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ADAPTIVE DYNAMIC PACKET ROUTING ON INTERNET NETWORKS BASED

ON REINFORCEMENT LEARNING APPROACH

by Tanyaluk Deeka

In this thesis, we concern the problem of packet routing on the large scale networks like

Internet which is a complex optimization due to a fast-growing, increasingly complex

network of connected devices whereas the network models are conceptual. First, three

synthesis Internet network models are proposed which are a random network, a random

network with preferential attachment (PA) and a heuristically optimal topology (HOT)

models. While Internet network models are constructed based on simplistic connections

between nodes and connections formed sequentially by preferential attachment, the HOT

model enhances to be more reflective of the Internet’s router level topology. Since,

all traffic on the network has to be transmitted by traveling through interconnected

routers. In addition, the volume of traffic has an effect on traffic congestion on different

network connectivity as a result of complex routing optimization problems. Hence,

Reinforcement learning (RL) is applied in this thesis because it has been introduced to

solve complex and adaptive optimization problems. In particular, Q-routing which is

an application of RL, is interested in the routing problem, but it is successful in only

small various distributed wireless networks. Hence, the size of network is extended to be

more realistic, and connectivity properties as seen in the Internet is represented as the

aim of Q-routing on these networks is to support massive number of users. In addition,

the Q-routing in this thesis is also applied on realistic network; JANET. Therefore, the

results of Q-routing on the large scale network like Internet are represented by dealing

with adaptive packet routing is embedded on all nodes in these networks which aims to

optimize routing problem. Furthermore, the effect of the different network connectivity

is also represented in how much the Q-routing can improve the network performance

when the networks are subject to increasing amounts of traffic.
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Chapter 1

Introduction

1.1 Background

Routing is a common optimization problem with networked traffic systems, ranging

from systems for delivery of goods over road networks to communicating packets of

data over electronic networks. In communication networks, router level algorithms are

usually designed to be static, with routing tables stored at every node fixed by computing

shortest paths between pairs of source and destination nodes (Tanenbaum and Wetherall,

2011). Dijkstra’s shortest path algorithm and the distance vector routing algorithm are

common variants of optimization algorithms to compute such routing tables.

With the need to operate networks at ever increasing traffic loads, and the increasing

use of more flexible network environments such as wireless communication systems (and

the recently popularized notion of the‘Internet of Things’ (Atzori et al., 2010)), there is

a need for more adaptive (or dynamic) approach to routing in which traffic and network

connectivity changes can dynamically determine the routing table. Such thinking leads

to more complex optimization problems.

Over the years, interest in the use of artificial intelligence techniques to solve complex

and adaptive optimization problems has attracted much interest. Early work in this area

includes the use of the Hopfield network as a basis to formulate the Travelling Salesman

problem (Hopfield, 1984; Aiyer et al., 1990; Smith, 1999). Reinforcement learning, a

branch of machine learning (Sutton and Barto, 2011), has been a particularly successful

technique for formulating and solving difficult optimization problems. An example of

this is the elevator arrival optimization formulated as a learning problem in (Crites and

Barto, 1996). Moreover, it applied to group image elements on recurrent neural networks

for providing a relationship between contour linking and curve-tracing (Brosch et al.,

2015).

1
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In the context of routing in communication networks, Boyan and Littman introduced Q-

routing, an application of reinforcement learning, in its original formulation as Watkin’s

Q-learning Watkins and Dayan (1992). This work demonstrated that an adaptive routing

table could be learnt and the performance of the network as measured by the average

time delay to deliver packets can be improved under heavy loads. However, Boyan

et al.’s demonstration was on a very small network of 36 nodes the topology which

resembled a grid. Furthermore, the Q-routing algorithm has been proposed on small

various distributed wireless networks which the size of these networks less than 250

nodes in order to improve network throughput and reduce path energy cost (Haraty and

Traboulsi, 2012; Maleki et al., 2014; Bhorkar et al., 2012; Lin and van der Schaar, 2011;

Santhi et al., 2011; Hu and Fei, 2010; Dowling et al., 2005).

While Boyan et al.’s work (Boyan and Littman, 1994) is over two decades old, subsequent

work on the topic by several authors neither addressed larger networks nor topologies

with different connectivities. Since, communication networks have to increase its sizes,

and develop its connectivity structures in order to support massive number of users.

Hence an empirical evaluation of the performance of Q-routing on networks of realistic

sizes and connectivity properties as seen in the Internet is in order. This is the task

undertaken in the present study.

In this thesis, we consider three types of network topologies with the number of nodes

set at 500 and the number of connections in the network set at 5000. For a network of

this size, we designed it based on IBM red book which claimed that 500 nodes are large

size networks (Murhammer et al., 1999). We construct different network topologies with

random connections between nodes and connections formed sequentially by preferential

attachment (Batagelj and Brandes, 2005). We also consider a novel network architec-

ture, known as a heuristically optimized topology due to Li et al (Li et al., 2004) which

is designed to be more reflective of the Internet’s router level topology than a prefer-

ential attachment network. Since, all traffic from the network edge has to transmit via

interconnected routers. Further, we consider a realistic network, the Janet network,

linking academic establishments in the United Kingdom. By doing these, we show in

this thesis that the Q-routing approach scales to larger problems of adaptive routing.

Our comparison also shows the effect of the different topologies in how much Q-routing

can help improve performance when the networks are subject to increasing amounts of

traffic.

1.2 Internet Routing Problem

A communication network consists of nodes which share information among them via

packet transmission (Tanenbaum and Wetherall, 2011). However, all pairs of nodes are

not directly connected as a result of taking time to deliver a number of packets because
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they are delivered by taking a number of hops over intermediate nodes. Since, the packet

is transmitted between source and destination node on the network. Hence, there are

two major factors which have an effect on the total packet delivery time which are the

waiting time and speed of the link (Tanenbaum and Wetherall, 2011). The first factor is

waiting time especially in the intermediate nodes as many packets have to spend their

time in the queues of these nodes while they are traveling from source to destination.

Thus, the optimal routing should consider how to select nodes for packet transmission

based on a minimum packet delivery time which those nodes should take a minimum

packet delivery time, and also have small queues for waiting to be served. The latter

factor depends on the speed of the links connecting between node and its neighbors

which are not always equal (Tanenbaum and Wetherall, 2011). In addition, the length

of the route also has an effect on packet traveling time through the network, and it will

be a critical route because of traffic congestion.

Since, there could be multiple paths for packet transmission between source and its

destination as a consequence of the total packet delivery time which reflects on routing

policy selection. Thus, the optimal route has to consider the minimal total delivery

time from a given source node to a given destination node in the network which should

include the queue lengths of all their intermediate nodes. For example, the Dijkstra

shortest path algorithm is applied to find the best route by selecting the minimal total

packet delivery time of a packet from source to destination (Dijkstra, 1959). However,

it is not an appropriate approach in practice way because the entire routing information

of every nodes on the network being employed for making each routing decision.

Hence, each node on the network should have a process to compute optimal route to

reach its destination before sending a packet out. In addition, an individual source node

can select optimal routes to send packets, if it knows complete information on the entire

network. In practice, some links or nodes on the Internet networks might go down and

come up because the topology of the network is not fixed at all times. In addition, there

is a significant overhead as each packet carries a lot of routing information. Hence, a

selection of optimal routes based on knowing entire of the routing information on the

network is not beneficial for the practical routing on the Internet networks.

Moreover, the intermediate nodes should make routing decisions based on their local

routing information for forwarding packets to reach a given destination as quickly as

possible via a believable neighboring node. There are some requirements that have been

identified for this approach. For example, each of its neighboring nodes in the network

can estimate delay time to send a packet via itself. A node should have mechanism

to make routing decisions based on current traffic condition of the network that the

updating of routing information mechanism should reflect in the overview traffic on the

network.
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Thus, it has led to adaptive routing algorithms such as Q-Routing for making local

routing decisions to obtain optimal routes especially on dynamic changing networks

(Boyan and Littman, 1994). In addition, the local routing information is applied to get

overview of the traffic on the network, and make a routing decision in order to get a

routing policy.

1.3 Motivation and Research Challenges

Although, the shortest path is the simplest routing algorithm to find minimum routes

for packet transmission, it is suitable just only static network which should have not

traffic congestion. However, if the number of packets are introduced increasingly into

the network while nodes on the network can serve these packets at a constant rate which

is lower than an arrival rate, and leads to have traffic congestion because the number

of packets are hold on the intermediate nodes at the same route for packet serving, and

leading to take a longer time for packet transmission.

Hence, adaptive routing algorithms are appropriate to be employed for avoiding traffic

congestion along the popular route, and they should find multi-paths for packet trans-

mission which should take a minimum time for packet transmission. Moreover, the

selected route may be take a longer hops than the popular route, but the number of

packets can be served suddenly without waiting time.

According to Boyan and Littman (1994), they suggested that each node in dynamic

routing environment should have mechanism to maintain its routing information in order

to make routing decisions for packet transmission, and its routing information should

be updated based on its current traffic condition on the network.

Reinforcement learning (RL) is one of optimization methods which can achieve its goal

by observing environment, and then giving reward feedback signal to make decision.

There are many researchers interested in applying RL on various optimization problems

such as routing optimization on distributed wireless network (Al-Rawi et al., 2015). For

example, Bhorkar et al. (2012) claimed that a RL framework can apply on wireless ad

hoc networks which

In this thesis, we will motivate to apply Q-routing on various large network connectivity

like Internet networks which aims to determine optimal routes for packet forwarding

which should learn to avoid traffic congestion while there are large number of packets

are introduced to the network continuously.
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1.4 Research Contributions

In this thesis, we propose the Q-routing on large scale synthetic Internet networks which

has not been addressed, and apply to a real United Kingdom (UK) education network;

Joint Academic Network (JANET). The main contributions of this thesis are summa-

rized as follows:

• First, the Q-routing is proposed on small scale grid and random networks which

a number of nodes is less than 80. These networks are employed to study and

understand the process of routing making decision of the Q-routing for updating

its routing tables.

• Second, the Q-routing can converge on the shortest paths under no traffic conges-

tion after it learns and explores until it reaches convergence time.

• Third, the Q-routing is proposed on large scale Internet networks which are three

different network connectivity; random network, random network with preferential

attachment (PA), and Heuristically optimal topology (HOT). These networks are

simulated for exploring possibility of the Q-routing to find optimal routes for packet

transmission on different structural network connectivity. The results show that

the Q-routing can decrease packet traveling time on these networks, whereas each

pair of nodes on these network is connected by different ways.

• Fourth, the Q-routing is investigated on the real UK education network; JANET.

Our studies show that the Q-routing is highly flexible for sustainability high num-

ber of incoming packets. In addition, it achieved its goal to reduce delay time

consuming of packet, and having minimum queue length distribution against the

shortest path Dijkstra.

1.5 Thesis Organization

The rest chapters are summarized as follows.

• Chapter 2 provides the background review of the adaptive routing algorithms,

models of Internet network, and queueing theory which is used to simulate in

this thesis. In more detail, there are many adaptive routing algorithms apply on

communication networks which we are interested in the Q-routing. In addition,

the Q-routing has been successful in routing schemes on communication networks

more than two decades. Hence, the Q-routing is applied on this thesis for dealing

routing problem on the Internet networks which has not been addressed. Moreover,

the Internet network models are considered in order to built the network nearly the
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realistic one which we consider three different network connectivity namely random

network, random network with preferential attachment (PA), and heuristically

optimal topology (HOT). In addition, basic queueing model is described in this

chapter to understand a relationship among incoming packets, queue and server

which are applied for analysis performance of the Internet networks by considering

average amount of time for packet transmission.

• In chapter 3, we propose the Q-routing on two small grid and random network

topologies under different traffic conditions for examining adaptive packet routing

through the network. In addition, the small networks can help us to understand

the process of the Q-routing using routing information feedback signal for changing

routing tables based on traffic conditions. Moreover, the performance of the Q-

routing in terms of delay time and distribution of queue length is represented in

this chapter.

• In chapter 4, the network topologies are scaled up to be large scale networks which

each pair of nodes is connected by different ways in order to study performance of

the Q-routing. In more detail, we compare the performance of Q-routing in terms of

delay time and distribution of queue length on three different network connectivity

namely random network, random network with preferential attachment (PA), and

heuristically optimal topology (HOT). Each network consists of 500 node, and 5000

links. In addition, we also consider the Q-routing under different traffic conditions.

• Chapter 5, we propose the Q-routing on the real UK education network; JANET

under different traffic conditions. In addition, the performance of the Q-routing

in terms of delay and distribution of queue length is represented in this chapter.

• Chapter 6, we propose the Pareto Q-learning on bi-objective problem; the Deep Sea

Treasure World. In addition, the performance of the Pareto Q-learning in terms

of minimize time consuming and maximize the value of treasure, is represented in

this chapter.

• Finally, Chapter 7 summarizes this thesis and suggests some possible future re-

search areas.
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Figure 1.1: A summarizing flow chart of the thesis.

Concisely, Figure 1.1 summarizes the flow of this thesis where the Q-routing is proposed

on three scenarios which are represented in chapter 3, chapter 4 and chapter 5, and

then providing more information about Q-learning on multi-objective in chapter 6, and

finally conclusions and future works are drawn in chapter 7.





Chapter 2

Literature Review

This chapter provides a background overview for Reinforcement Learning (RL), par-

ticularly in routing scheme as well as Q-routing. In addition, topological structure of

Internet networks are also described in detail to understand how its connectivity has

an effect on network performance. Finally, queueing network models are explained how

packet arrivals, and departures including waiting and service times which are applied to

simulate traffic routing in the Internet networks.

2.1 Introduction

Routing on communication networks is an optimize problem which still has been devel-

oped in order to achieve network performance, and it is also employed to solve vehicle

and transportation problems (Geisberger et al., 2012). In this thesis, we consider only

network layer on the Internet networks including forwarding and routing functions. In

addition, forwarding function is different from routing function which the first one con-

siders only a packet which is sent from an arriving link to a leaving link, and the latter

one concerns with packet traveling between source and destination through entire routers

on the network (Kurose and Ross, 2010). Since, the network layer involves packet for-

warding, and determining optimal paths. Hence, a routing algorithm has an important

in order to determine optimal paths for packet forwarding in order to achieve network

performance. Considering intradomain routing on distributed networks, there are two

main types of routing algorithms namely link-state and distance vector algorithms which

are employed to determine optimal paths for packet forwarding (Kurose and Ross, 2010).

Dijkstra’s algorithm is an example of link state routing algorithm which has been em-

ployed more than a half century (Dijkstra, 1959), and its aim is finding the shortest path

for packet traveling between source and destination entire the network as a result of a

minimal amount of packet traveling time (Hayes, 2013). However, the Dijkstra’s algo-

rithm always sends packets via the shortest path as well as a popular path with causing

9
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traffic congestion if there are large number of incoming packets increasing continuously,

and wasting their time to be served. Hence, Boyan and Littman (1994) introduced

Q-routing which packet routing can learn and adapt to changing environment such as

topology or traffic conditions. In addition, the Q-routing has been employed on various

type of networks as shown in Table 2.1 excluding large scale networks.

According to ability of the Q-routing, this algorithm and a general overview for RL are

provided in next section. In addition, topological structure of Internet networks and

the queueing network models which are applied in this thesis, are also described in the

following sections.

Type of networks Authors Type of networks Size of network
topologies (nodes)

Static ad hoc Bhorkar et al. (2012) Grid 16, 36
networks Random 16, 36

Lin and van der Schaar (2011) 3-hop 7
network
4-hop 9
network

Mobile ad hoc Santhi et al. (2011) Random 25
networks Nurmi (2007) Random 100

Dowling et al. (2005) Random 50
Chang et al. (2004) Centroid 26

Random 26

Wireless sensor Forster and Murphy (2007) Random 50
networks Hu and Fei (2010) Random 125, 250

Liang et al. (2008) Random 40
Dong et al. (2007) Grid 100

Random 100
Zhang and Fromherz (2006) Shooter 56

localization

Cognitive radio Xia et al. (2009) Fixed 10
networks Al-Rawi et al. (2014) Fixed 10, 19

Di Felice et al. (2010) Random 100

Delay tolerant Rolla and Curado (2013) Random 20
networks Urban- 20

mobility
Elwhishi et al. (2010) Community 100

based mobility
model

Table 2.1: Summary of routing schemes on varied scale networks based on RL.
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2.2 Reinforcement Learning

Reinforcement learning (RL) is a class of solution methods which solves its problems

by learning, and mapping situations to actions in order to achieve its goal (Sutton and

Barto, 2011). In addition, RL is one type of machine learning which differs from super-

vised and unsupervised learning because it can learn to make decisions after interacting

with environment without predictive models or training descriptive models (Sutton and

Barto, 2011). Since, RL has to use reward signal to make decision to achieve its goal.

Hence, exploration and exploitation are important for finding many actions which have

an effect on obtaining reward signals. For example, if RL uses only exploration to se-

lect actions, it takes a chance on getting suboptimal reward signals because it has not

followed the effective actions which have been found in the past. In contrasting, if RL

exploits only the already known actions, it has a few chances to get better reward sig-

nals in the future, and especially in dynamic environment. Hence, balancing between

exploration and exploitation have an important role to obtain optimal rewards which

have an effect on achieving goals.

2.2.1 Major Elements of Reinforcement Learning

Since, RL has the task of mapping situations to actions which involves fours major

elements to represent relationship between a learner and decision maker. In addition,

these elements of a RL system consist of a policy, a reward signal, a value function, and

a model of the environment (Sutton and Barto, 2011), and they will be provided in a

brief detail as follows:

• A policy defines a way of agent learning interacts with actions and environment at

a given time until it has been officially agreed and chosen to represent an agent’s

behavior. For example, policy based on routing information where routers (agents)

can provide multi paths under different traffic conditions in order to satisfy quality

of service as a result of high network performance.

• A reward signal defined the goal in RL problem which can be a positive or a

negative feedback from the environment to the agent depending on its objective.

In addition, the maximum total rewards occurs when the agent hits its goal over

the long run. For example, routing information under different traffic conditions is

used to be a reward signal on a RL routing problem which has an affect on routers

(agents) to make a routing decision in order to improve network performance in

terms of minimize packet traveling time.

• A value function defines a function which represents a value of agent to predict an

outcome by combining the value of current state with an estimated value of the

next state.
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• A model of the environment is defined based on methods for solving RL problems

which is divided into two methods namely model-based and model-free methods.

In addition, a model-based method provides a model which represents how the situa-

tion changes from current state to another as known as the state transition, and the

reward structure of the environment (Gläscher et al., 2010). Afterwards, actions will be

evaluated by using this model. In contrast, a model-free method uses experience which

has an affect on situation to build the form of a reward prediction in order to obtain

actions (Gläscher et al., 2010). For example, Samejima and Doya (2007) suggested a

model-based RL method in the area of neurophysiology. Strehl et al. (2006) applied a

Probably Approximately Correct (PAC) model-free RL method which is called delayed

Q-learning, and it shows that computation cost requirement is much less than a previous

PAC based on model-based RL method.

2.2.2 Temporal-Difference Learning

Temporal-Difference (TD) learning is a method in the RL which combines ideas of Monte

Carlo and dynamic programming (DP) for solving the prediction problem by learning

directly from its experience without a model of the environment (Sutton and Barto,

2011). In addition, TD updates its estimated values based on the current values which

are learned without using the ultimate outcome like DP (Sutton and Barto, 2011). Due

to, TD is difference in time which can consider only a period of time between the previous

event and the current event to predict what will happen next. Hence, some experience

which had been learned in that period of time in TD learning process can provide a

policy to solve the prediction problem as a brief detail will be given in the next section.

2.2.3 TD Prediction and Advantages

Since, the Monte Carlo method has to wait reward signals until the end of episode for

returning information in order to update states of the system, and then provide an

optimal policy (Sutton and Barto, 2011). Moreover, the DP method has to know a com-

plete and accurate model of the environment to calculate actual values which is cause of

computational expense, and it may be not suitable for large environments. Hence, the

TD learning method have an advantage over the above mentioned methods which states

can be updated by waiting only one time step to return information back to them. In

addition, it can learn to find the optimal policy by using an estimated value function

without a complete and accurate model of the environment. Due to, the TD learning

methods can be classified according to the way of policy improvement which is called

on-policy or off-policy. Sarsa which is an on-policy TD control method, was introduced

by Rummery and Niranjan (1994) for policy improvement. Furthermore, it is called an
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on-policy because it continually update the values of state-action pairs over changing the

state transitions which the selected action has to return a maximum reward signal back

to the state (Sutton and Barto, 2011). In this thesis, we are interested in an off-policy

method which is focused on a state-value function rather than an action-value func-

tion. In addition, an well known off-policy TD control method is Q-learning (Watkins

and Dayan, 1992). Furthermore, the advantage of Q-learning is only considering the

maximum Q-value of the next state over all the possible actions during updated value

iteration to provide optimal policy which is the minimal requirement to be guaranteed

to discover an optimal behavior (Sutton and Barto, 2011). Since, the Q-learning can

provide optimal policy, and discover optimal behavior without a complete and accu-

rate model of environment which leads to many applications of Q-learning such as deep

learning by LeCun et al. (2015). In this thesis, the Q-learning was applied for routing

scheme on the Internet networks which the method is called the Q-routing, and it is

introduced in the next section.

2.3 Q-routing

Q-routing was first introduced and successful over two decades by Boyan and Littman

(1994) to solve routing problem in a small dynamically changing network. In addition,

the results show that it can select a path which contains minimize total delivery time,

and it is robust while the number of packets is increased continuously into the network.

Moreover, the Q-routing has been employed on various network connectivity as men-

tioned at the table 2.1, but it has not been employed on large scale networks like Internet

networks which inspires us to employ it on this network size.

Since, the aim of Q-routing is routing packets can learn routing policy through the

network based on RL method for minimizing packet delivery time. Furthermore, the

regular routing tables are replaced by the Q-value tables which reflect on current traffic

information, and then use this information to be reward signal in order to make deci-

sion, and finally get a routing policy. In addition, the interaction between router on

communication networks based on RL method can be represented as Figure 2.1.

Furthermore, the Figure 2.1 represents a straightforward framing of learning to solve

the routing problem among routers on the network topology which every router on the

network is an agent to learn, and make routing decision based on routing information

to reduce packet delivery time to a minimum. Due to these interaction between router

and its environment is ongoing that leads router selects its neighbors which respond to

the network, and then provide new routing information back to the router. Moreover,

determined reward signals as a task which respond to its environment, is one example

of the RL problem (Sutton and Barto, 2011). In routing scheme in the RL problem,

reward signal is routing information which receives from forthcoming routers.
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More specifically, the interaction between the router and its network is ongoing based

on a sequence of discrete time steps (t) which t = 0, 1, 2, 3, .... At each time step t, the

router receives forthcoming routing information from the environment’s state, St ∈ S,

where S is the set of possible states based on a selected action, At ∈ A(St), where A(St)

is the set of actions available in state St. Furthermore, the state St is represented in

terms of Q-values which is obtained from learning process, and then these values are

employed to reflect on current traffic behavior through the entire network. Let consider

how the routing information is employed at each router on the network at the following

section.

Figure 2.1: The interaction between router and network topology based on RL
method

2.3.1 The Routing Information Employment

First, considering just only one router on the network, and its name is x which x has

to know overview traffic behavior of the entire network via its Q-table (Qx). Second,

the router x has to select its neighbors which the routing information is employed for

responding to the network by expecting to have a minimum packet delivery time. In

addition, the forthcoming routing information depends on how far to spend time in

packet traveling between the router x’s neighbors (y) and destination (d). Moreover,

router y and destination (d) are defined as y ∈ N(x) where N(x) is the set of all

neighboring node x, and d ∈ V where d is the set of all routers in the network. Hence,

the table of Q-value is represented by Qx(d, y) which estimates a packet traveling time

from a router y towards a destination d. Moreover, this value is sent it back to the

router x as a reward signal to make a decision which its neighbor should be selected in

the next round. According to Boyan and Littman (1994) and Kumar and Miikkulainen

(1997), the table of Qx(:, y) is defined as three cases as follows:
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• Qx(d, y) defines as an estimated packet traveling time between router y towards

destination d including spending time in node x’s queue, the total waiting time

and transmission delays over the possible paths which is started from the router y.

In addition, the estimated value of Qx(d, y) should be a minimum value in order

to achieve the goal which minimize a packet traveling time to the destination.

• Qx(x, y) defines as infinity (∞) which means the packet arrives in the destination

already and it should not be sent out to any node x’s neighbors.

• Qx(y, y) defines as the amount of time will be sent the packet out only one hop

from router x to router y because the router y is the destination, and its value is

represented by δ. Thus, δ is the transmission delay over the link between router x

and router y.

Moreover, if router y has to sent the packet more than a hop to the destination, it has to

consider the estimated packet traveling time between its neighbors and the destination

which is represented by Qy(d, z) where z is set of neighbors of router y. Due to, there

are three quantities which router x has to consider before making decision, namely the

waiting time qx in the packet queue of router x, the transmission delay δ, and the amount

packet traveling time Qy(d, z) (Boyan and Littman, 1994). Hence, the general equation

of Q-value of router x can be shown in Equation 2.1.

Qx(d, y) ≤ qx + δ +Qy(d, z) ∀y ∈ N(x) and ∀z ∈ N(y). (2.1)

In addition, the equation 2.1 can be reduced a value if router y is the destination as

shown in Equation 2.2.

Qx(d, y) ≤ qx + δ ∀y ∈ N(x). (2.2)

However, its goal of Q-routing is to reduce a packet traveling time to a minimum. Hence,

router y has to select its neighbor which contains the minimum packet traveling time

between itself towards the destination, and it is represented by Qy(d, ẑ). Therefore, the

optimal packet traveling time value in case of the packet has to spend time in router x

queue and full of traffic under unbounded router x’s storage as shown in Equation 2.3.

Qx(d, y) ≤ qx + δ +Qy(d, ẑ). (2.3)

where

Qy(d, ẑ) = min
∀z∈N(y)

Qy(d, z). (2.4)
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Furthermore, if the router x can serve a number of packets without traffic congestion

and having router x’s queue, and it has to take more than one hop in order to send the

packet to the destination as a result of the optimal packet traveling time value as shown

in Equation 2.5.

Qx(d, y) ≤ δ +Qy(d, ẑ). (2.5)

2.3.2 The Routing Information Update Mechanism for Forwarding

Packets

According to Boyan and Littman (1994), the routing information is used for estimated

packet traveling time in terms of the Q-value function which should be close to the actual

packet traveling time, and reflect the existing traffic condition of the network. Hence,

there is a mechanism that is employed for updated the routing information as known as

the Q-routing algorithm. In addition, Figure 2.2 is used to make a consideration how

the router x makes a routing decision for forwarding the packet to the destination d.

Moreover, the Q-routing is organized as follows:

Figure 2.2: The network consists of eleven routers which router x would like to
forward the number of packets to the destination d.

• First, router y1, and router y2 have to find its best neighbor for forwarding pack-

ets to the destination which router y1 has only one neighbor, but router y2 has

to compare the packet traveling time between router z22 and router z23 to the

destination, and then return the packet traveling time values back to the router

y2 to make a routing decision. Hence, the best estimated packet traveling time of

neighbors of router y can be represented by Equation 2.6. Besides, this estimated
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value is the forthcoming packet traveling time. Hence, router x has to compute

the new estimated packet traveling time as shown in the next step.

Qy(d, ẑ) = min
∀z∈N(y)

Qy(d, z). (2.6)

• Second, the new estimated packet traveling time for the router x is computed based

on three cases which have been been mentioned before, and shown in Equation 2.7

as follows:

Qx(d, y)est = qx + δ +Qy(d, ẑ). (2.7)

• Finally, the router x will update its value based on Equation 2.8 as follows:

Qx(d, y)new = Qx(d, y)old + η(Qx(d, y)est −Qx(d, y)old). (2.8)

where η is the learning rate which is used to balance between the previous Q-value and

the forthcoming estimated Q-value, and its value in the range of zero to one. If the

learning rate η is set to one that means the new updated Q-value depends only on the

forthcoming estimated Q-value. In contrasting, the new updated Q-value depends only

on the previous Q-value if the learning rate η is zero. Moreover, the Equation 2.8 can

be expanded as follows:

Qx(d, y) = Qx(d, y) + η(qx + δ +Qy(d, ẑ)−Qx(d, y)). (2.9)

2.3.3 Summary of the Q-routing for the Routing Packet

In this thesis, we are interested in strategy for forwarding packet based on the Q-routing

which every router on the network learns, and then makes a routing decision to avoid

traffic congestion, and also keep a packet traveling time to a minimum under various

traffic conditions. Since, the Q-routing involves forwarding packets by learning interac-

tion among intermediate routers through the network, and shows its values in terms of

the Q-value which aims to achieve its goal. However, the Q-value is not the actual packet

traveling time values on the network, it is estimated as close to the actuals as possible.

In addition, the Q-routing flowchart is shown in Figure 2.3 to clearly understand how

the router selects its neighbor for forwarding packets by using the Q-routing algorithm.

Moreover, the Figure 2.3 shows only the Q-routing embedded in the router x. However,

our work employs the Q-routing which is embedded in every router on the network.
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Figure 2.3: The flowchart of Q-routing algorithm which is embedded on every
router through the network for forwarding packets, and this flowchart shows
only the router x decides to select its neighbor router y for forwarding packets.

2.4 The Topological Structure of Internet Networks

Nowadays, spreading information has been enhanced as fast as possible to support a

large number of users in the next generation of networking as fast as possible. In

particular, future Internet is an extremely interesting topic which includes modeling of

its topologies, security, mobility support and design methodologies in order to satisfy

demand for upcoming Internet services. Due to, Internet network is an example for

representative a large networking community which consists of a group of routers or

switches under a single technical administration, and it also plays a fundamental role in

modern societies and economies (Calvert et al., 1997; van der Ham et al., 2014). Over

the past four decades, a rapidly growing number of routers leads to be more challenging

to capture a complete and accurate of its topological structure nearly the realistic one in

order to design and evaluate new protocols and algorithms for improved the performance
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and traffic (Çetinkaya et al., 2013). Furthermore, the future Internet will not only expand

from human to human, but also connect human to thing and thing to thing which leads

to be heavily traffic demands as a result of complex Internet traffic problem.

Although, a much more integrated operation of networking, computing and storage

devices have been developed for supporting demands on the future Internet, these com-

ponents have to be managed and monitored in order to satisfied deliver services to

applications and end users. In particular, topology is a basic knowledge for both the

current and the upcoming future Internet platforms which provides information on the

location of devices and on the connections between them. The topological structure of

the Internet is a challenging issue that is investigated to find a new and more accu-

rate structural Internet model for simulation purposes in order to design more efficient

protocols, and predict how new protocols and external conditions could impact on its

structure (Gregori et al., 2011). The first popular topology generator for network-

ing simulation was the Waxman model which is connected between all pairs of nodes

in the network by using probability given by a function of distance (Waxman, 1988).

However, random network cannot use to explain characteristic of some real networks

which exhibit certain hierarchical features as a result in suggesting non-random struc-

tures such as hierarchy and locality for generating these networks (Doar, 1996; Calvert

et al., 1997; Zegura et al., 1997). In addition, network redundancy is insufficient to be

achieved through the random network due to path failure and unavailability. Further-

more, power-law connectivity distribution which represents the relationship between the

AS-level and router-level graph of the Internet were reported by Faloutsos et al. (1999a)

in the mid of 1990s instead of the random network to provide a viewpoint of Internet’s

structure(Faloutsos et al., 1999a). The power-law distribution represents high number of

nodes tolerance against node failures, and node attacks on the Internet AS-level topology

(Cohen et al., 2001; Pastor-Satorras and Vespignani, 2001). Hence, the identification

and explanation of power laws have become an increasingly significant issue which are

commonly found in network topology literature (Yook et al., 2002; Chen et al., 2002;

Medina et al., 2000). Although, the Internet topology generators such as the GT-ITM

still have been developed, they were unsound to generate nearly the realistic Internet due

to their connectivity generated based on random selection. Hence, they should be re-

placed the Internet topology generator by other topological models such as the Barabàsi

and Albert (BA) model (Medina et al., 2001; Yook et al., 2002).

Since, the topological structure of Internet is represented by connections of routers

or autonomous systems (AS) UCLA (2012). Hence, there are two interesting ways

to study routing, resource reservation and administration on Internet topology which

are router and AS levels, while the Internet topology is explosive growth. Over the

last decade, the Internet topology was surprisingly discovered that random growth of

incoming nodes follow power-law distributions as a result to revolutionize the current
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research on the Internet topology Faloutsos et al. (1999b). In addition, the power-

laws are employed to estimate important parameters such as the average neighborhood

size, and facilitate the design and the performance analysis of protocols which has an

advantage over simulated topologies in order to understand how to generate nearly

realistic structure of the Internet Faloutsos et al. (1999b). Moreover, the power-law

distribution is one of important roles to deeply understand how Internet topology is

generated, so it should be studied to understand how it works.

Moreover, the power-law distribution was the first introduced by Pareto in 1896 in order

to describe difference income distribution between wealthy and low income people where

there are a large number of low income people contrast with wealthy people. In the mid

19th century, Zipfian distribution which can be called Zipf’s law was applied for trace

the dynamic character of languages, and it follows a power-law distribution Dahui et al.

(2005). The power-law is not only applied for understanding of social and biological

phenomena, but also has been observed in communication networks. For example, the

power-law of end-to-end network traffic is exploited to reconstruct the network which

satisfied the technical constraints of compressive sensing Nie et al. (2013). In addition,

the topology of the World Wide Web and peer-to-peer networks can be described by the

power-laws.

Furthermore, power law degree distributions is one of the most important features of

the networks that are generated according to one of the aforementioned probabilistic

mechanisms as they tend to have a few centrally located and highly connected centers

as well as hubs through which essentially most traffic has to flow. In addition, the

central hubs of the networks generated by preferential attachment tend to be nodes

added early in the generation process that means nodes with high expected degree have

higher probability to attach to new incoming nodes. It can be clearly seen that highly

connected central nodes in a network having a power law degree distribution have been a

famous theme in the study of complex networks, especially among researchers inspired by

statistical physics (Newman, 2003). However, this emphasis on power laws and resulting

efforts to generate and explain topology only in general is not able to provide correct

physical explanations for the overall network structure (Dorogovtsev et al., 2008). It is

difficult to identify what mechanism of network deployment and growth is the causal

drive affecting large-scale network properties and even more difficult to predict future

trends in network evolution. Nevertheless, with the lack of concrete examples of such

alternate models for large-scale Internet structure.

Furthermore, Li et al. (2004) introduced the heuristically optimal topology (HOT) which

is designed based on combining the technological and economic issues in order to apply

for the network core and the network edge planning. Due to all traffic from the network

edged has to be transmitted through the network via intermediate routers which leads to

have heavy traffic congestion on the core of the network. In addition, the transmission

delay will be increased if the network edges far from its destination. Hence, the HOT
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topology is also designed to reduce the distance between the network core and edge

to be a minimum as a result to minimize packet transmission time. Furthermore, the

HOT topology should represent a power-law distribution which shows relationship in

the connectivity between AS-level and router-level. Due to the core of network has to

contain heavily traffic congestion, so it should have low connectivity which its speed

can be increased to improve network performance, and it also save cost to maintenance.

Hence, Li et al. (2004) suggested that the HOT topology should be divided into three

network layers: core, gateway and edge routers to facilitate maintenance.

However, there are five categories of network models and generators which can be

broadly classified at present, namely random network models, preferential attachment

models, optimization-based models, geographical models, and Internet-specific models

(Chakrabarti and Faloutsos, 2012a). All in all, there are three network models: the ran-

dom network, the random network with preferential attachment (PA), and the heuristi-

cally optimal topology (HOT) are built to represent the structural Internet networks in

this thesis which the process of these networks are described in the next section.

2.4.1 The Erdös-Rényi Random Network Model

Random networks are simple network model which each node in the network can be

connected its edges by using random probabilities as shown in Figure 2.4. Erdös and

Rényi (1959) introduced the basic concept of random-graph theory which defined N

labeled nodes connected by n edges which are selected randomly from the possible

edges. Furthermore, there is an alternative way to create the random network which

every pair of nodes will be connected with probability p (Gilbert, 1959). Therefore,

many researchers employed the random graph theory for generating network because it

is the simplest way to understand the network (Zhang et al., 2016; Yavuz et al., 2015;

Costa and Farber, 2015).

In addition, Albert and Barabási (2002) suggested that random network is frequently

employed in studying complex networks because it is visibly found in the network con-

sisting of complex topology whether unknown organizing principles.

However, even though the random networks exhibit such interesting phenomena but

their degree distribution is Poisson, and also have very different from the networks with

power laws distributions which are claimed to be more likely real world networks such

as WWW. networks. Hence, the random networks are suitable for studying the early

generated networks, and then modeling of network generators should be developed in

order to be close to the real network.

The basic network model which selects link to be connected between pair of nodes in the

network by using random probability distribution is the Erdös-Rényi model (Erdös and

Rényi, 1959; Chakrabarti and Faloutsos, 2012a). In addition, this model is the simplest
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model for creating synthetic networks especially aim of study on network simulation in

order to understand relationship between node and its number of connection as well as

degree distribution.

Figure 2.4: This is an example of random network which consists of 100 nodes,
and they are connected each other by using random probability.

2.4.1.1 Degree Distribution

Degree distribution represents the act of sharing links among a number of nodes on the

network in terms of probability as shown in Equation 2.10 follows:

pk =

(
N

k

)
pk(1− p)N−k (2.10)

where pk is the probability of a node having a number of links k, and N is a number of

nodes on the network. In addition, p(N − 1) can be replaced by z which leads Equation

2.10 to represent the Poisson model (Chakrabarti and Faloutsos, 2012a) as shown in

Equation 2.11.

pk ≈
zke−z

k!
(2.11)
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Depending on Equation 2.11 which degree distribution on the random network is Poisson

which has differing views on the real networks which should represent power-law degree

distribution.

2.4.1.2 Clustering Coefficient

Clustering coefficient (CCrandom) represents relationship between a group of node and

its any two neighbors which are connected with the connection probability (Chakrabarti

and Faloutsos, 2012a) as shown in Equation 2.12.

CCrandom =
< k >

N
(2.12)

where < k > is the average a number of connection of the nodes.

2.4.1.3 Diameter

According to Chakrabarti and Faloutsos (2012a), the diameter of the network increases

slowly in contrasting with rising the number of nodes. In addition, the Equation 2.13

uses to represent the diameter of the Erdös-Rényi random network.

φ =
logN

log< k >
(2.13)

Since, the degree distribution of the Erdös-Rényi random network exhibits a distinctive

appearance from the degree distribution of many real-world networks. Hence, the ran-

dom network with preferential attachment is introduced to build the network which its

degree distribution exhibits the power-law degree distribution.

2.4.2 Random Network with Preferential Attachment

The power-law degree distribution observed in networks was addressed by Barabási

and Albert (1999) which claimed that the property of this distribution is shared on

many real networks such as the World Wide Web and citation networks. Moreover,

Albert and Barabási (2002) provided more detail growing of these networks which the

number of new nodes increased exponentially, and also connected an existing node on

the network based on the reputation of the existing node in terms of the probability

of node’s degree. Furthermore, if the probability of connecting to a node relies on the

node’s degree, it is called a preferential attachment. For example, a new web page

prefers to connect with popular hyper-links which should have high degrees or number

of connection because highly connected these links can be found easily and lead the new
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web page to be broadly well-known. Hence, there are two contributing factors namely

growth and preferential attachment that will be exhibited when the network grows in a

power-law degree distribution as follows:

• Growth means starting with a small number (m0) of node, and then add a new

node every time step with m(≤ m0) edges that link the new node to m different

nodes already present in the system.

• Preferential attachment means the process of a new node prefers to connect with

an existing node based on its reputation. Moreover, the probability P that a new

node will be connected to node v relies on the degree ki of node i is given by:

Pv =
k(v)∑
i k(i)

(2.14)

After t time steps this procedure results in a network with N = t + m0 nodes and mt

edges.

2.4.2.1 The Barabàsi-Albert Model

The Barabàsi-Albert model is a minimal model which can capture the mechanisms of

the power-law degree distribution. Compared to many real-world networks, it predicts

a power-law distribution with a fixed exponent, while the exponents measured for real

networks can vary according to its size and topology. In addition, the degree distribution

of real networks can show having non power-law features such as exponential cutoffs

(Amaral et al., 2000; Barabási et al., 2000). Hence, the description of the model on real

networks leads to increase of interesting in addressing several basic aspects of network

evolution especially classification of the network topology based on quantities beyond the

degree distribution. Furthermore, the network community is still researching in order

to discover new facts about how to model real networks which should show robustness

which some research results are already available. These results indicate the emergence

of a self-consistent theory of evolving networks that offers unusual insights into network

evolution and topology.

In addition, a central issue of all models generating scale-free networks is preferential

attachment as the probability of receiving new edges increases with the node’s degree as

shown in Figure 2.6. The Barabàsi-Albert model assumes that the probability P which

a node attaches to node i is proportional to the degree k of node i according to Equation

2.14

• Degree Distribution
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Figure 2.5: The Barabàsi-Albert model which a new node prefers to connect
with node 2 more than the other nodes based on a preferential attachment
because node 2 has the highest number of connection as the new node prefers
connecting with node 2 shown in the thickest line.

Figure 2.6: This is an example of random network with preferential attachment
which consists of 100 nodes, and a new coming node prefers connecting with an
existing node with high number of connections.

According to Chakrabarti and Faloutsos (2012a), the degree distribution of the

Barabàsi-Albert model is given by:

pk ≈ k−3 (2.15)
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which Equation 2.15 represents a power-law tail degree distribution with expo-

nent 3, and it does not rely on the number of existing nodes m. Moreover, many

researchers claim that evolution of the social network of scientific collaborations

relative with the degree distribution gets involved with the approximate expo-

nent 3 (Newman, 2003; Boccaletti et al., 2006; Liben-Nowell and Kleinberg, 2007;

Castellano et al., 2009).

• Diameter

The diameter is a parameter which is able to see how far the distance between

two nodes is Chakrabarti and Faloutsos (2012a). Moreover, there are two cases

to consider the diameter of the network which depends on the number of starting

node m. The first case, if m = 1, the diameter grows as follows:

φ = O(logN) (2.16)

The latter case is m has at least 2 for building the network which is given by the

Equation 2.17 as follows:

φ = O(
logN

log logN
) (2.17)

However, the original Barabàsi-Albert model with a power-law degree distribution alway

got stuck in exponent 3 which still differs from some naturally occurring networks as

a results to modify the model in order to flexible capture many real-world network

especially Internet.

2.4.2.2 The modified Barabàsi-Albert Model

Since, many researchers would like to generate a network model which is nearly more

realistic networks, and they found that the original Barabàsi-Albert model should be

added extra parameter to let have flexible component in order to capture many real-

world networks. In addition, the extra parameter represents an initial attractiveness A

which leads the network growing up by gaining new edges, and Equation 2.14 changed

to be Equation 2.18 as follows:

Pv =
A+ k(v)∑
i(A+ k(i))

(2.18)

According to modify the original Barabàsi-Albert Model, leads to change the degree

distribution from Equation 2.15 to be Equation 2.19 as follows:
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γ = 2 +
A

m
(2.19)

2.4.3 Heuristically Optimal Topology

Aim of network model generator is to generate the network nearly the real-world ones

which exhibit power-law degree distribution. For example, a network model with pref-

erential attachment exhibits a power-law behavior, and the network grows like rich get

richer. However, a network which exhibits the power-law behavior should be designed

based on resource optimizations. Carlson and Doyle (1999) proposed the optimized net-

work model with existent power laws and tolerance, and its name is Highly Optimized

Tolerance. The Highly Optimized Tolerance involves (n) possible events in minimizing

the expected cost which each event has chance to occur pi(1 ≤ i ≤ n) (Chakrabarti and

Faloutsos, 2012a). In addition, each event also has chance to get some loss (li) which

can be defined as a function of the resources ri as follows:

li = f(ri) (2.20)

Due to, the limitation of the total resources are
∑

i ri ≤ R. Hence, the minimum of the

expected cost (j) of the Highly Optimized Tolerance is shown as follows:

J = {
∑
i

pili | li = f(ri),
∑
i

ri ≤ R} (2.21)

The Equation 2.21 helps to plan and run successful events with a minimum expected cost

where limits the total available resources (Chakrabarti and Faloutsos, 2012a). However,

the Highly Optimized Tolerance model requires globally optimal decision to manage re-

source allocation which contrasts with the Internet by using only local decisions. Hence,

an alternative model is introduced by Fabrikant et al. (2002) which provides heuristic

and local trade-offs. This model is called the Heuristically Optimized Tradeoffs model

which uses to generate a network under two conflicting goals. The first goal is improving

the edge of the network performance by connecting a new node of the edge network with

the central of the network which prefers short distance between them. The latter goal is

minimizing the transmission delays among nodes through the entire network based on

the number of hops or distance (Chakrabarti and Faloutsos, 2012a). In addition, Fab-

rikant et al. (2002) suggested that a new node (i) should be connected with an existing

node (j) by considering under two conflicting goals which can be defined as follows:

α.dij + hj(j ≤ i) (2.22)
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According to Chakrabarti and Faloutsos (2012a) dij is the distance between node i and

node j, hj is measure of the centrality of node j, and the α is a constant control of two

parameters dij and hj .

Furthermore, Alderson et al. (2005) introduced the Heuristically Optimal Topology

(HOT) model as shown in Figure 2.7 which is relative to the Highly Optimized Tol-

erance and the Heuristically Optimized Tradeoffs models. The HOT model is suggested

that is a reasonably good design for an Internet Service Provider (ISP) network which

core of the network connected with high speed and low connectivity to support the

volume of traffic (Alderson et al., 2005).

Figure 2.7: This is an example of heuristic optimal topology which consists of
100 nodes.

2.4.4 Validity the Network Model for Internet

According to Chen et al. (2002), the process of generating Internet networks has been

summarized to validate as follows:

• Incremental Growth means the size of network is extended by adding nodes and

edges gradually over time which lead the network grows incrementally.

• Preferential attachment means a new node prefers to connect with an existing

node on the network which has high number of connection.

• Addition of Internet edges means increasing the number of internal edges of the

network by connecting the new edge with a pair of existing nodes based on prob-

ability degree of vertex.
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• Edge rewiring means rearrangement the number of connection of nodes on the

network which aims to support the network engineering design. However, this pa-

rameter does not get involved in the Internet evolution (Chakrabarti and Faloutsos,

2012a).

Hence, the Internet network model should represent a power-law behavior and how it

grows over the time especially adding new nodes with preferential attachment. In addi-

tion, it should be designed to support heavy traffic in the future, and easy maintenance

to improve performance of the network.

2.5 Queueing Models

Since, packet routing on the Internet network involves arrivals, waiting, servicing, and

departure on the routers through the network (Papoulis and Pillai, 2002). Hence, it

should be modeled as an queueing model in order to observe behavior of packet routing

especially on different types of Internet topologies.

Little’s Law is a basic queueing network theorem which is explained relationship between

arrivals and departures in terms of an average rate over the period of time (t) (Papoulis

and Pillai, 2002). According to Papoulis and Pillai (2002), the basic Equation 2.23 shows

relationship among average number of packets in the queueing network (L), average

waiting time of a packet in the network (W ), and average arrival rate of packets per

unit time (λ) as follows:

L = λW (2.23)

In addition, the Equation 2.23 is simple and general because it does not need to specify

number of servers, types of service time and inter-arrival time distributions, however

this equation should be applied under steady state (Robertazzi, 2012).

Moreover, the number of customers in the system or the number of packets in the network

as shown in Figure 2.8 can find from the difference of arrival rate (A(t)) and departure

rate (D(t)) (Kleinrock, 1975) which is showed in Equation 2.24 as follows:

N(t) = A(t)−D(t) (2.24)

Furthermore, λ is a parameter which depends on arrival rate of packets during a period

of time (t), and it can be shown on Equation 2.25 as follows:

λt =
A(t)

t
(2.25)
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Figure 2.8: The relationship among number of customers, arrival and depar-
ture over the period of time in the network based on the Little’s Law formula
(Kleinrock, 1975).

According to Kleinrock (1975), the average time of a packet over all packets entire the

network during the period of time (t) can be defined as a parameter (Tt) which represents

the ratio of accumulated packets (γ) to the arrival rate up to the point of time as shown

in Equation 2.26.

Tt =
γ(t)

A(t)
(2.26)

Moreover, the average number of customers in the queueing system during the period

of time t can be defined as N̄t which is the ratio of the accumulated packets up to the

time t as shown in Equation 2.27.

N̄t =
γ(t)

t
(2.27)

Due to the relationship among Equation 2.25, Equation 2.26 and Equation 2.27, they

lead the N̄t can be calculated based on average packet arrival rate and the average

system time which is shown in Equation 2.28.

N̄t = λtTt (2.28)

On the other hand, the Equation 2.28 is related with the basic Equation 2.23 when it

is considered in case of a period of time refers to the average time spent waiting in the

queue.
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In addition, characteristics of queueing models have an important role to design a queue-

ing network which the detail will be provided in the next section (Banks et al., 2005).

2.5.1 The Characteristics of Queueing Models

According to Banks et al. (2005), the characteristics of queueing models can be summa-

rized as follows:

• Arrival Pattern: the form of packets have been arrived to the server which can be

measured in terms of arrival rate or interarrival time.

• Service Pattern: the service form for serving packets on a server which may be

deterministic or stochastic.

• Queueing Discipline: there are two popular ways namely First Come First Served

(FCFS) and Last Come First Served (LCFS) to select incoming packets for service.

• Number of Service Channels: depending on the network model which can be par-

allel queues or single queue. In addition, parallel queues mean each server has

a separate queue, in contrasting a single queue which has only one queue for all

servers as shown in Figure 2.9.

Figure 2.9: Number of service channels: (a). parallel queues, and (b). single
queue.

However, it has to more specific types of arrival processes should consider the Poisson

which is wildly applied for considering an arrival process in communication network.

Hence, queueing on the network models in this thesis is simulated based on the M/M/1

queueing model which is a simple model, and arrival process is Poisson as described in

the next section.
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2.5.2 The M/M/1 Queueing Model

According to Kleinrock (1975), the M/M/1 queueing model is a classical queueing net-

work model to analyze packet behavior where the arrival rate of these packets is Poisson

process. In addition, a server is infinite storage capacity, and its service time distribution

is an exponential. Moreover, the letter M stands for Markovian which the next event

depends only upon the previous event, not on the sequence of all events in the past

(Kleinrock, 1975).

Furthermore, the M/M/1 queueing model involves in a single server which the arrival

rate (λ) should be less than the exponential service rate (µ) as a result of diminution of

queue length in the network, otherwise it will be boundless growing. Considering case

of interarrival time and service time are exponential distribution which lead the average

interarrival time (t̄) , and the average service time (x̄) show in Equation 2.29 and 2.30

as follows:

t̄ =
1

λ
(2.29)

x̄ =
1

µ
(2.30)

2.5.3 The M/M/1/K Queueing Model

More precise queueing network to be modeled nearly the real network, the server should

have a limited storage capacity which the queueing network model changed from the

M/M/1 to the M/M/1/K (Kleinrock, 1975). The K on M/M/1/K queueing network

model stands for a total number of K packets holding in the server’s storage capac-

ity. Moreover, incoming packets are introduced continuously into the network by using

Poisson process, and these packets have to find servers which can hold them in the stor-

age capacity for waiting service (Kleinrock, 1975). However, these packets will be lost

depending on no available storage capacity of a server for waiting service.

According to Kleinrock (1975), there are two cases of arrival rate as shown in Equation

2.31, and departure rate for finite storage capacity is shown in Equation 2.32.

λk =

λ k < K

0 k ≥ K
(2.31)

where K is the finite storage capacity in the server.
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{
µk = µ k = 1, 2, 3, ...,K (2.32)

Furthermore, the equilibrium probability (pk) of holding k packets in the storage capacity

can be defined as Equation 2.33, 2.34 as follows:

po =
1− λ

µ

1−
(
λ
µ

)K+1
(2.33)

pk =

p0
(
λ
µ

)k
k ≤ K

0 k > K
(2.34)

2.6 Conclusion

In this chapter, we have discussed into three main parts of literature which consist of

Q-routing algorithm, Internet network models, and queueing network models in order

to simulate the Internet network models based on various traffic conditions, and then

the Q-routing will be examined how it can improve the network performance in terms

of decreasing packet delivery time on these various Internet network models.

The first part concerns with the RL and its application; Q-routing which has been

introduced over two decades for solving routing on small distributed wireless networks.

In addition, it is successful to improve these networks performance in terms of decreasing

packet delivery time while the number of packet is steadily increasing. However, it

has not been subjected to large scale networks like Internet which consists of different

connectivity to build the networks. Furthermore, it would be great to apply the Q-

routing on the Internet networks which these networks have grown dramatically in sizes,

and leads to have traffic congestion.

Hence, the second part introduced the Internet network models based on three different

construction of network connectivity. Firstly, a random network is introduced because

of a simplification. However, the real network is much more complicated than this

as a result of a random network with preferential attachment (PA). The PA exhibits a

power-law degree distribution which can be captured from real networks. In addition, the

process of building this network is also interesting because the network can grow only one

side due to a new coming node prefers to connect with the famous existing nodes which

show in terms of high number of connections. However, the PA network is not considerate

of economic such as maintenance costs and time. Therefore, the heuristically optimal

topology is introduced to consider in this thesis because it is claimed to be relative

to real networks, and its designed based on engineering and economy. Moreover, the
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heuristically optimal topology is also relative to real-world networks like Joint Academic

Network (JANET) in the United Kingdom. Thus, three synthesis network models are

studied in this thesis which the difference growth of these networks have an affect on

the performance of Q-routing on various traffic conditions. Furthermore, the queueing

models are also considered in this thesis in order to generate various traffic conditions

as a result of traffic congestion on these networks.

The third part introduced the queueing network models which are M/M/1 and M/M/1/K.

We started using M/M/1 on these synthetic Internet networks based on assumption of

unlimited storage capacity because it is simplicity to examine how the Q-routing can

sustain the high traffic condition. However, it should be relative to real networks which

it must be a limit to the storage capacity. Hence, the M/M/1/K is employed on the

network model which improves the network simulation to be more realistic.

According to the final part involves queueing network models which our networks are

built based on the M/M/1 queueing model and then it will be expanded to be the

M/M/1/K queueing model which related to real queueing networks. In addition, the

queueing models can help us to introduce the various packet arrival rates which leads

the network getting to grips with traffic congestion.

Thus, the evaluation of Q-routing on small sizes of networks based on the M/M/1 queue-

ing model, will be represented in the next chapter which helps us to easily understand

the process of routed learning and updating. In addition, it is a basic idea to understand

how it works before applying it on large scale Internet networks. Then, the Q-routing

is also applied for routing optimization on three synthetic Internet network models as

shown in Chapter 4 which their connectivity has an effect on traffic congestion. More-

over, the basic queueing network model M/M/1 is extended to be the M/M/1/K which

is introduced in Chapter 5 to employ in the realistic network model; JANET, and the

Q-routing is examined how it can sustain the high traffic conditions.
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Adaptive dynamic packet routing

on small network topologies using

reinforcement learning

During the years, reinforcement learning which a branch of machine learning has been

successful applied to optimize problems solving on various contexts such as routing

optimization problem in communication networks. For example, Q-routing which is an

application of reinforcement learning, was introduced by Boyan and Littman (1994) to

find optimal paths under high traffic congestion on a 36-irregular grid network.

In this chapter, the Q-routing is evaluated the effectiveness of routing information feed-

back under different traffic conditions against Dijkstra’s algorithm on small network

topologies.

3.1 Connectivity design

The small network topologies are interested in this chapter to build networks because it

is simple to examine how the Q-routing works through the network. The network sizes

are built below 80 nodes based on IBM redbooks which claimed that a small network is

classified to be below 80 users. Due to connectivity has an effect on network performance

such as delay time, so grid network and random network are studied under different

traffic conditions. In addition, the Q-routing and Dijkstra’s algorithm are applied to

forward packets through the network which aim to minimize delay time under high

traffic congestion, and should more flexible approach to traffic conditions.

35
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3.2 Datagram networks

Communication networks can be classified by using process of information exchange

between pair of nodes as shown in Figure 3.1. In this thesis, we are interested in datagram

network which provides only a connectionless service at network layer to transfer data

without connected session requirement (Kurose and Ross, 2012). In addition, packet

transmission on datagram network uses routing table on each router to specify which

neighboring router should be selected to forward packet, and the routing table can be

modified based on routing algorithm (Kurose and Ross, 2012). When packet starts

transmitting between pair of nodes, and it is related to transmission time, propagation

delay and processing delay. Figure 3.2 represents main delays in datagram network

which are considered to build routing tables.

Figure 3.1: A taxonomy of communication networks

Figure 3.2: datagram network
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3.3 Queueing model

Queueing model is applied for analysis performance of complex systems such commu-

nication networks by considering average amount of time which packet spends in the

network (Filipowicz and Kwiecień, 2008). Basically, a queueing network model con-

sists of incoming packets, queue and server which have a relationship between them

(Filipowicz and Kwiecień, 2008).

To build a queueing network model, there are parameters which are described as follows

to specify how they represent characteristics of the network:

1. Arrival process

Basically, incoming packets are arrived by using Poisson distribution with rate (λ), and

the different time between each generated incoming packet is called interarrival time

(τ). It is represented by a sequence of Independent and Identically distributed random

variables (IID) and exponentially distribution (Jain, 2008). For example, if packets

arrive at times t1, t2, ..., tj , the random variables τj = tj− tj−1 are called the interarrival

times.

2. Service time

Normally, it is always assumed to be random variables (IID) and exponential distribu-

tion to describe how long each packet has been served which is represented by parameter

(µ) (Jain, 2008).

3. Router capacity

It is available space to contain maximum number of packets which should be finite

capacity as known as buffer. However, it can be infinite capacity to formulate queueing

network simulation easily.

4. Queueing discipline

The queueing discipline represents how packet in queue is served which the simple one

is applied without considering priorities such as Fist Come, First Served (FCFS) and

Last Come, First Served (LCFS).

3.3.1 M/M/1 queueing network model

The simplest queueing model M/M/1 which is the abbreviation for Markov arrivals,

Markov services, and single server, is applied in this chapter to simulate a queueing

network model. In addition, each node in the network has single server with unlimited
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Figure 3.3: Components of a queueing network model consist of interarrival
time (τ), waiting time (w), service time (s), the time in the system (r), number
of packets receiving packets (ns), number of packets waiting to serve (nq), and
number of packets in the system (n).

buffer size, and its interarrival times and service time are exponential distribution. More-

over, FCFS is employed for a service policy whereby the first incoming packet arrives in

a server, it also can be the first served (Jain, 2008).

Consider a network which each node consists of aM/M/1 queueing network model, and a

packet with constant size is generated continuously by Poisson distribution. In addition,

time between each incoming generated packet is exponential distribution. Transmission

capacity and propagation delay of each link specify based on Cisco 300 series for sup-

porting small business which are 100 Mb/s and 0.5 µs, respectively. Due to propagation

delay is relative with length of physical link and propagation speed in medium which is

2×108 m/s in fiber. Hence, the link distance between a pair of router is calculated on

propagation delay multiplied by propagation speed which is (0.5 µs) × (2 × 108 m/s)

= 100 m. The specified link distance is relative to the maximum cabling distance of

Cisco 300 series which is 100 meters or 328 feet. However, increasing and decreasing

the interarrival times have an affect on traffic loads as well as the utilization which the

maximum utilization approaches 1. For example, assuming average packet size is 1,526

bytes or 12,208 bits, and traffic load of link is 80% so 80% of 100 Mbps is 80 Mb/s. In

addition, considering traffic load is 80% of link capacity which can generate packet 80

Mb/s, but the packet size is 12,208 bits so it can generate 80,000,000
12,208 = 6, 553 packets/sec,

and interarrival time should be 1
6,553 = 0.15 ms. Table 3.1 shows different traffic loads

and its interarrival times when the packet size is 12,208 bits. Moreover, service rate (µ)

depends on arrival rate (λ) and traffic load (ρ) which is ρ = λ
µ so µ = λ

ρ . Hence, if
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arrival rate (λ) is 6,553 packets/sec and traffic load (ρ) is 0.8, so service rate (µ) is 8,191

packets/sec.

Traffic load Packet size Arrival rate Interarrival time
(%) (bits) (Packets/sec) (ms)

10 12,208 819 1.22

20 12,208 1,638 0.61

30 12,208 2,457 0.41

40 12,208 3,276 0.31

50 12,208 4,095 0.24

60 12,208 4,914 0.20

70 12,208 5,733 0.17

80 12,208 6,553 0.15

90 12,208 7,372 0.13

95 12,208 7,781 0.12

Table 3.1: Traffic loads and interarrival times for M/M/1 queueing model which
the packet size is 1,526 bytes (12,208 bits), and transmission capacity is 100
Mbps

3.3.2 Routing algorithms

Every router needs routing algorithm to make routing decision in order to guarantee best

path for packet transmission between source and its destinations. In addition, routing

algorithms use routing information from routing protocols such as number of hops or

delivery time to compute the best path which can be classified as shown in Figure 3.4.

In this thesis, we consider two major routing algorithms which are link-state Dijkstra’s

algorithm and distance vector Q-routing. The aim of Dijkstra’s algorithm algorithm is

finding minimal path cost path between source and it destinations as known as shortest

path algorithm. However, it has to know entire routing information of the network in

order to compute shortest paths which is not flexible when traffic of the network has been

changed. The strategic aim of Q-routing is to find optimal paths for packet transmission

between source and it destinations based on estimated function of routing information

which it can adapt to new environment such as traffic conditions and network topologies.

3.3.3 Experimental Settings

These experiments are intended to demonstrate the ability of the Q-routing algorithm

for packet transmission in term of average packet delay time and distribution of queue

lengths, and how they are tolerant of congestion under different traffic conditions on

small network topologies.
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Figure 3.4: Diagram of internetwork routing algorithms

In this chapter, a size of packet is specified based on standard IEEE 802.3 which is 1526

bytes. However, size of packet frames has an effect on transmission delay in Ethernet link.

Hence, different sizes of packet and interarrival time are considered which both of them

are cause of delay time. Since, number of packets which is introduced to the network, has

an effect on traffic congestion. Hence, the traffic congestion in this simulation happened

while increasing packet arrival rate and its frame size.

Furthermore, each node generates packets are periodic which are sent to all over nodes

in the network. Each packet specifies its destination, and it is sent out following routing

tables. Moreover, the simplest queueing model M/M/1 is embedded in each node to

store multiple packets with unbounded FCFS queue. Delay time and distribution of

queue length under different traffic conditions are observed to describe how long the

packet has to spend time in the queue until it can be transmitted over the link in the

network.

There are two sizes of irregular grid network topologies which are employed to study

Q-routing. These networks consist of 36 nodes and 72 nodes. In addition, a 36-irregular

grid network is designed same as Boyan and Littman (1994) as shown in Figure 3.5, and

a 72-irregular grid network is designed as shown in Figure 3.6.

In this thesis, we consider different traffic loads which each link has limited 100 Mb/s

transmission capacity, and the packet sizes vary from 1,526 bytes to 4,578 bytes which

its interarrival time is a leading cause of traffic congestion on the network. Table 3.1

is represented arrival rate and interarrival time when packet size is 1,526 which is a

minimum packet size considering how it has effect on traffic congestion when traffic

loads vary from 10% to 95%.
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Figure 3.5: a 36-irregular grid network which every node generates packets, and
sends them throughout the entire of network. In addition, left cluster (node 0
- node17) can send packets to right cluster (node18 - node35) via node 11 and
node 17 which node 11 prefers to use for packet transmission because it takes
small number of hops to send packets between left and right clusters (Boyan
and Littman, 1994)

In addition, Table 3.2 - Table 3.5 are represented arrival rate and interarrival time when

packet sizes vary from 2,289 bytes to 4,578 bytes which traffic load is increased 10% to

95% in order to study the effect of traffic congestion on the network.

Traffic load Packet size Arrival rate Interarrival time
(%) (bits) (Packets/sec) (ms)

10 18,312 546 1.83

20 18,312 1,092 0.91

30 18,312 1,638 0.61

40 18,312 2,184 0.45

50 18,312 2,730 0.36

60 18,312 3,276 0.30

70 18,312 3,822 0.26

80 18,312 4,368 0.23

90 18,312 4,914 0.20

95 18,312 5,187 0.19

Table 3.2: Traffic loads and interarrival times for M/M/1 queueing model which
the packet size is 2,289 bytes (18,312 bits), and transmission capacity is 100
Mbps

Moreover, Table 5.1, and Figure 3.7 are summarized interarrival time under different

traffic loads 10%, 50% and 90% which represent low, medium, and high traffic load

levels on the network. In addition, packet sizes vary from 1,526 bytes to 4,578 bytes are

also considered how it has effect on traffic congestion.
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Figure 3.6: a 72-irregular grid network is designed relative to a 36-irregular grid
network which every node generates packets, and sends them throughout the
network. However it is extended from an originality of Boyan et. al.’s network.
Hence, connected paths between left cluster (node 1 - node 36) and right cluster
(node 37 - node 72) are increased to be 4 which are reasonable to support packet
transmission. The packets can be transmitted via node 12, node 20, node 28,
and node 36 depending on routing policy.

Traffic load Packet size Arrival rate Interarrival time
(%) (bits) (Packets/sec) (ms)

10 24,416 409 2.44

20 24,416 819 1.22

30 24,416 1,228 0.81

40 24,416 1,638 0.61

50 24,416 2,047 0.48

60 24,416 2,457 0.41

70 24,416 2,866 0.35

80 24,416 3,276 0.31

90 24,416 3,686 0.27

95 24,416 3,890 0.25

Table 3.3: Traffic loads and interarrival times for M/M/1 queueing model which
the packet size is 3,052 bytes (24,416 bits), and transmission capacity is 100
Mbps

3.3.4 Experimental Results

Considering a 36-irregular grid network and a 72-irregular grid network as a small net-

work which each link has 100 Mb/s transmission capacity limit, and routing algorithm is

embedded in each node on these networks to find optimal routing policies for forwarding
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Traffic load Packet size Arrival rate Interarrival time
(%) (bits) (Packets/sec) (ms)

10 30,520 327 3.05

20 30,520 655 1.52

30 30,520 982 1.02

40 30,520 1,310 0.76

50 30,520 1,638 0.61

60 30,520 1,965 0.51

70 30,520 2,293 0.43

80 30,520 2,621 0.38

90 30,520 2,948 0.34

95 30,520 3,112 0.32

Table 3.4: Traffic loads and interarrival times for M/M/1 queueing model which
the packet size is 3,815 bytes (30,520 bits), and transmission capacity is 100
Mbps

Traffic load Packet size Arrival rate Interarrival time
(%) (bits) (Packets/sec) (ms)

10 36,624 273 3.66

20 36,624 546 1.83

30 36,624 819 1.22

40 36,624 1,092 0.91

50 36,624 1,365 0.73

60 36,624 1,638 0.61

70 36,624 1,911 0.52

80 36,624 2,184 0.45

90 36,624 2,457 0.41

95 36,624 2,593 0.38

Table 3.5: Traffic loads and interarrival times for M/M/1 queueing model which
the packet size is 4,578 bytes (36,624 bits), and transmission capacity is 100
Mbps

packets. In addition, packet arrival rate is increased in order to introduce traffic con-

gestion. Furthermore, Q-routing and shortest path are compared under various traffic

conditions. Average delay time and distribution of queue length are studied as a per-

formance of routing algorithm while the traffic is steadily increasing until congestion on

the network. Since, there are two clusters would like to transmit packets throughout the

network as shown in the Figure 3.5 and 3.6. However, it will get traffic congestion easily

if packet is transmitted only via the popular path which is the shortest way to connect

between two clusters. Hence, the Q-routing is employed to avoid traffic congestion by

using routing information to be feedback signal, and it can reflect on current traffic in

order to make routing decision for forwarding packet.

Figure 3.8 shows the effective of Q-routing on a 36-irregular grid network under traffic
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Traffic load Packet size Interarrival time
(%) (bytes) (ms)

1,526 1.22
2,289 1.83

10 3,052 2.44
3,815 3.05
4,578 3.66

1,526 0.24
2,289 0.36

50 3,052 0.48
3,815 0.61
4,578 0.73

1,526 0.13
2,289 0.20

90 3,052 0.27
3,815 0.34
4,578 0.41

Table 3.6: Summary of interarrival time under different traffic loads 10%, 50%,
and 90% which each link has limited 100 Mbps transmission capacity, and the
packet sizes vary from 1,526 bytes to 4,578 bytes

Figure 3.7: Summary of interarrival time when the packet sizes vary from 1,526
bytes to 4,578 bytes under different traffic loads 10%, 50%, and 90% which each
link has limited 100 Mbps transmission capacity

load 10% as a low load level where the packet sizes vary from 1,526 bytes to 4,578 bytes.

The experimental result shows that it is a slightly different between the Q-routing and

the shortest path under low load level because the Q-routing can learn to find an optimal

path which is the shortest path to send packets due to it is no traffic congestion. However,

the Q-routing can send packets by reducing average delay time when compared with the

shortest path where the sizes of packet have an affect on waiting time for serving which
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is cause of delay time.
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Figure 3.8: Comparing of average delay time between Shortest Path and Q-
routing on a 36-grid network which the packet sizes vary from 1,526 bytes to
4,578 bytes under traffic load 10%, and each link has limited 100 Mbps trans-
mission capacity.

Figure 3.9 shows the effective of Q-routing on a 36-irregular grid network under traffic

load 50% as a medium load level where the packet sizes vary from 1,526 bytes to 4,578

bytes. The experimental result shows that the average delay time is reduced by using

the Q-routing when compared with the shortest path under medium load level because

the Q-routing can learn to find optimal paths by using the routing information feedback

which reflects on current traffic condition in order to select it neighbor for forwarding

packets without traffic congestion.

Figure 3.10 shows the effective of Q-routing on a 36-irregular grid network under traffic

load 90% as a high load level where the packet sizes vary from 1,526 bytes to 4,578 bytes.

The experimental result shows that the average delay time is significantly reduced by

using the Q-routing when compared with the shortest path under high traffic congestion

because the Q-routing can learn to find optimal paths by using the routing information

feedback which reflects on current traffic condition in order to select it neighbor for

forwarding packets without traffic congestion.

Figure 3.11 shows the effective of Q-routing on a 72-irregular grid network under traffic

load 10% as a low load level where the packet sizes vary from 1,526 bytes to 4,578 bytes.

The experimental result shows that it is a slightly different between the Q-routing and

the shortest path under low load level because the Q-routing can learn to find an optimal

path which is the shortest path to send packets due to it is no traffic congestion. However,

the Q-routing can send packets by reducing average delay time when compared with the

shortest path where the sizes of packet have an affect on waiting time for serving which

is cause of delay time.
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Figure 3.9: Comparing of average delay time between Shortest Path and Q-
routing on a 36-grid network which the packet sizes vary from 1,526 bytes to
4,578 bytes under traffic load 50%, and each link has limited 100 Mbps trans-
mission capacity.
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Figure 3.10: Comparing of average delay time between Shortest Path and Q-
routing on a 36-grid network which the packet sizes vary from 1,526 bytes to
4,578 bytes under traffic load 90%, and each link has limited 100 Mbps trans-
mission capacity.

Figure 3.12 shows the effective of Q-routing on a 72-irregular grid network under traffic

load 50% as a medium load level where the packet sizes vary from 1,526 bytes to 4,578

bytes. The experimental result shows that the average delay time is reduced by using

the Q-routing when compared with the shortest path under medium load level because

the Q-routing can learn to find optimal paths by using the routing information feedback

which reflects on current traffic condition in order to select it neighbor for forwarding

packets without traffic congestion.
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Figure 3.11: Comparing of average delay time between Shortest Path and Q-
routing on a 72-grid network which the packet sizes vary from 1,526 bytes to
4,578 bytes under traffic load 10%, and each link has limited 100 Mbps trans-
mission capacity.
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Figure 3.12: Comparing of average delay time between Shortest Path and Q-
routing on a 72-grid network which the packet sizes vary from 1,526 bytes to
4,578 bytes under traffic load 50%, and each link has limited 100 Mbps trans-
mission capacity.

Figure 3.13 shows the effective of Q-routing on a 72-irregular grid network under traffic

load 90% as a high load level where the packet sizes vary from 1,526 bytes to 4,578 bytes.

The experimental result shows that the average delay time is significantly reduced by

using the Q-routing when compared with the shortest path under high traffic congestion

because the Q-routing can learn to find optimal paths by using the routing information

feedback which reflects on current traffic condition in order to select it neighbor for

forwarding packets without traffic congestion.
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Figure 3.13: Comparing of average delay time between Shortest Path and Q-
routing on a 72-grid network which the packet sizes vary from 1,526 bytes to
4,578 bytes under traffic load 90%, and each link has limited 100 Mbps trans-
mission capacity.

Figure 3.14 shows the pdf of queue length on a 36-irregular grid network under traffic

load 10% which the queue length between the Q-routing and the shortest path is slightly

different because of no traffic congestion. However, the Q-routing holds smaller queue

length than the shortest path under high traffic load 90% because the Q-routing discovers

multi-path for forwarding packets which these paths are also considered to avoid traffic

congestion as shown in Figure 3.15.
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Figure 3.14: Comparing of queue length between Shortest Path and Q-routing
on a 36-grid network which the packet sizes is fixed at 1,526 bytes under traffic
loads 10%, and each link has limited 100 Mbps transmission capacity.

Figure 3.16 shows the pdf of queue length on a 72-irregular grid network under traffic
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Figure 3.15: Comparing of queue length between Shortest Path and Q-routing
on a 36-grid network which the packet sizes is fixed at 4,578 bytes under traffic
loads 90%, and each link has limited 100 Mbps transmission capacity.

load 10% which the queue length between the Q-routing and the shortest path is slightly

different because of no traffic congestion. However, the Q-routing holds smaller queue

length than the shortest path under high traffic load 90% because the Q-routing discovers

multi-path for forwarding packets which these paths are also considered to avoid traffic

congestion as shown in Figure 3.17.
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Figure 3.16: Comparing of queue length between Shortest Path and Q-routing
on a 72-grid network which the packet sizes is fixed at 1,526 bytes under traffic
loads 10%, and each link has limited 100 Mbps transmission capacity.

In addition, the number of hops is compared between Shortest Path and Q-routing on

a 36-grid network which the packet sizes is fixed at 1,526 bytes under traffic load 10%,

and each link has limit100 Mbps transmission capacity limit. The result in Figure 3.18
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Figure 3.17: Comparing of queue length between Shortest Path and Q-routing
on a 72-grid network which the packet sizes is fixed at 4,578 bytes under traffic
loads 90%, and each link has limited 100 Mbps transmission capacity.

shows that it is slightly different the number of hops because the Q-routing can converge

to the shortest path which is an optimal policy for forwarding packets. However, the

Q-routing can take higher number of hops for forwarding packets under high traffic load

90% to avoid traffic congestion as show in Figure 3.19.
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Figure 3.18: Comparing number of hops between Shortest Path and Q-routing
on a 36-grid network which the packet sizes is fixed at 1,526 bytes under traffic
loads 10%, and each link has limited 100 Mbps transmission capacity.
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Figure 3.19: Comparing number of hops between Shortest Path and Q-routing
on a 36-grid network which the packet sizes is fixed at 1,526 bytes under traffic
loads 90%, and each link has limited 100 Mbps transmission capacity.

3.4 Conclusions

In this chapter, the Q-routing on the irregular grid topologies is employed to study the

performance of Q-routing when it is employed for finding routing policies, and then

compared with the shortest path. The performance of Q-routing is measured in terms

of average delay time under different traffic conditions where the number of packets are

generated, and then forwarded to its destination. In addition, the number of packets

can be increased continuously under various sizes of packet routing. The experimental

results show that the Q-routing can find optimal routes for forwarding number of packets

as a results of a minimum of average delay time. Moreover, it can be clearly seen

that the queue length when Q-routing is employed for finding routing policy is smaller

than the shortest path because the Q-routing can find optimal routes which avoids

traffic congestion. However, this chapter shows the performance of Q-routing on small

networks which guarantees that it is successful in reducing packet delay time as a result

of improving network performance. However, it is more interesting and challenging to

employ the Q-routing on large scale sizes of networks like Internet. Hence, the Q-routing

on the large scale Internet networks is studied in the next chapter.





Chapter 4

Adaptive dynamic packet routing

on large scale Internet networks

According to an adaptive packet routing research on Boyan et al.’s work over the past

two decades (Boyan and Littman, 1994), there are many researchers get inspiration for

solving routing problems by applying Q-routing on various networks. However, following

of these work neither addressed larger networks nor topologies with different connectiv-

ities. Moreover, a growing communication networks trend towards increasing its sizes,

and develops its connectivity structures in order to support massive number of users.

Hence, the aim of this chapter is to represent an empirical evaluation of the performance

of Q-routing on synthesis Internet networks of realistic sizes and connectivity properties.

In addition, we consider several network topologies with the number of nodes set at

500 and the number of connections in the network set at 5000 based on IBM red book

which claimed that 500 nodes are large size networks (Murhammer et al., 1999). Differ-

ent network topologies were constructed which are random connections between nodes

and connections formed sequentially by preferential attachment (Batagelj and Brandes,

2005). We also consider a novel of Internet network architecture, known as a heuris-

tically optimized topology which Li et al. (2004) claimed that it is more reflective of

the Internet’s router level topology than a preferential attachment network. Since, it

is designed to support high traffic demand and considering the network maintenance

which all traffic from the network edge has to transmit through the network, but just

only core of the network has to be increased bandwidth for maintain heavily traffic. By

doing these, the Q-routing is represented approach scales to larger problems of adaptive

routing when different network connections are subject to increasing amounts of traffic.
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4.1 Synthesis Internet network models

Three representative sample of structural network models namely random network, ran-

dom network with preferential attachment and heuristically optimal topology are intro-

duced in this section.

4.1.1 Random network

The random network as shown in Figure 4.1 is a basic network model which is given a

fixed number of nodes and connected each link between pairs of node with probability p.

A connectivity process of random network creates a giant component which has attracted

a lot of networking research to study its phase transition properties (Chakrabarti and

Faloutsos, 2012b; Newman et al., 2002).

Figure 4.1: The infrastructure of the random network is generated by connecting
each link between pairs of node with probability p.

4.1.2 Random network with preferential attachment

In most real networks such as the collaboration and citation networks continually grow a

network size by adding nodes and edges according to a power-law distribution (Barabâsi

et al., 2002; Dorogovtsev and Mendes, 2002; Newman, 2003). In these networks, new

nodes prefer to connect with an existing node which has high number of connections

as new nodes are added to the network depending on probability proportional to the

current node number of connections. This process is called preferential attachment as

shown in Figure 4.2, and the pseudo code of these network construction is given in

(Batagelj and Brandes, 2005).
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Figure 4.2: The infrastructure of the random network with preferential attach-
ment represents a power-law distribution between number of nodes and its num-
ber of connections which few nodes have high number of connections contrasting
the other nodes have a small number of connections.

4.1.3 Heuristically optimal topology

The heuristically optimal topology (HOT) as shown in Figure 4.3 is designed based

on combining the technological and economic issues in order to apply for the network

infrastructure planning (Li et al., 2004). Due to all traffic from the network edged has

to be transmitted through the network via interconnected routers which leads to have

heavy congestion on core of the network. In addition, the transmission delay will be

increased if the network edges far from its destination. Hence, the HOT topology is

also designed to minimize the distance between the network core and edge in order to

minimize transmission time. Li et al. (Li et al., 2004) suggested that the HOT topology

is structural three network layers: core, gateway and edge routers. Furthermore, the

HOT topology should represent a power-law distribution which shows relationship in

the connectivity between AS-level and router-level. Hence, the first step to create HOT

topology is to generate a random network with preferential attachment, and then rewire

the network connectivity in order to create three structural network layers. Due to the

core of network has to contain heavily congestion, so it should have low connectivity

which its speed can be increased to improve network performance, and it also save cost

to maintenance. The gateway routers are connected with the core of network by selecting

the other higher-degree nodes, and then connected the edge of network according to the

degree of each gateway. Since this is not common in network literature, we give here the

construction algorithm as pseudo code in algorithm.
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Figure 4.3: The infrastructure of the heuristically optimal topology is designed
based on supporting demand of traffic in the future which considers cost of
network maintenance by increased bandwidth only core of the network.

4.2 Experimental Settings

These experiments are intended to demonstrate the ability of the adaptive packet rout-

ing when Q-routing is employed for packet transmission in terms of average packet delay

time, distribution of queue lengths, and how they are tolerant of different traffic condi-

tions on three network topologies.

In this chapter, we set a size of packet based on Ethernet jumbo frames which expanded

frame sizes from the original standard IEEE 802.3 in order to reduce the effect of TCP

frame overhead. The frame size of packet starts from 1526 bytes and should less than

11,455 bytes because of limit of Ethernet’s error checking. However, size of packet frames

has an effect on transmission delay in Ethernet link.

Furthermore, each node generates packets are periodic which are sent through entire

nodes in the network. Each packet specifies its destination, and it is sent out according

to its routing table. Moreover, the simplest queueing model M/M/1 is embedded in

each node to store multiple packets with unbounded FCFS queue. In this chapter, we

observed queueing delay time which is described how long the packet has to spend time

in the queue until it can be transmitted over the link in the network. The parameters

for experimental setting are shown in 4.2 and the performance of using Q-routing is

compared with the shortest path algorithm.
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Traffic load Packet size Interarrival time
(%) (bytes) (ms)

1,526 1.22
3,052 2.44

10 4,578 3.66
6,104 4.90
7,630 6.13
9,156 7.35

1,526 0.24
3,052 0.48

50 4,578 0.73
6,104 0.97
7,630 1.22
9,156 1.46

1,526 0.13
3,052 0.27

90 4,578 0.41
6,104 0.54
7,630 0.67
9,156 0.81

Table 4.1: Summary of interarrival time under different traffic loads 10%, 50%,
and 90% which each link has limited 100 Mb/s transmission capacity, and the
packet sizes vary from 1,526 bytes to 9,156 bytes

Parameters in the experiments

Categories Parameters Values Meanings

Network N 500 number of nodes
Nlink 5000 number of links
p 0.04 probability of random connectivity
m0 7 initial number of nodes to build

PA network
m 5 number of new links added to

PA network
at a time

Q-routing η 1.0 learning rate
algorithm ε 0.1 exploration rate

t 2000 s simulation time
it 10 number of iterations

Data traffic τ exp{0.13,...,7.35} inter-arrival time (ms)
modeling Pk {1526,...,9526} bytes size of a packet

tpd 0.5 µs propagation delay
datarate 100 Mbps transmission speed

buffer unlimited queue capacity

Table 4.2: Summary of parameters for the experiments which consists of Internet
network model, Q-routing and data traffic modeling.
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4.3 Experimental Results

Figure 4.5 is a comparison of average delay time between Q-routing and shortest path

algorithm while the number of packets is increased until traffic congestion happens. It

can be clearly seen that the Q-routing can decrease maximum delay time at load level

6 on three network topologies, and it has slightly different on queueing delay time at

load level 1 because of no traffic congestion. Moreover, it can decrease average delay

time 60.33% and 58.30% at load level 6 when the PA and the HOT are compared with

the random network respectively. In addition, the PA network contains highest average

delay because some nodes on the network connected with large number of connections,

contrasting with some nodes has only a single way to transmit packets as a result of

traffic congestion.

Furthermore, comparing average delay time at load level 6 as shown in Figure 4.5 which

compared a high load level between the shortest path and the Q-routing algorithms

on three network topologies, it can be clearly seen that the Q-routing algorithm can

decrease average queueing delay time 59.46%, 37.93%, and 40.78% on the Random,

PR, and HOT networks respectively because the Q-routing algorithm is embedded on

each node which reflects current traffic condition by using its Q-values table for making

routing decision, and then selects optimal paths for reducing traffic congestion.

Figure 4.4: The number of node’s connections on three network topologies.

Figure 4.6 shows distribution of queue lengths between load levels 1 and 6 where the Q-

routing algorithm is employed for packet transmission on three network topologies, and

it is clearly seen that distribution of queue length for each link on random network holds

smallest number of queue length at both of load levels because the random network

is built by connected each node with the same probability 0.04, and leads it has the
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Figure 4.5: Observed average delay time between shortest path and Q-routing
while the number of packets is increasing steadily in terms of load levels on three
network topologies which each network consists of 500 nodes and 5000 links.
The Q-routing can decrease average queueing delay time 59.46%, 37.93%, and
40.78% on the random network, the random network with preferential attach-
ment and the heuristically optimal topology, respectively.
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Figure 4.6: Distribution of queue lengths between load levels 1 and 6 on three
network topologies when the Q-routing algorithm is employed for packet trans-
mission, and it is clearly seen that the Q-routing algorithm holds smaller queue
length at both of load levels because the Q-routing algorithm can find multi
paths for forwarding packet which leads to reduce traffic congestion by dis-
tributed traffic among links.
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same number of node degree connection. However, the PA network is different from the

random network with new node prefers to connect existing nodes with higher degree of

connection, so it leads this network has been wildly growing up only one side, and this is

cause why this network holds highest number of queue length at both load levels when

compared with the rest of networks. In addition, the HOT network is constructed from

rewiring node degree connection of the PA network, so it can reduce traffic congestion

and contains lower queue lengths when compared with the PA network, but it holds

higher queue length than the random network because the traffic will congest at core of

routers which connected with lowest node degree connection.

Figure 4.7 is a comparison of average delay time on every link between the shortest

path and Q-routing on three network topologies which considers only load levels 1 and

6. There are highest number of links which contain highest queueing delay time on

the PA network, and in contrast with the random network which has a few number of

links contained the high delay time on both load levels. Hence, the random network can

contain more load levels, and also has lowest delay time when compared with the PA

and the HOT networks.

Figure 4.8 shows fan-out of a node on a random network at low load level which the

queue length between the shortest path and the Q-routing is slightly different because

of no traffic congestion at the low load level.

Figure 4.9 shows fan-out of a node on a random network at high load level which the

queue length of the Q-routing is lower than the shortest path because it can avoid traffic

congestion at the high load level.

Figure 4.10 shows fan-out of a node on a random network with preferential attachment

at low load level which the queue length between the shortest path and the Q-routing

is slightly different because of no traffic congestion at the low load level.

Figure 4.11 shows fan-out of a node on a random network with preferential attachment

at high load level which the queue length of the Q-routing is lower than the shortest

path because it can avoid traffic congestion at the high load level.

Figure 4.12 shows fan-out of a node on a heuristically optimal topology at low load level

which the queue length between the shortest path and the Q-routing is slightly different

because of no traffic congestion at the low load level.

Figure 4.13 shows fan-out of a node on a heuristically optimal topology at high load

level which the queue length of the Q-routing is lower than the shortest path because it

can avoid traffic congestion at the high load level.
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4.4 Conclusions

In summary, the shortest path algorithm is not appropriate for forwarding packets if

there are a large number of packets would like to be sent into the network because it

uses static routing table for packet transmission. In addition, it also leads to easily get

traffic congestion since it always used the same path for packet transmission. Moreover,

the Q-routing can find the same routes as the shortest paths if it learns until convergent

time. Hence, the Q-routing algorithm is appropriate for forwarding packets especially

if the number of packets is steadily increasing because its routing table can be updated

to select suitable it’s neighboring node. Since, it can avoid congested paths to send the

packet to its destination as a result of decreasing average delay time, and also contains

large number of packets as shown good results on the experimental results section.

In addition, it will be more powerful if it is employed on real network topology because

the Q-routing can contain higher traffic loads than the shortest path. Furthermore, it

can decrease average delay time while more number of packets is steadily increasing into

the network. Hence, the Q-routing in this thesis is also employed on the JANET which

is a real network for supporting education in UK, and it is described in next chapter.
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Figure 4.7: Comparing average delay time on three network topologies at load
level 1 and 6 when the shortest path and Q-routing were employed for packet
transmission.
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Figure 4.8: Fan-out of a node on a random network at low load level.

Figure 4.9: Fan-out of a node on s random network at high load level.



64 Chapter 4 Adaptive dynamic packet routing on large scale Internet networks

Figure 4.10: Fan-out of a node on a random network with preferential attach-
ment at low load level.

Figure 4.11: Fan-out of a node on a random network with preferential attach-
ment at high load level.
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Figure 4.12: Fan-out of a node on a heuristically optimal topology at low load
level.

Figure 4.13: Fan-out of a node on a heuristically optimal topology at high load
level.





Chapter 5

Adaptive dynamic packet routing

on JANET network topology

During the years, reinforcement learning which a branch of machine learning has been

successful applied to optimize problems solving on various contexts such as routing

optimization problem in communication networks. In previous chapters, the Q-routing

is successful to employ for finding optimal routing paths in order to forward packets

under different traffic conditions on small and large synthesis Internet networks. The

previous experimental results show that the Q-routing can find optimal routing paths

which avoids traffic congestion as a result of decreasing average delay time and queue

length. However, it has not been applied on real network topology which it is a good

chance to apply on real network communication for supporting high traffic demand in

the future.

Hence, the Q-routing is evaluated the effectiveness of routing information feedback under

different traffic conditions against Dijkstra’s algorithm on real United kingdom (UK)

network topology; JANET (Joint Academic Network) network, in order to explore the

possibilities of adaptive routing algorithm according to support high traffic demand.

5.1 JANET connectivity

Since the UK is famous for educational systems including corporate reputation research

centers, many journals have been published to keep abreast of development. Hence,

exchanging knowledge information among research and educational centers has an im-

portant for supporting economy, society, and environment in the future. JANET net-

work is established for educational serving between UK research and education com-

munity which provides high speed connection, and covers the UK from lands end to

John O’Groats and everywhere in between. The network backbone runs at 100 Gbit/s,
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and capacity of interconnection is around 40 Gbit/s as shown in 5.1. In addition, the

university of Southampton is one of three universities across the UK is collaborating on

fiber infrastructure which aims to develop photonics and optical systems for supporting

future network architectures.

Figure 5.1: JANET network is the network for supporting UK research and
education which is operated by United Kingdom Education and Research Net-
working Association (UKERNA) and the Joint Information Systems Committee
(JISC).

5.1.1 Experimental Settings

These experiments are intended to demonstrate the ability of the Q-routing algorithm

for packet transmission in term of average packet delay time and distribution of queue

lengths, and how they are tolerant of congestion under different traffic conditions on the

JANET network.

In this thesis, we consider different traffic loads which each link has limited 100 Mb/s

transmission capacity, and the packet sizes vary from 1,526 bytes to 4,578 bytes which

its interarrival time is a leading cause of traffic congestion on the network. Table 3.1

is an example of arrival rate and interarrival time when packet size is 1,526 which is

a minimum packet size considering how it has effect on traffic congestion when traffic

loads vary from 10% to 95%.

Moreover, Table 5.1 is summarized interarrival time under different traffic loads 10%,

50% and 90% which represent low, medium, and high traffic load levels on the network.
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In addition, packet sizes vary from 1,526 bytes to 4,578 bytes are also considered how it

has effect on traffic congestion.

Traffic load Packet size Interarrival time
(%) (bytes) (ms)

1,526 1.22
2,289 1.83

10 3,052 2.44
3,815 3.05
4,578 3.66

1,526 0.24
2,289 0.36

50 3,052 0.48
3,815 0.61
4,578 0.73

1,526 0.13
2,289 0.20

90 3,052 0.27
3,815 0.34
4,578 0.41

Table 5.1: Summary of interarrival time under different traffic loads 10%, 50%,
and 90% which each link has limited 100 Mb/s transmission capacity, and the
packet sizes vary from 1,526 bytes to 4,578 bytes

5.1.2 Experimental Results

Considering a real network topology; JANET which each link has limited transmission

capacity, and routing algorithm is embedded in each node to find optimal routing policy

for forwarding packets. Packet arrival rate is increased in order to introduce traffic

congestion. In addition, Q-routing and shortest path are compared when traffic load

is increased on the network. Average delay time and distribution of queue length are

studied a performance of routing algorithm while traffic is increasing until congestion

on the network.

Figure 5.2 shows the relationship between number of nodes and its connection which

represents power-law degree behavior by a few number of nodes connected with high

number of connection, and contrasting with the other nodes on the network. In addition,

the highest number of connection on the JANET network is 8.

Figure 5.3 shows the relationship between number of hops and number of nodes on the

JANET network where the packet size 1526 bytes is sent through the entire network. In

addition, it is slight different between number of hops when the Shortest path and Q-

routing are employed for packet transmission because they always use the same routing

table for forwarding packets.
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Figure 5.2: Average number of node connection on JANET network.
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Figure 5.3: Average number of hops at low load level on JANET network.

Figure 5.4 shows the relationship between number of hops and number of nodes on the

JANET network where the packet size 4578 bytes is sent through the entire network. In

addition, it is different between number of hops when the Shortest path and Q-routing

are employed for packet transmission because the Q-routing prefers to send packets out

with longer paths because of avoiding traffic congestion.

Figure 5.5 shows the average delay time between Shortest path and Q-routing while the

number of packets is increasing steadily in terms of load levels on JANET network. It
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Figure 5.4: Average number of hops at high load level on JANET network.

is clearly seen that, the Q-routing has significantly decreased the average delay time on

the JANET network at high load level.
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Figure 5.5: Average delay time between Shortest path and Q-routing while
the number of packets is increasing steadily in terms of load levels on JANET
network.

Figure 5.6 shows the distribution of queue lengths between shortest path and Q-routing

at load levels 1 and 3 on JANET network where the Q-routing contains lower queue

length than the Shortest path because it can find optimal paths to transmit packets

with avoiding traffic congestion.
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Figure 5.6: Distribution of queue lengths between shortest path and Q-routing
at load levels 1 and 3 on JANET network.

In addition, the second part of experiment in this chapter is applied the M/M/1/K

queueing model on every node in the JANET network in order to observe how the Q-

routing can manage routing tables which helps to avoid dropping packets. In addition,

we consider extremely case which K can store only 1 packet.

Figure 5.7 shows the comparing number of nodes for packet drop between Shortest path

and Q-routing where the packet sizes vary from 1526 bytes to 4578 bytes, and on JANET

network. It is clearly seen that the Q-routing can decrease the number of nodes which

drop packets on the JANET network.

Figure 5.8 shows the comparing percentage of number of nodes for packet drop between

Shortest path and Q-routing where the packet sizes vary from 1526 bytes to 4578 bytes,

and on JANET network. It is clearly seen that the Q-routing can decrease more than

half of the number of nodes which drop packets on the JANET network.

Figure 5.9 shows the comparing amount of packet drop (bytes) between Shortest path

and Q-routing where the packet sizes vary from 1526 bytes to 4578 bytes, and on JANET

network. In addition, it is slightly different amount of packet drop at the packet size

1526 bytes. In contrasting with the packet size 4578 bytes, the Q-routing can decrease

the amount of packet drop 68% .

However, the percentage of decreasing amount of packet drop between Shortest path

and Q-routing where the packet sizes vary from 1526 bytes to 4578 bytes on JANET

network as shown in Figure5.10 shows that the Q-routing can decrease the amount of

packet drop more than 50%. Hence, the Q-routing is suitable for packet transmission on

the real network because it can avoid traffic congestion as a result of decreasing average
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Figure 5.7: Comparing number of nodes for packet drop between Shortest path
and Q-routing where the packet sizes vary from 1526 bytes to 4578 bytes, and
on JANET network.
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Figure 5.8: Comparing percentage of number of nodes for packet drop between
Shortest path and Q-routing where the packet sizes vary from 1526 bytes to
4578 bytes, and on JANET network.

delay time, and it can decrease the amount of packet drop when the router has capacity

limit.
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Figure 5.9: Comparing amount of packet drop (bytes) between Shortest path
and Q-routing where the packet sizes vary from 1526 bytes to 4578 bytes, and
on JANET network.
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Figure 5.10: Percentage of decreasing amount of packet drop between Shortest
path and Q-routing where the packet sizes vary from 1526 bytes to 4578 bytes
on JANET network.

5.2 Conclusions

In this chapter, the Q-routing is employed on a real network architecture; the JANET

network. The JANET network is a high-speed network infrastructure as know as the

Joint Academic Network (JANET) has been cooperated between the U.K. academic
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and research network, which is aimed to be driven mass productive research, and pro-

vided excellent service for tons of users. In addition, the JANET has been designed

to support vastly users by increasing capacity, resilience and flexibility. Moreover, the

JANET network aurora2 has been emphasized by using its own dedicated dark fibers

for supporting researchers to develop the highlight communications technologies for the

future Internet without breaking the current Internet. However, it has to ensure that its

flexible architecture should appropriately respond to arising new technologies as come

with massive users, and the quality of service measurements such as packet delivery

time have to develop a strategy for user satisfaction. Hence, routing algorithms play an

important role in sorting the best path for packet transmission which should avoid con-

gestion paths. The Q-routing is one of routing algorithms which can select multi-path

for packet transmission by avoiding traffic congestion while the large number of packets

is increasing in the network as the results showed in the experimental results section.

Furthermore, it will be interesting to apply the Q-routing on real network topology such

as the JANET network to see how the Q-routing can sustain the high traffic conditions.

In this thesis, we employed two routing algorithms which are the shortest path and the

Q-routing for packet transmission while the number of packets are steadily increasing

into the network.

The experimental results show that the Q-routing can show a good performance to

decrease average delay time, and contain lower distribution of queue length than the

shortest path on a real network JANET while the number of packets is increasing into

the network. Hence, we confirm that the Q-routing not only suitable for decreasing

average delay time and queue length on synthetic Internet networks, but it also works

as well on the real network like JANET.





Chapter 6

Pareto Q-learning based on the

Deep Sea Treasure World Case

Study

In this chapter, the RL method namely Q-learning has been employed for studying

multi-objective problems by combining with the Pareto front in order to get the optimal

solution. In addition, we are interested in the deep sea treasure world (DST) case study

which is proposed by (Vamplew et al., 2011). Moreover, it is claimed that the optimal

path of each treasure is a part of the Pareto front which is learned by the Q-learning.

Furthermore, the purpose of DST is discovering the highest treasure value while taking

a minimum number of hops as well as a minimum time consuming. Hence, the Pareto-

Q-learning is the one method which is interesting for solving multi-objective problems.

6.1 Multi-objective Reinforcement Learning

According to Vamplew et al. (2011), multi-objective reinforcement learning (MORL) is

divided into two classes depending on how many policies are learned which are called

single policy class and multiple-policy class. In addition, the single policy class is learned

from the set of objectives as a result of getting the best single policy. In contrasting

with multiple-policy, it is learned in order to get the set of policies which is close to the

Pareto front. Gábor et al. (1998) applied the reinforcement learning on multi-criteria

decision problems by setting a threshold to get the optimal policy which responds to

a set of objectives. In addition, Gábor et al. (1998)’s work is an example of the single

policy class which requires only an optimal policy to achieve multi-goal of the system.

However, the single policy class can lead to a sub-optimal solution depending on the

method of defining threshold (Vamplew et al., 2011). Hence, the multi-policy class is

77
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introduced to solve multi-objective problems which a set of policies should provide more

flexible answers rather than only fixed with a single policy.

In this chapter, the multi-policy class based on Q-learning is interested in solving multi-

objective problems by extending from the original Q-learning which the Q-values vector

is used to represent a feedback on a set of objectives. In addition, the Pareto Q-learning is

a method of multi-policy class which was applied on the Deep Sea Treasure World. Fur-

thermore, it was introduced by Vamplew et al. (2011) which motivated us to understand

how it works, and inspire us to extend this work into multi-objective in communication

network like Internet.

6.2 Pareto Q-learning

The original Q-learning was introduced by Watkins and Dayan (1992) which aims to

solve a single objective problem based on reward signaling from the next state to estimate

an optimal policy. In addition, an action selection is chosen at each time step based on

selected action mechanisms such as ε-greedy which selects a possible action based on

its probability. Moreover, the Q-learning can learn to improve the network without

knowing the complete model of the network. However, the single objective will achieve

only one goal which cannot improve overview of the network. Hence, a single selected

action is extended to a set of actions which responds to multi objectives which these

selected actions should rely on Pareto front to provide optimal policies. In addition, the

Q-values of original Q-learning which is used to observe the reward signal between state

and its action, is also extended to a set of Q-vectors (Van Moffaert and Nowé, 2014).

Furthermore, the algorithm of Q-learning is described in more detail by Sutton and

Barto (2011) where the Pareto Q-learning will provide the flowchart of learning process

as shown in Figure 6.1 as follows:

6.3 Experiments

The DST simulation is an example of multi-objective based on Pareto Q-learning which

has a set of Q-vectors to find optimal policies. In addition, there are two objectives which

the submarine would like to discover; the highest value of treasure and the minimum

time consuming. Furthermore, the selected action mechanism in this chapter is ε-greedy

which is applied to explore and select possible actions by random with probability ε.

The maximum time step of DST simulation (t) is 2000 which is used to observe when

the simulation converges into optimism. Moreover, the learning rate (α) is specified 0.8,

discount factor (γ) is 0.1, and probability of random action ε is 0.3. The reward signal is

provided 1 for every step to find the treasure, but a reward could be 100 if the submarine

goes into the rock undersea region. If the submarine reaches the goal state, the value of
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Figure 6.1: The flowchart of Pareto Q-learning.

treasure and time consuming will be provided back to the state of submarine. For an

initial state, the submarine starts to find the treasure at the top left corner, and it will

discover the highest value by moving to the next states until reach its goal. Hence, the

highest value of treasure and the minimum time consuming which the submarine can

discover, are 124 and 19, respectively.

In addition, Figure 6.2 represents the environment of deep sea treasure world which
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consists of ten states of treasure values, the rock seabed, and the submarine starts

discovering the treasure from the top left corner. In addition, the optimal policies of

this problem should rely on the Pareto front. Moreover, the parameters of learning

process such as α, and a probability of selected action ε are also examined how they

have an affect on the DST environment as the experimental results shown in the next

section.

Figure 6.2: The DST environment consists of the white cells, the darker tan
cells and the yellow cells which represent possible states to find treasure, the
rock seabed, and the goal states, respectively.

6.4 Experimental Results

Since, the Q-learning consists of learning rate, discount factor, episode and probability

of selected action which these parameters get involved in a learning process, and having

a relationship among them to provide optimal policies. Hence, they are examined in

order to understand how to tunning these parameter to achieve the goals.

Firstly, the The time step of DST simulation (t) varies from 1 to 2000 in order to

observe convergence time which allows the submarine running this algorithm to quickly

and reliably converge. Secondly, the ε also varies from 0.1 to 0.9 in order to explore and

take a random action according to the probability which ε = 0.1 means the submarine

has chanced to explore only 10% for selecting an action from all possible actions, and

90% for selecting the action depending on the greatest estimated values as well as the

greedy action (Sutton and Barto, 2011). However, the action should be explored before

selecting because Sutton and Barto (2011) claimed that at least one of these possible

actions probably is actually better than the greedy action. Finally, the learning rate (α)

and the discount factor (γ) should be varied in order to study how they have an affect

on the DST bi-objective environment.
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Figure 6.3 shows the Pareto front on the DST bi-objective environment which the ε varies

from 0.1 to 0.9, and the time step of simulation varies from 1 to 2000. In addition, the

learning rate (α) is specified 0.9, discount factor (γ) is 0.1. It is clearly seen that the ε

= 0.1, the Pareto front can be found only 8 goals states, and it will be found all 10 goal

states when the ε is more than 0.2 due to the exploring selected action is actually better

than greedy action. However, the increasing of ε until it is nearly 1 has not guaranteed

the optimal policies because the action will be selected based on random probability

rather than greediness. Hence, the ε = 0.3 is selected to apply on the DST environment

in this thesis because it is the first probability of random action which is found all 10

goal states.

Furthermore, Figure 6.4 shows the probability of goal states visiting on the DST bi-

objective environment which the ε also varies from 0.1 to 0.9, and the time step of

simulation is 2000. It is clearly seen that all of goal states will be visited when the ε

more than 0.2, and the probability of higher value of treasure (> 50) visiting will be

arisen in the ε range of 0.2 to 0.5. However, the probability of highest value of treasure

(124) will be visited decreasingly where the ε is more than 0.5 because it prefers to visit

the goal states which the values are less than 50.

In addition, Figure 6.5 shows the results of convex hull on the DST bi-objectives envi-

ronment which the ε varies from 0.1 to 0.9 where x bar represents time consuming, and

y bar represents the value of treasure. It is clearly seen that if the ε is less than 0.4, the

highest value of treasure is found by taking minimum time consuming. In contrasting,

if the ε is more than 0.4, the value of treasure will be found by taking more time con-

suming which is the reasonable reason why the ε = 0.3 is selected to apply on the DST

bi-objectives environment.
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(a) ε = 0.1 (b) ε = 0.2 (c) ε = 0.3

(d) ε = 0.4 (e) ε = 0.5 (f) ε = 0.6

(g) ε = 0.7 (h) ε = 0.8 (i) ε = 0.9

Figure 6.3: The results of Pareto front on the DST bi-objective environment
which the ε varies from 0.1 to 0.9, and the time step of simulation varies from
1 to 2000.
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(a) ε = 0.1 (b) ε = 0.2 (c) ε = 0.3

(d) ε = 0.4 (e) ε = 0.5 (f) ε = 0.6

(g) ε = 0.7 (h) ε = 0.8 (i) ε = 0.9

Figure 6.4: The results of probability of goal states visiting on the DST bi-
objective environment which the ε varies from 0.1 to 0.9, and the time step of
simulation is 2000.
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(a) ε = 0.1 (b) ε = 0.2 (c) ε = 0.3

(d) ε = 0.4 (e) ε = 0.5 (f) ε = 0.6

(g) ε = 0.7 (h) ε = 0.8 (i) ε = 0.9

Figure 6.5: The results of convex hull on the DST bi-objective environment
which the ε varies from 0.1 to 0.9.
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However, the learning process of Pareto Q-learning concerns with the learning rate (α),

then the convex hull and the probability of goal states visiting on the DST bi-objective

environment are examined when the (α) is decreased from 0.9 to 0.1. In addition, the

discount factor (γ) is specified 0.1, the ε = 0.3, and the time step of simulation is 2000.

Figure 6.6 shows the results of convex hull on the DST bi-objective environment which

the α is decreased from 0.9 to 0.1. It is clearly seen that if the α is 0.8, the value of

treasure will be found by taking a minimum time consuming. In contrasting with the α

is 0.1, the submarine will take more time consuming to discover the valuable treasures.

Hence, the α is fixed at 0.8 in order to provide optimal policies.

(a) α = 0.9 (b) α = 0.8

(c) α = 0.5 (d) α = 0.1

Figure 6.6: The results of convex hull on the DST bi-objective environment
which the α is decreased from 0.9 to 0.1.

Figure 6.7 shows the results of probability of goal states visiting on the DST bi-objective

environment which the α is decreased from 0.9 to 0.1. Although, the probability of the

highest value of treasure visiting of the α 0.8 is less than the α 0.1, the submarine takes

a minimum time consuming for the highest valuable treasure discovering. Hence, the α

is fixed at 0.8 in order to provide optimal policies.

Moreover, the discount factor gamma is also increased from 0.1 to 0.9 in order to study

how it has an affect on the DST bi-objective environment where the learning rate (α) is
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(a) α = 0.9 (b) α = 0.8

(c) α = 0.5 (d) α = 0.1

Figure 6.7: The results of probability of goal states visiting on the DST bi-
objective environment which the α is decreased from 0.9 to 0.1.

specified 0.8, the ε = 0.3, and the time step of simulation is 2000.

Figure 6.8 shows the results of convex hull on the DST bi-objective environment which

the γ is increased from 0.1 to 0.9. It is clearly seen that if the γ is nearly 1, the submarine

will discover the only lower valuable treasures with taking more time consuming.

Furthermore, Figure 6.9 shows the results of probability of goal states visiting on the

DST bi-objective environment which the γ is increased from 0.1 to 0.9. Although, the

probability of the highest value of treasure visiting of the γ 0.1 is less than the γ 0.5, the

submarine takes a minimum time consuming for the highest valuable treasure discovering

as shown in Figure 6.8. Hence, the γ is fixed at 0.1 in order to provide optimal policies.

In addition, the Pareto front on the DST bi-objective environment which the γ is fixed

at 0.9 is an average found only 6 goal states as shown in Figure 6.10, and it should take

time more than 2000 episodes to find optimal policies which should provide all 10 goal

states.
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Hence, Figure 6.12 shows the Pareto front of the DST environment which consists of

bi-objective; time consuming and the value of treasure which the Q-learning algorithm

is embedded in the submarine in order to achieve all the 10 goal states. In addition,

three parameters; the learning rate (α), the discount factor (γ), and the ε have been

studied in order to study how they have an affect on the DST bi-objective environment

which they should be specified 0.8, 0.1, and 0.3 respectively in order to discover all the

value of treasure by taking minimum time consuming.

6.5 Conclusions

In this chapter, the experimental results are presented bi-objective optimization and re-

inforcement learning approaches for providing optimal policies which the first objective

is to minimize time consuming for discovering the valuable treasure, and the second

objective is to maximize the value of treasure. In addition, the DST bi-objective envi-

ronment has the maximum 10 undersea valuable treasures which the value of treasure

depends on its distance. It can be clearly seen that there are 10 policies to find the

undersea treasures as showed in Figure 6.12, and the optimal path of each treasure is a

part of the Pareto front. Moreover, number of episodes for running simulation have an

effect on discovering Pareto front which the Pareto front can be found less than five at

the beginning of episodes, in contrast with the nearly end of episode which the Pareto

front can be found all of the goal states. In addition, three parameters; the learning

rate (α), the discount factor, and the ε have a relationship among them which should be

tuned before applied on the DST bi-objective environment because they have an affect

on providing optimal policies.

Hence, the DST is one of multi-objective reinforcement simulations which has shown

the optimal path of each treasure is an element of the Pareto front. In addition, the

exploration and exploitation trade-off is crucial problem in a reinforcement learning

which should have developed an evaluation mechanisms in order to select an efficient

action and provide optimal policies.

In addition, this chapter also provided an idea to apply the Pareto Q-learning for multi-

objective routing optimization problems on communication network. For example, it

can be applied to reduce congestion, and improve quality of service on Network-on-Chip

which its topology is a grid network like the DST case study.
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(a) γ = 0.1

(b) γ = 0.5

(c) γ = 0.9

Figure 6.8: The results of convex hull on the DST bi-objective environment
which the γ is increased from 0.1 to 0.9.
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(a) γ = 0.1

(b) γ = 0.5

(c) γ = 0.9

Figure 6.9: The results of probability on goal states visiting on the DST bi-
objective environment which the γ is increased from 0.1 to 0.9.
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Figure 6.10: The Pareto front of the DST bi-objective environment which the
learning rate (α) is 0.8, the discount factor (γ) is 0.9, and the ε is 0.3.

Figure 6.11: The Pareto front of all 10 goal states on the DST bi-objective
environment which three parameters; the learning rate (α) is 0.8, the discount
factor (γ) is 0.1, and the ε is 0.3.

Figure 6.12: The Pareto front of DST bi-objective environment which consists
of time consuming and the value of treasure of all 10 goal states.
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Conclusions and Future works

7.1 Conclusions

In dynamically changing communication networks, an efficient routing policy of packet

routing should be adapted depending on various traffic conditions, traffic patterns, and

changing in connectivity of the network. However, making globally optimal routing

decision is not realistic because it would require a central controller which contains

complete routing information in term of the state of all nodes and links on the entire

network. For this reason, the routing decision has to build local routing information

in individual nodes which should estimate packet delivery time to other nodes via its

neighbors, or estimate queue lengths of intermediate nodes in the network. In addition,

an adaptive routing algorithm should have an efficient mechanism to explore and update

its routing tables in order to reflect the current routing information before forwarding

packets in order to improve network performance in terms of decreasing packet delay

time.

Hence, an adaptive routing strategy for communication networks based on the machine

learning methodology of reinforcement learning have been explored in this thesis. More-

over, the Q-routing which is an application of reinforcement learning, was introduced

over twenty years ago and it is also successful in packet transmission. However, all work

citing it has been on small toy example networks which are not relative to real sizes of

Internet networks. Hence, three synthesis topologies namely random topology, random

topology with preferential attachment, and heuristically optimal topology have been

shown that the Q-routing approach can scale up to realistic router level networks with

500 nodes and 5000 links between them. Furthermore, a real-world network architecture;

the JANET is included in our studies. Moreover, statistical connectivity properties have

been further explored. While the preferential attachment (PA) construct is seen as the

popular model of several natural and man-made networks including the Internet, a re-

cent suggestion of router level topology is the HOT topology. In comparing networks of
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random preferential attachment and HOT network topologies with respect to adaptive

routing, the experimental results demonstrate how a random network achieves the best

improvement in reducing average delay at high loads 59.46% because it is easier to find

alternated routes. The HOT topology, being a more realistic model of Internet routing is

able to reduce average delay 40.78% which outperforms the PA architecture significantly.

In addition, the PA architecture can reduce average delay time 37.93% because of its

connectivity which tends to have a few centrally located and highly connected centers

as a result of most traffic has to flow. Hence, suggesting adaptive routing is a strategy

which may be deployed on real networks operating under heavy loads.

Furthermore, we are interested in exploring adaptive routing strategies for ad hoc mo-

bile networks including routing in the context of the Internet of Things’. We are also

interested in more efficient algorithms in the class of RL, such as the SARSA algorithm

Rummery and Niranjan (1994) and performance optimization strategies with resource

limitations (e.g. finite buffer sizes at nodes).

7.2 Future Works

In this thesis, there are three synthetic network topologies which Q-routing algorithm

is applied for reducing average delay time. The Q-routing algorithm has been shown

enhancement network performance by using the Q-values. Since, the Q-values store

routing information which is a feedback signal in order to find routing policies while

there are large number of packets increased in the network. However, there is only

one objective function which is studied in this thesis that is to be minimize average

delay time when packet is transmitted to its destination. Hence, we are interested

in applied reinforcement learning for multi-objective problems in our future work. In

addition, buffer size of router is one of problems which we are interested because it has

an effect on network performance in terms of packet loss rate. Dhamdhere and Dovrolis

(2006) showed that small buffers can lead to excessively high packet loss rate when the

link carries many flows which has an effect on throughput of the network. Moreover,

Wischik and McKeown (2005) and Lakshmikantha et al. (2011) claimed that buffers

in routers play an important role for the Internet performance. By the way, we are

interested the algorithm namely Pareto Q-learning which is suggested by Van Moffaert

and Nowé (2014). The Pareto Q-learning is applied in multi-objective reinforcement

learning by using sets of Pareto dominating policies that Van Moffaert and Nowé (2014)

claimed that the Pareto Q-learning is able to learn the entire Pareto front under the

assumption that each state and action pair is sufficiently sampled. In addition, the

Pareto Q-learning is the first temporal difference-based multi-objective reinforcement

learning (MORL) which does not use the linear scalar function so it is no limited to the

convex hull (Van Moffaert and Nowé, 2014). However, the Pareto Q-learning has not

employed on routing scheme and also network topology. Hence, it is more attractive to
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apply Pareto Q-learning on routing scheme for solving multi-objective problems which

are to be minimize average delay time, minimize buffer size in the router, and maximize

throughput. The details of each ideas are described as follows.

7.2.1 Multi-objective reinforcement learning

Due to multiple objectives are suitable for network system design because multi-optimization

can be solved at the same time, and it is more interesting, if we can find out how these

objectives have an effect on each other. We have got an idea from (Van Moffaert and

Nowé, 2014) which purposed Pareto Q-learning and showed that it is useful in an on-line

setting, and it is able to find the optimal paths which are elements of the Pareto front.

Hence, we can apply Pareto Q-learning in network routing scheme which the first objec-

tive is to minimize delay time between source and destination, and the latter objective

is to maximize throughput in terms of successful transmitted packets. Moreover, the

experiments on the deep sea treasure world (DST ) problem in appendix B have shown

that all Pareto optimal policies can be found by using Q-learning within a short learning

period. However, there is another way to develop the Pareto Q-learning by improving

exploration method. Hence, we are interested in action selection techniques in order to

balance the exploration and the exploitation which we will suggest 3 techniques.

7.2.1.1 Hypervolume Set Evaluation

The first action selection technique is hypervolume which is used to measure and evaluate

the Q-values set which is suggested by Van Moffaert and Nowé (2014). They claimed

that the hypervolume is suitable for finding actions because it is able to be stricly

monotonic with the Pareto dominance, and it provides a scalar measure of the quality of

a set of vector. The hypervolume set evaluation starts by initial the list of each evaluated

action, and then calculates the Q-values set of each action which its hypervolume will be

added to the list. In addition, an action can be selected similarly to the single-objective

case. For example, the greedy action can be selected if it relates to the Q-values set

with contains the highest value of hypervolume, and it can be empty if the hypervolume

of each action is 0, otherwise an action can be selected by random. Moreover, the

hypervolume which is applied to the Pareto Q-learning, can be called HV − PQL.

7.2.1.2 Cardinality Set Evaluation

Van Moffaert and Nowé (2014) claimed that this evaluation mechanism closely relates

to the cardinality indicator in multi-objective optimization which can be called C-PQL.

The selected action process related to provide a degree of domination one action which
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should have over other actions. Moreover, it is expected that these actions with larger

probability should be cover Pareto dominating solutions.

7.2.1.3 Pareto Set Evaluation

The last selected action technique is Pareto which is a simplified version of the cardinality

metric (Van Moffaert and Nowé, 2014). The selected action process is considerate a non-

dominated vector of action across every other action which it is expected to remove any

dominated actions, and then the non-dominated action can be selected by random. In

addition, Van Moffaert and Nowé (2014) claimed that this technique is related to the

Pareto.

7.2.2 Reinforcement Approach to Virus Propagation Models

In addition, it will be more interesting to consider virus propagation models (Kim et al.,

2004; Yang et al., 2012) on complex communication networks like Internet which the

Q-routing should be deployed for finding optimal policies in order to achieve a network

performance. According to Yang et al. (2012) suggested a model of computer virus

spreading under a reasonable assumption. In addition, it is more challenging to reduce

infected computer virus by using an adaptive Q-routing to specify the area of virus infec-

tion in order to avoid those paths, and recovery of network performance. Furthermore,

Zou et al. (2003) introduced a modeling E-mail based worms propagation which the

Q-routing can be deployed on this model to be network monitoring in order to detect

malicious nodes. Not only will it be successful in communication networks, but also the

biological networks have benefited from the virus learning.
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Gábor, Z., Kalmár, Z., and Szepesvári, C. (1998). Multi-criteria reinforcement learning.

In ICML, volume 98, pages 197–205.

Geisberger, R., Sanders, P., Schultes, D., and Vetter, C. (2012). Exact routing in large

road networks using contraction hierarchies. Transportation Science, 46(3):388–404.

Gilbert, E. N. (1959). Random graphs. The Annals of Mathematical Statistics,

30(4):1141–1144.
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