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Abstract
Transseries expansions build upon ordinary power series methods by includ-
ing additional basis elements such as exponentials and logarithms. Alternative
summation methods can then be used to ‘resum’ series to obtain more effi-
cient approximations, and have been successfully widely applied in the study
of continuous linear and nonlinear, single and multidimensional problems. In
particular, a method known as transasymptotic resummation can be used to
describe continuous behaviour occurring on multiple scales without the need
for asymptotic matching. Here we apply transasymptotic resummation to dis-
crete systems and show that it may be used to naturally and efficiently describe
discrete delayed bifurcations, or ‘canards’, in singularly-perturbed variants of
the logistic map which contain delayed period-doubling bifurcations. We use
transasymptotic resummation to approximate the solutions, and describe the
behaviour of the solution across the bifurcations. This approach has two sig-
nificant advantages: it may be applied in systematic fashion even across multi-
ple bifurcations, and the exponential multipliers encode information about the
bifurcations that are used to explain effects seen in the solution behaviour.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Transseries are a natural extension to classical asymptotic power series which are used to study
systems in which the solution behaviour depends on multiple distinct exponential scales. A
transseries represents the solution to a system as the sum of multiple power series, each multi-
plied by a different exponential prefactor [29]. The value in this approach is that a transseries
developed in one region of parameter space can typically be extended into regimes in which
the solution depends on different scales, simply be applying different summation methods
to the transseries itself, without the need to rebalance the equation terms and apply matched
asymptotic expansions to connect the regimes.

Transseries and summation techniques have been used to study the behaviour of a wide
range of parameter-dependent continuous systems. Applications include the study of general
nonlinear ordinary differential equations [13, 14, 44, 55], the first Painlevé equation [5, 36,
56], topological string theory [19, 40], field theory and semi-classical quantum mechanics [4,
9, 24, 27, 39, 51], relativistic hydrodynamics and Einstein partial differential equations [3, 12,
43], and q-series and knot invariants [26, 35]. More recently transseries methods have been
extended to study of discrete problems, such as particular matrix models governed by the first
discrete Painlevé equation [5, 20, 52, 57, 58]. The role of exponential scales in discrete maps
and chaos has been previously analysed in the context of Stokes phenomena [37, 41, 53, 59].

The transasymptotic method introduced in [14–16] consists of constructing a transseries
in terms of some small parameter ε. The transseries terms are then reordered, and higher-
order exponential terms at each order of the small parameter are summed. This change of
summation order, or ‘resummation’, captures the behaviour of the system in regions where
different exponential terms dominate the solution. Transasymptotic methods have been used
to determine the location of moveable poles in Painlevé equations directly from asymptotic
solutions [6, 16] (see also [17, 18]). In this work, we show that these transseries and summation
approaches can be used in a systematic fashion to identify complicated bifurcations in discrete
systems that typically require careful application of multiple scales [42] or renormalisation
methods [8].

In this study, we demonstrate that transseries resummation can be used systematically to
accurately capture the behaviour of the solution to a discrete equation containing a periodic-
doubling cascade with delayed bifurcations. Such a solution is illustrated in figure 1, which
shows a solution to the slowly varying logistic equation, given in (1) with λ = 3 + εn. The ape-
riodic3 solution manifold is unstable forλ > 3, corresponding to n = 0. The solution behaviour
does not immediately become two-periodic at n = 0. Instead, the behaviour remains close to
the unstable aperiodic manifold before jumping rapidly to the two-periodic stable manifold
at n ≈ 300. Similar behaviour may be seen in the jump from two-periodic to four-periodic
behaviour in the solution. The two-periodic manifold becomes unstable at n = 3122; however,
solution begins to demonstrate visible four-periodic behaviour in a rapid change at n ≈ 3500.
These jumps are examples of delayed period-doubling bifurcations.

3 It would be consistent with other terminology of this paper to refer the single-valued solution manifold as ‘one-
periodic’, to be consistent with the use of ‘n-periodic’ to describe the multi-valued solution manifolds. We instead
choose ‘aperiodic’ to emphasise that solutions on this manifold do not contain discrete-scale variation.
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Figure 1. Solution to logistic equation (1), where λ = 3 + εn with ε = 0.001 44.
The period-doubling cascade is apparent; the transition between aperiodic and two-
periodic behaviour is visible, as is the transition between two-periodic and four-periodic
behaviour. As the solution continues, it eventually becomes chaotic. The two-periodic
behaviour in the solution begins to contribute immediately, but is not immediately vis-
ibly apparent due to the delay in the bifurcation behaviour. From exponential weights
associated with the four-periodic solution, calculated in (89) and depicted in figure 7,
we will determine that solution begins to display four-periodic behaviour at n ≈ 3455,
but that it will not immediately be visible. This value of n is marked with a red line, and
the jump becomes apparent soon after this point.

Delayed bifurcations may occur in dynamical systems where an underlying parameter is
itself slowly varying and the solution initially clings to a metastable branch of the solution
before eventually jumping to the stable branch. They have been studied widely in systems
of ordinary differential equations (see, for example [63]). These ‘slow-fast’ systems have
behaviour occurring on two (or more) distinct timescales, with the solution trajectory remain-
ing near to an unstable solution for a significant distance after stability has been lost; solutions
containing this behaviour have been termed ‘canards’.

There has been a significant volume of work studying the asymptotic behaviour of canards
in continuous settings, see for example, using composite asymptotic expansions in [10, 28,
33], steepest descent analysis [38], and Borel summation methods in [25]. Borel summation
methods are closely connected to transseries resummation methods (see [2]), and have been
used to study discrete problems, as in [54]. This motivates the idea that transseries resummation
methods could be a useful technique for studying delayed bifurcation behaviour. In the present
study, we will focus on delayed bifurcations appearing in discrete systems, and in particular,
singularly perturbed variants of the logistic map.

We will show that period doubling bifurcations depend on the interaction between differ-
ent exponential factors, and it is therefore advantageous to represent them explicitly using
transseries. By expanding in the asymptotic limit, we may determine terms in the algebraic
power series to determine the initially stable aperiodic solution. The next step will be to reorder
the transseries terms and perform a transasymptotic resummation, which will produce an accu-
rate description of the doubling phenomena. This approach has the additional advantage that
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it allows us to determine further subdominant exponential scales in the transseries explicitly
which dictate subsequent doubling bifurcations present in the solution.

By incorporating a multiple scales ansatz into the transseries expression, we will shown
that transseries resummation—which was developed to describe continuous behaviour—can
be used to calculate discrete variation without any further analysis to the transseries method.

We study here two variants of the ubiquitous (and generic) standard logistic map

y(n + 1) = λy(n) [1 − y(n)] , 0 < y(0) < 1, (1)

where λ is a dimensionless bifurcation parameter 0 < λ � 4. If y(0) is selected from outside
this range, the map becomes unbounded as n increases.

This system contains a period-doubling route to chaos, found by allowing the parameterλ to
vary. In the range 1 < λ < 3, this system tends to a stable equilibrium without periodic effects.
In the range 3 < λ < 1 +

√
6, the system tends to a two-periodic stable equilibrium. Increasing

λ beyond 1 +
√

6 produces systems that tend to stable equilibria with higher periodicity. For
λ > 4, the map is unbounded for large n, and does not demonstrate chaotic behaviour. Period-
doubling may be seen for negative values of λ in the range −2 < λ < −1, but we will not
consider these values here.

The earliest study of the delayed bifurcations in the slowly-varying logistic map is [8],
who applied renormalisation methods to derive asymptotic scaling laws for the delays between
period doubling, and performed analysis and numerical experiments to determine the location
of the bifurcation points. In addition to establishing specific results about the slowly-varying
logistic map, this study established that delayed bifurcations can play an essential role in the
behaviour of discrete systems. Similar methods were used to study delayed bifurcations in
more general unimodal maps [21], as well as discrete maps with noise [7, 22, 23].

Further studies of this system appeared in subsequent years. In [30, 31, 33], the existence
of canard solutions was rigorously proven in general classes of discrete maps that include
the slowly-varying logistic map. Further discussions of canard solutions to both discrete
continuous and discrete dynamical systems are given in [32, 34].

In more recent years, this system was studied using matched asymptotic expansions and
multiple scales methods [42]. The purpose of this previous work was to show that the method
of multiple scales could be used to combine a ‘fast’ discrete timescale with a slow time variable
that could be treated as continuous, while still capturing the essentially discrete-scale behaviour
present in the problem. By carefully balancing terms, the authors were able to identify the
bifurcation points and produce accurate asymptotic approximations to the solution behaviour
on both sides of the delayed bifurcation. In the works described here, the slowly-varying logis-
tic equation has provided a useful testing ground for treatments of discrete systems, due to the
complicated behaviour that it produces.

In addition to the slowly-varying logistic equation, multiple scales-based approaches which
describe a system in terms of a fast discrete timescale and a slow continuous timescale have
been used to study asymptotic effects in a number of other discrete systems. This includes the
study of Stokes phenomena in discrete Painlevé equations [46, 48, 49], Frenkel–Kontorova
models [50], and discrete variants of the Korteweg–de Vries equation [47] and nonlinear
Schrödinger equation [1].

It has been shown in [44] that transseries approaches may be used to improve upon asymp-
totic results obtained using matched asymptotic expansions. In that study, transseries resum-
mation methods were used to obtain a uniform approximation to a continuous problem that
had been previously solved using multiple scales methods. The transseries approach was able
to naturally incorporate higher exponential terms, and thereby improve on the accuracy of the
results, even for values of the perturbation parameter that were not extremely small. Motivated
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by this result, we will show that transseries resummation can be used to improve on existing
multiple scales results in discrete systems.

In section 2 we will first study the ‘static’ logistic map, corresponding to λ = 3 + ε for a
fixed choice of (small) real parameter ε. This will be used to introduce and to demonstrate the
technical details of the transseries process.

The second variant, studied in section 3, is the ‘dynamical’ logistic equation, which has
a slowly increasing bifurcation parameter λ = 3 + εn. In this case, the bifurcation parameter
grows, with different solutions becoming stable and unstable as n increases. This behaviour,
described earlier, is illustrated in figure 1 for ε = 0.001 44. The first change in stability occurs
for λ = 3, corresponding to n = 0. The second change in stability occurs for λ = 1 +

√
6,

corresponding to n = 3122. In each case, the jump to two- and four-periodic behaviour does
not occur at this value of n, but is delayed, appearing as a rapid jump at n ≈ 300 and n ≈ 3500
respectively.

Apart from the pedagogical aspects of demonstrating the applicability of transseries to
such problems to recover and extend existing results, in this work we demonstrate four main
enhancements.

Firstly, we show that transseries resummation can capture the behaviour of solutions to both
a static and slowly-varying logistic map in a systematic and efficient fashion. The multiple
scales method used by [42] was able to produce asymptotically valid approximations to the
solution, but the process requires a careful expansion and asymptotic matching each time a
bifurcation occurs. The transseries resummation approach used here is systematic, without any
need for matching, and can be applied in largely identical fashion to capture each successive
bifurcation.

Secondly, transseries resummation allows us to capture behaviour when the bifurcation
parameter is not necessarily small. In [42], the static logistic map was studied in the limit that
the bifurcation parameter was close to three, leading to two-periodic behaviour in the static
map. In this study, the transseries resummation approach allows for the study of larger values
of the bifurcation parameter, describing four- and eight-periodic behaviour in the static map.

Thirdly, we demonstrate that transseries can capture and control the onset of period-
doubling behaviour through in terms of exponential weights in the transseries coupled with
their resummation. By studying these exponential terms, we are able to determine precisely
when higher-periodicity behaviour appears in the solution, and when the bifurcation starts to
grow. We will show that transseries resummation can approximate the behaviour of two- and
four-periodic solutions, and that calculating the transseries exponential terms can explain the
onset of higher four- or even eight-periodic behaviour as the bifurcation parameter grows. In
principle the method could be continued in the same fashion to determine this behaviour as the
dynamic map sweeps through subsequent bifurcations.

Fourthly, we are able to use transseries summation to significantly improve the approxima-
tion accuracy of the solutions over and above that afforded by matched asymptotics in several
parameter regimes, with minimal, if any, additional effort. The increase in accuracy is a con-
sequence of the inclusion of multiple exponential scales in the solution approximation, and is
most apparent in parameter regimes in which different exponential scales all contribute to the
solution behaviour.

1.1. Outline of the transseries and transasymptotic methodology

We first summarise the general methodology that we will study the logistic map (1) using
transseries and summation techniques, and explain how this is able to identify origin of delayed
period-doubling bifurcations in the solution. We will consider two variants of this map. This
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first, in which λ depends on a small ε, is denoted here as the static case, or both n and ε, denoted
here as the dynamic case.

1.1.1. Transasymptotic method for studying the onset of two-periodic behaviour. The logistic
map is a discrete problem, while transseries and summation techniques were developed to study
problems in continuous settings. We will therefore introduce a continuous parameter x = nε,
where ε is taken to be a small parameter, and analyse the problem

R(x + ε) = λ(ε)R(x)(1 − R(x)). (2)

In a similar approach to multiple scales asymptotics, we treat the new ‘slow’ continuous vari-
able x as being independent of the ‘fast’ discrete variable n. We retain this independence by
allowing our solution to be a function of x and ε (which is equivalent to allowing for fast
variation in the discrete parameter).

We will obtain a formal solution in the general form of a so-called one-parameter transseries
[29]:

R(x, ε;σ0) =
∞∑

m=0

σm
0 e−mA0(x)/εεm/2

∞∑
k=0

εkRm,k(x). (3)

This type of transseries is a formal expansion in both powers of the small parameter ε and
the monomial τ0 =

√
εσ0 e−A0(x)/ε. In this formulation, we introduce a parameter σ0 into the

problem, which will be fixed by the initial conditions. While σ0 is not small, it does act as an
index for the small parameter τ 0. This transseries expansion is valid in the regime where both
ε and τ 0 are small. By treating x as an continuum variable independent of n, we can remain in
a regime in which τ 0 is small, and the transseries expansion (3) is well-defined.

To study period-doubling bifurcations, we must consider behaviour that lies outside of this
regime. We are interested in taking n to be sufficiently large that we can detect the two-periodic
solution that appears as a consequence of the first period-doubling bifurcation. This lies outside
of the radius of convergence of the transseries summed over powers of τ 0. In order to study the
solution behaviour outside of its regime of validity, we apply the summation procedure known
as transasymptotics.

We first rewrite the transseries (3) by changing the order of summation, giving

R(x, ε) =
∞∑

k=0

εk
∞∑

m=0

τm
0 Rm,k(x) =

∞∑
k=0

εkΩk (τ0, x) . (4)

Here, we have defined the functionsΩk (τ , x) as the analytic continuations of the sum in powers
of τ 0. If we can find these functions, then we can evaluate the transseries solution in regions
where τ 0 is large (that is, regions in which n is not small). This will allow us to extend the
range of our solution outside of the regime of transseries validity.

We find Ωk by rewriting the original logistic map to include the explicit dependence on
τ 0(x, ε). Applying the reordered expression (3) to the resultant expression produces a set of
differential equations for the functions Ωk (nonlinear for k = 0, and linear for k � 1), which
can be solved exactly. We will find that this procedure allows us to approximate the two-period
solution very accurately using only the first few terms of the series (4). Importantly, the func-
tions Ωk do not become large when τ 0 is large; they are instead finite in this limit, making the
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sum in the transseries over powers of ε either convergent (for the static case) or asymptotic (for
the dynamic case).

The final step to the transasymptotic procedure is to determine the value of the free param-
eter σ0. This is done by evaluating the transseries at x = 0 (corresponding to n = 0) and
matching σ expressed as a power series in ε to the initial condition R(0, ε).

1.1.2. Studying higher-periodic behaviour using exponential weights. We have described a
systematic procedure which we will use to study the logistic map solution as two-period
behaviour appears in the solution. A further aim of this study is to show that the preceding
mathematical framework can be used to study the appearance of higher periodicity behaviour
in the solution. From our transasymptotic analysis, we will determine that the origin of the
two-periodic solution behaviour is a consequence of the exponential factor e−A0(x)/ε, included
in the parameter τ 0, as it becomes large. By extension, we will show that further exponential
weights in the transseries are responsible for subsequent period-doubling bifurcations.

When a transseries ansatz is used to solve a particular differential or difference equation, we
generally obtain all possible values of the exponential weight A0(x) in straightforward fashion.
However, the current problem displays behaviour not seen in previous studies on differential
and difference equations. For example, in the static problem, we will find that the different
exponential weights responsible for successive bifurcations are not active until certain critical
values of ε are reached (that are different for each exponential weight). Similar behaviour will
be seen in the dynamic problem. Hence, more care is required in order to determine these
weights.

Our procedure to obtain the subsequent exponential weights is as follows:

• We start with the transseries solution and take x to be sufficiently large such that the two-
periodic behaviour in the solution has stabilised; we will denote this expression as R0(x, ε).
We may then expand R0 for large τ 0 and retain the leading order in this expansion.

• We then perturb the result by a new transseries R1, such that

R (x, ε) = R0 (x, ε) + R1 (x, ε) . (5)

Applying this ansatz to the original map produces a linear equation for R1, which can be
analysed in a similar fashion to the two-periodic bifurcation.

• We obtain a transseries expression for R1, including the exponential weight A1(x, ε), expo-
nential variable τ 1, a new transseries index parameter σ1, and the coefficients of the
transseries expansion.

• In order to extend the regime in which the series is valid, we perform a transasymptotic
summation of the system, allowing the solution to be extended into the region in which τ 1

is not small.
• We finally determine the parameter σ1 as a series in ε to obtain the four-periodic solution

behaviour4.

We will use this process to obtain exponential weights that govern four-periodic behaviour
in the logistic map solutions. Studying these exponential weights will explain why this
behaviour did not appear in a straightforward small ε analysis. The new exponential weight A1

behaves differently on either side of a critical value ε = ε1,c, at which the exponential weight
becomes infinitely large. This critical value separates two regimes of the second transseries. For

4 The transseries parameters appearing in the augmented transseries are not free, and fixed by the initial condition and
dependent on the previous parameter σ0.
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Figure 2. The first three exponential weights for the static logistic map, corresponding
to two-periodic (blue), four-periodic (red), and eight-periodic (black) behaviour. The
curves are dashed if the exponential lies on a different sheet, and unbroken if the expo-
nential is on the solution sheet and contributes to the series behaviour. Critical values of
λ (and hence ε) are shown as a grey line, while threshold values are shown as a dotted
line. For simplicity, the imaginary part of the weight is only shown in regimes where the
weight is active.

ε < ε1,c the exponential weight A1(x, ε) is on a separate sheet and does not contribute to the
solution behaviour. Beyond the critical value, A1(x, ε) moves onto the primary sheet; the real
part decreases from infinity, and this exponential contributes to the transseries behaviour.

In addition to explaining the appearance of higher-periodic effects in the solution, the expo-
nential weights also explain why this bifurcation appears to be delayed. Upon moving onto the
main solution sheet, the real part of A1 is large, positive and real, corresponding to exponen-
tially small values of τ 1. As ε increases past a threshold value ε1,t, the real part of A1 changes
sign. At this point, the effect of the transasymptotic summed functionsΩk becomes significant,
and periodic effects corresponding to A1 become apparent in the solution.

The procedure described above can be used to obtain the further bifurcations by augmenting
the transseries by extra components Rj that have different exponential weights. Each of these
weights will correspond to periodic behaviour with a different critical value ε j,c at which the
weight appears in the series, and a different threshold value ε j,t at which it becomes comparable
in size to the other exponentials present in the solution.

In figure 2, we illustrate the appearance of the first three exponential weights in the solution
to the static logistic map, corresponding to two-, four-, and eight-periodic behaviour. In each
case, we represent the weight as a dashed curve prior to the critical value of λ, corresponding
to ε j,c, as it does not contribute to the series behaviour. Once this critical value is exceeded, the
exponential moves onto the main sheet, but the contribution is exponentially small. When the
real part of the weight changes sign at the threshold value, the behaviour associated with this
weight becomes apparent in the solution.
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We note from figure 2 that there are always regimes in λ, and hence ε, where the first τ j

parameters are large but the later ones are still suppressed, so the initial assumption that τ 0 is
large and τ 1 is small was indeed valid.

We will follow this procedure throughout this paper to study periodic behaviour in the static
logistic map in section 2, and delayed bifurcations in the dynamic logistic map in section 3. In
sections 2.1 and 3.1 we formulate the transseries and obtain two-periodic solution behaviour.
Four-periodic behaviour obtained in sections 2.2 and 3.2. In sections 2.3 and 3.3 these results
are validated against numerical simulation and compared with earlier studies, and section 2.4
shows how eight-periodic behaviour may be found in the solution using these methods.

2. Static logistic equation

First we consider the static logistic equation, given by

y(n + 1) = (3 + ε)y(n) [1 − y(n)] , y(0) = 2/3. (6)

We select y(0) = 2/3 as this is the stable solution for ε = 0. Hence any behaviour seen in the
solution must be a consequence of the perturbation in the system. We will write the solution as a
continuous transseries in terms of ε > 0. We first produce an asymptotic expansion in the limit
0 < ε � 1 but as we shall see later, the transseries approach will be used to extend this result
to produce an accurate approximation for ε = O(1). We will then show that this continuous
transseries is capable of capturing discrete period-doubling effects seen in this system, and
approximating higher periodicity behaviour for values of ε that lead to two-, four- and even
eight-periodic solutions.

In [42], the authors studied the asymptotic behaviour of this system for small ε using
multiple scales methods. This showed the manner in which the behaviour approached the two-
periodic stable manifold associated with λ > 3. Using transseries methods, we can extend this
approach to consider systems in which ε is not asymptotically small, and demonstrate the
manner in which the solution approaches the stable solution for higher periodicities.

In order to first determine the aperiodic and two-periodic solutions, we ignore the initial con-
dition and solve (6) with the condition that y(n + 2) = y(n). This gives three unique solutions.
One solution is aperiodic, and is given by

y(n) =
2 + ε

3 + ε
. (7)

The remaining two solutions are two-periodic, and are given by

y(n) =
4 + ε± (−1)n

√
ε(4 + ε)

2(3 + ε)
. (8)

For ε > 0, the aperiodic solution is unstable. For 0 < ε <
√

6 − 2, the two-periodic solution is
stable. If ε exceeds

√
6 − 2, the two-periodic solution is unstable, and the stable solution to the

system becomes four-periodic, and can be identified by solving y(n + 4) = y(n), however this
solution cannot be expressed in closed form. Continuing to increase ε leads to further increases
in the periodicity of the stable solution, where the ratio of successive bifurcation intervals tends
to Feigenbaum’s constant [62]. The bifurcation intervals accumulate at λ ≈ 3.569 94, beyond
which the solution demonstrates chaotic behaviour.
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2.1. Two-periodic solution

2.1.1. Transseries ansatz. We begin by applying a transseries ansatz, including a continuous
variable x and the small parameter ε. We set x = εn, assuming for now ε � 1, and R(x) = y(n)
obeys

R(x + ε) = (3 + ε)R(x)[1 − R(x)], R(0) = 2/3. (9)

We formulate an ansatz for the solution behaviour in terms of both ε and a transseries parameter
σ0. The preliminary ansatz is given as a transseries described in section 1.1:

R(x, ε;σ0) =
∞∑

m=0

σm
0 e−mA(x)/εRm(x, ε), Rm(x, ε) = εβm

∞∑
k=0

εkRm,k(x), (10)

where βm will be chosen such that Rm,0 takes a nonzero value. Applying this expression to (9)
allows for the system to be matched in powers of σ0 e−A(x)/ε, which is conveniently indexed by
σ0. At leading order, we find that the power series in (10) for R0 is a convergent series, taking
the value

R0(x, ε) =
2 + ε

3 + ε
. (11)

This expression gives the aperiodic manifold, which is stable for 1 < λ < 3. For values of
λ greater than three, corresponding to positive ε, we expect to see additional periodic effects
emerge from the transseries expression. Continuing to the next order in σ0 e−A(x)/ε, we find that

e−[A(x+ε)−A(x)]/εR1(x + ε, ε) = −(1 + ε)R1(x, ε). (12)

Expanding R1 using (10) gives

e−[A(x+ε)−A(x)]/ε
∞∑

k=0

εkR1,k(x + ε) = −(1 + ε)
∞∑

k=0

εkR1,k(x). (13)

Expanding as a Taylor series in ε gives A(x + ε) = A(x) + εA′(x) + · · ·. Matching equal
powers of ε on both sides in (13) therefore requires exp(−A′(x)) = −1, or

A(x) = (2p+ 1)πix, p ∈ Z. (14)

The arbitrary constant in A(x) may be absorbed into the transseries parameter σ0, and is there-
fore set to be zero for convenience. The solution will only be evaluated for n ∈ Z, which
corresponds to x/ε ∈ Z. The choice of p has no effect at these values, and we therefore set
p = 0 without loss of generality.

Using the expressions for R0 in (11) and A in (14) in (9) and tracking orders of σ0, we obtain
a recurrence relation for Rm:

(−1)mRm(x + ε, ε) = −(1 + ε)Rm(x, ε) − (3 + ε)
m−1∑
j=1

R j(x, ε)Rm− j(x, ε), (15)

for m � 1, where we take the convention that the summation term is zero when m = 1. It is
straightforward to show by direct substitution that the solution to this recurrence takes the form

Rm(x, ε) = emx log(1+ε)/εRm(ε), Rm(ε) = εβm

∞∑
k=0

εkRm,k , (16)
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where the functions Rm(ε) can be computed directly. R1(ε) may be chosen to be an arbitrary con-
stant, which again can be absorbed into σ0. For algebraic convenience, we can select R1(ε) = ε.
The subsequent terms may hence be obtained using the recursion (15), which gives the first
few terms as

R2(ε) = − (3 + ε)ε2

(1 + ε)(2 + ε)
, R3(ε) =

2(3 + ε)2ε2

(1 + ε)2(2 + ε)2
,

R4(ε) = − (3 + ε)3 (ε− 4) ε3

(1 + ε)3(2 + ε)3
(
1 + ε+ ε2

) .
(17)

By analysing the form of the recurrence solution, it is straightforward to determine βm in gen-
eral, giving βm = (m + 1)/2 for m odd, and βm = (m + 2)/2 for m even. It can also be seen
by direct calculation that

R2m+1,0 =
(−9)mΓ

(
m + 1

2

)
√
πΓ (n + 1)

, R2m,0 =
(−9)m

6
. (18)

2.1.2. Computing the terms in the resummed transseries. The alternating behaviour of (18)
combined with the general form of Rm(x, ε) described in (16) suggests that the ansatz may be
conveniently re-written to incorporate these elements explicitly. In particular, the fact that we
have two different sub-series in (18) depending on the parity of m suggests that we should split
the series into odd and even powers of m. We therefore write the ansatz (10) as

R(x, ε;σ0) = R0(ε) +
√
ε

∞∑
k=0

εk
∞∑

m=0

(
σ0
√
ε e−A(x)/ε+x log(1+ε)/ε

)2m+1
R2m+1,k

+ ε

∞∑
k=0

εk
∞∑

m=1

(
σ0
√
ε e−A(x)/ε+x log(1+ε)/ε

)2m
R2m,k, (19)

where we have switched the order of summation, noting that the exponential terms are all of
the same order in ε. Note that in the static case both sums in (19) are convergent. We define a
new series parameter τ 0, as well as odd and even power series in this parameter, such that

τ0(x, ε) = σ0
√
ε e−A(x)/ε+x log(1+ε)/ε, Ωo,k(τ0) =

∞∑
m=0

τ 2m+1
0 R2m+1,k,

Ωe,k(τ0) =
∞∑

m=0

τ 2m
0 R2m,k.

(20)

The transseries expression is now given by (the x, σ0 dependence is encoded in τ 0):

R(τ0, ε) = R0(ε) +
√
ε

∞∑
k=0

εkΩo,k(τ0) + ε

∞∑
k=0

εkΩe,k(τ0). (21)

We may apply this ‘resummed’ transseries to the logistic equation (9) and equate powers of
ε to obtain expressions for Ωo,k and Ωe,k. This process is somewhat technical, and is shown
explicitly in appendix A. Equating terms of order ε and ε3/2 respectively gives

Ωe,0 = −3
2

(Ωo,0)2, τ0
dΩo,0

dτ0
= Ωo,0 − 9(Ωo,0)3. (22)
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Solving the ordinary differential equation gives Ωo,0(τ0) = ±τ0(C + 9τ 2
0 )−1/2. The sign and

constant may be chosen arbitrarily, as this choice again can be absorbed into σ0, which is yet
to be determined. In order to maintain consistency with (17), we select the positive sign and
C = 1, giving

Ωo,0(τ0) =
τ0√

1 + 9τ 2
0

, Ωe,0(τ0) = −3
2

τ 2
0

(1 + 9τ 2
0 )
. (23)

Continuing this process and equating terms of order ε2 and ε5/2 respectively gives

Ωe,1 =
τ 2

0

(
14 − 9τ 2

0

)
8(1 + 9τ 2

0 )2
− 3Ωo,0Ωo,1, τ0

dΩo,1

dτ0
=

1 − 18τ 2
0

1 + 9τ 2
0

Ωo,1 +
3τ 2

0 (28 − 45τ 2
0 )

4
(
1 + 9τ 2

0

)5/2 .

(24)

Solving these equations gives

Ωo,1(τ0) = −τ0(45τ 2
0 − 33 log(1 + 9τ 2

0 ))
24(1 + 9τ 2

0 )3/2
,

Ωe,1(τ0) =
τ 2

0

(
14 + 36τ 2

0 − 33 log
(
1 + 9τ 2

0

))
8(1 + 9τ 2

0 )2
,

(25)

where yet again the arbitrary constant of integration can be chosen arbitrarily with the choice
being absorbed into σ0, and was therefore selected in order to maintain consistency with (17).
In principle, this process can be continued to higher transasymptotic order indefinitely by
matching at higher orders of ε.

We can compare these expressions to the multiple scales expansion obtained in [42]. A
straightforward comparison shows that the expression Ωo,1 gives the first correction to the
composite expansion, denoted P(s), from [42]. The expression for P(s) contains an exponen-
tial multiplier es, which corresponds to the exponential scaling in τ 0. This confirms that the
resummed transseries identifies the region in which the power series expression breaks down,
and allows for the expansion to be continued past this region even without the use of matched
asymptotic expansions.

2.1.3. Initial value problem. In order to complete the approximation, we must determine the
value of σ0 using the initial condition in (9), which requires that R(x = 0, ε;σ0) = 2/3. Noting
that τ0(x = 0, ε) =

√
εσ0, this corresponds to solving

R0(ε) +
√
ε(Ωo,0(σ0

√
ε) + εΩo,1(σ0

√
ε)) + ε(Ωe,0(σ0

√
ε) + εΩe,1(σ0

√
ε)) +O(ε4) =

2
3
.

(26)

By expanding σ0 as a power series in ε such that

σ0(ε) =
∞∑
j=0

ε jσ0, j. (27)

Matching powers of ε in (26) now gives

σ0,0 = −1
9

, σ0,1 =
4

81
, σ0,2 = − 19

648
. (28)
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This process may be continued as Ωo,k and Ωe,k are computed for higher values of k, giving the
increasingly complete expression for the two-periodic behaviour. While we expect (27) to be
convergent, we have not demonstrated this fact; nonetheless, this method for solving for the
coefficients σ0, j is valid irrespective of whether this is a convergent or divergent asymptotic
series.

2.2. Four-periodic solution

2.2.1. Transseries ansatz. To obtain the four-periodic solution requires an adaptation of the
previous process. We now take a four-periodic perturbation about the two-periodic solution
obtained in (26). This allows us to form a transseries that can be used to capture solutions which
tend to a four-periodic stable manifold. In [42], this would have required solving a challenging
multiple scales problem, as the asymptotic solution obtained therein is only valid for small ε.
Using the transseries approach, we obtain a significant more general result.

We write the solution as a perturbation around the aperiodic behaviour and the two-periodic
behaviour captured by the transseries expression (21), in terms of the variable τ 0, here written
as R̂(τ0, ε).

R(x, ε) = R0(ε) +
√
ε

∞∑
k=0

εkΩo,k(τ ) + ε

∞∑
k=0

εkΩe,k(τ ) + S(x, ε) = R̂(x, ε) + S(x, ε). (29)

We will then show that this perturbation starts contributing for values of ε large enough. We
can see by direct substitution into (9) that

S(x + ε, ε) = (3 + ε)(1 − 2R̂(τ0, ε) − S(x, ε))S(x, ε). (30)

In order to identify the correct scaling for S(x), we note the form of the two-periodic manifold,
given in (8). We represent the two-periodic behaviour in terms of the continuous variable x by
writing (−1)n as α = sign(cos(πx/ε)), such that

R̂(τ0, ε) =
4 + ε− α

√
ε(4 + ε)

2(3 + ε)
+O(τ−1

0 ) as x →∞, (31)

where the asymptotic order of this expression can be obtained by rewriting (26) in powers of
τ−1

0 and equating terms. We may now follow similar methods to the two-periodic case, and
formulate an ansatz for the solution in terms of ε and a new transseries parameter, denoted σ1.
Motivated by (16), we choose the ansatz

S(x, ε) =
∞∑

m=1

σm
1 e−mB(x,ε)/εSm(ε), (32)

noting that we now allow an ε dependence on the exponential scale. The exponential scaling
B(x, ε) may then be determined by considering the large-x behaviour. This is convenient, as we
have the form for R(x) in this limit, given in (31), and we know from the asymptotic order of
this expression that the solution approaches this limit exponentially as x becomes large. Using
(31) in (30) and matching powers of ε in an identical fashion to (13) gives

∂

∂x
B(x, ε) = −πi − log

(
1 − α

√
ε(4 + ε)

)
. (33)

This may be solved to give

B(x, ε) = f (ε)x − εg(x, ε), (34)
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where

f (ε) = −1
2

log(1 − ε(4 + ε)) − πi, (35)

and g(x, ε) is a bounded function that vanishes for x = εn for n ∈ Z, given by

g(x, ε) = α

(
x

2ε
− 1

2

⌊
x
ε
+

1
2

⌋)
log

(
1 −

√
ε(4 + ε)

1 +
√
ε(4 + ε)

)
. (36)

As g(nε, ε) = 0 for n ∈ Z, this expression could be ignored and the result will still give the
correct value of B(x, ε), and hence the correct exponential scaling, on x = εn. This therefore
suggests that we can capture the four-periodic solution by defining a new variable τ 1, such that

τ1(x, ε) = σ1
√
ε e−B(x,ε)/ε. (37)

In subsequent analysis, it will be useful to have a convenient expression for the value of τ 1 at
x + ε and x + 2ε. Through direct substitution, we find that

τ1(x + ε, ε) = −i(ε(4 + ε) − 1)1/2 e−2g(x,ε)τ1(x, ε), (38)

τ1(x + 2ε, ε) = −(ε(4 + ε) − 1)τ1(x, ε). (39)

2.2.2. Exponential weights. The form of B(x, ε) provides insight into the behaviour of the
solution as ε increases outside of the range of validity of the original small-ε transseries. The
behaviour of this term is shown in figure 3, which identifies three distinct ranges of ε which
must be considered separately.

From the form of (37), we see that B(x, ε) is the exponential controlling factor for S, and
therefore determines how this series will contribute as x grows. If Re[B] > 0, corresponding
to Re[ f (ε)] > 0, the exponential contribution will decay as x grows, while if Re[B] < 0, cor-
responding to Re[ f (ε)] < 0, the exponential part will grow and become the most significant
contribution for large x.

This change in sign occurs at ε = −2 +
√

6. At this point, Re[ f (ε)] becomes negative, and
the exponentials in (32) therefore grow as x becomes large, rather than decaying. This means
that in region 3© the S term is no longer a small decaying perturbation around R̂, but rather
plays a significant role in the limiting behaviour as x →∞. If S is ignored, this behaviour is
not captured in the transseries, and the resultant expression for R is an inaccurate description
of the solution behaviour.

We note that Im[ f (ε)] = −3π/2 for ε > −2 +
√

5. This has the effect of making τm
1 four-

periodic in m ∈ Z+, due to having a factor of−i, rather than the two-periodic behaviour associ-
ated with a factor of −1. Hence, this exponential behaviour represented by B(x, ε) corresponds
to four-periodic effects in the solution.

In order to include this behaviour in the transseries expression, we cannot simply expand
the solution about ε = 0. We must instead expand S about some point ε0 such that the four-
periodic behaviour is present in the expansion. This requirement suggests that ε0 = −2 +

√
6

is a sensible choice, as four-periodic effects are apparent in the solution at this value.
Finally, we must consider the region in which the series terms obtained by expanding about

ε0 are valid. If we examine the behaviour of B(x, ε) for ε > ε0, we see that the real part of
f (ε) becomes infinite as ε→−2 +

√
5. This corresponds to the exponentials disappearing, as

every exponential term tends to zero. The series expansion about ε0 is not valid for ε smaller
than this value. Consequently, region 2© contains exponentially small four-periodic behaviour,
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Figure 3. This figure shows the real and imaginary parts of f (ε) = − 1
2 log(1 − ε(4 +

ε)) − πi, where the exponential weight B(x) is given in (34). If Re[ f (ε)] > 0, the four-
periodic exponential contribution is exponentially small in ε, while if Re[ f (ε)] < 0, the
contribution is large, and must be incorporated into any approximation in order to accu-
rately describe the system behaviour. In parameter regime 1©, this exponential contribu-
tion is not present in the transseries, and is therefore denoted as a dashed curve. In regime
2©, the four-periodic exponential terms appear, but are exponentially small. In regime
3©, the exponential contributions become large, and four-periodic behaviour becomes

apparent in the solution. The four-periodicity of the solution arises due to Im[ f (ε)]. This
represents a multiplicative factor in B(x) of −i, corresponding to four-periodic behaviour
in the exponential term.

while no such behaviour exists in region 1©. In figure 3 we have represented f (ε) in region 1©
as a dashed curve, to indicate that it does not have any effect on the transseries.

Consequently, simply by studying B(x, ε), we are able to describe the onset of four-
periodicity in the solution. In region 1©, there are no four-periodic effects present. In region 2©,
there are four-periodic effects caused by the appearance of new exponential terms, but they are
exponentially subdominant compared to the two-periodic behaviour. In region 3©, these effects
grow to become the most significant effect in the solution behaviour. Note that the switching of
the four-period exponentials is independent of the initial data, the latter only determines how
quickly they grow to dominate the solution. For higher values of ε, there must be values for
which higher-periodicity behaviour appears. We discuss the onset of eight-periodic behaviour
in section 2.4.

Finally, we note that the change in exponential contribution has a parallel with a Borel
transform approach to asymptotic expansions. Borel transforms encode the different exponen-
tial weights of an asymptotic series as singularities in a complex domain known as the ‘Borel
plane’. There, a change in the number of exponential contributions corresponds to singulari-
ties moving across a branch cut onto a different Riemann sheet of the Borel plane, giving rise
to behaviour known as the ‘Stokes phenomenon’ [11] as the number of exponential contribu-
tions in an asymptotic series abruptly changes. A similar, but not identical, behaviour occurs
in this system at ε = −2 +

√
5, where Re[ f (ε)] becomes infinite and Im[ f (ε)] changes instan-

taneously, corresponding to a branch point in the f -plane. As the power series in (10) is a
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convergent series, this is not a strict example of the Stokes phenomenon, despite the appear-
ance of new exponential contributions. The appearance of these exponentials here is due to the
nonlinearity of the problem. In more complicated problems with divergent asymptotic power
series, such as the dynamic logistic map considered in section 3, the Stokes phenomenon is
encoded in the form of the late-order series terms, and can be understood by studying the
behaviour of the exponential weights when encoded in the Borel plane. For more information
on Borel transform methods, and their links to transseries and transasymptotic summations,
see [2, 14, 16, 45, 55, 56].

2.2.3. Computing the terms in the resummed transseries. Writing an appropriate form for
the four-periodic ansatz is slightly more involved than in the two-periodic case, given in (19).
Recall from section 2.2.2 that the significant change in the behaviour of the exponential con-
tribution occurs for values of ε greater than ε0 = −2 +

√
6. We therefore define a new series

variable
√

6η = ε− ε0, where the
√

6 term is included for subsequent algebraic convenience.
In analogous fashion to (21), we again divide the ansatz up into separate power series. In the

two-periodic case, it was clear from the form of the previously calculated terms that splitting the
odd and even powers of τ 0 would capture the discrete variation effectively. From the analysis in
section 2.2.2, we determine that the power series for the four-periodic solution should instead
be split into four parts, such that

S(τ1, η) =
√
η

∞∑
k=0

ηk
∞∑

m=0

τ 4m+1
1 S4m+1,k + η

∞∑
k=0

ηk
∞∑

m=0

τ 4m+2
1 S4m+2,k

+
√
η

∞∑
k=0

ηk
∞∑

m=0

τ 4m+3
1 S4m+3,k + η

∞∑
k=0

ηk
∞∑

m=0

τ 4m+4
1 S4m+4,k. (40)

Consequently, we now write each split power series as functions Θ j,k, j = 1, 2, 3, 4, giving

S(τ1, η) =
√
η

∞∑
k=0

ηkΘ1,k(τ1) + η

∞∑
k=0

ηkΘ2,k(τ1) +
√
η

∞∑
k=0

ηkΘ3,k(τ1) + η

∞∑
k=0

ηkΘ4,k(τ1).

(41)

Noting that each series consists only of powers τm
1 with the same m mod 4, and comparing this

with the expression for τ 1 in (37) indicates that the functions Θ j,k for j = 1, . . . , 4 must have
the symmetries

Θ1,k(−iτ1) = −iΘ1,k(τ1), Θ2,k(−iτ1) = −Θ2,k(τ1), (42)

Θ3,k(−iτ1) = iΘ3,k(τ1), Θ4,k(−iτ1) = Θ4,k(τ1). (43)

At this stage, it might be expected that we should express the governing equation (30) in
terms of η, and perform an expansion in this variable; however, a comparison of the terms
in (38) and (39) suggests that iterating the map once leads to a simplification. Writing the x
dependence explicitly, the equation becomes:

S(x + 2ε, ε) = (3 + ε)2(1 − 2
̂

R(x, ε) − S(x, ε))S(x, ε)

×
[

1 − 2
̂

R(x + ε, ε) − (3 + ε)(1 − 2
̂

R(x, ε) − S(x, ε))S(x, ε)

]
.

(44)
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This expression does not contain any S(x + ε, ε) terms, and instead only contains the double
iteration term, S(x + 2ε, ε). This is convenient, as the expression for τ 1(x + 2ε, ε) is substan-
tially simpler than τ 1(x + ε, ε), as it does not contain g(x, ε). This simplifies significantly the
subsequent analysis.

Expressing the left-hand term in (44) in terms of τ 1 and η gives

S(x + 2ε, ε) = S(−(ε(4+ ε) − 1)τ1, ε) = S(−(1 + 12η + 6η2)τ1, η). (45)

Rewriting (44) in terms of τ 1 and η therefore gives

S(−(1 + 12η + 6η2)τ1, η) = S(τ1, η)
(

1 − α
√

2 + 12η + 6η2 + (1 +
√

6(1 + η))S(τ1, η)
)

×
(

1 + α
√

2 + 12η + 6η2 − (1 +
√

6(1 + η))2S(τ1, η)2

− S(τ1, η)(1 +
√

6(1 + η))
(

1 − α
√

2 + 12η + 6η2
))

. (46)

Analogously to the analysis of the two-periodic case in appendix A, the next step is to
expand this expression as a power series in η, and apply the series expression for S(τ 1, η) given
in (40). Matching powers of η j/2 for j = 1, . . . 4 produces a system of four equations—two of
these equations are algebraic, and two are nonlinear ordinary differential equations in τ 1. We
omit the details of this step here, as it requires only algebraic manipulations, and the intermedi-
ate mathematical expressions are quite lengthy. These four equations may be simplified using
the symmetry relations in (42) and (43), resulting in the following system of equations

Θ4,0(τ1) = 2aΘ1,0(τ1)Θ3,0(τ1), (47)

Θ2,0(τ1) = aΘ1,0(τ1)2 + aΘ3,0(τ1)3, (48)

τ1Θ
′
1,0(τ1) = Θ1,0(τ1) − b(Θ3,0(τ1)3 + 3Θ1,0(τ1)2Θ3,0(τ1)), (49)

τ1Θ
′
3,0(τ1) = Θ3,0(τ1) − b(Θ1,0(τ1)3 + 3Θ3,0(τ1)2Θ1,0(τ1)), (50)

where

a =
1
2

(
2 + 2

√
6 − 3α(

√
2 + 2

√
3)
)

, b =
5
6

(
14 + 4

√
6 − α(7

√
2 + 4

√
3)
)
. (51)

By substituting the power series (40) into the governing equation (46), it can be seen at lead-
ing order as η → 0 and τ 1 → 0 that S1,0 = −S3,0, providing one initial condition for the sys-
tem (47)–(50). The second initial condition may be chosen arbitrarily, as this choice may be
absorbed into the expression for σ1, in the same manner as the constant C in (22). For algebraic
convenience, and without loss of generality, we select S1,0 = 1. These conditions are sufficient
to uniquely solve (47)–(50). The solution to this system is given by

Θ1,0(τ1) =
ατ1√

2 − 2b2τ 4
1

√
1 +

√
1 − b2τ 4

1 , (52)

Θ2,0(τ1) = − aτ 2
1

1 − b2τ 4
1

, (53)

Θ3,0(τ1) = − αbτ 3
1√

2 − 2b2τ 4
1

(√
1 +

√
1 − b2τ 4

1

)−1

, (54)
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Θ4,0(τ1) =
abτ 4

1

1 − b2τ 4
1

. (55)

In principle, we can match the expansion of (46) at higher powers of η in order to obtain Θ j,k

for j = 1, . . . 4 with k > 0. For the purposes of this example, however, the first four terms of
the series will produce a useful approximation for the solution behaviour.

The final step is to determine the behaviour of the transseries parameter σ1. This is slightly
more complicated than in the two-periodic problem, as we must incorporate the behaviour of
R̂(x, ε) into the calculations. We include the details of this process in appendix B, where we
show that

σ1 = − 1
50

(
3
√

2 − 16
√

3 − 7
√

6 + 12
)

+
η

500

(
297

√
2 − 709

√
3 − 189

√
2 + 399

)
+O(η2). (56)

We have now determined enough transseries terms to accurately approximate the solution
behaviour in the four-periodic regime.

2.3. Error comparison

As a consequence of the preceding analysis, we are able to derive an approximation for the
solution to the logistic equation in the two-periodic and four-periodic parameter regimes, which
we denote as R2,app(x) and R4,app(x) respectively. Combining (20), (21), (23), (25), and (28),
we find that in the two-periodic parameter regime

R(x) ≈ R2,app(x) =
2 + ε

3 + ε
+ ε1/2Ωo,0(τ0) + εΩe,0(τ0) + ε3/2Ωo,1(τ0) + ε2Ωe,1(τ0), (57)

where τ 0 and σ0 are approximated as

τ0 = σ0ε
1/2 e−x(πi+log(1+ε))/ε, σ0 ≈ −1

9
+

4ε
81

− 19ε2

648
. (58)

A comparison of the exact solution against the approximation is shown for ε = 0.05 in
figure 4(a). The exact solution is shown as red circles, while the approximation is shown as
blue dots. The two curves are visually indistinguishable. The approximation error is shown
in figure 4(c). It is clear from this figure that the error has a peak at the end of the transition
region, just before the solution settles into the stable two-periodic behaviour.

In the four-periodic parameter regime ε > −2 +
√

6, the approximated transseries is given
combining the expressions in (37), (52)–(56), and the previous approximation (57), to give

R(x) ≈ R4,app(x) = R2,app(x) +
√
η(Θ1,0(τ1) + Θ3,0(τ1)) + η(Θ2,0(τ1) +Θ4,0(τ1)), (59)

where τ 1 and σ1 are approximated as

τ1 = σ1ε
1/2 ex(log(1−ε(4+ε))/2+πi)/ε, (60)

and

σ1 ≈ − 1
50

(
3
√

2 − 16
√

3 − 7
√

6 + 12
)
+

η

500

(
297

√
2 − 709

√
3 − 189

√
2 + 399

)
. (61)

8265



Nonlinearity 34 (2021) 8248 I Aniceto et al

Figure 4. The plot in (a) compares the two-periodic approximation R2,app, from (57),
against the exact solution for ε = 0.05. The plot in (b) compares the four-periodic
approximation R4,app, from (59), against the exact solution for ε = 0.51, or

√
6η ≈

0.0605. The approximation errors, given by the difference between the exact solution
R(x) and the approximations are shown in (c) and (d). The two-periodic approximation
has maximum error in the region just before reaching the two-periodic steady solution.
The four-periodic approximation has maximum error in the initial region; this is to be
expected, as the initial condition was obtained directly from the two-periodic solution,
and is not expected to be highly accurate in the four-periodic regime.

Note that we do not include the term containing g(x, ε) in B(x, ε) from (34). This term disap-
pears for integer values of n, and therefore can be omitted at this stage without altering the
approximation.

In figure 5(a), we show the approximation error for a range of values of ε, where the error
is measured as the maximum difference between the exact solution and the transseries approx-
imation, shown as a blue curve. This error measure was chosen to allow for direct comparison
with equivalent results from [42], which are shown as a red curve. The transseries approxima-
tion is more accurate than the multiple scales approximation in this parameter regime, and the
error decays faster in the limit that ε→ 0. The reason for this behaviour is that the transseries
approach allowed for higher-order exponential corrections to be easily computed and retained.
The maximum approximation error occurs at the end of the transition region between aperiodic
and two-periodic behaviour, where the exponential contributions contribute significantly to the
solution behaviour. Computing these exponential corrections using multiple scales methods
would be an algebraically significantly more demanding task, requiring matched asymptotic
expansions to be applied at higher orders of the expansion.

2.4. Eight-periodic solution

We may continue this process to understand the emergence of the next period doubling bifur-
cation. While we will not include a full explicit, algebraic analysis here, we will show that the
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Figure 5. The plot in (a) shows the resummed transseries approximation error in blue,
corresponding to the maximum difference between the approximated and exact value.
This measure of the error was chosen to be consistent with the error measure provided
in [42]; this error is shown as a red curve. Due to the ease with which the transseries
method captures higher-order exponential behaviour, which plays an important role in
the transition region between aperiodic and two-periodic behaviour, it outperforms the
multiple scales approximation. In (b), we show the error of the four solution branches as
n →∞, approximated by taking |R − R4,app| on each of the four branches for a value of n
sufficiently large that the error is not visibly changing. For each of the four branches, the
error decreases as η → 0, as would be expected. Figures (a) and (b) were generated by
computing the approximation error at 104 points distributed evenly across the parameter
range.

exponential factor can be used to identify the appearance of eight-periodic stable solutions as
ε is increased further.

The method from section 2.2 can be applied again in order to obtain approximations for
solutions with even higher periodicity. We can now write the next term in the transseries such
that R(x, ε) = R̂(x, ε) + S(x, ε) + T(x, ε). The quantity T(x, ε) is defined in terms of a new
transseries parameter σ2 to be

T(x, ε;σ2) =
∞∑

m=1

σm
2 e−mF(x,ε)/εTm(ε). (62)

The transseries terms R̂ + S capture the four-periodic solution behaviour, and therefore must
tend to the four-periodic solution in the limit that τ 0 and τ 1 become large. We denote this
solution as R4(ε). Hence, we apply the expression R(x, ε) = R4(ε) + T(x, ε) to the governing
equation (9) and find an expression for the exponential weights, in similar fashion to the process
for obtaining (14) or (33).

The exponential weights may again be written in the form F(x, ε) = f (ε)x + εg(x, ε), where
g disappears on n ∈ Z. The behaviour of f (ε) is illustrated in figure 6. A very similar set of
inferences may be drawn from this image as for figure 3. In region, the eight-periodic behaviour
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Figure 6. This figure shows the real and imaginary parts of f (ε), where F(x, ε) =
f (ε)x + εg(x, ε). The behaviour of the transseries depends on both the real and imagi-
nary part of this quantity, in the same fashion as figure 3. The exponential contribution
is not present in the transseries in parameter regime 1©. In regimes 2© and 3© the con-
tribution is present, and must be eight-periodic, due to the value of Im[ f (ε)] in these
regimes. In regime 2©, the eight-periodic contribution is small, due to the positive sign of
Re[ f (ε)], and this contribution becomes significant in regime 3©, as the sign of Re[ f (ε)]
becomes negative.

does not contribute to the solution, as discussed for the four-periodic case in section 2.2.2. This
eight-periodic contribution appears in the transseries as ε moves into region 2©. In this range
of ε, there are eight-periodic contributions to the solution, but they are smaller than the four-
periodic solution contribution, as the exponential term is relatively small compared to those
in S(x, ε), decaying exponentially as x →∞. Finally, in region 3©, the eight-periodic solution
grows exponentially, and the behaviour of T(x, ε) dominates the solution behaviour.

It is therefore clear that we can explain the onset of these higher periodicity solutions
by explicitly studying the exponential weights of the transseries solution; while the alge-
braic complexity of the process increases after each doubling, the steps for identifying this
behaviour remain essentially the same. The resummed transseries therefore provides a sys-
tematic approach to studying bifurcations even for larger values of the bifurcation parameter,
where classical asymptotic methods typically fail.

3. Dynamical logistic equation

In the previous section, we studied the classical logistic equation, and showed that the higher
periodicity solutions may be obtained directly using a transseries approach. In this section,
we consider a more complicated variant of this problem, known as the slowly-varying logistic
equation.

y(n + 1) = (λ0 + εn)y(n)[1− y(n)], 0 < y(0) < 1, (63)
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with ε > 0. The bifurcation parameter is given by λ = λ0 + εn, and in this case, it changes
slowly over time. In previous studies [30, 32, 34], this has been shown as an example of a
‘canard’ solution, in which the behaviour appears to remain near the unstable solution for an
extended period of time, before rapidly jumping to approach the stable solution with higher
periodicity. As n increases, this parameter will pass through values across which the solu-
tion stability is known to change. When λ0 + εn = 3, the one-periodic equilibrium becomes
unstable, and the two-periodic equilibrium becomes stable. As n increases further, eventually
λ exceeds 1 +

√
6, and the two-periodic equilibrium becomes unstable, with the four-periodic

equilibrium becoming stable. This process continues until the bifurcation parameter becomes
sufficiently large that the solution becomes chaotic. For the problem studied here, we will set
λ0 = 3 and y(0) = 2/3.

In [42], it was shown that a discrete multiple scales approach can be used to describe this
behaviour asymptotically. This approach required balancing several different timescales, and
using asymptotic matching to connect the solutions in each different asymptotic region.

In this section, we will show that this process can be described using a transseries approach,
with the resulting expansion to be valid even as the solution behaviour changes dramatically,
and increases in periodicity. We will now show that transseries provide a systematic and gen-
erally more accurate approach than the multiple scales procedure of [42] in describing the
solution behaviour as it transitions from an unstable to a stable manifold; this will demon-
strate that transseries expansions can be used to effectively capture canard behaviour in discrete
systems.

We will show the first stability transition in detail. We will subsequently provide an outline
of how this method can be extended to describe the second transition, together with some
results; however, the algebraic manipulations for this process are quite involved, and the precise
details will be omitted.

3.1. Two-periodic solution

3.1.1. Transseries ansatz. The difference from (9) above is that in the prefactor of the rhs
the perturbative parameter ε is replaced now by x. We again begin by applying a multiple
scales ansatz, and expanding as a transseries in a continuous variable x. Setting x = εn and
R(x) = y(n) gives

R(x + ε) = (3 + x)R(x)[1 − R(x)], R(0) = 2/3. (64)

We again formulate an ansatz for the solution in terms of ε and a transseries parameter σ0. The
ansatz is identical to that given in (10), but has been included below for convenience:

R(x, ε;σ0) =
∞∑

m=0

σm
0 e−mA(x)/εRm(x, ε), Rm(x, ε) � εβm

∞∑
k=0

εkRm,k(x), (65)

where βm will again be chosen such that Rm,0 takes nonzero value. It is straightforward to
compute the first few terms of the algebraic portion of the series expression, corresponding to
m = 0 in (65), which gives a power series expression for the aperiodic manifold. The recur-
sion relation is given obtained by expanding R(x + ε) using a power series in ε, and matching
powers of ε in the resultant expression. This process gives

R0,0(x) =
2 + x
3 + x

, (66)
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R0,k(x) = − 1
(2 + x)

[
k∑

n=1

1
n!

R(n)
0,k−n(x) + (3 + x)

k−1∑
n=1

R0,n(x)R0,k−n(x)

]
, k � 1.

(67)

The first few iterations of this recurrence relation give

R0,1(x) = − 1
(x + 2)(x + 3)2

, R0,2(x) =
x2 + x − 4

(x + 2)3(x + 3)3
,

R0,3(x) = − x4 − 2x3 − 28x2 − 33x + 24
(x + 2)5(x + 3)4

.

(68)

This process may be continued indefinitely in order to continue calculating terms in the power
series for the aperiodic manifold. This process will not, however, capture the transition to the
two-periodic manifold. In order to obtain an approximation for this behaviour, we are required
to consider terms in the ansatz (65) with m �= 0. Continuing to the next order in σ0 e−A(x)/ε, we
find that

e−[A(x+ε)−A(x)]/εR1(x + ε, ε) = (3 + x)R1(x, ε)[1 − 2R0(x, ε)]. (69)

As before, the argument of the exponential may be determined by expanding R1 as a power
series in ε, as well as expanding A(x + ε) = A(x) + εA′(x) + · · ·. At leading order in ε, this
gives the differential equation

e−A′(x) = − (x + 1) = e−(2p+1)πi+log(x+1), p ∈ Z. (70)

Hence, we obtain

A(x) = (2p+ 1)πix + x − (x + 1) log(x + 1), (71)

where we follow the same reasoning as the analysis used to determine (14), and absorb the
constant into the series parameter. We may again set p = 0; this choice will have no effect on
the behaviour of the solution for integer values of n.

Once A(x) has been determined, it is possible to obtain a recurrence relation for Rm(x) by
applying the first ansatz expression in (65) to the governing equation (64), and matching powers
of the transseries parameter σ0. This gives

(−1)m(1 + x + ε)m em((1+x) log(1+ε/(1+x))/ε−1)Rm(x + ε, ε)

= (3 + x)Rm(x, ε)[1 − 2R0(x, ε)] − (3 + x)
m−1∑
n=1

Rn(x, ε)Rm−n(x, ε). (72)

It is now possible to apply the second part of the ansatz in (65) and to match powers of ε in this
expression. By direct substitution, we find that βm = m gives the result that Rm,0 is nonzero.
By subsequently matching terms which are O(ε) in the small ε limit, it is possible to generate
an equation for R1,0 and a recurrence relation for Rm,0 for m � 2. We find that

(x + 1)R′
1,0(x) = −

(
2

x + 2
− 2

x + 3
+

1
2

)
R1,0, (73)
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The initial condition in (73) may be chosen arbitrarily, as this choice may be absorbed into the
transseries parameter. Choosing R1,0(0) = 1 gives

R1,0(x) =
3(x + 2)2

4(x + 1)3/2(x + 3)
. (74)

The recurrence relation for subsequent terms is given by

[
(−1)m(1 + x)m + (1 + x)

]
Rm,0(x) = −(3 + x)

m−1∑
n=1

Rn,0(x)Rm−n,0(x), m � 2. (75)

Continuing to match higher powers of ε allows for the direct computation of terms further
terms such as Rm,k, obtained by matching terms which are O(εk) in the small ε limit. The direct
computation of further terms is not required for the present analysis.

3.1.2. Computing terms in the resummed transseries. Motivated by the analysis of the static
system, and in particular the form of (19), we switch the order of summation in the transseries
(65), writing it as

R(x, ε;σ0) �
∞∑

k=0

εk
∞∑

m=0

(
σ0ε e−A(x)/ε

)m
Rm,k. (76)

A significant difference between this and the static system is that the expansion in powers of ε
here is asymptotic, while the sum over the exponentials (m � 0) is convergent. Thus (76) is a
formal expansion.

As for the static system, we define a new series parameter τ 0, and new quantities Ωk(τ 0)
such that

τ0 = σ0ε e−A(x)/ε, Ωk(τ0) =
∞∑

m=0

τm
0 Rm,k. (77)

It will be helpful later to note that

τ0(x + ε) = e−(A(x+ε)−A(x))/ετ0(x) = τ0(x)
[
e−A′(x) +O(ε)

]
as ε→ 0. (78)

The transseries expression in (76) is now given by

R(τ0, ε) �
∞∑

k=0

εkΩk(τ0). (79)

We can now apply this expression to (64) and match orders of ε. At leading order, we find that

Ω0

(
e−A′(x)τ0

)
= (3 + x)Ω0(τ0)(1 − Ω0(τ0)), (80)

where (78) was used to obtain the leading-order on the left-hand side. At this stage, we could
mechanically obtain the function Ω0 as a Taylor series in τ 0, which is convergent, with some
finite radius of convergence. It happens, however, that there exists a particularly convenient
variable transformation that converts the right-hand side from a dilation to a translation. If we
define a new variable y such that y = −x log(τ0)/A′(x), the expression in (80) becomes

Ω0(y + x) = (3 + x)Ω0(y)(1 − Ω0(y)). (81)

8271



Nonlinearity 34 (2021) 8248 I Aniceto et al

This expression has the same form as the static logistic map equation, given in (9), with x in
place of ε. Furthermore, since x = εn, it is valid to apply the asymptotic solution derived for
this expression in section 2.1. As we are interested in capturing the first transition, across which
the solution switches from having no periodic component to having a two-periodic component,
we can directly apply the transseries expression for the two-periodic solution given in (21).

In order to take into account the form of (81), we must replace ε and x with x and y respec-
tively in (21). We must also replace the τ 0 in this expression with a new transseries parameter
τ 0, in which ε and x are again replaced with x and y respectively. This gives

τ 0(y, x) = σ0
√

x e−iπy/x+y log(1+x)/x = σ0
√

xe(iπ+log(1+x)) log(τ0)/A′(x) = σ0
√

xτ0, (82)

where σ0 is a new transseries parameter that remains to be determined. Making the appropriate
substitutions in (21) now gives the form of Ω0(y) as

Ω0(y) =
2 + x
3 + x

+
√

x
∞∑

k=0

xkΩo,k(τ 0) + x
∞∑

k=0

xkΩe,k(τ 0), (83)

where Ωo,k and Ωe,k are defined in (20), and Ωo,k and Ωe,k for k = 0 and k = 1 are given
explicitly in (23) and (25) respectively.

In a typical problem of this form, σ0 would be determined using the fact that Ω0 = 2/3 at
y = 0; however, this is enforced by the transformation y = −x log(τ 0)/A′(x), which forces x
to be zero if y = 0. Consequently, the initial condition cannot be used to determine σ0. This is
to be expected, as the initial condition will instead be used to determine the original transseries
parameter σ0.

Instead, we expand (83) as a Taylor series about x = 0 using the form of Ωo,0 and Ωe,0 given
in (23). This gives

Ω0(y) =
2 + x
3 + x

+ σ0xτ0 −
3
2

(σ0xτ0)2 + · · · , (84)

where the omitted terms are O(x3τ 2
0 ). We may now match powers of τ 0 with (76) to determine

that xσ0 = R1,0, which was explicitly calculated in (74). We therefore find that

σ0 =
3(x + 2)2

4x(x + 1)3/2(x + 3)
. (85)

3.1.3. Initial condition. We have now explicitly calculated all of the required quantities for the
transseries approximation except for σ0, which must be determined from the initial condition
at x = 0. At x = 0, it follows that τ 0 = σ0ε. Consequently, the initial condition is given by
R(τ 0 = σ0ε, x = 0) = 2/3, which we apply to the first expression in (65). We then express σ0

as a power series in ε, where the series terms are functions of Rm,k for various values of m and
k, giving

∞∑
m=0

σm
0 Rm(0, ε), where σ0 =

∞∑
j=0

ε jσ0, j. (86)

Using the second expression from (65) and matching powers of ε allows us to compute σ0, j.
We have obtained enough Rm,k terms to solve for σ0,0, giving

σ0 = −R0,1 +O(ε) =
1
18

+O(ε). (87)
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Computing subsequent series terms for σ0 requires values of Rm,k that are not presented in this
study, as even this first order approximation is sufficiently accurate as we now show.

3.2. Four-periodic solution

From figure 1, we see that as n increases, eventually the bifurcation parameter becomes suf-
ficiently large that the solution becomes four-periodic. As discussed in section 2.2.2, this
higher periodicity must be encoded in the transseries solution as the weights of new exponen-
tial scales. We will not perform a full explicit calculation here, but we will demonstrate that
these exponential weights do, in fact, predict the emergence of stable behaviour with higher
periodicity.

We include a new term with transseries parameterσ1, and the analysis suggests that it is nat-
ural to define a new scaled variable z = 2nε. This new contribution to the transseries, denoted
S(z, ε;σ1), is given by

S(z, ε;σ1) =
∞∑

m=0

σm
1 e−mB(z)/εSm(z, ε). (88)

By adding S as a perturbation to the two-period solution approximated by (91) and balancing
terms in (64) in a similar fashion to section 3.1.1, we obtain an equation for B(z) that gives

B(z) = −πiz + z − z
2

log(1 − z(4 + z))

+ (
√

5 − 2) log

( √
5 − 2√

5 − 2 − z

)
− (

√
5 + 2) log

( √
5 + 2√

5 + 2 + z

)
,

(89)

where the constant of integration is picked to set B(0) = 0 for convenience, though this choice
may be absorbed into the parameter σ1. The behaviour of B(z) is depicted in figure 7. There
are two significant conclusions that may be drawn from this figure. In figure 7(b), we see that

Im[B′(z)] =

⎧⎨
⎩
−π z <

√
5 − 2

−3π/2 z >
√

5 − 2
(90)

Noting the format of (88), we see that this exponent changes from two-periodic behaviour to
four-periodic behaviour when crossing the value z =

√
5 − 2. This change in exponent gives

rise to four different branches in the solution, and therefore explains the onset of four-periodic
behaviour in the solution to the dynamical logistic equation.

The second important observation is that this four-periodicity is not immediately apparent
in the solution, due to the behaviour of Re[z]. In figure 7(a), we see that there is a value of z,
denoted z0 and located at z0 ≈ 0.9951, at which the real part of B(z) changes sign from positive
to negative. From the form of (88), we see that this corresponds to the four-periodic transseries
contribution being exponentially small for z < z0, before growing to have a significant impact
on the solution behaviour for z > z0.

This value of z0 corresponds to four-periodic behaviour becoming apparent at n ≈
0.4975/ε. For example, in figure 1, we would expect that four-periodic solution to become
significant at n ≈ 3455, which is consistent with the appearance of the second transition region
in this image.
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Figure 7. This figure shows the real and imaginary parts of B(z), corresponding to the
exponential weight from (89). The periodicity of this contribution may be determined by
identifying the slope of the imaginary part, corresponding to Im[B′(z)]. For z <

√
5 − 2,

the weight B(z) contains an imaginary term −πi, which corresponds to two-periodic
behaviour. After z exceeds

√
5 − 2, the slope of the imaginary term changes to −3πi/2,

which leads to the appearance of four-periodic behaviour. This behaviour is not imme-
diately apparent, as the contribution is exponentially small if Re[z] > 0, corresponding
to z < z0, where z0 ≈ 0.9951. For z > z0, the four-periodic terms become significant
in the solution behaviour. We note that, due to the bifurcation delay, this behaviour
is not immediately visibly apparent in the solution; however, a careful analysis of the
corresponding transseries terms will identify the transition between two-periodic and
four-periodic behaviour.

A more detailed transseries analysis would permit us to calculate a series approximation for
the four-periodic behaviour; however, as we expected from the transseries approach, a straight-
forward analysis of the exponential weights in the transseries is sufficient to explain the onset
of the higher periodicity, and identify the location in z (and hence, in n) where this transition
to dominant four-periodic behaviour takes place.

Finally, we note that the points where the periodicity changes correspond to values of n
where the real part of the exponential weights changes sign, or z0 in figure 7. In asymptotic
analysis, this corresponds to the crossing of a curve known as an anti-Stokes curve. This sug-
gests that the Stokes phenomenon plays a role in this system behaviour, in a similar fashion to
the continuous delayed bifurcations in [38]. In fact, the solution does contain Stokes curves that
are responsible for appearance of exponential factors in the solution; however, finding these
Stokes curves requires continuing the solution in the negative-n direction, and was therefore
not presented here. Nonetheless, the study the Stokes phenomenon in the dynamic logistic map
is an interesting and rich subject which is beyond the scope of the present work.

3.3. Error comparison

From the preceding analysis, we may derive an approximation for the solution to the slowly-
varying logistic equation (64), which we denote Rapp. This approximation may be validated
against numerical simulations, as well as the multiple scales method developed in [42].

Combining (20), (77), (82), (83), (85) and (87), we find an approximation for the transseries
solution that describes the onset of two-periodic behaviour in the solution. This approximation
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Figure 8. The plot in (a) shows the approximation (91) and exact solution of (63) for
ε = 0.001. The difference between these is shown in (b). The points labeled 1©, 2©, and
3© will be referenced below in figure 9. We see that the error reaches a maximum at

the start of the two-periodic regime. It then decreases, although will eventually increase
as n grows, due to the increasing influence of the four-periodic region which was not
computed. Note that the error is equal to zero near the point labelled 3©. This corresponds
to the value where the approximation crosses the exact solution, which occurs at some
point in the two-periodic region for any choice of ε and therefore does not signify a
special parameter choice. It is an artifact of the error calculation.

is given by

R(x) ≈ Rapp(x) =
2 + x
3 + x

+ x1/2Ωo,0(τ 0) + xΩe,0(τ ) + x3/2Ωo,1(τ 0) + x2Ωe,1(τ 0), (91)

where

τ 0 ≈ ε(x + 2)2 e−(πix+x−(x+1) log(x+1))/ε

24x1/2(x + 1)3/2(x + 3)
. (92)

The most useful feature of this approximation is that it is valid before, during, and after the tran-
sition region from aperiodic to two-periodic behaviour in the slowly-varying logistic equation.
We illustrate an example comparison in figure 8(a), corresponding to ε = 0.001. The approx-
imation is shown as blue dots, and overlaid on top of the exact solution, shown as red circles.
The two solutions are visually almost indistinguishable.

The approximation error for this example is shown in figure 8(b), calculated by y(n) −
Rapp(εn). The error reaches a peak following the transition region, at the beginning of the stable
two-periodic behaviour. The error does grow in this region as n becomes large, and continues
to do so until the transition to four-periodic behaviour occurs. This behaviour is not depicted
in figure 8(b).

In order to obtain a more complete picture of the accuracy of the transseries approximation,
we determined the approximation error at three selected values of n. These values were tested in
[42] relative to other methods, to obtain representative computations of the approximation error
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in important parts of the solution domain. The first point is n = 1/
√
ε�. This point is found

in the early aperiodic region before the transition from aperiodic behaviour to two-periodic
behaviour occurs. It is labelled 1© in the example solution from figure 8.

For comparison, we need to identify the remaining representative points used in [42], which
required the computation of an intermediate quantity K, satisfying

K =

√
log K − 3

2
log(ε). (93)

This quantity was derived in [42] although it has been adjusted to take into account the slightly
different form for the slowly-varying logistic equation considered here. The second point falls
within the transition region between the aperiodic unstable manifold and the two-periodic sta-
ble manifold, and is given by n = K + K−1/

√
ε�. This point is labelled 2© in the example

solution from figure 8. Finally, we also determine the error at a point in the region where the
solution has completed its transition to two-periodic stable behaviour. This point is given by
n = K + 15K−1/

√
ε�, and is labelled 3© in the example solution from figure 8. The error

for each of these three points was studied in [42] allowing for direct comparison between the
transseries approximation and the multiple scales approximation errors.

The error for each of the three representative points over a range of ε values may be seen in
figure 9, shown in blue. The error for the approximation from the multiple scales approxima-
tion in [42] is shown in red for each point. In each region, both approximations are relatively
accurate. In the aperiodic region, the multiple scales approximation outperforms the transseries
approximation, while in the transition and two-periodic region, the transseries approximation
is substantially more accurate.

This outcome is sensible; the transseries approximation tracks the contribution of expo-
nentials in the solution, and accurately incorporates them into the solution behaviour. In the
aperiodic region, the solution is best represented by an algebraic power series in ε. The multiple
scales approach involves calculating this power series to several terms, while our transseries
approximation relies only on the leading-order behaviour of this series. In the transition and
two-periodic region, however, these exponential contributions become more significant, and
this corresponds to the transseries approximation becoming more accurate than the multiple
scales approximation. While the multiple scales approximation is able to capture some of the
exponential behaviour, the transseries approximation is able to incorporate several exponen-
tial corrections in a straightforward fashion, producing greater accuracy in the solution regions
where these corrections play an important role. Furthermore, increasing the accuracy of the
transseries approximation in the aperiodic region can be done systematically by including
higher corrections in ε.

Finally, we note that there are points in figures 9(b) and (c) where the error appears to drop
to zero. This corresponds to a coincidental crossing between the approximation and actual
solution occurring at this value of n. The crossing may be seen in the example solution from
8 at n ≈ 250. Any solution with a reasonable amount of accuracy will have some value of n
where this crossing occurs; this does not provide any added insight into the accuracy of the
approximation.

4. Discussion

We have obtained transasymptotic approximations for the solutions to both the standard and
slowly varying logistic equation. In each case, we were able not only to reproduce the results
calculated in [42] using multiple scales asymptotic methods, but to go significantly further.
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Figure 9. This figure shows the error in the dynamic system at the three points identified
in [42] as belonging to the inner region, transition region, and outer region, shown as
points 1©, 2©, and 3© in figure 8. In each case, the error is shown as a blue curve. This
curve becomes smaller as ε decreases. The point at which the error dips is an artifact
of the observation that the approximation crosses the exact solution at the identified
point for this choice of ε, and does not represent any significant phenomenon within the
transseries approximation. The cause of this behaviour is explained in more detail within
the description of figure 8. We have chosen a similar range of small parameter to the
analysis in [42], shown in red. The transseries outperforms the multiple scales method
in both the transition region and the outer region, in which the exponential terms play
an important role in describing the solution behaviour. These terms are more naturally
captured using transseries methods, leading to an improved approximation.

As, a priori, transseries methods allow for the straightforward calculation of higher-order
exponentials, the transseries approximation was able to represent the solution more accurately
than the multiple scales method both during and after the delayed bifurcation, as seen in
figure 9; during and after the bifurcation, the initially subdominant exponentials contribute
significantly to the solution, so it should be expected that the transseries approximation would
be particularly accurate compared to other methods in these regions.

Furthermore, the transseries approach can still provide a useful approximation when the
parameter ε is not particularly small, as the solution can simply be rescaled to determine the
next asymptotic weight.

We considered the dynamic logistic equation with ε > 0, producing a cascade of delayed
bifurcations. If ε < 0, causing the bifurcation parameter to decrease rather than increase,
bifurcations appear earlier than the solution stability would suggest, rather than later [8]. A
transseries approach could be used in almost identical fashion to the present study in order to
approximate these accelerated bifurcations; however, that analysis is beyond the scope of this
study.

There are several significant and general advantages to the transseries resummation
approach. The first is that the method we have described can be applied in systematic fash-
ion to a wide range of problems, including both discrete and continuous systems. Whilst such
advantages have already been seen elsewhere, in the context of the logistic equation it has been
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instructive to compare this to the multiple scales approach from [42], which required the care-
ful comparison of asymptotic terms up to several orders. In order to capture the fast discrete
scale, as well as both the inner and outer continuous scales near the bifurcation, asymptotic
matching was performed through three scales.

The transseries approach here was able to reproduce this behaviour by resumming the series
in order to ensure that the transasymptotic approximation contained behaviour encoded in
the subdominant exponentials; this behaviour contained all of the information found using
asymptotic matching methods. Furthermore, improving approximation accuracy by comput-
ing more terms of a multiple scales expansion requires comparing the asymptotic behaviour of
more terms and checking to determine when the relative dominance of terms changes, while
obtaining a more accurate transseries expression simply requires the systematic calculation of
further series terms in the transseries. While these calculations can prove challenging, the steps
required to obtain the subdominant exponentials, and the associated solution behaviour, follow
the same consistent process at each stage which it is applied.

Computing the subdominant exponentials is not valuable simply in that it produces a more
accurate approximation. In fact, a second major advantage of the transseries method is that
the exponential weights have a significant effect on the system behaviour, and computing just
these weights can tell us the form of the solution as parameters in the problem vary. In our
analysis of the standard logistic map, we showed that two-, four-, and eight-periodic behaviour
can be determined simply by carefully studying the subdominant weights. This explains the
appearance of higher periodicities in the solution, and suggests that if this process is continued,
it can be used to study further bifurcations in the period doubling process.

In our subsequent analysis of the period doubling cascade found in the slowly varying logis-
tic equation, we were able to predict the onset of two-periodic and four-periodic behaviour in
the solution, simply by studying the relative size of the exponential weights associated with
the two- and four-periodic contributions. It would be particularly interesting to continue to
investigate how the full period doubling cascade is encoded in the exponential weights of this
system, and whether this can provide (at least theoretically) further insight into the period
doubling route to chaos.

Transseries methods have been used to study Stokes phenomenon in a wide range of con-
tinuous problems. Given that multiple scales methods have been used to study Stokes phe-
nomenon in discrete problems [1, 46–50], it is likely that the transseries approach described
here could be used to provide new insight into discrete variants of Stokes phenomenon.

Finally the full analysis of the movements of exponential contributions between Riemann
sheets, seen in the dynamic logistic map, also merits further investigation. Examples of such
phenomena have been observed recently in novel features of aeroacoustic flows [60, 61]. Initial
explorations appear to suggest this is commonly found in other physical and mathematical
contexts.
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Appendix A. Explicit transseries terms

In (21), the transseries for R(τ 0, ε) is written in terms of a base approximation R0(ε), a sum of
odd terms in τ 0, denotedΩo,k, and a sum of even terms in τ 0, denotedΩe,k. We further simplify
this by writing R(τ 0, ε;σ0) = R(ε) + S(τ 0, ε), where

S(τ0, ε) =
√
ε

∞∑
k=0

εkΩo,k(τ0) + ε

∞∑
k=0

εkΩe,k(τ0). (94)

We note that τ 0(x + ε) = −(1 + ε)τ 0(x). Consequently,

S(τ0(x + ε), ε) = S(−(1 + ε)τ0(x), ε). (95)

Applying (94) and (95) to the logistic equation (9) gives

S(−(1 + ε)τ0, ε) = −(1 + ε)S(τ0, ε) − (3 + ε)S(τ0, ε)2. (96)

Expanding the left-hand side of this expression as a Taylor series in ε gives

S(−(1 + ε)τ0, ε) =
∞∑
j=0

(−τ0ε) j

j!
R( j)(−τ0)

= −
√
ε

∞∑
m=0

εm
m∑

k=0

τ k
0

k!
Ω(k)

o,m−k(τ0) + ε
∞∑

m=1

εn
m−1∑
k=0

τ k
0

k!
Ω(k)

e,n−1−k(τ0), (97)

where we used the fact that Ωo,k and Ωe,k are odd and even in τ 0 respectively. The remaining
expansions in (96) may be obtained by substitution of (94) into (96). It is straightforward to
show that

R(τ0, ε)2 = 3
∞∑

m=1

εm
m−1∑
k=0

Ωo,k(τ0)Ωo,m−1−k(τ0) (98)

+
√
ε

∞∑
m=1

εm
m−1∑
k=0

Ωo,k(τ0)Ωe,m−1−k(τ0) +
∞∑

m=2

εm
m−2∑
k=0

Ωe,k(τ0)Ωe,m−2−k(τ0). (99)

These expansions may now be used to equate powers of ε and obtain the expressions given in
(23) and (25).

Appendix B. Initial condition for four-periodic equation

In order to calculate the initial condition for the four-periodic problem, we first recall that
R̂(x, ε) was derived in order to satisfy the initial condition for small ε. The four-periodic solution
arises for ε > −2 +

√
6, or η > 0. Hence, we determine the initial condition by perturbing

around the leading-order behaviour of R̂(x, ε), which is initially two-periodic for the parameter
regime under consideration. We then determine σ1 by matching with the initial condition in
the limit that η → 0.

We first obtain stable two-periodic behaviour of R(x, ε) from (8), letting x = 0 in order to
describe the initial state. This expression may be written in terms of η, to allow a small η
expansion in this limit. This gives
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R̂(0, ε) =
4 + ε+

√
ε(4 + ε)

2(3 + ε)
∼ 1

5

(
2 −

√
3 +

√
2 +

√
3

)

+
η

50

(
3
√

2 − 16
√

3 − 7
√

6 + 12
)

+
3η2

250

(
−47

√
2 + 84

√
3 + 18

√
6 − 38

)
+O(η3). (100)

Setting x = 0, letting σ1 = σ1,0 + ησ1,1 + · · · , and expanding S in powers of η gives

S(0, ε) ∼ ησ1,0 + η2

(
− 5

12
(14 − 7

√
2 − 4

√
3 + 4

√
6)σ3

1,0

+ (3
√

3 −
√

6 +
3
2

√
2 − 1)σ2

1,1 + σ1

)
+O(η3). (101)

To determine the appropriate initial condition, we fix the case for η = 0, which gives

R(0, ε) =
1
5

(
2 −

√
3 +

√
2 +

√
3

)
. (102)

By setting R(0, ε) = R̂(0, ε) + S(0, ε), and matching powers of η, we can obtain

σ1 = − 1
50

(
3
√

2 − 16
√

3 − 7
√

6 + 12
)

+
η

500

(
297

√
2 − 709

√
3 − 189

√
6 + 399

)
+O(η2), (103)

This is sufficient information to approximate the solution using the transseries behaviour,
although it is straightforward to continue this process to obtain higher corrections for σ1.
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différentielles complexes lentes-rapides à point tournant Ann. Fac. Sci. Toulouse, Math. 7 627–58

[11] Berry M V 1989 Uniform asymptotic smoothing of Stokes’s discontinuities Proc. R. Soc. A 422
7–21

[12] Casalderrey-Solana J, Gushterov N I and Meiring B 2018 Resurgence and hydrodynamic attractors
in Gauss–Bonnet holography J. High Energy Phys. JHEP04(2018)042

[13] Costin O 1995 Exponential asymptotics, transseries, and generalized Borel summation for analytic,
nonlinear, rank-one systems of ordinary differential equations Int. Math. Res. Not. 1995 377–417

[14] Costin O 1998 On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary
differential equations Duke Math. J. 93 289–344

[15] Costin O and Costin R D 2001 On the formation of singularities of solutions of nonlinear differential
systems in antistokes directions Invent Math. 145 425–85

[16] Costin O, Costin R D and Huang M 2015 Tronquée solutions of the Painlevé equation PI Constr.
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