such that y = −x log(τ0)/A′(x),
the expression in (74) becomes

Ω0(y + x) = (3 + x)Ω0(y)(1− Ω0(y)). (75)

This expression has the same form as the static logistic map equation, given in (5), with x in place of ε.
Furthermore, since x = εn, it is valid to apply the asymptotic solution derived for this expression in Section
2.1. As we are interested in capturing the first transition, across which the solution switches from having no
periodic component to having a 2-periodic component, we can directly apply the transseries expression for
the 2-periodic solution given in (17).

In order to take into account the form of (75), we must replace ε and x with x and y respectively in
(17). We must also replace the τ0 in this expression with a new transseries parameter τ0, in which ε and x
are again replaced with x and y respectively. This gives

τ0(y, x) = σ0

√
xe−iπy/x+y log(1+x)/x = σ0

√
xe(iπ+log(1+x)) log(τ0)/A

′(x) = σ0

√
xτ0, (76)

where σ0 is a new transseries parameter that remains to be determined. Making the appropriate substitutions
in (17) now gives the form of Ω0(y) as

Ω0(y) =
2 + x

3 + x
+
√
x
∞∑
k=0

xkΩo,k(τ0) + x
∞∑
k=0

xkΩe,k(τ0), (77)

where Ωo,k and Ωe,k are defined in (16), and Ωo,k and Ωe,k for k = 0 and k = 1 are given explicitly in (19)
and (21) respectively.

In a typical problem of this form, σ0 would be determined using the fact that Ω0 = 2/3 at y = 0;
however, this is enforced by the transformation y = −x log(τ0)/A′(x), which forces x to be zero if y = 0.
Consequently, the initial condition cannot be used to determine σ0. This is to be expected, as the the initial
condition will instead be used to determine the original transseries parameter σ0.

Instead, we expand (77) as a Taylor series about x = 0 using the form of Ωo,0 and Ωe,0 given in (19).
This gives

Ω0(y) =
2 + x

3 + x
+ σ0xτ0 −

3

2
(σ0xτ0)2 + . . . , (78)

where the omitted terms are O(x3τ20 ). We may now match powers of τ0 with (70) to determine that
xσ0 = R1,0, which was explicitly calculated in (68). We therefore find that

σ0 =
3(x+ 2)2

4x(x+ 1)3/2(x+ 3)
. (79)
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Figure 6: The plot in (a) shows the approximation (82) and exact solution of (57) for ε = 0.001. The difference
between these is shown in (b). The points labeled À, Á and Â will be referenced below in Figure 7. We see that
the error reaches a maximum at the start of the 2-periodic regime. It then decreases, although will eventually
increase as n grows, due to the increasing influence of the 4-periodic region which was not computed. Note
that the small error at the point labelled Â corresponds to the value where the approximation crosses the exact
solution. This occurs at some point in the 2-periodic region for any choice of ε, and therefore does not signify
a special parameter choice. It is an artifact of the error calculation.

3.1.3 Initial Condition

We have now explicitly calculated all of the required quantities for the transseries approximation except
for σ0, which must be determined from the initial condition at x = 0. At x = 0, it follows that τ0 = σ0ε.
Consequently, the initial condition is given by R(τ0 = σ0ε, x = 0) = 2/3, which we apply to the first
expression in (59). We then express σ0 as a power series in ε, where the series terms are functions of Rm,k
for various values of m and k, giving

∞∑
m=0

σm0 Rm(0, ε), where σ0 =

∞∑
j=0

εjσ0,j . (80)

Using the second expression from (59) and matching powers of ε allows us to compute σ0,j . We have obtained
enough Rm,k terms to solve for σ0,0, giving

σ0 = −R0,1 +O(ε) =
1

18
+O(ε). (81)

Computing subsequent series terms for σ0 requires values of Rm,k that are not presented in this study, as
even this first order approximation is sufficiently accurate as we now show.

3.2 Error comparison

As a consequence of the preceding analysis, we are able to derive an approximation for the solution to the
slowly-varying logistic equation (58), which we denote Rapp. Combining (16), (71), (76), (77), (79) and (81),
we find an approximation for the transseries solution

R(x) ≈ Rapp(x) =
2 + x

3 + x
+ x1/2Ωo,0(τ0) + xΩe,0(τ) + x3/2Ωo,1(τ0) + x2Ωe,1(τ0), (82)

where

τ0 ≈
ε(x+ 2)2e−(πix+x−(x+1) log(x+1))/ε

24x1/2(x+ 1)3/2(x+ 3)
. (83)

The most useful feature of this approximation is that it is valid before, during, and after the transition region
in the slowly-varying logistic equation. We illustrate an example comparison in Figure 6(a), corresponding
to ε = 0.001. The approximation is shown as blue dots, and overlaid on top of the exact solution, shown as
red circles. The two solutions are visually almost indistinguishable.
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Figure 7: This figure shows the error in the dynamic system at the three points identified in [40] as belonging
to the inner region, transition region, and outer region, shown as points À, Á and Â in Figure 6. In each case,
the error is shown as a blue curve. This curve becomes smaller as ε decreases. The point at which the error
dips is an artifact of the observation that the approximation crosses the exact solution at the identified point for
this choice of ε, and does not represent any significant phenomenon within the transseries approximation. The
cause of this behaviour is explained in more detail within the description of Figure 6. We have chosen a similar
range of small parameter to the analysis in [40], shown in red. The transseries outperforms the multiple scales
method in both the transition region and the outer region, in which the exponential terms play an important
role in describing the solution behaviour. These terms are more naturally captured using transseries methods,
leading to an improved approximation.

The approximation error for this example is shown in Figure 6(b), calculated by y(n) − Rapp(εn). The
error reaches a peak following the transition region, at the beginning of the stable 2-periodic behaviour. The
error does grow in this region as n becomes large, and continues to do so until the transition to 4-periodic
behaviour occurs. This behaviour is not depicted in Figure 6(b).

In order to obtain a more complete picture of the accuracy of the transseries approximation, we deter-
mined the approximation error at three selected values of n. These values were tested in [40] relative to
other methods, to obtain representative computations of the approximation error in important parts of the
solution domain. The first point is n = b1/

√
εc. This point is found in the early non-periodic region before

the transition from non-periodic behaviour to 2-periodic behaviour occurs. It is labelled À in the example
solution from Figure 6.

For comparison, we need to identify the remaining representative points used in [40], which required the
computation of an intermediate quantity K, satisfying

K =
√

logK − 3
2

log(ε). (84)

This quantity was derived in [40] although it has been adjusted to take into account the slightly different
form for the slowly-varying logistic equation considered here. The second point falls within the transition
region between the non-periodic unstable manifold and the 2-periodic stable manifold, and is given by
n = bK + K−1/

√
εc. This point is labelled Á in the example solution from Figure 6. Finally, we also

determine the error at a point in the region where the solution has completed its transition to 2-periodic
stable behaviour. This point is given by n = bK + 15K−1/

√
εc, and is labelled Â in the example solution

from Figure 6. The error for each of these three points was studied in [40] allowing for direct comparison
between the transseries approximation and the multiple scales approximation errors.

The error for each of the three representative points over a range of ε values may be seen in Figure 7,
shown in blue. The error for the approximation from the multiple scales approximation in [40] is shown in
red for each point. In each region, both approximations are relatively accurate. In the non-periodic region,
the multiple scales approximation outperforms the transseries approximation, while in the transition and
2-periodic region, the transseries approximation is substantially more accurate.

This outcome is sensible; the transseries approximation tracks the contribution of exponentials in the
solution, and accurately incorporates them into the solution behaviour. In the non-periodic region, the
solution is best represented by an algebraic power series in ε. The multiple scales approach involves calcu-
lating this power series to several terms, while our transseries approximation relies only on the leading-order
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Figure 8: This figure shows the real and imaginary parts of B(z), corresponding to the exponential weight from
(86). The periodicity of this contribution may be determined by identifying the slope of the imaginary part,
corresponding to Im[B′(z)]. For z <

√
5−2, the weight B(z) contains an imaginary term −πi, which corresponds

to 2-periodic behaviour. After z exceeds
√

5−2, the slope of the imaginary term changes to −3πi/2, which leads
to the appearance of 4-periodic behaviour. This behaviour is not immediately apparent, as the contribution is
exponentially small if Re[z] > 0, corresponding to z < z0, where z0 ≈ 0.9951. For z > z0, the 4-periodic terms
become significant in the solution behaviour. We note that, due to the bifurcation delay, this behaviour is not
immediately visibly apparent in the solution; however, a careful analysis of the corresponding transseries terms
will identify the transition between 2-periodic and 4-periodic behaviour.

behaviour of this series. In the transition and 2-periodic region, however, these exponential contributions be-
come more significant, and this corresponds to the transseries approximation becoming more accurate than
the multiple scales approximation. While the multiple scales approximation is able to capture some of the
exponential behaviour, the transseries approximation is able to incorporate several exponential corrections in
a straightforward fashion, producing greater accuracy in the solution regions where these corrections play an
important role. Furthermore, increasing the accuracy of the transseries approximation in the non-periodic
region can be done systematically by including higher corrections in ε.

Finally, we note that there are points in Figure 7(b)–(c) where the error appears to drop to zero. This
corresponds to a coincidental crossing between the approximation and actual solution occurring at this value
of n. The crossing may be seen in the example solution from 6 at n ≈ 250. Any solution with a reasonable
amount of accuracy will have some value of n where this crossing occurs; this does not provide any added
insight into the accuracy of the approximation.

3.3 4-periodic solution

From Figure 1, we see that as n increases, eventually the bifurcation parameter becomes sufficiently large
that the solution becomes 4-periodic. As discussed in Section 2.2.2, this higher periodicity must be encoded
in the transseries solution as the weights of new exponential scales. We will not perform a full explicit
calculation here, but we will demonstrate that these exponential weights do, in fact, predict the emergence
of stable behaviour with higher periodicity.

We include a new term with transseries parameter σ1, and the analysis suggests that it is natural to
define a new scaled variable z = 2nε. This new contribution to the transseries, denoted S(z, ε;σ1), is given
by

S(z, ε;σ1) =

∞∑
m=0

σm1 e−mB(z)/εSm(z, ε). (85)

By adding S as a perturbation to the 2-period solution approximated by (82) and balancing terms in (58)
in a similar fashion to Section 3.1.1, we obtain an equation for B(z) that gives

B(z) = −πiz + z − z

2
log(1− z(4 + z)) + (

√
5− 2) log

( √
5− 2√

5− 2− z

)
− (
√

5 + 2) log

( √
5 + 2√

5 + 2 + z

)
, (86)

where the constant of integration is picked to set B(0) = 0 for convenience, though this choice may be
absorbed into the parameter σ1. The behaviour of B(z) is depicted in Figure 8. There are two significant
conclusions that may be drawn from this figure. In Figure 8(b), we see that

Im[B′(z)] =

{
−π z <

√
5− 2

−3π/2 z >
√

5− 2
(87)
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Noting the format of (85), we see that this exponent changes from 2-periodic behaviour to 4-periodic be-
haviour when crossing the value z =

√
5−2. This change in exponent gives rise to 4 different branches in the

solution, and therefore explains the onset of 4-periodic behaviour in the solution to the dynamical logistic
equation.

The second important observation is that this 4-periodicity is not immediately apparent in the solution,
due to the behaviour of Re[z]. In Figure 8(a), we see that there is a value of z, denoted z0 and located at
z0 ≈ 0.9951, at which the real part of B(z) changes sign from positive to negative. From the form of (85),
we see that this corresponds to the 4-periodic transseries contribution being exponentially small for z < z0,
before growing to have a significant impact on the solution behaviour for z > z0.

This value of z0 corresponds to 4-periodic behaviour becoming apparent at n ≈ 0.4975/ε. For example,
in Figure 1, we would expect that 4-periodic solution to become significant at n ≈ 3455, which is consistent
with the appearance of the second transition region in this image.

A more detailed transseries analysis would permit us to calculate a series approximation for the 4-
periodic behaviour; however, as we expected from the transseries approach, a straightforward analysis of the
exponential weights in the transseries is sufficient to explain the onset of the higher periodicity, and identify
the location in z (and hence, in n) where this transition to dominant 4-periodic behaviour takes place.

Finally, we note that the points where the periodicity changes correspond to values of n where the real
part of the exponential weights changes sign, or z0 in Figure 8. In asymptotic analysis, this corresponds
to the crossing of a curve known as an anti-Stokes curve. This suggests that the Stokes phenomenon plays
a role in this system behaviour. In fact, the solution does contain Stokes curves, which are responsible for
appearance of exponential factors in the solution; however, finding these Stokes curves requires continuing
the solution in the negative-n direction, and was therefore not presented here. Nonetheless, the study the
Stokes phenomenon in the dynamic logistic map is an interesting and rich subject which is beyond the scope
of the present work.

4 Discussion

We have obtained transasymptotic approximations for the solutions to both the standard and slowly varying
logistic equation. In each case, we were able not only to reproduce the results calculated in [40] using
multiple scales asymptotic methods, but to go significantly further.

As, a priori, transseries methods allow for the straightforward calculation of higher-order exponentials,
the transseries approximation was able to represent the solution more accurately than the multiple scales
method both during and after the delayed bifurcation, as seen in Figure 7; during and after the birfurcation,
the initially subdominant exponentials contribute significantly to the solution, so it should be expected that
the transseries approximation would be particularly accurate compared to other methods in these regions.

Furthermore, the transseries approach can still provide a useful approximation when the parameter ε is
not particularly small, as the solution can simply be rescaled to determine the next asymptotic weight.

We considered the dynamic logistic equation with ε > 0, producing a cascade of delayed bifurcations. If
ε < 0, causing the bifurcation parameter to decrease rather than increase, bifurcations appear earlier than
the solution stability would suggest, rather than later [7]. A transseries approach could be used in almost
identical fashion to the present study in order to approximate these accelerated bifurcations; however, that
analysis is beyond the scope of this study.

There are several significant and general advantages to the transseries resummation approach. The first
is that the method we have described can be applied in systematic fashion to a wide range of problems,
including both discrete and continuous systems. Whilst such advantages have already been seen elsewhere,
in the context of the logistic equation it has been instructive to compare this to the multiple scales approach
from [40], which required the careful comparison of asymptotic terms up to several orders. In order to
capture the fast discrete scale, as well as both the inner and outer continuous scales near the bifurcation,
asymptotic matching was performed through three scales.

The transseries approach here was able to reproduce this behaviour by resumming the series in or-
der to ensure that the transasymptotic approximation contained behaviour encoded in the subdominant
exponentials; this behaviour contained all of the information found using asymptotic matching methods.
Furthermore, improving approximation accuracy by computing more terms of a multiple scales expansion
requires comparing the asymptotic behaviour of more terms and checking to determine when the relative
dominance of terms changes, while obtaining a more accurate transseries expression simply requires the sys-
tematic calculation of further series terms in the transseries. While these calculations can prove challenging,
the steps required to obtain the subdominant exponentials, and the associated solution behaviour, follow
the same consistent process at each stage which it is applied.

Computing the subdominant exponentials is not valuable simply in that it produces a more accurate
approximation. In fact, a second major advantage of the transseries method is that the exponential weights
have a significant effect on the system behaviour, and computing just these weights can tell us the form of the
solution as parameters in the problem vary. In our analysis of the standard logistic map, we showed that 2-,
4-, and 8-periodic behaviour can be determined simply by carefully studying the subdominant weights. This
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explains the appearance of higher periodicities in the solution, and suggests that if this process is continued,
it can be used to study further bifurcations in the period doubling process.

In our subsequent analysis of the period doubling cascade found in the slowly varying logistic equation,
we were able to predict the onset of 2-periodic and 4-periodic behaviour in the solution, simply by studying
the relative size of the exponential weights associated with the 2- and 4-periodic contributions. It would
be particularly interesting to continue to investigate how the full period doubling cascade is encoded in the
exponential weights of this system, and whether this can provide (at least theoretically) further insight into
the period doubling route to chaos.

Finally the full analysis of the movements of exponential contributions between Riemann sheets, seen
in the dynamic logistic map, also merits further investigation. Examples of such phenomena have been
observed recently in novel features of aeroacoustic flows [53, 54]. Initial explorations appear to suggest this
is commonly found in other physical and mathematical contexts.
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[32] A. Fruchard and R. Schäfke. Bifurcation delay and difference equations. Nonlinearity, 16(6):2199, 2003.
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2019.

[38] A. Grassi, M. Mariño, and S. Zakany. Resumming the string perturbation series. JHEP, 1505:038,
2015.

[39] V. Hakim and K. Mallick. Exponentially small splitting of separatrices, matching in the complex plane
and borel summation. Nonlinearity, 6(1):57–70, jan 1993.

[40] C. L. Hall and C. J. Lustri. Multiple scales and matched asymptotic expansions for the discrete logistic
equation. Nonlinear Dynamics, 85(2):1345–1362, 2016.
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[51] R. Schiappa and R. Vaz. The Resurgence of Instantons: Multi-Cut Stokes Phases and the Painlevé II
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A Explicit transseries terms

In (17), the transseries for R(τ0, ε) is written in terms of a base approximation R0(ε), a sum of odd terms
in τ0, denoted Ωo,k, and a sum of even terms in τ0, denoted Ωe,k. We further simplify this by writing
R(τ0, ε;σ0) = R(ε) + S(τ0, ε), where

S(τ0, ε) =
√
ε

∞∑
k=0

εkΩo,k(τ0) + ε

∞∑
k=0

εkΩe,k(τ0). (88)

We note that τ0(x+ ε) = −(1 + ε)τ0(x). Consequently,

S(τ0(x+ ε), ε) = S(−(1 + ε)τ0(x), ε). (89)

Applying (88) and (89) to the logistic equation (5) gives

S(−(1 + ε)τ0, ε) = −(1 + ε)S(τ0, ε)− (3 + ε)S(τ0, ε)
2. (90)

Expanding the left-hand side of this expression as a Taylor series in ε gives

S(−(1 + ε)τ0, ε) =

∞∑
j=0

(−τ0ε)j

j!
R(j)(−τ0)

= −
√
ε

∞∑
m=0

εm
m∑
k=0

τk0
k!

Ω
(k)
o,m−k(τ0) + ε

∞∑
m=1

εn
m−1∑
k=0

τk0
k!

Ω
(k)
e,n−1−k(τ0), (91)

where we used the fact that Ωo,k and Ωe,k are odd and even in τ0 respectively. The remaining expansions
in (90) may be obtained by substitution of (88) into (90). It is straightforward to show that

R(τ0, ε)
2 = 3

∞∑
m=1

εm
m−1∑
k=0

Ωo,k(τ0)Ωo,m−1−k(τ0) (92)

+
√
ε

∞∑
m=1

εm
m−1∑
k=0

Ωo,k(τ0)Ωe,m−1−k(τ0) +

∞∑
m=2

εm
m−2∑
k=0

Ωe,k(τ0)Ωe,m−2−k(τ0). (93)

These expansions may now be used to equate powers of ε and obtain the expressions given in (19) and (21).
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B Initial Condition for 4-Periodic Equation

In order to calculate the initial condition for the 4-periodic problem, we first recall that R̂(x, ε) was derived
in order to satisfy the initial condition for small ε. The 4-periodic solution arises for ε > −2 +

√
6, or η > 0.

Hence, we determine the initial condition by perturbing around the leading-order behaviour of R̂(x, ε), which
is initially 2-periodic for the parameter regime under consideration. We then determine σ1 by matching with
the initial condition in the limit that η → 0.

We first obtain stable 2-periodic behaviour of R(x, ε) from (4), letting x = 0 in order to describe the
initial state. This expression may be written in terms of η, to allow a small η expansion in this limit. This
gives

R̂(0, ε) =
4 + ε+

√
ε(4 + ε)

2(3 + ε)
∼ 1

5

(
2−
√

3 +

√
2 +
√

3

)
+

η

50

(
3
√

2− 16
√

3− 7
√

6 + 12
)

+
3η2

250

(
−47
√

2 + 84
√

3 + 18
√

6− 38
)

+O(η3). (94)

Setting x = 0, letting σ1 = σ1,0 + ησ1,1 + . . ., and expanding S in powers of η gives

S(0, ε) ∼ ησ1,0 + η2
(
− 5

12
(14− 7

√
2− 4

√
3 + 4

√
6)σ3

1,0 + (3
√

3−
√

6 + 3
2

√
2− 1)σ2

1,1 + σ1

)
+O(η3) (95)

To determine the appropriate initial condition, we fix the case for η = 0, which gives

R(0, ε) =
1

5

(
2−
√

3 +

√
2 +
√

3

)
. (96)

By setting R(0, ε) = R̂(0, ε) + S(0, ε), and matching powers of η, we can obtain

σ1 = − 1

50

(
3
√

2− 16
√

3− 7
√

6 + 12
)

+
η

500

(
297
√

2− 709
√

3− 189
√

6 + 399
)

+O(η2), (97)

This is sufficient information to approximate the solution using the transseries behaviour, although it is
straightforward to continue this process to obtain higher corrections for σ1.
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