
 

University of Southampton Research Repository 

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are 

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the 

accompanying data cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the copyright holder/s. The content of the thesis and accompanying 

research data (where applicable) must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the copyright holder/s.  

When referring to this thesis and any accompanying data, full bibliographic details must be given, 

e.g.  

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the 

University Faculty or School or Department, MPhil Thesis, pagination.  

Data: Author (Year) Title. URI [dataset] 

 

 

 

 

 

 

 

 

 

 

 

 

  



2 

 



 

 

University of Southampton 

Faculty of Engineering and Physical Sciences 

School of Chemistry 

Artificial Neural Network Processing of Double 

Electron-Electron Resonance Data 

by 

Steven Worswick 

Thesis for the degree of Master of Philosophy 

September 2020 

 

https://www.southampton.ac.uk/




 

 

University of Southampton 

Abstract 

Faculty of Engineering and Physical Sciences 

School of Chemistry 

Master of Philosophy 

Artificial Neural Network Processing of Double Electron-Electron Resonance Data 
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We show that artificial neural networks offer a powerful alternative to the established procedures 

for analysis of Double Electron-Electron Resonance (DEER) data. Simple five layer feed-forward 

neural networks were trained on a randomly generated synthetic data set. When the output of 

multiple such networks is combined to make an ensemble guess they are able to extract distance 

information with accuracy comparable to state-of-the-art methods. The variance in the ensemble 

output also provides a good estimation of the error in the result. 

 We then show that neural networks can be trained to predict both the exchange coupling 

interaction and the distance distribution in parallel. They were shown to provide a confident 

estimate at the magnitude of the exchange interaction while offering varying success when 

estimating the distance distribution.  
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Artificial Neural Networks 

The term artificial neural network (ANN), often shortened to just neural network, describes a family 

of computational models inspired by the structure and learning mechanisms of biological neural 

networks. They fit under the general descriptor machine learning (ML) describing all forms of 

computer algorithm that are able to automatically fit a model based on patterns within data, 

learning through experience. 

While the field arose from ideas resulting from early work in psychology and neurophysiology in 

the 19th century, the practical applications could not be fully realised until recently. In the past two 

decades the amount of data readily available has exploded, coming from all aspects of life including 

sensor recordings, web-based analytics, climate data, and social media. Along with the 

advancement of computing capabilities, allowing for larger and more accurate models to be trained 

and the adoption of so called Deep Learning models – here the “deep” simply refers to networks 

containing multiple layers of artificial neurons. 

These factors mean that ML and ANN models can now be seen throughout modern life and 

emerging technologies including for email spam filters,[1] audio and video recognition,[2] 

autonomous vehicles,[3] and predictive maintenance.[4]  

This chapter provides an answer to the question: What is a neural network? Starting with a brief 

review of the history of the ideas that developed into the modern field, the sections that follow 

introduce the relevant neural network architectures and behaviours. Finally the methods of training 

the network model and the gathering and preparation of the training data will be described.  
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1.1 Historical Perspectives 

The development of ANNs has seen researchers from a variety of backgrounds contributing 

concepts of network design and learning through the 20th and 21st centuries. But the task of training 

a network is inherently computationally intensive – the process involves storing numerous variables 

and performing operations on large matrices – due largely to this the field has progressed in phases 

as more powerful computers became available to test new concepts. 

Some of the foundations for the modern theory were laid down in the late 19th century by scientists 

such as Ivan Pavlov and Hermann von Helmholtz. This early work was focussed more on general 

descriptions of learning, conditioning, and visual and auditory perception rather than the 

mathematical modelling of neuron behaviour which came later. 

The modern theory of neural networks was first developed in the mid-1900s with work such as that 

of Warren McCulloch and Walter Pitts, in who’s 1943 paper entitled A logical calculus of the ideas 

immanent in nervous activity a computational model for a nerve cell was proposed. The model 

performed a thresholding function on a set of weighted inputs to give a binary output and they 

demonstrated how a network artificial of neurons should be able to compute any arithmetic or 

logical function.[5] 

This work was followed by Donald Hebb with his 1949 book The Organization of Behavior which is 

considered to be among the most influential works in psychology and neuroscience. In this Hebb 

linked the earlier ideas of learning and conditioning to the behaviour of the individual neurons and 

proposed a mechanism by which the efficiency of the synaptic responses may be modified following 

repeated firing of the neurons to promote learning.[6] 

It wasn’t until the late 1950s that the first practical applications of ANNs appeared with Rosenblatt’s 

perceptron[7] and Widrow and Hoff’s adaptive linear neural networks[8]. These were both limited 

in their capability and although both groups tried they were unable, at the time, to change their 

learning algorithms for training more complex networks. Many researchers left the field in the late 

1960s due largely to the lack of computational power available to experiment with. Another reason 

often cited for the lack of development in this time was the influence of the 1969 book Perceptrons 

from Marvin Minsky and Seymour Papert in which they tried to develop an understanding of why 

Rosenblatt’s, and Widrow and Hoff’s networks were successful in some cases but not in others. This 

publicity of the limitations purportedly led many to believe that the research was at a dead-end.[9]  

Whilst some work continued in the 1970s it was not until the 1980s that the field leapt forward. 

This was partly due to the wide availability of more powerful computers with which to experiment, 

but also due to the introduction of two important new concepts. The first of these came from John 

Hopfield; in his 1982 paper Hopfield described similarities in the analysis of the behaviour of a class 
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of recurrent networks to the statistical mechanics used in the Ising model of ferromagnetism. This 

analogy opened the way for other parts of the established physical theory to be applied to the 

analysis of neural networks, and served to attract many physicists and scientists from a wide variety 

of fields back toward the area.[10]  

The second major addition to the theory in the 1980s was the development of the back-propagation 

algorithm for the training of multi layered perceptron networks. This was proposed independently 

by groups led by David Parker[11], Yann LeCun[12], and David Rumelhart[13]. Probably the most 

influential work in the widespread adoption of the algorithm was that of Rumelhart, Geoffrey 

Hinton, and Ronald Williams which was included in the well-publicised 1986 book Parallel 

Distributed Processing[14] written by Rumelhart and James McClelland, and the Parallel Distributed 

Processing group. The back-propagation algorithm provided solutions to many of the problems that 

were described by Minsky and Papert and led to a resurgence in artificial neural network research. 

Since the 1980s the field has been growing steadily and neural networks have found application 

across a range of fields from medical diagnostics[15] to the control of autonomous vehicles[16]. In 

more recent years the focus has shifted to neural network training accelerated using graphical 

processing units (GPUs). These provide an ideal environment for network training due to their 

massively parallel architectures, intended for large matrix operations when computing 3D graphics. 

This model of GPU-accelerated training has become an active area of collaborative development 

between GPU developers (NVIDIA) and neural network specialists working on optimising GPU 

performance for network training. The resultant reduction of training times from the order of 

weeks to hours has meant that scope of the neural network applications has exploded within the 

last decade. 
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1.2 Fundamentals of Neural Networks 

1.2.1 Analogy to Biological Neural Networks 

Biological neural networks are made up of a large number of interconnected specialised cells called 

neurons (Figure 1.1). These neurons receive multiple inputs passed from other neurons through 

branching connections called dendrites. When the cumulative signal in the cell body reaches an 

activation threshold a signal is propagated through the axon to pass on to subsequent neurons via 

synapses; the small gap between the axon of one cell and the dendrites of the next, the signal is 

carried across the synapse by diffusion of neurotransmitters.[17] 

 

Figure 1.1: A biological neuroni 

The way in which the individual neurons are arranged and the strengths of the connections 

between them are what allow the network to perform its function. And the mechanism of learning 

in biological neural networks involves the formation of new inter-neuronal connections as well as 

strengthening or weakening those already there so that the signal output from the neurons gives 

the desired response in the body.[6] 

Artificial neural networks are orders of magnitude less complex than biological ones, both in the 

number of neurons and in the connections between them, but they behave in a similar manner. 

They consist of a number of simple computational devices termed artificial neurons. The neurons 

are arranged in interconnected layers and the network “learns” through the weighting of these 

connections so that the required output is obtained from the input.[17, 19] 

1.2.2 Artificial Neuron Model 

The artificial neuron is a simple computational device which was inspired by the activation 

behaviour of a biological neuron. It receives a signal to which it applies a learned weight, the neuron 

then passes the sum of the weighted signal and a learned bias (or offset) value through an activation 

function which determines the shape of the neuronal output signal.[17] 

                                                           
i Figure adapted from [18] S. Freeman, Biological Science, Pearson Prentice Hall, 2nd edition, 2005. 
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Figure 1.2: Diagram of a multiple input artificial neuron 

The diagram in Figure 1.2 shows a typical multiple input artificial neuron. In most applications of 

neural networks the input signal is composed of more than one point – for example it could be 

discontinuous variables like sensory data, the data points of a function, or the pixels of an image.  

For the example of a single multiple input neuron each individual input 𝑥𝑛 is weighted by the 

corresponding element 𝑤𝑛.  The neuron then sums the weighted inputs with a bias scalar 𝑏, this 

internal sum is often termed the “net input” and takes the form:[17] 

     1,1 1 1,2 2 1,n nN w x w x w x b   (1.1) 

The net input is then passed through an activation function 𝑓 (also called a transfer function) which 

produces the neuron output – a scalar 𝑦. Practically, the net input is computed as an inner product 

between the matrix of weights and the input vector, the neuron output can expressed in matrix 

notation as: 

  y f b Wx    (1.2) 

Where for the single neuron example 𝐖 is a row vector of length 𝑛. 
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1.2.2.1 Activation functions 

The activation function is necessary to transform the neuron input into the desired output. The 

choice of function depends on the problem and layers within the network may use different 

functions. Some common transfer functions include the linear or identity function, the binary step 

function and sigmoid functions (Figure 1.3).  

 

Figure 1.3: Examples of common activation functions used in training neural networks. (a) Linear (or Identity) function, 
(b) step function, (c) Logistic Sigmoid function and (d)  Hyperbolic tangent  sigmoid function. 

The linear activation function is described by the equation 

 ( )f x x   (1.3) 

This simply returns an output equal to the input, this is most often used in function fitting problems 

and as the activation function for neurons in the output layer as no operations are performed 

here.[17] 

A binary step function returns an output of 1 when above a certain threshold and an output of 0 

when below the threshold, following the rules: 

 
0   for   0

( )
1   for   0

x
f x

x


 


  (1.4) 

This can be used when the problem involves classifying an input into one of two groups (a binary 

classifier).[17] 

Sigmoid functions are used to introduce non-linearity into the system so that the network can learn 

more complex relationships between input and output vectors making these ideally suited for 

application in pattern recognition and regression networks.[19] The Logistic-Sigmoid (logsig) 

function generates an output between 0 and 1 and is useful for situations when you want to 

constrain the network output, it can be described by the equation:[17] 

b 

c d 

a 
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The hyperbolic tangent sigmoid function (tansig) is expressed as: 

 
2

2
( ) tanh( ) 1

1 x
f x x

e
  


  (1.6) 

This generates an output between -1 and 1 for inputs between negative and positive infinity. It is 

useful for non-linear regression problems when the desired output does not need to be 

constrained.[17] 

1.2.3 Artificial Neural networks 

1.2.3.1 Single layer of neurons 

For most tasks it is not sufficient to have just one multiple input neuron, in this case multiple 

neurons can be used in parallel to form a layer. 

 

 Figure 1.4: Single layer of m neurons 

Figure 1.4 shows a single layer of 𝑚 neurons, each of the 𝑛 inputs is connected to each neuron in 

the layer. The connection weights can be written as the 𝑚 by 𝑛 weight matrix 𝐖. Each neuron in 

the layer also has its own learned bias 𝑏𝑚, which can be written for the layer as the bias vector 𝐛. 

After summing the weighted inputs with the bias value the neurons in the layer each output a scalar 

value 𝑦𝑚 which are taken together as the layer output vector: 

  f y Wx b   (1.7) 

Where the weight matrix 𝐖 and the bias vector 𝐛 take the forms 

 

1,1 1,2 1, 1

2,1 2,2 2, 2

,1 ,2 ,
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The number of neurons in the layer does not need to be equal to the number of the inputs to it. 

But the number of neurons defines the dimensions of the output to the layer as a whole.[17] 

1.2.3.2 Multiple layers of neurons 

By adding more neurons in parallel to form a layer, the power of the network is increased 

significantly. To further improve the capabilities of a neural network it is possible to use multiple 

layers of neurons connected in series.  

 

Figure 1.5: Schematic of a neural network of three layers, each with mk neurons. 

Figure 1.5 shows the general structure of a neural network constructed of three layers of neurons. 

Each layer has an associated weight matrix 𝐖𝑘 and a bias vector 𝐛𝑘. The output, or activation, of a 

layer 𝐚𝑘 is used as the input for the next layer. Therefore, using the second layer of the network 

above as an example, the layer output is computed as: 

  2 2 2 1 2f a W a b   (1.8) 

And the total network output as: 

    3 3 3 2 2 1 1 1 2 3f f f    y a W W W x b b b   (1.9) 

The final layer in the network is termed the output layer and preceding layers are called hidden 

layers. Thus, the network shown above is a three layer network with two hidden layers.  

The term deep neural network is commonly applied to networks which have more than one hidden 

layers.ii 

 

                                                           
ii Some authors refer to the first layer in a network as the input layer rather than a hidden layer, in which case 
the network above would be a three layer network of one hidden layer 
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1.2.4 Network architectures 

The way in which the artificial neurons are formed into layers and the interconnections between 

them are often called the neural network architecture. When designing a neural network to solve 

a given problem there are a lot of decisions that have to be made regarding the number of layers; 

the number of neurons in each of the layers; the ways the neurons are connected; and which 

activation function to use.[17] 

Fortunately, some aspects of the network are defined by the problem itself. The output layer, for 

example, is almost completely defined by the desired output of the network. The number of 

neurons in this layer is, by necessity, equal to the number of data points in the desired response. 

And the activation function used in the neurons of the output layer is selected based on the desired 

characteristics of the response.[17]  

The architecture of the hidden layers, on the other hand, are less clearly linked to the problem 

itself. For most problems, selecting the optimal number of neurons for a hidden layer requires some 

trial-and-improvement – a significant hurdle during the earlier attempts at applying neural 

networks, before the powerful modern computers became available.[17]  

Further, the choice of activation function for the hidden layer neurons is not necessarily obvious 

for a given problem. This decision can also depend on the training algorithm being used, the back-

propagation algorithm, for example, requires transfer functions to be differentiable.[17]  

The choice of how to interconnect the neurons within the network is partly determined by the 

problem. When designing a neural network to predict a continuous valued output (regression 

learning) it is most common to use fully-connected layers of neurons in a feed forward architecture; 

where each of the neurons in a layer is connected to each neuron in the next layer such that the 

signal travels only forwards from input to output layer.  
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1.3 Neural Network Training  

1.3.1 Network Learning Paradigms  

Neural network training is the process of updating the network parameters (weights and biases) 

such that, when presented with the input data, the network produces the desired result. Neural 

network learning can be divided into two categories; supervised learning, and unsupervised 

learning. 

1.3.1.1 Supervised Learning: Regression and Classification 

Supervised learning is used when a neural network model is being trained to solve a specific 

problem for which a dataset of known inputs (independent variables) and their desired responses 

(dependant variables) is available – a dataset such as this is termed labelled data. The general 

process of this form of learning is an iterative procedure where first the dataset of inputs is 

presented to the network to produce the network guess at the responses. This is then compared to 

the dataset of corresponding target responses and network parameters (weights and biases) are 

updated to minimise this error.  

The area of supervised learning can be further divided into the subcategories of classification and 

regression problems.  

In a classification problem setting the output data is qualitative, in other words it takes the form of 

discrete classes. Image recognition is a clear example of this form of learning, here the objective is 

to train a model that accepts a digital image as input and is able to categorise the objects in the 

image.[20]  

In a regression problem setting the output data is quantitative, i.e it is a continuous valued. An 

example application of regression learning includes finding a mapping between two functions.  

1.3.1.2 Unsupervised Learning 

The unsupervised model of learning refers to various algorithms used to infer some response from 

a dataset containing only input data (i.e. data without a known target response).  

Possibly the most common unsupervised learning method is cluster analysis. This involved the 

application of a clustering algorithm uses some measure of similarity between datasets, such as the 

Euclidean distance, to group the datasets based on an underlying pattern. Some popular clustering 

algorithms include k-Means clustering, Hierarchical clustering, and self-organising maps.[19] 
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1.3.2 Supervised Learning for Regression Networks 

1.3.2.1 Numerical Optimisation Methods 

The training algorithms used in the training of multi-layered neural networks, those described in 

this work, are most often methods based on one or more numerical optimisation method; namely, 

steepest descent, conjugate gradient, and Newton-type methods.[17] 

The aim of these methods is to find an optimal solution to an objective function 𝐹(𝐱), in other 

words, to find the value of 𝐱 which minimises the 𝐹(𝐱). To generalise, numerical optimisation 

methods are iterative procedures where an initial guess 𝐱𝑛 is updated by taking steps along a 

chosen search direction. The updated guess can be expressed 

 1n n n n n n     x x x x p   (1.10) 

Where 𝐩𝑛 is a vector describing the step direction; and 𝛼𝑛 is the learning rate, is a positive scalar 

used to determine the size of step to take. The methods discussed below differ in the way the 

search direction is chosen and may exhibit different convergence behaviour for a given 

function.[17] 

1.3.2.2 Steepest Descent 

When deciding a step direction for minimisation, the direction of steepest descent is an obvious 

choice. Considering the first order Taylor expansion for the function 𝐹(𝐱), in which the updated 

guess 𝐱𝑛+1 is found from the initial guess 𝐱𝑛by: 

 
1( ) ( ) ( ) T

n n n n n nF F F     x x x x g x   (1.11) 

Where 𝐠𝑛, the gradient at iteration 𝑛, is equivalent to ∇𝐹(𝐱). In order for the function at step  𝑛 +

1 to be smaller than the function at step 𝑛, i.e. a minimisation step, the second term on the right-

hand-side of Equation (1.11) must be less than zero. This condition is shown below, where the step 

value Δ𝐱𝑛is now expressed using the step direction 𝐩𝑛 and learning rate 𝛼𝑛:  

 0T

n n n g p   (1.12) 

Using a constant learning rate that is a small – but positive – number, we can see that for this 

condition to be met the product 𝐠𝑛
𝑇𝐩𝑛must be less than zero. In the steepest descent method the 

negative gradient is used as the step direction, so: 

 n n p g   (1.13) 

So the steepest descent method for finding the guess after a guess is expressed as: 
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 1n n n n  x x g   (1.14) 

Where the learning rate 𝛼𝑛 can either be a constant, take some predetermined value per iteration, 

or is adjusted by including a line search procedure which minimises the objective function for 𝛼𝑛 at 

each iteration.[17, 21]  

The basic gradient descent is a relatively inexpensive method in which convergence is guaranteed 

so long as the learning rate is sufficiently small, or is adjusted at each iteration. However, the choice 

of the steepest gradient as the search direction means that the minimisation will always converge 

to the nearest local minimum which means it cannot be applied to noisy functions.[17] 

1.3.2.3 Newton’s Method 

Newton’s method for choosing a search direction is derived from the second-order Taylor 

expansion for a many variable function, defined as:[17] 

 
1

1
( ) ( ) ( )

2

T T

n n n n n n n n nF F F        x x x x g x x H x   (1.15) 

Where 𝐇𝑛 is equivalent to the symmetric and positive definite Hessian matrix for the function, 

∇2𝐹(𝐱). The basic principle of the Newton method is to find the value of Δ𝐱 such that the quadratic 

approximation to the function is at a stationary point. To achieve this, the derivative of the above 

expression with respect to Δ𝐱 is set to equal zero: 

 
d 1

0 ( )
d 2

T T

n n n n n nF
 

      
  

x g x x H x
x

  (1.16) 

We get the result:  

 0 n n n  g H x   (1.17) 

Solving this for Δ𝐱𝑛 gives the iteration step: 

 1

n n n

  x H g   (1.18) 

Substituting into the general update step Equation (1.10) we arrive at the definition for the Newton 

method:[17, 21] 

 1

1n n n n



  x x H g   (1.19) 

By minimising a function via the stationary point of its quadratic approximation, the Newton 

method will always find the exact minimum of a quadratic function in a finite number of steps. In 

the case of a non-quadratic function several steps are taken, where the function is approximated 
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as quadratic at each step. In this case the method will always converge to the nearest stationary 

point without the ability to distinguish between minima, maxima and saddle points.[17] 

Another limitation of the Newton method is the computational cost. The calculation and storage of 

the Hessian as well as its inverse at each iteration is very expensive. In an effort to avoid the 

expensive computation of the Hessian, a number of quasi-Newton methods have been developed.  

1.3.2.4 Quasi-Newton Methods 

The general idea behind quasi-Newton methods is to avoid the expensive computation of the 

Hessian and its inverse. This is done by using an approximation to the Hessian, 𝐁𝑛 which is updated 

after each iteration using the change in gradient from the previous step. With this approximation 

in place, the quasi-Newton step is defined as:[21] 

 1

1n n n n



  x x B g   (1.20) 

The Hessian approximation is chosen to satisfy the secant equation, which is the Taylor expansion 

of the gradient itself:  

 1n n n   g g B x   (1.21) 

After the first step in the direction of steepest descent the approximate Hessian is calculated; and 

in subsequent steps it is updated following a selected formula. Popular examples of formulae for 

the approximate Hessian update include the Broyden-Fletcher-Goldfarb-Shanno, or BFGS, method; 

defined as:[21] 

 1

T T

n n n n n n
n n T T

n n n n n

   
B s s B y y

B B
s B s y s

  (1.22) 

And the symmetric-rank-one (SR1) formula, defined as:[21] 

 
  

 
1

T

n n n n n n

n n T

n n n n



 
 



y B s y B s
B B

y B s s
  (1.23) 

Where in both examples:  

 1 1and                      n n n n n n    s x x y g g   (1.24) 

Quasi-Newton methods can provide very fast convergence with a computational cost similar to that 

of basic gradient descent. 
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1.3.2.5 Conjugate Gradient 

The conjugate gradient method of minimisation is an adaptation of gradient descent that has the 

benefits of quadratic termination while avoiding the need to expensively compute the Hessian at 

each step. Instead, the history of the gradient is used in selecting the search direction for all except 

the first step. At the first step there is no preceding gradient, so the first step is taken in the direction 

of steepest descent, the negative of the gradient:[17] 

 0 0 p g   (1.25) 

Following the step iteration: 

 1 0 0 0 x x p   (1.26) 

Where the learning rate 𝛼𝑛 is chosen to minimise the function in the search direction. At the 

subsequent steps the iteration is found as: 

 1n n n n  x x p   (1.27) 

Where 𝐩𝑛 is selected using the previous search direction, following the equation: 

 1n n n n   p g p   (1.28) 

In which, the scalar 𝛾𝑛 can be found using one of a number of formulae, two of the most used are 

the Fletcher-Reeves and the Polak-Ribiere formulae, shown below:[21] 

 
FR PR 1

1 1 1 1

( )
         

T T

n n n n n
n nT T

n n n n

  

   

    
 
   

x x x x x

x x x x
  (1.29) 

The conjugate gradient method is an improvement on the basic gradient descent as it does not 

display the same zig-zag behaviour and so does not slow down so much when nearing the minimum, 

but is still slow in very non-linear cases. 

1.3.3 Back-Propagation Learning 

The introduction of the back-propagation algorithm for training multi-layered neural networks 

marked a big leap forward in the development of the field in general. It was first introduced to the 

field in the mid-1980s after independent development from various groups[11, 12, 13] and quickly 

became one of the most widely used neural network training methods. The standard back-

propagation algorithm is presented below. 

However, the basic back-propagation algorithm is not without limitations. For most practical 

applications it is too slow to converge due to a fundamental problem when computing the partial 
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errors for the weights. This problem is stated below and some modifications to the standard back-

propagation to address these issues are introduced. 

1.3.3.1 Standard Back-Propagation 

The general process of the back-propagation algorithm involves first propagating the input 

examples 𝐱 from the training set forward through the network. The responses 𝐲 generated from 

this are then compared to the corresponding target outputs 𝐭 and the network parameters are 

updated to decrease their effect on the total error. The algorithm then proceeds by iteratively 

presenting the examples and updating the weights to achieve the optimum. This is now discussed 

in detail.  

Consider a network of 𝐾 fully-connected layers (as shown in Figure 1.5), the activation of each layer 

of neurons takes the form: 

  1 1 1 1    for   0,1, , 1k k k k k k K      a f W a b   (1.30) 

The neurons in the first layer are presented with the example patterns, so: 

 0 a x   (1.31) 

And the total network output is the activation of the neurons in the 𝐊th layer, so: 

 
K a y   (1.32) 

The error on this prediction is then compared to the target response, for example by way of the 

sum-of-squared errors: 

 T

1

( ) ( ) ( )
N

n n n n

n

E


  x t y t y   (1.33) 

The next step is to minimise this error by updating the trainable parameters in the neurons. In the 

standard back-propagation algorithm this is formulated as a steepest descent minimisation with 

learning rate 𝛼 for the individual weights and biases: 

 , ,

,
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  (1.34) 
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  (1.35) 

Where partial derivatives of the total error with respect to the individual network parameters can 

be readily computed using the chain rule: 
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  (1.37) 

In which 𝑁𝑖
𝑘 is the value termed the net input to the neuron – the result of the weighted sum of 

the neuron input with the bias, before the activation function is applied. This is expressed as: 

 1

,

1

km
k k k k

i i j j i

j

N w a b



    (1.38) 

The derivatives of this with respect to the weights and biases in the neuron can therefore be written 

as: 
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  (1.39) 
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  (1.40) 

And the steepest descent algorithm now becomes: 

 1
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  (1.42) 

If we define the sensitivity 𝑠𝑖
𝑘 of the network error 𝐸 to changes in the 𝑖th element of the net input 

of the 𝑘th layer as: 

 k

i l

i

E
s

N





  (1.43) 

It is convenient at this point to switch to matrix notation to describe the layer as a whole, thus the 

steepest descent algorithm becomes: 

  1( 1) ( )
T

k k k kn n    W W s a   (1.44) 

 ( 1) (n)k k kn   b b s   (1.45) 

Where 𝐬𝑘 is now the vector of the individual sensitivities. The next stage in the algorithm involves 

computation of these sensitivities; it is here that the term back-propagation becomes pertinent, 
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describing the application of the chain rule to compute the sensitivity at layer 𝑘 from the sensitivity 

at layer 𝑘 + 1, the next layer in the forward direction. 

We start the derivation of this recurrence of the sensitivities by defining the Jacobian matrix of the 

net inputs: 
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Now, by considering the 𝑖, 𝑗 𝑡ℎ element of this Jacobian and remembering that the form of the net 

input (Equation (1.38)) we can write: 
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Which evaluates to 
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In which the right-hand-side now contains the activation of the 𝑗th neuron. This can be replaced by 

the more explicit term for the neuron activation, the function of the net input, to give: 
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Which, when expressed in the matrix form, yields the following equation for the Jacobian: 
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  (1.50) 

Where the product 𝐅𝑘(𝐍𝑘) is the matrix: 
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Again utilising the chain rule, we can express the matrix of vector of sensitivities for the layer as: 
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Substituting in the derived equation for the Jacobian, Equation (1.50), we arrive at the recurrence 

relation for the sensitivity: 
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For the network of 𝐾 layers considered here, the starting point for this recurrence is the sensitivity 

vector for the final layer 𝐬𝐾.    
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Remembering from Equation (1.32) that the total network output 𝑦𝑖  is equal to the activation of 

the final layer, we can express the partial derivative on the right-hand-side of the above expression 

as: 
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Allows us to write the starting point sensitivity, in matrix notation, as:[17]  

   2K K K  s F N t a   (1.56) 
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To summarise, the standard (steepest descent) back-propagation algorithm involves three steps: 

1. The input examples are propagated forwards through the network: 
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2. The sensitivities are then back-propagated through the network: 

 
  

  1 1

2        and,K K K

T
k k k k k 

  



s F N t a

s F N W s
  

3. The weights and biases are then updated following the rules: 
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1.3.3.2 Resilient Back-Propagation (RPROP) 

The Resilient Back-Propagation (RPROP)[22] algorithm of Martin Riedmiller and Heinrich Braun is 

another example of a training algorithm designed to overcome the problem of slow learning speed 

found with simple gradient descent back-propagation. RPROP is able to avoid this problem as it 

does not make use of the magnitude of the gradient in the adaptation of the weight step size.  

This is achieved by using a separate update value Δ𝑖,𝑗 for each weight  𝑤𝑖,𝑗 to decide the size of the 

weight update; the gradient is only used to determine the update direction from the sign. During 

training the update value is adapted using the chosen increment and decrement factors 𝜂+and 𝜂− 

following learning rules expressed as:[22] 
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  (1.57) 

In words, if the sign of the derivative of the error function remains the same between iterations, 

then the weight update value Δ𝑖,𝑗 is increased by the factor 𝜂+to accelerate the convergence. 

Conversely, if the sign of the derivative changes sign between iterations, then the weight update 

value is decreased by the factor 𝜂−to avoid oscillation when near the minimum.[22] 
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After the update values for each weight have been adapted based on the previous iterations they 

are applied to each weight following the rule that: If the derivative is positive (i.e. the error is 

increasing) the weight is decreased by the update value; and if the derivative is negative then the 

weight is increased by its update value. This learning rule can be similarly expressed:[22] 
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  (1.58) 

Where the weights are then updated as: 

 ( 1) ( ) ( )t t t

ij ij ijw w w     (1.59) 

1.3.3.3 Levenberg Marquardt Back-Propagation (LM-BP) 

One of the most used neural network training algorithms is the Levenberg-Marquardt (LM) 

variation to back-propagation introduced by Martin Hagan and Mohammad Menhaj.[23] The LM-

back-propagation algorithm is a hybrid of a quasi-Newton and basic gradient descent method.  

When minimising a performance function of the form of a sum of squares, we can approximate the 

Hessian as: 

 TH J J   (1.60) 

And the gradient can be found by: 

 
Tg J e   (1.61) 

Where 𝐉 is the Jacobian which is computed for the network through backpropagation and 𝐞 is a 

vector of the network errors. Using these approximations we can form the update rule: 

 1

1 [ ]T T

k k  

   x x J J I J e   (1.62) 

The LM algorithm then exploits the benefits of both the accuracy and speed of the Newton method 

near the minimum and a cheap gradient descent. By starting with large value of the scalar µ the 

equation (1.62) becomes a gradient descent with a small step size. If we decrease µ with each 

successful step that reduces the error function, then the equation (1.62) shifts towards Newton’s 

method.[17, 23] 
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1.4 Further Training Considerations 

1.4.1 Overfitting 

When the ratio of network model complexity to the amount of data available for training is too 

large, the network will tend towards a perfect fit to the training data rather than an interpolation 

through the space. This overfitting is characterised by the weights and biases  

Ideally the number of points available for training should be far greater than the model complexity 

to ensure good generalisation to unseen data.[19] The number of trainable parameters in the 

network architecture provides a reasonable measure of the network complexity. For the example 

of a fully-connected feed-forward network of 𝑘 layers each of 𝑚 neurons, with an input of length 

𝑚 the number of trainable parameters is given by: 

  2k m m   (1.63) 

Where each neuron has an 𝑚 × 𝑚 weight matrix and an 𝑚 × 1 bias vector. Most authors offer 

some ‘rule of thumb’ as to the amount of training data to use in comparison to the network 

complexity.[17, 19, 24] But generally it is stated that at an absolute minimum the number of points 

in the training set should be at equal to the number of trainable parameters. So if the training 

examples are the same length as the number of neurons, the number of examples 𝑛 should satisfy: 

 ( 1)n k m    (1.64) 

Often the size of the dataset available for training is not something that can be controlled. It may 

not be possible to collect a sufficient amount of data, or there may be hardware limitations which 

restrict the size of training data set that can be used. In this case, there are a three main methods 

that can be employed to improve the trained model performance, namely weight regularisation, 

early stopping and ensemble methods.[17] 

1.4.1.1 Weight Regularisation 

Before training, the weights and biases are usually set to some small value close to zero. During 

training the magnitude of these parameters will generally increase. In the case of an over-fit model 

the weights have tuned towards a perfect fit to the training data, i.e. they take on large positive or 

negative values such that the learnt function will pass through all the data points.[19, 24] 

Weight regularisation (also called shrinkage) methods use a modified performance function in 

training which includes a penalty term to the magnitude of the learned weights (such as the sum of 

squared weights) and therefore limits the effective complexity of the network model. This results 

in a network performance function of the form: 
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Where the coefficients α and β control the relative importance of the two terms. The effect that 

regularisation has on the predictive performance of a trained model can be clearly demonstrated 

using a simple function fitting problem. Consider, for example, the function:  

 sin(2 )y x  (1.66) 

as shown by the blue line in the plots of Figure 1.6. A set of training pairs can be generated for this 

function by sampling the function after adding some random noise; these training targets are 

shown by the orange circles in Figure 1.6. Simple feed-forward network with 3 layers of 1-20-1 

neurons respectively can then be trained to recreate the function from supplied 𝑥 values. 

When no regularisation of the weights is used (left) the network reproduces the training data 

almost perfectly, fitting through the noise and producing a poor fit to the original function. When 

the weights are over regularised (right) the response is too smooth. But by selecting the right level 

of regularisation a good fit can be achieved (centre).[17] 

 

Figure 1.6: Demonstration of importance of regularisation. The blue line is the function y=sin(2πx), the orange circles are 
the training data (original function plus some noise) and the red lines are the simple network outputs. 

1.4.1.2 Early stopping 

Another method which can be employed to improve generalisation is the early stopping method, 

introduced by Changfeng Wang, Santosh Venkatesh and J. Stephen Judd in 1994.[25] This method 

is based on the idea that during training the network complexity increases as more of the weights 

come into play. Until eventually all of the weights are used fully when the network reaches a perfect 

fit to the training data. By stopping training before this minimum is reached the effective complexity 

of the network can be limited and it is less likely to over-fit. 
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Practically, early stopping is implemented by dividing the available training data into three subsets; 

training, validation and test. During training the error of the network on the validation set is 

monitored but is not used in learning. If this starts to increase while the error on the training set 

continues to decrease then the training is stopped early and the network parameters are reverted 

to the values of the iteration with minimum validation error. 

1.4.1.3 Ensemble of networks 

Ensemble learning is a third method that can be used to improve the performance of a neural 

network based solution to a problem. When only one network is trained on a set of data, there is a 

chance that it will converge to a local minimum of the training surface; and therefore perform 

poorly.  

In the ensemble model of learning multiple networks are trained from the training dataset from 

different randomly initialised weights and biases. One method is to perform this a few times and 

select only the network which has the best performance. It will usually take only five to ten restarts 

to find the global optimum.[26] 

Another way to use an ensemble of networks is to perform multiple restarts and use all of the 

trained networks in a so-called committee. The training data for each network is randomly divided 

differently for each; and the weights and biases are initialised randomly. In function approximation 

problems the committee output is usually just an average of the separate outputs. In classification 

networks the committee outputs are combined as a majority vote. The performance of a committee 

of networks is usually better than that of the individual networks.  

Furthermore, the deviation in the outputs from the individual networks can be used to give 

confidence levels for total committee output.[17] 

1.4.2 Preparing training data 

There are various ways that the data can be processed before passing to the network. The general 

idea of pre-processing the data is to make it easier for the network to extract the information most 

relevant to the problem.  

In the example of multi-layered feed forward networks, sigmoid activation functions are often used 

in the hidden layer neurons. The nature of these functions means that they become saturated very 

quickly when the net input is too large. When this happens the gradient becomes very small and so 

training will be slow. Generally the inputs to multi-layered network training are normalised, for 

example into the range [−1,1]. Normalisation like this means that when the weights and biases are 

also initially small values, the net input is guaranteed to be fairly small at early stages and so the 

initial training will be faster.[17] 



 

24 

Other data pre-processing methods include feature extraction, where the dimensionality of the 

data is decreased in some way to reduce the number of redundant components to the data; and 

for classification problems the data may need to be coded so that it can be represented in discrete 

classes.  

1.4.3 Network initialisation 

Before starting the networks training, the weights and biases have to be set to some initial value. 

The method used to do this depends on the type of neural network being trained.  

In the case of multi-layered neural networks with sigmoid hidden unit activation functions, the 

parameters are usually set to small uniformly distributed random numbers. When the weights are 

close to zero, the active part of the sigmoid activation function is approximately linear so the 

network model starts close to a linear model and local nonlinearities can be introduced where 

needed through parameter updates.[24] 
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Neural Networks for DEER Analysis 

Double Electron-Electron Resonance (DEER), also known as Pulsed Electron Double Resonance 

(PELDOR) is a pulsed EPR technique used to measure nanoscale distances between two spins in 

systems that are either naturally paramagnetic or where the system can be tagged artificially, such 

as through side-directed spin labelling (SDSL) in proteins[27]. The experiment involves a two-

frequency pulse sequence to achieve separation of the pairwise dipolar interaction from other 

inter- and intra-molecular interactions. Distance information can then be obtained via the inverse 

cube relationship between this inter-spin dipole-dipole interaction and the inter-spin distance.[28] 

Unlike scattering methods for structure elucidation (e.g. X-ray diffraction) magnetic resonance 

distance measurements do not require long range order of the sample and so can be applied under 

a range of conditions (e.g. solution, frozen-solution, amorphous, crystalline, and between cryogenic 

temperatures and room temperature) and to a large variety of systems, such as 

biomacromolecules,[27, 29, 30] polymers,[31, 32] and other nanostructures where crystallisation 

is difficult or impossible.[28, 33]  

A unique strength specific to EPR in the study of biological structures comes from the fact that it 

only detects unpaired electrons.[34] Because of this the DEER method has been found to be 

especially useful in the investigation of large proteins which don’t contain native paramagnetic 

centres. Here the general procedure involves first tagging the protein with a molecule containing 

an unpaired electron (a spin-label) at several locations; a nitroxide radical is often used for this, 

attached to the protein via disulphide bridges to cysteine residues. The modified protein can then 

be introduced into physiological conditions before flash freezing to lock the distances and recording 

the DEER trace. This process allows the study of biomolecules in an environment much closer to 

the natural state than can be provided by solution phase and crystallographic methods.[27] 

Ideally, primary data takes the form of the pairwise dipolar oscillation, combined with a background 

decay arising due to intermolecular interactions; with negligible distortions from other interactions. 

In this case, the established methods for distance extraction work well. Complications arise when 

interactions beyond the simple spin pair take effect (e.g. in multi-spin, or spin > ½ systems; or where 

there is significant inter-electron exchange coupling).[35]  
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In this chapter the DEER method and the state-of-the-art in data analysis are introduced. Some of 

the limitations to current analytical methods are described in order to highlight the motivations for 

producing an ANN solution to the problem.  

This is followed by a brief review of the use of ANNs for similar data interpretation problems. The 

DEER analysis problem phrasing is then set-out in terms of FFNNs and a limited “proof-of-concept” 

ANN solution is presented. 

2.1 The DEER Experiment 

The DEER experiment was originally introduced by Milov et al as a 3-pulse sequence at two 

frequencies, shown in Figure 2.1(A).[36, 37] The sequence utilises a Hahn echo at the frequency 

𝜔A, termed the observer frequency, with fixed inter-pulse delays (τ). And a π- pulse at the pump 

frequency 𝜔B, at a variable delay time (t) after the initial π/2- pulse at the observer frequency. 

Inversion of the pump spins (B-spins) changes the magnetic field experienced by the observer spins 

(A-spins) through inter-electron coupling; resulting in a modulation of the spin echo. A dipolar 

evolution signal of the form shown in Figure 2.2(A) is recorded from the amplitude of the echo as 

a function of the pump pulse delay (t).[38] From this the inter-spin distance can be extracted, 

usually in the form of a distribution Figure 2.2(C) owing to the conformational flexibility of spin 

labels and the nano-structure being studied. 

 

Figure 2.1: A) original 3-pulse DEER sequence, and B) dead-time free 4-pulse DEER sequence. In both cases an echo is 
generated through a fixed pulse sequence at the observer frequency ωA and the pump pulse delay t is incremented to 
measure the dipolar modulation signal. 

 

This 3-pulse DEER method suffers from an inherent dead-time due to necessary overlap of the 

pump pulse with the initial observer π/2 pulse at short pump delays. This causes distortion at the 

beginning of the DEER trace leading to problems in analysis, especially in cases where broad 

distance distributions are present.[39]  

A dead-time free 4-pulse version of the DEER experiment was later proposed by Pannier et al, using 

a refocussed primary echo sequence applied at the observer frequency.[40] This is composed of a 
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π/2 pulse followed by a π-pulse after a fixed evolution time 𝜏1, producing an electron spin echo at 

time 𝜏1 after the first π-pulse. Finally, another π-pulse is applied following an evolution time 𝜏2 

which causes a refocussing of the observer-spin magnetisation after a delay of time 𝜏2. As with 3-

pulse DEER, the observer spin echo is attenuated by inversion of the pump spins using a π- pulse, 

here it comes at a variable time t after the initial spin echo thereby avoiding the necessity of 

overlapping observer and pump pulses.[40]  

2.2 The DEER Signal 

The primary data obtained through the DEER experiment is a spin-echo modulation trace of the 

kind shown in Figure 1.1(A), this is recorded in the indirect dimension as the pump pulse delay time 

𝑡 is incremented. In the case of an isolated spin pair coupled via dipolar 𝐷 and exchange 𝐽 

interactions, the intra-molecular modulation signal takes the form[41] 

  2( , , ) cos[( 1 3cos ) ]s r t D J t        (2.1) 

Where 𝐽 is the exchange coupling, 𝜃 is the angle made by the inter-spin vector and the magnetic 

field, and 𝐷 is the dipolar interaction constant, which for two spins with the gyro-magnetic ratios 

𝛾1and 𝛾2, and separated by 𝑟12 is given by: 
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Figure 2.2: Simulated DEER data showing (a) Example of a primary DEER trace including contributions from inter- and 
intra-molecular interactions (red line shows the inter-molecular background contribution to the total signal), (b) the intra-
molecular component of the DEER signal, and (c) the inter-spin distance distribution. 

Typically the DEER experiment is performed on solid or frozen glass systems, to account for this 

Equation (2.1) can be integrated to average over all orientations. The resulting function is known 

as the DEER kernel, and has the following form:[41]  
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Where 𝑡 is the dipolar evolution time and FrC and FrS are the Fresnel functions, defined as: 

 
2 2

0 0
FrC( ) cos( )          FrS( ) sin( )

x x

x t dt x t dt     (2.4) 

For a full derivation of the DEER kernel function see Appendix A1. The experimentally observed 

DEER trace is then described by an integral of this kernel function over the distance distribution:[28] 

      
0

,d t p r r t dr


    (2.5) 

Figure 2.2(B) shows a simulated DEER trace for the distance distribution shown in (C); this signal is 

often called the form factor. In reality the spin pairs are unlikely to be completely isolated and there 

will also be longer ranged interactions between the observer spins and pumped spins in 

neighbouring particles. Figure 2.2(A) shows a simulation of a typical primary DEER trace, where the 

red line represents this intermolecular background signal which is mixed with the intra-molecular 

DEER signal in the following way 

  ( ) 1 ( ) ( )v t d t b t      (2.6) 

Where 𝜆 is the modulation depth, a value that quantifies the spin-flip probability for the pumped 

spins under the action of the pump pulse. 

2.3 Extracting Distance Information 

The Equation (2.5) which connects the distance distribution 𝑝(𝑟) and the intramolecular dipolar 

modulation trace 𝑑(𝑡) is an example of a Fredholm equation of the first kind, the direct inversion 

of which is known to be ill-posed when there is uncertainty in 𝑑(𝑡), i.e. in the presence of 

instrumental noise.[42, 43, 44] Extraction of the distance distribution from the primary data is 

therefore most often done using a positively constrained Tikhonov regularised fitting, following the 

isolation of the intra-molecular contribution to the modulation signal.[27] 

This approach requires the application of several fairly broad simplifying assumptions. The first such 

assumption is that of the dilute spin pair. The DEER experiment is most often performed on an 

ensemble of spin labelled molecules in order to determine distances within the molecule, this 

means that the primary signal will include contributions from the spin-spin dipolar interactions 

within the molecule as well as contributions from the interactions between the observer spins and 

the pumped spins in other molecules. To enable removal of the background signal the spin pair 

under measurement is assumed to be semi-isolated and a homogeneous distribution of pumped-

spins in the other objects is assumed. The primary signal can therefore be expressed as a product 
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of a form factor F(t) arising from intra-molecular interactions; and a background factor B(t) 

describing the inter-molecular interactions.[44] 

 ( ) ( ) ( )V t F t B t   (2.7) 

Such that at the limiting condition of a homogeneous distribution of paramagnetic centres, rather 

than centres grouped within nano-objects, we have a form factor of 𝐹(𝑡) ≡ 1. And at the opposite 

limit of an infinitely dilute sample of spin labelled nano-objects, there is no background contribution 

so 𝐵(𝑡) ≡ 1. When not at one of these limits, the intra-molecular part of the signal needs to be 

separated from the contribution arising from inter-molecular interactions prior to extraction of the 

distance distribution. 

Before it can be separated from the intra-molecular dipolar signal the form of the background 

function needs to be known. For the simple case of a sample containing a three-dimensional 

homogeneous distribution of paramagnetically labelled nano-objects the background function 

takes the form of an exponential decay.[45] 

 ( ) exp( )B t ckt    (2.8) 

Where 𝜆, the modulation depth, denotes the fraction of excited pumped spins, a value of the; 𝑐 is 

concentration of the spins and 𝑘 is a constant related to the dipolar interaction constant of the spin 

labels, given by: 
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    (2.9) 

Equation (2.8) can be generalised to describe a homogeneous distribution in any dimension, 

resulting in the stretched exponential decay:[44] 

 /3( ) exp( )DB t ckt    (2.10) 

Where the dimensionality parameter, D describes the spatial distribution of the nano-objects. For 

a three-dimensional homogeneous distribution, as seen for biomacromolecules in frozen solution, 

D is equal to 3. If the spin labelled objects are distributed on a two-dimensional surface, such as for 

proteins confined to a membrane, D is equal to 2. If the paramagnetic objects are arranged along, 

for example, a linear polymer chain a dimensionality of 1 may be used;[44, 45] and when making 

long distance measurements the background contribution comes from homogeneously distributed 

distant spins and has been shown to be modelled accurately as a Gaussian, so a dimensionality of 

6 may be used in the equation (2.10).[46] 

Once the background signal has been removed from the data, the remaining signal is that from the 

intra-molecular spin interactions. The transformation of this signal into a distance distribution using 
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current methods relies on the assumption that the spatial and through bond distance is sufficiently 

large, so as to make exchange coupling interactions negligible. In many cases this assumption is 

reasonable as at distances greater than 1.5 nm the dipole-dipole interaction is much larger than the 

through space exchange coupling and, unless there is significant conjugation between the 

paramagnetic centres (unlikely for protein structures and other nano-objects), the through bond 

exchange interaction can safely be assumed to be negligible.[27] 

With this in place, the distance can be extracted. This is done using a simulated time-domain trace 

𝑆(𝑡) computed for a distance distribution 𝑃(𝑟) as:[44] 

 ( ) ( , ) ( )S t K t r P r   (2.11) 

Where 𝐾 is the kernel function describing the ensemble average of the dipolar coupling interactions 

over all possible orientations for a given 𝑟. This is known analytically for the case of a DEER 

experiment with ideal pulses and without exchange coupling: 
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Where 𝑥 = cos (𝜃) in which the angle 𝜃 is that formed between the inter-spin vector 𝐫 and the 

direction of the static magnetic field 𝐵0. By the current standard method, the simulated trace is 

used in a Tikhonov regularised fitting of the objective function for a chosen 𝛼 
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Where 𝐷(𝑡)  is the experimental dipolar evolution signal, and 𝛼 is called the regularisation 

parameter, used to control the trade-off between distance domain resolution and smoothness of 

the result.  

The first term on the right hand side of the objective function is the mean squared deviation 

between the simulated and the experimental traces. And the second term is the square norm of 

the second derivative of the distance distribution 𝑃(𝑟),  a smoothness criterion that is weighted 

against the mean squared deviation by the regularisation parameter. When a very small  is used, 

some of the noise from the experimental dipolar evolution is recreated in the simulated trace; this 

will yield a distance distribution with lots of unrealistically narrow peaks. If a large 𝛼 is used the 

distribution will be very smooth but could cause dampening of the simulated trace compared to 

the recorded one, resulting in broadened peaks in the distribution. Using the optimal regularisation 

parameter will result in a fairly smooth distribution but may include artefacts due to the 

experimental trace noise. The resultant distance distribution is therefore strongly dependent on 
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the choice of regularisation parameter, the most reliable method for selecting an optimal value for 

 is through the L-curve criterion.[44] 

The L-curve is a plot of log ( )   against log ( )   under increasing  , where ( )  represents the 

mean squared deviation between the simulated and experimental data, and ( )  norm of the 

second derivative of the distribution , a measure of the smoothness:[44]  
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        (2.14) 

For good quality data where there is a good signal-to-noise ratio and corresponds to relatively 

narrow peaks in the distribution, the plot is L-shaped as in Figure 2.3. 

 

Figure 2.3: Example L-curve, where α is increasing left to right;  with optimal regularisation parameter in red and inset 
showing the distance distribution obtained for this parameter. 

At low  the smoothness of the distribution, measured by a decreasing , increases rapidly with 

increasing  while the mean squared deviation  increases minimally. Beyond the corner, heading 

towards high  the distribution becomes over-smoothed so the simulation is no longer a good fit 

to the experimental trace; shown by a rapidly increasing  . By selecting a regularisation parameter 

at the corner we can strike a good compromise between suppression of artefacts from noise and 

resolution in the distance distribution.[47]  

2.3.1 Problems in Analysis 

The Tikhonov regularised fitting method described above works very well for simple spin ½ systems 

but some distortions in the answer are inherent to the regularisation process. Very narrow features 

in the distance distribution are often broadened, broader features may be artificially split, and 

smaller features may be lost.[48] 

Beyond these simple systems the core assumptions made in the application of Tikhonov 

regularisation begin to break down and the procedure will fail to extract a reliable distance 
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distribution. A major limitation to the Tikhonov method is the necessary use of the dipolar DEER 

kernel, Equation (2.12), which neglects the exchange coupling interaction. In the application of 

DEER to artificially tagged protein systems this is most often a reasonable assumption as tagging 

sites can be chosen to ensure the through-bond distance is sufficient.[27]  

There are also many systems with high conjugation between the spins, so the exchange coupling 

will have a significant effect on the echo modulation; in these cases the data is most often analysed 

via non-regularised methods involving simulation of the DEER trace.[41, 49] Extension of the 

Tikhonov method to include resilience to the exchange interaction would require significant 

modification to the method, beyond simply using the full dipolar and exchange dependent kernel, 

to account for the extra dimensionality to the problem. 

There are modifications and work-arounds available that allow analysis in situations where other 

assumptions break down. For example, in multi-spin systems and for molecules which have a 

tendency to aggregate the treatment of the spins as isolated pairs no longer holds and there will be 

significant distortions in the time-domain trace due to combination frequencies. Here, 

workarounds include sparse labelling regimes;[50] power-scaling of the multi-spin DEER form factor 

to recreate the pair form factor;[51] and manipulating the spin-flip probabilities to intentionally 

reduce modulation depths allowing separation of the pairwise contributions.[52] These methods 

are   generally aimed at bringing the data closer to the form of an isolated spin pair so that the 

general analysis techniques can then be applied. 

In systems where one or more of the paramagnetic centres have spin greater than ½, for example 

systems containing the spin-7/2 Gd(III), the presence of level mixing can cause distortions when 

analysed using the spin-1/2 kernel in the Tikhonov method described above. In these cases, a larger 

difference between pump and observer pulse frequencies has been shown to decrease the 

contributions to the signal from transitions off the central transition.[53] The single frequency 

Relaxation-Induced Dipolar Modulation Enhancement (RIDME) experiment, in which the B-spin flip 

is induced by relaxation effects instead of a pump-pulse, has also been demonstrated to suffer less 

from these level mixing distortions.[54] 

The relative ease of implementation and analysis of the DEER method, when the system holds to 

the core assumptions, have resulted in the widespread adoption of the four-pulsed DEER 

experiment especially for the analysis of biomacromolecules.[27] However, when the studied 

system goes beyond these simple cases the successful implementation of the technique and 

analysis of the data require a higher degree of EPR expertise. There is therefore a need in the 

community for DEER analysis methods which are more resilient to the types of distortions which 

commonly occur. 
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2.4 Connecting DEER Analysis to Neural Networks 

2.4.1 ANNs as Fredholm Solvers 

The early work in neural networks, such as that of McCulloch and Pitts[5] in 1943, demonstrated 

that a network of neurons can compute any arithmetical or logical function. In their 1989 paper 

Hornik, Stinchcombe and White further demonstrated that a single hidden layer of a sufficient 

number of neurons is able to approximate any measureable function mapping from one finite space 

to another. And thus, that multilayer feedforward neural networks represent a class of universal 

approximators.[55] 

The extraction of distance information from a DEER trace is an example of a common problem seen 

across the physical sciences – the ill-posed inversion of a Fredholm integral equation of the first 

kind. ANNs have long been pursued as solutions to these kinds of problems where the forward he 

inverse mapping. Bishop 1994 provides a thorough review of early attempts to find practical 

applications of neural networks – limited as they were by the computing power available at the 

time – including the application of feedforward networks for solving ill-posed problems illustrated 

in the context of plasma emission and medical tomography.[56] 

More recent research into network models for general solutions to Fredholm type equations 

include the simple two layer perceptrons of Effati and Buzhabadi (2012) trained to perform the 

kernel inversion for Fredholm integrals of the second kind.[57] And those of Jafarian and Nia (2013) 

who proposed a two-layer feed-back network which they used to find the coefficients for the 

truncated Taylor series expansions of unknown functions.[58]  In both of these cases only general 

Fredholm equations were considered and the networks were limited in their size and capabilities.  

 

 

2.4.2 DEER Analysis Problem Setting 

The recorded experimental DEER signal is a combination of three statistically independent 

components: the intramolecular dipolar and exchange dependent oscillation, the background 

signal, and a track of random additive noise.[45] When viewed in the least squared sense over an 

infinitely large number of instances of the true DEER signal and its components, the problem of 

extracting a distance distribution from the primary DEER trace can be divided into three ill-posed 

inversion operations. The task of recognising the underlying DEER signal past the instrumental noise 

can be defined as the “denoising” operation 𝐍−1 below: 

     11 1        d b N d b n   (2.15) 
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The task of removing the inter-molecular contributions to the DEER signal to extract the DEER form 

factor 𝐝, can be defined as the “background rejection” operation 𝐁−1: 

   1 1    d B d b   (2.16) 

And the task of DEER kernel inversion to extract the distance distribution can be defined as the 

“interpretation” operation 𝚪−1: 

 
1p Γ d   (2.17) 

Individually, these operations can be compared to the kind of problem proven to be within the 

capabilities of a single hidden layer of neurons (with enough neurons), as described by Hornik, 

Stinchcombe and White.[55] With the modern computing capabilities available now, allowing 

significantly more complex networks to be trained – and providing that a sufficiently representative 

training set of DEER traces and the corresponding, true, distance distributions is available – it is 

possible to train deep feedforward networks to perform the complete extraction of the distance 

distribution from the primary DEER trace.  

This raises one important point though, the supervised training of ANNs requires a large amount of 

labelled data that is representative of the entire problem space. Owing to the nature of the current 

DEER experiment and analysis methods, this dataset does not exist. Therefore the only tractable 

solution is to train an ANN using simulated dataset 

Such a neural network solution to the DEER analysis problem is especially attractive in cases where 

the core assumptions applied in state-of-the-art analysis methods do not hold, i.e. this thesis’ raison 

d'être. Various DEER simulation packages exist, such as the DEER module in Spinach[59], which can 

be used to model the effects of the more complex interactions for the generation of training data. 

In theory, an ANN can therefore be trained to cope with any practical use of the DEER method. 

2.5 DEERNet Proof of Concept 

2.5.1 Generating training data 

Training of neural networks requires large libraries of labelled data containing inputs and their 

corresponding outputs covering a range that is representative of all possibilities. In the case of 

training ANNs for the analysis of DEER data this means generating simulated DEER traces with 

artificial noise and background functions and also their corresponding distance distributions. In 

order to do this a routine was written within MATLAB using the functionality provided by the spin 

dynamics simulation software Spinach[59] to automatically generate randomised training sets 

which represent the experimental possibilities as far as possible. 
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2.5.1.1 Generating simulated DEER traces 
Generating the training libraries has been automated within a MATLAB function which takes the 

inputs the range of inter-spin distances to be used; the maximum dipolar evolution time; the size 

of the library to  be generated; and the maximum number of distances  to choose from in generating 

randomised distributions. 

The first step in the generation of the training sets is simulating the DEER traces from randomised 

distance distributions. This is performed by using the analytical expression (Equation (2.3)) which 

relates the dipolar evolution trace (f(t)) to the dipolar interaction constant (D)  and the through 

bond exchange coupling (J).[41] 

First a linearly spaced distance vector of 200 points is defined between a user input minimum inter-

spin distance and a maximum distance. For each point on this grid the dipolar interaction constant 

𝐷 is found using the Spinach function “xyz2dd” which takes as input Cartesian coordinates for two 

points and the isotope specifications (in this case “E” for electron), and uses the standard equation 

for the dipolar interaction constant to output a value for 𝐷.  
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Where the values for the gyromagnetic ratios of the spins γ1 and γ2 are found from a database of 

values available within Spinach (using the function “spin”). 

For each dipolar interaction constant (each single distance on the grid) the dipolar evolution trace 

is found using the Equation (2.3) implemented in the Spinach function “deer_analyt” which takes 

as input the interaction constants (D and J) and a linearly spaced vector with 200 points of dipolar 

evolution times between zero and a user defined maximum dipolar evolution time (tmax); and 

outputs the DEER trace. These traces are stored in single a matrix for later.  

In generating these training sets the exchange coupling (J) is assumed to be zero, which covers most 

standard experimental DEER cases where at the inter-spin distances being measured this effect is 

negligible. 

The next step in generating the training libraries is to define a batch of random distance 

distributions within the same range as used in the generation of DEER traces. First a number of 

distances to include is randomly chosen between 1 and maximum number of distances to 

represent,  and for each a Gaussian distribution with randomised mean µ and standard deviation σ 

is calculated in the standard way (Equation (2.19)). 
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These distributions are added together with random amplitudes and then normalised. 

Finally, generating the DEER traces for each distance distribution is a simple case of multiplying the 

matrix of single distance traces across the distributions, resulting in a library of any number of DEER 

traces for randomised distance distributions as those shown in Figure 2.4. 

The analytical expression used in the generation of DEER traces describes the inter-spin interactions 

in a two electron system, so the traces produced at the moment are limited to the sum of pairwise 

interactions across up to “ndistmax” distances expressed in the sample. 

 

 

2.5.1.2 Adding artificial Noise  
The next step in generating the training set libraries is to add synthetic noise to the simulated traces. 

First a trace of points the same length as the simulated DEER trace is generated with random 

amplitudes. Then, using a custom MATLAB function a trace of normally distributed random 

numbers is generated and the points are auto-correlated and normalised to the standard deviation. 

The total noise tracks are then calculated as an element-wise product of the random noise trace 

and the normalised auto-correlated Gaussian noise track. This is then added to the simulated DEER 

traces to be used in network training.  

Figure 2.4: Examples of randomised inter-spin distance distributions (top) and their calculated dipolar evolution traces 
(bottom). Distances were randomly chosen between 20 – 45 Å, with up to 3 pairwise interactions and traces were 
calculated using a maximum dipolar evolution time of 2.0 μs. 
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Figure 2.5: Examples of the randomised noise added to the training set 

Figure 2.5 shows examples of the randomised noise tracks and the result when combined with the 

DEER trace. The routine used to add the noise can be easily adjusted to ensure that simulated DEER 

signals are representative of the results acquired in experiment. 

 

 

2.5.1.3 Adding simulated background 
The final step is to add a background and modulation depth to the signal. This has been written in 

a single function, which takes the generated DEER traces as input and returns the modified traces 

along with the separate backgrounds and the modulation depths for each trace. In this exploratory 

work the background has been modelled to approximate standard experimental cases as a 

combination of four components: first an exponential decay of the form: 

  ( ) expe eb t t    (2.20) 

Where the parameter e is a random number between 0 and 10. This is then normalised to decay 

from 1 to 0 . The second component is a quadratic decay of the form: 
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in which 
q is a random number in the interval (0,5) and  is a random number in the interval (0,1). 

This is also normalised to decay from 1 to 0. The third component of the total background is a 

constant linear decay of the form: 

 ( ) 1lb t t    (2.22) 

And finally a constant ( ) 1cb t    is added. Once these components are generated they are summed 

with randomised weights  

 ( ) ( ) ( ) ( ) ( )e q l cB t b t b t b t b t         (2.23) 

Where the sum of the weights is equal to 1. This background function is then mixed with the DEER 

trace with a random modulation depth  in the interval (0,1), in experimental DEER traces this is 

related to the proportion of B-spins excited by the pump pulse. This gives a final simulated DEER 

trace: 

 ( ) ( ) (1 ) ( )S t F t B t      (2.24) 

As shown in the examples below. 

 

Figure 2.6: (top) Examples of DEER traces and (bottom) the same traces combined with simulated inter-molecular 
background functions (red lines)  
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This process generates a wide range of background function shapes, producing a set of simulated 

primary DEER traces that has a reasonable coverage of the standard experimental cases.   

2.5.2 Network Training 

The generation and training of all neural networks presented in this chapter was carried out within 

MATLAB 2016b using the inbuilt Neural Network Toolbox and the functionality provided by the 

Parallel Computing Toolbox. MATLAB was chosen mainly due to the wealth of in-house knowledge 

using the programme and the extensive documentation available for the toolboxes. The 

combination of these toolboxes allows for fairly simple optimisation of the network training 

parameters, including easy parallelisation of the network training onto both the CPU and the GPU.  

These “proof-of-concept” networks were built and trained using default settings associated with 

the MATLAB “fitnet” tool. Training was carried out using the Resilient Backpropagation 

algorithm (RPROP), without weight regularisation. 

Network training was allowed to continue until a validation stop was reached, to achieve this 

training data was randomly divided into three subsets: training, validation, and test. The training 

set contains 70% of the total dataset, this is the data presented to the network in training which 

guides the iterative update of network parameters.  

The validation set contains 15% of the total dataset which is not directly used in the update steps, 

the error on the validation set is monitored throughout training and is expected to decrease initially 

along with the error on the training set. But the validation error will start to increase if the network 

is overfitting to the training set. If the validation error increases for a number of iterations which is 

specified in the training parameters then the training is stopped and the network parameters that 

gave the minimum validation error are saved.  

The final subset, the test set, comprised of the remaining 15% of the total dataset is also held back 

during training. The error against these data is monitored alongside that of the validation set and 

should decrease at the same rate. If this is not the case and the test set error is seen to reach its 

minimum at an iteration significantly different to that at which the validation set reaches its 

minimum it could indicate that the training and validation sets are not divided in such a way as to 

each be representative of the whole set. 
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2.5.3 Background Correction  

2.5.3.1 Problem Phrasing 
When considering removal of the contribution of background interactions from the primary DEER 

signal three ways of phrasing the problem were conceived, DEER extraction, background extraction 

and parameter extraction. These are described below: 

What we termed a DEER extraction network would take primary DEER traces as the inputs and give 

background corrected DEER traces as the outputs. This would therefore be trained using simulated 

primary DEER traces as inputs and the simulated DEER form factor (just the intra-molecular part) as 

the target patterns. 

A background extraction network would take primary DEER traces as the inputs and give just the 

background contribution as the output, this can then be subtracted from the primary data to give 

a background corrected DEER trace. This network would be trained using simulated primary DEER 

traces as inputs and the simulated background interaction as target patterns.  

A parameter extraction network would take the primary DEER trace as input and would return the 

parameters used to describe the background signal, this can then be reconstructed and the 

background signal subtracted from the primary DEER trace. This network would be trained using 

simulated primary DEER traces as inputs and a vector of the eight variable parameters used to 

describe the simulated background signal as the output. These approaches are summarised in Table 

1 below. 

Table 1: Input / output pairs for proposed background compensation models 
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Whilst the DEER extract approach is the most direct method it also represents the most complex 

relationship between input and output patterns and so the learning procedure would be expected 

to progress more slowly. Practically this means that this type of network may not be able to 

accurately reproduce the output pattern without extensive training. 

The intermolecular background traces are smooth functions with no small features, this makes the 

background extraction approach a relatively simple relationship to learn and so the networks would 

be expected to accurately reproduce the background, if presented with a suitably wide set of 

examples. 

The parameter extraction approach reduces the output pattern to eight variables, this would 

therefore be expected to perform well if trained on a comprehensive training set. 

2.5.3.2 Results and Discussion 
A series of ANNs were trained to determine the optimal number of layers and number of neurons 

per hidden layer. First, both DEER extraction and background extraction type networks were trained 

with a single hidden layer of 5, 10, 20, 40, 80 and 160 neurons. They were all trained on a set of 

200,000 input/output pairs with DEER traces generated for a maximum dipolar evolution time of 

2.0 µs for up to 3 distances within the range of 20 – 45 Å, with background contributions signal 

modelled as described above. These networks were shown a test set of data generated with the 

same parameters to produce predicted output so that the network performance could be found, 

as a sum of the squared errors: 
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As a sum of the deviation of the output 
pjy  from the target 

pjt  across each element j of all patterns 

p in the testing set. The results are presented in Figure 2.7  as a mean squared error of the form.  
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The background extraction approach can be seen to perform better than the DEER extraction 

approach for all numbers of neurons in the hidden layer. For both approaches to the background 

compensation a single hidden layer of around 30-40 neurons seems to provide the best 

performance, with little gain from adding more neurons to the DEER extraction network. As the 

number of neurons is increased the increase in training complexity means that much more training 

time is required so practically there is a trade-off between performance gain and training time when 

increasing the number of neurons in a single layer. 

Next some work was done to assess the effect on prediction performance of making the network 

deeper by adding further hidden layers. To get some idea of this both DEER extraction and 

background extraction type networks were trained with 1, 2, 3, 4, and 5 hidden layers each of 32 

neurons. 

 

Figure 2.8: Example of background extraction DNN architecture with three hidden layers each of 32 neurons. 

The performance of these networks was assessed in the same way as before and is shown below 

plotted as a mean squared error against the network depth. Again the background extraction 

network is shown to perform better than the DEER extraction network for all depths, as expected 

due to the difference in complexity of the output.  

Number of neurons Number of neurons 

Figure 2.7: Network performance against number of neurons in a single hidden layer for DEER Extract and 
Background Extract -type networks 
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To investigate the performance of the neural networks further, a selection of experimental DEER 

traces of varying complexity were sent to us by Gunnar Jeschke of ETH Zürich. The example shown 

in Figure 2.10 is a good demonstration of some of the observations we have made. 

The left two plots show the result of using the DEER extraction approach, we see a loss of small 

features in the transformation between the two. This could possibly be corrected through tuning 

of the network architecture, using hidden layers of different sizes could help recognise the smaller 

features by learning different representations of the data. 

The two plot on the right show the result of using the background extraction approach, the top 

shows the primary DEER trace and the background inferred by the network (red line) and the 

bottom shows the result of subtracting the background contribution from the primary trace. The 

benefit of this process is that the network is just learning the background decay from the DEER 

trace, background is a featureless decay that can be subtracted from the primary trace to give a 

corrected trace with no loss of features.  

This example also highlights a problem with the way the background are currently being calculated. 

The shape predicted is not what would be expected in normal experimental cases (and this kind of 

function has shown up in a few examples) this is likely due to the quadratic component to the 

current model. To explore this a routine for generating randomised background decays as just 

stretched exponentials, as described in the equation (2.10), has been written and new networks 

will be trained using these models. 

Figure 2.9: Network performance against network depth for DEER extract and Background extract type networks 
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Figure 2.10: Results of the application of DEER extract type network (left pair) and background extract type network (right 
pair) to an experimental DEER trace. Demonstrates loss of small features by DEER extract network and possible influence 
of the quadratic component in the background model. 
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2.5.4 DEER Interpretation 

2.5.4.1 Problem Phrasing 

The distance distribution itself is a fairly simple function, in the standard application of DEER 

distance measurement techniques to proteins there will rarely be more than three distinct 

distances expressed in a spin labelled sample. Extraction of this from the DEER trace is a relatively 

simple problem for neural network regression techniques and so a network trained using DEER form 

factors with noise as inputs and the corresponding distance distribution as target outputs would be 

expected to accurately reproduce any distance distribution as long as it is covered by the training 

set.  

2.5.4.2 Results and Discussion 

As with the background compensation networks, a preliminary investigation was carried out with 

networks with a single hidden layer of 5, 10, 20, 40, 80 and 160 neurons. The best performance was 

found to be around 30 to 40 neurons as before. 

Next a series of networks of 1 to 5 hidden layers of 32 neurons was trained and their performance 

was calculated as before. Figure 2.11 shows the network performance against the number of 

hidden layers. The performance can be seen to increase with the number of layers reaching a 

minimum error at 3, adding more layers after this increases the training complexity to the point 

where the networks take too long to practically train.  

 

Figure 2.11: Performance against network depth for a series of DEER interpretation networks. 
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2.6 Summary 

 

In this Chapter, the problem of DEER data analysis has been introduced as an ill-posed inversion, 

the current best solution for which is inherently limited in its applicability. It was demonstrated that 

this problem is well within the capabilities of deep neural networks and a naïve model for training 

fully connected feed-forward neural networks by backpropagation learning was proposed. 
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3.1 Abstract 

The established model-free methods for the processing of two-electron dipolar spectroscopy data 

(DEER, PELDOR, DQ-EPR, RIDME, etc.) use regularised fitting. In this communication, we describe 

an attempt to process DEER data using artificial neural networks trained on large databases of 

simulated data. Accuracy and reliability of neural network outputs from real experimental data 

were found to be unexpectedly high. The networks are also able to reject exchange interactions, 

and to return a measure of uncertainty in the resulting distance distributions. This paper describes 

the design of the training databases, discusses the training process, and rationalises the observed 

performance. Neural networks produced in this work are incorporated as options into Spinach and 

DeerAnalysis packages.  

http://advances.sciencemag.org/cgi/content/full/4/8/eaat5218/DC1
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3.2 125-character summary 

Deep neural networks successfully solve Fredholm equations and 

extract molecular-scale distance distributions from EPR data. 

3.3 Introduction 

Double electron-electron resonance (DEER), sometimes called pulsed electron double resonance 

(PELDOR), is a magnetic resonance experiment used to measure nanometre scale distances 

between unpaired electrons in naturally paramagnetic or paramagnetically tagged systems [1, 2]. 

Extraction of distance information is possible because inter-electron dipolar interaction energy is 

proportional to the inverse cube of the distance. Unlike scattering and diffraction methods, DEER 

does not require long range order in the sample; it can be applied to a variety of systems that may 

not crystallise [3, 4] – from molecular conductors [5] all the way to proteins and nucleic acids[6, 7]. 

Related methods, such as double-quantum EPR [8, 9] or relaxation-induced dipolar modulation 

enhancement (RIDME) [10, 11] provide similar information. From the theoretical standpoint, DEER 

is quite straightforward: its dipolar modulation signal factorises into spin pair contributions, dipolar 

interactions with remote spins are the only significant signal decay mechanism, and the broadening 

caused by that decay can be deconvolved because the decay function is available from the 

unmodulated background [12]. 

DEER spectroscopy involves recording a dipolar modulation signal between two unpaired electrons 

and running a Tikhonov regularised fitting to extract the distance distribution [13, 14]. The 

procedure works well in spin-½ systems [15], but significant complications arise when: (a) more 

than two electron spins are present [16, 17]; (b) the total spin of any paramagnetic centre exceeds 

½ [18, 19]; (c) large interaction tensor anisotropies generate orientation selection effects[20, 21]; 

(d) the system has microsecond-scale internal dynamics; (e) the system has significant inter-

electron exchange coupling [22, 23]. Some of these matters are exceedingly hard to resolve or work 

around. It is also becoming clear that ab initio modelling and fitting of every possible complication 

is out of the question. 

In this communication, we report an attempt to train deep neural networks to convert DEER signals 

into spin label distance distributions. DEER data processing is well suited for the application of 

supervised learning techniques because it is a simple “vector-in, vector-out” regression problem 

[24]. We used a large training database of synthetic DEER traces computed using Spinach [25] from 

randomly generated realistic distance distributions with a variable baseline and a variable amount 

of noise. The ambition is to train networks that would recognise and work around all of the issues 

mentioned above; here we address complicated distance distributions, exchange coupling, baseline 

distortions, and noise. 
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We found that neural networks successfully process previously unseen experimental data in the 

presence of exchange coupling, as well as realistic amounts of noise and baseline signal. They are 

also able to provide a measure of confidence in the output. Once the training process is finished, 

the networks have no adjustable parameters. In the cases where a stable or a regularisable solution 

exists in principle, we expect that neural networks should eventually be able to solve some or all 

problems (a)-(e) above when they are trained on a database of sufficient size and scope. 

3.3.1 DEER data processing – state of the art 

For an isolated electron pair at a distance r  with isotropic magnetogyric ratios 
1  and 

2 , the echo 

modulation signal has the following form (see Supplementary Information for detailed derivations): 
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where J  is the exchange coupling (NMR convention) and   is the angle between the inter-electron 

direction and the magnet field. A typical experimental system is a frozen glass with all orientations 

equally likely. Integrating Equation (3.1) over all angles produces a function known as the DEER 

kernel: 
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in which FrC  and FrS  are Fresnel’s cosine and sine functions. For an ensemble of isolated spin ½ 

pairs, the experimentally observed DEER trace is an integral of the kernel over the distance 

distribution: 
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    (3.3) 

Even in this ideal case, the relationship between the distance distribution  p r  and the 

experimental signal  d t  is not straightforward: it is an integral whose inversion is an ill-posed 

problem. 

The most popular procedure for extracting distance distributions from DEER traces of real systems 

[13-15] rests on a number of significant assumptions. The primary one is the dilute spin pair 

approximation – it is assumed that the dipolar evolution function  d t  may be modelled as a linear 

combination of DEER traces of systems involving point electrons at specific distances [4]. Equation 

(3.2) is strictly valid only for spin ½ paramagnetic centres. For higher spin quantum number, this 

model only applies in the absence of level mixing and when overtone transitions during the pump 
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pulse can be neglected. Exchange coupling is also commonly ignored, which is often, but not always, 

a good approximation at distances longer than 15 Å [22]. 

The next assumption deals with non-ideal pulses and the inevitable presence of external 

interactions. For dilute spin pairs, the experimental DEER signal  expv t  can be approximated as 

        exp 1v t d t b t n t         (3.4) 

where  n t  is the instrument noise,   is the spin flip probability under the action of the pump 

pulse [12, 26], and  b t  is the intermolecular background function – usually a stretched 

exponential 

    
3

exp
n

b t kt  
 

  (3.5) 

that corresponds to a homogeneous distribution of distant spins in a space with dimension n  [27]. 

Equation (3.5) is also a good approximation for a homogeneous distribution in three dimensions 

with some excluded volume around the observer molecule [28]. Along with relaxation, the 

background function limits the observation time and puts an upper limit on the distances that can 

be measured [12, 19]. 

Even after  b t  and   are obtained by fitting, the mapping back from  d t  into  p r  is still 

unstable – an infinitesimally small variation in  d t  can cause a finite variation in  p r . Tikhonov 

regularisation is therefore commonly used, in which the ambiguity is removed by requiring the 

second derivative of the solution to have the minimum norm [13, 14, 30]. This requirement 

incorporates the physical wisdom that the solution must be smooth and sparse. The combined 

fitting error functional is: 

          

2 2
2

exp 2

0

,
d

p r d t p r r t dr p r
dr

 


         (3.6) 

where   is the regularisation parameter, chosen using the L-curve method [14, 31]. Other 

regularisation methods have also been tried and generally found to be successful [32, 33]. 

Regularisation makes the problem tractable, but some distortions are inevitable: narrow features 

are broadened and broad features artificially split. The error minimisation runs in reasonable time 

when an analytical expression for  ,r t  is available. When that is not the case (for example, in 

high-spin systems), the process becomes impractically slow, even on the latest computing hardware 

and software [19]. 
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Figure 3.1. Standard Tikhonov regularisation processing, illustrated using site pair V96C/I143C in the lumenal loop of  a 
double mutant of light harvesting complex II, with iodoacetamido-PROXYL spin labels attached to the indicated cysteines 
[34]. For the primary data (top left panel), the zero time (green vertical line) is determined using moment analysis in the 
vicinity of the intensity maximum. The optimal starting time for background fitting (blue vertical line) is determined by 
minimizing probability density at the maximum distance. Data have been cut by 400 ns at the end (red vertical line) to 
minimize influence of the artefact arising from overlapping pump and observe pulse excitation bands. The stretched 
exponential background fit is shown as a solid red line (where fitted) and as a dotted red line (where extrapolated). The 
background-corrected data (form factor, black) is shown in the top right panel together with fits using the regularisation 
parameter corresponding to the origin distance criterion (red) and maximum curvature criterion (green). These two 
choices are also indicated in the L-curve (bottom left panel). The bottom right panel shows distance distributions 
computed with these two regularisation parameters in matching colour. Pastel background shading indicates distance 
ranges where the shape of the distribution is expected to be reliable (green), where mean distances and widths are 
expected to be reliable (yellow), where only mean distances are expected to be reliable (orange), and where data should 
not be interpreted (red). These ranges are derived from the duration of the primary data [7]. 

When the experimental DEER trace and the associated distance distribution are discretised on finite 

grids, Equation (3.6) acquires a matrix-vector form: 

  
22

2

exp    p d Γp D p   (3.7) 

where Γ  is  the matrix form of the DEER kernel integral and D  is a derivative matrix – for example, 

a finite difference one. At this point, we have a standard Tikhonov problem with a non-negativity 

constraint that is also encountered elsewhere in magnetic resonance [35, 36]. Bayesian methods 

exist for uncertainty estimation [37], and the widely used DeerAnalysis package includes a 

validation tool [12]. 

The regularised fitting method, illustrated in Figure 1, works very well for simple spin-½ systems 

[38,39]. Limited workarounds are available for situations when the core assumptions behind 

Equations (3.1)-(3.5) do not hold. For multi-spin systems, data closer to the isolated spin pair 

approximation can be obtained by intentionally reducing modulation depth [16], by power scaling 
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[17], or by sparse spin labelling [40]. For Gd(III) with spin 7/2 it has been demonstrated that 

distortions caused by level mixing can be reduced by large frequency offsets between pump and 

observe pulses [41], or by relaxation induced dipolar modulation enhancement [42]. The latter 

technique introduces overtones of the dipolar frequency [43] that require a modified DEER kernel 

with overtone coefficients that must be calibrated [44]. Deviations from the isotropic distribution 

of the spin-spin vector by orientation selection can be partially averaged by varying the magnetic 

field at constant pump and observe frequencies [38, 45]. In some site-directed spin labelling 

applications, an experimental estimate of the background can be obtained by measuring singly-

labelled constructs [15]. Significant progress was also recently made with Mellin transform 

techniques [46] that are likely to improve further once the non-negativity constraint is introduced. 

3.3.2 Connection to neural networks 

The previous section describes a process that alternates matrix-vector operations with non-linear 

constraints – a good match to the algebraic structure of a feedforward neural network [47]: 

 1( )n n n n ng  x W x y   (3.8) 

where the n-th neuron layer accepts an input vector 
1nx , multiplies it by a weight matrix nW , adds 

a bias vector 
ny  and passes the result through a non-linear transfer function 

ng . This similarity is 

not strictly necessary – McCulloch and Pitts showed in 1943 that neural networks can compute any 

arithmetical or logical function [48]. Multi-layer feedforward networks are known to be universal 

approximators [47], but the present case is particularly appealing because the required network is 

likely to be quite small. 

DEER signals contain the true dipolar oscillation, the background signal, and the noise track that are 

statistically independent. The task of reconstructing the distance distribution can therefore be 

broken down into performing, in the least squares sense, the following operations: 
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  (3.9) 

where  denotes element-by-element multiplication, 
1

N  may be called “denoising”, 
1

B  

“background rejection”, and 
1

Γ “interpretation”. All three operations are not necessarily 

described by matrices, are ill-posed, and only exist in the least squares sense over an infinitely large 

number of instances of the true DEER signal iv , the background signal 
jb , and the noise signal kn

.  
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All three operations are linear with respect to the dipolar modulation signal, and non-linear with 

respect to the background and the noise. They map well into Equation (3.8) and the neural network 

training process. Large databases of  , , ,i i j kp d b n  can be generated using Spinach [25], and the 

networks performing 
1

N , 1
B , and 1

Γ  obtained using backpropagation training [49, 50]. Such 

networks are called mapping networks; they are extensively researched [47, 48, 51]. 

At a more general level, neural network “surrogate” solutions to Fredholm equations are well 

researched in their own right [52], with rigorous accuracy bounds available [53, 54]. In 2013, 

Jafarian and Nia proposed a two-layer feed-back network built around a Taylor expansion of the 

solution [55]; a feed-forward network proposition was published in 2012 by Effati and Buzhabadi 

[56]. Both groups considered a generic Fredholm equation without any specific physical model or 

context. At that time, neither group had the computing power to train a network of sufficient width 

and depth to perform the tasks encountered in this work. However, both groups observed that, for 

such problems as they could handle, neural networks provided very accurate solutions [55, 56]. 

Promising neural network results also exist for two-dimensional integral equations [57, 58], 

meaning that processing triple electron resonance spectroscopy [59] data with neural networks 

may also be possible. 

3.4 Materials and Methods 

3.4.1 Training database generation 

Neural network training requires a library of inputs and their corresponding outputs covering a 

range that is representative of all possibilities [49, 50, 60]. Real distance distributions between spin 

labels are rarely known exactly, and therefore collating experimental data is not an option. 

Fortunately, high-accuracy simulations, taking into account most of the relevant effects, have 

recently become possible [19, 25, 61]. They can be time-consuming [19], but only need to be run 

once to generate multiple simulated DEER traces with different artificial noise and background 

functions. These traces are then stored in a database alongside the “true” distance distributions 

they were generated from. An example is shown in Figure 2. 
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Figure 3.2. One of the millions of synthetic DEER datasets, generated 
using Spinach [25] and used for neural network training in this work. 
Left panel: a randomly generated distance distribution. Right panel: 
the corresponding DEER form factor (purple), a randomly generated 
noise track (yellow), a randomly generated intermolecular background 
signal (red, marked BG) and the resulting “experimental” DEER signal 
(blue). 

The size and shape of the training database are entirely at the trainer’s discretion – a wide variety 

of spin systems, parameter ranges, secondary interactions and instrumental artefacts may be 

included. This exploratory work uses the DEER kernel for a pair of spin ½ particles, but the DEER 

simulation module in Spinach is not restricted in any way [61] – training datasets may be generated 

for any realistic combinations of spins, interactions and pulse frequencies. The following 

parameters are relevant: 

1. Minimum and maximum distances in the distribution. Because the dipolar modulation 

frequency is a cubic function of distance, there is a scaling relationship between the 

distance range and the signal duration: 

 A B

3 3

A B

t t

r r
   (3.10) 

The salient parameter here is the “dynamic range” – the ratio of the longest distance 

and the shortest one. Training signals must be long enough and well enough 

discretised to reproduce all the frequencies present. 

2. Functions used to represent distance peaks, and their number. A random number of 

skew normal distribution functions [62] with random positions within the distance 

interval and random full widths at half-magnitude were used in this work: 
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where   is the standard deviation of the underlying normal distribution, 
0x  is the 

location of its peak, and   is the shape parameter regulating the extent of the skew. 

Distance distributions were integrated with the DEER kernel in Equation (3.2) to obtain 

DEER form factors. We found that generating distance distributions with up to three 

peaks is sufficient to ensure that the networks can generalise to an arbitrary number 

of distances (Section 2.6 below). 

3. Noise parameters and the modulation depth. Because DEER traces are recorded in the 

indirect dimension of a pseudo-2D experiment, the noise is not expected to be 

coloured – this is confirmed by experiments [37]. We used Gaussian white noise with 

the standard deviation chosen randomly between zero and a user-specified fraction of 

the modulation depth, which was also chosen randomly from within the user-specified 

ranges. 

4. Background function model and its parameters. We have used Equation (3.5) with the 

dimensionality parameter selected randomly from the user-specified range. 

5. Discretisation grids in the time and the distance domains. The point count must be 

above the Nyquist condition for all frequencies expected within the chosen ranges of 

other parameters. The number of discretisation points dictates the dimension of the 

transfer matrices and the bias vectors in Equation (3.8), which in turn determines the 

minimum training set size. 

6. Training set size. A fully connected neural network with n  layers of width k  has 

 2n k k  parameters. Each of the “experimental” DEER traces is k  points long, 

meaning that  1n k   is the absolute minimum number of DEER traces in the training 

set. At least one hundred times the amount is in practice necessary to generate high 

quality networks. 

The parameter ranges entering the training dataset are crucial for the success of the resulting 

network ensemble – the training dataset must be representative of the range of distances, peak 

widths, noise amplitudes and other attributes of the datasets being processed. The parameters 

entering the current DEERNet training database generation process are listed in Table 1. 
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Table 2. Training database generation parameters used in this work. Where a maximum and a minimum 
values are given, the parameter is selected randomly within the interval indicated for each new entry in the 
database. Ranges in the suggested values indicate recommended intervals for the corresponding 
parameter. 

Parameter Suggested values 

Minimum distance in the distribution, Å 10-15 

Maximum distance in the distribution, Å 50-80 

DEER trace length, µs 2-5 

Minimum number of distance peaks 1-2 

Maximum number of distance peaks 2-3 

Data vector size 256-1024 

RMS noise, fraction of the modulation depth 0.05-0.10 

Minimum exchange coupling, MHz –5.0 

Maximum exchange coupling, MHz +5.0 

Minimum background dimensionality 2 

Maximum background dimensionality 3.5 

Minimum FWHM for distance peaks, fraction of the distance 0.05-0.10 

Maximum FWHM for distance peaks, fraction of the distance 0.20-0.50 

Maximum shape parameter, Equation (3.11)  +3.0 

Minimum shape parameter, Equation (3.11) –3.0 

Minimum modulation depth 0.05-0.10 

Maximum modulation depth 0.50-0.60 

Minimum background decay rate, MHz 0.0 

Maximum background decay rate, MHz 0.5 

 

Reliable neural network training requires signals in the database to be consistently scaled and to 

fall within the dynamic range of the transfer functions. The peak amplitude of each distance 

distribution was therefore brought by uniform scaling to 0.75, and all DEER traces were uniformly 

scaled and shifted so as to have the first point equal to 1 and the last point equal to zero. 

The training process requires vast computing resources, but using the trained networks does not. 

For the networks and databases described in this communication, the training process for a 100-

network ensemble takes about a week on a pair of NVidia Tesla K40 cards. Once the training process 

is finished, the networks can be used without difficulty on any computer strong enough to run 

Matlab.  

3.4.2 Network topology and the training process 

Three simple types of feed-forward network topologies explored in this work are shown in Figure 

3. Basic fixed width feed-forward networks (top diagram) do in practice suffice, but we have also 

explored variable width networks (middle diagram) and networks based on the stage separation 

discussed around Equation (3.9) above. Specifically, it makes physical sense to separate the form 

factor extraction stage from the DEER signal interpretation stage (Figure 3, bottom diagram). 
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Figure 3.3. Schematic diagrams (produced by Matlab) of the three types of neural 
network topologies explored in this work, using four-layer networks as an example. W 
block indicates multiplication by the weight matrix and b block indicates the addition of 
a bias vector. Top: fully connected full width network. Middle: fully connected network 
with choke points. Bottom: functionally separated network with some layers explicitly 
dedicated to background rejection and others to interpretation – during the training 
process the first output is the DEER form factor, the second output is the distance 
probability density function. 

The most common transfer functions in Equation (3.8) are sigmoidal, mapping  ,   into  1,1

. However, the distance distribution is a non-negative function, and we have observed that 

including this fact at the network level improves performance. Using the strictly positive logistic 

sigmoid function 
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1 x
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  (3.12) 

at the last layer instead of the hyperbolic tangent function used by the inner layers 
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  (3.13) 

decreases both the final error and the training time (Table S1 in the Supplementary Information).  

The training of all neural networks was carried out on NVidia Tesla K20 and K40 coprocessor cards 

using MATLAB R2018a Neural Network Toolbox and Distributed Computing Toolbox. Resilient 

backpropagation [50] and scaled conjugate gradient [49] error minimisation methods were used 

with the least squares error metric. Training databases were partitioned into 70% training set (with 

respect to which the minimisation is carried out), 15% validation set (that is monitored to prevent 

overfitting) and 15% testing set with respect to which the performance figures are compiled; this is 

in line with standard practice. 
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3.4.3 Uniform feed-forward networks 

The simplest strategy for training a generic “vector-in, vector-out” neural network is to set up a 

number of fully connected layers of the same size as the input vector, resulting in the topology 

shown in the top diagram of Figure 3. The performance metrics for a family of such networks are 

given in Table 2 and illustrated graphically in Figures 4 and 5. The “relative error” metric is defined 

as the 2-norm of the difference between the network output and the true answer, divided by the 

2-norm of the true answer.  

 

Table 3. Performance statistics for a family of feed-forward networks set up as a simple sequence of fully connected 
layers of the same width as the input vector. A schematic of the network topology is given in the top diagram of Figure 3. 

Task Network 
Mean 

relative error 
Relative error 

standard deviation 
Iteration timea, 

Tesla K40, seconds 

Distance 
distribution 
recovery 

In-(256)2-Out 0.090 0.231 0.32 

In-(256)3-Out 0.077 0.208 0.44 

In-(256)4-Out 0.070 0.195 0.74 

In-(256)5-Out 0.069 0.194 0.99 

In-(256)6-Out 0.069 0.192 1.19 

Form factor 
recovery 

In-(256)2-Out 0.0065 0.0143 0.31 

In-(256)3-Out 0.0042 0.0094 0.51 

In-(256)4-Out 0.0037 0.0084 0.75 

In-(256)5-Out 0.0034 0.0080 0.98 

In-(256)6-Out 0.0034 0.0080 1.18 
aUsing a database with 100,000 DEER traces generated as described in Section 4. 

 

It is clear from the performance statistics that, for a single neural network, the average norm of the 

deviation drops below 10% of the total signal norm and stops improving once the network is five to 

six layers deep. Training iteration time depends linearly on the depth of the network.  

The data for the visual performance illustrations Figures 4 and 5 were selected from the training 

database in the following way: the “easy case” is sampled from the error histogram region between 

zero and one standard deviation on the relative error; the “tough” case is sampled from the region 

between one and two standard deviations; the “bad case” is sampled from 100 worst fits in the 

entire 100,000-trace training database. Performance illustrations for the rest of the networks 

reported in Table 2 are given in Figures S1-S3 in the Supplementary Information. Given that the 

“bad cases” are the worst 0.1% of the training dataset, the performance is rather impressive. 
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Figure 3.4. Distance distribution recovery performance illustration for a five-layer feed-forward neural 
network, fully connected, with 256 neurons per layer. All inner layers have hyperbolic tangent transfer 
functions; the last layer has the strictly positive logistic sigmoid transfer function. BG = background. 

 

Similar sequential improvements are observed for the networks tasked with the recovery of the 

DEER form factor (Figure 5). 

 

 

Figure 3.5. DEER form factor recovery performance illustration for a six-layer feed-forward neural 
network, fully connected, with 256 neurons per layer. All layers have hyperbolic tangent transfer 
functions. BG = background. 

 

For the vast majority of the DEER traces in the training database, the recovery of the form factor is 

close to perfect. Performance illustrations for the rest of the form factor recovery networks 

reported in Table 2 are given in Figures S4-S6 in the Supplementary Information. 
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3.4.4 Feed-forward networks with choke points 

Excellent as the performance of the neural networks in Table 2 and Figure 4 may appear, deeper 

inspection still indicates that having 256 neurons in the inner layers may not be necessary, and this 

dimension can potentially be reduced. This is most obvious from the analysis of singular value 

decompositions (SVD) of the weight matrices in Equation (3.8). The general form of the SVD of a 

matrix W  is 

 
k k k

k

u vW   (3.14) 

where the right singular vectors kv  may be viewed as a library of distinct input signals, the left 

singular vectors ku  as the library of distinct output signals, and the singular values 
k  as the 

amplification coefficients applied when an input is mapped into an output. If some singular values 

are zero, the corresponding pathways are unimportant and may be dropped. Mathematically, this 

means that the rank of the matrix is smaller than its dimension. 

 

 

Figure 3.6. Singular values of the weight matrices in a six-layer 
feed-forward neural network, fully connected, with 256 neurons 
per layer, and trained as described in the main text. All inner layers 
have hyperbolic tangent transfer functions; the last layer has the 
strictly positive logistic sigmoid transfer function. 

 

Singular values of all transfer matrices in a six-layer distance distribution recovery network are 

plotted in Figure 6. It is clear that none of the weight matrices are full rank, and the matrices 

occurring later in the network have fewer large-amplitude singular values. This suggests that 

intermediate layers could require fewer than 256 neurons. Because the corresponding singular 

values are small or zero, no accuracy impact is expected from reducing the number of neurons in 
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intermediate layers. However, the reduction in the training time could be considerable: a fully 

connected N-neuron layer has N2+N adjustable parameters, and so the benefit of going down from 

256 neurons to 64 or fewer is significant. 

 

Table 4. Performance statistics for a family of feed-forward networks set up as a simple sequence of 
fully connected layers with a choke point in the middle. A schematic of the network topology is given in 
the middle diagram of Figure 3. 

Network 
Mean 

relative error 
Relative error 

standard deviation 
Iteration timea, 

Tesla K40, seconds 

In-256-32-256-Out 0.095 0.230 0.25 

In-256-64-256-Out 0.086 0.217 0.29 

In-256-128-256-Out 0.084 0.217 0.39 

In-256-256-256-Out 0.077 0.208 0.51 

In-(256)2-32-(256)2-Out 0.090 0.210 0.61 

In-(256)2-64-(256)2-Out 0.074 0.201 0.65 

In-(256)2-128-(256)2-Out 0.073 0.200 0.83 

In-(256)2-256-(256)2-Out 0.069 0.194 0.99 

 

This is explored in detail in Table 3. Even though the intuition provided by Equation (3.14) and Figure 

6 suggests that reducing the number of neurons in the intermediate layers might be a good idea, 

this is not corroborated by the practical performance figures. Any reduction in the dimension of 

intermediate layers results in performance degradation. The position of the choke point 

(Supplementary Information, Table S2) does not appear to have any influence on the performance. 

Another architectural observation is that bias vectors do not appear to be necessary in Equation 

(3.8) – networks trained without bias vectors have identical performance (Supplementary 

Information, Table S2). An examination of the optimal bias vectors does not yield any interpretable 

patterns. This is likely because the input and the output data are already well scaled (Section 4) and 

fit into the dynamic window of the transfer functions without the need for any shifts. Still, the 

variational freedom afforded by the bias vectors appears to accelerate the training process, and we 

have kept them for that reason. 

 

3.4.5 Structured networks 

Table 2 indicates that plain feed-forward networks with more than six layers do not produce any 

further improvements in the performance. If those improvements are even possible, more 

sophisticated topologies must be used. One possibility is shown in the bottom diagram of Figure 3 

– the first group of layers is trained against the form factor and therefore accomplishes noise and 

background elimination. That form factor is then fed into the second group of layers, making the 

probability density extraction easier for those layers. In principle, structured networks may be 
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assembled from pre-trained pieces. In the case of the bottom diagram of Figure 3, the pieces would 

come from one of the form factor extraction networks in Table 1 and a separate network trained 

to interpret background-free form factors. Performance figures for networks of this type are given 

in Table 4.  

 

Table 5. Performance statistics for a family of tailored networks composed of a group of form factor extraction layers that 
form the input of the interpretation layers. A schematic of the network topology is given in the bottom diagram of Figure 
3. 

Network topology 
(FF = form factor extraction, 

Int = interpretation) 

Interpretation Form factor extraction 

Mean relative 
error 

Relative error 
standard 
deviation 

Mean relative 
error 

Relative error 
standard 
deviation 

In-FF[(256)1]-Int[(256)1]-Out 0.276 0.467 0.355 0.383 

In-FF[(256)2]-Int[(256)2]-Out 0.103 0.236 0.040 0.083 

In-FF[(256)3]-Int[(256)3]-Out 0.094 0.225 0.021 0.046 

In-FF[(256)4]-Int[(256)4]-Out 0.087 0.216 0.015 0.028 

In-FF[(256)5]-Int[(256)5]-Out 0.081 0.196 0.012 0.023 

In-FF[(256)6]-Int[(256)6]-Out 0.080 0.192 0.012 0.022 

 

Unfortunately, it does not appear that tailoring carries any advantages relative to the data reported 

for the simple feed-forward networks in Table 2. Training a twelve-layer network against two sets 

of outputs is also exceedingly expensive. We have therefore used uniform feed-forward networks 

(Figure 3, top) for all production calculations discussed below. The networks were trained on a 

dataset where raw experimental data without any preprocessing goes in, and the distance 

distribution is expected at the output. 

Still the networks evaluated in Table 4 could potentially be beneficial as a safety catch: humans can 

easily recognize incorrect form factors by eye and thus detect cases of neural networks failing, for 

example if they encounter a situation not covered by the training set. 

 

3.4.6 Measures of uncertainty 

When applied correctly, the standard Tikhonov regularised DEER data analysis [12-14] produces 

clear results and easily interpretable distance distributions. However, when applied naively to 

corrupted or featureless data sets, it can result in over-interpretation of the data [12, 37, 39]. In 

particular, less experienced practitioners may have difficulty distinguishing genuine distance peaks 

from artefacts [63]. Feedback from the ESR community has led to the concept of a validation tool 

that would be able to identify corrupted or featureless DEER traces. Such tools exist within the 

Tikhonov framework [12, 37], although they can be computationally demanding. A similar tool is 

therefore required for neural networks. 



   

63 

A [“good”, ”bad”] classification network would be the obvious solution, but the amount of 

experimental DEER data in the world is rather small – polling the community for examples of “bad” 

DEER traces is unlikely to return a dataset of sufficient size. We have therefore decided to pursue 

another common alternative: to train an ensemble of neural networks using different synthetic 

databases and to use the variation in their outputs as a measure of uncertainty in the distance 

distribution [64]. Such a measure is useful in any case, and a large variation would indicate 

uninterpretable input data. 

To investigate the performance of this approach in estimating distance distribution uncertainties 

and detecting corrupted data, we have trained 100 five-layer networks on different databases 

(generated as described in Section 4), and evaluated their performance against a previously unseen 

database.  

 

 

Figure 3.7. Performance of an ensemble of 100 five-layer neural networks 
on a previously unseen database. Each of the networks was started from 
a different random initial guess and trained in a different randomly 
generated database. Red dots indicate the “good” networks that are 
better than the median on both the mean relative error and the worst 
relative error. The blue star is the performance of the average output of 
the good networks. 

 

The results are shown in Figure 7. The “relative error” metric is the ratio of the 2-norm of the 

difference between the output and the true answer, divided by the 2-norm of the true answer. The 

“worst relative error” refers to the worst-case performance in the entire database. Performance 

metrics for all networks in the ensemble are plotted as red circles. The networks that scored better 

than the median on both characteristics are labelled “good” and additionally marked with a dot. 

The performance of the arithmetical mean of the outputs of “good” networks is shown as a blue 
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star. The standard deviation of the mean across the “good” networks ensemble is a measure of 

uncertainty in the output (Figure 8). 

 

 

Figure 3.8. Easy (left), tough (middle), worst case (right) agreement on the training set data. The 
variation in the outputs of different neural networks within the ensemble is a measure of the 
uncertainty in their output [64] when the training databases are comprehensive. 

 

In practice, the mean output signal and the standard deviation are computed for each point and 

plotted in the form of 95% confidence bounds as shown in the figures presented in the next section. 

A more detailed investigation of the effect of the noise in the input data on the reconstruction 

quality and the confidence intervals is given in Section 5 of the Supplementary Information. 

 

 

Figure 3.9. A demonstration that deep neural networks learn to be Fredholm solvers rather than model 
fitters – presenting a dataset with four distances to networks trained on the database with at most three 
distances yields the right answer with high confidence. All networks in the ensemble return four peaks. 

 

An important practical test of correctness, intended to distinguish a neural network that merely fits 

a few Gaussians to the dataset from a network that is a Fredholm solver, would be to present a 

DEER trace with four distances to a network that was trained on a database with at most three. A 
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network that has learned to be a Fredholm solver in the sense discussed in [52, 53, 55, 56, 58] 

should still return the right answer. As Figure 9 illustrates, our networks pass that test. 

 

3.5 Results and Discussion 

This section contains a demonstration of the practical performance of neural network ensembles 

for distance distribution reconstruction and uncertainty analysis. The results from the best current 

Tikhonov method implementation [15] are provided as a reference. 

 

3.5.1 Test case library 

DEER is used most widely in structural biology on doubly spin-labelled proteins, nucleic acids, and 

their complexes. In some cases distance distributions are narrow and give rise to time-domain data 

with several observable oscillations. As an example, we use DEER data for site pair 96/143 in the 

monomeric plant light harvesting complex LHCII (Sample I) [34]. When intrinsically disordered 

domains are present, distance distributions can be very broad. This applies to site pair 3/34 in LHCII 

(Sample II) [34]. Even narrower and broader distributions are found in polymer science. We 

encountered the smallest width-to-distance ratio in a short oligo-phenyleneethinylene end-labelled 

with a rigid nitroxide label (Sample III) [38]. One of the broadest distributions for which we have 

high-quality DEER data was observed in a [2]catenane spin-labelled on both of the intertwined 

macrocycles (Sample IV) [65]. As an example where a narrow and a broad distance distribution peak 

are simultaneously present we use decorated gold nanoparticles (Sample V) [66]. As a typical 

example for the distributions encountered in large rigid organic molecules we use a doubly labelled 

phenyleneethinylene molecule (Sample VI) [16]. 

3.5.2 Experimental data preprocessing 

All primary data were pre-processed in DeerAnalysis [12]. The zero-time of the dipolar oscillation 

and signal phase determined automatically by DeerAnalysis were accepted. The last 400 ns of each 

trace were cut off to remove the “2+1” end artefact that arises from excitation band overlap of 

pump and observe pulses [7]. For Sample III, a part of the end artefact was still visible, and the last 

800 ns had to be cut off. This data was supplied to DEERNet, which expects a column vector 

containing the time axis (from 0 to tmax) in microseconds and a column vector of the corresponding 

DEER signal amplitudes. Internally, the signal is shifted and scaled to match the dynamic range of 

the network, and downsampled with a matched quadratic Savitzky-Golay filter to have the number 
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of points equal to the number of neurons in the input layer. The trace length tmax is used in Equation 

(3.10) to determine the distance axis. 

For comparison, the data was also fully processed by DeerAnalysis (Figure 10). Default background 

fitting was applied assuming a homogeneous spatial distribution (n = 3), except for Sample III, where 

n was fitted. This exception was required because the data for Sample III are averaged over 37 

different observer fields in order to reduce orientation selection effects; such averaging causes non-

exponential background decay. We found n = 3.40 for that sample. In all cases, the L-curve was then 

computed. The default choice of the optimum regularisation parameter (minimum distance to the 

origin) was accepted unless it differed clearly from the maximum curvature point and the back-

predicted DEER data was clearly overdamped compared to the experimental curve. In this case, 

which was encountered for Samples I (see Figure 1) and III, the maximum curvature point was 

selected.  

 

 

Figure 3.10. Distance distributions obtained by Tikhonov regularisation (blue lines) and uncertainties estimated by the 
DeerAnalysis validation tool (pink areas) for the six experimental test cases. (a) Site pair V96C/I143C in the lumenal loop 
of  a double mutant of light harvesting complex II, with iodoacetamido-PROXYL spin labels attached to the indicated 
cysteines [34]; (b) Site pair S3C/S34C in the N-terminal domain of a double mutant of the light harvesting complex II 
monomers, with iodoacetamido-PROXYL spin labels attached to the indicated cysteines [34]; (c) End-labelled oligo-(para-
phenyleneethynylene) – a rigid linear molecule described as compound 3a in [38]; (d) [2]catenane (a pair of large 
interlocked rings) with a nitroxide spin label on each ring described as sample 2 in [65]; (e) Pairs of nitroxide radicals 
tethered to the surface of gold nanoparticles, with the thiol tether attachment points diffusing on the surface of the 
nanoparticle, sample Au 3 after solvolysis and heating in [66]; (f) Rigid molecular triangle labelled with nitroxide radicals 
on two corners out of three, sample B11inv in [16]. 

Monte-Carlo validation was performed by varying the noise (twice the original noise level, 11 

instances) and the starting time of the background fit (from 240 ns to half the maximum time, 11 



   

67 

instances) giving a total of 121 Monte Carlo instances. For Sample III, the background dimension 

was additionally varied from 2.6 to 3.6 (11 instances), and the number of noise instances was 

reduced to 2 per background starting time/dimension pair, giving a total of 242 instances. 

Validation data were pruned at the default level of 1.15, meaning that all solutions with a root mean 

square deviation (RMSD) of the fit from the background-corrected data exceeding 1.15 times the 

minimum RMSD were excluded. In all cases this pruning led to only a slight reduction of the 

uncertainty estimate. For Sample V, we also fitted the model of biradicals distributed on the surface 

of spherical particles with Gaussian distribution of the particle radius (model Chechik2 in 

DeerAnalysis) [52]. We found a biradical distance of 1.87 nm with standard deviation of 0.22 nm 

and a fraction of 0.72 for the biradical distance contribution. The particle mean radius was 4.24 nm 

and its standard deviation 0.49 nm. 

3.5.3 Neural network performance 

The DEERNet result for Sample I is shown in Figure 11. Apart from the more generous confidence 

intervals reported by the neural network ensemble, there is essentially no difference from the 

Tikhonov result – both major distances are discovered and there is some uncertainty around the 

baseline. In this particular case, the performance of the two methods is identical up to the standard 

deviation quoted. 

 

 

Figure 3.11. DEERNet performance on Sample I: a site pair V96C/I143C in the lumenal loop of  a double mutant of light 
harvesting complex II, with iodocateamido-PROXYL spin labels attached to the indicated cysteines [34]. Residue 96 is 
located in the lumenal loop, and residue 143 is a structurally rigid “anchor” position in the protein core. In agreement 
with the results reported in the original paper, a bimodal distance distribution is measured – indicating flexibility in the 
lumenal loop. The low-confidence peak around 57 Angstrom likely results from protein aggregation. 

In Sample II, one label is situated in the structured part of the N-terminal domain of LHCII (residue 

34), whereas the other one is situated near the N-terminus (residue 3) in an disordered region that 

extends at  least to residue 12. A broad distance distribution, as it was found by both Tikhonov 

regularisation (Figure 10b) and the neural networks (Figure 12) is expected. A bimodal distribution 

produced by DEERNet cannot be excluded a priori because the “correct” answer is not known in 

this case. 
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Figure 3.12. DEERNet performance on Sample II: a site pair S3C/S34C in the N-terminal domain of a double mutant of the 
light harvesting complex II, with iodoacetamido-PROXYL spin labels attached to the indicated cysteines [34]. The data 
stems from LHCIII monomers. Residue 3 is located in the very flexible N-terminal region while residue 34 is located in the 
structured part of the N-terminal domain. 

The Tikhonov method performs better than neural networks for the very narrow and skewed 

distribution case seen in Sample III (Figure 13). Even though skewed distributions are present in the 

training database, neural networks are still predicting a symmetric peak (at the right distance), 

whereas the Tikhonov output is correctly skewed, as expected for the rigid linker between the two 

labels that behaves as a worm-like chain (Figure 10c). The likely reason for the loss of skew by the 

neural networks is insufficient point count: our networks are only 256 neurons wide, but more 

points are clearly required to reproduce the sharp features seen in Figure 10c. Networks that are 

512 or 1024 neurons wide would likely get the skew right, but training such networks would require 

ten times the processing power – this will have to wait until Tesla V100 cards arrive at our local 

supercomputing centre. 

 

 

Figure 3.13. DEERNet performance on Sample III: end-labelled oligo-(para-phenyleneethynylene) – a rigid linear molecule 
described as compound 3a in [38]. The maximum and the width of the distance distribution are in a close agreement with 
the Tikhonov regularisation results, whereas the expected skew of the distribution is not reproduced. Notably, there are 
no small intensity artefacts that the Tikhonov method produces around the baseline. 

Returning to broad distance distributions, the two interlocked rings in [2]catenane (Figure 14) do 

perhaps push the limit of how broad a distance distribution between a pair of nitroxide radicals can 
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be without any complications associated with exchange couplings. The original paper [65] reports 

statistical estimates of the distance distribution, but the one reported in that paper was based on 

the approximate Pake transformation, and therefore plagued by the subjective choice of distance-

domain smoothing – a fairer comparison is against the present-day Tikhonov result with the 

regularisation parameter determined by the L-curve, as shown in Figure 10d. Within the standard 

deviations quoted by both methods, the neural network output is not in any obvious way different 

from the Tikhonov regularisation result. For Sample IV, both approaches perform equally well 

within the uncertainty expected for the true distribution. 

 

 

Figure 3.14. DEERNet performance on Sample IV: [2]catenane (a pair of large interlocked rings) with a nitroxide spin label 
on each ring. The distance distribution is in line with rough statistical estimates (Figure 5 in [65]), but there are fewer 
clumping artefacts compared to the output of the automatic Tikhonov regularisation procedure. Within the Tikhonov 
framework, a manual regularisation coefficient adjustment away from the corner of the L-curve is necessary to produce 
a distribution free of clumping artefacts. 

Here some discussion is in order about the choice of the regularisation parameter within the 

Tikhonov methods. Although the L-curve criterion, on either the maximum curvature, or the 

minimum distance to the origin, looks reassuringly algebraic, its only real justification is 

philosophical – a balance must be struck between the quality of fit and the regularisation signal, 

and some humans have at some point decided that a few specific special points on the L-curve look 

like they strike a kind of balance. An element of human discretion is therefore always present in 

Tikhonov methods, as is obvious from Figure 1. Optimal choice of the regularisation parameter by 

different approaches has recently been studied for a large set of test data, and better options than 

L-curve based criteria appear to exist [67]. On the other hand, the performance of neural networks 

strongly depends on the quality and the scope of the training set, which is also subject to human 

discretion. It would not therefore be fair to say that neural network results are entirely free of the 

human factor, but it is a human factor of a different kind. 
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Figure 3.15. DEERNet performance on Sample V: pairs of nitroxide radicals tethered to the surface of gold nanoparticles, 
with the thiol tether attachment points diffusing on the surface of the nanoparticle [66]. Note the markedly better 
performance relative to the Tikhonov method: the complete absence of clumping artefacts and the remarkable match to 
the analytical model – down to the maximum exhibited by the broad feature around 35 Angstroms. 

 

 

Figure 3.16. Tikhonov distance distribution analysis for pairs of nitroxide radicals tethered to the surface of gold 
nanoparticles, with the thiol tether attachment points diffusing on the surface of the nanoparticle (sample Au 3 after 
solvolysis and heating in [66]). Green lines correspond to a model fit assuming a Gaussian distribution of distances and a 
homogeneous distribution of the biradicals on spherical nanoparticles with a Gaussian distribution of radii. Blue lines 
correspond to Tikhonov regularisation with the regularisation parameter in the L-curve corner as suggested by 
DeerAnalysis. Red lines correspond to Tikhonov regularisation with a larger regularisation parameter corresponding to 
the second L-curve corner. (a) Fits of the background-corrected DEER data (black). (b) Distance distributions). (c) L curve 
and the two points selected for Tikhonov distance distribution analysis. 

The most impressive performance of neural networks in our test set is shown in Figure 15 – the 

relatively narrow peak sitting directly on top of a broad (but very real) pedestal. This case is known 

to be intractable by Tikhonov regularisation (further examples may be found in [68]), and neither 

of the two corners of the L-curve (or any point anywhere else, for that matter) produces the right 

answer, which is known from fitting a parametrized model that agrees with known parameters of 

the gold nanoparticles (Figure 16b, green curve). When a broad peak overlaps with a narrow one, 

the Tikhonov regularization parameter can only shift the solution between artificial broadening of 

the narrow peak and artificial splitting in the broad peak. Neural networks confidently produce the 

right answer. 

Finally, for Sample VI the results of Tikhonov regularisation and DEERNet agree rather nicely, except 

for a noise-related peak near 54 Å and a minor peak near 30 Å that appear only in the Tikhonov-

derived distribution. Width and shape of the main peak are rather similar. The significance of the 
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minor peak near 30 Å cannot be established, since MD simulations performed for an isolated 

molecule at 298 K were not conclusive. Hence, quality of the distance distributions generated by 

Tikhonov regularisation and by the neural network should in this case be judged as being similar.  

 

 

Figure 3.17. DEERNet performance on Sample VI: a rigid molecular triangle labelled with nitroxide radicals on two corners 
out of three [16].  

Based on this small, but very diverse set of test cases we can conclude that the performance of a 

bunch of neural networks matches the performance of a software package developed over a 

decade. Tikhonov regularisation is better at reproducing the shape of very narrow distributions and 

possibly also for the broadest distribution encountered, but the neural networks show much better 

performance for distributions that feature both narrow and broad components – a case that is likely 

to occur in the context of order-disorder equilibria of proteins. Neural networks also appear to have 

an advantage in rejection of small, noise-related peaks. These features are particularly impressive 

when considering that the networks can be trained in a matter of hours by an unattended process. 

Given the close algebraic match described in Section 3, this is perhaps to be expected. Still, this 

begs the question of what wider and deeper networks with more sophisticated structure could 

accomplish. We do not at the moment have the computing power to explore this matter, but the 

“noisy” appearance of some neural network outputs in Figures 11-17 suggests that further 

improvements are possible if the networks are trained for longer and on larger datasets that are 

currently beyond the capacity of our Tesla cards. 
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3.5.4 Exchange-resilient neural networks 

Neural networks successfully process cases that are completely out of design specifications of 

Tikhonov regularisation methods – in this section we present the results of training an ensemble of 

networks on datasets that include random inter-electron exchange couplings selected from the 

user-specified range (we have used ±5.0 MHz). Typical outcomes from previously unseen synthetic 

datasets are shown in the top and the middle panels of Figure 18. Exchange-type distortions are 

prominent in the input DEER traces, but the answers produced by the networks are not perturbed.  

 

Figure 3.18. A demonstration of exchange coupling resilience in the neural networks trained on the database where each 
DEER trace has an exchange coupling randomly selected within the ±5 MHz interval (top row J = –1.9 MHz, middle row J 
= +2.9 MHz, bottom row J = –3.6 MHz) and all other parameters as described in Section 2.1. Over 99% of the training 
dataset (including distributions with multiple distance peaks) produces the results of the kind shown in the top and the 
middle panel – fast exchange oscillations are rejected and correct distance distributions are produced. With very noisy 
data (bottom panel), the networks duly report being highly uncertain. 

Tikhonov regularisation with a dipolar kernel returns incorrect distance distributions (Figure S7 in 

the Supplementary Information), and this failure cannot be recognised by the validation approach 

currently implemented in DeerAnalysis because the fit to the form factor can still appear to be good. 
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Tikhonov methods that would account for the exchange coupling do not exist, and would be 

exceedingly hard to create because the exchange coupling effectively adds the second dimension 

to the solution space. 

In contrast, only the correct distances are returned by the neural networks. The rapid and slowly 

decaying modulation in the middle panel should have produced a short distance with a sharp peak, 

yet the broad peak at a large distance is correctly identified. The networks appear to learn the 

difference between sine/cosine and Fresnel modulations in Equation (3.2), and are able to 

demodulate the exchange component, leaving only the dipolar part that is consistent between the 

sine/cosine and the Fresnel parts.  

This is an impressive feat that makes DEER distance determination applicable to exchange-coupled 

systems that are not accessible to Tikhonov methods. Even when the networks cannot make sense 

of the data due to the combination of noise, exchange and low modulation depth (Figure 18, 

bottom panel), they still fail gracefully and report that none of the generated curve is certain. This 

being a clear extension of the available DEER analysis functionality, exchange-resilient neural 

networks will be implemented as an option into DeerAnalysis in the near future. 

Including exchange resilience into the training dataset costs nothing and introduces no extra work 

or adjustable parameters. The confidence bounds on the distance distributions coming out of 

exchange-resilient networks are wider, but that is to be expected because the uncertainty is indeed 

increased. Another pertinent matter is that the exchange coupling can itself be distance-dependent 

– our current training set assumes that it is fixed. As long as the standard deviation of the 

distribution is much smaller than its mean, this is a reasonable assumption. 

 

3.6 Conclusions and outlook 

There is a straightforward map between the algebraic structure of the two-electron dipolar 

spectroscopy analysis problem and the operations performed by artificial neural networks. When 

applied to the extraction of distance distributions from DEER traces, this produces remarkably good 

performance that is on par with state-of-the-art tools. We strongly recommend neural networks 

for cases where narrow and broad features are simultaneously present in the distance distribution. 

Such cases can be identified by the inconclusive L-curve, such as the one in Figure 16c. Neural 

networks can also return a measure of uncertainty, and learn patterns of systematic distortions: a 

good example is the difference between an exchange coupling (pure sinusoidal pattern) and a 

dipolar coupling (sinusoidal + Fresnel pattern). A sufficiently deep network trained on a 

representative dataset is able to distinguish the two and return the correct distance distribution 

even for exchange-coupled electrons. 
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At a more abstract and speculative level, the procedure described in this work effectively converts 

the ability to simulate a physical process into the ability to interpret experimental data. In 

particular, a trained neural network may be viewed as a Fredholm solver with a very general kind 

of regularisation. Where the Tikhonov method only incorporates one of the many physical insights 

that humans have about the solution (namely that it should be smooth and sparse), a perfectly 

trained neural network learns the entire class of admissible output patterns and only looks for 

solutions in that class. The challenge is rather to construct training sets that completely cover both 

the solution space and the distortion space that one would encounter in practice. 
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3.9 Further Discussion of Results 

3.9.1 The Short Range Limitation 

The training libraries for the current generation of networks were generated within a grid of 256 

points, using a maximum dipolar evolution time of 2.0 μs. This can be expressed as a sampling 

frequency of 128 MHz. 

 
6

256
128MHz

2 10 s



  (3.15) 

The oscillation frequency in a two-spin system DEER signal is expected to be roughly equal to the 

sum of the interaction constants, D and J.[41] In the generation of the generic training libraries the 

exchange coupling interaction (J) has been assumed to be zero so the dipolar interaction is the only 

contribution to the DEER signal.  

The dynamic range used to generate these libraries was 15 to 50 Å, this represents a minimum 

dipolar modulation frequency of 41.6 MHz at 50 Å and a maximum of 154MHz at 15 Å. We can see 

that the Nyquist sampling condition of twice the highest frequency in the signal is not met and so 

we see some distortion of the signal (below) but the underlying frequency is not changed.  

 

Figure 3.19: Simulated dipolar modulation signal for the shortest distance interaction included in a dataset generated for 
the distance range 15 to 50 Å. Some distortion is seen due to the low sampling frequency provided by digitisation 256 
points. 
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This sampling insufficiency is likely the cause of the loss of features seen in cases where the spin-

label distribution is expected to be extremely narrow. This can be seen in the experimental data 

provided by Jeschke et al. from their (2010) paper investigating rigid linear molecules, the results 

for which are shown in Figure 3.20 above.[60]  

The result of the Tikhonov regularisation is shown in the rightmost plot. Here the very narrow, but 

skewed distance distribution that is expected from this type of rigid molecule is correctly 

reproduced. The DEERNet output predicts a very narrow but symmetric peak at the correct 

distance, where the shape has been lost by small distortions to the high frequency input signal, 

Figure 3.20(left). 

The most obvious solution to this problem is to increase the digitisation point count in the training 

data. Figure 3.21 shows the highest frequency interaction represented on larger grids of 512, and 

1024 points. The 512 point grid, with a sampling frequency of 256 MHz is almost at the Nyquist 

condition, and so there is minimal distortion seen.  

 

Figure 3.21:  Simulated dipolar modulation signal for the shortest distance interaction included in a dataset generated 
for the distance range 15 to 50 Å with sampling frequencies at (left) 128 MHz, (middle) 256 MHz, and (right) 512 MHz. 

Figure 3.20 (Left three) DEERNet performance on example narrow distribution.  (Right) result of Tikhonov regularisation. The 
maximum and the width of the distance distribution are in a close agreement with the Tikhonov regularisation results, 
whereas the expected skew of the distribution is not reproduced. 
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Figure 3.22: Simulated dipolar modulation signal for the shortest distance interaction included in a dataset generated for 
the distance range 10 to 80 Å. 

The sampling problem becomes more immediate if we wish to train networks that can cope with a 

larger dynamic range in longest to shortest distance. In broadening the dynamic range used in the 

library generation to 10 – 80 Å, the range of frequencies that may be present in each DEER trace is 

also increased. With this distance range the minimum dipolar interaction is now 1.02 MHz at 80 Å 

and the maximum is 520 MHz at 10 Å. This increase in the maximum frequency compounds the 

sampling problem, so now we see significant aliasing in the DEER signals produced; as shown in 

Figure 3.22 (top left). 

Using a point count of 1024 is almost sufficient to meet the Nyquist condition, but ideally a point 

count of 2048 would be used. This would bring DEERNet in-line with the digitisation employed for 

the Tikhonov regularisation employed in DeerAnalysis and should be sufficient to cover any 

experimental frequency.  

Training the networks with training sets digitised to this level has not been possible due to the 

significant increase in processing resources required to train uniform networks to match. This will 

soon become achievable using the twin NVidia Tesla V100 cards which have been installed in the 

new supercomputer at the University of Southampton (Iridis 5).  

 

 



 

82 

3.9.2 Ensuring good generalisation 

When the ratio of network model complexity to the amount of data available for training is too 

large, the network will tend towards a perfect fit to the training data rather than an interpolation 

through the space. Ideally the number of points available for training should be far greater than the 

model complexity to ensure good generalisation to unseen data.[19] 

The number of adjustable parameters provides a reasonable measure of the network complexity; 

for the fully connected networks of type used in DEERNet there are  2
n k k  adjustable 

parameters, where 𝑛 is the number of layers and 𝑘 is the neurons per layer. This means that the 5-

layer, 256-neuron networks have 328,960 parameters. Using the training data sets of length equal 

to the number of neurons, an absolute minimum of  1n k  traces are required; this equates to 

1285 traces but to ensure good generalisation at least 100 times this are needed.[19, 24] 

When performing the training on the twin Tesla K20s of the Iridis 4 GPU nodes there is sufficient 

memory available for around 100,000 traces when training this size network. This is a reasonable 

amount for the relatively small networks used so far. But as we start training wider networks (512, 

1024 etc. neurons) to address the high frequency/narrow distance problem the number of 

adjustable parameters in the networks will be much larger so the other methods used to improve 

the network performance will become much more important.  

If it is not possible to use a large enough training database (whether due to data availability or 

hardware limitations) there are other methods that can be employed to improve the generalisation 

of the trained model. Early stopping and regularisation are the two main methods for this. Both 

reduce the effective complexity of the model to ensure a small ratio of model size to training data, 

even where data is limited. The model generalisation can be improved further by training an 

ensemble of networks and taking the average of their output. The DNNs used in DEERNet are 

currently trained and implemented using all three of these techniques. 

The extent of regularisation on the weights is controlled the coefficient 𝛼; in the networks used for 

DEERNet, this coefficient has been set to 0.05 based on some preliminary investigations. A better 

way to select the optimal regularisation coefficient is by comparing the network performance on a 

separate validation set against the error on the training set. To investigate the effect of the level of 

regularisation for the DEERNet DNNs, a set of 101 networks with regularisation coefficient 

increasing linearly from 0 to 1 have been trained using the same training set. The plot below shows 

the mean relative error metric plotted against the regularisation coefficient for the training data 

used and for a previously unseen validation set. 

Whilst this data from just one test run presents a lot of noise, it is clear that better network 

performance could be achieved if the regularisation on the network parameters is increased. 
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Figure 3.23: Mean relative error against regularisation coefficient on the training dataset (blue) and a separate validation 
set (red) for the set of 101 networks trained to investigate the effect of regularisation. 
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3.9.3 Iterative Network Retraining  

 

Figure 3.24: Mean relative error of networks as the network is successively retrained on unseen training sets. (left) 
training sets increase in size from 20,000 to 100,000 for the first five steps, and (right) training sets are a uniform 100,000 
examples throughout training steps. 

The training process employed here uses successive sets of unseen training data to further improve 

the performance of the network model. The plots above show the mean relative error against an 

unseen test set of 100,000 examples for two sets of four networks trained with unique training sets 

from different randomly initialised starting weights.  

In the plot on the left the training set is increased in size from 20,000 to 100,000 for the first five 

steps of the training and then remains at 100,000. In the plot on the right the networks have been 

trained with training sets of a uniform 100,000 examples.  

We can see that by starting with a smaller training set the model initially overfits to the training 

data – this is expected as the early training sets are much smaller than required by the model 

complexity. There is no difference in the end-point performance in the two methods but when 

networks are trained on uniform datasets, the convergence to a minimum is slightly faster.  

This can be explained by considering what happens to the trainable parameters during training: 

overfitting arises when the network weights and biases head towards a point where they produce 

a perfect fit to the training data, this is characterised by the weights taking on extreme negative 

and positive values. [24] In the training process described here the trained network from the first 

step is used as the starting point for the next step, and so on; the initial weights of the first step are 

randomly selected low numbers as described in Chapter 1. By allowing the model to overfit to a 

small data set the initial weights in following steps will adjust to large numbers and this may be 

hindering the training as the individual layer inputs will no longer fall so well within the dynamic 

range of the activation functions.  
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3.9.4 DEERNet implementation 

3.9.4.1 DeerAnalysis with DEERNet 

DeerAnalysis is already equipped with two methods for finding the distance distribution; the 

approximate Pake transformation (APT) which is a fast but unreliable method for an initial guess, 

and the Tikhonov regularised fitting method described above.[44] DEERNet has been added as an 

option to complement these established techniques, the user interface is shown in below. 

 

Figure 3.25: DeerAnalysis GUI with DEERNet functionality. The dropdown box is used to select between the four trained 
ensembles included (Generic, Narrow, Broad, and Exchange). 
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Original data as input to DeerAnalysis. The orange vertical line is the user selected data cut-off point, used to trim the 
end of the spectrum where the dipolar signal has decayed. The bright red line and fainter red lines are the background 
and its associated errors reconstructed from the DEERNet ensemble guesses.  
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Figure 3.26 shows an example of the DeerAnalysis distance distribution output, the available 

methods can be used alongside each other and the outputs directly compared. The black line shows 

the average of the individual ensemble outputs, with the uncertainty in this answer represented by 

the grey area. The green line shows the distance distribution obtained by the DeerAnalysis 

implementation of the Tikhonov method, where the extent of regularisation has been obtained by 

computing the L-curve.  

 

Figure 3.26: Example of the DEERNet output obtained in the DeerAnalysis implementation. The solid black line is the 
average ensemble output with the ensemble uncertainty shown by the grey area. The green line is the distance 
distribution obtained by Tikhonov regularisation, where the regularisation was selected using the automatic L-curve 
routine. 

The average ensemble output can also be used to infer the intermolecular background contribution 

to the primary DEER signal. This is performed by computing the DEER form factor from the average 

output using the DEER kernel method. This is then fitted to the primary experimental data, 

assuming a stretched exponential background; and parameterised by modulation depth, 

background dimensionality, and decay constant.  

In the same way as for the distance distribution above, this operation is performed on each of the 

individual network outputs to give a measure of uncertainty in the inferred background function.  
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Figure 3.27: DEER form factor obtained by correcting for the background. The black line shows the form factor recovered 
by the standard method in DeerAnalysis (fitting to homogeneuous background model) and the red line shows the form 
factor recovered using DEERNet ensemble outputs. 
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3.10  Summary 

Deep neural networks have been trained using simulated DEER data, a necessity as real 

experimental distance distributions are rarely known exactly. Training is carried out using the 

MATLAB implementation of the scaled conjugate gradient backpropagation, and steps have been 

taken to ensure the network converges to a general solution that can be applied to data that it has 

not previously seen.  

An extensive library of tools have been designed to generate simulated data, train, test, and deploy 

a deep neural network solution to the problem of DEER analysis within the in-house Spinach 

simulation package. The trained models have also been integrated into the popular DeerAnalysis 

package where they can be used alongside state-of-the-art methods. 

The resultant DEERNet package has been tested across a range of proven to have comparable 

performance to the state-of-the-art tools in most standard cases. Whilst outperforming the 

standard method in other cases.  

A significant result (described in the reproduced paper) when comparing to the state-of-the-art 

methods is that it should be possible to train a neural network solution that is can correctly extract 

the distance distribution from any given case. So long as a training set can be generated that 

sufficiently spans the spaces of possible solutions and any distortions to the input signal.  

One limitation highlighted here is that the point count currently used in digitisation of the training 

data are too low to properly represent all of the frequencies in the range. Conceptually, this is a 

simple problem to fix – just increase the point count and use larger networks – but implementing 

this has not been possible on the hardware available. 

Some further investigation into the training process has also been presented. It was found that the 

level of weight regularisation applied in training these networks was not optimal. And that the 

method of increasing the training set size during the retraining process does not improve the overall 

performance, and may in fact hinder the training process.  
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DEERNet – Exchange Interaction  

The exchange interaction comes into effect in situations where there is significant orbital overlap 

between electron spins in the molecule being studied. Under the established model-free 

techniques for analysing DEER data (e.g. Tikhonov regularisation) the exchange interaction is 

necessarily assumed to be negligible – extension of the Tikhonov method to include resilience to 

the exchange interaction would require significant modification to the method to account for the 

extra dimension in the problem.[61] 

In many instances this assumption is reasonable; for example, when studying spin-labelled protein 

structures the through bond distance between the spins is likely to be much larger than the spatial 

separation between the labels.[27] However, there are many other situations, for example in 

macrocyclic systems where there is a high degree of conjugation between the spins;[41] or in 

systems where one or more of the unpaired electron centres is a paramagnetic metal centre, 

leading to distribution of the spin density to the ligands [49] – in cases like these DEER techniques 

may be desired to provide distance information but the analysis is complicated by the presence of 

a significant exchange interaction. 

Another attractive possibility that arises from the use of ANNs is that the value of the exchange 

interaction can be extracted alongside the distance distribution. This can be achieved through the 

application of a multi-task learning regime, where shared hidden layers are used to form an internal 

representation of the space, from this multiple outputs are learned in parallel. [62] 

This chapter begins with some further discussion on the results of the exchange resilient networks 

presented above. A limited ensemble of networks trained to extract the exchange interaction 

alongside the distance distribution are then presented. 
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4.1 Further Discussion of DEERNet Exchange ANNs 

In Chapter 3 an ensemble of networks was presented which were trained to extract the distance 

distribution for systems which include a scalar exchange coupling in the range of ±5 MHz; modelled 

via the analytical expression for two-spin DEER in the presence of dipolar and exchange coupling,  

reproduced below:  
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  (4.1) 

These networks appear to be capable of demodulating the purely sine/cosine contribution to the 

signal, arising from the exchange interaction, from the dipolar contribution to the signal (Fresnel 

and sine/cosine). When tested on simulated DEER traces generated to match the DEER traces used 

in training, but previously unseen by the networks, the ensemble is able to accurately return the 

expected distance distribution.  

However, when this ensemble is presented with DEER traces that include the contribution from an 

exchange interaction outside of the range used in training (i.e. 5MHzJ  ) the network outputs 

are no longer reliable. This is usually obvious from the uncertainty estimates of the DEERNet output 

but sometimes the ensemble will report an inaccurate distance distribution with reasonable 

agreement between the networks.  

A few examples are shown in the figure below; the top and bottom both show peaks with high 

certainty that are possibly attempting to report a correct peak. However a peak appears in a similar 

position in the middle example, which when compared to the true simulated distance distribution 

(orange) should not be there. 

These higher confidence peaks seem to arise only when a short distance is present in the simulated 

distance distribution, resulting in a high frequency dipolar oscillation, as well as an exchange 

interaction which is outside of the range that was accounted for in training. This could suggest that 

the networks are coming to some agreement when there is overlap between the higher frequency 

dipolar contributions and the frequency of the oscillation caused by the exchange interaction – they 

are unable to differentiate fully between the oscillations. The networks are then accidentally 

reporting a high confidence peak in a reasonable position. 
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Figure 4.1: Demonstration of the results acquired when the published exchange resilient networks are 
applied to DEER traces with a scalar exchange interaction outside of the training parameters range. (top) 
J = 5.2 MHz, (middle) J = – 8.4   MHz, and (bottom) J = 7.5 MHz. 
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4.1.1 Accounting for a Distributed Exchange Interaction 

As the exchange coupling occurs only under the simple sine and cosine functions, the equation for 

the DEER trace can be simply updated to account for the extra decay caused by a distribution in the 

exchange interaction: 
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  (4.2) 

Where 0J  is the mean exchange coupling and J  is the standard deviation of its distribution. It is 

a simple matter to modify the DEER library generation function to reflect this update. 

  

 

Figure 4.2: Examples of DEERNet outputs for traces with a distribution in the exchange interaction. (top) J0 = 3.27 
MHz, 𝜎𝐽 = 0.11 MHz; (middle) J0 = - 4.17 MHz, 𝜎𝐽 = 0.20 MHz; and (bottom) J0 = - 3.55 MHz, 𝜎𝐽 = 0.38 MHz.  
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Figure 4.2 above shows some examples of simulated traces with increasing spread in the 

distribution but each with a mean within the range of the data used in training the networks. It can 

be seen that the accuracy of these networks rapidly deteriorates when presented with even a small 

distribution in the exchange interaction. Upon visual inspection of the simulated DEER traces 

presented to these networks it is clear that with the inclusion of a distribution in the exchange 

interaction has a dampening effect on the signal oscillations.[49] This brings the form of the DEER 

trace well outside the space on which the networks are trained. In other words, the network model 

presented previously is expected to fail under these circumstances. 

The implication here is that in order to train networks that are properly resilient to the exchange 

interaction the training data will have to be updated to include cases with and without and 

measurable exchange interaction, as well as cases where there is significant distribution in the 

exchange interaction.  
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4.2 Exchange Extraction Networks 

4.2.1 Network Architecture 

Accurate extraction of the exchange interaction present can be a useful tool in the study of 

molecular structures, providing an extra structural constraint when studying systems that exhibit 

strong overlap between the probed spin pair. 

In order to extract the distance distribution from the DEER trace a limited ensemble of multiple 

output ANNs were trained. The structure of the individual networks of the ensemble are shown 

below in Figure 4.3. Comparing to the architecture employed in the DEERNet ensembles described 

above, these exchange extraction networks use the same input form (primary DEER trace of length 

256) which feeds into the hidden layers. Here there are four hidden layers of 257 neurons – 

providing a shared representation between the outputs. An extra neuron per layer is used in order 

to match the dimensionality of the total desired outputs. 

The distance distribution is then output from the fourth hidden layer using a layer of 256 logistic 

sigmoid activation neurons, as above. The exchange interaction is output as a scalar from the same 

point in the network – here using a single neuron with the identity activation function (linear). 

 

Figure 4.3: Architecture for extracting the exchange interaction alongside the distance distribution using a single ANN.  

4.2.2 Network Training 

These networks were trained using the iterative retraining process described above. This was 

carried out using equal sized libraries at each step, containing DEER traces and their matched 

distance distribution as well as scalar exchange coupling interaction in MHz. In examples where a 

distribution in the exchange interaction is included the output exchange scalar is simply the mean. 

Training libraries were generated at each step of the training with 180,000 examples consisting of 

60,000 examples of each DEER traces with zero exchange (as above), DEER traces with a scalar 

exchange interaction in the range [-16,16] MHz, and finally DEER traces with a distribution in the 

exchange interaction, where the mean falls in the same range ([-16,16] MHz) but with a full-width 

at max height selected from the range [0.05,1] MHz. 
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4.2.3 Results on Simulated Data 

A single trained network was first tested against databases of simulated data generated using the 

same parameters as in training. The results are plotted and tabulated below: 

 

Figure 4.4: an easy, tough, and bad case selected from a library of 100000 DEER traces generated with a zero exchange 
coupling. 

Table 6: Expected and predicted outputs of the exchange extraction capabilities of the studied network architecture. 
Cases labelled according to Figure 4.4. 

 Easy case Tough case Bad case 

Expected J0 / MHz 0 0 0 

Predicted J0 / MHz 0.026 0.432 0.480 

 

Figure 4.5: an easy, tough, and bad case selected from a library of 100000 DEER traces generated with scalar exchange 
coupling selected from the range [-16,16] MHz. 

Table 7: Expected and predicted outputs of the exchange extraction capabilities of the studied network architecture. 
Cases labelled according to Figure 4.5 

 Easy case Tough case Bad case 

Expected J0 / MHz -9.080 3.040 -1.684 

Predicted J0 / MHz -9.367 1.862 -1.700 
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Figure 4.6: an easy, tough, and bad case selected from a library of 100000 DEER traces generated with a distribution in 
the exchange coupling. The mean is selected from the range [-16,16] MHz and the FWMH selected from the range [0.05,1] 
MHz. 

Table 8: Expected and predicted outputs of the exchange extraction capabilities of the studied network architecture. 
Cases labelled according to Figure 4.6 

 Easy case Tough case Bad case 

Expected J0 / MHz 11.810 -0.065 15.194 

Predicted J0 / MHz 11.510 -0.361 15.848 

 

 

4.2.3.1 Discussion 

It is clear from these examples that even with single network the exchange interaction can be 

accurately retrieved from the DEER trace. This is performed alongside a prediction of the distance 

distribution. 

Figure 4.4 shows the result there is no exchange interaction present in the DEER trace. The distance 

can be extracted with reasonable success, even getting the overall features in reasonable positions 

for the worst cases. Figure 4.5 shows the results for the exchange interaction present as a scalar 

quantity, the single network is still able to perform well a lot of the time, but only makes a vague 

guess at the features in slightly tougher cases. In Figure 4.6 the results of tests against a library of 

traces with distribution in the exchange interaction are shown. Here the easy cases with broad 

features seem to be accurately predicted but tougher cases are completely wrong.  
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4.2.4 Results on Experimental Data 

The limited ensemble of eight networks was then tested against a series of macrocyclic molecules 

engineered in order to investigate quantum interference in the exchange interaction (as reported 

by Richert et al. in [41]). These structures, shown in Figure 4.7 consist of six porphyrin rings held in 

a nano-ring shape by a supporting structure. On opposing sides of the nanoring there are copper 

porphyrin units, and the remaining four are zinc porphyrin units. The DEER technique was then 

employed to probe the inter-copper distance and the exchange interaction.  

Using this general structure three variations were designed. In the first, labelled X||X, there are no 

conjugation paths between the copper centres so it is expected to have an exchange interaction of 

zero. The second, P2||X is linked on one side; and the third P2||P2 linked on both sides. These are 

expected to exhibit an increase in exchange interaction respectively. The distance was reported to 

be a consistent 2.5 nm across the series,[41] and they therefor provide an excellent test case for 

the exchange extraction ANNs presented here.   

The results of these tests are presented below, all expected exchange interactions are as reported 

in [41]. 

 

 

 

 

 

 

 

 

Figure 4.7: Family of bis-copper six-porphyrin species (left) X||X has no pathway between the probed centres and is 
expected to have a J=0; (centre) P2||X has one pathway and is expected to have a J=2.3 MHz; (right) P2||P2 has two 
pathways and is expected to have a J=10.4 MHz. 
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4.2.4.1 X||X – Results 

 

Figure 4.8: Distance distribution extraction results for X||X, with no exchange pathway. A clear peak is seen at 2.5 nm as 
expected. 

Table 9: Exchange interaction expected and extracted by the network ensemble for the X||X molecule with no exchange 
pathway. Reported value is the mean of the ensemble outputs and the uncertainty calculated as the variance. 

 Output 

Expected J0 / MHz 0 

Predicted J0 / MHz 0.43 ± 0.78 

4.2.4.2 P2||X – Results 

 

 

 Figure 4.9: Distance distribution extraction results for P2||X, with one exchange pathway. A broad peak is seen around 
2.7 nm which is shifted from what would be expected. 

Table 10: Exchange interaction expected and extracted by the network ensemble for the P2||X molecule with one 
exchange pathway. Reported value is the mean of the ensemble outputs and the uncertainty calculated as the variance. 

 

 
 Output 

Expected J0 / MHz 2.3 

Predicted J0 / MHz 2.14 ± 0.67 
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4.2.4.3 P2||P2 – Results 

 

Figure 4.10: Distance distribution extraction results for P2||P2, with two exchange pathways. A broad peak is seen around 
2.8 nm further shifted from the expected 2.5 nm. 

Table 11: Exchange interaction expected and extracted by the network ensemble for the P2||P2 molecule with two 
exchange pathways. Reported value is the mean of the ensemble outputs and the uncertainty calculated as the variance. 

 

 

 

 

4.2.4.4 Discussion 

In all test cases the exchange interaction has been accurately predicted by the networks. For X||X 

and P2||X, with no exchange pathway and one exchange pathway respectively, the expected 

exchange is within the uncertainty in the ensemble outputs. And for the P2||P2 molecule the 

predicted value is close to that which was expected. 

The determination of the distance distribution is very good for the case with no exchange 

interaction. This is to be expected as the network training database was specifically built to include 

case with zero exchange interaction to ensure that the trained model would be resilient to all 

situations. 

In the cases with increasing exchange interaction, the shape and uncertainty of the predicted 

distributions are as would be expected. However the position of the peak seems to be shifted 

towards the right, further with increasing exchange. 

This result can be justified by recalling the scaling relationship discussed in Chapter 3, reproduced 

here. And considering the DEER kernel (Equation (4.1)). 

A B

3 3

A B

t t

r r
       (4.3) 

 Output 

Expected J0 / MHz 10.40 

Predicted J0 / MHz 11.36 ± 0.26 
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The distance axis on the DEERNet output is calculated using the assumption that this holds. While 

this is the cases where there is no exchange interaction, it breaks down when the exchange 

becomes significant. This results in a shift toward longer distances when constructing the distance 

axis for reporting. 

4.3 Summary 

In this Chapter further tests of the neural network models presented in Chapter 3 were carried out. 

It was found that the networks could not accurately produce distance distributions when significant 

exchange interaction was present, and this was further compounded when there was a distribution 

of exchange.  

A limited ensemble of eight neural networks trained on libraries with mixed traces using different 

levels of exchange interaction was then presented. The individual networks are trained to predict 

both the distance distribution and the exchange interaction as a scalar quantity.  

The individual networks show good results in predicting the distance distribution when tested 

against case with zero or scalar exchange interaction. But poor performance when there is a 

distribution. In all cases the networks were able to accurately predict the exchange interaction. 

When tested as a limited ensemble of eight networks against a series of real data the networks 

showed very good performance when predicting the exchange interaction. The shape of the 

distance distribution seems to be predicted well, but the mean becomes shifted as the exchange 

interaction increases. Possibly explained by a break down in the relationship used in scaling the 

output distance axis. 
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Summary 

An artificial neural network model (DEERNet) trained to extract a distance distribution from primary 

experimental data from the DEER spectroscopic method was developed. It was shown that by using 

carefully simulated data the model could be trained to achieve an accuracy able to contend with 

the Tikhonov-regularised analysis of data – some cases are presented in which DEERNet is expected 

to outperform this established procedure. 

The ensemble model employed provides instantaneous feedback on the confidence of the network 

output using the variance in the individual network outputs. This is a clear advantage over the 

Tikhonov regularised procedure in which the error estimation is achieved through an expensive 

reconstruction of the input data. 

It was further shown that neural networks could be trained to be resilient to the distortions arising 

due to exchange coupling – a result that points towards the strength of neural networks for analysis 

in non-standard cases, such as multi-spin systems or systems with a spin greater than ½, where the 

tools already exist to simulate training data. 

A further neural network model trained to extract the magnitude of the exchange coupling 

alongside the distance distribution was then presented.  
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Appendix 

A1. Derivation of Analytical Expression for DEER  

A system containing two electrons which interact via dipole-dipole coupling (D) and through bond 

exchange coupling (J) has the Hamiltonian below: 
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And the exchange coupling interaction J  is in angular frequency units. When the rotating frame is 

applied with respect to the Zeeman Hamiltonian and it is assumed that the g-factor offset variations 

are refocused by the spin echo, the following rotating frame Hamiltonian is obtained: 
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When this acts on the transverse magnetisation the following oscillation is produced: 
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Which, when integrated over all molecular orientations, forms the following neat analytical 

expression for the DEER signal  

 

  2

0

1
( ) cos 1 3cos sin d

2

6 6
       cos[( ) ]FrC sin[( ) ]FrS

6

F t D J t

Dt Dt
D J t D J t

Dt



 







   
 

    
          

     


   

Where FrC and FrS are the Fresnel functions, defined as: 
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