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Small-scale Indigenous Irrigation Systems (IIS) are water-sharing societies which
have been observed to persist for long periods of time finding a dynamic equilib-
rium with the environment. This persistence is thought to be mostly due to the
institutions and system structures which evolve to maintain stability despite in-
ternal and external changes. They have been described as the most ancient and
ubiquitous example of public infrastructure system, however, the way in which
they grow, evolve and maintain stability is a contested and also controversial
topic. The study of IIS is interdisciplinary and generally classified under the
umbrella term Social-Ecological Systems.

Advances in computing performance and software have enabled simulation mod-
elling to be quicker, cheaper and more accessible. Alongside this, recent scientific
understanding of complex systems and network theory has led to new interdisci-
plinary theories on universal scaling and preferential attachment based growth
in systems of many interacting components. This research aims to harness
this potential by building an abstract simulated IIS in a generative agent-based
model environment.

The model assumes that the IIS network grows through preferential attach-
ment to optimise space, which is the mechanism of growth found in previous
models and a common assumption in biological systems as it increases efficiency.
Different growth strategies relating to local or global information and stochastic
processes are tested and find a range of space optimal configurations.

The results find that all models form rooted planar tree networks. Stochastic
processes are important for the model to search for different model configura-
tions and finding almost optimal configuration. The optimal solution is found
from collecting global information of the network and selecting growth glob-
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ally, however this is computationally expensive, and inefficient so unlikely to
be found in real systems. The networks formed through random asynchronous
processes follow scale-free laws which coincide with similar scaling exponent as
other sub-critical networks such as rivers.

Two vastly different real-world IIS networks are then analysed and compared
with the simulated models. The real-world networks show differences compa-
rable to the differences found in the simulated models. The reasons for these
differences are speculated to be due to a number of factors including geomor-
phology and managerial arrangements, however given the limited data collected
no firm conclusion can be made. It is recommended that further data is collected
and analysed in order to confirm this.
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Chapter 1

Introduction

Agriculture is often regarded as a key human innovation enabling emergence
of civilisation (Lev-Yadun et al., 2000). The maintenance of this food supply
is a primary driver of stability and persistence for any society through time.
Given this importance, a large area of research has been devoted to the study
of societal persistence.

Social-Ecological-Systems (SES) is a term to describe the coupling and dis-
tinction between humans and the environment (Levin et al., 2012). Persistence
of this coupled system depends on the stability of both the social and envi-
ronment systems. The coupling of SES is studied over a range of time-lengths
and spatial-scales from small-scale traditional systems to large-scale modern
systems. SES have traditionally been studied qualitatively recording the insti-
tutions and cultural practises which have evolved in a particular system enabling
stability (Ostrom, 1990).

Indigenous Irrigation Systems (IIS) a subset of SES, focus on the water sharing
aspect of self-sustaining traditional SES for agricultural purposes. IIS across
the planet have found ways to persist for prolonged periods through the con-
struction of robust water transport networks and SES institutions. Some of
the most prominent examples of IIS can be found as part of the rice terraces in
South East Asia. Specific well-studied examples that are still in operation today
include the Subak System in Bali, Indonesia and the Banaue Rice Terraces in
Ifugao, Philippines. IIS are also present across the world, in South Asia, the
Middle East, Africa and South America.

The Subak System in Bali is perhaps one of the most studied IIS and one
of the first to be quantified into a computer model (Lansing and Kremer, 1993).
However, these pioneering computer models were restricted by both computa-
tional power and a lack of modelling tools and frameworks to conduct research.
This led to the first models being predominately static and not accounting for
growth and evolution of the system. There is continual work on the Subak Sys-
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tem up to the present day to further understand whether it was organised by a
central authority or through local decentralised community initiatives (Lansing
et al., 2009) and how it maintains an optimal state through feedback between
the social and ecological systems (Lansing et al., 2017).

Advances in complex systems theory and network theory have discovered univer-
sal laws across disciplines. Universal scaling laws have been uncovered within
systems in nature and society in terms of their space-filling organisation and
size distribution (West et al., 1997; Batty, 2009), but importantly the scaling
laws are different for biological and sociological systems (Bettencourt et al.,
2007). Related to this is the ubiquity of power law distributions in scale-free
networks across nature and society (Barabási and Albert, 1999). A system,
when modelled as a network and having a power law (or skewness) in terms of
the connections of each node is now often seen as a signature of a self-organising
unregulated natural network (Wang et al., 2019). For a network to have such a
signature it has been found that both growth and preferential attachment are
required for this signature to emerge (Barabási and Albert, 1999).

Alongside (and also in part enabling) these scientific discoveries are the ad-
vancement of computer performance and associated simulation tools. High per-
formance computing power has become much easier and cheaper to access and
computer simulation tools have been built and optimised for the purpose of
modelling complex systems and networks. This has allowed for scientific sim-
ulation experiments of many complex interacting components that is common
across all scientific disciplines.

This research aims to apply Generative Agent Based Modelling (Epstein and
Axtell, 1996) to grow an artificial society of an IIS. An agent can be a physical
or virtual entity that can act, perceive its environment (in a partial way) and
communicate with others (Ferber, 1999). The ‘Budding Model’ is a hypothe-
sised model for growth in the Subak System whereby local communities expand
based on local conditions which in turn leads to the system as a whole reaching
an optimal state (Lansing et al., 2009). This can be thought of as a form of
space-optimisation to grow and increase available space for the IIS to distribute
water. However many other factors influence IIS growth such as geology, ge-
omorphology, ecology, climate and culture. Space-optimisation is commonly
observed in biological systems and one of the factors giving rise to universal
scaling (West et al., 1997). Different growth algorithms are tested on the model
to see which is optimal for space-optimising and computational efficiency. An
algorithm which is computationally inefficient in this analysis is comparable to
an ineffective social institution.

Simulating the growth of an IIS forms an irrigation network which when com-
pared to universal network scaling laws and real-world IIS networks can show
whether the simulation follows the same behaviour as found in the real world
and other space-optimising systems in nature. If the simulation is shown to be
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scale-free then the model can be extended and applied to larger social systems.

This thesis includes the following chapters:

• Chapter 2 - Literature review;
Summary:

– A definition of an indigenous irrigation system (IIS) is provided.

– IIS are present in many locations throughout the world.

– Commonalities and differences between these systems are outlined
and the factors leading to these are discussed.

– Detailed information on the Subak System in Bali and the Qanat
system in the Middle-East is provided.

– The idea that the network structure could be an emergent property
of many contributing factors in each system is discussed.

– The managerial arrangements are highlighted as one factor of inter-
est. Local versus global optimal growth, individual versus community
and planned verses self-organised are identified as interesting trade-
offs in different systems.

– Different methods to study IIS include interviews, field mapping,
remote sensing and simulation modelling.

– IIS are changing in the modern world, which makes it difficult to
study them.

– Research gaps highlighted.

– Definition of complex systems and networks and an introduction to
theories regarding their growth and stability.

– Examples of previous complex system modelling techniques and their
application such as equation based models, cellular automata, agent
based models and network models.

– Examples of other networks across disciplines that have commonali-
ties with IIS.

• Chapter 3 - Research questions, aims and objectives;
Summary:

– Research Questions deriving from the research gaps found in the
literature review.

– Aims and objectives added to achieve answering these questions.

• Chapter 4 - Space Optimising Growth in Simulated Indigenous Irrigation
Systems;
Summary:

– This chapter simulates a space optimising network in order to under-
stand how managerial rules lead to different network structures.
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– Network growth based on local deterministic or local stochastic rules
produce networks with low space optimising capabilities.

– Network growth based on global selection or global stochastic rules
produce networks with high and optimal space optimising capabili-
ties.

– Comparison with other networks such as rivers find similar scaling
exponents.

• Chapter 5 - Empirical Data and Analysis on Indigenous Irrigation Sys-
tems;
Summary:

– Data is collected from two real world IIS networks - The Subak system
in Bali and the Qanat system in Iran.

– Data was collected through remote sensing using high resolution im-
ages.

– The irrigation networks were then analysed using the same scaling
exponent as the simulated networks.

– The network structures formed by the two networks were noticeably
different and comparable to the simulated networks in Chapter 4.
This gives some supporting evidence to the managerial rules in op-
eration for each of the systems but it is by no means conclusive.

– Other factors may also play an important role which are not factored
into the simulation such as geomorphology.
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Chapter 2

Literature Review

The literature review has been broken down into the following Sections:

• Section 2.1 introduces the field of study of Indigenous Irrigation Systems
including definitions, case studies, general models of IIS and research gaps.

• Section 2.2 reviews scientific schools of thought relevant to studying IIS
focusing on interdisciplinary tools such as complex systems and network
theory.

• Section 2.3 focuses on the many different methods for modelling complex
systems, some successful examples of their application and the methods
which are most useful for studying IIS.

• Finally, Section 2.4 looks at other systems with similar processes and
properties to IIS.
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2.1 The Study of Indigenous Irrigation Systems
(IIS)

2.1.1 Introduction

The focus of this research is on the growth, structure and stability of Indigenous
Irrigation Systems. This first section gives an overview of what an Indigenous
Irrigation System is, examples of IIS, gaps in understanding IIS and approaches
for studying IIS.

2.1.2 Definition of an Indigenous Irrigation System

An Indigenous Irrigation System can be defined as (Groenfeldt, 2004):

1. The physical structure of water capturing devices (diversion weirs, dams,
or wells), conveyance devices (canals, aqueducts, tunnels, flumes), and
control structures (gates, outlets, dividers) by which water is delivered to
agricultural fields.

2. The management arrangements for designing, constructing and maintain-
ing the physical works, allocating and distributing water among the users,
resolving disputes, and addressing emergencies or other unforeseen cir-
cumstances.

Indigenous can be defined as ‘Born or produced naturally in a land or region;
native or belonging naturally to (the soil, region, etc.)’ (Oxford University
Press, 2015). Indigenous Irrigation Systems represent an applied aspect of In-
digenous Knowledge (IK); a systematic body of knowledge acquired by local
people through accumulation of experiences, informal experiments and intimate
understanding of the environment in a given culture (Rajasekaran et al., 1993).

IIS have been described as the most ancient and ubiquitous example of public
infrastructure system (Yu et al., 2015). They represent not only a human tech-
nical achievement increasing yields (Hunt et al., 1976), but have major social
consequences (Kelly, 1983) and possibly enabling the urban revolution (Hunt
et al., 1976).

2.1.3 Example of Indigenous Irrigation Systems

Over the last few thousands of years, Indigenous Irrigation Systems have de-
veloped in different forms with the common purpose of distributing water for
growing the food of people living a predominately sedentary lifestyle. IIS can
therefore be viewed as a key component in the emergence of many civilisations.

IIS exist or have existed across the planet, including the Hohokam system in
Arizona, USA (Murphy, 2012), irrigation in the Miju catchment, Yunnan, China
(Crook and Elvin, 2013; Elvin, 2002), Suranga Irrigation in South Karnataka
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and Northern Kerala, India (Crook et al., 2013), Wadi Faynan, Jordan (Crook,
2009), the Pumpa Irrigation System in Nepal (Cifdaloz et al., 2010), the In-
digenous Water Management System in Bhaktapur City, Nepal (Gautam et al.,
2018), the Subak System in Bali, Indonesia (Lansing, 1987), Pokot, Northwest
Kenya (Davies, 2008), the hill-furrow irrigation system of the Marakwet Es-
carpment, Kenya (Watson et al., 1998; Davies, 2009), the Qanat System, Iran
(Bonine, 1996), The East Mitidja scheme, Algeria (Laoubi and Yamao, 2009),
Karez Irrigation, Maywand District, Kandahar Province, Afghanistan (Egitto,
2013), Acequia irrigation communities, Taos Valley, New Mexico, USA (Cox and
Ross, 2011), Mount Kilimanjaro, Tanzania (Gillingham, 1999; de Bont et al.,
2019), Sonjo Irrigation, Tanzania (Adams et al., 1994), Wadi Laba Spate Irri-
gation, Eritrea (Mehari et al., 2005), Kuhl irrigation, Kangra Valley, Western
Himalayas (Baker, 2005), Andean Irrigation Systems, Peru (Trawick, 2001), the
Tank Cascade Systems, Sri Lanka (Geekiyanage and Pushpakumara, 2013) and
the Ifugao Irrigation System, Northern Philippines (Araral, 2013).

These systems operate at many different scales, the Ifugao system, northern
Philippines occupies 4,000 km2 of terraced slopes (Araral, 2013) whereas the
Qanat irrigation system may support a single small village (1km2 (see figure
2.1)) (English, 1998).

2.1.4 Case Studies of Indigenous Irrigation Systems

The following paragraphs give further detail of different IIS located around the
world.

Qanat System, Middle East

Qanats are one of the most significant hydraulic technologies of the pre-modern
arid desert environments in the Middle East (English, 1998). Given the harsh
desert conditions, there is little surface water. To counter this the an under-
ground pipe called a Qanat is dug to transfer water from highlands to villages
for agricultural use. A well shaft usually 50m deep, is sunk into the groundwater
recharge zone usually in sediments of alluvial valleys at the base of highlands. A
tunnel larger enough for a person to walk through transports the water down a
shallow gradient under the force of gravity to the village (Bonine, 1996). Shafts
are dug from the surface down to the Qanat tunnel every 50 to 100m to allow
for Qanat workers to breathe, excavate material and provide access for repairs
(English, 1998). Most Qanats flow as a direct response to precipitation, reflect-
ing the permeability of the rock and soil into which the groundwater recharge
occurs. A schematic sketch of a single qanat flowing into a village and distribut-
ing water for agricultural use is shown in Figure 2.1, (Bonine, 1996).

The origins of the Qanat system are thought to date back 2,500 years in the
mountains of Kurdistan (English, 1998), although specific examples of these
systems may not persist for such long periods of time, or abandoned and re-
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Figure 2.1: A schematic example of the Qanat system from (Bonine, 1996).

established at a later date. Variations of the Qanat system are present in
Afghanistan (Karez) (Egitto, 2013), Morocco (Khettara) (Faiz and Ruf, 2010),
Iran (Qanat) (English, 1998), North Africa (Fughara) (English, 1998), Syria
(qanat Romani) (Lightfoot, 1996) and Spain (Galerias) (English, 1998). Qanat
technology is also present in Central and South America in Mexico, Peru and
Chile (English, 1998), Central Asia and western China (English, 1968).

Figure 2.1 shows a simplified example of a Qanat system, in reality many of the
systems are much more complicated with multiple qanats flowing into groups of
villages, Figure 2.2 (Faiz and Ruf, 2010).

The construction of a qanat depends on two decisions by the Qanat Special-
ist (Muqanni); the location of the mother well (Madari) which is the furthest
point from the settlement and the slope between the Mardari and the settlement
(English, 1998). The Muqanni poses indigenous knowledge of the area allowing
them to decide based on local slope conditions, topography, vegetation, ground-
water and the proposed destination.

Qanats, like all IIS require a nexus of ecological and social conditions includ-
ing high levels of social cohesion in terms of water allocation (English, 1998).
The managerial arrangements of the Qanat societies have been described as
individualistic (Geertz, 1972).

The Subak Irrigation System, Bali

The Balinese Subak irrigation system is thought to have been in operation for
over 1000 years (Lansing, 1996). The main staple food in Bali, rice, is grown
in paddy fields fed by rainfall guided irrigation channels (Lansing and Kremer,
1993). Direct evidence for rice cultivation in Bali is from rice phytoliths (rigid,
microscopic structures made of silica, found in some plant tissues and persisting
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Figure 2.2: Extract from Faiz and Ruf (2010) showing multiple Qanat channels
flowing into a large collection of villages.
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after the decay of the plant) found in the sediments dated to 1 AD (Lansing
et al., 2009). There are two main technologies used for irrigation expansion in
pre-colonial Bali. Small weirs are constructed upstream, and larger storage dams
are created downstream (Lansing et al., 2009). It has been extensively studied
(Janssen, 2007; Lansing and Miller, 2005; Wijermans and Schlüter, 2014) and is
thought to provide an example of a sustainable, resilient community managed
agricultural system. However this is disputed, Wittfogel (1957) suggests central
bureaucratic organisations are necessary to coordinate a network, whilst Lans-
ing (1991) suggests they can self-organise through local interactions.

Geertz (1980) provides some of the first detailed and systematic reviews of the
Subak System. The area which the Subak system covers is approximately 3,450
km2 on steep slopes formed of volcanic sediments. At the crest of the slope
are three volcanic cones 1500-3000m high. The slopes are defined by deep-cut
river gorges running from the crest down to the sea. Geertz (1980) focuses on
one example village of the Subak - Tihingen. The society consists of settlement
units termed Bandjar and agricultural units termed Subak. The Subaks adja-
cent to a particular Bandjar tend to collectively owned by the villagers. The
geomorphology tends to have a strong control over the shape and form of both
the Bandjar and Subak. The river gorges form reasonably linear channels down
the slope, the Bandjar and Subak are located on the spurlines in-between, pre-
sumably it is the driest area and least susceptible to flooding. The size of the
system means that downstream Subaks suffer losses from percolation and evap-
oration, however downstream Subaks routinely take advantage of excess flows
from neighbours and local springs (Lansing et al., 2009).

The work of Stephen Lansing in Bali provides some of the first and best ex-
amples of the application and usefulness of simulation for gaining insight into
social-ecological systems in particular indigenous agricultural systems. His work
mainly focuses on the social aspects of how cooperation can emerge in a system
without any centralised control mechanism (Lansing and Miller, 2005). The
simulations model ‘Subak’ scale relationships, where a Subak is a local-level
farmer’s association. These are the level at which decisions over water alloca-
tion are made (Lansing, 1987). For instance the district of Badung, an area
115 km by 40 km consists of 151 Subaks. The strong dependence on rainfall
for rice cultivation leads to difficulties given its variability both spatially and
temporally on Bali (probably partly due to the steep topography present on
the island). Rice pests can also have a strong effect on rice yields. Stability
of these two factors seems to be the main reason for the emergence of the sys-
tem (Lansing and Miller, 2005). If adjacent Subaks synchronise their fallow
periods they reduce the amount of pests thus reducing the damage they could
cause. Due to constraints on the water available, only a limited number of
Subaks can synchronise their fallow periods leading to a decentralised system
of localised coordination of fallow periods. Lansing and Kremer (1993) and
Lansing and Miller (2005) construct a numerical model of this synchronisation
finding that cooperation over water increased with increased pressure of pests.
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It is uncertain whether similar cooperation emerges in other IIS (Janssen, 2007).

To understand how such a system might evolve, Lansing et al. (2009) propose a
budding model whereby canal irrigation systems expand downstream as a result
of local initiatives, describing it as being an example of a Complex Adaptive
System (CAS) - expansion, stability and persistence depend on reactions to en-
vironmental and social processes. This is an alternative to a centrally planned
model (Wittfogel, 1957), which is governed by centralised bureaucrats. In order
to test the budding model genetic data was collected from farmers from different
Subaks. The results of the genetic data found that Subaks located further up-
stream in their irrigation system contained greater genetic diversity than those
downstream suggesting they were created first, giving support to the budding
model.

In contrast to the Qanat system, the managerial arrangements of the Subak
system are said to be community based (Geertz, 1972).

2.1.5 Factors influencing the evolution of Indigenous Irri-
gation Systems

The difference in geology, geomorphology, climate, ecology and culture create
endless novelty in how IIS evolve. These interwoven factors influence the emer-
gent properties of IIS.

Geertz (1972) highlights this in his seminal work The Wet and the Dry, a com-
parative study of traditional agriculture in Bali and Morocco. Bali has a tropical
climate, plentiful water supply, with a highly collective approach to organisation
of irrigated fields, whereas Morocco, an arid country has a much more individ-
ual, property based approach to water regulation.

The physical irrigation network structure of the IIS, could be particularly im-
portant in containing details of the emergent properties from factors influencing
the system. As IIS grow and persist for longer periods of time, the network is
likely to become more efficient and the dominant factors more apparent. For
Qanats, digging channels underground allows access to water as their is little
present at the surface, for more efficient water transfer and reducing evapora-
tion. Whereas in Bali, there are large amounts of rainfall and surface water, so
there is not a need to dig underground tunnels.

As water can only usually flow downhill without sophisticated technology which
is not available for IIS, the majority if not all IIS are located on or at the base
of a slope, (English, 1998; Araral, 2013; Lansing et al., 2009). Geomorphology
will therefore play a key role in where IIS are located. The geology directs the
groundwater flow and is also a controlling factor on the geomorphology. Climate
will have a large affect as a continual supply of water is required to sustain a
population. A seasonal rainy season would mean that reservoirs would be more
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effective for storing water in times of droughts such as the tank system in Sri
Lanka (Geekiyanage and Pushpakumara, 2013). Finally the ecology will affect
the types of crop which are available and the pests which cause poor harvests
(Lansing and Kremer, 1993).

The Pokot irrigation system in Kenya combines a nomadic lifestyle with an
irrigation system (Davies, 2008). Mapping of the irrigation networks shows
that communities move between locations, perhaps to escape soil degradation
or climatic changes.

The Ifugao and Subak Systems experience large amounts of rainfall and can
evolve on steep terrain through the use of terraces to maximise the land where
water supply is plentiful (Araral, 2013). The cultural factors such as collective
or individual organisation are also likely to have an effect on physical network,
however given IIS are often community based, strong social cohesion is enduring
(English, 1998; Ostrom, 1990).

2.1.6 The Influence of Managerial Arrangements

One prominent uncertainty regarding Indigenous Irrigation Systems is validat-
ing the managerial arrangements for how they have been set up or organised
(Lansing et al., 2009). A more hierarchical system, will have greater central con-
trol (Wittfogel, 1957) over the growth and organisation, whereas a decentralised
system is more likely to have preferential locally driven growth by different parts
of the system in a so called ‘Budding Model’ (Lansing et al., 2009). This is a
large area of research, in particular studying how IIS can evolve to a stable state
through decentralised management as this contradicts a lot of modern economic
theory, which suggests privatisation is the only way of sustaining common pool
resources (Hardin, 1968). A number of rules have been proposed which appear
to be common across most systems persisting for prolonged periods (Ostrom,
1990). In contrast, the IIS systems in East Africa the social institutions employ
corporate power, where large segments of the population act against monopo-
lisation, however this is not an egalitarian society as each group has a varied
amount of power (Davies, 2009). This seems like a form of tribalism.

However, the collection of data to validate the managerial practice under which
IIS grow can be very difficult and open to multiple interpretations. Genetic
markers of populations located within IIS have been collected in the Subuk Sys-
tem to offer support to the ‘Budding Model’ (Lansing et al., 2009). The findings
suggest that the ‘Budding Model’ is correct as populations with similar genetic
markers can be found downstream of one another, giving an argument that the
system has grown based on local initiatives.

The managerial arrangements may affect the network properties of the IIS.
A planned network would be expected to take a more ordered shape, whereas
a system which grows through a decentralised (self-organising) process is likely
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to be more random (or natural). However this has not been explored in the
IIS literature and represents a research gap. A comparison can be drawn with
modern urban systems, which when planned and built in a short space of time,
tend to form regular patterns such as the majority of cities in the USA, whereas
cities which have developed over much longer periods in a less planned manner
tend to have a more random pattern, such as UK cities.

2.1.7 Growth and Persistence in Indigenous Irrigation Sys-
tems

Many IIS have been operating for considerably long periods of time. The Ifugao
System and Subak System are thought to both be approximately 2,000 years
old (Araral, 2013; Lansing et al., 2009). The origins of the Qanat system are
thought to date 2,500 years in the mountains of Kurdistan (English, 1998), al-
though specific examples of these systems may not persist for such long periods
of time, or might be abandoned and re-established at a later date.

Given IIS are not modern systems, their growth and persistence might be simi-
lar to biological systems, which grow following a sigmoidal curve to an eventual
population limit. Archaeological evidence of the Subak System has found that
older weirs are located further upstream (Lansing et al., 2009), but there is little
information available about the rate of growth. The managerial arrangements
of each IIS may also have an effect on this growth rate. Unplanned systems may
follow feedback based growth, reacting to the changing factors influencing the
efficiency of the system (Lansing et al., 2009) which in turn would be reflected in
the age of parts of the system. A planned system may be set up in one go based
on indigenous knowledge of the planner so the growth would unlikely follow a
sigmoidal curve.

The large area covered by the Subak System shows that if water is not a limiting
factor then it may be limited by geographical space, whereas a small qanat sys-
tem in a very hot arid area is likely to be limited by water availability. However
both systems may still grow following a sigmoidal curve.

2.1.8 Inequality in Indigenous Irrigation Systems

Indigenous Irrigation Systems form part of the earliest civilisations; there has
been an ever-present water allocation dilemma leading to differences in inequal-
ity. Inequality over long periods leads to societies becoming stratified (Davies,
2009), which is one of the defining characteristics of civilisations in general.
Conflict between different parts of society is one postulated reason for societal
collapse (Araral, 2013; Motesharrei et al., 2014).

The managerial arrangements implemented in different IIS may lead to different
levels of inequality. For example, the Subak System in Bali has a community
based managerial model, the crops harvested from the subaks surrounding a
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village is shared amongst the village, whereas the irrigation systems in Morocco
have a much more individual based approach (Geertz, 1972). Logically it may
be the case that inequality can develop more readily in an individual based
system than a community based one, but the Subak system comprises of many
communities; which might show different levels of inequality.

Inequality in terms of intergenerational wealth transfer has previously been stud-
ied in traditional agricultural systems (Borgerhoff Mulder et al., 2009; Bowles
et al., 2010), finding lower intergenerational wealth transfer in hunter-gatherer
and horticultural populations, whereas for pastoral and agricultural societies
this is higher. This is thought to be due to the higher amount of material
wealth in pastoral and agricultural societies which is past through generations
allowing wealth to accumulate in certain families or communities through time.
This is also related to ownership in society (Geertz, 1972). IIS can be both hor-
ticultural and agricultural so the inequality may vary between systems under
study.

Yu et al. (2015) explores a model of how irrigation system design can lead to dif-
ferent levels of inequality and maintenance between two villages connected by a
shared water supply. Two design variations are explored, upstream-downstream
access and equal common pool access. This takes a game theoretic approach
of farmers being either opportunists and conformists in terms of using water
and maintaining the infrastructure. Exploration of the model finds that the
equal common pool access model is only stable if the majority of farmers are
conformists. Both systems collapse if all farmers have an opportunistic strategy
(they do not contribute to maintaining the infrastructure). Multiple basins of
attraction exist when there are different ratios of opportunists and conformists,
and also if the maintenance costs are high. In general, the model shows simi-
lar behaviour to other models of cooperator-defector behaviour; increased con-
formist behaviour leads to lower inequality and more efficient infrastructure,
whereas increased opportunistic behaviour leads to higher inequality and lower
efficiency infrastructure.

Other models have looked at emergence of inequality in a generalised society
through agent based and equation based models. Motesharrei et al. (2014) in-
troduce a model of a society using an extension of the predator-prey equations
for groups of humans with different characteristics (elites, commoners, workers
and non-workers) and the environment. The model shows outcomes where high
levels of inequality can lead to collapse of the society. Sugarscape is an agent
based model which simulates the origin of inequality in artificial societies by
assigning a distribution of behaviours to agents and then simulating their inter-
action through time (Epstein and Axtell, 1996). This model has found similar
distributions of inequality which are present in modern societies. Agent based
models of this kind have not yet been applied specifically to IIS.
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2.1.9 A General Model for Indigenous Irrigation Systems

Despite stark differences in IIS, the definition of Indigenous Irrigation Systems
(Section 2.1.2) shows that they have two main components in common - a (spa-
tial) physical network of channels distributing water and (social) management
arrangements. This is a universal solution to the problem of supplying water to
a sedentary human population.

Physical IIS networks appear to be space-optimising; in general they grow to use
all available space for agriculture (given social and environmental constraints).
Given they are distribution systems, they form a branching hierarchical network,
with reduced channel size down the system. These two properties have been
found previously to be common properties of biological systems (West et al.,
1997), but not in IIS.

Biological distribution networks tend to be very efficient, for example the parent
branch cross-sectional area is the sum of the daughter branches (West et al.,
1997). It is already known this is not the case for IIS. The size of branches
has also reportedly been largely dependent on the technology available to cre-
ate them (Lansing et al., 2009). In particular for the Qanat System the canals
are large enough to fit a person through, to dig them but also for maintenance
(English, 1998).

The structure of the physical network formed by IIS tends to form tree net-
works, Figure 2.1. This is not surprising given they are distribution systems.
The changing properties of these tree networks between IIS and the reasons for
this has not yet been analysed. It may contain a large amount of information
on the evolution of an IIS. A general simplified model of an IIS network will of-
fer a base which can then be compared to the many different types seen in reality.

The idealised example of an IIS which has organised dominantly by managerial
constraints is a system which has a single input and organised without outside
intervention to reach a homoeostatic state with minimal environmental factors.
For example, the climate would be reasonably constant, leading to a constant
inflow of water, the geomorphology would be simple, a shallow planar slope for
example and the ecology would have little effect, such as no pests. In reality
there are no systems which organise in such as minimal fashion, but by under-
standing this ideal example, strong emergent features can be found which may
not be as obvious in real-world systems. The network formed by this idealised
example, are likely be planar for maximum efficiency (the edges between nodes
do not overlap), and rooted (it grows from one point) which would define it as
a rooted tree network.

There are two end points in the managerial organisation, one which is controlled
by a central power (Wittfogel, 1957) and one which organises through local
initiatives (Lansing et al., 2009). Two models giving properties of a planned
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ordered irrigation network and a self-organised local network can then be com-
pared against real-world systems. But there are also differences in managerial
arrangements depending on if the system is divided into individual agents or
community based.

2.1.10 Indigenous Irrigation Systems in the modern world

Given the far reaching effect of globalisation and increased connectivity of the
modern world, there are few IIS left untouched to study. Most IIS today use
a mixture of indigenous and modern practices, and are linked by varying de-
grees to national, regional and global markets (Mabry and Cleveland, 1996).
Due to the inherent complexity of studying real-world systems, particularly in
the modern globalised highly interconnected world, simulation can play a more
important role in developing simplified models of how systems of many agents
organise. The power of this method over others is that the simulation can be
thought of as being alive and evolving. Hypotheses can be tested on the simu-
lation which would not be possible real systems.

The difference between Figure 2.1 and Figure 5.5 highlights this issue. Fig-
ure 2.1 shows an idealised drawing of the Qanat system which is isolated with
no connectivity to the outside world, whereas Figure 5.5 shows a real world
system found in the modern day with modern tarmacked roads connecting the
IIS to nearby cities.

Modern technology also has an influence. English (1998) outlines the change
that is happening in the region with respect to the Qanat system. Population
growth and agricultural expansion have heightened demand for water. This has
led governments to abandoning the indigenous irrigation practices for more pro-
ductive modern pumping technologies and dams. In particular the Qanats are
largely disappearing and being replaced by deep wells.

Increases in population related to globalisation and migration have led to many
IIS changing over the past few hundred years. The Pokot System in Kenya has
been moved to wet highland areas away from arid area in the past 200 years, the
Pumpa system in Nepal was initiated in 1968 by migrant communities (Cifdaloz
et al., 2010) and the IIS in Mount Kilimanjaro (Gillingham, 1999) which has
extended downstream since the 1950s under population pressure.

The changes which occur to IIS from modern influence are profound and long
lasting. Many studies are dedicated to gathering knowledge, conserving and
enabling smooth transitions avoiding collapse of SES and ecosystems into new
regimes in the modern world. Regime shift analysis is a tool predominately
used to analyse ecosystems, lakes in particular (Carpenter and Bennett, 2011;
Dearing et al., 2012). These have been applied to IIS, most notably in Bali
(Lansing et al., 2014), which found evidence of alternative social states between
Subaks, but no evidence of regime shifts suggesting transitions in traditional
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societies are likely to be rare. However, a much larger regime shift in IIS is
taking place due to the effects of globalisation. In relation to water resources,
Cole and Browne (2015) qualitatively assess the impact of tourism on water
allocation in the Subak System, Bali finding that there is obvious indications
that it is water resources are overstretched.

Quantitatively, different regime change behaviour has been found for SES (Dear-
ing et al., 2014), when the boundary of a particular regime is reached. In an
effort to quantify the changes occurring in IIS in the modern world, the frame-
work should be applied to them. As it is very difficult to measure regime change
behaviour in real-world systems (Lansing et al., 2014), models of IIS can be used
at first to find the parameters under which change certain types of change occur.

Recent research has also looked at the effect of climate change on IIS, includ-
ing adaptation strategies to mitigate against impacts. Kihila (2018) presents a
review of adaptations globally and a focus specifically on communities in Tan-
zania. Adaptations and coping strategies include - changing farming practises
and migration to less water stressed areas.

2.1.11 Approaches to studying Indigenous Irrigation Sys-
tems

IIS consist of many interacting components, which grow and evolve over time in
response to both internal interaction and environmental influence. The previous
section stated that the physical network IIS may hold information on the man-
agerial arrangements organising the system. In order to study this phenomena,
different scientific approaches are available.

Qualitative approaches can be useful for collecting information which is dif-
ficult to quantify such as the managerial arrangements through carrying out
interviews or questionnaires for example. The physical irrigation network can
be mapped through quantitative methods such as aerial photograph interpre-
tation (API) or ground truthing in person through field mapping. There are
many initial sketches of irrigation systems which give an indication of the gen-
eral properties of certain networks although these are not accurate and unlikely
to stand up to scrutiny (For example Figure 2.1).

Once reliable data has been collected, statistical approaches can provide a quan-
tification of the different IIS networks. This can aid with classification of the
network types, although will not be useful for linking managerial arrangements
with the specific network without further information on the managerial ar-
rangements. However unless the data has been collected through time, which
is unlikely, it will not provide information on the growth of the system, which
is key to understanding how the managerial arrangements lead to the network
emerging.
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Complex Systems, a quantitative inter-disciplinary field of study which seeks
to understand how systems of many interacting components lead to emergent
behaviour can provide a relevant framework and modelling techniques for study-
ing IIS. Generative simulations of complex systems are useful for showing how
simple interactions can lead to emergent large-scale behaviour. This technique
would be very applicable for looking at how different managerial arrangements
of the IIS can affect the network properties of the system grown, as other influ-
ential environmental factors are minimised. Also given the effects of the modern
world on IIS, there are many difficulties with studying them. Computer simula-
tions, a product of the modern world, provide an isolated environment in which
IIS can be built, allowed to evolve and analysed. The output can be compared
against snapshot data collected from real systems and provide arguments for
and against whether the arrangements implemented in the model are reflected
in reality.

2.1.12 Summary

This section has given an introduction into the study of Indigenous Irrigation
Systems. Firstly, the definition of IIS consists of both the managerial arrange-
ments and the physical distribution network. Despite this common definition,
IIS are very varied in their arrangement across the planet. The main factors
influencing their development are geology, geomorphology, climate, ecology and
culture (or managerial arrangements). Two systems described in detail from
contrasting parts of the world, the Subak System in Bali, and the Qanat Sys-
tem in Iran highlight the differences in IIS.

The following research gaps have been found in the literature:

• IIS seem to consist of space-optimising branching tree networks forming a
hierarchical structure. Quantitative analysis of different IIS networks has
not yet been carried out to confirm this, which in turn can be used to find
commonalities and differences between IIS.

• No studies have looked at the relationship between managerial arrange-
ments and network structure of IIS.

• There is no recognised model for how IIS tend to grow, do they follow a
biological type sigmoidal curve, sociological expansion? Is this related to
the managerial arrangements?

• Previous studies have looked at the development of inequality in simplified
game-theoretic models of IIS, but not for larger network based simulations.

• No quantitative models have been built to look at the effects of globalisa-
tion on IIS.
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2.2 Review of Relevant Schools of Thought

This section gives an overview of schools of thought relevant to studying In-
digenous Irrigation Systems. These are focused on approaches for studying
complex systems and networks as this is the chosen modelling method given
the outcome of the literature review. These are high level frameworks which
offer general models of how systems of many interacting components may be-
have. and are relevant to a systems based approach which can be applied to
Indigenous Irrigation Systems.

2.2.1 Complex Systems

The field of complex systems tends to be an ill-defined concept, most likely due
to the generality of the subject. A complex system may be defined as a system
with many degrees of freedom or many interacting components, which interact
in a non-linear fashion. The three body problem in the physical sciences is a
starting point of when a system becomes complex as there is no closed form
solution as there is for two bodies (Šuvakov and Dmitrašinović, 2013). Instead
methods to solve the three body problem under particular conditions tend to
involve numerical simulations with certain parameters (Li et al., 2017). The
three body problem in itself is a large topic of study which this thesis will not
delve into. However, it does serve as an example of how complex, chaotic sys-
tems can arise from the simplest of systems. In reality, most complex systems
have many more interacting bodies than three, but a lot of the same theoretic
and analytical frameworks are still applicable.

Bar-Yam (1998) states the field of Complex Systems seeks to increase our ability
to understand the universality that arises when systems are highly complex and
defines a complex system as one which consists of interconnected or interwoven
parts. To put this into context, a simple or complicated system is one in which
the whole is the sum of the parts; they act in a linear fashion. Therefore, to
describe the system behaviour, each part can be summed together. In a complex
system, not only do the parts need to be understood, but their interaction with
one another too due to the inherent non-linearity present. A complex system
therefore requires a holistic systems-based approach.

Most if not all natural systems are complex, but many assumptions are made
such as linearising the interactions of the components in order to simplify them.
This is usually valid for explaining the behaviour of systems within given con-
straints but not applicable when the system is close to a regime shift such as a
pendulum swinging out of control or a social-ecological system nearing collapse
(Scheffer et al., 2001).

When defining a complex system, the following components should be con-
sidered: (Bar-Yam, 1998):
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Space The structure and spatial extent of the system. The structure may
relate to its formation, its boundaries and how it interacts with other systems.

Time The length of time that dynamical processes take in the system. The
ways in which the complex system changes in response to changes in their en-
vironment.

Organisation is present across all disciplines and a key concept/observation
in any scientific endeavour. Two theoretical extreme fixed points can be thought
of when thinking in terms of organisation. A self-organised system is a system
which organises without any intervention. A planned system is one that is
organised completely through external or centralised control. Neither of these
pure forms exist in nature but any system lies on a spectrum between the two.
Another spectrum involves top-down and bottom-up organisation, the degree to
which bottom-up and top-down processes control the organisation of the system.

Complexity To what degree is the system complex. There are many defini-
tions of complexity; one common definition is the amount of information needed
in order to describe the system (Bar-Yam, 1998). Therefore more random sys-
tems will have a higher complexity, s these require more information to describe
whereas a more ordered systems which can be described more easily will have a
lower complexity. The fractal dimension can be used to measure complexity as
it gives a precise metric for complexity and irregularity of a given object (Corbit
and Garbary, 1995).

These general characteristics are important properties to take into account when
studying complex systems, but they are very general, and need to be built upon
when studying a particular complex system, for instance when looking at a par-
ticular social-ecological system, the different variables in the systems need to be
accounted for and the time-scales over which they operate.

Relevance to IIS Indigenous Irrigation Systems consist of many interacting
farmers which construct and manage a physical network through time and space.
How IIS systems organise is difficult to measure and the source of great debate
in the research community (Lansing et al., 2009; Wittfogel, 1957). IIS are
thought to have different organisation, including centrally planned (Wittfogel,
1957), community managed (Lansing et al., 2009) or based on individual decision
making (Geertz, 1972). The complexity of IIS can be difficult to measure as
managerial arrangements are difficult to quantify. The physical IIS network
may be easier to measure and the fractal dimension being one such way of
measuring this.
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2.2.2 Scaling in Complex Systems

Many complex systems are scalable, they exhibit common (fractal) properties
at a range of scales (Mandelbrot, 1983). A system which exhibits scaling, can
be divided up into levels, with each level being a different scale. Levels are often
thought of in terms of hierarchy for instance in a company or even academic
organisation. However, they may also be thought of in terms of a “container
view” such as minutes are a finer level to hours, but form part of hours and also
an “emergent view” whereby processes arise at a higher level through interac-
tions taking place at a lower level (Wilensky and Resnick, 1999).

Scaling has been found to change for different systems (Bettencourt et al., 2007),
but also dependent on the way it is measured (Bettencourt et al., 2007; Barabási
and Albert, 1999).

Living biological systems have been found to follow universal scaling laws, re-
ferred to as allometric scaling (West et al., 1997). An explanation for this scaling
is proposed to be due to the transport of materials through space-filling fractal
networks of branching tubes (West et al., 1997). In the model, these tubes are
area-preserving, the cross-sectional area of a parent branch is equal to the sum
of the daughter branches, which gives rise to scaling exponents (β) for different
biological variables as shown in in the following equation:

y = kXβ (2.1)

where Y is a biological variable dependent on body mass X and k is a constant,
and β is the scaling exponent.

Based on the model, predictions of many biological variables including metabolism,
capillary radius and capillary density are almost identical to empirical data
(West et al., 1997). The scaling exponents (β) have been found to scale at quar-
ter powers, which is due to the area preserving nature of the model and are all
β<1 (West et al., 1997).

The equation has been extended to study resource scaling in a city of a given
size through time (Bettencourt et al., 2007):

Y (t) = Y0N(t)β (2.2)

where,

Y can be a material resource such as energy or infrastructure or a measure
of social activity such as wealth or pollution at time (t), Y0 is a normalisation
constant, N(t) is the population at time t and scaling exponent β reflects the
general dynamic rules across the system. The addition of time into the equation
is of importance as many systems will change as they grow. This is true for both
cities and biological systems.
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Empirical data of cities found that infrastructure (such as petrol stations) scales
with an exponent β<1, but sociological data (such as wealth or patents) scales
with an exponent β>1 (Bettencourt et al., 2007). When plotted through time,
variables with β<1 will have sub-linear growth reaching a carrying capacity (as
is the case for biological systems) and variables with β>1 will have super-linear
growth leading to accelerating growth. This seems to be due to spatial con-
straints acting on biological and infrastructure systems.

Figure 2.3 shows equation 2.1 plotted with k=1 and 0.1<β<1, showing sub-
linear to linear growth (at β=1). Figure 2.4 shows equation 2.1 plotted with
k=1 and 1.0<β<2.0, showing increasing super-linear growth.
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Figure 2.3: Plot of equation 2.1 with k=1, and 0.1<β<1.0 (blue to red).
Top:Plot on regular graph. Bottom: Plot on log-log graph.

25



Figure 2.4: Plot of equation 2.1 with k=1, and 1.0<β<2.0 (blue to red).
Top:Plot on regular graph. Bottom: Plot on log-log graph.
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Similar research has been conducted on abstract tree branching processes, more
detail is given in Section 2.4.3. Tree networks which are spatially constrained
(river systems or plants) are limited to ‘critical’ behaviour, whereas non-spatial
mean-field tree networks (such as the internet) can behave super-critically (see
Section 2.4.3 for definition). A different way of measuring the exponent is used
in networks using the probability distribution of nodes downstream (Caldarelli
et al., 2000; Jun and Hübler, 2005; Barabási and Albert, 1999).

IIS form a network of channels which distribute water. The research cited
in this section studied biological systems and cities, finding scaling laws apply
to both but with different exponents. There are many commonalities with the
transport systems which exist in both biological and urban system and Indige-
nous Irrigation Systems. IIS in some respects can be viewed as a gap between
purely biological systems and social-economic systems, and the scaling of these
systems might be reflect this.

2.2.3 Complex Adaptive Systems (CAS)

CAS are a subset of Complex Systems, more generally synonymous with the life
sciences (Gell-Mann, 1995; Holland, 1992; Lansing, 2003). In CAS the patterns
at a higher level emerge from the interaction and selection at a lower level (Levin,
1998), a ‘Bottom Up’ process. They are adaptive, implying that the system can
survive changing conditions. They are said to share three characteristics: evo-
lution, aggregate behaviour and anticipation (Holland, 1992) suggesting a CAS
grows memory or wisdom over time. The term has been applied to Indigenous
Irrigation Systems in the past (Lansing, 2003) as their dynamics seem to re-
semble other more fundamental CAS such as the Daisyworld model (Lovelock
and Margulis, 1974; Lansing et al., 1998). Given there are many factors which
influence the evolution IIS, which may fluctuate over time, for the the IIS to
persist, it needs to adapt to these perturbations. Adaptive behaviour should
therefore be considered when studying, constructing models and analysing IIS.

2.2.4 Resilience and Stability

Defined by Holling (1973) as ‘determining the persistence of relationships within
a system and is a measure of the ability of these systems to absorb changes of
state variables, driving variables, and parameters, and still persist’. The re-
silience view of the world contrasts that of a stable one. A stable view empha-
sises equilibrium and the maintenance of the predictable whereas a resilience
perspective is concerned with domains of attraction and the need for persis-
tence. Definitions of resilience and stability tend to be similar (McCann, 2000),
it is often the trend of a particular discipline which leads to one becoming more
favourable. Resilience is often used more in the context of ecology (Dakos et al.,
2015), whereas stability is more frequently used in mathematical analysis (Stro-
gatz, 2015).
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Other terms which are generally synonymous with resilience and stability are
robustness-fragility and vulnerability. Robustness is commonly defined as ‘the
maintenance of some desired system characteristics despite fluctuations in be-
haviour of its component parts or its environment’ (Carlson and Doyle, 2002).
Robustness-fragility is often concerned with the trade-offs between increasing
the robustness of a system for a set of problems whilst this will increase the
fragility to others. In engineering, a robust system will typically perform as
efficiently with respect to a chosen set of criteria than its non-robust counter-
part, however its performance will not drop off as rapidly when confronted with
perturbations (Anderies and Janssen, 2011).

Vulnerability is often described as the degree to which a system is susceptible
to, or unable to cope with, adverse effects such as of climate change, including
climate variability and extremes to moderate damages, to take advantage of
opportunities, or to cope with the consequences (IPCC, 2001).

Differences between robustness and resilience are the extent to which (non-
structural) changes in dynamics may be introduced into a system under the
impact of perturbations (Young et al., 2006) although other authors do not
make a definite difference between them (Fleischman et al., 2010). Vulnera-
bility refers to situations in which neither robustness nor resilience enables a
system to survive without structural changes, in such cases either the system
does adapt structurally or it is driven to extinction (Young et al., 2006).

Resilience and stability are important topics for studying IIS as they often per-
sist for long periods of time and must withstand changing conditions in order
to persist. Complex adaptive systems must have resilience. The resilience can
be thought of as the pathways which the CAS can move between in order to
persist.

Measures of Stability

Stability (and resilience) is often measured both quantitatively and qualitatively
in the form of fixed point analysis (Strogatz, 2015; Scheffer et al., 2012). This is
particularly useful when applied to non-linear problems with many interacting
components, like most real world systems. Fixed points can either be unstable or
stable and represent maxima or minima on a landscape which describes a system.
This landscape could be one-dimensional or multi-dimensional depending on the
variables in the model. A stable minima fixed point represents an attractor or
sink which the system may move towards, like a boulder rolling down a valley
side to the base. When the system is at this stable fixed point it is resilient to
forces acting on it, as would a boulder at the base of a valley. The system could
be perturbed, or the environment could change; the boulder might be pushed by
a human, or erosion overtime might create favourable conditions for the boulder
to move again, changing the fixed point into an unstable one. Unstable fixed
points represent maxima, or peaks. This might be at the crest of a hill where
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rock outcrop is protruding with a large tension crack at its rear and just about
to fail and move to a more stable position. Of course, rock outcrop at the crest
of a hill might also be stable, so a rock at the crest of a hill will not necessarily
be at an unstable fixed point.

2.2.5 Adaptive Cycles

Related to Complex Adaptive Systems and Resilience is the theoretical frame-
work of Panarchy and Adaptive Cycles (Holling, 2001). Panarchy describes a
concept that explains the evolving nature of complex adaptive systems. It in-
volves hierarchies of human systems and natural systems interwoven together.
They interact causing continuous adaptive cycles of growth or exploitation (r),
conservation (κ), collapse or release (Ω) and reorganisation (α), Figure 2.5.
These cycles exist within each scale over time and space. For example, in so-
cieties this could be cycles between the following institutions - small groups or
individual decisions, policies and contracts, law, constitution and culture.

Figure 2.5 shows the adaptive cycle. The potential can be thought of as the
wealth of the system, it determines the range of future options possible; in-
creased potential gives the system greater ability to change. Connectivity can
also be thought of as controllability, increased connectivity decreases the degree
to which the system can control its own destiny. Resilience is related to the
amount of adaptive capacity the system has. This plot is conceptual and the-
oretical although many of the features of it have been found in studies of real
world systems. The growth phrase follows a sigmoidal curve from exploitation
to conservation and is common across all biological systems (Bettencourt et al.,
2007). Gardner and Ashby (1970) found that large complex systems will be-
come unstable at a certain level of connectedness which is shown in the collapse
stage between conservation and release. This is also touched upon in work on
how systems of different size share the commonality of becoming rigid or locked
into certain patterns over time making it more difficult for them to respond
to changing scenarios and lead to their collapse (Scheffer and Westley, 2007).
Multiple studies of lake systems show how they reorganisation (regime shift or
critical transitions), this is the stage between release and reorganisation of the
adaptive cycle (Wang et al., 2012; Scheffer et al., 2001, 2012). This reorganisa-
tion often follows increased human interaction with the system (Scheffer et al.,
2001), which can be viewed as increased connectedness.

The Adaptive Cycle is also moving through time, so although it appears like a
continuous infinity loop, it is not. In Figure 2.5 this is shown by a disconnect
between the reorganisation and exploitation parts of the cycle.
As an IIS evolves over time, and is exposed to internal and external pertur-
bations, it will go through adaptive cycles to gain resilience against changing
conditions. It would be very difficult to measure adaptive cycles, and it is a
theoretical framework so may not exist entirely in reality. A scenario might be
that a IIS grows to the carrying capacity of the water supply in its environment,
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Figure 2.5: Conceptual drawing of the Adaptive Cycle in Panarchy taken from
(Holling, 2001). α, κ, r and Ω represent the four ecosystem functions.

and then is hit by a large drought leading to the system collapsing and reor-
ganising in an adaptive cycle. The managerial arrangements may alter based
on this collapse in a form of adaptation.

2.2.6 Social-Ecological Systems

An Indigenous Irrigation System (IIS) is defined as a subset of the broader topic
of Social-Ecological Systems (SES). SES are two distinct but coupled systems,
humans and the environment (Levin et al., 2012). The study of SES is impor-
tant for the persistence of complex ecosystems and societies on earth (Rockström
et al., 2009). This is currently a pressing issue given scientific consensus that we
are now in a new geological epoch - The Anthropocene; defined as the period in
which human activities rival global geophysical processes (Steffen et al., 2011).
In response to this, the ‘Planetary Boundaries’ framework defines a safe oper-
ating space for humanity to regulate the stability of social-ecological systems
(Steffen et al., 2015; Dearing et al., 2014).

The behaviour of social and ecological systems are fundamentally different. Scal-
ing relationships of biological systems have been found to follow quarter-power
scaling with a scaling exponent less than 1 leading to sub-linear growth (West
et al., 1997). Social (urban) system properties such as wealth and knowledge are
found to increase at much quicker rates with scaling exponents above 1 (Bet-
tencourt et al., 2007), leading to super-linear growth. This super-linear growth
often leads to boom-collapse relationships (Bettencourt et al., 2007). The scal-
ing exponent emphasises the differences between social and ecological systems.
Enforcement of the planetary boundaries contains the ever increasing wealth
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and knowledge to the social system, limiting negative effects on the ecological
systems.

IIS are social-ecological systems but are not urban. It is therefore expected
that their scaling exponent will be less than 1, meaning they are an example of
a systems that reaches a long term population limit, which might be why they
are able to persist for thousands of years.

2.2.7 Complexity and Stability

Whether increasing diversity leads to increased stability is an open question in
ecology and complexity science (McCann, 2000). Complexity tends to be syn-
onymous with diversity, for instance a more diverse ecosystem requires more
information to describe it which is the definition of complexity in Section 2.2.1.

Early empirical work found that more diverse ecosystems were more stable
(MacArthur, 1955). However theoretical mathematical work found that larger
increasingly interconnected systems were more likely to be unstable (May, 1972).
But this result is based on several interacting with one another, with each species
having a probability of being unstable. As connectedness and interaction in-
creases the system is more likely to become unstable. This is generally saying
that as a system of connected species interacts, if this interaction has high
strength and high connectedness, then if only a small proportion of the system
is unstable, this will lead to the whole system becoming unstable. Although
this simple model is elegant and clear with its conclusions, it does not represent
what has been observed in the empirical data. It is possible that this model
does not represent all the interactions and adaptabilities which are inherent in
living systems. For instance, if one species is unstable, instead of this instability
cascading through the entire ecosystem, perhaps it leads to a loss of connections
as other species adapt in order to persist. This is similar to more recent work
showing that CAS often re-organise in order to persist (Scheffer et al., 2001).
So, the model lacks the presence of evolutionary principles which if added may
show that the system will fluctuate between stability and instability as it evolves
and adapts. This school of thought has also been applied to real world human
systems such as the financial industry to explain that the reasons for financial
crisis are due to highly interconnected high strength interactions (May et al.,
2008).

Following on from this, May (1972) also states that the organisation of the
system is of importance for increasing stability. That is, if a system is arranged
into blocks (is modulated) then the probability of stability is increased.

Generally, recent research suggests that increases in diversity, on average, gives
rise to ecosystem stability (McCann, 2000). Diversity for the sake of diversity
does not seem to increase stability (May, 1972). Instead it seems that a system
which can maintain novel redundancies which are in turn capable of differen-

31



tial response dependent on changing conditions increases stability. This is of
course related to Resilience. A system with increased Resilience will also have
increased stability. This also relates to the Adaptive Cycle, which shows chang-
ing stability with connectedness and potential.

Therefore, would more complex IIS have increased resilience and stability?

2.2.8 Self-Organisation and Criticality

Self-Organisation is a key concept in complex systems science. It was originally
developed in physics and chemistry stating that systems consisting of many
interacting components at a lower level will interact in such a way that they or-
ganise to produce emergent behaviour at a higher macroscopic level (Bonabeau
et al., 1999). It has a much wider application though across the life sciences
and humanities. Models of Self-Organisation often show that the interaction of
simple agents can explain complex collective behaviour (Bonabeau et al., 1999).
Well studied examples of self-organisation in biology are bees, termites and ants
(Bonabeau et al., 1999). The study of Self-Organisation has extended to artifi-
cial systems, for both the study of natural systems, but also in the development
of engineered robotic systems (Bonabeau et al., 1999). This self-organising be-
haviour is capable of solving collective problems which might underlie why it
evolved in nature (Nowak et al., 2010). Self-Organisation relies on four basic
system properties: Positive Feedbacks, Negative Feedbacks, Amplification of
Fluctuations and multiple interactions (Bonabeau et al., 1999).

The related theory of Self-Organised Criticality (SOC) states that large sys-
tems of many components organise to a poised critical state which is out of
equilibrium (Bak et al., 1987). When in this state, minor disturbances may lead
to events of all sizes termed avalanches. According to the theory these events
will follow an inverse power law of few large events and many smaller events.
The Sandpile model is the first and one of the simplest examples of self-organised
criticality (Bak et al., 1987). It consists of sand being dropped continually to
the same point. Over time a pile of sand is formed and once the sides reach
the friction angle of sand it is said to be at a critical state. This sounds like a
very simple example, but self-organised criticality has been observed in many
systems (Bak and Paczuski, 1995) such as Earthquakes, Computer models such
as the Game of Life computer model (Bak et al., 1989), Economies, Cities and
river systems (Van De Wiel and Coulthard, 2010).

Self-Organisation and Criticality can be related to the exploitation and con-
servation stages of Adaptive Cycles (Section 2.2.5). Figure 2.5 shows a system
growing to this criticality state (The Conservation Stage). Many fields of sci-
ence are devoted to predicting or understanding when a large event might occur
when in the Conservation Stage, as it could have large consequences for the
system and for those connected to it. For example the study of lakes has found
early warning signs at the point when the lake is about to change regime and
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collapse (Scheffer et al., 2001).

Self-organisation has been studied in IIS previously (Lansing et al., 2017), find-
ing power law relationships in spatial patterns in the Subak System result from
feedback between the local ecology and farmer decisions in a self-organising
process. The power law is a signature of self-organised criticality which results
from local agent adaptations driving the system to a global optima. This is
unlike the sandpile model which is exogenously driven (Lansing et al., 2017).
If IIS evolve in reasonably isolated conditions, then they are likely to exhibit
many characteristics of a self-organising system, but in reality many do not,
the Qanat system found across the middle east is a technology which has been
introduced to arid areas as a solution to the water supply problem. However
each Qanat system tends to be isolated allowing for self-organising processes to
occur. The long standing debate of self-organisation and planned processes in
IIS (Lansing et al., 2009; Wittfogel, 1957) can be studied by observing signa-
tures of self-organisation in IIS such as power law scaling.

These self-organising systems all require energy so can be thought of as open
systems which are driven out of equilibrium forming dissipative structures (Pri-
gogine and Nicolis, 1985). The energy in the system allows them to produce
ordered structures or patterns having the effect of negative entropy.

2.2.9 Common Pool Resources and Public Goods

Indigenous Irrigation Systems involve the distribution of a resource amongst
many farmers or agents. This can be viewed as a common pool resource (CPR)
problem.

In general CPR describes the allocation of pooled resources within a popu-
lation and is most often studied in the humanities such as in social science and
economics. It is not often referred to in the life sciences, but it can also be
readily applied to natural systems. For example, a common resource has to be
allocated to different parts of a plant to enable it to function properly in a stable
manner.

A public good is one which all enjoy in common in the sense that each in-
dividual’s consumption of such a good leads to no subtractions from any other
individual’s consumption of that good (Samuelson, 1954). The key issue of Com-
mon Pool Resources and Public Goods is whether individuals can suppress their
self interest for an end result in which all individuals benefit to a greater degree
than if acting independently (Levin, 2014). Evolutionary thinking can aid in
helping societies address some of its greatest issues such as system sustainability
as many common pool problems have been solved previously in biological and
small-social systems (Levin, 2014).

Following on from this, the famous essay ‘The Tragedy of the Commons’ Hardin
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(1968) discusses the problem of overpopulation of humans and the effect of it
on our CPR, the planet. The essay states that in order for humans to overcome
the problem of overpopulation they need to abandon their freedom to breed and
this should be enacted with mutual coercion, mutually agreed upon by the peo-
ple affected. Many small-scale societies overcome the Tragedy of the Commons
through the establishment of norms. Ostrom (1990) famously defined a number
of common rules between societies that avoid the Tragedy of the Commons.

‘The Tragedy of the anti-Commons’ has been proposed as an opposite effect
of the Tragedy of the Commons (Heller et al., 1998). In this scenario, over
protection by individual players leads to the resource not being used at all.

Brede and Boschetti (2009) defines a spectrum between tragedy of the commons
and tragedy of the anti-commons. Brede and Boschetti (2009) then explore this
in a game-theoretic framework and an evolutionary simulation. The simulation
found two stable fixed points, one being the tragedy of the commons, the other
being the anti-tragedy of the commons. In-between the two are locally sta-
ble fixed points where a few individuals initiate obstructive policies which stop
overuse of the resource. These fixed points are however fragile to perturbations
such as a population increase.

Previous research has already found that IISs solve the Common Pool Resource
problem in different ways. The Moroccan irrigation systems rely on individual
private property rights whereas the Subak system relies on community owner-
ship (Geertz, 1980). The reason for this difference might be due to the amount
of water supplied into the system.

2.2.10 Social Norms

IISs solve CPR problems through different cultural practises (individual prop-
erty rights/community based farming practises) (Geertz, 1980). The cultural
practise is a high level process, at a lower level this interaction between individ-
uals takes the form of social norms, such as with adaptive cycles.

Social norms can be viewed as the ‘memes’ which are associated with a cer-
tain cultural practise. They are representative or typical patterns and rules of
behaviour in a human group (Ehrlich and Levin, 2005). Norms are of great
interest in social science, environmental science and policy research due to the
effect that human behaviour has on both social systems and ecological systems.
Government policy can aid in changing human behaviour to avoid less desirable
social and ecological states (Kinzig et al., 2013). However such analysis and
subsequent policies may have detrimental affect on individual freedom.

In order to model such behaviour, simple cellular automata can be used to ab-
stractly model the development of social norms (Schelling, 1971; Hartnett et al.,
2016; Ehrlich and Levin, 2005). Figure 2.6 shows the basic idea of modelling
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Figure 2.6: Basis of modelling thresholds using cellular automata. The agent in
the red square will change state based on its local (Moore neighbourhood).

norm changes in social systems. An agent with a low threshold is one which
will change their state with even a low number of neighbours with a different
state. A high threshold is an agent which will not change their state even if all
their neighbours have an alternative state. This example looks at the changing
of norms based on the opinions of neighbouring cells. But a similar method can
be used to look at models of segregation in humans (Schelling, 1971). This is a
related method to that used in game theory simulations (Axelrod and Hamilton,
1981; Nowak and May, 1992a).

As culture is one of the interwoven factors which leads to the emerging properties
of an IIS, the cultural practises should be studied. In addition, if the system is
to be modelled through the interaction of agent farmers, the social norms have
to be known and compared to the model for validation purposes.
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2.3 Methods for modelling Complex Systems

The previous section provided a review of relevant high level theories which
are useful frameworks for studying dynamic systems of many interacting com-
ponents (complex systems) such as IIS. The following sub-sections firstly give
an overview of different approaches to modelling complex systems and then
more detail on models and applications which are more relevant to the research
questions of this thesis.

2.3.1 Modelling and its limitations

The paper ‘Why Model?’ focuses on some of the largest misconceptions about
modelling (Epstein, 2008). Prediction and validation are often thought to be
key attributes of a robust model. Whilst prediction is often thought of as the
foremost reason to model, Epstein (2008) gives many more reasons to model
other than to predict. These include:

• Explaining;

• Guide Data Collection;

• Illuminate Core Dynamics;

• Suggest Dynamical Analogies;

• Discover New Questions;

• Illuminate Core Uncertainties;

• Challenge the Robustness of Prevailing Theory Through Perturbations;

• Offer Crisis Options In Near-Real Time;

• Train Practitioners;

• Education;

• Reveal the Simple to be Complex and Visa-Versa.

Models are used in both qualitative and quantitative social science. In qualita-
tive social science, modelling is implicit - it is undertaken via thought experi-
ments. In quantitative social science, it is explicit, assumptions are laid out in
detail so we can study what they entail (Epstein, 2008).

Modelling can be very useful for studying IIS. Many IIS of interest have persisted
for long periods of time, and often without considerable outside intervention.
Studying them in the modern globalised, interconnected world is very difficult
given many more factors influence their behaviour. It is also very difficult to
deduce the factors leading to their current form. Computer models offer a tool
in which the factors of influence can be controlled.
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2.3.2 Mathematical Origin

The origin of the modern field of modelling complex systems can be traced back
to the work of Henri Poincare (Chenciner, 2012). The three body problem stands
as one of his most important fundamental contributions to the field which finds
that for a system consisting of three bodies or more, there is no general closed
form analytical solution to find the positions and velocities at any point in time
without using numerical or simulation based methods. This forms the basis of
chaos theory, in which chaos is defined as deterministic, sensitive to initial con-
ditions and unpredictable. The need to model or simulate complex systems can
be seen to come from this problem of not being able to find closed form solutions.

The three body problem is particularly important for this research as many
of the qualitative ways of analysing dynamic systems originate from studies
on three body systems (Strogatz, 2015). As scholars realised that there was
no closed form solution for the interaction of three or more bodies, a shift in
analysing such systems occurred from trying to find the exact positions of each
of the bodies in time, to asking more general questions about the system such
as “Will the system be stable forever?” (Strogatz, 2015). This expanded into
dynamic systems theory which can be in turn applied to many more much com-
plex systems. Seminal applications of stability analysis of many body systems
include the work on dissipative hydrodynamic flow (Lorenz, 1963) and more
recently of ecological systems (Scheffer et al., 2012).

There are many ways to model complex systems, and in particular social-
ecological systems (Verburg et al., 2015). This section outlines general tools
used to model complex systems. All the modelling methods discussed below
can be thought of as numerical models. Their differences lie in the different
applications of mathematics and whether they rely on data or not. Models may
be theoretical (which tend to be more general) or applied, when attempting to
model a specific system.

Modelling techniques include:

• Equation based models;

• Deterministic process-based biophysical models;

• Cellular Automata Models;

• Simple Toy social-ecological models;

• Network Models;

• System Dynamic Models.
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2.3.3 Equation based Models

Equation based models in life science do not have as strong a foundation as in
physical science and engineering (May, 2004). May (2004) and May (1976) pro-
vide overviews of some efforts to build simplified equation based models which
can capture observed patterns and processes seen in reality without being lost
in the detail. Many of the most powerful and also most fundamental models in
biology are the simplest and also the most general in that they can be applied
universally. These simple models offer building blocks and clarity on which to
build theory and applications for the real world.

Examples of equation based models used in the life sciences include:

2.3.4 Lotka-Volterra Equations

The work of Lotka and Volterra was one of the first examples of equation based
models applied to the life sciences. This explored, in the form of two cou-
pled non-linear, first order differential equations how two species interact in a
predator-prey model. A variation of the equations can be summarised as:

dx

dt
= ax− βxy (2.3)

dy

dt
= δxy − γy (2.4)

where x and y are the two populations and a, β, δ and γ are constants. Sayama
(2015) provides a clear summary on how such equations can be derived using
simple mathematical functions.

These equations have since been extended to look at more complex ecosys-
tem dynamics with many more agents and interactions (Gilpin and Ayala,
1973). The coupling has also been applied to social-ecological systems using
the HANDY model (Motesharrei et al., 2014) and even the coupling between
two societies (Roman et al., 2017).

2.3.5 Interaction Matrices

For modelling ecosystems consisting of a large number of components interac-
tion matrices are often used (May, 1972). They can therefore be thought of
as an agent based modelling platform. These have been useful in studying the
stability of complex systems in relation to size and connectivity (May, 1972;
Allesina and Tang, 2011), an area of interesting study in both ecology and eco-
nomics (May et al., 2008). May (1972) and initially Gardner and Ashby (1970)
find that large (n >>1) connected systems are inherently unstable. This has
similarities to later work on how a virus spreads across a network in that the
probability of becoming unstable can be thought of as similar to the probabil-
ity of an infection spreading across the network (May, 2004). The notion of
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increased instability with increased connectivity was later explored and theo-
rised qualitatively in Panarchy theory and adaptive cycles (Holling, 2001). More
recent studies within the theoretical field have looked at combining models of
ecosystems with a large number of components with models of homoeostasis
to understand how regulation might emerge in such large systems (Dyke and
Weaver, 2013). They can then be analysed with linear stability analysis to pro-
vide information about when a particular system is stable or unstable (May,
1972).

As IIS contain many interacting agent farmers, interaction matrices could be
useful for modelling. There is a lot of flexibility when using interaction matrices
as multiple matrices can be used for many variables in the system and many
coding languages are optimised for computing in matrices. There are no known
examples of interaction matrices being applied to modelling IIS.

2.3.6 Spatial Models

Most systems in the real world tend to interact spatially. Systems which are
spatially constrained (river systems, ecological systems, transport networks)
can be categorised separately to systems where non-spatial processes are more
dominant (the world wide web, neural networks, numerical modelling). A non-
spatially constrained system being one where information is transferred at such
a high rate that the spatial configuration is not necessarily important. Models
of the internet contain structural information about the network but this is not
often spatially constrained as it is not an important factor (Caldarelli et al.,
2000). Whereas, in a spatially constrained system, the information transfer is
much slower (relative to the system size) so the spatial structure is more impor-
tant - local interactions are important in such a system. Simulation models such
as cellular automata and agent based models also allow for spatial interaction
of the system to be explicitly added, which tends to not be as easy in equation
based models. Examples of spatial models include earth surface dynamics such
as sand dune processes (Nield and Baas, 2008), river flood models (Coulthard
et al., 2013) and coupled ocean-atmosphere simulation models which have been
developed mainly for simulating climate change (Jungclaus et al., 2006).

All factors influencing the evolution of an IIS are interwoven and spatially con-
strained; geology, geomorphology, climate, ecology and culture. The physical
network of the IIS will also be constrained spatially, as it will most likely be
built on a downhill slope and a space-optimising manner to make best use of
space and resources.

2.3.7 Cellular Automata

Cellular Automata (CA) are one of the simplest frameworks in which issues re-
lated to complex systems, dynamics and computation can be studied (Mitchell
et al., 1993). At its most basic level, a CA consists of a spatial lattice of cells,
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each of which, at time t, can be in one of k states. The CA has a fixed rule
which is used to update each cell based on its nearest neighbours (Mitchell et al.,
1993). They can be used to explore abstract phenomena such as 1-dimensional
CA (Wolfram, 1984) which can be used to look at simplistic but fundamental
mathematical and computational spatial problems. Wolfram (1984) updated
the CA row by row through time from a rule set which relates to the nearest
cells in the previous time step. By mapping this 1-dimensional CA through time
and producing a 2-dimensional pattern, many interesting complex phenomena
emerge. These have been systematically numbered as different rule sets from
0 to 255 and classified into four main classes - convergence towards a uniform
state, convergence towards a repetitive or stable state, appear to remain in a
random state and CAs which form areas of repetitive or stable states but also
form structures that interact each other. Classes three and four tend to be most
interesting where chaotic, fractal and aperiodic behaviour can be observed. Not
only are these simulations interesting from a abstract mathematical point of
view, they are also visible in nature. For example the shell of the Mollusc
Conus Textile appears to resemble the pattern produced by Rule Set 30 (Wol-
fram, 1984).

CAs can also be studied in 2-dimensions. Conway’s Game of Life is the classic
example of this (Adamatzky, 2010). On the surface, the Game of life appears
simple, but even though it was first implements in the 1960s, it is still being
actively researched and explored to this day (Beer, 2018). A recent applied
example of 2D CA models has been used to shed light on the patterns found on
skin scales in lizards (Manukyan et al., 2017). The study goes further by linking
a continuous reaction-diffusion equation to the emergence of discrete values in
a cellular automata leading to the pattern formed on the skin scales. This also
poses an interesting overlap between a fundamental simplistic computer model
of a cellular automata which has finite states and no movement processes to
most natural systems which commonly involve movement through the system
leading to a change in the finite state.

The application of these 2D Cellular Automata (which may involve movement
processes) is almost infinite with examples including physical geographic pro-
cesses such as river basin development and flood dynamics (Coulthard et al.,
2002), fundamental evolutionary biological processes in spatial games (Nowak
and May, 1992a), human geographic processes such as urban development (Clarke
and Gaydos, 1998; Benenson and Itzhak, 2012) and plant development processes
such as the canalization-based vein formation in a growing leaf (Lee et al., 2014).

2.3.8 Revisited examples of Cellular Automata

Simple simulations can be undertaken to explore the evolution of different be-
haviours from initial conditions based on the above method. From an initial
random configuration figure 2.7 different thresholds can be tested. If all agents
are treated as homogeneous, a low threshold for all agents (from figure 2.6)
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Figure 2.7: Initial configuration for a social norms simulation with two states -
black or white.

after many iterations leads to a constantly dynamic random simulation, ie the
same as the initial configuration figure 2.7. However, if all agents have a high
threshold, the simulation remains static, and the same as the initial configura-
tion, figure 2.7. Interesting dynamics occur at a moderate threshold, figure 2.8.
At this point an agent will change their state with a probability of a half if
half of their neighbours have a different state to them. A video of this sim-
ulation can be found at https://youtu.be/HokoPnIPvas. Figure 2.9 shows
the dynamics of the system after 500 time steps. This has a lot of similari-
ties to self-organising behaviour in other chemical and biological systems, which
is usually termed morphogenesis (Turing, 1952). Another well known exam-
ple is stripes on a zebra. Following the same method, but instead using a
Von Neumann neighbourhood for the cellular automata, stripes form rapidly
https://youtu.be/jrBRsrAAgSk.

Recent examples of more complex pattern formation processes using a cellu-
lar automata framework include implementations of the Grey-Scott equations
(which is a simple reaction-diffusion model) (Gray and Scott, 1985; Bartlett and
Bullock, 2015; Adamatzky, 2018) and the Navier-Stokes equations (the flow of
incompressible fluids) (Wolf-Gladrow, 2000).

The evolution of an IIS forms a pattern which can be modelled using a cellular
automata. Different rules of formation can be tested and the pattern formed by
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Figure 2.8: Moderate threshold scenario - Agents will switch behaviour to that
of the majority of their neighbours. At the point where they have an equal
number neighbours in opposition camps, their choice will depend on a coin toss.

Figure 2.9: Final configuration after 100 time steps for a social norms simulation
with two states - black or white.
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real-life systems can be compared back to the model.

2.3.9 Agent Based Models

Agent Based Models (ABMs) can be viewed as an extension or type of Cellular
Automata in that each agent is an entity which is updated based on its own rule
set and other agents in their neighbourhood. The agents in ABMs are usually
allowed to move in the model and the update of each cell may not be dependent
on their immediate neighbours (Batty, 2007). Due to this rule based often adap-
tive nature, ABMs are usually applied more readily to models in biological and
social systems. Examples of which include models of Jaguar habitats (Watkins
et al., 2014) and social norms on payment for ecosystem services (Chen et al.,
2012).

The use of computer models to generate Artificial Societies has been researched
for many years. The origins of can be traced back to abstract models of local
interaction in cellular automata for the purpose of researching self-reproducing
machines by John Von Neumann in 1950 (Langton, 1984), one of the first at-
tempts at simulating artificial life. This was not a model of a society though, the
first artificial society model used a cellular automata framework to understand
how segregation can emerge in societies (Schelling, 1969) and is also one of the
first examples of an agent based model. The model showed that using just a
few simple rules on local interacting agents leads to the emergence of a pattern,
a segregated society. The Boids model of flocking behaviour in birds shows how
local interactions can lead to large scale behaviour such as with flocking birds
(Reynolds, 1987). The next advancement aided partly by an increase in com-
puter power was the creation of ‘The Sugarscape’ which is explained in detail in
the book ‘Growing Artificial Societies’ (Epstein and Axtell, 1996). Agent Based
Models have since become part of the wider discipline of generative modelling
(Epstein, 2006; Adamatzky, 2018). The philosophy of this type of modelling is
discussed further in Section 2.3.17.

ABMs can be modelled in object-orientated computer coding languages such
as Python with the agents defined as an Instance of a Class. Each instance
stores a number of unique values about that particular agent, and after each
time step the agent’s state is updated based on the rules of the system and the
unique values of that particular agent, and the agents in its neighbourhood.
ABMs offer great power in exploring systems of many interacting (heteroge-
neous) agents, which would not be able to be explored in qualitative models,
thought experiments or even using equation based models. Agent based models
differ from system dynamics models in that they deal with individual agents
and not aggregate behaviour (Gilbert, 2008). In a sense higher level behaviour
emerges from the interaction between agents at a lower level - they are Bottom-
up models.

IIS have not previously been modelled using an agent based model. In ad-
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dition to the pattern forming nature of IIS which can be modelled using cellular
automata, agent based modelling can add more factors of influencing in the
resulting simulated IIS formed, such as social norm based decisions.

ABMs and cellular automata offer a more visual approach to modelling as the
simulations explicitly occur in a spatial environment which can be animated
to show how a particular outcome unfolds in the simulation, and not simply a
graph output. This makes the approach more accessible and easier to explain to
non-modellers. However agent based models tend to require a lot code whereas
equation based models can be explained using a few equations usually allowing
them to be clearer and more concise which in turn allows for easier repeatability.

2.3.10 Simulated Toy Models

These are generally conceptual models with no direct empirical input and can
be described as theoretical and exploratory. They are useful for developing the-
ories and underlying rules of complex systems that can then be applied and
tested on empirical data. Examples of such models are evolutionary selfish-
cooperative prisoners’ dilemma games (Axelrod and Dion, 1988; Nowak and
May, 1992a), Models of Segregation (Schelling, 1969), the sugarscape model of
artificial societies (Epstein and Axtell, 1996), the Daisy World model of plane-
tary homoeostasis (Watson and Lovelock, 1983), small-world networks (Watts
and Strogatz, 1998), voter decision making models (Ehrlich and Levin, 2005;
Hartnett et al., 2016), landscape evolution models (Coulthard, 2001), aeolian
processes (Nield and Baas, 2008) and flocking behaviour (Reynolds, 1987).

If a model is built to simulate general behaviour of IIS, then a toy model could
initially be a useful tool for theoretical and exploratory work. Toy models fo-
cusing on a pattern based interaction could be used to simulate the evolution of
different IIS networks without having to add many other factors which would
make modelling very difficult and drawing conclusions uncertain due to the large
amount of factors.

2.3.11 Network Theory

Network theory is a framework which seeks to model and analyse through the
use of networks. A network fundamentally consists of nodes and connecting
edges. It is a popular tool to use given its simplicity. When simulating a Com-
plex System a framework incorporating networks is often most appropriate. In
fact the use of networks has greatly aided recent discoveries in complex systems,
for example, ‘small-world’ networks appear to be ubiquitous in nature and so-
ciety (Watts and Strogatz, 1998). Many systems in nature and society, when
analysed as networks follow scale-free power law distributions, for example the
internet (Barabási and Albert, 1999).

The growth of networks theory in many different fields of study is often at-
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tributed to the general process of preferential attachment (Barabási and Albert,
1999). This has been found to be effective at producing power-law network de-
gree distributions which are common across nature (Barabási and Albert, 1999).
Both growth in a network and preferential attachment are key to the develop-
ment of power-law scaling in a network. Preferential attachment can be defined
differently depending on the system that is being modelled. In the original net-
work model (Barabási and Albert, 1999); preferential attachment is applied by
the nodes having more edges connected to them having an increased probability
that additional nodes added to the network will connect to them. It is a ‘rich
gets richer’ type model.

The notion of social and ecological networks has been present for a long time
in qualitative social science and in an abstract form of mathematics in graph
theory, however only recently has mathematics been applied to ecological and
social networks (Watts and Strogatz, 1998). The simple nature of graph theory
makes it very easily applicable, especially since it relies on reasonably simple
mathematics. For instance a network can be modelled as an interaction matrix
in which a number of properties are defined about the interaction of different
agents in the system. Initially networks were not studied spatially, although
this is becoming more common in the present day.

In terms of Complex Adaptive Systems, networks have been used in conceptual
ecological systems such as food networks, and to an extent in system dynamics
modelling. Attempts at modelling ecological systems with networks tend to be
fraught with difficulty due to the large amount of interacting factors present.
However tools such as system dynamics allow for a system’s network to be built
and visualised with little difficulty although calibrating and including the rele-
vant variables may prove difficult.

Relating back to the section on adaptive cycles (Section 2.2.5), stability and
network connections is explored in the ecological/sociological theory of Panar-
chy (Holling, 2001). This is a qualitative framework for exploring Complex
Adaptive Systems. It can be generally thought of as a network based model,
which relates to how systems expand and collapse with changes in ‘potential’
and ‘connectedness’ and to the scaling of the system, and how these cycles at dif-
ferent levels in the system interact with one another. When modelling resource
distribution systems with altering levels of connectivity, it might be possible to
see these cycles occurring within the system under study.

Power laws are commonly observed in networks such as the internet, in terms
of links between web pages (Albert et al., 1999). That is, there are a few web
pages with strong connectivity to most of the internet and many web pages with
weak connectivity. A network model which attempted to explain this found that
it required growth through preferential attachment to websites with more links
already to give similar results (Albert et al., 1999).
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There are also efforts to uncover universality in networks - the fundamental
building blocks of different types of networks (Milo et al., 2002). The Watts-
Strogatz Small-Worlds network is one such example, a network somewhere be-
tween a regular network and random network which appears to be prevalent
across different systems in nature and society (Watts and Strogatz, 1998).

Networks are very applicable for modelling IIS. Both the physical network and
the managerial arrangements can be studied as networks. There are maps and
conceptual sketches of IIS, but none have been analysed using the tools of net-
work theory.

2.3.12 Spatial Networks

Many agent based models can be viewed as being similar to spatial networks.
Of course not all agent based models have to be spatial, and not all spatial
networks have to be agents. But by focusing on a network perspective of such
models the connectivity between the agents is one of the more important aspects
of the model.

Firstly, a spatial network is defined as one with nodes and edges which are
constrained by some geometry and are usually embedded in a two or three
dimensional Euclidean space, which in turn has important effects on their topo-
logical properties and consequently on the processes which take place on them
(Barthélemy, 2011).

Just like Cellular Automata, Spatial Networks can be implemented across a wide
range of topics. Examples include transport, rivers (Kyungrock and Kumar,
2008), internet, power grids, social and neural networks (Barthélemy, 2011).
These systems are spatially constrained but do not require local interaction
such as with cellular automata.

Transport networks in cities can be analysed as networks with each trip between
locations viewed as a link (Batty et al., 1999). Spatial interaction matrices can
then be built to analyse the flow of people between areas, and probabilistic pre-
dictions of movement through the system made. These are sometimes termed as
gravitational models with each area having a certain ‘mass’ which might relate
to the average salary in that area and so will lead to a greater flow of trips to
that area.

Section 2.4 gives further examples of spatial networks, particularly tree and
planar networks which are more similar to IIS networks.

2.3.13 Spatial Network Models and Analysis

Analysis of Spatial networks (and networks in general) helps in quantifying and
characterising the structure and behaviour of the system. This might be for
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identifying keystone species in an ecosystem (Solé and Montoya, 2001), fragility
in financial systems (May et al., 2008) and analysing dynamics of networks such
as in gene regulatory networks (Karlebach and Shamir, 2008).

Since the subject has increased in popularity, there have been efforts to for-
malise the description of different types of network and the ways to analyse
them. An overview of types and analysis is given below.

Firstly networks consist of nodes (or vertices) and edges. The nodes are points
and edges are lines connecting the points. They can be classified in terms of
their direction, weighting, self loops and planarity (Newman, 2010):

• Direction applies to the edges. They can be undirected, meaning no in-
formation about flow direction, or directed meaning direction information
is contained within them. If networks are directed, then information will
flow in the direction stated, this can be uni or bi-directional. A directed
network which contains flows which loop back to the same node are called
cyclic. If these are not present then the network is described as acyclic.

• Weighting can apply to both the nodes and edges. This may act as a multi-
plier increasing the size of information being passed through certain nodes
or edges. This is particularly important for neural networks - when they
undergo training the weights are increased or decreased for the problem
in hand.

• A self loop or self edge is when a edge is connected back into the same
node. This might apply to something like regulation to a gene in gene
network.

• Planarity refers to whether a network is planar or not. A Planar network
is one which can be drawn without any edges crossing one another.

Networks can be simply modelled using an edge list. Each entry contains two
values relating to two nodes which are connected by an edge. However for mod-
elling and analysis they are not particularly useful. Instead Adjacency matrices
are more appropriate (Newman, 2010). The adjacency matrix A maps the in-
teractions between elements Aij so there is a 1 in the matrix if there is an edge
between them else 0. If multiple edges (multi-edge network) are present between
two nodes, then the Aij value in the adjacency matrix will increase. If a node
has a self loop then the value in the adjacency matrix is equal to two. This will
always be on the diagonal of the matrix.

The Adjacency matrix A of a graph is written with elements Aij as follows:

Aij =

{
1, if there is an edge between i and j .

0, otherwise.
(2.5)
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If the network is weighted or directed then this can also be represented in a
matrix. The conventions of which are widely adopted are discussed in (New-
man, 2010). An undirected network will have a symmetrical matrix, whereas a
directed network will have an asymmetrical matrix.

Types of analysis of networks include path length, degree, clustering coefficient,
community detection and largest connected component (Gosak et al., 2018).
More detail is provided below:

• A path is a continuous route across a network. The length is usually the
number of edges constituting the path. For spatial network the physical
distance is obviously of importance too.

• The degree (k) of a node is the number of edges connected to it. There
are many statistical analysis techniques related to the degree. The Mean
Degree is the average number of edges each node has in a network. The
Connectance (ρ) of an network is the fraction of the total possible edges
that are actually present in a network. This is most easily measured
for a simple network (one without multi-edges or self-edges) as there is
less ambiguity over the total number of possible edges. This will always
be in the range 0 ≤ ρ ≤ 1. If ρ tends to 0 with increased n the the
network is characterised as sparse, however if ρ tends to a constant with
increased n, then it is characterised as dense. The Degree Distribution
gives a distribution of the number of nodes in a network which have a
certain degree. Each value in the distribution is represented as jk/n where
j is the number of nodes for a certain degree (k) and n is the total nodes
in the network. It is therefore a probability that a randomly chosen node
has degree k. Two networks with the same number of nodes and edges
can have the same degree distributions even if the structure is different.
Most real world networks have a right-skewed degree distribution.

• The Clustering Coefficient measures the average probability that two neigh-
bours of a node are themselves neighbours which is essentially looking for
triangles in a network (Newman, 2010). Some networks tend to have
higher clustering coefficients than random networks of similar size and
comparable degree such as social networks where as others have lower
such as the world wide web. Clustering Coefficients can also look for
other sorts of network structure than triangles, although this is the most
common and so allows for easier comparison between networks.

• Community Detection is a more sophisticated tool which is used to search
for the naturally occurring groups in a network regardless of their number
or size, which is used primarily as a tool for discovering and understanding
the large-scale structure of networks (Newman, 2010). In some respects
it can be viewed as a more sophisticated form and scale-free version of
the clustering coefficient. There is no universal accepted way of detecting
communities. One such way is to detect modularity in the system, which
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has an increased value when edges are more connected to one type of node.
An automated algorithm would find out these different types on its own.
Also it might be useful to defined the maximum size for a community
detection algorithm for whatever the problem being tackled is.

• The largest connected component is the maximum set of nodes such that
each pair are connected by a path. It reflects the fraction of nodes that
are interconnected either directly or indirectly and how many of them
are isolated. This is informative when looking at the susceptibility to
perturbations (Gosak et al., 2018).

• Network Resilience, like the broad definition of resilience given previous
is a system’s ability to adjust its activity to retain its basic functionality,
when errors, failures or environmental change occur (Gao et al., 2016).
Common ways of measuring the resilience of a network analyse the effect
of node removal, edge removal or global fluctuations (Gao et al., 2016).
When nodes are removed, the resilience (or fragility) can be measured
as the proportion of nodes in the largest connected node cluster in the
network (Solé and Montoya, 2001).

2.3.14 Complexity and Entropy in Spatial Networks

A more applied example of spatial network analysis is to look at how a certain
activity N is distributed across a number (n) of adjacent areas where Ni is the
activity in each area i. This might be a city for example. This activity could be
one of many things, for example economic activity, number of a petrol stations,
parks and so on. A measure of the complexity (W ) of the system can be found
using the following equation:

W =
N !∏
iNi!

(2.6)

If all the activity took place in the first area, then W would equal 1, else if the
activity was equally distributed amongst all areas, then the value would depend
on the size of N and n. The most often cited definition of complexity is that of
Kolmogorov Complexity in Computer Science. The Kolmogorov Complexity of
a sequence is the length (in bits) of the shortest computer program that prints
the sequence and then halts. So increased complexity and a higher value of W
means more information is needed to describe the system.

The Shannon Entropy H of the system can also be calculated. Firstly a proba-

bility is found for each of the areas, Pi =
N i
N which is then used in the following

equation,

H = −
∑
i

pi ln pi (2.7)

The Entropy is at a maximum when the probability of activity occurring across
all areas is the same (pi=1/n) and a minimum when it is all in one area. The
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principle of maximum entropy states that the probability distribution with the
largest entropy, gives the best representation of our state of knowledge of the
system (Purvis et al., 2019). Studies which agree with this principle will follow
it when carrying out additional analysis or modelling. The method for finding
the maximum entropy can be found in (Batty, 2009).

Both entropy and complexity increase with n. There is therefore a clear link
between Complexity and Entropy which is discussed further in (Grunwald and
Vitanyi, 2004). Complexity focuses on the the object and the amount of infor-
mation required to reproduce it, where as Entropy focuses on the probability of
producing that object from a random signal.

These two measures are also related to others in the Economics such as in-
equality. The Gini Coefficient G is one of the most popular and as defined
as:

G =
1

n
(n+ 1− 2(

∑n
i=1(n+ 1− i)yi∑n

i=1 yi
)) (2.8)

where n is the number of areas, and yi is the activity value in area i. The Gini
Coefficient will be 1 if all the activity is in one area, 0 if it is completely equally
distributed and somewhere in between for other distribution patterns.

These methods can be useful for analysing the development of inequality in
IIS. The common use of the Gini Coefficient means that any measurement of
can be easily compared, this is particularly useful for simulation models.

2.3.15 Scaling in Spatial Systems

Empirical data shows that many systems in nature and society follow scaling
laws in terms of the size distribution, cities being one. For example in any nation
there are many more small cities than large ones. The universal scaling equation
which is often widely quoted for systems following a power law relationship
(Batty, 2009) is as follows:

pi = KP−φ
i (2.9)

where,

pi is the probability of finding a system of size Pi occurring given this dis-
tribution. K is a normalisation constant and φ is the scaling parameter (which
is negative as for this distribution as the power law is negative, for example city
size). Batty (2009) provides further information on this equation.

Within these systems, there is a power law distribution for the activities taking
place in small cities and larger ones. Both biological and human systems have
been found to follow these scaling relationships (West et al., 1997; Bettencourt
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et al., 2007). This is generalised in the the equations in the Section on Scaling
(Section 2.2.2).

This same relationship is likely to be found for IIS. There are likely to be few
large IIS and many smaller ones.

2.3.16 Distribution Systems as Planar Rooted Tree Net-
works

As mentioned in the previous section, one of the main reasons which is thought
to underlie scaling (particularly in biological systems) is the transport of materi-
als through linear networks that branch to all parts of the organism (West et al.,
1997), is a type of distribution network. Given the vast amount of processes
and systems which can be identified as Distribution Networks there are many
types of network to describe them. Distribution systems will be directed (the
analysis of them does not have to be), but they can be uni- or bi-directional.
A hierarchical distribution system will most likely take the form of a tree. A
tree is a connected, planar, network which has no closed loops (Newman, 2010).
If this network originates from one node, it is termed Rooted, with the origin
being the Root Node. The assumption that it is planar (planar meaning that
the network can be drawn without edges crossing) can be relaxed in some cases.
Connected means that every vertex in the network is reachable from every other.
Non-hierarchical or less hierarchical distribution systems may not be like a tree
at all, and instead a small-worlds network with hubs.

By studying distribution systems as networks commonalities between differ-
ent systems can be found and greater understanding of the reasons why certain
distribution systems for particular functions are beneficial. Which when applied
can lead to improved network design and management of existing networks.

All IIS are distribution networks. Based on the information collected on them
so far they appear to be rooted, planar networks. Further empirical network
can be collected to confirm this.

2.3.17 Discussion of approaches and Philosophical under-
pinnings

Throughout this section a number of different approaches to undertaking sci-
entific modelling have been introduced. These approaches can usually be cate-
gorised into three different types of philosophical reasoning - Inductive, Deduc-
tive and Abductive. Inductive reasoning (at least in the social sciences) relies
on assembling macroeconomic data and estimating aggregate relations (Epstein,
2006). Deductive Reasoning relies on reductively applying general rules across a
domain until a true conclusion is met. Abductive reasoning is similar to deduc-
tive reasoning but seeks to find the most likely explanation, so has an element
of uncertainty involved.
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Examples of induction based models are those which are built from data Data
Driven Modelling. Equation 2.9, the scaling relationship probability of finding
a city of a certain size is inductive as it has been fitted to data. However Equa-
tion 2.1, a model of scaling relationships within biological systems takes similar
form to Equation 2.9, but has been derived using deductionist reasoning from a
simplistic model of a branching system. Machine learning models which often
produce probabilistic outcomes without finding a true complete understanding
in the model can be thought of as being abductive.

Agent Based Modelling has been described as having differences to both in-
ductive and deductive approaches. This is described as a generative approach
(Epstein, 2006) which is inspired by the definition of syntactic theory which
seeks minimal rule systems that are sufficient to generate the structures of in-
terest (Chomsky, 1965). The main questions which agent based and generative
models are effective at answering are on the topic of how certain regularities can
arise from decentralised local interaction of heterogeneous autonomous agents
(Epstein, 2006). This is not similar to inductive reasoning which as stated pre-
viously relies on data to produce models of aggregate relations. Epstein (2006)
argues that generative models are a form of deduction as each model can be de-
duced to understand all the interactions taking place and a true answer found,
but deduction does not imply generative, as deductive theories can rely on equi-
librium models which are not generative.

The modelling approach used in this research is generative agent based mod-
elling.

2.3.18 Model Validation

All models should undergo a process of validation. The way in which this is done
depends largely on the type of model. For example a machine learning model
which is built to classify images of a particular object can easily be validated
by testing it on correctly identifying that particular object.

However, abstract (often general) complex systems models may not be so easy
to validate. The approach taken in this research of generative modelling relies
on a set of initial parameters and possibly stochastic processes to grow an artifi-
cial society. The parameters will be derived from previous models of the system
under study, but as the systems under study consist of many interacting com-
ponents, not all processes or factors will be accounted for. Validation can take
the form of common measures from both the model and the real world system.
For examples power law or Pareto Distributions is one such commonality found
between the Sugar-scape simulation of human systems and real world systems
(Epstein and Axtell, 1996). The gradient of the power law line is a common
comparative measure (Jun and Hübler, 2005). The limits of validation should be
stated, including assumptions and components not accounted for in the model.
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This is especially important when considering the application of the model to
the real world system.

A data driven approach such as machine learning may prove much easier to
validate and have greater predictive power, but the model itself is often poorly
understood a ‘black box’, often due to it being very complex. On the other
hand a generative model which is simulated in isolation away from the data,
may prove more difficult to validate and offer less predictive power, but the
model is better understood meaning that the core processes of the system are
better understood, which in turn can be compared back to the real world system.

2.4 Examples of Systems with similar properties
to IIS

As this research is taking an interdisciplinary Complex Systems based approach,
systems with common properties to IIS should also be considered. By finding
commonalities between IIS and other systems in nature it provides evidence
that the processes and structures formed in IIS are universal. The following
systems analysed are planar rooted tree networks which are generally thought
to be similar to IIS. In addition different types of planar rooted tree network
are discussed, those which distribute and resource and those which collect it.

2.4.1 Examples of Spatial Distribution and Collection Net-
works

A distinction should be made between planar rooted tree networks which dis-
tribute, collect or do both. All types might direct growing through preferen-
tial attachment, but if the process is a collection system then the evolution
and underlying processes which create it might be quite different to a distri-
bution system. Examples of planar rooted collection systems are leaf venation
(Lee et al., 2014) and river system formation (Kyungrock and Kumar, 2008).
Although dealing with systems on much different scales and with completely
different building blocks, the processes are surprisingly common. Both models
involve the addition of a resource which creates a non-equilibrium environment.
In the case of the leaf it is the production of auxin and for a river it is water.
The changing concentration of this resource as it flows down a gradient through
the system leads to the creation of canals which allow for more efficient trans-
port through the system, which in turn creates a planar rooted tree network.
In leaves, the canals are created by cells changing state to become specialised
for transport and in river systems erosion of the surface material leads to the
creation of channels. Although within the literature on leaf venation there is
debate about the role of ‘pre-pattern’ in the formation of these networks (Dim-
itrov and Zucker, 2006). It can also be argued that a ‘pre-pattern’ exists for
river systems too, although this is not a design in the same way as for a leaf
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but a history of previous processes that have occurred on a landscape which
can affect future river system evolution. Kyungrock and Kumar (2008) and
Lee et al. (2014) both use randomness in their models, Lee et al. (2014) uses
it to ensure cell division is not synchronised. Kyungrock and Kumar (2008)
uses randomness in the sediment erosion in the generation of river networks and
argues that the inherent randomness is sufficient to generate patterns under
evolutionary dynamics. A key distinction between models which are built as
networks and adds nodes using randomness leading to preferential attachment,
and resource collective models such as the river system which rely on physical
equations with randomness leading to the emergence of preferential attachment
scale-free networks.

A distribution network which is planar and rooted on the other hand will build
out from a central root node. There might be collection aspects to such a
network, as the building of the network will require information about the en-
vironment in order to build an efficient structure. The growth of a tree or
plant gives an example of a distribution system which has both distribution and
collection aspects to it. An approach which has been very successful in mod-
elling plants and trees and other branching self-similar structures is L-Systems
(Lindenmayer, 1968; Prusinkiewicz, 2004). This can be thought of as a ‘pre-
pattern’ technique. L-Systems is a language which is similar in some ways to
the Chomsky hierarchy for formal language theory (Jäger and Rogers, 2012). It
starts with a simple set of rules which through recursion will produce a series
of code each time step which is basically a set of instructions for drawing the
growth of the system at that time step. L-Systems might be similar to genetic
code, which also must contain a set of instructions, a pre-pattern or blueprint.
They have been extended to by adding stochastic processes into their formation
leading to slight differences every time the model is run, but do not include
any computation regarding optimality of growth, or growth direction based on
local conditions. A spatial growing environment would be required for this. An
iterative L-System which draws the system after each time step and feeds back
information to the rules based on the growth could allow for this. L-Systems
also focus on fractal self-similarity and scaling which is not the focus of this
section.

Jun and Hübler (2005) conduct an experiment on the self-organisation of an
electromechanical system. A power supply is connected to a source electrode
at the centre of the system and a boundary electrode, which flows round the
edge of the system, in this case it is circular. A number of conducting particles
are placed in the system which in this case are stainless steel ball bearings. A
constant supply is passed through the system until the particles organise into a
stable state. Different initial configurations of the particles are tested. Multi-
ple runs found the particles went through three stages of development. Firstly
they formed strands, which allowed them to complete the circuit connecting
the electrode at the centre of the system to the boundary, and then geometric
expansion by the particles space-filling while maintaining the network topology.
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The arrangement of the network is very dependent on initial conditions, slight
differences in the the arrangement of the particles can lead to radically differ-
ent final network topologies. The paper does not give a clear reason for the
geometric expansion, but it is most likely to form the most efficient state to dis-
sipate the current through, given the initial conditions. The resulting patterns
formed by the particles produce statistically robust network features, in terms
of the number of termini and branch points and also finds the network usually
produces trees. The system has commonalities to biological systems such as the
power supply requiring to be constant after the steady state is reached and the
particles organising into a geometric space-filling network.

The planar network models described in this section so far have looked at both
distribution and collection systems which do not necessarily follow the standard
definition of preferential attachment which is increased probability of connect-
ing to a node with greater connections (Barabási and Albert, 1999). This is
most likely due to the models being spatially constrained, which means that
a node added to the system will not directly attach to the most popular root
node, but the most efficient path to it. So it is more likely to connect to the
shortest path to the root node. This is assuming there are not irregularities in
the environment which may change this path.

Finally for a previous example on data collection and analysis of distribution
networks, Papadopoulos et al. (2018) provides a comparison of two biological
distribution systems, mycelial fungi and vasculature from the surface of rodent
brains. The two systems vary in terms of growth, transport mechanisms and
environment in which they exist but are both planar, in two-dimensional space
and transport fluid and nutrients. In order to gather data on these networks, the
rodent vasculature network was traced by hand from images and the mycelial
network was extracted digitally. The networks were then stored in adjacency
matrices which allows for efficient analysis. This paper highlights the common-
alities between two distribution systems but also the variability in how they
have evolved which could reflect differences in function, environmental condi-
tion or development. The vasculature network is organised for low cost, high
efficiency distribution, whereas the mycelia forms more expensive but in turn
more robust networks. It would be interesting to see if any form of comparison
can be made with IIS as well.

2.4.2 Space-Filling in Networks

‘Space-Filling’ (or space-optimisation) is the structural features of a distribution
network which are able to supply all parts of a particular system, for example
the capillaries in a cardiovascular system (Hunt and Savage, 2016) and biological
systems in general (West et al., 1997). Hunt and Savage (2016) look at different
strategies to build networks which fill space in cardiovascular networks. Some
strategies do not lead to biologically adaptive structures as they are too inef-
ficient - they deliver blood too slowly, require too much construction material
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or use too much power to move blood around the system. They find that a
trade-off between minimum use of materials and minimum path length enforce
thresholds for balance in the network configuration which match the empirical
data better. Hunt and Savage (2016) find that within the vascular system, there
is a sharp descent from optimal conditions in vascular networks. This implies
that vascular networks are under strong selection for space-filling and efficiency.
Given the length of time which such systems have evolved over it is possibly
unsurprising that the optimal state has been reached.

From the literature review it seems like IIS also have space-filling properties.
But whether they have a similar level of efficiency to biological systems is un-
certain. Given the networks in biological systems have evolved over billions of
years they are likely to be more efficient than an IIS that has developed only
over thousands of years.

2.4.3 Branching in Tree Networks

The general mathematical study of the Branching Processes has been under-
taken for many years for studying processes from particle physics, river sys-
tems, vein and lymphatic channels in living systems and population biology
(Caldarelli et al., 2000; Harris, 1964). Branching processes in nature often fol-
low fractal structures (Caldarelli et al., 2000), which is characterised by having
similar properties at all length scales (Mandelbrot, 1983).

The probability distribution P(k) of tree size k for a network is a widely used
form of analysis for comparing different tree networks (De Los Rios, 2001). The
exponent τ which is defined as P(k) ∼ kτ is a universal character used to com-
pare tree networks. It is equal to the gradient of the probability distribution
P(k) on a log-log plot. The value of τ relates to the growth rate, the hierar-
chy and centrality of the network (De Los Rios, 2001). A network which has a
branching ratio m,

m =
∑
n

npn (2.10)

where, pn is the probability of n new events occurring. When m = 1, each gen-
eration of branching is on average identical to the last (De Los Rios, 2001), this
is described as being critical behaviour and leads to P(k) ∼ k-3/2 (Harris, 1964).
If m>1, then the system is said to be supercritical leading to P(k) ∼ k-2 (De Los
Rios, 2001). Increasing the value of m, will lead to the system having a much
quicker growth rate, a stronger hierarchical structure and increased centrality.

The value of τ has been measured for many real-world networks. For river
systems it has been measured as τ=1.43 +/-0.02 (Cieplak et al., 1998). The
lower range of values is thought to be due to river systems approaching a state
of minimal energy dissipation (Cieplak et al., 1998). For the internet, τ=1.9
+/-0.1 (Caldarelli et al., 2000).
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Therefore, the river system is classified as a Critical (or slightly sub-critical
system) and the internet as a supercritical system. This is interesting partic-
ularly relating back to the difference between human and natural systems and
also the difference between spatial and non-spatial systems.

Given IIS are spatial systems, similar to river systems, they are likely to have
sub-critical to critical properties.

2.4.4 Summary

The review of the literature has found many commonalities across different
types of planar network. All the systems under study produced networks which
increased efficiency for the particular system and were modelled as open dissi-
pative systems with an energy gradient (leaf venation, river systems and elec-
tromechanical particles). L-Systems being the only exception to this which is a
pattern forming system.

Computational modelling of such systems leads to different insights as oppose
to experiments. Both the leaf venation and river system models have to add
randomness to the model, this induces asynchronous behaviour, which seems to
be required for the system to search for efficient networks. In real world ex-
periments this is not required as perfect order is never present so asynchronous
behaviour is inherent in real-world systems. To some extent this can be a lim-
itation of computer models, but by engineering asynchronous behaviour, the
results tend to match real world systems.

As stated in the section on leaf venation, there is discussion on whether a leaf
has a pre-pattern which influences the way in which leaf veins form. The same
question can be asked about indigenous irrigation systems. Whilst an irrigation
system will be planned to some extent, it is unlikely that given the amount of
effort taken to build one it is unlikely to be rebuilt again and again. But if
a number of systems are built local to one another then knowledge gained in
building one is likely to be passed on to building the next. This means that
there might be a memory or blueprint or event gene for a particular type of
indigenous irrigation system in a particular area so an evolutionary approach to
modelling can also be taken to looking at such systems.
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Chapter 3

Research Questions

This section outlines the main research questions established from the gaps in
the literature.

3.1 Research Gaps

As a reminder the research gaps are as follows:

• IIS seem to consist of space-optimising branching tree networks forming a
hierarchical structure. Quantitative analysis of different IIS networks has
not yet been carried out to confirm this, which in turn can be used to find
commonalities and differences between IIS.

• No studies have looked at the relationship between managerial arrange-
ments and network structure of IIS.

• There is no recognised model for how IIS tend to grow, do they follow a
biological type sigmoidal curve, sociological expansion? Is this related to
the managerial arrangements?

• Previous studies have looked at the development of inequality in simplified
game-theoretic models of IIS, but not for larger network based simulations.

• The long term stability of IIS has not been explored from a network per-
spective. How do the managerial arrangements and network structure
interact to maintain stability for long periods?

• No quantitative models have been built to look at the effects of globalisa-
tion on IIS.
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3.2 Research Questions

3.2.1 Chapter 4 - Space Optimising Growth in Indigenous
Irrigation Systems (IIS)

1. Previous models of Indigenous Irrigation Systems have hypothesised growth
based on a ‘Budding Model’ where local parts of the network will expand
downstream based on local conditions (Lansing et al., 2009). This con-
trasts to a model in which a central power controls the growth. A gen-
erative agent-based model is built in this Chapter to ask whether growth
based on local conditions leads to an optimal system, or is a central power
required?

2. By producing an optimal system, the network will optimise the amount
of space which the system can distribute to. This is a common property
of self-organising dissipative systems in nature. Will the simulated IIS
have common network properties to other such networks such as power
law scaling?

3.2.2 Chapter 5 - Empirical Data Collected on Indigenous
Irrigation Systems

1. Do the networks formed by real life IIS share common characteristics to
the simulated IIS, therefore validating the model?
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Chapter 4

Space Optimising Growth
in Simulated Indigenous
Irrigation Systems (IIS)

4.1 Introduction

The literature review introduced a number of general models and theories for
studying Complex Systems and Networks. Numerical methods for modelling
these systems are then introduced which focus on cellular, agent-based and net-
work models. Finally case studies of the systems to studied for this research are
reviewed with a focus on Indigenous Irrigation Systems, but also other systems
which share common features.

This Chapter aims to add new knowledge by building a simulation model of
an indigenous irrigation system which can be used to test existing theories on
their organisation and compare to other networks with similar properties.

The STRESS Guidelines for simulation modelling have been followed to enable
transparent reporting and repeatability (Monks et al., 2019).

4.2 Research Questions

The model specifically aims to answer the following Research Questions:

1. Previous models of Indigenous Irrigation Systems have hypothesised growth
based on a ‘Budding Model’ where local parts of the network will expand
downstream based on local conditions (Lansing et al., 2009). This con-
trasts to a model in which a central power controls the growth. A gen-
erative agent based model is built in this section to ask whether growth
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based on optimal local conditions leads to an optimal global system, or is
a central power required?

2. By producing an optimal system, the network will optimise the amount of
space which the system can distribute to. This is a common property of
self-organising dissipative systems in nature. Will the simulated IIS have
common network properties to other such networks found in nature such
as power law scaling?

4.3 The Model

The model created in this section is a generative pattern formation cellular au-
tomata network. It relies on local rules which when iterated over time leads
to a pattern emerging. This allows for simplicity when coding with minimal
assumptions and leads to precise answers for a given pattern forming. As stated
in the introduction and research questions, the goal is to look for efficient states
of a space filling network by testing different theories of organisation of an In-
digenous Irrigation System.

Pattern formation models based on local rules have previously been used for
studying segregation in artificial societies (Schelling, 1969; Collard et al., 2013),
evolutionary game theory (Nowak and May, 1992b), flocking behaviour (Reynolds,
1987), and the simplest models of artificial life such as Game of Life (Adamatzky,
2010). Cellular Automata is not usually associated with networks as networks
tend to model non-spatial interaction and cellular automata tend to model lo-
cal spatial interaction. Yang and Yang (2007) is the only article found which
attempts to model networks in cellular automata but also includes non-spatial
interaction. As mentioned in the literature review, networks (specifically tree
networks) are often an emergent feature of local interaction in cellular automata
models such as in rivers (Kyungrock and Kumar, 2008), leaf vein formation (Lee
et al., 2014), heat conduction (Yu and Li, 2006) and electro-mechanical systems
(Jun and Hübler, 2005). The common underlying principle of these systems
is the dissipation of energy down gradients. This is largely due to the network
being for distribution rather than collection. A large-scale computational model
of an IIS has previously been built to understand how local synchronisation can
lead to optimal yields of the system as a whole, but it is static and does not
simulate growth (Lansing and Kremer, 1993). Small-scale infrastructure models
have been built to explore how individual decisions of farmers (conformists or
opportunists) affect the efficiency in terms of maintenance and income inequal-
ity of the system (Yu et al., 2015). The model in this section differs, by forming
a tree network using a cellular automata, but does not use the process of energy
dissipation down gradients, but instead grows based on space filling principles
for local conditions.

It is set up to have one initial distribution root node (or cell) which is placed
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Figure 4.1: Left: Initial distribution cell of space optimising algorithm on a
30 by 30 grid with single starting point in the centre (15, 15) at time step 0.
Right: Initial configuration of single Distribution Cell (black) and 8 Receiver
Cells (grey) using a Moore Neighbourhood with r=1.

in the centre of a large enough grid so the growing network is not effected by
boundary conditions. To search for local rules on a space filling network the
system has to be allowed to grow, such as the preferential attachment model
(Barabási and Albert, 1999). This is done by attaching further distribution
nodes to those already present in the network preferentially. Preferential at-
tachment in this network is based on space-filling, but instead of filling space
another type of cell is added to the network, receiver cells. The network grows
by adding distribution cells which lead to the highest amount of receiver cells.
This is explained further below.

Consider a two dimensional grid with a single starting cell at the centre (x0,
y0) at time step t=0, Figure 4.1 (Left). The size of the grid is irrelevant as the
simulation is voided if the system grows beyond the boundary.

Each distribution cell at (x0, y0) will add all the receiver cells in empty cells in
its Moore Neighbourhood (NM

(x0, y0)), which is defined as:

NM
(x0,y0) = (x, y) : |x− x0| ≤ r, |y − y0| ≤ r (4.1)

The size of the Moore Neighbourhood is given by: (2r+1)2. For this model r=1.
The Receiver Cell at (x0, y0) is not included in the Moore Neighbourhood as
this is the location of the distribution cell. So the maximum number of Receiver
Cells for each Distribution Cell is 8, giving a ratio of 1:8. This is shown in Figure
4.1 (Right). Systems with larger neighbourhoods can be explored with r>1, but
this is beyond the scope of this section.

The space which the system grows over is homogeneous - the cell sizes are all
the same and all cells have the same value. The growth of other parts of the
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system are the main effect on whether adding a Distribution Cell to a particular
one will increase the number of Receiver Cells. This is not the case in reality,
the environment is heterogeneous. There are ecological and geomorphological
factors which play a role in the optimal network growth.

4.3.1 Growing the System

Growing the network will allow for efficient states to be found. This is done by
adding Distribution Cells to those already in the network. For this model, it is
assumed that a distribution cell at (x0, y0) can only expand directly adjacent
horizontally and vertically (not diagonally), also known as the Von Neumann
neighbourhood (NV

(x0, y0)) which is defined as:

NV
(x0,y0) = (x, y) : |x− x0| ≤ r + |y − y0| ≤ r (4.2)

The size of the Von Neumann Neighbourhood is given by: 2r(r+1)+1. For this
model r=1. The Cell at (x0, y0) is not included as this is the location of the
current Distribution Cell. So the maximum number of Distribution Cells which
can be connected to one is 4, giving a ratio of 1:4. This is shown in Figure 4.2.

Model Rules

So far the rules have been outlined for where Distribution and Receiver Cells
can be added.

As this model is attempting to find the most efficient states for a growing planar
network to test either the ‘Budding model’ or central authority model, Distri-
bution Cells will only be added if they increase the amount of Receiver Cells in
the network.

Each time step the Distribution Cell selected will check its Von Neumann Neigh-
bourhood and test by adding a Distribution Cell in each available position. A
position is available if there is not already a Distribution Cell present. It is also
available if a Receiver Cell is present in that position; the Receiver Cell will be
removed in that position and a Distribution Cell added. A Distribution Cell is
added if it increases the number of Receiver Cells in the system. As this model
is looking at increased efficiency Distribution Cells which increase the number
of Receiver Cells by the most are added. Once a Distribution Cell is added, its
associated Receiver Cells are also added.

Figure 4.3 shows the initial configuration of the model (Left) and the first op-
tions in which the model can grow (Right). As can be seen, all the options lead
to the same increase in Receiver Cells. Three will be added, but one taken away
where the new Distribution Cell is added.

This same basic algorithm is iterated to add more Distribution Cells and Re-
ceiver Cells. The only difference in the models constructed in the remainder of
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Figure 4.2: Initial configuration of single Distribution Cell (black) at coordinates
(x0, y0) The Von Neumann neighbourhood is highlighted in grey, which is the
locations where additional Distribution Cells can be added.

this section is subtle changes in the preferential attachment algorithm, that is
changes in terms of which Distribution Cell is selected to be added.

Four alternative models of growing the network are explored and analysed to
see which is most efficient. The changes reflect how much information is shared
across the system in deciding the placement of distribution cells. This is to test
to what extent the ‘Budding model’ or central authority model is more efficient.
These are as follows:

• Local Deterministic and age dependent;

• Local Stochastic and age dependent;

• Global and Local stochastic;

• Global Selection with local stochastic growth.

Firstly Local and Global are defined. Local means that preferential attachment
at each time step is decided locally for each Distribution Cell in the network
(Figure 4.3, Right). As such, Distribution Cells are effectively added in parallel
in a synchronous manner. Global means that preferential attachment is decided
globally; the control of growth is taken at the level of the whole network. Exam-
ples in each of the models will provide more information on how this is applied.

A description of each model is given below.
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Figure 4.3: Left: Initial Distribution Cell (black) with Receiver Cells (Grey).
Right: Locations which new Distribution Cells can be added with the corre-
sponding Receiver Cells are highlighted in different colours.

4.3.2 Local Deterministic and Age Dependent (LDA)

A deterministic algorithm is used (without any stochastic processes) and by
being age dependent the system preferentially allows Distribution Cells which
have been present in the system for longest to grow. This is the simplest grow-
ing scenario explored as it produces the same result each time. A preferential
growth direction is added for the Von Neumann Neighbourhood in the follow-
ing order (Left, Up, Right, Down) to allow for scenarios where the maximum
amount of Receiver Cells can be added in multiple directions. This creates slight
asymmetry in the network as can be seen in Figure 4.4.

This can be thought of a strict example of the ‘Budding Model’ where each
distribution cell grows according to their own local environment without any
communication with other cells.

4.3.3 Local Stochastic and Age Dependent (LSA)

This model is very similar to the Deterministic and Age Dependent model (Sec-
tion 4.3.2). The only difference being that in scenarios where there are multiple
growth directions for a given Distribution Cell, the next Distribution Cell is cho-
sen from a uniform distribution with probability 1/n where n is the number of
growth directions. It is therefore another example of a strict ‘Budding Model’.

4.3.4 Global and Local Stochastic (GLS)

The global stochastic growth model disregards any preferential growth to older
cells in the system. It will select Distribution Cells anywhere in the network
which increase the number of Receiver Cells at using a probability of 1/n where
n is the number of growth options. The model also has local stochastic processes
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Figure 4.4: Deterministic and age dependent Model, showing the growth over
four time steps with colour coding for each time step.
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similar to the LSA model. The position where additional Distribution Cells is
added is selected from a uniform random distribution of positions which will
increase the number of Receiver Cells in the network locally. However there is
no selection of Distribution Cells which increase the number of Receiver Cells
by the most.

This model is different to the strict ‘Budding Models’ seen in the first two
models. The growth of the system is not synchronised, so it can described as
asynchronous and contains inherent randomness.

4.3.5 Global Selection and Local Stochastic (GS)

The Global Selection Model gathers information on all current Distribution
Cells at each time step and selects the Distribution Cell which will increase the
Receiver Cells in the system by the maximum amount. If there are multiple
Distribution Cells which give the same maximum Receiver Cells, then one is
selected at random, with a probability of 1/n where n is the number of growth
options. It is locally stochastic, so if for one particularly Distribution Cell there
are multiple directions to grow which will give the same maximum amount of
Receiver Cells, then one is chosen at random.

This model more closely resembles a central authority controlling the growth
of the network. All the information of the network is collected and the growth
is decided based on which distribution cells will increase the space the most.
The model can be adapted to be deterministic by preferentially selecting one
direction to grow in.

Further information on the model can be found in Appendix A.

4.4 Results

The results of the simulations need to be presented in a way that allows the
Research Questions to be answered. Firstly an output from each simulation for
1000 Distribution Cells is shown in Figure 4.5 which at first glance gives an
indication of how each model performs. The Local models (Top Left and Top
Right) form well-ordered patterns, where as both global models (Bottom Left
and Bottom Right) form seemingly more disordered patterns.

The following sections present results from each simulation in order to answer
the two Research Questions in the introduction.

4.4.1 Research Question 1 Results

The first Research Question asks whether the ‘Budding model’ of network
growth based on local conditions and decisions or the ‘central authority model’
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Figure 4.5: Each of the Models run for 1000 Distribution Cells. The number
of Receiver Cells for each model is given. Top Left: Local Deterministic and
Age Dependent, Top Right: Local Stochastic and Age Dependent, Bottom Left:
Global and Local Stochastic and Bottom Right: Global Selection with Local
Stochastic Growth.
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of growth based on a central decision maker will give an optimal solution.

There are different ways of measuring optimality. The most obvious is to look
at space-optimisation, which is the ratio of Receiver Cells to Distribution Cells;
the higher the ratio the more optimal the model is. Another way would be to
look at the time involved for the model to grow the network. A model which
takes longer is less efficient at completing the task and analogous can be drawn
to the additional work required in the real system.

Figure 4.5 shows that for 1000 Distribution Cells, the GS model gives the op-
timal ratio, followed by the GLS model and the LDA and LSA models. Many
runs of the different models have subsequently been simulated to see if this is the
same property at different scales, Figure 4.6. This shows all the models (gen-
erally) follow linear growth, with the GS model always producing the optimal
arrangement. The GS model follows a simple linear equation of:

NRC = 2NDC + 6 (4.3)

p-value = 3.6e-149, R2 = 1.000 (using scipy.stats.linregress).

where, NRC is the number of Receiver Cells and NDC is the number of Dis-
tribution Cells. If the growth of the network continues to follow that seen in
Figure 4.3 - each Distribution Cell added increases the total Receiver Cells by
two, then this equation is followed.

The GLS model fits a linear equation of (Using Python module numpy.polyfit.):

NRC = 1.6NDC + 19 (4.4)

p-value = 4.07e-21, R2 = 0.998 (using scipy.stats.linregress).

for lower values but loses efficiency with larger values (creating a logistic curve),
likely due to the randomness and lack of selection in the model.

The LDA and LSA models follows the linear equation (Using Python module
numpy.polyfit.):

NRC = 1.09NDC + 47 (4.5)

p-value = 2.56e-33, R2 = 0.999 (using scipy.stats.linregress).

for lower values, but again loses efficiency at larger values like the GLS model.
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Figure 4.6: Plot of Distribution Cells and Receiver Cells for each of the models.
Blue - LSA/LDA Model, Red - GLS Model and Green - GS Model.

To test the second type of optimality, the growth of the model was timed for
each model for different sizes. The results are shown in Figure 4.7. The results
have been plotted on a log-scale due to the GS model taking approximately
102.25 longer to complete showing the optimality of the GS model comes at a
cost of time to (see Figure 4.8).

4.4.2 Research Question 1 Discussion

The results show that finding a model which gives the best performance in
space-optimising comes at a cost in terms of computation time. This section
discusses the models in the context of the research question.

The LDA and LSA models are described as strict ‘Budding models’ in which the
decision for each Distribution Cell to expand downstream is kept strictly local
and growth is preferentially dependent on age in the system. The time taken to
produce patterns is fast but the ratio of Receiver Cells to Distribution Cells is
low. The way that the model has been coded means that each cell is completely
synchronised, each cell which can grow each time step is allowed to grow. Al-
though in reality, the growth of different parts of the system may occur at a
similar rate given they have similar technology, but it will not be exactly syn-
chronised. The pattern formed by the model is very ordered and similar to what
a planned system might look like. These models are therefore deemed to not
represent a growth and pattern which would occur outside of a computer model.

The GS simulation finds the optimal space-optimising system but at a much
greater computation cost. It shows that collecting all the information and mak-
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Figure 4.7: Time Taken for a simulation of each model for different system
sizes. Black - LDA Model, Blue - LSA Model, Red - GLS Model and Green -
GS Model.

Figure 4.8: Prediction of the time taken for the GS model (y) using the GLS
model (x ), the best fit line was found using numpy.polyfit, y = 88.3x2+70.7x-8.
p-value = 9.55e-13, R2 = 0.969 (using scipy.stats.linregress).
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Figure 4.9: Deterministic Ordered version of the GS Model.

ing a decision such as with a central authority can be suboptimal when consid-
ering the time it takes.

The GLS model relaxes the age dependent assumption and instead relies on
randomness. The effect of this is that different parts of the system grow at
different rates, however older cells are still closer to the initial cell and younger
cells at the edge of the system. The effect of the randomness increases the space
optimisation of the system without increasing the time taken. The randomness
essentially causes the model to behave in an asynchronous manner allowing it
to search for sub-optimal solutions. The use of randomness in Complex Sys-
tems modelling has previously been highlighted for its importance (Kyungrock
and Kumar, 2008; Lee et al., 2014). Nature appears to be asynchronous and
simulations which model it should be too. The GLS model seems to be the best
representation of the Budding Model, it relies on local information, but with
added randomness to simulate natural behaviour.

In a system which relies on a central authority, it is likely that all the local
information will not be collected such as in the GS model. Much of it would
be assumed. This would mean that the model would perform quicker, and
would likely have a much ordered shape such as the LDA and LSA models. The
GS model can be modified to be deterministic producing an ordered state, as
shown in Figure 4.9. Also in the current form of the GS model, the information
is collected each time step; this is inefficient and can be improved by only col-
lecting and updating information from parts of the network which have changed.

It is hypothesised that a budding model will perform better in a heterogeneous
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environment with vastly changing local conditions (such as ecological, geomor-
phological, or sociological) whereas a central authority system will perform bet-
ter in homogeneous environment where greater assumptions can be made. The
central authority will also be required to have knowledge or a design of a system
which can be repeated, similar to a ‘pre-pattern’ in leaf growth.

As mentioned in the model description (Section 4.3), the value of r in Equation
4.1 is constant = 1 for all iterations of the model. Increasing the value of r pro-
duces space-filling networks more similar to IIS, as the distribution cells cover
proportionally a much smaller area than the receiver cells (see Appendix A.3
for an initial exploration in increased values of r). There is likely to be similar
simplistic linear equations for the GS model for higher r values.

To find a general solution, Equation 4.3 has to be written in terms of r. One
version of this would be:

NRC = 2rNDC + (2r + 1)2 − (2r + 1) (4.6)

The working for this equation can be found in Appendix A.3. This equation
holds as long as the network grows at maximum efficiency. The number of Re-
ceiver Cells (NRC) will scale proportionally to the number of Distribution Cells
(NDC), given a constant value of r. As can be expected from the equation, the
ratio of distribution cells to receiver cells always scales linearly. This equation
also only gives the number of Distribution and Receiver Cells, it does not give
information about the network structure which is particularly important for
comparison with real-world networks.

As this pattern forming model is not time dependent, it is merely producing
patterns for a given number of distribution cells, the growth rate is not mea-
sured or constrained and so cannot be related to scaling processes through time
such as in (Bettencourt et al., 2007).

4.4.3 Research Question 2 Results

This section presents results to answer the second research question which asked
whether the simulated IIS will have common properties with other complex
networks such as power law scaling. To answer this question, network analysis
techniques from Jun and Hübler (2005) are used. This includes, cells down-
stream, number of branches, and number of termini, these are shown in Figure
4.10. A characteristic universal exponent (τ) is also measured for each model
(Caldarelli et al., 2000; Cieplak et al., 1998; Jun and Hübler, 2005), which is the
absolute value of the slope when plotting the probability distribution against
the cells downstream. Section 2.4.1 provides an overview of the experiment un-
dertaken on an electromechanical system by Jun and Hübler (2005). Although
the experiment is on a completely different system, it has many commonalities
with The Model. The system consists of many components and organises into
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Figure 4.10: Definitions of Termini, Branches and Cells Upstream for Planar
Tree Networks. Downstream is taken as being towards the termini. Taken from
Jun and Hübler (2005).

a space-optimising state and starts from a single source which organises the
system. Figure 4.11.

For each model, simulations were undertaken with a Distribution Cell range
between 100 and 2000 (inclusive) with an interval of 100 giving a total of 20
simulations per model. Lines of best fit are drawn for the scatter plots using the
linear regression function of the sklearn module in python. The power law line of
best fit is found using the python module Powerlaw (Alstott et al., 2014), which
uses a combination of maximum-likelihood fitting methods with goodness-of-fit
tests (Clauset et al., 2009). The xmin and xmax values which are the starting and
end points of the power-law behaviour in the data is estimated visually from
the probability distribution plot, allowing for a more accurate estimate of the
power law curve fit. The power law curve is compared to the data for signif-
icance using the KS statistic which is a goodness-of-fit measurement (Clauset
et al., 2009), generating a p-value. A significance threshold of p>0.1 is used,
similar to Clauset et al. (2009).

The results of the LDA model are shown in Figures 4.12 and 4.13. Similar to
the Distribution Cells verses the Receiver Cells plot in Figure 4.6, the branches,
termini and average path length follow logistic growth, Figure 4.12. However, a
straight line linear model has still been applied to allow for easier comparison.
Figure 4.13 shows the probability distribution plot. Both the histogram and
log-log plot show no evidence that the process follows power law scaling for this
model.
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Figure 4.11: Extract taken from Jun and Hübler (2005). Top Left: Time se-
quence of single experimental run. Top Right: Number of Termini plotted
against number of particles in the network. Bottom Left: Density Distribution
P(n) of the number of particles uphill for a steady state network (Uphill is the
same as Cells Downstream). Bottom Right: Number of Branch Points plotted
against number of particles in the network.
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Figure 4.12: Results from LDA Model. Top Left: Number of Branches plotted
against the number of Distribution Cells. The slope gradient is 0.026. Top
Right: Number of Termini plotted against the number of Distribution Cells.
The slope gradient is 0.034. Bottom Left: Average Path Length plotted against
the number of Distribution Cells. The slope gradient is 0.012.
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Figure 4.13: Results from LDA Model with 1000 Distribution Cells. Left: His-
togram showing the Number of Distribution Cells Downstream for each Distri-
bution Cell. Right: Probability Distribution for Number of Distribution Cells
Downstream. No power law observed. The black dots are a probability distribu-
tion with linearly spaced bins and the black line is the probability distribution
using logarithmically spaced bins from the powerlaw module.

The results of the LSA model are shown in Figures 4.14 and 4.15. The termini
and average path length in Figure 4.14 are almost identical as the LDA model,
but the number of Branches bifurcates into two curves. From visual inspection,
power law relationship does not seem to apply to this model.
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Figure 4.14: Results from LSA Model. Top Left: Number of Branches plotted
against the number of Distribution Cells. The slope gradient is 0.024. Top
Right: Number of Termini plotted against the number of Distribution Cells.
The slope gradient is 0.035. Bottom Left: Average Path Length plotted against
the number of Distribution Cells. The slope gradient is 0.012.
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Figure 4.15: Results from LSA Model with 1000 Distribution Cells. Left: His-
togram showing the Number of Distribution Cells Downstream for each Distri-
bution Cell. Right: Probability Distribution for Number of Distribution Cells
Downstream. No power law observed. The black dots are a probability distribu-
tion with linearly spaced bins and the black line is the probability distribution
using logarithmically spaced bins from the powerlaw module.

The results of the GLS model are shown in Figures 4.16 and 4.17. Unlike the
LDA and LSA models the branches, termini and average path length show a
linear relationship with number of distribution cells, Figure 4.16. The data also
fits the power law curve in Figure 4.17 with τ=1.49. Figure 4.18 shows the
results of 1000 simulations for 50 Distribution Cells using the GLS algorithm
and produces a normal distribution.
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Figure 4.16: Results from GLS Model. Top Left: Number of Branches plotted
against the number of Distribution Cells. The slope gradient is 0.19. Top Right:
Number of Termini plotted against the number of Distribution Cells. The slope
gradient is 0.20. Bottom Left: Average Path Length plotted against the number
of Distribution Cells. The slope gradient is 0.014.
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Figure 4.17: Results from GLS Model with 1000 Distribution Cells. Left: His-
togram showing the Number of Distribution Cells Downstream for each Distri-
bution Cell. Right: Probability Distribution for Number of Distribution Cells
Downstream. The slope gradient of the power law curve is -1.49. (τ=1.49).
Using a xmin value of 1, p-value = 0.17. The black dots are a probability distri-
bution with linearly spaced bins and the black line is the probability distribution
using logarithmically spaced bins from the powerlaw module.

Figure 4.18: 1000 simulations of fifty Distribution Cells using the GLS model.
Left - Plot showing the number of Receiver Cells to Distribution Cells. Right -
Histogram showing the variation in number of Receiver Cells.
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The results of the GS model are shown in Figures 4.19 and 4.20. The relation-
ships are similar to the GLS model. The τ value is similar with a value of 1.47,
Figure 4.20.

This section has so far given a comprehensive set of results for each of the mod-
els. There is a large amount of variation between the models, and to further
understand these differences they have to be put into context of other experi-
ments and real world systems. The value of τ , which is defined as P(k)∼k-τ is
plotted for each model for different sizes, Figure 4.21.

As stated in Section 2.4.3, τ<1.5 for sub-critical networks, τ=1.5 for critical
networks and τ>1.5 for super-critical networks (De Los Rios, 2001). τ for the
GLS and GS models produce networks which on average are critical. For both
models, τ generally decreases for increased system size. Table 4.1 shows a
comparison of τ between the GLS and GS models and other systems of interest.
Table 4.2 shows a comparison of branches and termini with the electro-mechanic
system in Jun and Hübler (2005).

Model/System τ (Range) Reference
GLS Model 1.54 (1.50-1.63) -
GS Model 1.50 (1.46-1.56) -
River System 1.43 (1.41-1.45) (Cieplak et al., 1998)
Electro-mechanical
System

1.14 (1.10-1.33) (Jun and Hübler, 2005)

Internet 1.9 (1.8-2.0) (Caldarelli et al., 2000)

Table 4.1: Value of τ for different models and systems. τ for the GLS and GS
models are taken as the mean of values from Figure 4.21
.

Model/System Branches gradi-
ent

Termini gradi-
ent

Reference

LDA Model 0.026 0.034 -
LSA Model 0.024 0.035 -
GLS Model 0.19 0.20 -
GS Model 0.17 0.18 -
Electro-mechanical
System

0.22 0.22 (Jun and
Hübler, 2005)

Table 4.2: Branches and Termini values taken from Figures 4.17 and 4.20
.
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Figure 4.19: Results from GS Model. Top Left: Number of Branches plotted
against the number of Distribution Cells. The slope gradient is 0.17. Top Right:
Number of Termini plotted against the number of Distribution Cells. The slope
gradient is 0.18. Bottom Left: Average Path Length plotted against the number
of Distribution Cells. The slope gradient is 0.02.
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Figure 4.20: Results from GS Model with 1000 Distribution Cells. Left: His-
togram showing the Number of Distribution Cells Downstream for each Distri-
bution Cell. Right: Probability Distribution for Number of Distribution Cells
Downstream. The slope gradient of the power law curve is -1.47 (τ = 1.47).
Using a xmin value of 1, p-value = 0.15.

Figure 4.21: Value of τ for each of the different models found for a range of
system size.
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4.4.4 Research Question 2 Discussion

Research Question 2 asks whether the models created will have similar proper-
ties to other networks found in nature such as power law scaling.

To answer this question, additional analysis was carried out on each of the
models and then compared with other experimental and empirical data. Two
types of analysis were carried out - probability distribution of cells downstream
and branches and termini analysis.

The LDA and LSA models did not exhibit any reasonably correlated power
law distributions, Figures 4.13 and 4.15. This adds further evidence that the
models do not reflect real-world systems and might only occur in a computer
model. The analysis of the branches and termini found neither model follow a
linear relationship as found in the literature and measure of the gradient was
much different to the GLS and GS models and also the literature, table 4.2.

The GLS and GS models exhibit power law distributions, Figures 4.17 and
4.20. These are generally defined as sub-critical in terms of the τ exponent (De
Los Rios, 2001). The results are comparable to those found in other sub-critical
systems, see Table 4.2. The mean τ value for the GLS and GS models of 1.54 and
1.5 respectively are most similar to river systems (1.43). This reflects the opti-
mality of the systems to a state of minimal dissipation. However, both the GLS
and GS models exhibit a greater range (1.50-1.63) and (1.46-1.56) than river
systems (1.41-1.45). This shows that the structure of the models can vary even
if the optimality is reasonably constant. This might in part be due to the fact
that GLS and GS models have a uniform cell size, meaning that all the network
channels formed are the same size. River Systems on the other hand form chan-
nels of changing sizes dependent on the flow, which can be viewed as much more
efficient, and may lead to τ being relatively constant. The Electro-mechanical
system also exhibits a larger range but with lower values of τ (1.10-1.33) (Jun
and Hübler, 2005). The reason for these lower values are thought to be due to
finite scaling and dynamical effects such as friction stopping the system from
reaching an optimal state (Jun and Hübler, 2005).

There are a few values of τ which are greater than 1.5 for the GLS and GS
models. This is found for smaller systems, where less data is present. For larger
systems the value seems to remain constant.

The analysis of Branches and Termini of the GLS and GS models found com-
parable results to the Electro-mechanical system albeit marginally lower values,
Table 4.2. This again indicates commonalities between these models and other
complex systems. Data on branches and termini is not available for other net-
works.

The analysis of the models show that the GLS and GS network properties have
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many commonalities with other trees which form space optimising networks.

4.5 Conclusion

The previous sections discussed the models in relation to answering the research
questions. This section highlights the limits of the models and whether they can
be validated.

The abstract simulation was built in order to test two alternative models of
growth - local-orientated and global-orientated, which has previously been ap-
plied in Indigenous Irrigation Systems. The global models performed best (GLS
and GS). The GLS model relied on randomness to produce asynchronous be-
haviour whereas the GS model used total information, but at a cost of additional
work. These also had comparable properties to other dissipative tree systems
such as river systems and experiments on electro-mechanical systems.

Real data on the network of Indigenous Irrigation Systems has not been col-
lected. It is uncertain whether physical network data would find comparable
results to the models due to the models only being applied in an abstract space-
optimising framework. Real systems operate in a physical, social, ecological and
geomorphological framework which may give wildly different network properties.
The abstract model also only operates at one scale, the cell size is uniform across
the model. Real-world systems operate at multiple scales across the framework.
Despite all these differences, the model does highlight the usefulness of random-
ness in simulations of natural systems and a network of a spatially constrained
tree which are not commonly built.

The model has not been tested against allometric scaling laws of biology (West
et al., 1997). This is due to these models being reliant on area-preserving prop-
erties as the system branches, which is not present in this model. The model
could however be compared with τ values of biological systems. However, it is
unlikely that the behaviour of an Indigenous Irrigation System will be entirely
like a biological system. Biological systems tend to maximise efficiency, given
they have evolved over billions of years, and the models of them reflect this
(West et al., 1997). An indigenous irrigation system on the other hand may
have only evolved over at most, thousands of years. The channels of indigenous
irrigation systems are not designed to have the most efficient cross-sectional area
for the water to be carried, nor are they area preserving. But, there may still be
aspects of IIS which are common with biological systems, such as space-filling,
and downstream channels are likely to be narrower than upstream channels.
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Chapter 5

Empirical Data and
Analysis on Indigenous
Irrigation Systems

The literature review found open questions regarding the evolution of the phys-
ical IIS network based on certain managerial arrangements. A generative agent
based model was then built to look at the effect of using local or global infor-
mation on the formation of an irrigation network, which seeks to optimise space.

This Chapter presents empirical data which has been collected on IIS in an
effort in answering the following research question:

Do the networks formed by real life IIS share common characteristics to the
simulated IIS, therefore validating the model?

Data has been collected using Remote Sensing, predominantly Google Earth.

5.1 A Remote Sensing Case Study of the Subak
System in Bali, Indonesia

The Subak System, Bali, Indonesia was referenced a lot in the Literature Review,
and the research questions regarding the influence of managerial arrangements
on irrigation network structure were based on models of the Subak System
(Lansing et al., 2009). It therefore seems logical to attempt to map at least part
of the the Subak System in order to analyse the network structure.

A Satellite image of Bali is shown in Figure 5.1. The three volcanic cones
are present in the north central part of the island with the river gorges flowing
down to the sea from them. Figure 5.2 shows the relationship of the Bandjar
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Figure 5.1: Satellite image of Bali. The area enclosed by the white line is where
Subak Culture is predominately located. Taken from Google Earth (November
2019).

(settlements), Subak (agriculture) and river gorges. The gorges are dark green
colour, likely reflecting dense natural vegetation, the Bandjar are brown and
the Subak are light green. This is similar to the explanation provided by Geertz
(1980), with the geomorphology being a controlling factor in the development
of the system.

The area enclosed in Box a, Figure 5.2 is shown in Figure 5.3. This high-
lights the space-filling nature of the Subak System, with the Subak agriculture
using the majority of the land in this area. The bottom image (Figure 5.3) is
an interpretation of the irrigation network, using the image alone. Each of the
Subak terraces is delineated by a line, as each terrace is more or less horizontal,
this approximately maps the contours of the Subak. The river channels (blue)
flow in incised channels on the valley floor. The main irrigation channels (yel-
low) flow down the spurlines, with minor irrigation channels (orange) branching
off down slope to the river channels.
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Figure 5.2: Increased scale image of Subak System. Relationship observed be-
tween the Bandjar (settlement), subak (agriculture) and river gorges in the
North West part of the Subak System. Box a is the location of Figure 5.3.
Taken from Google Earth (November 2019).
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Figure 5.3: Top - Example of the Space-Filling Nature of Subak Agriculture.
Located at Box a on Figure 5.2. Bottom - Interpretation of the Irrigation
Network. Key - Blue: Natural River Channel, Yellow : Main Irrigation Channel,
Orange: Minor Irrigation Channel and Red : Bandjar Settlement. Upstream is
towards the Northwest and downstream is towards the Southeast.
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5.2 A Remote Sensing Case Study of the Qanat
System in Joupar, South-east Iran

The literature review also focused on an example of the Qanat system in the
Middle East including a schematic drawing of a Qanat irrigation network, Figure
2.1 (Bonine, 1996). This irrigation system has many environmental differences
to the Subak System, making it an interesting system to compare with.

Figure 5.4 shows the location of the village Joupar, in South-East Iran. This
has been chosen due to the availability of high-resolution which distinctly show
the Qanat tunnels flowing to the village. It is located 2 km north of a mountain
range with a peak (Kuh-e Jupar) of 4150m and 100km west of the Dasht-e Lut
Desert, which has recorded one of the highest recorded land surface temperature
on Earth reaching 70.7oc (Mildrexler et al., 2011). Figure 5.5 shows the village,
with multiple Qanat tunnels flowing from the mountain range (the source) into
a single joining to form a single tunnel at the village. The village buildings are
predominately located upstream of the irrigated fields.

An interpretation of the irrigation network mapped from the image is shown
in Figure 5.6. There is uncertainty when making this interpretation, some of
the irrigation channels can be mapped with high certainty, whereas other are
obscured by vegetation. Walls and shadows created by walls can also be mis-
interpreted as irrigation channels. Images over multiple years were observed to
increase the certainty of the interpretation.

5.3 Results

The networks shown in Figures 5.3 and 5.6 have been annotated by hand. In
order to analyse them, they have to spatially quantified. This is done by first
pinpointing each node spatially in terms of longitude and latitude (Figure 5.7)
and then adding information on the edges. These were then imported into
Python and plotted using the Networkx module (Figure 5.8).

To compare the networks to the synthetic networks created in Chapter 4 the
same analysis is undertaken. Figure 5.9 shows the power law and histogram for
the Qanat Network. This seems to show a power law relationship, although the
data set is small, and the power law seems to only fit over one order of magni-
tude. The τ value is 1.66 which is greater than 1.5 so the network is categorised
as super critical.

Figure 5.10 shows the analysis for the Subak Network. The power law scal-
ing does not seem to fit at all. It is therefore fair to disregard this as showing
powerlaw scaling behaviour.
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Figure 5.4: Location of Joupar in Iran (Box A), see Figure 5.5. Image taken
from Google Earth, November 2019.

Figure 5.5: An example of a Qanat system, Joupar, South-east Iran. A: The
hilly area to the South is the source area of the system. The village and irrigated
fields are to the North. B: A number of spoil heaps outlining the path of the
Qanat. C: The irrigated fields. Channel paths can be inferred by the linear
features present. Images taken from Google Earth, May 2015.
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Figure 5.6: Top - Increased scale image of the Qanat system, Joupar. Bottom -
Yellow : Interpretation of the Irrigation Network from Remote Sensing. Image
taken from Google Earth, November 2019.
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Figure 5.7: Top - Node Locations for the Qanat Irrigation Network. Bottom
- Node Locations for the Subak Irrigation Network. Image taken from Google
Earth, November 2019.
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Figure 5.8: Quantified Networks using the Networkx module. Top - The Qanat
Irrigation Network. Bottom - The Subak Irrigation Network.
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Figure 5.9: Scaling Analysis of the Qanat Irrigation Network. Top Left: Spatial
Network. Top Right: Powerlaw Distribution for nodes downstream of each node.
The slope gradient of the power law curve is -1.66 (τ = 1.66) with a p-value =
0.11.

98



Figure 5.10: Scaling Analysis of the Subak Irrigation Network. Top Left: Spatial
Network. Top Right: Powerlaw Distribution for nodes downstream of each node.
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5.4 Discussion

Firstly, two small datasets have been analysed in this section. Drawing any sort
of conclusion from these would be unscientific, however I still think it is possi-
ble to discuss these initial findings and offer insights, comparisons and possible
interpretations for differences between the datasets.

An observation based comparison between the Qanat and Subak networks shows
common features but also many differences. Firstly both networks start from
an initial node, they have a single origin. The Qanat network branches out
into many nodes, whereas the Subak network consists of main ‘backbone’ nodes
which feed minor nodes. The Subak network seems to follow a form more similar
to the ordered synthetic networks as shown in Figure 4.9. The Subak network
also does not follow a power law scaling relationship which is to be expected
from such as a network as shown in Figures 4.13 and 4.15, which have main
‘backbone’ nodes. On the other hand the Qanat network shows a power law
scaling relationship, although it is weak and perhaps only present over one order
of magnitude. This is more similar to the global stochastic and global section
models as shown in Figures 4.17 and 4.20.

As discussed previously there are many factors which lead to differences in
the networks formed by Indigenous Irrigation Systems including management,
geomorphology, geology and climate. The two systems could not be located in
more diverse climatic regimes with the Subak being located in the water rich
sub-tropics and the Qanat in an arid desert. The geomorphology is also vastly
different with the Qanat being located on a shallow planar slope and the Subak
on a steep mountain slope with linear gorges formed from intense flooding ac-
tivity. These factors will definitely have an influence on the structure of the
irrigation network formed. The Qanat for example is dug underground from
the source to the irrigation network in order to minimise evaporation. The lin-
ear gorges eroded into the mountain slope of the Subak are likely to lead in turn
to linear irrigation networks which follow the topography. This could be one
strong underlying reason for the ‘backbone’ nodes formed in the Subak.

The space optimising properties were explored in greater detail for the cel-
lular simulation networks in Chapter 4. As the network was simulated on an
array this allowed for the detailed analysis of space optimising properties and
an analytical solutions to be obtained. The network information obtained in
this chapter is in the form of node and edge data. This has not been converted
to cellular data making it more difficult to measure properties of space opti-
misation. This could be done in the future to allow for further information on
optimality of the real world networks and validate the simulated models.

Finally, the influence of managerial arrangements can be discussed. The syn-
thetic simulations generated in Chapter 4, rely solely on these. Parallels between
them and the empirical data have already been drawn. However some of these

100



parallels might be due to coincidence and actually be due to other influences
such as geomorphology. From a sociological perspective, previous research has
found that the Qanat system is related to a more individualistic culture, and
the Subak to a more community based culture (Geertz, 1972). This may also
have an influence on the network formed. To argue this, it is worth questioning
why the Qanat which is on a relatively planar slope, does not form a network
with strong ‘backbone’ nodes, but instead one that seems to grow based on
local rules. An explanation is that due to the limited water supply, the network
has grown relatively slowly over time, dependant on increases in supply such as
adding further feeder channels to the network. The supply of the water, being
a necessity to those in the system leads to individuals or families controlling
supply to parts of the network allowing it to grow over time based on agree-
ments. The network is therefore not pre-planned, and extended based on local
conditions in a similar fashion to the random or selection networks in Chapter
4. The Subak has strong geomorphological controls on its formation, but it can
also be argued that due to the plentiful supply of water and community based
culture, a irrigation network can be pre-planned forming one which is more or-
dered. This would explain why the Qanat Network follows power law scaling to
a greater degree and the Subak does not follow it whatsoever.

5.5 Conclusion

The discussion of the reasons for the differences between the Subak and Qanat
irrigation systems are preliminary, and the findings are by no means conclusive.
However, I think the differences that have been found so far offer appetite to
gather further data and analysis to see if interpretation provided in the dis-
cussion holds for further networks. Ground-truthing may also be required to
validate the network structure. This will offer insight into the accuracy of re-
mote sensing methods.
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Chapter 6

Summary and Further
Work

6.1 Summary

This thesis has aimed to explore the network properties of Indigenous Irrigation
Systems to see if the managerial arrangements of the system lead to different
network characteristics. To undertake this aim, simulation models of space op-
timising networks were constructed using different managerial rules. Real world
IIS network data was then collected remotely from two different systems and
compared to one another and the properties of the simulated networks.

The simulated networks focused on the effect of local, global, deterministic and
stochastic rules on the emergent properties of the network structure. These par-
ticular rules were chosen given discussions in the literature over whether such
systems rely on local initiatives or centralised planners (Lansing et al., 2009).
The space optimality properties and comparisons to other similar networks in
nature were used to suggest the likelihood of each network type occurring in re-
ality. Networks which relied on local deterministic rules tended to result in low
space optimising properties. Planned networks and globally selective or globally
stochastic networks gave much greater space optimising properties. But these
networks also differed in terms of scaling. Planned networks tend to not follow
power law scaling, whereas globally selective and stochastic networks do, and
also in a comparable manner to systems in nature such as rivers.

The data collected from the real world IIS networks was analysed using the same
scaling tools as the simulated networks. This found that the Qanat system fol-
lowed a power law (more closely), and the Subak system did not. This could be
an indication that the Qanat system follows more globally selective/stochastic
managerial rules whereas the Subak system follows more planned managerial
rules. Although given the large ranged of factors influencing network formation
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this result is not conclusive. There is however appetite to further explore these
factors.

6.2 Further Work

The literature review highlighted other research gaps which have not been an-
swered in this thesis. These are as follows:

• There is no recognised model for how IIS tend to grow, do they follow a
biological type sigmoidal curve or sociological expansion? Is this related
to the managerial arrangements?

• Previous studies have looked at the development of inequality in simplified
game-theoretic models of IIS, but not for larger network based simulations.

• No quantitative models have been built to look at the effects of globalisa-
tion on IIS.

A lot of the data that is required to address these research gaps is difficult to
attain. For example growth of IIS would require age dating. Whilst there has
been some age dating collected from the Subak system (Lansing et al., 2009),
this is not conclusive and is unlikely to give detailed information about the type
of growth experienced by IIS. Information on the development of inequality is
also difficult to attain as it partly requires field data collection and the effects
of globalisation and outside forces on these systems are likely to have influences
on their current form.

104



Bibliography

Adamatzky, A. (2010). Game of Life Cellular Automata. Springer-Verlag, Lon-
don.

Adamatzky, A. (2018). Generative complexity of Gray–Scott model. Commu-
nications in Nonlinear Science and Numerical Simulation, 56:457–466.

Adams, W. M., Potkanski, T., and Sutton, J. E. G. (1994). Indigenous irrigation
Tanzania in Sonjo ,. The Geographical Journal, 160(1):17–32.

Albert, R., Jeong, H., and Barabási, A.-L. (1999). Diameter of the World-Wide
Web. Nature, 401(6749):130–131.

Allesina, S. and Tang, S. (2011). Stability Criteria for Complex Ecosystems.
Nature, 483(7388):12.

Alstott, J., Bullmore, E., and Plenz, D. (2014). Powerlaw: A python package
for analysis of heavy-tailed distributions. PLoS ONE, 9(1).

Anderies, J. M. and Janssen, M. a. (2011). The fragility of robust social-
ecological systems. Global Environmental Change, 21:1153–1156.

Araral, E. (2013). What makes socio-ecological systems robust? An institutional
analysis of the 2000 year-old Ifugao society. Human Ecology, 41(6):859–870.

Axelrod, R. and Dion, D. (1988). The Further Evolution of Cooperation.
242(4884):1385–1390.

Axelrod, R. and Hamilton, W. (1981). The evolution of cooperation. Nature,
292(5821):291–292.

Bak, P., Chen, K., and Creutz, M. (1989). Self-organized criticality in the ’Game
of Life’. Nature, 342:780–782.

Bak, P. and Paczuski, M. (1995). Complexity, contingency, and criticality. Pro-
ceedings of the National Academy of Sciences of the United States of America,
92(15):6689–6696.

Bak, P., Tang, C., and Wiesenfeld, K. (1987). Self-organized criticality: An
explanation of the 1/f noise. Physical Review Letters, 59(4):381–384.

105



Baker, M. (2005). The Kuhls of Kangra: Community-Managed Irrigation in the
Western Himalaya. 2005:151–154.

Bar-Yam, Y. (1998). Dynamics of Complex Systems (Studies in Nonlinearity)
Variational Principles and the Numerical Solution of Scattering Problems,
volume 12.

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random net-
works. Science, 286(October):509–512.
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Steffen, W., Persson, Å., Deutsch, L., Zalasiewicz, J., Williams, M., Richardson,
K., Crumley, C., Crutzen, P., Folke, C., Gordon, L., Molina, M., Ramanathan,
V., Rockström, J., Scheffer, M., Schellnhuber, H. J., and Svedin, U. (2011).
The anthropocene: From global change to planetary stewardship. Ambio,
40:739–761.

Steffen, W., Richardson, K., Rockström, J., Cornell, S., Fetzer, I., Bennett, E.,
Biggs, R., Carpenter, S. R., de Wit, C. a., Folke, C., Mace, G., Persson, L. M.,
Veerabhadran, R., Reyers, B., and Sörlin, S. (2015). Planetary Boundaries:
Guiding human development on a changing planet. Science, 347(6223).

Strogatz, S. (2015). Nonlinear dynamics and chaos: with applications to physics,
biology, chemistry, and engineering. CRC Press, Boca Raton, 2nd edition.
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Appendix A

Supplementary Information
for Chapter 4

This Appendix provides Supplementary Information on the methods, discussion
and analysis for Chapter 4 to allow for greater clarity and repeatability.

A.1 Supplementary Methods

The code for the simulation model was written in Python 3.7.3 using Spyder
3.3.3 Python Development Environment (https://www.spyder-ide.org/). It
was written from scratch without extending previous code, but required many
revisions to refine it to the current version. A number of Python modules are
used to increase the speed of the simulation (numpy), plot data (matplotlib),
store model outputs (pandas) and analyse the data (sklearn, scipy, powerlaw).

All versions of the code use a 2 dimensional array to map the spatial prop-
erties of the network. Earlier versions mapped directly onto an array, whilst
later versions store information in class instances as the model became more
complicated, which made the simulation more like an Agent Based Model. This
is also more efficient than earlier versions which iterated over the whole array
each time-step which can be very computationally expensive particularly if the
array is large, however instead the simulation iterates over the list of agents. So
the computation time relates to the number of agents in the list and not the
size of the area used to map spatial properties. This also means the array can
be much larger than the number of agents so the boundary conditions do not
have to be considered.

The parameters for the model are given in Table A.1. Definitions and explana-
tions for r and the model type are given in the main text.
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Parameter Definition Range in Model
As Size of spatial array 100-200
D0 Location of first Distribution Cell Usually As/2
NM

ij Size of Moore Neighbourhood of each
Distribution Cell

8

NV
ij Size of Von Neumann Neighbourhood

of each Distribution Cell
4

Dmax Maximum number of Distribution Cells 100-2000
M Model Type LDA, LSA, GLS,

GS

Table A.1: Parameters for the Model in Chapter 4
.

To aid in communicating the processes in the model, pseudo-code is used. This
is written in a series of steps which are implemented in order when the simulation
is executed. The Pseudo-Code for the model is as follows:

1. Parameters initialised: As, D0, NM
ij, NV

ij, Dmax, M. The lists to store
distribution cells and receiver cells initialised).

2. Classes to hold information are initialised. Two types: Distribution Cells
and Receiver Cells. Each Class Instance of Distribution Cell has the fol-
lowing class objects: (position, path length, upstream distribution cell,
downstream distribution cell(s), total distribution cells downstream). Each
Class Instance of Receiver Cell has the following class objects: (position,
associated distribution cell, id).

3. DateFrame initialised to store model output.

4. (If the code is running multiple instances of the model with different pa-
rameters, for example the number of agents, then an additional loop is
added for multiple simulations.)

5. The initial Distribution Cell (Location based on Parameters). A class
instance is added for this Distribution Cell.

6. Function implemented to add Receiver Cells for this Distribution Cell.
Checks the cells in the Distribution Cell neighbourhood, adds Receiver
Cells in empty cells. Class instances for each Receiver Cell are added.

7. Loop implemented to add Distribution Cells until the maximum number
is reached. A new AgentsExpand list is initialised. Distribution Cells are
added to the list as they are added to the network. As the following
functions are implemented some Cells are removed from it.

8. A variation of the function is used depending on the model (LDA, LSA,
GLS, GS). All the different models check to see if adding distribution cells
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to the Von Neumann neighbourhood of the current Distribution Cells in
the network lead to an increase in the number of receiver cells for the
network, and will only add a distribution cell if it leads to an increase. The
variation between the models depends on the Distribution Cell selected to
be added.

9. For the LDA and LSA models, the Distribution Cell with the lowest Path
Length is selected. If more than one Distribution Cell in the Von Neumann
neighbourhood increase the amount of receiver cells, then the LDA model
selects based on predefined order priority, whereas the LSA model selects
at random.

10. The GLS model does not rely on the lowest path length, it will select any
Distribution Cell and any direction for that Distribution Dell at random
which increases the number of receiver cells.

11. The GS model iterates through all distribution cells in the AgentsExpand
list adding the Distribution Cell and direction which increases the number
of Receiver Cells by the most. If more than one Distribution Cell increase
the number by the same maximum amount, then one is selected at random.

12. As each of these models iterates through the Distribution Cells, when one
is added it is also added to the AgentsExpand list, but if when tested a
Distribution Cell cannot increase the number of Receiver Cells at all, then
it is removed from the AgentsExpand list. This is particularly important
for the GS model as it computationally more expensive. When a new
Distribution Cell is added, a new class instance is added, and new class
instances for the associated receiver cells too.

13. When the number of Distribution Cells reaches the the maximum number
as set out in the parameters, the loop is exited, data collected into the
DataFrame, graphs plotted and the simulation is ended.

The full code can be found at https://sites.google.com/site/alexjohnstokes/
home/appendix-a. The code contains many outputs, such as graphs, databases
and animations.

A.2 Model Testing

All the model functions have been thoroughly tested, so the number of bugs
if any are assumed to be minimal. Tests involve running parts of the code
separately with a small number of Distribution Cells in which the output is
known. Once the output is as expected it can be scaled up to larger numbers
of Distribution Cells.
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A.3 Derivation of Generalisation in Equation 4.6

Equation 4.6 is a generalisation for the number of Receiver Cells (NRC) in a
maximum space-optimising network, written in terms of the number of Distri-
bution Cells (NDC) and the Distribution Cell neighbourhood size (r).

Given all space optimising networks (r ≥ 1) will grow linearly if the network
is grown with maximum efficiency, the linear equation for each network can be
found by the first two steps of each network.

For r=1,
NDC = 1, 2, 3, 4, 5
NRC = 8, 10, 12, 14, 16

For r=2,
NDC = 1, 2, 3, 4, 5
NRC = 24, 28, 32, 36, 40

For r=3,
NDC = 1, 2, 3, 4, 5
NRC = 48, 54, 60, 66, 72

Working leading to General Solution

Equation 4.3 gives an analytical solution for r=1
NRC=2NDC+6
Equation 4.1 gives the size of the Moore neighbourhood in terms of r as (2r+1)2.
Substituting this in leads to:
NRC=2NDC+(2r+1)2

For r=1,
NDC = 1, 2, 3, 4, 5
NRC = 11, 13, 15, 17, 19

This result is greater than that found in the model. But it still finds linear
growth. This is due to the fact that in this model as DC are added, RC cells
are removed and that each DC added will not add the full Moore neighbourhood.

By adding an extra term, the correct solution can be found:
NRC=2NDC+(2r+1)2-(2r+1)

However to find a general solution (for any value of r) another extra r has
to be added:
NRC=2rNDC+(2r+1)2-(2r+1).

To test the general solution equation. The model has been modified to allow
for experiments with r ≥ 1. By testing only the maximum spacing optimising
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GS model, this can be compared to the analytical general solution. Table A.2
shows that the analytical and simulated solutions produce exactly the same re-
sults. For reference the final output of each of the simulated solutions is shown
in Figure A.1.

r Number of Receiver Cells (Ana-
lytical Solution)

Number of Receiver Cells (Simu-
lated Solution)

1 206 206
2 420 420
3 642 642
4 872 872
5 1110 1110
6 1356 1356
7 1610 1610
8 1872 1872
9 2142 2142
10 2420 2420
11 2706 2706
12 3000 3000

Table A.2: Comparison between analytical and simulated solutions for the GS
model. The value of r is changed for each simulation but the number of distri-
bution cells is kept constant at 100.
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Figure A.1: Output of each of the simulated solutions from Table A.2
.
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