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A B S T R A C T

It is hypothesised that one of the main reasons evolution has produced such a tremend-
ous diversity of amazing designs is because evolution has improved its own ability to
innovate, a process called the ‘evolution of evolvability’. Rupert Riedl, an early pion-
eer of evolutionary developmental biology, suggested that evolvability is facilitated by a
specific developmental organisation that is itself a product of past selection. However,
the construction of a theoretical framework to formalise such ‘evolution of evolvability’
has been continually frustrated by the indisputable fact that natural selection cannot fa-
vour structures for benefits they have not yet produced. Here we resolve this seeming
paradox. Recent work shows that short-term selective pressures on gene interactions
are functionally equivalent to a simple type of associative learning, well-understood in
neural network research. This is important for the evolution of evolvability because this
type of learning system can clearly change in a way that improves its performance on
unseen, future test cases, without the need for the future to cause the past. Recognising
a formal link with the conditions that enable such predictive generalisation in machine
learning systems unlocks well-established theory that can be applied to understanding
the evolution of evolvability. Here we use this to elucidate, and demonstrate for the first
time, conditions where short-term selective pressures alter evolutionary trajectories in a
manner that systematically improves long-term evolutionary outcomes.
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1 I N T R O D U C T I O N

How does evolution enable natural populations to adapt to the extraordinarily diverse
and challenging selective environments that we observe? Rupert Riedl, an early pioneer
of evolutionary developmental biology research, suggested that the evolution of complex
organisms is facilitated by developmental architectures that are organised by natural selec-
tion to ‘mimic’ or ‘imitate’ the functional constraints on phenotypes [2–5]. Contemporary
evolutionary developmental biology recognises that developmental organisation is both
a product of natural selection and a factor that can significantly alter subsequent evolu-
tionary outcomes – i.e. because developmental constraints and biases favoured by past
selection can modify the likelihood of generating adaptive phenotypic variations that fu-
ture selection can act on [2–4, 6]. It is therefore clear that natural selection can thereby
produce heritable changes that modify the ability to evolve – a phenomenon called the
‘evolution of evolvability’ [4, 7, 8]. But our understanding in this area lacks a theoretical
foundation that can answer questions about what types of developmental architectures
are more evolvable, how they can be evolved via natural selection and under what condi-
tions they facilitate the evolution of complex organisms.

Recent investigations into the evolution of evolvability have been successful in demon-
strating that natural selection can change phenotypic distributions in a manner that mod-
ifies evolvability in several respects, including increasing developmental robustness and
phenotypic heritability [9–11], increasing the rate of adaptation under directional selec-
tion [12], re-evolving previously evolved phenotypes more quickly [13], and enabling
evolution to track changes in the environment more rapidly [13–15]. In some cases it can
also accelerate the evolution of particular novel phenotypes, specifically, different com-
binations of modular features [15, 16]. These works have been careful to confirm that
the changes to phenotypic distributions or the genotype–phenotype map (G–P map) that
facilitate such evolvability evolve only because of ‘short-term’ adaptive benefits that af-
fect differential growth or survival between genetic lineages. This is necessary: Although
developmental organisations might influence long-term evolutionary outcomes (i.e. bey-
ond these timescales that can be ‘seen’ by the selection that produced them), long-term
benefits cannot be the reason that these organisations evolved.

Nonetheless, it remains legitimate to seek the general conditions where long-term evolv-
ability (e.g. that results in complex organisms) can be facilitated by short-term selection.
Although it is clear that modifications to developmental organisation can alter the path
of evolutionary trajectories through phenotype space [17, 18], as well as their speed [13,
15, 16], it has not previously been shown that short-term selection can do this in a way
that systematically changes future/long-term evolutionary trajectories for the better. For
example, if we were able to re-run the tape of evolution with a different developmental
organisation, even if we started from the same initial phenotype under the same selective
conditions, it might be the case that evolution with one developmental organisation soon
exhausts the production of beneficial variations and is thereby (by definition) trapped at
a local optimum in the adaptive landscape, whereas evolution with another developmen-
tal organisation avoids or escapes many local optima and continues to produce adaptive
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2 introduction

variations that ultimately lead to superior regions of phenotype space. In this report, we
demonstrate that Riedl’s hypothesis that evolvability is facilitated by a specific develop-
mental organisation that is itself a product of past selection holds true.

The key to elucidating the necessary conditions for this result is the recognition that,
given heritable differences in developmental organisation, evolution by natural selection
can act not just as a conventional evolutionary system but as a learning system, with
fundamental capabilities and limitations in common with other well-understood learning
systems. Recent work [19] has shown that short-term selective pressures on phenotypic
correlations (e.g. as produced by changes to the connections of a gene-regulation network
(GRN)) are functionally equivalent to a simple type of learning mechanism, specifically
associative or correlation learning, well-understood in neural network research. The de-
velopmental organisation that evolves thus internalises the structure of the selective en-
vironment (i.e. the functional constraints on phenotypes). This is consistent with other
results examining how modularly-varying environments induce corresponding modular-
ity in the G–P map [13, 14, 16, 20]. Furthermore, when evolved interactions control a
non-linear and recurrent developmental process, such as a GRN, (rather than defining a
linear G–P map) they can store and recall multiple distinct phenotypes that have been
selected for in the past, spontaneously re-creating these patterns in adult phenotypes
(i.e. without further selection) given random variation in embryonic phenotypes (e.g. pro-
duced by random genetic variation or environmental perturbation). This demonstrates
the ‘imitatory’ nature of developmental organisation, as described by Riedl, very clearly.

How does this imitatory developmental organisation affect long-term evolvability? Re-
cognising the equivalence with learning mechanisms illuminates the relationship between
short-term and long-term evolvability because, in the context of learning systems, we
already know a lot about how a system can generalise information gained from training
data to predict the correct response to previously-unseen test data. This insight immedi-
ately defuses the mysterious connotations associated with long-term evolvability: Learn-
ing systems can exhibit predictive generalisation, not because they have a way for the
future to cause the past, but simply because they are able to capture structural regularit-
ies in the environment that are (deep enough to be) time invariant, i.e. common to both
the training data and the test data. A learning system that can only remember one thing
at a time (like a one-to-one G–P map) cannot do this, but a learning system that can rep-
resent correlation structure, even simple pairwise correlations, can. Thus we hypothesise
that, in the same sense, and with the same capabilities and limitations, an evolutionary
process operating on a developmental organisation capable of imitating the structure of
the selective environment can facilitate future adaptation. However, just as a learning
system cannot exhibit predictive generalisation unless the structural regularities present
in the environment can be represented in the type of structural regularities it can learn,
short-term selection will not be successful in facilitating future evolution. Here we use this
knowledge to demonstrate the consequences of Riedl’s ideas for long-term evolvability of
a GRN in highly-epistatic fitness landscapes.

report structure

The rest of this report is structured as follows.
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In chapter 2, we review and discuss evolvability and relevant phenomena and con-
cepts, as well as make the connection between learning and evolution while presenting
the evidence that suggests that evolution is a learning process. In chapter 3, we introduce
discrete differential evolution, a novel evolutionary algorithm that can be used to solve
modular problems without learning. The algorithm uses differences between individuals
in the population to increase the variation operators’ evolvability as more individuals in
the population reach areas of high fitness. Although this chapter is not closely related to
the following chapters which focus on the evolution of evolvability in GRNs, this chapter
is still relevant to the central theme of this thesis: evolvability. That is to say, though
the work presented in this chapter does not help explain the relationship between the
evolution of evolvability and learning, it showcases how a population of individuals can
become more evolvable over evolutionary time. Additionally, the discussion of the literat-
ure on modularity and model-building algorithms is important to the chapters that follow.
As such, we felt that the work presented in this chapter still fits the overall theme of the
thesis. In chapter 4, we introduce and familiarise the reader with the GRN model used to
investigate evolvability by reproducing parts of the work published in Watson et al. [19].
We then expand on their work by investigating how the evolution of a developmental
memory affects future evolutionary trajectories. In chapter 5, we present a solution to the
paradox of long-term evolvability from short-term selection by showing how evolution
can learn to find increasingly fitter phenotypes on a multi-modal fitness landscapes over
evolutionary time, and use learning theory to explain why the results are not surprising.
In chapter 6, we discuss future research directions, including how we can use our model
and learning theory model to improve our understanding of facilitated variation (with
some preliminary results). Lastly, chapter 7 concludes the report.





2 T H E E V O L U T I O N O F E V O LVA B I L I T Y

The modern synthesis is the current paradigm of evolution theory. Modern synthesis
presents an account of evolutionary phenomena that can be best summarised with the
phrase ‘heritable variation in reproductive success’ – meaning it relies on three funda-
mental mechanisms that copy (inheritance) minor variants of the genotypes (variation)
of the better-performing phenotypes in a population (selection) to the next generation, a
process which when repeated results in phenotypes adapted to their environment.

Although there is little doubt about the importance of these mechanisms, recent theoret-
ical and empirical contributions on evolvability, evolutionary developmental biology (evo–
devo), epigenetic inheritance and phenotypic plasticity raise questions about whether the
modern synthesis provides a satisfactory account of evolution or whether it omits all-
important details. In the past few years, attempts have been made to create a new frame-
work that improves our understanding of evolution. The new framework is called the
extended evolutionary synthesis [21–24].

In this report, I focus on one aspect of the extended evolutionary synthesis: evolvability,
and specifically on the evolution of evolvability via the evolution of development and the
G–P map.

2.1 what is evolvability?

Darwin [25, p. 167] was the first to concede that ‘our ignorance of the laws of variation
is profound’. More than 150 years later, Darwin’s statement remains true. Although
variation is the raw ingredient upon which selection acts, we still have very little under-
standing of it. How is it that animals have evolved different anatomies and physiologies?
What drives the generation of these variants? Half the answer is genotypic variation. The
other half is the process that translates genotypic variation into phenotypic variation – i.e.
development. We know a lot about the former, but very little about the origins of the
latter and the effect it has on evolution.

Consider Darwin’s finches, for example. Although they have evolved from a common
ancestor, they differ in the shape of their beaks – each species’ beak is adapted to its
environment. It is obvious that natural selection has favoured each of the species’ beaks
because it enables them to consume the type of food available in their environment and
convert it to energy to survive. But even though natural selection can explain how these
variants propagated throughout the population, how did they come to be and why were
they even possible to begin with? What were the driving forces that facilitated precise
changes in the shape of the beaks? The simplest answer, and the one that Darwin himself
thought to be true, is that a number of small, heritable variations accumulated in the
species, thus resulting in the inter-species differences we observe. But is this answer
plausible or are there other mechanisms involved?

It has been shown that it possible for the developmental process to produce structured
phenotypic variation such that changes in the beak size and shape are a result of minor
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6 the evolution of evolvability

Box 2.1: Case study: Limb co-variation in monkeys and apes.

The forelimbs and hindlimbs of monkeys tend to be equally long [30]. Since they are serially
homologous and have similar functions, this is not surprising. Due to their common origin,
‘the genetic and developmental architectures for the two sets of limbs [ . . . ] are often very
similar’ [32]. This means that mutations that affect the functionality and length of one set
of limbs tend to also affect those of the other set. This is an example of a developmental
process constraining and biasing phenotypic variation (i.e. a developmental constraint [33,
34]). Consequently, even if genotypic variation is random, the developmental process of
monkeys only supplies a pre-determined amount (both in magnitude and direction) of
phenotypic variation – specifically, the constraint enforces a one-to-one limb length ratio.

In a recent study, Young et al. [31] analysed correlations between the forelimbs and hind-
limbs of monkeys and apes (including humans). Non-human apes differ from monkeys in
that they have long arms used for tree locomotion, whereas humans have a significantly dif-
ferent limb structure with much longer hindlimbs (an adaptation to bipedal locomotion) [35,
p. 370]. Young et al. [31] reported that within all examined species there exists a correlation
between hindlimb and forelimb length. What is interesting is that although a correlation
exists in apes (including humans), it is weaker than the correlation found in monkeys.

This suggests that the difference in limb co-variation and functionality between apes and
monkeys could have arisen due to a relaxation of the developmental constraint governing
limb co-variation in a common ancestor of the apes (but not the monkeys), resulting in the
increased diversity observed. Young et al. [31] suggested that the relaxation of the constraint
increased evolvability by enabling the independent evolution of forelimbs and hindlimbs
both in terms of length co-variation and functionality. With the constraint relaxed, natural
selection favoured and maintained the different limb co-variation constraints and functions
evolved in apes (including humans).

changes in the genotype. A famous example is the eyeless gene in the Drosophila. When
the gene is mutated during development, it causes the growth of an additional fully func-
tional eye on the Drosophila body (with the exception being that the eye is not connected
to the nervous system) [26]. Another example is of a single mutation on a gene causing
the brain of the mouse to be three times its typical size [27]. Other examples include con-
straints on limb co-variation [28–31] (see box 2.1 for a brief case study of limb-covariation
in monkeys and apes).

Phenomena such as these are of interest because they are not yet explained. Why is
the G–P map structured in a way that enables this type of phenotypic variation? As GP
Wagner and Altenberg [4] put it:

[This] brings us to a level of phenomenon that is distinct from adaptation it-
self. It concerns the variational properties of the genome—the nature of phen-
otypic variation produced by genetic variation. (GP Wagner and Altenberg
[4, p. 968])

The variational properties of populations cannot be treated as an afterthought – they are
a requirement if adaptation via evolution by natural selection is to take place. Adaptation
requires that changes to the genotype are somehow channelled into adaptive phenotypic
changes. Obviously, adaptation does not require that every change is beneficial – that
would imply directed evolution. For evolution to be able to produce adaptive changes,
however, the distribution of phenotypes that is directly accessible via changes to the par-
ental genotype must at least include some adaptive phenotypes. That is, there must exist
a small probability that a variant is adaptive [4].
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These are the type of phenomena evolvability attempts to explain – how genotypic
variation is translated into phenotypic variation, and how the structure of variation itself
evolved. More specifically, it is about the structure of phenotypic variation that can be
induced following genotypic variation – and a key component of the structure of pheno-
typic variation is the G–P map. Evolvability is about understanding phenotypic variation,
prior to all considerations of selection. Research on evolvability is particularly targeted at
the capacity of organisms to produce adaptive phenotypic variation from random geno-
typic variation. Formally:

evolvability An organism’s capacity for adaptive evolution. An organism’s propensity
to generate adaptive phenotypic variation from random genotypic variation. Primar-
ily a property of the G–P map since it is the G–P map that translates a genotype to
a phenotype.

Under this definition, we can see the self-referential relationship between development
and evolution. That is, the impact genotypic variation has on phenotypic variation de-
pends on the phenotype itself, since the developmental process is both part of the phen-
otype and genetically encoded. In other words, the products of evolution change the
process of evolution.

In the rest of this chapter, I survey the literature on evolvability and development. I
begin with a brief history of evolvability (section 2.2), and proceed by analysing four
important areas for understanding evolvability:

1. the difference between variability and variation (section 2.3),

2. the effect development and the G–P map have on variability (section 2.4),

3. whether robustness and evolvability are antagonistic forces (section 2.5),

4. whether evolvability can evolve (section 2.6).

Lastly, I briefly discuss the relationship between learning and evolution (section 2.7), an
important aspect of the work that follows in the next chapters.

2.2 brief history of evolvability

Since the first use of the term, evolvability has been used to describe a large number of
related phenomena. For that reason, evolvability has been difficult to define.

The first use of the term ‘evolvability’ was in 1989 by Dawkins [37]. Dawkins [36] used
his Biomorphs model (first introduced in 1986 [38]) to illustrate how a developmental
process can enhance an organism’s adaptability (evolvability), and how the developmental
process itself may evolve (evolution of evolvability).

Although Dawkins was the first to use the term, a number of people had already invest-
igated evolvability as defined by Dawkins, but simply never used the word ‘evolvability’.
Riedl [3], for example, discussed developmental constraints and body plans in the English
version of his book Order in Living Organisms published in 1978 (for a detailed review of
Riedl’s work, written by two of his former students, see GP Wagner and Laubichler [5]),
and so did Maynard Smith et al. [33] in 1985.

Since then, evolvability has been used to describe a large number of phenomena (fig-
ure 1). These phenomena are largely overlapping as they mainly differ in whether the
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Figure 1: The many faces of ‘evolvability’ in evolutionary biology. Originally published in Brown
[32].

The term ‘evolvability’ is used to refer to: Reference(s)

(1) The capacity of populations to generate heritable phenotypic
variation.

GP Wagner and
Altenberg [4] and
A Wagner [10]

(2) The capacity of the individuals within a population for adaptive
phenotypic plasticity.

West-Eberhard [39]

(3) The intrinsic capacity of the individuals within a population to
generate phenotypic variation in response to genotypic variation.

MW Kirschner and
JC Gerhart [40]

(4) The potential of a population to produce novel mutations for use
in the evolution of adaptations in the medium- to long-term.

Maynard Smith and
Szathmáry [41] and
Pigliucci [42]

(5) The current genetic variation in a population (rather than the
prospective variation).

Houle [43]

focus is on genetic or environmental cues to facilitate evolvability, and on the time-scale
they operate on (within populations, species, etc.) [32, 42].

It is mainly due to the lucid work of GP Wagner and Altenberg [4] and MW Kirschner
and JC Gerhart [40] in the mid to late 1990s that research on evolvability started gaining
traction. They provided straightforward definitions of evolvability, explained the role of
development and regulatory interactions in facilitating it, and how other research areas
in evolutionary biology are related to evolvability. Their definition is about the capacity
of individuals and populations to produce adaptive phenotypic variation, and it encom-
passes a multitude of phenomena which are related to evolvability, such as development
and the G–P map [12, 13, 16, 19, 44–46], mutation rates [47–49], modularity [12, 15, 19, 20,
50], and robustness [10, 11, 51–53].

2.3 variation and variability

GP Wagner and Altenberg [4] brought together ideas from development, evolution of
complexity and evolutionary computation in their discussion on evolvability (see also
Toussaint and von Seelen [6] for a similar discussion).

They highlighted the distinction between variation and variability:

variation The present phenotypic differences among individuals in a population.

variability The propensity to vary. The phenotypic variation that may be generated via
changes to the genotype, prior to all considerations of selection. A dispositional
property.

GP Wagner and Altenberg [4] used ‘solubility’ as an example of property similar to vari-
ability. Solubility does not describe a substance’s specific state but rather its expected
behaviour when in contact with solvent. Similarly, variability describes a phenotypic
trait’s behaviour when influenced by environmental or genetic factors.
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Since variability comes prior to all considerations of selection, it becomes possible to
shift our focus from the process of selection towards the biological mechanisms respons-
ible for the generation of phenotypes: mutation and development. The effect genotypic
mutations have on phenotypes is dependent on the developmental process. Therefore,
these two mechanisms determine an organism’s variability.

Because the concept of variability is phenotype-centric and not gene-centric (the current
paradigm in modern synthesis), it is possible to ask questions about the type of genetic
and developmental architectures that can facilitate evolvability by channeling random ge-
netic variation into partially non-random phenotypic variation. Since variability comes
prior to all considerations of selection, it is fairly easy to quantify. Straightforwardly,
variability is the probability distribution over all possible phenotypes given all possible
mutations on the genotype [37]. The variability structure of an organism can thus be
mathematically described by the shape of its variational distribution, i.e. the shape of the
probability distribution over the set of all potential phenotypes [6, 37]. Note that this
is different from the type of evolvability Houle [43] defines in that Houle’s definition is
about standing genetic variation in a population whereas this is about potential pheno-
typic variation that is yet to be realised.

It is important to note that beneficial variability structure is not merely about how many
phenotypes are possible, but rather about what phenotypes are possible:

The situation is analogous to obtaining a verse of Shakespeare from monkeys
banging away on typewriters. Typewriters make this far more likely than if
the monkeys had pencil and paper. The typewriters at least constrain them to
produce strings of letters. Similarly, the genotype-phenotype map constrains
the directions of phenotypic change resulting from genetic variation. (GP
Wagner and Altenberg [4, p. 970])

If variability was merely the number of possible phenotypes, the pencil and paper or-
ganisms would enjoy better variability. But that is not the case. Although the number
of possible phenotypes is significantly lower when using a typewriter, the underlying
variability is clearly superior – every phenotypic trait is a letter. A good variability struc-
ture should constrain the phenotype space by preventing lethal mutations and focusing
genotypic variation into potentially useful phenotypic variation.

By understanding the variability structure of an organism, it is possible to avoid state-
ments such as ‘phenotypic variation is random’. Since variability determines the potential
range of variation, the existing variation is not random but is rather what the underlying
variability structure allows it to be. Therefore, to explain evolvability, we need to under-
stand the variability structure of an organism and what induces it: development and the
G–P map.

2.4 development and the g–p map

Following a change in the genotype, the developmental process, which is responsible for
translating a genotype to a phenotype, determines the phenotype produced. Thus, the
variability structure of an organism is determined by the biases and constraints imposed
by the developmental architecture. Therefore, some developmental architectures are more
evolvable than others.



10 the evolution of evolvability

Box 2.2: Evo–devo and its relationship to evolvability.

Evo–devo emerged in the early 1980s to address the exclusion of developmental biology
from the modern synthesis. Evo–devo attempts to bridge the gaps between evolutionary
biology and developmental biology by offering explanations about the origin and evolution
of developmental processes, and the consequences of developmental processes on evolu-
tionary trajectories. Formally:

evo–devo The study of how developmental processes affect evolutionary trajectories, and
how developmental processes themselves have evolved and are being evolved. In
particular, how constraints and biases in development affect evolution by altering
the phenotypic distribution available to selection, and also how these constraints and
biases are evolved. Of particular interest is understanding the evolutionary forces that
facilitate changes to the developmental processes that enable morphological novelties.

As Müller [23, p. 947] put it, ‘evo–devo moves the focus of evolutionary explanation from
the external and contingent to the internal and inherent’.

Hendrikse et al. [45] explain that evo–devo should not simply answer developmental
‘how’ questions by, for example, investigating the evolution of the developmental processes
of monkeys and apes and concluding that the evolved differences in development resul-
ted in limbs with different functionalities and relative lengths between the species. Instead,
evo–devo should ask questions about how the differences in the developmental processes of
monkeys and apes affect their variability structure, which may in turn affect the evolution-
ary trajectories of monkeys and apes – a question that ‘asks how properties of development
interact with selective forces to produce evolutionary change’ [45, p. 394].

From the above, it should be clear that evo–devo and evolvability are closely related.
Hendrikse et al. [45] even suggest that the main objective of evo–devo is, in fact, to explain
evolvability (see also von Dassow and Munro [54]). They point out that although evo–devo
focuses on developmental biases and constraints (modularity, robustness, etc.), these are
the exact phenomena which determine an organism’s variability structure, and hence its
evolvability.

It is important to understand what aspects of a developmental architecture make or-
ganisms more evolvable, and in particular what the underlying mechanisms that would
give rise to potentially useful phenotypic variation are (see box 2.2 for a brief discussion
on development, evolvability and evo–devo).

MW Kirschner and JC Gerhart [40] identified features of the developmental process
which can be said to make organisms more evolvable and robust and integrated them
under the theoretical framework of facilitated variation (also see references [7, 8, 55]). The
facilitated variation theoretical framework attempts to explain the nature of phenotypic
variation imposed by the developmental architecture and not just the amount. Facilitated
variation is variation which is useful.

Some of the underlying mechanisms and organisational principles described in the
facilited variation theoretical framework include modularity, robustness, weak regulatory
linkage etc. Kirshner and Gerhart used the homeobox gene system genes in the Drosophila
melanogaster to illustrate some of the above features. They showed that the homeobox gene
alone is sufficient to determine the kind of body segment that is placed in each of the
fly’s compartment. More importantly, they explained that changes in the expression of
homeobox genes produce non-random phenotypic changes by altering the ordering of body
segments instead of producing ‘intermediate’ body segments and non-viable tissue.

These ideas and characteristics of the developmental process are related to the ‘rep-
resentation problem’: how the phenotype space should be structured so that genotypic
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variation has a chance to introduce adaptive variants. In their work, GP Wagner and Al-
tenberg [4] emphasised the differences between successful and unsuccessful evolutionary
computation experiments to illustrate that unstructured variation and selection are ‘not
universally effective in producing adaptation’. Toussaint and von Seelen [6] explained
that evolution itself must have dealt with the representation problem. They argued that
nature has developed a specific language to describe organisms and that this language is
one out of infinite possibilities, making the idea that the language chosen is a mere coin-
cidence incredibly unlikely. Further than that, the argument is that nature has evolved a
language that solves its own representation problem by shaping variability in an appro-
priate manner.

Toussaint and von Seelen [6] also explain the relationship between model-building al-
gorithms in evolutionary computation and the representation problem in evolutionary
biology. Model-building algorithms have been shown to progressively improve their abil-
ity to explore the solution space to find better solutions. They do so by building a model
of interactions between problem variables, that is representative of the structure and de-
pendencies of the optimisation problem. Different algorithms utilise the built model in
different ways (e.g. macro-variation, biased generation of phenotypes, etc.) to explore po-
tentially useful areas of the solution space [56–65]. It may be possible to gain insight into
how organisms deal with the representation problem, given what we know about the
heuristics model-building algorithms use to estimate which areas of the solution space
may be of interest.

There are of course issues to be addressed as the knowledge transfer from the literature
on model-building algorithms to evo–devo is not seamless. Unlike work on evo–devo,
model-building algorithms are not constrained by the ‘laws of evolutionary biology’. For
example, model-building algorithms may introduce a rule enforcing that variables a and
b have the same value, given that they were often seen having the same value in the
past. Whereas the possibility of introducing such a rule would be hard-coded in the
model-building algorithm, evolution by natural selection is not capable of solving the
problem easily. In evolution, not only would such a rule have to arise via a mutation to
the genotype, but it would also have to be selected for. So even though there are clear
similarities between model-building algorithms and the evolution of evolvability, how
exactly do organisms deal with the representation problem to improve their evolvability?

The G–P map of an organism is what determines how it deals with the representation
problem. The G–P map maps the genotype (that which is inherited) to the phenotype (that
which is selected). Since the G–P map is encoded in the genotype, it is subject to variation
and selection, and can therefore evolve. The key is understanding why G–P maps shape
variability the way they do, and under what conditions and selective pressures G–P maps
make individuals more evolvable by changing variability in an appropriate manner.

A large body of work has investigated how the phenotype space as induced by the G–P
map may affect evolvability, robustness and related phenomena. It has been shown that
modularly-varying goals may promote the evolution of modular networks [13, 20], and
the evolution of more evolvable individuals by increasing their speed of adaptation [13] or
even by showcasing facilitated variation properties such as weak regulatory linkage [16].
These results are explained via the existence of neutral networks (i.e. networks of geno-
types which are connected via mutations, but produce the same phenotype). By altern-
ating between such goals, evolution finds genotypes whose expressed phenotypes solve
the problems and are neighbouring with respect to the genotype space. It has also been
shown that the G–P map may promote robustness by causing neighbouring genotypes to



12 the evolution of evolvability

generate the same phenotype, and that this can in fact promote evolvability and innova-
tion [9–11].

Nonetheless, it is not yet clear what the general conditions that facilitate long-term
evolvability (e.g. that results in complex organisms) are and how or whether they can
be facilitated by short-term selection (e.g. favouring a developmental organisation that
mimics the selective constraints on phenotypes because it confers an immediate reduction
in deleterious variation and/or increase in beneficial variation). Although it is clear that
modifications to developmental organisation can alter the path of evolutionary trajectories
through phenotype space [17, 18], previous work does not identify the conditions under
which these developmental organisations evolve and why they alter the phenotype space
in a beneficial manner. Recent work suggests that learning theory can help us identify
these conditions.

In recent years, it has become commonplace in computer science to use evolutionary
biology as inspiration for solving computational problems, but a recent paper by Watson
et al. [19] suggests computer science can be used to answer evolutionary phenomena (see
Watson et al. [66] for an extensive discussion on this topic). Watson et al. [19] showed
using computational simulations that a gene-regulation network can form a memory of
past phenotypes and even generalise from past phenotypes to learn a family of pheno-
types. More than that, they showed an equivalence between the evolution of regulatory
interactions and Hebbian learning [67, 68], and explained the implications that arise from
the possibility that evolution is a learning process (discussed further in section 2.7). Re-
cent work has expanded on this idea by investigating how the notions of under-fitting,
over-fitting and induction in machine learning can be used to understand how evolution
can learn to generalise via the evolution of the G–P map [69]. Our own work is on how
development’s ability to form a memory of past phenotypes and generalise may affect
evolutionary trajectories [70] (see chapters 4 and 5).

2.5 robustness versus evolvability

Many closely-related definitions of robustness have been proposed, but here we adopt the
definition put forth by A Wagner [11]:

robustness A phenotype is robust if it persists when perturbed. Perturbations include
environmental perturbations such as changes in temperature or in available nutri-
ents, and genetic perturbations via mutations to the genotype.

Like evolvability, robustness is a fundamental property of biological systems [7, 71, 72],
with a large body of work in the literature researching the relationship between robustness
and evolvability [9–11, 51–53].

Under the rubric of developmental biology and evo–devo, robustness is also known as
‘developmental canalisation’ [73]. A highly robust phenotype, for example, will translate
to small genetic or environmental perturbations being ignored and development repro-
ducing that same phenotype. ‘Canalisation’ thus refers to the fact that the developmental
process will follow the same ‘canal’ to generate that same phenotype. But given a suffi-
ciently large perturbation, development will move outside the canal. Waddington’s epi-
genetic landscape [74] illustrates the concept of developmental canalisation very clearly
(figure 2). The blue spheres in the two panels follow different canals to develop into differ-
ent phenotypes and the shape of the landscapes makes it clear that it is difficult to move
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Figure 2: Waddington’s epigenetic landscape [74]. Reproduced from KJ Mitchell [75].

from one canal to the other. Given the above definition, it seems obvious that conservat-
ive and myopic nature of natural selection would favour the canalisation of previously
selected phenotypes in order to evolve a more reliable developmental process that can
reproduce these phenotypes.

If natural selection favours more robust developmental architectures, however, how can
evolvability evolve? The two phenomena seem antagonistic on the surface. A more ro-
bust developmental architecture reduces the amount of phenotypic variation that can be
produced, thus limiting the amount of phenotypic variation upon which selection can
act [10]. But canalisation and evolvability are both quantitative properties. In terms of
canalisation, this means that perturbations with respect to a phenotypic trait may or may
not be neutral. Similarly, evolvability is not merely about increasing variability, but about
channelling it in the right direction (e.g. by eliminating lethal mutations or facilitating
adaptive phenotypic variation). Since both properties are quantitative and do not neces-
sarily operate at the extremes, there is no reason the two cannot coexist. The variability
structure of an organism is a result of both properties. Populations can be both robust and
evolvable. For example, the existence of developmental canalisation can enable the accu-
mulation of cryptic variation within a population; variation which can be beneficial when
the environment changes, thus improving evolvability. Another example is the existence
of neutral networks [71] as imposed by the developmental architecture which can greatly
improve evolvability [16]. More generally, canalisation can constrain phenotypic variabil-
ity in a manner which limits the number of deleterious or lethal mutations. Although this
may be construed as antithetical to evolvability because potential phenotypic variation is
decreased, the variability structure of such an organism would be highly evolvable since
it is biased towards more promising regions of the phenotype space.

2.6 evolvability and fitness

One of the main arguments against evolvability is that it is inherently opposed to natural
selection. Since selection is intrinsically myopic and acts solely on fitness differentials,
how can evolvability, which may not be directly associated with fitness, be selected for?
In other words, high-fitness individuals will be selected for regardless of their underlying
evolvability.
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Note that the argument is not against evolvability per se, but rather against the evolution
of evolvability. It is clear that evolvable individuals will be selected in a situation where
their improved evolvability can help them adapt rapidly and survive (such as when the
environment changes), much like well-written source code will be preferable because it
is more amenable to changes to customer requirements. But the question is how these
evolvable individuals would arise to begin with given that there is no selective pressure
for future benefits (i.e. evolvability)? If there is no selective pressure for evolvability, this
means that evolvability has not been shaped over time, and hence there can be no evolu-
tion of evolvability. Individuals will differ in their evolvability regardless of selection, but
if selection does not amplify these differences evolvability’s impact will be insignificant.

Although the argument does have merit, it only does when not used as a straw-man
argument. The argument for the evolution of evolvability has never been that it is an
organismal adaptation, but rather that it is a side-effect of other evolutionary mechanisms.
That is to say, evolvable individuals are not selected because they are evolvable; evolvability
is an indirect result of selection.

As explained by GP Wagner and Altenberg [4], evolutionary biology asserts that all
adaptations are the result of mutation and natural selection. But for that to be true, organ-
isms have to be evolvable. Which leads to the question of why organisms are evolvable. Ad-
ditionally, research suggests that G–P maps constrain and bias the direction of phenotypic
variation [33, 34, 76, 77], that mutation and recombination rates are different between
species [78, 79], and that organisms are extremely robust to environmental [71, 80] and
genetic perturbations [71, 81] – all of which can be construed as properties related to evolv-
ability. As Pigliucci [42] explains, these are not necessarily adaptations, but being able to
explain them may have significant impact on our understanding of evolution. Therefore,
the question is under what conditions these phenomena would arise.

An often-cited explanation is that improved evolvability comes from neutral mutations
on the ‘language of variation’. That is, evolvable individuals may arise due to mutations
that do not (or minimally) affect their fitness, but instead have a significant impact on
their potential phenotypic variation. Toussaint and von Seelen [6] use a grammar encod-
ing scenario to illustrate this. In grammar encodings, many genotypes are developed into
the same phenotype. For example, both <CDCD> and <AA, A:CD> yield phenotype <CDCD>.
The variability of the two encodings is different, however. The former is a one-to-one
encoding, whereas the latter has modular structure. Importantly, the transition from one
encoding to the other is neutral – that is, the individual whose grammar changes via a
mutation suffers no fitness effect at that point in time. But what changes is its underlying
variability. They then proceed to illustrate how evolution changes grammar encodings in
ways that facilitate the evolution of plant-like structures. Evolving the same phenotype
with a one-to-one mapping and stepwise modifications would have been practically im-
possible. What is important is that evolution evolved and maintained a language suitable
for the objective, without any direct selection for evolvability.

More interesting, perhaps due to its paradoxical nature, is the idea that evolvability
may in fact evolve via selective pressures acting on robustness [7, 37, 40]. Natural selec-
tion would generally favour robustness over flexibility and thus we expect that previously
selected phenotypes will be more resistant against genetic or environmental variation [49,
82]. Such selection for robustness decreases the phenotypic variability of the organism
and is seemingly opposed to evolvability as it inhibits the discovery of potentially useful
phenotypes in new, previously-unseen environments. Nonetheless, even if selective pres-
sures were directly or indirectly acting on robustness, it is not immediately obvious how
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this can result in the evolution of evolvability. After all, with selection acting on robust-
ness, the organism would be expected to become extremely robust by fully canalising the
currently selected phenotype. That is true, but new and useful phenotypic variation may
arise when the environment changes throughout a population’s evolution [13, 15, 16, 19,
20, 83]. The idea here is that cryptic genetic variation can be released under environmental
stress leading to high phenotypic variation [10, 11]. More interestingly, selection acting
on robustness over a distribution of a family of phenotypes can potentially learn struc-
tural correlations among phenotypic characters that alter the distribution of its potential
phenotypes in ways that may facilitate evolvability [1, 69, 70] (see chapter 5).

As Pigliucci [42] explains, whether evolvability is a trait directly selected for or a
byproduct of other evolutionary forces remains an open question whose resolution can
have a significant impact on our understanding of the evolutionary process.

2.7 learning and evolution

2.7.1 What Is Learning?

Simply put, learning is the ability to have past experience affect future behaviour for the
better with respect to a task [84]. A more appropriate definition for the work discussed
here is as follows: learning refers to the performance improvement of a learning system
against a given environment through the acquisition of information from having exper-
ienced similar environments in the past [85]. This definition has four key components:
environment, performance experience and improvement. Environment refers to the prob-
lem or task that the learning system has to learn (e.g. distinguishing between blue and red
balls). Performance is an objective assessment of the behaviour of the learning system in
a given environment (e.g. the proportion of correctly identified balls). Experience refers
to the way in which the learning system responded to the environment (e.g. the way in
which a decision is made – whether a ball was blue or red). Improvement refers to a
change in which the learning system responds to the environment that is beneficial (e.g.
changes in the synaptic connections of the human brain that result in better performance).

2.7.2 Learning As a Search Problem

Learning can be interpreted as a search problem. A search problem is defined as searching
for the best behaviour in a given environment (i.e. problem). Assume that we have a
learning system that belongs to the family of neural networks. This learning system is
capable of receiving input through retina-like sensors, process that input using an input–
output function (its neural architecture), and provide an output in the form of an answer
to the task at hand. In the blue and red balls problem described above, the search problem
would be to find the set input–output function that translates the sensory input (i.e. a
picture of a blue or red ball) into the correct output (i.e. correctly identifying whether the
ball was blue or red). But in the space of all possible sets of input–output functions, how
can a learning system improve its performance?

A simple scenario of how learning could take place in this case would be to present the
learning system with a set of pictures of blue and red balls (i.e. training set) and let the
learning system know what the right answer for each picture is (i.e. supervised learning).
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The learning system is evaluated with respect to whether it can provide the right output
for every given picture. For example, by presenting a learning system with a red ball and
letting it know that it is in fact a red ball, the input–output function of a learning system
will change in a way that makes it possible to identify red balls. Given a sufficiently large
number of blue and red pictures, the learning system can potentially find an input–output
function that correctly classifies the pictures it has seen into the blue and red classes. It is
in this way that learning can be interpreted as a search problem – by searching over the
set of possible input–output functions to find the one that improves its performance.

2.7.3 The Ability to Generalise

Further than that, the central aim of a learning system is to generalise. That is, not to only
learn or memorise the training set, but to learn the regularities (i.e. general characteristic-
s/features) that exist in the training set in order to be able to perform well on the test set
(i.e. input that is not identical to the input the learning system was trained on). This is a
much bigger problem than rote-learning (forming a memory). In learning systems, such
generalisation ability is neither mysterious nor for granted. It is not really about the past
or the future, but about generalising from the data you have seen to the test cases you
have not.

Watson et al. [19] make the connection between the ability of a learning system to
generalise and the ability an organism to adapt to novel environments and conditions.
Later work by Kouvaris et al. [69] expands on that idea by highlighting the similarities
between evolution and learning and showing that the transfer of knowledge between the
two fields can help resolve the tension between robustness and evolvability in evolution
and improve our understanding of conditions that facilitate the evolution of evolvability
(also see Watson et al. [66] and chapter 5). In the following section, we summarise the
findings of this body of work and provide evidence that evolution is a learning process.

2.7.4 Evolution Is a Learning Process

Here, we summarise the analogy and similarities between learning and evolution. We do
so by showing the connection between the terminology used in the two fields (figure 3)
and reporting on work or literature that supports that evolution is a learning process
(figure 4) in table format:

summary

In this section, we presented a literature review on evolvability and related phenomena,
along with highlighting the connection between evolvability and learning. We focused on
the distinction between variation and variability, and explained how the developmental
process may shape the variability structure and thus affect evolvability. We discussed
whether robustness and evolvability are antagonistic forces and whether evolvability is
evolvable. Lastly, we discussed the idea that evolution may be a learning process which
will be the central focus of our work presented in subsequent chapters.

To summarise, evolvability is the capacity of organisms for adaptive phenotypic vari-
ation. Evolvability is primarily a property of the G–P map since it is the G–P map that is
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Figure 3: Analogy between learning and evolution. Connecting the terminologies of the two fields.
Adapted from personal communication with Richard A. Watson.

Learning Theory (Neural Networks): Evolutionary Theory (e.g. gene-regulation
networks):

Training set Past selective environments/pressures
(including current)

Test set Future selective environments from the same
class as past ones (e.g. modularly varying)
that have not yet been seen

Hypothesis (set of weights) Genotype (e.g. regulatory interactions,
genes/mechanisms that regulate, etc.)

Hypothesis space Genotype space

Input–Output function Genotype–Phenotype map

Error minimisation Fitness maximisation

Input Embryonic phenotype (when development,
and hence regulation, starts)

Actual output Adult phenotype (when development, and
hence regulation, ends)

Desired output Target phenotype, or a local optimum after
evolution follows fitness gradients in the
fitness landscape

Neural architecture Developmental architecture

External input Environmental input/noise/perturbation

Activation dynamics Developmental dynamics

Learning dynamics (search for good
hypotheses)

Evolution of development (search for good
phenotypes)

Memory (as attractor) Adult phenotype (as attractor) [86]

Regularisation Regulatory interactions cost; direct selective
pressure on the number/weights of
regulatory interactions

Error-correction and pattern completion in
associative memories

Robustness; forming a memory of past
phenotypes and recalling them given
partial/noisy/incomplete embryonic
phenotypes

What comes easy in machine learning:
achieving good performance on the training
set

What comes easy in evolution: finding good
phenotypes for the present environment

The difficult part of machine learning:
achieving good performance on the test set

The difficult part of evolution: finding good
phenotypes in new selective environments or
under different selective pressures
(evolvability)
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Figure 4: Predictions from learning theory. Predictions demonstrated in published work, in this
report or discussed in this report but not yet demonstrated. Adapted from personal
communication with Richard A. Watson.

Learning system (machine learning): Developmental system (e.g. gene-regulation
network):

‘Neurons that fire together, wire
together’ [67]

‘Genes that are selected together, regulate
together’ (Watson et al. [19] and chapter 4)

Associative memory: the ability to store and
recall multiple patterns from the training set.
The synaptic connections of the neural
network are responsible for the encoding of
the memory, whereas the activation dynamics
of the neural network are responsible for the
retrieval of stored memories [87].

Developmental memory: The ability to store
and recall multiple phenotypic patterns from
past selective environments/pressures. The
regulatory interactions of the gene-regulation
network are responsible for the encoding of
the memory, whereas the developmental
process (i.e. developing an embryonic
phenotype into its adult form) is responsible
for the retrieval of stored phenotypic patterns
(Watson et al. [19] and chapter 4).

Pattern completion and error correction: the
ability to retrieve memory from partial,
corrupted or noisy sensory input.

The ability to retrieve full phenotypic patterns
from partial, corrupted or noisy embryonic
patterns (Watson et al. [19] and chapter 4).

Categorical perception: the ability to separate
sensory inputs into discrete classes.

Switch-like phenotypic response to genetic
changes (Watson et al. [19] and chapter 4).

Generalisation: the ability to produce an
appopriate response to novel conditions

The ability to produce fit phenotypes in novel
environments (not simply through recalling a
stored memory) (Kouvaris et al. [69] and
chapter 5)

Overfitting: achieving good performance on
the training set at the expense of
generalisation (i.e. good performance on the
test set)

Robustness versus evolvability paradox: the
myopic nature of selection favours what is
currently fit (robustness) as opposed to what
may be fit in the future, thus sacrificing the
ability to anticipate future environments
(evolvability) (Kouvaris et al. [69] and
section 2.5)

Conditions that prevent overfitting Conditions that facilitate/enhance
evolvability (Kouvaris et al. [69] and
section 6.4)

Becoming better at solving constraint
satisfaction problems

Becoming better at evolving on
highly-multimodal fitness landscapes
composed of low-order epistatic interactions
(Kounios et al. [70] and chapter 5)
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responsible for translating a genotype to a phenotype. However, that does not consider
how development itself evolves and therefore how evolvability itself evolves. When taking
into account that the developmental process is encoded in the genotype and is therefore
subject to natural selection, a self-referentiality is introduced in the Darwinian machine.
Essentially, by changing the developmental process, the process of phenotypic variation
is changed. In other words, the evolutionary process depends on the phenotype itself.
Recent work shows that it is possible to improve our understanding of evolvability by
showing that evolution itself is a learning process. We build on this work in subsequent
chapters to show how evolution can learn to evolve better.





3 E V O L U T I O N W I T H O U T L E A R N I N G

abstract

The crossover operator in a genetic algorithm has been used to solve certain building-
block problems that mutation-only methods cannot solve. However, it is well understood
that this advantage of crossover is lost when optimising random-linkage problems, where
the bits of each module are arbitrarily placed on the genome. Conventional crossover
is therefore not applicable in engineering domains where the epistatic linkage map of a
problem is not known a priori. This is because conventional crossover, such as uniform or
one-point, does not respect the modular structure of a problem if epistatically dependent
loci are not close together on the genome, thus preventing modules from being selected
as a heritable units during crossover events. This motivates a large body of work on al-
gorithms that aim to identify and exploit the linkage structure of a problem. Here, we
introduce discrete differential evolution, a differential evolution variant converted for use
on binary problems, that uses differences between evolved individuals to direct genetic
variation. Differences between individuals provide information about subsets of loci that
are epistatically dependent. These differences are super-imposed on individuals to in-
troduce modular variation. Unlike prior work, this is achieved without explicit learning
mechanisms that identify linkage information; rather it is possible because the macro-
variation operator is able to exploit the modular structure of the solution space that is
revealed implicitly by the distribution of individuals in the population. We show, with
numerical simulation, that dDE is able to solve a number of random-linkage building-
block problems in polynomial time.

3.1 introduction

A large body of work in the genetic algorithm (GA) literature has been focused on investig-
ating the ability or inability of crossover to exploit the principle of problem decomposition
in problems with modular or building-block structure [88–92]. A polynomial versus expo-
nential time complexity distinction has only been shown using tight-linkage crossover [89,
92]. However, the tight-linkage assumption (i.e. that epistatically dependent loci within a
module are close together on the genome, enabling modules to be selected as a heritable
units during crossover events, as per the building-block hypothesis [93–95]) compromises
the applicability of this work.

In design-engineering and optimisation, the underlying structure of a problem is not
generally available, meaning that there is no information about the correct ordering of
the variables which would facilitate problem decomposition and effective crossover. This
led to work that abandons building-block ideas altogether and utilises uniform crossover
which does not assume tight-linkage and does not attempt to select on particular epistatic-
ally dependent subsets of loci. Another body of work was on linkage learning and estim-
ation of distribution algorithms [58, 59]. Work on linkage learning attempts to overcome
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this limitation by automatically identifying and exploiting problem structure, regardless
of where across the genome epistatically dependent loci are situated (e.g. [58, 59, 61, 62,
96, 97]). This approach has been successful on practical problems in many domains. The
idea that the GA is capable of implicitly exploiting problem structure is discarded, and,
instead, this class of algorithms utilises machine learning techniques to explicitly learn
and exploit the structure of the problem.

Here, we introduce discrete differential evolution (dDE), a differential evolution (DE) [98–
103] variant converted for use on binary problems, that uses differences between evolved
individuals to direct genetic variation. Differences between individuals provide inform-
ation about subsets of loci that are epistatically dependent. These differences are super-
imposed on individuals to introduce modular variation. Unlike prior work, this is achieved
without explicit learning mechanisms that identify linkage information; rather it is pos-
sible because the macro-variation operator is able identify and exploit the modular struc-
ture of the solution space that is revealed implicitly by the distribution of individuals in
the population.

Although DE is not naturally applicable to discrete spaces, its application has not been
limited to that of continuous spaces, having been successfully applied to image pro-
cessing, combinatorial optimisation, permutation and constraint satisfaction problems [104–
109]. However, because the DE variation operator controls both the magnitude and the
direction of genetic changes, it seems that the algorithm is unsuitable for use in binary op-
timisation problems, including those used to investigate the principles of building-block
recombination in the GA [88–92].

Nonetheless, here we show that, in binary problem spaces, constructing a difference
vector by taking the difference of two individuals, and super-imposing the differences
onto another individual is sufficient for identifying epistatically dependent subsets of loci
and crossing over coherent units. In continuous spaces, the emphasis of the DE variation
mechanism is on how much and in which direction each variable should be changed. In
binary spaces, where the magnitude of any change can only be 1, the principle of variation
in DE can nonetheless do useful work by shifting the emphasis onto identifying which
subset of variables should be changed simultaneously. That is, each locus in the difference
vector takes either −1, 0, or 1. This determines which loci change and which do not, and
whether they change from 0 to 1 or from 1 to 0. Thus, the magnitude of any change
is fixed, but only the loci with a non-zero difference can affect the parent. Simply put,
the difference of two individuals identifies a schema that is super-imposed onto another
individual (figure 5).

In the remainder of this paper, we explore the usefulness of this simple idea and test
how useful the principle of directed variation provided by DE can be in exploiting prob-
lem structure in binary problems. We utilise three distinct problems: the first is separable,
the second is nearly-decomposable and the third is hierarchical; all of which are patho-
logically difficult for techniques relying on uninformed variation. Although the tight-
linkage versions of these problems are solvable by a GA with one- or two-point crossover
in polynomial time, the random-linkage or ‘shuffled’ versions are just as difficult for the
GA (with any type of crossover) as they are for the uninformed methods. Here we show
dDE can solve the problems reliably in polynomial time.

The rest of the paper is structured as follows. In section 3.2 we introduce dDE, and in
section 3.3 we discuss an idealised scenario for problem decomposition and define the test
problems. In section 3.4 we present the results of numerical simulations, including a time
complexity comparison between dDE and uninformed search techniques. In section 3.5,
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A 0010010010010

B 1010110000101

V -000-000+0-+-

S 0 0 1 010

P 1001010100110

C 0001010110010

(b)

Figure 5: The principle of variation in differential evolution in continuous and binary spaces.
(a) In continuous spaces of two variables (x and y), the differences between two individu-
als, A and B, selected at random from the population are used to generate a difference
vector, V, that is then applied to a parent individual, P, to create a child individual, C.
(b) The principle of differential evolution in a binary bit-string, introduced here, defines
a tertiary (−1 shown as −, 0, +1 shown as +) difference vector, V, or, for clarity, an
intermediate schema, S, that is super-imposed on a parent individual, P. This forces
some bits of the parent to take the 0 allele, others to take the 1 allele, and the loci in the
parent that already have the allele forced by the difference schema are left unchanged.
To aid visualisation, the bits of the child that differ from its parent are shown in colour.

we discuss multiple aspects of our work, including why the problems we use for testing
are difficult to solve, and what it means for dDE to ‘learn’.

3.2 discrete differential evolution: modular variation
without learning

Here, we define the dDE algorithm and describe its key functions. Similar to DE, the
algorithm is simple to understand and straightforward to implement. Much of its sim-
plicity stems from the fact that no explicit learning takes place. Unlike previous work,
we discard the idea of explicit linkage learning and revisit the abandoned idea of impli-
citly scaling search to search in the space of module solutions, or building blocks, as per
the building block hypothesis [93–95]. In this paper, we investigate the ability of the DE
algorithmic principles to globally optimise discrete, random-linkage, modular problems.

The exploration mechanism in dDE is a simple population of hill-climbers. To utilise
the information the hill-climbers discover and achieve macro-variation, other algorithms
require an intermediate step: the explicit learning of the epistatic linkage map of the prob-
lem, using techniques such as Bayesian networks [56, 57, 96] or Hebbian learning [67] and
correlation matrices [62]. Our approach differs in that there is no intermediate learning
step; macro-variation is achieved implicitly. This is possible because the macro-variation
operator is able to identify and exploit the underlying modular structure of the solution
space that is represented implicitly by the distribution of individuals in the population.
The following is a high-level outline of the algorithm: Note the lack of intermediate learn-
ing and the two mutually exclusive modes of operation: bit-flip and macro-variation. The
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bit-flip operator is used to locally optimise genotypes using the original search neigh-
bourhood (i.e. Hamming space), whereas the macro-variation operator utilises informa-
tion within the population when genotypes are locally optimized to produce targeted,
simultaneous variable changes. By probabilistically switching between the two modes
of operation, the ‘greedy’ selection scheme discards individuals when the individuals in
the population (a) are not locally optimal, thus the macro-variation operator produces
random rather than targeted variable changes; or (b) are locally optimal, thus the bit-
flip operator only produces deleterious mutations. Consequently, the probabilistic switch
between the two modes of operation in combination with the unique nature of the dDE
macro-variation operator results in the implicit scaling of the search.

Overall Procedure

dDE relies on two control parameters: the population size npop and the probability of
performing macro-variation, pmv. The population is initialised to discrete values, and each
generation consists of the exploration mechanism (bit-flip mutation) or the exploitation
mechanism (differential crossover), and selection. The overall procedure is shown in
pseudo-code format in figure 6. What follows is a detailed description of the stages of the
algorithm.

Initialisation

Individuals in dDE must be initialised to discrete values. The operators used are in-
sensitive to the choice of variable allocation conventions. That is, the population can be
initialised to follow either evolutionary computation (x ∈ {0, 1}) or Ising spin conventions
(σ ∈ {−1,+1}).

Bit-flip mutation

For the exploration aspect of higher-scale search, dDE uses a simple bit-flip mutation
operator. The operator randomly selects a variable, j = [1,n], in all npop individuals and
flips it. Note that the operator could be modified to flip more variables per individual, but
that is unnecessary because its objective is to identify module solutions; not to produce
macro-variation.

Differential crossover

Central to the scaling of the search in dDE is the idea of taking the difference between two
individuals and adding it to another individual – a process called differential mutation
in the DE literature. Here, we show that, in the discrete rather than continuous space,
adding the difference of two locally optimal configurations to another locally optimal
configuration is sufficient for producing macro-variation, with the resulting configuration
taking the variables required to produce a jump between local optima. By using the oper-
ator directly on a population of locally optimal configurations, the epistatic linkage map
of the problem is emphasised by the differences between the individuals in the popula-
tion, thus removing the need for explicit learning mechanisms that identify correlations
between variables.
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1: X← Randomly initialise npop individuals to discrete values.
2: wX ← Evaluate the npop individuals in X.
3: while ending criterion is not satisfied do
4: if rand(0, 1) 6 pmv then . Perform differential crossover.
5: for i← 1 to npop do
6: ri1 ← randi(1,npop) . ri1 6= i
7: ri2 ← randi(1,npop) . ri2 6= ri1 6= i
8: ui ← γ(xi + xri1

− xri2
) . Equation 1.

9: end for
10: else . Perform bit-flip.
11: for i← 1 to npop do
12: j← randi(1,n) . Variable to flip.
13: ui ← xi . Copy the individual.
14: Flip uij . Flip the variable.
15: end for
16: end if
17: wU ← Evaluate the npop individuals in U.
18: for i← 1 to npop do . Selection.
19: if wU

i > wX
i then

20: xi ← ui

21: wX
i ← wU

i

22: end if
23: end for
24: Increase generation count.
25: end while

Figure 6: Pseudo-code for dDE. npop is the population size; n is the problem size; rand(x,y) is a
uniform floating-point random number generator in the range [x,y]; and randi(x,y) is a
uniform integer random number generator in the range [x,y].
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Figure 7: How differential crossover produces the variation required to jump between optima. In a
population that includes individuals ab, Ab, and aB, the differences between ab and Ab
identify the crossover points and allelic values that aB needs to take to jump directly to
AB, thereby avoiding the intermediate fitness valley that includes sites of lower fitness.

Note that this operator does not introduce variation by flipping; instead, it identifies
the crossover points and the allelic values required to substitute one module solution with
another. Consider a problem with two modules with two module solutions each: m1 with
a and A and m2 with b and B. Also assume that there are three individuals within the
population: (1) ab; (2) Ab; and (3) aB. Say we take the difference between (1) and (2). The
non-zero values in the difference vector are the crossover points. That is, (1) and (2) have
the same module solution in module m2, but not in m1; (1) has a and (2) has A. The
differences between module solutions a and A are also identified in the difference vector.
Thus, the non-zero values in the difference vector are both the crossover points and the
alleles (3) should take to move from a to A or stay at a (see figure 7). Because the value at
each locus is inherited rather than flipped, we call this operator differential crossover.

Differential crossover is essentially the differential mutation operator, but bound by the
constraints of search in binary spaces, as shown below:

vi = γ(xi + xri1
− xri2

), (1)

where γ is a threshold function resetting the variables to legal binary values, r = [1,npop]

and ri1 6= ri2 6= i. The threshold function, γ, simulates the effect of super-imposing the
non-zero values of the difference vector onto xi.

Selection

There are no differences between the DE and dDE selection stages: the ith trial vector,
ui, takes the place of the ith target vector, xi, in the next generation if-and-only-if it is
as fit or fitter. However, there are a few key aspects of it that enable the probabilistic
switch between the bit-flip and differential crossover operators. First, because the fitness
of each ith pair from the target and trial vectors populations is compared, by preceding
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the selection stage with a bit-flip operator, the overall procedure is identical to that of
a population of hill-climbers – meaning that each individual is likely to be exploring a
different area of the fitness landscape which is a vital prerequisite for the success of the
differential crossover operator. Second, the ‘greedy’ and steady-state replacement scheme
discards individuals when the operators are not effective. That is true when bit-flip is
performed on locally optimal configurations or when differential crossover is performed
on non-locally optimal configurations.

3.3 multi-scale modular problems

Building-block recombination familiar in the GA literature introduces the idea of scaling
up the search process from searching combinations of bits to searching combinations of
building blocks [93–95]. This can be generalised to modular problems and searching com-
binations of module solutions. We define module to be a subset of variables with strong
inter-dependencies and module solution as a specific configuration of a module whose fit-
ness cannot be improved by any single-variable change. But contrary to the definition of
building blocks, modules are not necessarily (a) of low order, nor is their order bounded
by fixed values; or (b) of short defining length – i.e. co-dependent variables can be arbit-
rarily placed across the genome. The idea that a module solution is of particularly high
fitness is retained. We can think about how searching combinations of module solutions
facilitates effective search by thinking about how it transforms the neighborhood of the
search space.

For any search process to be able to exploit multi-scale problems, an adaptive mechan-
ism is required that enables a transformation in the fitness landscape neighbourhood from
searching in the space of order-1 schemata to searching in the space of functional compon-
ents of order-k, k > 1. In order for the process to be fruitful, the order-k schemata must
form cohesive units which reflect the structure of the problem. Hence, the efficiency of
such a mechanism will be at its maximum when the optimisation problem exhibits modu-
lar structure [92, 110] that will allow it to substitute one module solution, or sub-solution,
with another.

We define macro-variation to be variation that enables the substitution of module solu-
tions and macro-variation operator as the mechanism that enables such variation. With the
use of a macro-variation mechanism, search can escape solutions that would be locally
optimal under conventional variation. Consider a problem with two modules with two
module solutions, or local optima, each: A and a for m1, and B and b for m2. Addi-
tionally, we assume that the Hamming distance between the two module solutions, d, is
large, meaning that a large number of simultaneous variable changes are required to jump
between A and a or B and b. Since all combinations of module solutions are locally op-
timal and sit several variables apart, single-variable variation would result in a decrease in
fitness. When the module solutions have been successfully identified, a macro-variation
operator can enable the direct substitution of, for example, a for A, thereby avoiding the
intermediate fitness valley which includes sites of lower fitness (assuming A is of higher
fitness). Essentially, the macro-variation operator transforms the genotypic neighbour-
hood from one where neighbouring genotypes differ by a single bit to one where they
differ by a module solution.



28 evolution without learning

A number of conclusions can be reached from the above. In the modified genotypic
neighbourhood resulting from an appropriate macro-variation operator, the substitution
of one module solution for another corresponds to the transition between locally optimal
configurations. The macro-variation operator produces multiple, neighbouring locally
optimal configurations that can be compared by means of selection. Thus, the dynamics of
the search process change from hill climbing in the space of single-variable changes to hill
climbing in the space of module solutions. A hill climber in the original neighbourhood
is only capable of finding the global optimum when search is fortunate enough to start at
a genotype in its basin of attraction. Obviously, in a small problem, such as a two-module
problem, a random-restart hill-climber will only require a few restarts. However, the
number of local optima increases exponentially with the number of multi-modal modules,
and consequently starting in the basin of attraction that optimally solves all sub-problems
would require an exponentially growing amount of restarts [92].

A number of synthetic problems have successfully illustrated the idea of modularity
and building blocks (e.g. [96, 111, 112]). These problems can, in general, be ‘shuffled’ to
create a problem class of random-linkage problems whose structure cannot be exploited
by linkage-preserving crossover techniques, such as one- or two-point crossover. Des-
pite the fact that these problems have successfully shown what modularity-exploiting
algorithms are good for, they all hold the assumption that the number of bits contained
per module, or the number of modules contained in modules of later hierarchical levels,
has to be small and fixed. This assumption can perhaps be attributed to the following:
given that a hill-climber can solve a module and that the modules are separable, a hill-
climber can solve all modules and hence the entire problem. On the other hand, given
that a hill-climber cannot easily solve the modules, the solutions will have to be ‘guessed’.
Therefore, the required search to find the solution to a module would need to be expo-
nential in the size of a module; so the modules have to be small. However, this reasoning
omits the possibility that local search may be able to assist in finding solutions to modules
but it cannot reliably find the solutions to modules [92]. Additionally, it does not allow
previous work to show a polynomial-vs-exponential distinction between multi-scale and
conventional search algorithms [92].

Although, in principle, searching with an appropriate macro-variation operator trans-
forms the neighbourhood of the fitness landscape from one where the locally optimal con-
figurations were separated by a number of lower-fitness intermediate sites to one where
they are one variational step away, for this transformation to be successful, the automatic
and reliable discovery of module solutions is essential. Therefore, the combination of an
exploration mechanism that searches for module solutions and an exploitation mechanism
that searches in the space of module solutions can significantly reduce the search space and
the difficulty of problems that facilitate decomposition.

3.3.1 Scalable Building Blocks: A Decomposable Problem

The scalable building blocks (SBB) problem consists of m multi-peaked, order-k mod-
ules, with each peak having an appreciable basin of attraction. The full n-bit problem is
constructed by concatenating, without between-module epistasis, all modules:

w(g) =

m∑
i=1

f(bi),



3.3 multi-scale modular problems 29

where g = 〈gr1 ,gr2 , . . . ,grn〉 is the genotype of length n; r = 〈r1, r2, . . . , rn〉 is a mapping
between the variables and the randomised functional structure of the problem; bi =

〈gr(i−1)k+1
,gr(i−1)k+2

, . . . ,grik〉 is the ith module of the genotype containing k variables;
m = n/k is the number of modules; and f is the sub-function that determines the fitness
contribution of each module:

f(bi) =

Ti∑
j=1

c(bi, tij), where (2)

c(bi, tij) =

{
wij if |bi − tij| = 0

1+ |bi − tij|)
−1 otherwise,

(3)

where Ti is the number of optima within the ith module; tij is the jth target string (i.e.
optimum) within the ith module; |bi − tij| is the Hamming distance between the module
configuration and the target string; and wij > 1 is the fitness contribution, or weighting,
of the target string tij.

The fitness of each module is a sum of the fitness contributions, as defined by c, de-
termined by the comparison of the module configuration with the set of target strings, T .
Maximal fitness contribution with regard to a particular target string can only be achieved
when the module configuration matches the target string (i.e. |bi− tij| = 0); otherwise, the
fitness contribution is inversely proportional to the Hamming distance.

3.3.2 Variable Structural Modularity: A Nearly-Decomposable Problem

The second problem we use for testing is the variable structural modularity (VSM) prob-
lem [60, 62]. The test problem is defined by a randomly initialised, symmetric weight
matrix, which results in a multi-modal, nearly-decomposable problem [113] of pair-wise
constraints. There are two classes of the VSM problem: random constraints (RC), without
explicit modularity; and modular constraints (MC) which is a macro-scale version of the RC
class. Since we want to show an idealised scenario where an algorithm that can discover
and exploit the epistatic linkage map of the problem can reliably solve it, we use the MC
class.

The RC matrix is defined by a m×m symmetric matrix, R, whose diagonal elements
all take the value rij = di = 1 if i = j, and the rest are uniformly initialised to fixed-
magnitude, variable-sign values, rij ∈ {−de,de}:

rij =

{
di if i = j,

{−de,de} with equal probability otherwise,

where di is the self-weight, and de 6 di is the magnitude of the interaction between
variables. The MC matrix is defined in terms of the RC matrix, which yields a symmetric,
explicitly modular matrix, Ω, of size n×n, where n = mk; m is the number of modules;
and k is the length of each module. The MC weight matrix is initialised as follows:

ωij = R

(⌊
i

k

⌋
,
⌊
j

k

⌋)
.
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The problems utilise state configurations represented in the Ising spin convention, σ ∈
{−1,+1}, σ = 〈σ0,σ1, . . . ,σn−1〉, to calculate the fitness, which is given by:

w(g) = −

n−1∑
i=0

n−1∑
j=0

giωijgj, or (4)

w(g) = −(gΩgT), (5)

where g is the genotype, represented as a 1× n row vector, and gT is its transpose. This
creates a minimisation problem of weighted, pair-wise constraints, where the fitness con-
tribution is beneficial only when the sign of the product of two variables (gi and gj) is the
same as the sign of their weighting, ωij (i.e. when the constraint is satisfied).

3.3.3 hTrap: A Deceptive Hierarchical Problem

Hierarchical traps (hTrap) [114] is a combination of trap functions and a mapping that
forms subsequent hierarchical levels. The length of the trap defines the overall problem
size: n = km, where n is the overall problem size, k > 3 is the length of the trap, and m
is the number of hierarchical levels.

At the lowest level, blocks of k bits contribute to the overall fitness:

trapk(u) =

{
fhigh if u = k

flow − u flow
k−1 otherwise,

(6)

where u is the number of ones in the block, fhigh = 1 and flow = 1+ 0.1/m. For this choice
of fhigh and flow, the global optimum of each module solution is a string of all zeroes.

Each k-bit configuration that is a solution to one of the traps is then mapped to a
symbol on the subsequent level: 0k is mapped to a 0; 1k is mapped to a 1; and any
other configuration is mapped to the null symbol, ‘-’. This mapping defines the bit-string
at the following hierarchical level. The k-bit groupings formed at the subsequent level
contribute to the fitness using the traps equation defined above only if they do not contain
a null symbol.

For all levels, the fitness contribution is multiplied by ki, where i is the current level
(with i = 1 being the bottom level). This guarantees that the magnitude of the fitness
contributions is the same across all levels. The process is repeated until the top level
consisting of k bits is reached. The fitness contribution values are different at the top
level: fhigh = 1 and flow = 0.9. This particular choice of fitness contributions means that
although the module solution of all zeroes confers higher fitness than all ones at every
other level, the global optimum is the string of all ones.

3.4 results

In this section, we provide empirical results for the behaviour and performance of dDE.
In section 3.4.1, we investigate the behaviour of dDE and the differential crossover macro-
variation operator on fixed-size SBB, VSM and hTrap problems. In section 3.4.2, we show
how the performance of dDE compares to a number of conventional algorithms as the
problem size increases.
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Figure 8: Genotype lineage diagrams for one individual of one example run of dDE on 400-bit
SBB and VSM problems, with m = k = 20, and on a 243-bit hTrap problem, with k = 3,
m = 5. dDE is capable of exploiting the problem structure and producing targeted, sim-
ultaneous variable changes. Initially, single-variable changes direct the search to locally
optimal configurations until the exploration requirement of multi-scale search is satis-
fied. When there is information to exploit within the population (i.e. when individuals
are locally optimal), differential crossover produces macro-variation as observed by the
substitution of modules. The global optimum is found in all three instances.

3.4.1 Operation on Test Problems

Here, we investigate the behaviour of dDE on 400-bit SBB and VSM problems, with m =

20 modules of length k = 20 each (n = mk), and on a 243-bit Trap problems with traps
of length k = 3 and m = 5 hierarchical levels (n = km). For the SBB problem, we
use 2 optima per module: the globally optimal target string consists of all 1s and the
locally optimal target string of 1s and −1s at every odd and even index respectively. The
Hamming distance between the optima is 10 and the fitness weighting for the global and
local optima is wgo = 10 and wlo = 1 respectively. For the VSM problem, we set the
within-module constraints to di = 1 and the between-module constraints to de = 0.01.
For the hTrap problem, we set the trap length to k = 3, the fitness contribution of the
all-ones solution to fhigh = 1 and the all-zeroes fitness contribution to flow = 1+ 0.1/m.
At the top level, the all-ones and all-zeroes fitness contributions are changed to fhigh = 1

and flow = 0.9 respectively. This means that the globally optimal solution is an all-ones
string. For all problems, the population size was set to npop = 200. We set pmv to 0.2 for
the SBB problem, and to 0.1 for the VSM and hTrap problems.

Figure 8 shows a genotype lineage diagram for one individual across 5000 generations
of one example run of dDE on the three problems. The black and white colours translate
to variables with the values −1 and +1 respectively. As can be seen from the single-
variable changes, the optimisation process spends the initial stages searching for locally
optimal configurations to identify module solutions and satisfy the exploration aspect of
multi-scale search. When there are locally optimal configurations in the population, the
search is transformed to a higher scale, with the differential crossover operator producing
targeted, simultaneous variable changes. Effectively, the neighbourhood of the genotypes
in the fitness landscape changes from one where the neighbouring genotypes differ by
a single variable to one where they differ by a module solution. But unlike previous
work utilising explicit learning mechanisms, searching in the space of module solutions is
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achieved implicitly, by using differential crossover directly on the population to introduce
variation.

There are a couple of things to note here. First: dDE is capable of solving decompos-
able (SBB), nearly-decomposable (VSM) and hierarchical (hTrap) problems. Second: the
variables within a module are shown as contiguous blocks (i.e. tightly linked), but that is
only done to show a better picture of the behaviour of the algorithm.

3.4.2 Time Complexity

Here, we examine empirically how the dDE scales with the problem size on the three test
problems.

The problem parameters are as described in the previous section. The range of prob-
lem sizes tested was m = k = [5, 20] for the SBB and VSM problems, and m = [2, 5]
for the hTrap problem. For the VSM problem, the weight matrix was randomised every
execution (the algorithms are not tested on the same set of weight matrices). All loc-
ally optimal state configurations were enumerated and evaluated to identify the globally
optimal configuration for each randomly generated weight matrix.

We ran dDE on 100 independent executions of each problem size and measured the
mean number of function evaluations used before the global optimum was found. Pop-
ulation sizes were hand-chosen such that the solution probability criterion was satisfied:
the global optimum was to be found in all 100 executions. We set the probability of per-
forming macro-variation to pmv = 0.2 for the SBB problem and pmv = 0.005 for the VSM
and hTrap problems.

For comparison, we also ran uninformed-variation algorithms on 30 independent exe-
cutions of each problem size. We used a relaxed solution probability criterion for these
algorithms: the global optimum was to be found in at least 27 out of 30 executions (90%
probability) We only show data points for the search instances that met the criterion.

The uninformed search techniques we use are: uniform crossover evolution (UCE),
memetic algorithm (MA) [115], and two restart hill-climbers (HC and HC ′). UCE is used
as a control experiment as it is identical to dDE in everything but the crossover method:
dDE uses differential crossover and UCE uses uniform crossover. We hand-tune the pop-
ulation size. The MA is a hybrid uniform crossover GA and hill-climber. The premise is
that although uniform crossover will not necessarily change all bits that would facilitate
modular variation, the bits that do change may move an individual to a different basin
of attraction, and hill-climbing from there will lead to a potentially better optimum. The
control parameters were hand-tuned. Lastly, we use two restart hill-climbers. For the
first one, HC, we set the mutation rate to µ = 1/n, and restart the search every n consec-
utive generations without fitness improvement. We provide the second one, HC ′, with
problem-specific information. Specifically, we set the mutation rate, µ = d/n, where d
is the Hamming distance between the module solutions of each problem, and restart the
search every 10n consecutive generations without fitness improvement.

Figure 9 shows the measured time complexities for the SBB problem. UCE, HC, and
HC ′ scale super-polynomially in n, as can be seen from the upwards curvature of the lines
when plotted on log-log axes. Conversely, dDE has a distinctive advantage as its ability to
search in the space of module solutions reduces the search space significantly. The time
complexity for dDE is polynomial in n, as evident from the straight line on log-log axes.
Note that the difficulty of the problem is relatively relaxed, with the Hamming distance
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Figure 9: Mean number of function evaluations used by all algorithms to globally optimise the
SBB problem. Data shown on log-log axes. The expected running time for uniform cros-
sover evolution and the restart hill-climbers is super-polynomial in n, as evident from
the upwards curvature of the line on log-log axes. Conversely, the expected running
time of the MA and dDE is polynomial in n, with a straight line on log-log axes.

between optima not maximal at b(k/2)c. This increases the likelihood that uniform cros-
sover retains modules from ≈ 2−2k to ≈ 2−2b(k/2)c, and also increases the likelihood that
HC ′ produces the variation required to jump between optima. dDE is unaffected by the
Hamming distance between optima because it uses informed methods to direct genetic
variation.

Figure 10 shows the time complexities on the VSM problem. The results are qualitat-
ively similar to those on the SBB problem despite the introduction of epistasis between
the modules. UCE, HC and HC ′ scale super-polynomially in n, as can be seen from the
upwards curvature of the line when plotted on log-log axes. The performance of dDE
is clearly superior because of its ability to identify and exploit the modular structure of
the problem. Specifically, dDE scales polynomially in n, as evident from the straight
curve when plotted on log-log axes. Note that the Hamming distance between optima
is maximal at k, meaning that the probability that uniform crossover retains the linkage
information and successfully substitutes a module solution is approximately ≈ 2−2k. As
a result, the super-polynomial time complexity of UCE shows earlier than in the SBB
problem, at m = k = 11.

Figure 11 shows the time complexities on the hTrap problem. dDE is capable of solving
the hierarchical problem in polynomial time, with a time complexity of O(n1.9). Since
we were unable to gather sufficient data for the uninformed-variation mechanisms, we
show results from hBOA on the same problem instance as a comparison, adapted from
the literature in Pelikan and Goldberg [116].

As the results show, dDE is capable of solving all three problems in polynomial time.
Importantly, it does so without utilising any expensive learning mechanisms (see sec-
tion 3.5). Through the simple idea of differential mutation, modular variation is achieved.
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Figure 10: Mean number of function evaluations used by all algorithms to globally optimise the
VSM problem. Data shown on log-log axes. The expected running time for uni-
form crossover evolution, the memetic algorithm, and the restart hill-climbers is super-
polynomial in n, as evident from the upwards curvature of the line on log-log axes.
Conversely, because dDE can exploit the modular structure of the problem and search
in the space of module solutions, its expected running time is polynomial in n, with a
straight line on log-log axes.
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Figure 11: Mean number of function evaluations used to globally optimise the hTrap problem.
Data shown on log-log axes. None of the uninformed-variation algorithms were cap-
able of providing enough data on this problem. For comparison, we show data from
hBOA optimizing the same instance of the problem, adapted from the literature in Pe-
likan and Goldberg [116]. dDE can exploit the modular structure of the problem and
search in the space of module solutions at every hierarchical level, so its expected run-
ning time is polynomial in n, with a straight line on log-log axes. Surprisingly, despite
its simplicity, the performance of dDE is similar to that of hBOA.
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3.5 discussion

In this section, we discuss multiple aspects of our work, such as why the problems we
used for testing are difficult, what it means for dDE to ‘learn’, and identify the limitations
of our work.

3.5.1 Learning Correlations

Central to the successful scaling of the search is the process of exploring multiple areas
of the fitness landscape to identify module solutions. To properly identify all module
solutions without mistake (i.e. no false positive or negative correlations), a specific number
of locally optimal configurations has to be sampled. In many of the current approaches,
this number is controlled by the number of hill-climbing processes that are ran or with a
learning rate control parameter [61, 62]. In the case of dDE, we do not explicitly set such
a parameter because learning is not explicit. However, it is not difficult to see how the
combination of the population size, npop, and probability of performing macro-variation,
pmv, control parameters is very similar to a learning rate.

Consider the following. During the hill-climbing process, alleles or module solutions
at specific loci that confer high fitness will be selected. After these alleles or module
solutions are discovered, the rate at which macro-variation is performed determines how
quickly they are copied onto other individuals. To prevent early convergence, the popu-
lation size must be sufficiently large with regard to the rate at which macro-variation is
performed. That is, if the population size is too small or macro-variation is performed
too often, diversity is lost quickly, meaning that the differences or similarities between
the individuals in the population do not reflect the structure of the problem. This issue is
very similar to that of tuning the learning rate value: setting it too high results in learned
correlations that are not representative of the problem structure.

3.5.2 Future Work

In the problems we tested, each module had only z = 2 module solutions. Because the
dDE macro-variation operator is a form of crossover, when more than 2 optima exist
per module, a crossover event between three distinct module solutions is not guaranteed
to produce another module solution. Despite this fact, dDE is capable of solving such
problems for reasons we explain below.

Assuming that a macro-variation event produced a non-optimal module configuration,
there are two possible outcomes: (1) the selection stage discards the child because it is not
as fit; or (2) the child replaces the parent because other changes on the genome provide
an overall fitness improvement (i.e., genetic hitch-hiking). In the first case, there is no
issue because the child is simply discarded. As the generations pass, selective pressure
will direct the search and reduce the number of module solutions within the population,
which will result in meaningful macro-variation. In the second case, the non-optimal
module configuration can potentially be replaced by another macro-variation operation.
This, however, is not guaranteed for the same reason the non-optimal module configura-
tion was produced: crossing over three distinct configurations does not necessarily yield a
module solution. But because bit-flip or macro-variation are performed probabilistically,
the bit-flip operator will repair the non-optimal module configuration. The secondary
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role of the bit-flip operator is to fix the non-optimal module configurations that can be po-
tentially produced by differential crossover. Consequently, although differential crossover
is not guaranteed to produce module solutions when z > 2, dDE is capable of solving
problems with more than two optima per module.



4 E V O LVA B I L I T Y O N S M O OT H
L A N D S C A P E S

Recent investigations into the evolution of evolvability have been successful in demonstrat-
ing that natural selection can change phenotypic distributions in a manner that modifies
evolvability in several respects, including increasing developmental robustness and phen-
otypic heritability [9–11], increasing the rate of adaptation under directional selection [12],
re-evolving previously evolved phenotypes more quickly [13], and enabling evolution to
track changes in the environment more rapidly [13–15]. In some cases it can also accel-
erate the evolution of particular novel phenotypes, specifically, different combinations of
modular features [15, 16]. These works have been careful to confirm that the changes to
phenotypic distributions or the G–P map that facilitate such evolvability do not require
multi-level selection and evolve only because of ‘short-term’ adaptive benefits that affect
differential growth or survival between genetic lineages. This is necessary: Although
developmental organisations might influence long-term evolutionary outcomes (i.e. bey-
ond these timescales that can be ‘seen’ by the selection that produced them), long-term
benefits cannot be the reason that these organisations evolved.

In this chapter, we focus on one piece of work in particular. Watson et al. [19] used a
GRN model to show that evolved phenotypes become more evolvable over evolutionary
time by internalising structural information about the environments the phenotypes had
been exposed to. This evolution of evolvability is possible because the regulatory interac-
tions of the GRN evolve to reflect the phenotypic correlations that are favoured in each
selective environment, and the developmental process used to produce phenotypes biases
the phenotypic distribution towards said evolved correlations. For example, if gene a and
gene b share the same allele in one environment, the regulatory interaction between genes
a and b evolves to reflect this positive interaction between the two genes. In subsequent
evolutionary timesteps, when a genotype is developed into a phenotype, the developmen-
tal process biases the corresponding phenes of genes a and b towards sharing the same
allele. Watson et al. [19] have shown that this phenomenon of is functionally equivalent
to a simple type of learning mechanism, specifically associative or correlation learning,
well-understood in neural network research.

What has not been shown, however, is how these evolved regulatory interactions affect
future evolutionary trajectories. In this chapter, we expand on this work by investigating
how the evolution of a GRN in varying selective environments changes future evolu-
tionary trajectories. We begin by introducing the GRN model and performing similar
experiments as in Watson et al. [19] to familiarise the reader with the work and model.
We then proceed with investigating how the evolution of regulatory interactions affects
future evolutionary trajectories.

37
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4.1 methodology

4.1.1 Gene-Regulation Network Model

We simulate the evolution of a GRN using a non-linear, recurrent developmental process,
as described in Watson et al. [19].

The phenotype of an individual is a gene expression profile, φ, described by a set of
n gene expression potentials which are assumed to control phenotypic traits, naturally
represented by a vector: φ = 〈φ1,φ2, . . . ,φn〉,φ ∈ Rn. The genotype of an individual
consists of two parts: a vector, g = 〈g1,g2, . . . ,gn〉, defining the gene expression poten-
tials of the embryonic phenotype, and the elements, bij, of an interaction matrix, B (a
similar setup was used in references [14, 19, 117–119]). Every element of the interaction
matrix, B, represents the magnitude and sign (excitatory or inhibitory) of the interaction
between two traits – that is, whether a gene up-regulates or down-regulates another gene.

We use a non-linear, recurrent developmental process that maps a genotype to a phen-
otype, modeled as follows. At developmental time-step td = 0, the embryonic phenotype
is set to φ(td = 0) = g. For every subsequent developmental time-step, the phenotype
vector is updated by a non-linear transformation determined by the weighted effect of
each trait (or expression potential) on each other trait, (the interaction matrix) B, and a
degradation rate:

φ(td + 1) = φ(td) + σ (B×φ(td)) − τφ(td), (7)

where τ = 0.2 is the rate of degradation, and σ is a sigmoidal function (applied to all
elements of the phenotype vector) that non-linearly limits the effect of interactions. The
non-linearity is modeled with the hyperbolic tangent: σ(x) = tanh(x).

The gene expression profile of the adult phenotype determines the fitness of an organ-
ism. We define ‘adult phenotype’, φa, to be the phenotype vector after a fixed number of
developmental time-steps, tfinal = 10, has passed: φa = φ(tfinal).

4.1.2 Evolutionary Model

All elements of both parts of the genotype, g and B, are initialised to 0 (i.e, no regulatory
interactions). Every generation, mutations are applied to g. Specifically, a single randomly
chosen trait of g is mutated every evolutionary time-step by adding to it µ1, drawn from
a uniform distribution in the range ±0.1. All elements of g are hard-bounded in the
range [−1, 1]. Mutations on the regulatory interactions, bij, are less frequent than on the
direct effects. Specifically, every generation, with probability 1

15 , one randomly chosen
regulatory interaction is mutated by adding to it µ2, drawn from a uniform distribution
in the range ±0.02.

Our model operates under ‘strong selection, weak mutation’ assumptions [120], which
means that a mutation is fixed or lost in the population before another mutation occurs.
To accommodate these assumptions, the population mean genotype is represented by a
single genotype (ḡ and B̄), which is mapped into the population mean adult phenotype,
φ̄a via the developmental process. The evolution of the population is modeled by intro-
ducing small mutations to the genotype (ḡ and/or B̄), which yields a mutant genotype
(g ′ and B ′). The mutant genotype is developed into a mutant adult phenotype φ̄ ′

a. The
probability of the mutant fixing in a population is proportional to the selective advantage
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it confers, but here we are interested in the direction of selection rather than the mag-
nitude. As such, we assume a ‘hill-climbing’ model of selection (e.g. references [19, 119]),
meaning that the selection coefficient is assumed to be large enough to cause beneficial
and deleterious mutations to fix or not fix in the population respectively. Under these
assumptions, the mutant genotype becomes the mean population genotype if the fitness
of its corresponding phenotype is greater than or equal to the fitness of the existing mean
population phenotype (ḡ(t+ 1) = ḡ ′, B̄(t+ 1) = B ′); otherwise the genotype remains the
same for the next generation.

The model is evolved in varying selective environments. In each selective environment,
fitness is determined by a constant directional selection on each phenotypic character,
defined by a selective environment vector s = 〈s1, s2, . . . , sn〉, s ∈ {−1, 1}. Fitness increases
when the signs of the characters of the adult phenotype and ‘target’ phenotype vector:
(i) are aligned and the magnitudes of the characters of the adult phenotype are increased;
and (ii) are misaligned and the magnitudes of the characters of the adult phenotype are
decreased. Fitness decreases when the signs of the characters of the adult phenotype and
‘target’ phenotype vector: (i) are misaligned and the magnitudes of the characters of the
adult phenotype are increased; and (ii) are aligned and the magnitudes of the characters
of the adult phenotype are decreased. Specifically, fitness, w, is determined by the dot
product of the adult phenotype and ‘target’ phenotype vectors:

w(φa) = φa · s. (8)

Each element of s determines the direction of selection on each phenotypic character [12,
19].

4.2 experimental setup

All values in g and B are initialised to 0. Every generation, mutations are applied to g.
Specifically, a single randomly chosen trait of g is mutated every evolutionary time-step
by adding to it µ1, drawn from a uniform distribution in the range ±0.1. All elements
of g are hard-bounded in the range [−1, 1]. Mutations on the regulatory interactions, bij,
are less frequent than on the direct effects. Specifically, every generation, with probability
1/15, one randomly chosen regulatory interaction is mutated by adding to it µ2, drawn
from a uniform distribution in the range ±0.02.

We alternate between two selective environments characterised by smooth fitness land-
scapes (similar to references [13, 15, 16, 19, 20, 83]). The two environments of size n = 8

are: sa = 〈+,+,−,−,−,+,−,+〉 and sb = 〈−,+,−,−,−,−,+,+〉, where + = 1 and − = 1.
Each simulation lasts 800000 generations, and the environment changes from one to the
other every 2000 generations.

4.3 results

4.3.1 Evolving Regulatory Interactions and Developmental Memory

We begin by replicating parts of the work of Watson et al. [19]. In particular, we are
showing how regulatory interactions evolve in varying selective environments and how
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these regulatory interactions form a developmental memory. Figure 12a shows that, with
evolutionary time, evolved regulatory interactions are separated into three classes. The
first class consists of regulatory interactions that upregulate two genes (positive), the
second class consists of regulatory interactions that downregulate two genes (negative),
and the third class defines a lack of regulation between two genes (≈ 0). The pairs
of genes that are upregulated are those that are positively correlated in both selective
environments (i.e. ++ or −− in both environments sa and sb), whereas the ones that are
negatively correlated in both selective environments (i.e. +− or −+ in both environments
sa and sb). Pairs of genes that are not regulated have a different correlation across the two
selective environments (e.g. ++ in environment sa and +− in environment sb) and have
a regulatory coefficient that is near zero on average (Watson et al. [19] and Kashtan et al.
[119] report similar results). Figure 12b shows the evolved regulatory interaction matrix at
the end of the simulation. Figure 12c shows the regulatory interaction matrix as predicted
by Hebb’s rule. It is calculated by taking the outer product of the target phenotype of the
first selective environment and adding it to the outer product of the target phenotype of
the second selective environment: (sa · sa) + (sb · sb). Comparing figures 12b and 12c
confirms that the pattern of regulatory interaction coefficients (positive, negative, and
near zero) in the evolved matrix matches the pattern of regulatory interaction coefficients
in the matrix predicted by Hebb’s rule.

Although the target phenotypes used here are arbitrary bit patterns and include only
eight features (n = 8), the results clearly demonstrate that the evolved regulatory inter-
actions match the interactions predicted by Hebbian learning [19] (Figures 12b and 12c).
Further than that, we can see that the evolved regulatory interactions bias the developmen-
tal process towards reproducing the previously seen phenotypes and their complements
(figure 13).

These results were previously demonstrated in Watson et al. [19]. Here we reproduced
parts of their work to elucidate how phenotypic distributions are affected by the evol-
ution of regulatory interactions. In the following section, we expand on this work by
investigating how these changes in phenotypic distributions caused by the evolution of a
developmental memory affect evolutionary trajectories.

4.3.2 Evolution Becomes Faster at Re-Evolving Previously Seen Phenotypes

As the number of environmental changes increases, we find that the developmental pro-
cess progressively canalises the two ‘targets’ and rapidly switches between them using
pre-prepared responses. Figure 14 shows fitness trajectories before and after a change
in environment at different stages of the simulation. We find that later in evolution, ad-
aptation becomes faster, with the growth in fitness being sigmoidal. The reason for the
sigmoidal growth is that there is a trade-off between robustness and evolvability. Since
the developmental dynamics have formed attractors for both targets, the impact of deleter-
ious mutations is reduced, but the impact of beneficial mutations is initially also reduced.
After beneficial mutations have been accumulated and the genotype reaches the saddle
point of the attractor landscape, beneficial mutations have significantly more impact. In
fact, the accumulation of beneficial mutations results in a pre-prepared response that
enables the rapid switch from target sa to target sb and vice versa. Although the develop-
mental constraints canalise the two targets, adaptation to previously seen environments
becomes faster.
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Figure 12: Evolved regulatory interactions for two changing environments. (a) With evolutionary
time, evolved regulatory interactions are separated into three classes. The first class
consists of regulatory interactions that upregulate two genes (positive), the second
class consists of regulatory interactions that downregulate two genes (negative), and
the third class removes regulatory interactions between specific genes (≈ 0). The pairs
of genes that are upregulated are those that are positively correlated in both selective
environments (i.e. ++ or −− in both environments sa and sb), whereas the ones that
are negatively correlated in both selective environments (i.e. +− or −+ in both envir-
onments sa and sb). Pairs of genes that are not regulated have a different correlation
across the two selective environments (e.g. ++ in environment sa and +− in environ-
ment sb). (b) The evolved regulatory interaction matrix at the end of the simulation.
White, black and grey shades are for genes that positively, negatively or not regulated
respectively. (c) An interaction matrix derived from Hebb’s rule rather than evolved.
When comparing (b) and (c), it is clear that the two sets of regulatory interactions share
the same pattern of interactions that upregulate, downregulate or not regulate pairs of
genes.

After the environment changes, the allelic values of the loci of g which are not aligned
with the current target phenotype will slowly change towards its direction. We want to
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Figure 13: Gene expression levels change over developmental time. Nine independent develop-
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The embryonic phenotypes are depicted in the top row. The middle row shows how
the gene expression levels change over developmental time given the evolved regulat-
ory interaction matrix from figure 12b. The bottom row shows the adult phenotypes
produced at the end of development (φa = φ(tfinal)).
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Figure 14: Organisms become more evolvable by recovering fitness faster when exposed to sys-
tematically varying selective environments characterised by smooth fitness landscapes.
Results shown are from 30 replicates of the experiment, with each experiment lasting
800000 generations and the environment changing every 2000. Vertical axis is mean
normalised fitness; horizontal axis shows generations in environment, with the change
in environment happening at generation 0. As the number of environmental changes
increases, adaptation to the new (but previously seen) environment becomes faster.
The sigmoidal trend in fitness growth suggests that there is a trade-off between ro-
bustness and evolvability. The fitness benefit from initial mutations is reduced due to
the developmental constraints further canalising the target phenotypes, but that does
not preclude the accumulation of beneficial mutations which results in a pre-prepared
response that enables the rapid switch from target sa to target sb.

compare what happens to the fitness landscape as g changes when the G–P map is one-
to-one and when it is evolved. To do so, we ran another experiment in which we (1) set
the regulatory interaction matrix, B, to be either an identity matrix (one-to-one), or equal
to the regulatory interaction matrix evolved at the end the experiment shown in figure 14;
and (2) controlled the direct effects on gene expression potentials, g, by setting the allelic
values of some of its loci to be equal to the allelic values of the corresponding loci in target
phenotype sa, and having the remaining loci vary in the range [−1, 1]. We chose loci 1
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Figure 15: How the evolved G–P map affects the fitness landscape. Left: one-to-one G–P map;
right: evolved G–P map. Evaluating how the fitness of the adult phenotypes and
their Hamming distance with respect to target phenotype sb are affected as the allelic
values of two of the loci (g1 and g6) that differ between sa and sb move towards
the direction of sb. The gene expression levels of adult phenotypes are normalised
before evaluation, and the colour denotes the Hamming distance between the adult
phenotype and target sb. With a one-to-one G–P map, fitness is increased linearly and
the Hamming distance is decreased by one when an allele’s sign is changed to match
the corresponding allele of target sb. With an evolved G–P map, there is a non-linear
increase in fitness and the Hamming distance is either the Hamming distance between
the two target phenotypes or 0. Sign-wise, the adult phenotype produced is always
one of targets sa and sb. As the two alleles change towards the direction of target
sb, the evolved G–P map produces fitter phenotypes than those produced with a one-
to-one G–P map. This is because although only two of three alleles are changed to
match target sb, the embryonic phenotype resembles target sb more than it does sa,
and therefore development produces target sb.

and 6 to be the loci that vary, as the two target phenotypes, sa and sb, have different
allelic values in those loci. Multiple g vectors are developed into adult phenotypes, and
those adult phenotypes have (1) their fitness evaluated with respect to target phenotype
sb; and (2) their Hamming distance to target phenotype sb measured. In doing so, we
are able to understand why the robustness versus evolvability trade-off exists and how
the fitness landscape is affected by an evolved G–P map as the direct effects on gene
expression potentials, g, move towards the direction of the current target phenotype.

With a one-to-one G–P map, we observe a linear increase in fitness and a linear decrease
in Hamming distance as a single allele’s sign is changed to match the corresponding al-
lele of target sb (figure 15; left column). With an evolved G–P map, as shown in the right
column of figure 15, we observe a sigmoidal increase in fitness, and a Hamming distance
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that is either (a) the Hamming distance between targets sa and sb (d = 3); or (b) 0 (i.e.
H(φa) = H(sb)) (where H(.) is the Heaviside step function). The sigmoidal increase in
fitness is due to the trade-off between robustness and evolvability, as described earlier.
The effect on the Hamming distance, however, is due to the developmental interactions
constraining the discrete-space phenotypic neighbourhood to only two phenotypes: tar-
gets sa and sb. As the two alleles move towards the direction of target sb, the evolved
G–P map produces fitter phenotypes than those produced with a one-to-one G–P map. In
other words, the same embryonic phenotype is developed into two different adult phen-
otypes of different fitnesses. That is because with a one-to-one G–P map, only two of
the three loci that differ between the targets have their allelic values change to match the
current target phenotype. With the evolved G–P map, however, changes to the allelic
values of two loci are channelled through the developmental process, causing the third
locus to change its allelic value also. More specifically, the evolved G–P map produces the
phenotype that is more close in euclidean space to the embryonic phenotype, and when
the allelic values of two of the three loci change towards the direction of target sb, the
allelic value of the third locus is also changed in the direction of sb.

4.4 discussion

In this chapter, we have demonstrated that the evolution of developmental memory
changes evolutionary trajectories for the better. Not only do phenotypes become more
robust, they become more evolvable at the same time by enabling evolution to rapidly
switch between memorised phenotypes using pre-prepared responses. This leads to a
speed-up in evolution in terms of the number of generations required to reach a high-
fitness phenotype when changing from one environment to the other.

These results are not entirely novel, however. Recent investigations have shown that
systematically varying environments can enhance evolvability by making it possible to
switch between phenotypes faster [13–16]. This type of short-term evolvability makes it
so that evolution is capable of rediscovering previously seen phenotypes faster or so that
evolution can discover generalisations of previously seen phenotypes and evolve to them
rapidly without having encountered them before.

In the following chapter, we investigate whether what we term as ‘long-term evolvabil-
ity’ can evolve. We define long-term evolvability as the type of evolvability that enables
evolution to find phenotypes that are objectivelly fitter than the ones it encountered be-
fore. Note that this is not the same as the sort of evolvability that results from general-
ising across previously seen phenotypes encountered on smooth fitness landscapes (for
example, references [13, 15, 16, 19]). In that body of work it was necessary to hand-design
a family of single-peaked selective landscapes sharing common structural regularities. In-
stead we utilise the observation that the local peaks present in a single multi-peaked
landscape naturally share common structural regularities because they derive from the
same set of underlying epistatic constraints [61, 121]. This does not depend on any expli-
cit modularity or other contrivance in the problem structure. This also has the advantage
that the fitnesses of different local peaks are comparable because they are on the same land-
scape, which is important because it enables us to assess not merely whether evolution
evolves a given phenotype more quickly, but also whether evolution can find a different
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phenotype that is fitter. In chapter 5, we investigate whether it is possible for evolution to
find progressively better phenotypes on such fitness landscapes.





5 E V O LVA B I L I T Y O N R U G G E D
L A N D S C A P E S

The work that follows is from the following papers:

1. Kounios L et al. (2016) Resolving the Paradox of Evolvability with Learning The-
ory: How Evolution Learns to Improve Evolvability on Rugged Fitness Landscapes.
arXiv: 1612.05955 [q-bio.PE].

70. Kounios L et al. (in preparation[b]) Resolving the Paradox of Evolvability with
Learning Theory: How Evolution Learns to Improve Evolvability on Rugged Fitness
Landscapes. PLoS Computational Biology.

The following are contributions from authors in the aforementioned papers. Loizos
Kounios, Richard A. Watson, Jeff Clune, Kostas Kouvaris, Günter P. Wagner and Daniel M.
Weinreich conceptualised the experiments. Loizos Kounios, Richard A. Watson, Jeff Clune
and Kostas Kouvaris designed the experiments and analysed data. Loizos Kounios per-
formed the research. Richard A. Watson wrote most of the introduction and section 5.4.3.
Loizos Kounios wrote everything else. Jeff Clune and Günter P. Wagner provided relev-
ant literature and helped improve the writing. Daniel M. Weinreich and Mihaela Pavlicev
helped with revising the writing. Finally, Freddy Nash contributed by performing re-
search, producing figures, and further additions to the text, but those changes are only
included in the as-of-yet unpublished Kounios et al. [70] and not in this thesis.

abstract

It has been hypothesised that one of the main reasons evolution has been able to produce
such impressive adaptations is because it has improved its own ability to evolve – ‘the
evolution of evolvability’. Rupert Riedl, for example, an early pioneer of evolutionary
developmental biology, suggested that the evolution of complex adaptations is facilitated
by a developmental organisation that is itself shaped by past selection to facilitate evol-
utionary innovation. However, selection for characteristics that enable future innovation
seems paradoxical: natural selection cannot favour structures for benefits they have not
yet produced; and favouring characteristics for benefits that have already been produced
does not constitute future innovation. Here we resolve this paradox by exploiting a formal
equivalence between the evolution of evolvability and learning systems. We use the con-
ditions that enable simple learning systems to generalise, i.e. to use past experience to
improve performance on previously unseen, future test cases, to demonstrate conditions
where natural selection can systematically favour developmental organisations that bene-
fit future evolvability. Using numerical simulations of evolution on highly epistatic fitness
landscapes, we illustrate how the structure of evolved gene regulation networks can result
in increased evolvability capable of avoiding local fitness peaks and discovering higher
fitness phenotypes. Our findings support Riedl’s intuition: Developmental organisations
that ‘mimic’ the organisation of constraints on phenotypes can be favoured by short-term
selection and also facilitate future innovation. Importantly, the conditions that enable the
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evolution of such surprising evolvability follow from the same non-mysterious conditions
that permit generalisation in learning systems.

5.1 introduction

The ability of natural populations to exhibit adaptation depends on the production of
suitable phenotypic variation that natural selection can act on. Such variability in turn
depends, amongst other things, on the properties of the G–P map or the organisation of
developmental processes that constrain and bias the distribution of possible phenotypic
variants. Contemporary evolutionary developmental biology recognises that developmen-
tal organisation is both a product of natural selection and a factor that can significantly
alter subsequent evolutionary outcomes [2–4, 6]. It is therefore clear that natural selection
can produce heritable changes that modify the ability to evolve – a phenomenon called
‘evolution of evolvability’ [4, 7, 8]. But can natural selection systematically improve its
own ability to evolve? It has been argued that natural selection increases evolvability over
time and that this is important in explaining the amazing diversity and complexity of the
natural world [2, 3, 122]. Yet, how natural selection, which operates only on short-term
fitness differences, can improve long-term evolvability remains one of the most important,
open questions in evolutionary biology [2–4, 7, 8, 122–127].

Rupert Riedl, an early pioneer of evo–devo research, provided key concepts and ideas
on the topic of evolvability. He suggested that the evolution of complex adaptations
is facilitated by developmental architectures that are organised by natural selection to
‘mimic’ or ‘imitate’ the functional constraints on phenotypes [2–5]. However, his ideas
have not been previously demonstrated in an explicit mechanistic model. Such a model
needs to explain exactly what form such imitation takes and, more challengingly, explain
why imitating the constraints experienced in the past facilitates evolutionary innovation
in the future. We provide a resolution to this problem by drawing a formal analogy
with well-established knowledge from another discipline; namely, learning theory. A
simple analogy between learning and evolution has been noted many times [128, 129],
but the link has recently been formalised and deepened extensively [19, 66, 69, 130–133].
Here we argue that Riedl’s notion of an imitatory developmental organisation is directly
analogous to a learning system that internalises a model of its environment, and the
link with learning also provides the missing explanatory component and mechanistic
principles to demonstrate how this facilitates future innovation. Specifically, in learning
systems the idea that past experience can be used to generalise to future, previously
unseen, test cases is not at all paradoxical. This enables us to update Riedl’s notion
of development that imitates to a process of development that innovates in a simple but
predictable manner.

5.1.1 Generalisation and Evolvability

Here, we develop the intuition that evolvability is to evolution as generalisation is to learn-
ing [66, 133]. That is, learning without generalisation is essentially just remembering what
you have already seen; it is obvious that evolution by natural selection can do this in the
sense that genotype frequencies are determined by past selection. But evolvability sug-
gests an ability to go beyond this; not merely to favour the phenotypes that have already
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been rewarded but to facilitate innovation – an ability to produce new phenotypes that
are fit even though they have not been previously subject to selection. The evolution of a
high mutation rate in a rugged fitness landscape is potentially a simple way to provide
this – implicitly exploiting the prediction that high degrees of epistasis in the past might
be indicative of high degrees of epistasis in the future. But a parameter that simply con-
trols the amount of variability (e.g. mutation rate) has little or no ability to accumulate
specific information from past selection and is, in any case, not easy to evolve [49]. Learn-
ing systems show that predicting the future (in specific ways) from past experience is
possible in simple mechanistic systems. Learning systems do not really ‘see the future’,
of course; they are simply finding underlying structural regularities that are invariant
over time [130]. For this to be non-trivial, it is essential that the future is not simply the
same as the past, but rather shares invariant structural properties – properties that are,
in some sense, beneath the surface. In this paper, by transferring existing knowledge
from learning systems, we explore the conditions where natural selection can achieve this
same type of generalisation and thus demonstrate evolvability that facilitates innovation.
Unlike models based on the evolution of mutation rates that attempt to increase evolva-
bility simply by enabling more (random) variability, our models increase evolvability by
enabling ‘smarter’ variability; i.e. by evolving developmental organisations that create a
distribution of variants with specific adaptive structure.

To learn structural regularities requires an ability to accumulate information from mul-
tiple past examples. A learning system that models each feature independently cannot
do this because each new example overwrites the features of the previous example (to
the extent that they are different). This is analogous to an evolutionary system where
phenotypes are directly encoded by genotypes – i.e. each phenotypic trait is controlled by
a single gene, also known as ‘one-to-one’. Given that genetic variation is undirected, a
one-to-one mapping produces undirected variability in phenotypic characteristics and is
therefore incapable of ‘remembering’ more than one thing (except in the degenerate sense
of representing a simple average), or generalising [69, 133]. The evolutionary significance
of this is that it is unable to use information from past selective environments to modify
the future response to selection except by changing its current phenotype – there is no
possibility of representing tacit information from past selection. In contrast, a learning
system that generalises requires an ability to represent the underlying structural regular-
ities of a problem domain, e.g. to observe which features ‘go together’ in a set of examples,
and this requires a more flexible input–output mapping. Representing structural relation-
ships between multiple features of observed solutions enables a learning system to exploit
similarities between multiple past solutions (and possible future solutions) even though
their individual features may be different or contradictory.

This is analogous to a G–P map that constrains and biases the combinations of pheno-
typic traits produced by genotypes, e.g. via a GRN. This is capable of representing inform-
ation about structural regularities observed in past selected phenotypes and generalising
by facilitating phenotypic variation which reflects the regularities represented within the
network [19, 69]. Recent work shows that it is possible for a GRN to represent informa-
tion about structural regularities observed in past selected phenotypes and also describes
in detail how information is introduced into such networks by past selection in the same
way that an associative learning system acquires information from experience [19, 69].
Specifically, this work shows that the effect of natural selection on mutations that change
the strength of connections in a GRN is formally equivalent to learning mechanisms that
alter the strength of synaptic connections in a neural network [19]. The potential for
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neural networks to generalise via such simple learning mechanisms is well characterised.
Thus, a simple G–P map based on gene-regulatory interactions is capable of representing
such correlations in the same way that a neural network is. Here we show for the first
time that this ability of natural selection to shape the organisation of gene networks can
improve evolvability on rugged fitness landscapes, enabling future evolution to move in a
modified space of phenotypes and thereby avoid local fitness peaks that prevent evolution
with one-to-one mappings from finding higher fitness phenotypes. We also show that the
evolving gene network achieves this result by creating pleiotropic interactions that mimic
the structure of the epistasis, inherent in the fitness landscape, acting on phenotypic traits,
as Riedl predicted; but crucially, we also show that it is thus capable of generalisation ne-
cessary to improve future innovation. It is in this way that natural selection is able to
recognise and exploit structural regularities in the selective environment that facilitate
evolutionary innovation.

To explain this evolvability we need to explain the congruence between short-term fit-
ness benefits (arising from organisations that mimic the structure of selective constraints
on the phenotype) and long-term fitness benefits (i.e. an ability to innovate on rugged
fitness landscapes). This is neither guaranteed nor mysterious; it depends on the same
conditions where generalisation is possible in learning systems. Specifically, that learnable
regularity is present in the training data. To demonstrate this, we utilise the observation
that the phenotypes at local peaks in a multi-peaked epistatic fitness landscape are not
arbitrarily different to one another (except in special cases). It is, of course, possible to
construct truly random landscapes where high-fitness phenotypes have no shared com-
monalities. But this will not be the case whenever phenotypes have fitnesses that result
from a sum of low-order epistatic fitness contributions (e.g. pairwise epistasis, but strictly,
anything less than order-n epistasis where n is the number of traits). In general, pheno-
types at local fitness peaks share common structural regularities because they derive from
the same set of underlying epistatic constraints [61, 121]. The presence of such regularities
is of no use to natural selection with a one-to-one G–P map, since such a map is incapable
of representing or exploiting them. But we show that evolution on such a landscape, using
phenotypes produced by an evolving GRN, can ‘learn’ to exploit these regularities. This
learning–evolution analogy is more than the simple idea that selection ‘rewards’ fit phen-
otypes by increasing their frequency in the population. Rather this is a formal functional
equivalence meaning that natural selection has the ability to induce an internal structural
organisation (in this case, via the evolution of gene-regulatory interactions) that mim-
ics the structure of the epistasis acting on phenotypes. This ‘internalised model’ of the
environment produces phenotypes that respect the epistatic interactions acting on those
phenotypes and is thus enriched for fit phenotypes – including novel phenotypes. This
causes future evolutionary trajectories to be biased toward parts of the fitness landscape
with structural regularities that are ‘familiar’ from past evolutionary experience. This has
the effect of causing future evolution to avoid low-fitness peaks (because they have less
structural commonality with high-fitness phenotypes experienced in the past) and thus
find high-fitness phenotypes faster and more reliably. We demonstrate this by compar-
ing evolutionary trajectories with more evolved and less evolved gene networks, from
many different starting points in phenotype space, and measuring the long-term fitnesses
they attain. We are particularly interested in cases where evolutionary trajectories with
a more evolved mapping systematically arrive at different local optima of higher fitness
than evolutionary trajectories with a less evolved mapping. Passing this test is important
because it indicates that the more evolvable mapping enables the discovery of new high-
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fitness phenotypes that cannot be discovered with the less evolvable mapping (unless
evolution moves against selective gradients or depends on multiple specific genetic muta-
tions occurring simultaneously). Accordingly, we compare multi-generation evolutionary
trajectories with different G–P maps: (a) a direct encoding where the phenotype is the
same as the genotype (i.e. a ‘one-to-one’ or identity mapping); (b) evolved G–P maps at
different stages of evolution. Specifically, the direct encoding has no gene-regulatory in-
teractions such that each gene controls exactly one phenotypic trait, whereas the evolved
mappings introduce gene-regulatory interactions. We assess the fitness levels attained
and whether different fitness peaks (with phenotypes of higher fitness) are discovered in
a multi-peaked fitness landscape.

Recent investigations into the evolution of evolvability have demonstrated that short-
term natural selection can increase robustness [9–11], increase the rate of adaptation un-
der directional selection [12], re-evolve previously evolved phenotypes more quickly [13],
and enable evolution to track changes in the environment more rapidly [13–15]. Some of
this work is evidence of the imitatory features that Riedl described, e.g. modularity, or
other structural features, that mimic the structure of the environment [15, 16]. Clune et al.
[15], in work on the evolution of neural networks, go further to demonstrate that condi-
tions favouring modular networks not only mimic the modularity of the task environment
but also facilitate more effective evolvability and superior evolutionary outcomes. Here,
investigating evolvability in a gene network (rather than a neural network), we show that
there is sufficient learnable regularity in much more general fitness landscapes (without
designed-in modularity). More importantly, we explain the mechanism by formally link-
ing the conditions for this result to generalisation in learning theory.

5.1.2 Evolvability on Rugged Fitness Landscapes

To understand how evolutionary trajectories, starting from the same phenotype on the
same fitness landscape, can be different from one another, we need to understand (a) that
different G–P maps can produce different distributions of phenotypic variation [2–4, 6–8,
122–126]; and (b) how this distribution interacts with selection to determine the direction
of movement in phenotype space [17, 18]. Given that genetic variation is undirected, a
one-to-one mapping produces undirected variability in phenotypic characteristics also,
and evolutionary trajectories are thus shaped by selective gradients only. Mappings that
produce non-uniform phenotypic distributions may cause differences in subsequent evol-
utionary trajectories [17, 18]. Under constant directional selection, if phenotypic variab-
ility in the direction of selection is decreased, this will decrease the rate of adaptation.
Conversely, if the phenotypic variation in the direction of selection is increased this will
accelerate evolution [12]. Pavlicev et al. [12] showed that the effect of short-term selection
is to favour genetic lineages that increase phenotypic variation in the direction of selection
precisely because they accelerate adaptation in this manner. Moreover, biases in the distri-
bution of phenotypic variants can not only increase or decrease the rate of adaptation but
can also alter the direction of evolutionary trajectories through phenotype space [17, 18].
In much the same way that a keel on a sailing boat can make the direction of travel differ
from the direction of the wind, a biased phenotypic distribution, by making evolutionary
change in some dimensions easier than others, can make the path of evolutionary change
differ from the current direction of selection and thus cause evolutionary trajectories to
visit different regions of phenotype space.
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In any single-peaked landscape, this may not alter long term evolutionary outcomes;
assuming that a G–P map is not so constrained as to remove any of the necessary variab-
ility altogether, evolution will ultimately attain the same phenotypic peak and hence the
same fitness in the long term, whether it be via a direct or circuitous route [17, 18]. In
a multi-peaked fitness landscape, if a G–P map changes the regions of phenotype space
that are explored, this causes natural selection to find different fitness peaks – thus al-
tering long-term evolutionary outcomes. Figure 16 demonstrates this using data from
the experiments that follow. The figure shows how evolution over a fixed set of possible
mutations given one G–P map quickly exhausts the production of beneficial variation and
becomes trapped at a local optimum in the adaptive landscape (Figure 16a). Nonetheless
evolution over the same set of possible mutations with a different G–P map continues to
produce adaptive variations that ultimately lead to superior regions of phenotype space
(Figures 16b and 16c).

To explain a systematic mechanism for the evolution of evolvability of this type re-
quires that we understand the kind of knowledge that natural selection can ‘learn’ from
past experience (i.e. the kind of information that the organisation of the G–P map can
hold) and its correspondence with the knowledge that is needed to evolve high-fitness
phenotypes. This is what Riedl could not provide. Here we show that when the G–P
map is defined by a network of gene-regulatory connections, it is capable of learning
the structure of pairwise epistatic interactions in the fitness landscape. This biases the
distribution of phenotypes produced by genetic mutations to suppress the expression of
trait combinations that conflict with high-fitness phenotypes and amplify the expression
of trait combinations that are compatible with high-fitness phenotypes. These biases are a
simple way of generalising the information (combinations of phenotypic traits) found at
multiple easy-to-find local peaks of average (for peaks) fitness, it is thereby able to predict
the location of much rarer local peaks of exceptionally high fitness.

5.1.3 Experimental Setup

We simulate the evolution of a GRN controlling a set of phenotypic traits, φ, via a set
of gene-expression potentials [19] (see section 5.4.1). The genotype defines the embryonic
state of each gene expression potential with a vector, g, and an interaction matrix, B,
whose elements represent the magnitude and sign of the regulatory interactions between
one gene and another in the GRN [19]. In the absence of evolved regulatory interactions,
B, the G–P map is one-to-one, and the sign and magnitude of elements in φ corres-
pond directly to the elements of g. Thus, in the absence of B, mutations to g produce a
uniform ball of variation in phenotype space on average. In the presence of evolved reg-
ulatory interactions, g is mapped into an adult phenotype using a non-linear, recurrent
developmental process defined by B.

Developmental constraints, B, are assumed to evolve slowly. Specifically, the correla-
tions between traits, represented by the interaction matrix B, are assumed to evolve slowly
relative to changes in the magnitudes of the traits themselves, represented by the elements
of g (e.g. the number of mutational sites affecting the expression level of a single gene is
greater than the number of sites affecting its co-regulatory interaction with another spe-
cific gene [19]). We refer to the timescale over which developmental constraints evolve
as ‘deep’ evolutionary time, and the more rapid timescale of evolution given those devel-
opmental constraints as microevolutionary time. We are interested in how the genetic
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Figure 16: Highly evolved G–P maps enable microevolution to find fitter phenotypes by chan-
ging the fitness landscape. The fitness landscape for a set of genetic mutations is
modified by evolved changes in the genetic background defining the G–P map. Each
mapping determines the phenotype (i.e. expression profile of 100 gene products) pro-
duced by a set of 100 genes. The initial mapping is a direct encoding (with no gene-
regulatory interactions) such that each of the phenotypic traits is determined by the
state of exactly one of the genes. Genetic mutations under this ‘one-to-one’ or ‘iden-
tity mapping’ have no pleiotropy or phenotypic epistasis, but the adaptive landscape
exhibits widespread epistasis for fitness. The other mappings are the result of evolu-
tionary changes (at other genetic sites) that introduce gene-regulatory interactions. In
each case the surface shown depicts the same two-dimensional cross-section through
the highly-epistatic high-dimensional fitness landscape (each dimension is a particu-
lar cross-section through a subspace of genotypes; see section 5.4.5). This cross-section
maintains the property that local optima on this surface (i.e. where all neighbouring
points are lower in fitness) are also true local optima in the original high-dimensional
fitness landscape. The two globally optimal phenotypes in this landscape are located
at opposite corners of this cross-section. Fitness reported is in logarithmic scale. (Con-
tinued on next page.)
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Figure 16: (Continued from previous page.) (a) With the one-to-one G–P map, the space of phen-
otypes corresponds directly to the underlying space of genotypes. Trajectories show
simulation data of paths on the fitness surface taken by evolution using this direct
encoding (start points drawn randomly in genotype space fall in low fitness regions
of this surface with high probability). In this rugged fitness landscape these trajector-
ies quickly become trapped when a local optimum is encountered. Evolution fails to
find a global optimum in 1000 attempts. Three example evolutionary trajectories are
shown (black circles denote starting locations); to enhance visualisation, trajectories
which revisit previously seen phenotypes via neutral changes are not shown. (b) The
fitness surface with a moderately evolved G–P map. As the genetic background defin-
ing the parameters of the G–P map (i.e. evolving gene-regulatory interactions) evolve
under natural selection, the phenotypes produced over the same space of 100 genes
change (in predictable ways, see text) and thus have different fitnesses. Some points
in genotype space which were local optima in (a) are no longer local optima in (b),
and thus evolutionary trajectories from the same starting points as (a) sometimes dis-
cover higher fitness phenotypes. This is because the evolved regulatory interactions
change the phenotypic neighbourhood in a way which enables evolutionary trajector-
ies to follow fitness gradients to different local optima. (c) The fitness surface with a
highly evolved G–P map. This mapping produces phenotypes that can always be im-
proved by small mutations, and evolutionary trajectories thus reliably find the global
optima when starting from any point (1000 random starting positions tested, all suc-
ceed). (d) Comparing the fitness effects of movements in the same genetic space given
different mappings (enlarged area and line plots). The plot shows one trajectory from
(a) (red) and one trajectory from (c) (blue), both overlaid on the fitness surface result-
ing from the G–P map in (a). The depicted evolutionary trajectory (red) gets stuck at a
local optimum with low fitness. Trajectories through genotype space with the evolved
mapping in (c) (blue) include mutations that would have been deleterious with the
direct encoding (see fitness decrease in dashed blue line plot). However, these genetic
mutations are accepted by natural selection because they produce beneficial changes
to phenotypes given the evolved mapping (see monotonically increasing fitness in blue
line plot). Unlike the case with the one-to-one mapping, mutations that decrease the ge-
netic distance to the fittest genotype always increase fitness with the evolved mapping.
The evolved mappings achieve this via the evolution of regulatory interactions that bias
the distribution of phenotypes produced by genetic mutations such that the expression
of trait combinations that conflict with high-fitness phenotypes is suppressed and the
expression of trait combinations that are compatible with high-fitness phenotypes is
amplified.

constraints of the GRN (defined by B) change over deep time and how they modify the
mapping between g and φa, the adult phenotype; and in particular, how the distribution
of phenotypes produced under mutations to g (for a given B) thus have the potential to
modify microevolutionary trajectories through phenotype space.

It is not possible for evolution, or any other adaptive process, to infer the underlying
structure of fitness a landscape from a single point in that landscape. The prior work
of Alon and colleagues thus elaborates the idea that varying goals – changing repeatedly
from one selective target to a different (but structurally similar) selective target – enhances
the evolution of evolvability to previously seen environments [13, 15, 16, 83] and in some
cases (e.g. modularly-varying goals) produces generalisation to previously-unseen envir-
onments [15, 16, 19, 69, 83]. In that work it was necessary to hand-design a family of
single-peaked selective landscapes sharing common structural regularities. Instead we
utilise the observation that the local peaks present in a single multi-peaked landscape
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naturally share common structural regularities because they derive from the same set of
underlying epistatic constraints [61, 121]. This does not depend on any explicit modular-
ity or other contrivance in the problem structure. This also has the advantage that the
fitnesses of different local peaks are comparable because they are on the same landscape.
This is important because it enables us to assess not merely whether evolution evolves a
given phenotype more quickly, but also whether evolution can find a different phenotype
that is fitter. This ability cannot be assessed when the landscape (at any one time) is
single-peaked.

Thus, rather than changing between multiple single-peaked fitness landscapes, we re-
tain the condition of variable selective pressures via a different method; namely, repeated
exposures to the single, multi-modal fitness landscape (e.g. a population is repeatedly,
but intermittently, exposed to a stress such as an alternate habitat, toxin, or predator pop-
ulation). As per Kashtan et al. [13], this creates a scenario in which evolution alternates
between a ‘target’ selective environment (in this case, multi-peaked) and a ‘null’ selective
environment where evolution is neutral. Kashtan et al. [13] found that alternating between
the target and null environments showed no speedup in most cases because there were
no structural similarities between the two environments for the developmental constraints
to internalise. In our case, however, structural similarities do exist; not between the null
and target environments, but between the different local peaks of the single target envir-
onment. The null environment is important, however, in enabling evolution to sample
multiple local peaks of the target fitness landscape. Interim periods, where selection on
the relevant traits is neutral, allows their values to drift and causes the next exposure to
start from a different phenotype (i.e. a different location in the fitness landscape). We term
each (re-)evolution in the target landscape a microevolutionary ‘episode’ and we approx-
imate the effects of exposure to the null environment by randomizing g between episodes
(but retaining the slower-evolving developmental constraints, B). In this manner, the slow
evolution of developmental constraints responds to the phenotypic correlations selected
over a distribution of different local peaks in a multi-peaked fitness landscape. Selection
occurring at multiple local peaks of multi-modal fitness landscape is conceptually similar
to the notion of selection occurring in multiple, single-peaked fitness landscapes (i.e. the
multiple landscapes can be viewed as different local peaks of the same underlying fitness
landscape) – but methodologically the former has the advantage that we do not need to
hand-design structural similarity (e.g. modularity) into multiple phenotypic targets.

We examine two different classes of fitness landscapes each defined by the super-
position of many pairwise sign-epistatic interactions. Natural fitness landscapes contain
widespread epistasis [134] (pairwise, or ‘order two’, epistasis being the minimal case),
including sign epistasis – i.e. where a change in one trait may be either beneficial or dele-
terious depending on the value of another trait [135]. Multiple epistatic interactions can
create epistatic constraints that are difficult or impossible to resolve simultaneously (we
say that an ‘epistatic constraint’ between two traits is ‘resolved’ if the fitness contribution
conferred by their epistatic interaction is maximised; see section 5.4.4). Local fitness peaks
occur when any change that resolves one epistatic constraint causes one or more other
constraints, of greater total fitness effect, to be violated, resulting in a net decrease in
fitness. Different fitness peaks in the resultant fitness landscape tend to resolve different
(but not unrelated) subsets of epistatic constraints and, in general, confer different fitness
values.

A least-assumptions model of multi-modal landscapes is provided by random con-
straints, making no assumptions about the organisation of low-order epistatic interactions.
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Note that although the organisation of the epistatic interactions is random, the fact that
they are low-order (in this case, pairwise) means that the resultant fitness landscape, al-
though highly multi-modal, is not arbitrary [121]. Whether it is, in principle, possible
to simultaneously resolve all epistatic constraints depends on the consistency of the con-
straints in a problem [136] – i.e. in a consistent problem, there exists a configuration that
resolves all constraints. With random constraints, consistency is low; many epistatic con-
straints cannot be simultaneously resolved by any phenotypic configuration. Prior work
with optimisation using neural network learning [61] shows that the consistency of con-
straints will influence the success of learning (here, the ability of evolution to improve
evolvability). Accordingly, in a second landscape class, consistent constraints, we control
consistency by making all constraints consistent with a particular target phenotype. Again
this landscape exhibits many locally optimal configurations where, although there exist
higher-fitness configurations, fitness improvements can require changes to many traits
simultaneously. Like the randomly organised problem, this describes a scenario where
high-fitness configurations over subsets of traits are incompatible with high-fitness config-
urations over different but overlapping subsets of traits. Globally optimal configurations
where all constraints are resolved exist in the consistent case (but not the random case)
but are nonetheless very rare and difficult to find by incremental change (in this class
there are only two configurations of 2n possible configurations that resolve all epistatic
constraints simultaneously).

Thus our experiments simulate the evolution of a gene-regulation network on rugged
fitness landscapes composed of many low-order sign-epistatic interactions. We study the
adaptation of developmental biases and constraints, accumulated over multiple evolution-
ary episodes that visit multiple peaks on such fitness landscapes over deep evolutionary
time. Specifically, we examine the capability of natural selection to find generalised de-
velopmental organisations that reflect the structure of these landscapes and thus modify
microevolutionary trajectories in a manner that enables evolution to find different adapt-
ive peaks of higher fitness.

5.2 results

In several of the experiments that follow we compare microevolutionary episodes (from
random starting phenotypes): (a) with unbiased development, i.e. a one-to-one G–P map
(created by using the identity matrix as the regulatory interactions matrix, B); (b) with an
evolved developmental process, i.e. a G–P map controlled by evolved regulatory interac-
tions (itself evolved over many past evolutionary episodes). By comparing the end-points
of these episodes we can assess whether the phenotypic distribution evolved over deep
time is causing microevolutionary trajectories to find different fitness peaks in the fitness
landscape and whether they are higher or lower in fitness.

5.2.1 Evolved Genotype–Phenotype Maps Improve Evolvability

We begin by examining the behavior of a GRN evolving on a multi-modal fitness land-
scape built from either (i) consistent epistatic constraints, or (ii) random epistatic con-
straints. Simulations for (i) and (ii) last for 1600 and 4000 evolutionary episodes, and each
episode lasts for 5000 and 2000 generations respectively.
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We begin by taking advantage of the fact that fit and unfit phenotypes can be easily
distinguished by eye in the consistent constraints problem. We define the problem con-
straints to be consistent with a recognisable image (without loss of generality, in this case,
concentric squares). Constraints are defined between neighbouring pixels in the image,
but finding the globally optimal phenotype requires evolution to satisfy all these local
constraints simultaneously – which is only possible by finding the target image or its
complement (see section 5.4.4). Fitness trajectories over microevolutionary time on the
landscape with consistent epistatic constraints are shown in figure 17a. Here we show mi-
croevolutionary trajectories from episodes 1–5, 996–1000 and 1596–1600. The phenotypes
found at the end of each microevolutionary episode using GRNs from different stages of
deep evolutionary time are shown in the top row of figure 17a. The fitnesses of pheno-
types at the start of every microevolutionary episode are similar both early and late in
deep evolution, but we see from the end-points of earlier and later microevolution that fit-
ter phenotypes are found later in deep time. Early in deep evolution, phenotypes found
by microevolution have small patches that are locally consistent with the target image,
but neighbouring patches do not agree, leaving unresolved constraints at the boundaries
between these patches. Later in deep evolution, microevolution can find larger patches
that are consistent with the target image, i.e. larger subsets of constraints are being re-
solved simultaneously because developmental biases have learned which combinations
of traits work well together.

To further illustrate this progressive improvement in the ability to find high-fitness
peaks, we plot the fitnesses of the phenotypes found at the end of every microevolutionary
episode for one instance of the consistent and random constraints problems (figures 17c
and 17e). We find that during the evolution of the GRN over deep time, microevolution
becomes better at discovering high-fitness phenotypes. Although the evolving GRN does
not find high-fitness phenotypes reliably early in deep evolution, it slowly becomes better
at evolving. Later evolutionary episodes find better configurations by learning phenotypic
correlations from locally optimal phenotypes it found in the past. That is, evolution slowly
internalises the problem structure that can be inferred from previously visited peaks into
its G–P map, and subsequent microevolution is then biased to recreate the structures that
have been learned (as shown in the top row of figure 17a).

To highlight the effect these evolved biases of the G–P map have on subsequent micro-
evolution, we compare the evolved G–P map’s behavior to that of a one-to-one G–P map
(figures 17b and 17d for the consistent and random constraints problems respectively).
With a one-to-one G–P map, past experience cannot alter the developmental process (there
is no trend over deep time) and microevolution simply follows the fitness gradients of the
fitness landscape. Although the evolving GRN and one-to-one G–P map models find
phenotypes of similar fitness early in deep evolution, the evolving GRN increases its abil-
ity to find fit phenotypes over time (figures 17b to 17e). This clearly illustrates that the
evolved biases and constraints in the G–P map enable evolution to find higher-fitness
phenotypes than those found by an unbiased evolutionary process (i.e. a one-to-one G–P
map). This is true for both problem classes tested, and the results are consistent over 30
independent replicates of each experiment, with 30 different landscapes in the random
constraints case (figure 18).
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Figure 17: Evolution finds G–P maps that improve evolvability. (a) Fitness trajectories for the
GRN over micro-evolutionary time given consistent epistatic constraints. The top row
in (a) shows that evolution finds different phenotypes with every new evolutionary
episode. With evolutionary time, evolution learns deep structural regularities common
to the phenotypes it has previously encountered that allow it to increase evolvability
by generalising and successfully resolving the epistatic constraints in the fitness land-
scape. Although the fitnesses of the initial phenotypes are similar both early and late
in deep evolutionary time, micro-evolution at later evolutionary periods finds fitter
phenotypes. The phenotypes evolve larger patches that agree with the target image
with evolutionary time. By the end, only the globally optimal phenotypes are found.
Evolution over deep time given consistent epistatic constraints is shown in (b)–(c), and
for random epistatic constraints in (d)–(e). Each point in (b)–(e) shows the fitness of the
phenotype at the end of a micro-evolutionary episode (each starting from a random g

phenotype). (b) and (d) show results for a one-to-one G–P map (red), and (c) and (e) for
a GRN (green). Since the developmental process does not evolve with the one-to-one
G–P map, the distribution of locally optimal phenotypes found shows no trend during
the whole simulation. In the same landscapes, with a G–P map evolving slowly over
deep time, evolution becomes better at discovering high-fitness phenotypes, eventually
finding a very high-fitness phenotype from any starting phenotype. The results shown
here are consistent across 30 replicates of the experiments (figure 18).
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Figure 18: Evolution finds G–P maps that improve evolvability. These plots show the median fit-
ness of the phenotypes found at the end of every microevolutionary episode (each start-
ing from a random phenotype) over 30 replicates of the experiments. The shaded area
shows the minimum and maximum fitness found by any of the 30 replicates. For the
random constraints experiments, we normalise fitness for each problem instance to the
range [0, 1] with respect to the minimum and maximum fitness found by either of the
two treatments. p-values shown are from the Mann–Whitney U test. For both problem
classes tested, the distribution of phenotypes found by the one-to-one G–P map shows
no trend during evolutionary time. This is because there is no developmental process,
and thus no G–P map that can learn across deep evolutionary time. When the GRN is
evolved on these same problem classes, however, the distribution of phenotypes that
evolution finds shows a trend of increasing fitness. With a GRN evolving slowly over
deep time, evolution becomes better at discovering high-fitness phenotypes, eventually
finding very high-fitness phenotypes from any starting phenotype.

5.2.2 The Evolved Genotype–Phenotype Map Avoids Low-Fitness Local Peaks in the
Fitness Landscape

We verify that the increased evolvability of the evolved GRN is due to an ability to avoid
low-fitness local optima in the fitness landscape by comparing microevolutionary traject-
ories given (a) a one-to-one G–P map; and (b) G–P maps taken from different stages of the
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previous experiments. We create 1000 individuals with different random g values (and
hence random phenotypes) and then evolve g, using these different G–P maps. To ensure
that these differences are really caused by finding different local optima, not merely by
finding the same phenotypes faster, we run each microevolutionary episode until pheno-
types show no further improvement.

We confirm that phenotypes found with the evolved G–P maps are fitter than those
found with the one-to-one G–P map, and that the longer the G–P map is evolved, the bet-
ter its evolvability (figures 19 and 20). Note that these experiments properly distinguish
between individuals that are highly evolved and individuals that have high evolvability.
That is, when g is randomised, phenotypes have similar fitness regardless of the G–P map.
Yet, evolution with the evolved G–P maps finds fitter phenotypes (higher end points) and
it finds them faster (steeper initial slope). Such concrete evidence for the evolution of
evolvability in multi-peaked fitness landscapes has not previously been demonstrated.
We also verified that G–P maps that can achieve this level of performance are extremely
rare in the space of possible G–P maps (figure 21). This is strong evidence that natural
selection has optimised the G–P map of the evolving GRN. Despite the fact that mutations
to the G–P map are selected only on the basis of their immediate, short-term fitness con-
sequences, the regulatory interactions that are evolved represent the problem structure,
and the evolved developmental biases facilitate the production of high-fitness phenotypes.

5.2.3 The Evolved Genotype–Phenotype Maps Internalise Structural Information About
the Selective Environment

To confirm that the evolved G–P map is internalising structural information about the
selective environment, as Riedl suggested [2, 3], we analyse the structure of the evolved
regulatory interactions after evolving the GRN on the consistent problem. The structural
information within the selective environment can be seen in terms of the epistatic interac-
tions defined in the problem matrix (figure 22, first frame; white and black for + and −

epistatic interactions between gene i and gene j respectively, grey for no interactions). In
episode 1, the regulatory interactions evolved reflect the traits in the one local optimum
discovered at the end of that episode. In episode 2, a different local optimum was visited,
so conflicting regulatory interactions were evolved. Thus, interactions which existed in
both phenotypes were reinforced (black and white), whereas interactions which existed
only in one phenotype were weakened (grey). With evolutionary time, after a number
of different local optima has been visited, regulatory interactions closely match the struc-
tural information which exists in the selective environment (episodes 100 and 800). Both
positive and negative regulatory interactions have evolved along the diagonals, but the
rest of the regulatory interactions remain close to zero, as is the case in the problem mat-
rix. At this stage, the developmental architecture has successfully internalised structural
information about the selective environment.

We find that this developmental architecture serves as an intermediate phase between
learning the problem structure and finding a system of constraints that enables evolution
to find the global optimum reliably. Since we know what the globally optimal phenotype
is in the consistent problem, we also know what the optimal regulatory interaction matrix
is: the matrix whose regulatory interactions match the pixel correlations in the concentric
squares pattern. In a multi-modal fitness landscape, such as the one we use here, the phen-
otype found by evolution at the end of every microevolutionary episode is, in practically
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Figure 19: The evolved G–P map improves the ability of microevolution to avoid low-fitness local
peaks in the consistent constraints fitness landscape and find higher-fitness peaks. This
figure shows evolution over microevolutionary time, given different G–P maps, rather
than only the fitnesses found at the end of microevolutionary episodes as in figure 17.
We use G–P maps taken from the experiment shown in figure 17c, freeze their deep
evolution (i.e. freeze the evolution of the G–P map B, but allow evolution of the gen-
otype g), and probe the effect they have on subsequent microevolution. We randomly
initialise 1000 g vectors drawn from a uniform distribution in the range [−1, 1] and let
them microevolve for 40000 generations (instead of 5000 as in the previous experiment)
using three G–P maps: a one-to-one mapping, and two mappings taken from epis-
odes 800 and 1600 from the experiment shown in figure 17c. (a) Lines show median
fitness, with the shaded areas showing the minimum and maximum fitness found by
any of the 1000 individuals for every evolutionary time-step. Microevolution with the
less-evolved G–P maps is stuck on lower-fitness phenotypes, but microevolution with
more-evolved G–P maps avoids these local peaks in the fitness landscape to find dif-
ferent, higher-fitness phenotypes. Additionally, microevolution with the more-evolved
G–P maps requires less evolutionary time to find the phenotypes it settles on as can
be seen from the steeper slope. (b) End points of (a) shown in histogram format (40
equally sized buckets). Both evolved mappings find a fitter distribution of phenotypes
than the one-to-one mapping. The evolved maps find phenotypes that are not just
of higher fitness on average, but of higher fitness than all phenotypes found with the
one-to-one G–P map.

every case, not the global optimum. However, the different local optima found at the end
of every microevolutionary episode provide evolution with different, partially contradict-
ory and partially consistent, information about combinations of phenotypic traits that are
fit. Given sufficiently many examples, the evolving GRN begins to average-out the contra-
dictory information and amplify the consistent information. Therefore, we hypothesise
that the evolved regulatory interaction matrix will, in the medium term, become similar
to the problem matrix – because the constraints in the problem matrix reveal themselves
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Figure 20: The evolved G–P map improves the ability of microevolution to avoid low-fitness local
peaks in the random constraints fitness landscape and find higher-fitness peaks. This
figure shows evolution over microevolutionary time, given different G–P maps, rather
than only the fitnesses found at the end of microevolutionary episodes as in figure 17.
We use G–P maps taken from the experiment shown in figure 17e, freeze their deep
evolution (i.e. freeze the evolution of the G–P map B, but allow evolution of the gen-
otype g), and probe the effect they have on subsequent microevolution. We randomly
initialise 1000 g vectors drawn from a uniform distribution in the range [−1, 1] and let
them microevolve for 40000 generations (instead of 2500 as in the previous experiment)
using three G–P maps: a one-to-one mapping, and two mappings taken from episodes
2000 and 4000 from the experiment shown in figure 17e. (a) Lines show median fitness,
with the shaded areas showing the minimum and maximum fitness found by any of
the 1000 individuals for every evolutionary time-step. Although microevolution with
the less-evolved G–P maps is able to find higher-fitness phenotypes than in the earlier
experiment due to it being allowed to microevolve for longer (figure 17), microevolu-
tion with the more-evolved G–P maps avoids local peaks in the fitness landscape more
reliably and finds higher-fitness phenotypes on average. When comparing the slope
of the trajectories, we can see that microevolution with the more-evolved G–P maps
settles on high-fitness phenotypes faster than microevolution with the less-evolved G–
P maps. (b) End points of (a) shown in histogram format (40 equally-sized buckets).
Both evolved mappings find a fitter distribution of phenotypes than the one-to-one
mapping. The evolved maps find the best phenotypes found by the one-to-one G–P
map more reliably.

in the fitness landscape as the most consistent ‘signal’ that evolution can identify (this is
the imitatory organisation that Riedl described). But later, we would expect the evolved
GRN to ‘fill-in’ entries in this matrix that were unspecified in the problem matrix – and
eventually, to identify values that correspond to the optimal solution matrix (figure 22,
last frame). Although the global optimum might not yet have been visited, this filling-in
of values that agree with the global optimum is nonetheless possible because these inter-



5.2 results 63

12 460
0

200

400

600

800

1,000

Fitness, w ′

O
cc

ur
re

nc
es

Random regulatory interaction matrices in range [−1, 1]
Random symmetric regulatory interaction matrices in range [−1, 1]
Random regulatory interaction matrices in set {−1, 0, 1}
Random symmetric regulatory interaction matrices in set {−1, 0, 1}
Random regulatory interaction matrices in range [−x, x]
Random symmetric regulatory interaction matrices in range [−x, x]
Evolved regulatory matrix

Figure 21: Natural selection has optimised the G–P map for long-term evolvability. We randomly
initialise 1000 g vectors drawn from a uniform distribution in the range [−1, 1] and
evaluate the adult phenotypes they develop into using different regulatory interaction
matrices. For each g vector, we randomly initialise a regulatory interaction matrix B in
different ranges and sets (see legend; x is the mean value of all magnitudes in the final,
evolved matrix coming from figure 17c), and evaluate the phenotype g is developed
into given the interaction matrix B. Since selective pressures in the fitness landscape are
symmetric and our evolved matrices are also approximately symmetric, we force some
of the regulatory interaction matrices we generate to be symmetric. For comparison,
we evaluate the adult phenotypes that are produced from the same 1000 g vectors, but
using the regulatory interaction matrix taken from the end of the experiment shown
in figure 17c. We find no significant difference in performance between symmetric
and non-symmetric randomly generated matrices. On the other hand, the evolved
G–P map develops phenotypes of higher fitness on average. This is because natural
selection optimised the G–P map of the evolving GRN. Even though it was selected for
immediate, short-term fitness advantages, the regulatory interactions that are evolved
represent the problem structure, and the evolved developmental biases facilitate the
production of high-fitness phenotypes.

actions are the ones that are most reliably consistent with the correlations observed over
a distribution of local optima [19].

Our data confirms that this behavior, previously studied in a learning neural net-
work [61], also occurs in the evolving GRN. At the end of the simulation, the evolved
regulatory interaction matrix closely resembles the addition of the problem and optimal
matrices as described above (figure 22; second and last frames). A clear separation
between positive and negative regulatory interactions persists along the diagonals, and
the rest of the regulatory interactions also evolve to up-regulate or down-regulate in a
way which is consistent with the globally optimal phenotype. The evolving G–P map
thus goes beyond internalising structural information about the selective environment,
finding a system of constraints that enables evolution to find the global optima reliably.
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Figure 22: The evolving G–P map goes beyond internalising structural information about the se-
lective environment, finding a system of constraints that enables evolution to find the
global optima reliably. The first frame shows a subset (20× 20 out of 100× 100) of
the consistent problem matrix (C; see section 5.4.4), and frames 3–7 show visual rep-
resentations of a subset of the regulatory interaction matrices at different stages of
deep evolution (also 20 × 20 subsets; white for maximally positive numbers at that
episode, black for maximally negative numbers and greyscale for intermediate values).
The second frame shows a 20× 20 subset of the regulatory interaction matrix we ap-
proximate evolution will evolve due to visiting a large number of local optima and
not only the global optima (see text). This set of regulatory interaction enables evol-
ution to find the global optima reliably. The evolved G–P maps at episodes 1 and 2
are consistent with the local optima discovered at the end of each respective episode,
but differences between the two phenotypes cause evolution to reinforce interactions
which exist in both phenotypes (black and white) while weakening interactions which
exist in only one (grey). After a number of local optima have been visited, the evolved
regulatory interactions (episodes 100 and 800) closely resemble the problem matrix
(first frame). Both positive and negative regulatory interactions have evolved along the
diagonals (darker and lighter colors), but the rest of the regulatory interactions remain
close to 0, as is the case in the problem matrix. At this point, the evolved G–P maps
have internalised structural information about the selective environment – i.e. what val-
ues patches of neighbouring pixels should take to confer fitness benefits, but not how
these patches should be combined at the boundaries to produce the globally optimal
phenotypes. This developmental architecture serves as an intermediate phase between
learning the problem structure and finding a system of constraints that enables evol-
ution to find the global optima reliably. At the end of the simulation (episode 1600),
the evolved regulatory interaction matrix closely resembles this approximated optimal
matrix (second frame). As is the case earlier in evolution, both positive and negative
regulatory interactions have evolved along the diagonals (darker and lighter colors).
However, the rest of the regulatory interactions don’t remain close to zero, but instead
evolve to up-regulate or down-regulate in a way which is consistent with the globally
optimal phenotypes.

5.2.4 Evolvability Evolves as a Systematic Byproduct of Short-term Selection for Fit-
ness

Here we begin to unpack how the evolution of evolvability occurs in these experiments.
Since the long-term fitness consequences cannot be the reason that natural selection
evolves these highly evolvable G–P maps, we need to identify the immediate selective
pressures in operation and how they have this effect on long-term evolvability.

To understand how short-term selective pressures affect long-term evolvability, we set
g to match the concentric squares image and evolve only the regulatory interactions B.



5.2 results 65

We examine how the fitness of the adult phenotype produced changes as the regulatory
interactions evolve. Note that g has to develop according to the regulatory interactions,
B, and these interactions are initially absent and slowly evolve. Because of that, the
evolution of B has a fitness effect even though g already matches the concentric squares
image. We also examine how the developmental basin of attraction of the concentric
squares phenotype changes – i.e. the number of g vectors that map into the concentric
squares phenotype.

When GRN interactions evolve they increase the fitness of the phenotype; otherwise
they would not be selected by short-term selection. But they also have an effect on the
distribution of phenotypes produced by that GRN under subsequent mutations to g. Spe-
cifically, both the fitness of the adult phenotype and the developmental basin of attraction
of the concentric squares phenotype increase with evolutionary time (figure 23). That
is, regulatory interactions that increase immediate fitness necessarily have the systematic
side-effect of increasing the number of genotypes that map into that same phenotype.
This is because the evolved regulatory interactions reinforce correlations which exist in
the current phenotype and these correlations bias the distribution of phenotypes that can
be produced by the developmental process towards reproducing these same evolved cor-
relations [19]. In this sense, we say that the genetic robustness of the selected phenotype
is increased – the number of g vectors that map into a specific phenotype is increased.
This increase in the developmental basin of attraction of the phenotype is functionally
equivalent to the development of an associative memory for the current phenotype [19].

This robustness does not, in itself, explain the evolution of evolvability – indeed, an
inability to produce different phenotypes opposes evolvability. But what happens to de-
velopmental basin sizes when regulatory interactions evolve slowly over multiple selected
phenotypes as in our main experiments?

Given that the sum of all basins of attraction has a fixed size (the total configuration
space of g), an increase in one basin implies a decrease in the combined size of the others.
Thus, when a GRN is evolved over a distribution of phenotypes, not all of their basins
can increase indefinitely and, to first approximation, the phenotypes that are selected for
most often will eventually out-compete all other phenotypes. However, evolving interac-
tions store information about phenotypic correlations rather than the specific values of
individual phenotypic traits [19]. Accordingly, when one basin increases others will de-
crease, but the basins of phenotypes that are structurally similar to the currently selected
phenotype will reduce only a little compared to the basins of phenotypes that are structur-
ally unrelated. Over a distribution of selected phenotypes, the GRN learns a generalised
model of those phenotypes – i.e. it learns their correlation structure – and the phenotypes
whose basins are enlarged the most are those that agree with the most phenotypic cor-
relations observed over that sample of selected phenotypes (see Watson et al. [61] for an
illustration of this in neural network learning).

We use the consistent problem to confirm that as the GRN evolves, the size of the basin
of local optima decreases and the size of the basin of the global optimum increases even
though the global optimum has not yet been visited (figure 24). This, combined with the
fact that evolved regulatory interactions are consistent with the globally optimal phen-
otype (figure 22), explains how microevolutionary trajectories are able to follow fitness
gradients and find the global optimum even though phenotypes of similar fitness (i.e.
starting in the same place) with a one-to-one or less-evolved developmental G–P map
may have instead followed fitness gradients to a local optimum (as depicted in figures 16
and 17a).



66 evolvability on rugged landscapes

0 200 400 600 800 1,000 1,200 1,400 1,600
0

2,000

4,000

6,000

Episodes

Fi
tn

es
s,
w

0 200 400 600 800 1,000 1,200 1,400 1,600
0

0.5

1

Episodes

R
el

at
iv

e
ba

si
n

Figure 23: Selection for fitness increases the developmental basin of attraction for the target phen-
otype. Without loss of generality, we make g equal to the target phenotype of the con-
sistent constraints problem, and evolve only the regulatory interactions under natural
selection for 1600 evolutionary episodes. We measure how the fitness of phenotypes
developed from g changes with evolutionary time and also how the developmental
basin of attraction of the target phenotype changes with time. The fitness of the adult
phenotype produced increases with evolutionary time (green; left y-axis) due to the
developmental interactions evolving in the direction of the target phenotype, thus amp-
lifying the adult phenotype’s gene expression levels (this figure does not use fitness of
discretised phenotypes; see section 5.4.4). The proportion of the developmental basin of
attraction of the target phenotype also changes with evolutionary time. This is meas-
ured by randomly sampling the g space (here, sample size is set to 10000 in a uniform
distribution in the range [−1, 1]), developing all g vectors using G–P maps taken from
the end of every evolutionary episode, and reporting the proportion of g vectors that
develop into the target phenotype. The basin of attraction of the target phenotype
increases with evolutionary time (blue; right y-axis). The target phenotype’s basin of
attraction does not see an immediate increase because earlier in evolution the regu-
latory interactions are too ‘weak’ to solely determine the adult phenotype produced.
As the regulatory interactions become stronger with evolutionary time, the basin of
attraction increases. By the end of the simulation, the basin of attraction of the tar-
get phenotype enlarges to encompass almost the entire space, such that ≈ 90% of the
sampled g vectors develop into the target phenotype.

5.3 discussion

Our results demonstrate conditions where short-term selection adapts developmental con-
straints such that they facilitate long-term adaptation on rugged fitness landscapes. This
is possible when the landscape is composed of low-order epistatic interactions because
this presents structural regularities (i.e. phenotypic correlations) that a GRN can represent
and can acquire through selection. We show that evolvability is an indirect but necessary
consequence of selection for immediate, short-term fitness increases. Robustness of the
currently selected phenotype is also a side effect of such changes. But counter to naive in-
tuitions, robustness does not oppose evolvability – in fact, canalisation (of the right things)
is necessary for evolvability [3, 7, 8, 69]. In this work we show that a GRN can evolve
to favour fit phenotypic correlations, rather than merely favouring individual phenotypic
traits, if it is exposed to selection that is representative of fit correlations over evolution-
ary time. And we have shown that this is the case when a GRN is repeatedly exposed
to a multi-modal fitness landscape causing it to visit a distribution of locally optimal
phenotypes. We speculate that negative frequency dependence, causing a population to
continually explore phenotype space [137], may produce similar results to the model of
repeated exposures to an otherwise static stress environment used here.
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Figure 24: The evolving G–P map enhances evolvability by enlarging the basins of the global
optima and removing basins for local optima. We evolve a GRN on the consistent
constraints problem for 1600 episodes, and store all G–P maps from the end of every
episode. We then use a cross section through the space of g values that starts from
the global optimum (concentric squares) and passes through a number of local optima
in the fitness landscape. The genotypes in this cross-section are developed into adult
phenotypes using all 1600 G–P maps from the previous simulation, and the adult phen-
otypes are evaluated. The fitnesses of phenotypes developed with each G–P map, in
each cross-section, are normalised for comparison. In the case of a one-to-one map
(first frame; episode 0), the adult phenotypes produced are equal to the g vectors, and
the fitness landscape is multi-modal, meaning that evolution can get trapped on local
optima. The top row shows the locally optimal adult phenotypes produced. Over many
evolutionary episodes the GRN changes. This does not change the mapping from phen-
otypes to fitness, but it does change the mapping from genotypes (g) to phenotypes,
as evident from the differences in the phenotypes depicted at the top and bottom rows.
Accordingly, the fitness landscape for this cross-section through g changes over evolu-
tionary time. Specifically, the fitness landscape produced by the phenotypes developed
from this cross-section of g becomes progressively smoother, eliminating local optima
and enlarging the basin of attraction of the global optimum. Thus the fitness landscape
available to selection slowly becomes effectively uni-modal when augmented by the
evolving G–P map.

As evolved developmental biases and constraints internalise the structure of the fitness
landscape, the distribution of phenotypic variation produced by development changes to
favour these correlations (enriches for the production of phenotypes that contain these
correlations). This has the consequence that high-fitness phenotypes are found faster and
with greater probability. Although natural selection is myopic, selective pressures under
these conditions result in a G–P map that acts like a longer-term memory and allows
subsequent evolution to effectively ‘ignore’ locally optimal configurations that could po-
tentially trap evolution with an unbiased G–P map (figure 16). Thus, our results show the
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evolution of long-term evolvability as a consequence of selection for immediate fitness
differences.

These behaviors can be explained by simple learning concepts. If the past is a good
indicator of the future, learning from the past can improve a model’s ability to perform
well in environments not previously experienced. This requires, however, that natural
selection has an appropriately powerful ‘model space’, capable of representing the way
in which phenotypes that were fit in the past are ‘similar’ to novel high-fitness pheno-
types [133]. A one-to-one G–P map cannot do this unless the similarity is simply based
on Euclidean distance in phenotype space. But an evolving GRN is capable of intern-
alising information about phenotypic correlations. When this is a good model of the
structure present in the selective environment, as it is when the environment contains
low-order epistasis, this results in improved evolvability. More generally, the relationship
between the evolution of evolvability and generalisation in learning systems helps us un-
derstand the conditions for, and limitations of, the evolution of evolvability [69]. This has
enabled us to demonstrate the first formal model for the evolution of evolvability capable
of showing and explaining the evolution of evolvability that facilitates future innovation
from short term selection pressures. Contrary to popular assertions, this is not impossible
– just as predicting the future by generalising from past experience is not impossible in
learning systems. This is an example of how the transfer of machine learning theory
to evolutionary theory [19, 66, 69, 132, 133] has potential to demystify the evolution of
evolvability, and help us understand how it works and the conditions that enable it.

5.4 methodology

5.4.1 Gene-Regulation Network

We simulate the evolution of a gene-regulation network (GRN) using a non-linear, recur-
rent developmental process, as described in section 4.1.1.

5.4.2 Evolutionary Model

The evolutionary model follows the same setup described in section 4.1.2, with some
differences. A description of the differences follows.

Instead of mutations on the regulatory interactions, B, occurring probabilistically every
generation, mutation and selection on B is approximated with a selection-limited model
of evolution applied at the end of every evolutionary episode (see section 5.4.3).

Additionally, rather than changing between multiple single-peaked fitness landscapes,
we repeatedly alternate between a ‘null’ environment (where the genotype drifts) and a
multi-modal fitness landscape (see section 5.1.3).

5.4.3 Selection-Limited Evolution

Under directional selection, the cumulative effect of a large number of small mutations
is equivalent to the effect of a small number of large mutations when controlling for
variance. Assuming that the number of generations required for g to align itself with a
local optimum and stabilise is small compared the total number of generations within an
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evolutionary episode, the effect natural selection has in any evolutionary episode can be
modeled as follows. Hill-climbing selection is applied to all elements in B (random order;
no replacement) by testing two mutations: one for positive directional selection drawn
from a distribution with mean q and one for negative directional selection drawn from a
distribution of −q, each with a standard deviation of σ. Only one mutation can be selected
for under directional selection. Experiments use q = 3× 10−6 and q = 2× 10−6 for the
consistent and random constraints problem classes respectively. A standard deviation of
σ = 0.01q is used for both problem classes. This combination of control parameters was
chosen empirically. Multiple different combinations were used before we settled on this
combination which enables the discovery of high-fitness phenotypes without ‘over-fitting’
to a locally optimal, low-fitness peak [69].

Essentially, we are simulating the cumulative effect of and 402 and 1002 discrete muta-
tions for the random and consistent problem classes respectively (coming from the num-
ber of pairwise interactions in each problem class), each with equal probability of being
accepted given directional selection, all occurring before each new evolutionary episode.
Note that there is a trade-off between (a) the number of mutations that occur before each
new evolutionary episode; and (b) the number of evolutionary episodes that are simulated
in total. If we increase the number of evolutionary episodes, the number of mutations can
be decreased, but this means that more mutation–selection cycles must be simulated. For
our purposes, we find that 1600 evolutionary episodes are sufficient for the consistent
constraints problem, and 4000 evolutionary episodes for the random constraints problem.

5.4.4 Epistatic Fitness Landscapes

We utilise multi-modal selective environments defined by the sum of a large number of
pairwise sign-epistatic interactions. The fitness, w, of a phenotype, φa, is defined by a
matrix of epistatic interactions, C, as follows:

w(φa) = φaCφ
T
a . (9)

C is an n× n symmetric matrix whose elements, cij, determine the nature of the epi-
static interaction between traits i and j. All features of the fitness landscape are thus
defined by the epistatic constraints defined by C. We say that the ‘epistatic constraint’
between two traits is ‘resolved’ if and only if the fitness contribution from their interac-
tion is maximised. This is easily achieved for a single epistatic interaction (either by “++”
or “−−” for positive epistasis, i.e. cij > 0, or by “+−” or “−+” for negative epistasis,
i.e. cij < 0, where + and − represent the maximal positive and negative traits values
respectively), but multiple epistatic interactions between many traits can create epistatic
constraints that are difficult or impossible to resolve simultaneously.

We utilise two different classes of such fitness landscapes. Random constraints uses
a problem matrix whose diagonal elements take the value 1, cii = 1∀i, and the rest
are randomly initialised to a fixed-magnitude, variable-sign value with equal probabil-
ity: cij ∈ {−d,d}. Here, we use d = 1 and set the problem size to n = 40. This results in a
problem with low consistency, meaning that, for example, there exists no phenotype that
resolves the constraints between A and B, and B and C, and also resolves the constraint
between C and A. In this fitness landscape, the globally optimal phenotype tends not to
be able to resolve all epistatic constraints.

In the consistent constraints problem class, the global optimum resolves all constraints.
Here, C is defined from a given target phenotype in a way that makes the target phen-
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otype and its complement the globally optimal phenotypes. Without loss of generality,
we choose the target phenotype to be a 10 × 10, black-and-white image of concentric
squares. In doing so, we are able to provide an easily-interpretable visual representa-
tion of phenotypes (see figure 17a). The problem matrix is generated by calculating the
outer product of the flattened image vector, x, xi ∈ {−1, 1}, and setting all elements of
the resulting matrix that are non-neighbouring pixels with respect to the target image to
zero. Because the problem matrix contains information about neighbouring pixels only
(since all non-neighbouring pixels are set to 0), local optima are caused by conflicting con-
straints arising when local patches of constraints are resolved in mutually incompatible
ways, leaving unresolved conflicts at the boundaries between these patches.

Whenever the sign of a trait resolves more constraints than it violates, equation (9)
defines directional selection that rewards increases in the trait magnitude. This creates a
sustained selective pressure for genetic mutations that alter the G–P map [12, 61]. The
hypotheses tested in this paper, however, concern the ability to discover different pheno-
types and, in particular, different local optima in the fitness landscape. Accordingly, we
want to know whether the phenotypes that are found are fitter merely because they have
traits with larger magnitudes (which can receive higher fitness under the directional se-
lection of equation (9)) or whether they have a different pattern of traits present in the
phenotype satisfying a different combination of epistatic constraints. In particular, the
GRN has n = |g| evolvable parameters that can affect the magnitude of each trait (as well
as the correlations between traits), whereas the one-to-one G–P map can only alter the
elements of g. Accordingly, to remove any unfair advantage, our results report fitness
using

w ′(φa) = w(θ(φa)), (10)

where w(x) is the fitness function given by equation (9) and θ(y) = 1 if y > 0 else −1.
This ignores fitness differences created by merely increasing the magnitude of a trait

and instead counts the number of satisfied epistatic constraints. It is in this sense that
we refer to ‘different’ phenotypes, and different local optima in the fitness landscape,
i.e. disregarding differences in magnitudes that do not change the number of satisfied
epistatic constraints. This ensures that fitness improvements are due to finding different
phenotypic patterns and not merely due to higher expression levels – because it has
found good phenotypes by learning what traits work well together, rather than learning
to produce large traits.

5.4.5 Cross-Sections Through Genotype Space

To generate the cross-sections through genotype space that are used in figures 16 and 24,
we utilise the global optimum of the fitness landscape: s = 〈s1, s2, . . . , sn〉, s ∈ {−1, 1}n,
where n is the number of gene expression potentials.

Figure 24 utilises a one-dimensional cross-section through a subspace of g vectors.
Here, we want to generate a cross-section that begins from gs which corresponds to the
global optimum s and ends at g ′

s which corresponds to the global optimum’s complement
s ′, by flipping one bit at a time. So the cross-section consists of (n+ 1) g vectors:

gi = 〈g1,g2, . . . ,gn〉 ,
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where i = [[1, 2, . . . ,n+ 1]]. The individual bits of gi for a given i are determined by

gik =

{
−sk for i > k

sk otherwise.

where k = [[1, 2, . . . ,n]]. Thus, g1 = gs and gn+1 = g ′
s. This cross-section maintains the

property that local optima on the surfaces depicted in figure 24 are true local optima in
the original high-dimensional fitness landscape also.

Figure 16 utilises a two-dimensional cross-section of similar construction, with each
dimension being a particular cross-section through a subspace of g vectors. First, we split
the global optimum, s, in two:

sa = [[s1, s2, . . . , sn
2
]]

sb = [[sn
2 +1, sn

2 +2, . . . , sn]]

Similar to the one-dimensional cross-section, we generate a cross-section for each target
(sa and sb) by flipping one bit at a time. The first cross-section begins from sa and ends at
its complement, s ′a. The second cross-section begins from sb and ends at its complement,
s ′b. So each cross-section consists of n

2 + 1 vectors:

xi =
〈
x1, x2, . . . , xn

2

〉
and

yj =
〈
y1,y2, . . . ,yn

2

〉
,

where i = j = [[1, 2, . . . , n
2 + 1]]. The individual values of xi and yj for a given i and j are

determined by

xik =

{
−ska for i > k

ska otherwise.

yjk =

{
−skb for j > k

skb otherwise.

where k = [[1, 2, . . . , n
2 ]]. By concatenating two vectors, one from each of the two cross

sections, we can form a g vector that can be developed into an adult phenotype. Similar
to the one-dimensional cross-section described earlier, the local optima on the surfaces
depicted in figure 16 are also true local optima in the original fitness landscape.
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6.1 solving harder problems

Recent work has shown that the tension between over-fitting and generalisation in ma-
chine learning, and the tension between robustness and evolvability in evolution are equi-
valent [69]. More than that, it is shown that machine learning techniques that alleviate
over-fitting to promote generalisation (e.g. by preferring sparsity via connection minim-
isation) can also be used to alleviate extreme robustness and promote evolvability.

In the typical GRN model, the regulatory interactions are represented by a fully connec-
ted matrix of pairwise interactions. Due to the high connectivity in the interaction matrix,
over-fitting to the wrong phenotype early during evolution is a common occurrence. To
counteract that, extremely low mutation rates are used. Not only does this requirement
raise questions about the generality of the results, but it also prohibits testing on harder
problems due to the prohibitive number of generations simulations would need to run
for to yield meaningful results.

But we now know that it is possible to circumvent the mutation rate requirement by util-
ising regularisation techniques from machine learning to prevent over-fitting [69]. Higher
mutation rates should enable the GRN model to solve harder, perhaps more impressive,
problems, and also alleviate concerns about the generality of the results.

6.2 generalising from many to one

In chapter 5, we show that the GRN model evolved over a distribution of locally-optimal
phenotypes on a multi-modal fitness landscape composed of low-order, sign-epistatic in-
teractions can generalise to learn one phenotype: the global optimum. But generalisation
is not usually associated with the exhibited behaviour.

When machine learning advocates, and recently computational biologists, think of the
word ‘generalisation’, they associate it with the idea of learning the regularities of a
sample of data (training set) to be able to generalise over another sample consisting of
unseen data (test set). This is not what we are showing. The GRN does learn the regu-
larities of a small sample (locally optimal phenotypes), but it actually generalises to one
specific phenotype (globally optimal phenotype). So the question is whether this is in fact
generalisation.

An alternative word to describe this behaviour would be ‘specialisation’. Since the
population is repeatedly exposed to the same fitness landscape (i.e. the same task), the
fact that the developmental process always produces the global optimum suggests that
the GRN has achieved specialisation – it has learned the optimal behaviour to achieve the
task.

But does ‘specialisation’ only describe the end product – the fact that the GRN has
found the globally optimal phenotype? Is the progression towards the global optimum
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generalisation or is it still specialisation because evolution with the GRN progressively
finds fitter phenotypes (figure 17)?

Evidently, there is a lack of conceptual clarity about what exactly it is the results are
showing. Although in recent years it has become commonplace in computational bio-
logy to associate evolvability with generalisation (mainly by evolving towards modularly-
varying goals), it is difficult to see an argument against the notion that finding the globally
optimal phenotype in a multi-modal fitness landscape can be construed as evolvability.
But the question is whether this is a new type of evolvability.

6.3 relationship with model-building algorithms

A common theme in evolutionary computation is the notion of model-building. Model-
building algorithms iteratively improve their ability to optimise a problem by building
a model of interactions between problem variables. This model is then used in different
ways (e.g. macro-variation, biased generation of phenotypes, etc.) to assist the evolution-
ary process in finding fitter phenotypes [56–65].

Two such model-building algorithms [61, 62] are of particular interest because of simil-
arities they share with the GRN model: they utilise a non-linear, recurrent network and
build a model of interactions in a Hebbian manner [67, 68]. They use a generate-and-test
hill-climbing process which accepts variations in the state variables only when they in-
crease fitness. Both algorithms build a model by repeatedly exposing a single individual
from different initial conditions to a fitness landscape, and enforcing that changes in the
interaction matrix are in a Hebbian direction with respect to the state variables. By repeat-
ing this process, the interaction matrix internalises inter-variable interactions, i.e. whether
pairs of variables should co-occur or co-vary, that best describe the structure of the prob-
lem being optimised. All these characteristics are shared by the GRN model and the work
presented in chapters 4 and 5.

But the way these two algorithms utilise the learned model is different. The first, a re-
start Hopfield network with selective associations (rHN-S) [61], modifies the ‘test’ aspect
of the generate-and-test method. The hill-climbing process still produces the same phen-
otypes, but the selection process may accept changes in state variables that would have
otherwise been rejected – the phenotype gets initially worse until it finally gets better.
Selection is not changed arbitrarily, however. Learned correlations alter selection in such
a way that, more often than not, the initial drop in fitness will result in an increase in
fitness. Essentially, selection enables the hill-climber to ignore local optima. The second,
a restart Hopfield network with generative associations (rHN-G) [62], modifies the ‘gener-
ate’ aspect of the generate-and-test method. Instead of producing small variations which
are accepted by selection, this algorithm produces targeted, macro-scale variation by, for
example, changing all state variables necessary to switch from one module solution to
another. Essentially, the updated variation operator ensures that hill-climbing occurs at a
higher level (that of modules instead of single variables), but the selection aspect remains
unchanged.

The question is whether the GRN model is equivalent to one (or both) of the above,
or something different altogether. Considering that the GRN does not perform macro-
variation at the genotype level like rHN-G, it is not immediately obvious how the two
may be connected. On the other hand, both rHN-S and the GRN improve their ability to
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find high-fitness phenotypes exclusively via point mutations on the genotype. But there
is a very important distinction between the two, which can also be used to explain why
one is more biologically plausible than the other.

Although rHN-S and the GRN both ‘ignore’ local optima to reach the global optimum,
rHN-S does so by accepting mutations that would have otherwise been deleterious. In
other words, the phenotype that is exposed to the fitness landscape is less fit than it was
in the previous generation – a proposition which would make any evolutionary biologist
suggest biological implausibility. On the other hand, the GRN ignores local optima by
altering the genotype–fitness relationship. Evolution with the GRN may accept mutations
on the genotype that would have been deleterious earlier, but the phenotype which is
accepted is different; it is only accepted when it is fitter, meaning that such progression
towards fitter phenotypes is not contradictory to natural selection. Put differently, the
GRN follows fitness gradients that form an adaptive walk, not the illusion of one like
rHN-S does.

Upon closer inspection, there is also the possibility of the GRN being similar to rHN-
G. Although the GRN does not perform macro-variation on the genotype, it is possible
to perform macro-variation on the phenotype via pleiotropic effects of point mutations
on the genotype. In particular, a genotype that sits at a saddle point of the attractor
landscape (internalised in the developmental interactions of the GRN) will necessarily
fall into one of the attractors when a mutation occurs. Although this mutation would
only be a minor mutation on the genotype, a large number of phenotypic traits may
change simultaneously, a phenomenon resembling macro-variation on the phenotype.

This of course makes the question even harder to answer. It is clear that the GRN model
is similar to both algorithms. So is it something different altogether? Is it the combination
of the two? One could argue that looking at the GRN model from a generate-and-test
perspective does not put any emphasis on development (genotype to phenotype), an
important part of evolution that sits between the generate (mutation) and test (phenotype
evaluation) elements of an abstract evolutionary process. If we assume that ‘generate’
refers to the genotype and ‘select’ to the phenotype, perhaps it only makes sense to
look at the GRN model from a different perspective – not a generate-and-test one, but
a generate-develop-and-test one instead. Moreover, it is not as if the rHN-S and rHN-G
algorithms are not already looked at from a generate-develop-and-test perspective, but
rather that their ‘develop’ aspect is inconsequential since there is no genotype–phenotype
distinction.

This is a question that needs to be addressed more formally, as it could potentially help
transfer knowledge from model-building algorithms to the evolutionary process.

6.4 facilitated variation and hierarchical organisation

The key observation in the work of Uri Alon and colleagues is that environments in nature
do not vary at random, but rather consist of different sub-functions that need be satisfied
in different combinations in every environment [13, 16, 20]. In their work published in
2008, they utilise this important observation to showcase how facilitated variation and
its components can evolve in organisms by evolving in environments that change in a
systematic manner [16]. However, there is a lack of conceptual clarity in their work due
to the models they are using.
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Since there is no distinction between genes that determine the existence of phenotypic
traits and genes that regulate in their work, it is difficult to know what mutations which
improve evolvability actually do. The reason this distinction is important is because it
can enable us to understand how changes to the regulatory parts of the genotype shape
the phenotype space and hence alter future phenotypic trajectories. The existence of
neutral networks in the phenotype space, for example, cannot be solely attributed to
genes directly coding for traits. Without genes that regulate or a complex developmental
process, the G–P map would be one-to-one and such evolvability via the existence of
neutral networks would not have been possible. But were these neutral networks there
as part of their developmental process that translates a genotype to a logic gate or RNA
secondary structure and remained unaffected throughout evolution, or were they altered
during evolution via mutations to the regulatory parts of the genotype?

With the GRN model we utilise in chapters 4 and 5, we have a clear distinction between
genes coding for traits and regulatory genes. Using this model, we can show how facil-
itated variation evolves when varying systematically between environments, and in par-
ticular, how neutral networks can evolve which will facilitate the evolution of facilitated
variation components such as weak-regulatory linkage and modularity in the develop-
mental architecture. This allows us to show, for example, how two phenotypes which
were not initially connected via neutral networks and sitting many mutational sites apart
can evolve to be only a few mutational sites away from each other via the evolution of
neutral networks in phenotype space. In the simplest case where a memory of two phen-
otypes is formed in the developmental process (see chapter 4), we know that there exist
two neutral networks: one for each phenotype. We also know that these neutral networks
are connected to one another and it is possible to traverse them such that any of the two
phenotypes can evolve.

What we have not been able to show until recently, however, is how to evolve the equi-
valent of what Parter et al. [16] refer to as ‘genetic triggers’: small genetic changes that
can trigger large, pre-prepared phenotypic responses. This phenomenon would evolve in
our work in a very basic manner in that when the embryo would reach the saddle point of
the attractor landscape internalised in the developmental process, a small mutation could
serve as a genetic trigger to change multiple phenotypic traits at the same time in a way
that reflects the change in environment (figure 15). In this scenario, changes to the pheno-
type space which would bring two phenotypes which were far apart in phenotype space
earlier during evolution closer together were limited in how far apart these phenotypes
would be able to be placed. In particular, the minimum number of mutational sites that
would need to be changed to change from one phenotype to the other is approximately
x/2+ 1, where x is the Hamming distance between the two phenotypes. This translates
to getting enough mutations to reach the saddle point of the attractor landscape and then
one more mutation to fall into the attractor of the other phenotype.

Recent work has shown that selective pressures for sparse networks can improve evolv-
ability and that in cases of extreme sparsity, it is possible to for evolution to evolve a
developmental architecture that allows the expression of one gene to affect multiple phen-
otypic traits simultaneously [69]. This relies on utilising a cost–benefit fitness function
such that the fitness of an organism is not determined solely by its performance in the
environment, but also by the number and / or magnitude of its regulatory interactions.
The relative weight between the cost and the benefit is controlled by the parameter λ.

Here, we utilise such a cost–benefit fitness function to show how different developmen-
tal architectures can evolve and that they can have a significant impact on phenotype
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Figure 25: Hierarchical organisations evolve with the presence of a connection cost. The first
column shows the evolutionary trajectory of the regulatory interactions; the second
column shows a matrix representation of the final regulatory interactions; and the third
column shows a network representation of the final regulatory interactions. First row:
In the abscence of a connection cost (λ = 0), regulatory interactions evolve to reinforce
correlations in the environment. The evolved correlations saturate, since this enables
development to produce phenotypes of high magnitude which are highly fit. In this
sort of network architecture, every gene has approximately the same control over the
expression of all the other genes. The developed gene expression levels are determ-
ined by an averaging effect of all regulatory interactions acting on each gene. Second
row: When an appropriate connection cost is in place (here λ = 1), regulatory interac-
tions evolve to reinforce correlations in the environment but the evolved networks are
sparse. The evolved correlations do not saturate, since increasing the magnitude of the
connections is costly. By the end of the simulation, only a small number of connections
remain. In this sort of network architecture, one gene controls the expression of all
the other genes in the phenotype. Essentially, a trigger gene has evolved: changes to
this specific gene have a large phenotypic effect by changing multiple phenotypic traits
simultaneously.

space and potential phenotypic trajectories. We compare the evolution of regulatory inter-
actions when alternating between two target phenotypes of length n = 8 (as in chapter 4)
using two different values of λ: 0 and 1. This enables us to show the evolution of genetic
triggers which are not affected by the Hamming distance between phenotypes (figure 25).
When λ = 1, trigger genes are evolved. Large, non-random phenotypic effects in the form
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of modular variation are one mutation away. This can also be seen as a simple example of
the evolution of hierarchy, where one gene controls the expression of multiple other genes.
Expanding on this work will allow us to showcase the evolution of facilitated variation
features such as weak regulatory linkage and modularity in the developmental architec-
ture. Further than that, this will allow us to show how evolution can achieve modular
variation and globally optimise a different class of multi-modal fitness landscape than the
one we utilise in chapter 5.



7 C O N C L U S I O N S

This report presents work carried out in an attempt to improve our understanding of
evolvability and its evolution.

In chapter 2, we explained the significance and motivation behind understanding and
explaining evolvability within the context of evolutionary biology, and touched upon
some of the open questions, some of which were investigated in this report. In a nutshell,
evolvability is an essential ingredient if evolution by natural selection is to produce the
level of complexity, well-adaptedness and diversity observed in nature. The simple mech-
anisms of variation, inheritance and selection typically used in evolutionary computation
are incapable of matching the power of the evolutionary process in the natural world.
This is because the mechanisms, although necessary, are not sufficient to explain the bio-
logical world as we see it. Evolvability is the missing ingredient. Evolvability describes
the capacity of organisms for adaptive evolution, and this capacity stems from their inher-
ent properties – in particular, their developmental process and G–P map. Understanding
how developmental processes evolve and how they affect future evolutionary trajectories
is an essential part of understanding the evolutionary process in terms of forms rather
than simply changes in gene frequencies.

In chapter 3, we introduced discrete differential evolution, a novel evolutionary al-
gorithm based on differential evolution that can be used to solve modular problems. The
algorithm achieves this without any explicit learning model. Instead, it relies on informa-
tion that exists inherently within the population in order to direct evolution towards areas
of high fitness.

In chapter 4, we demonstrated that the evolution of developmental memory changes
evolutionary trajectories for the better. Not only do phenotypes become more robust,
they become more evolvable at the same time by enabling evolution to rapidly switch
between memorised phenotypes using pre-prepared responses. This leads to a speed-
up in evolution in terms of the number of generations required to reach a high-fitness
phenotype when alternating between environments.

Chapter 5 presented a solution to the paradox of long-term evolvability. More spefically,
we utilised a GRN model to investigate how the evolution of developmental interactions
affect future evolutionary trajectories. We investigated how evolution can learn from the
past to assist the evolutionary process in the future, similar to how machine learning al-
gorithms learn from the training set to generalise to the test set. We showed that evolution
produces GRNs that possess long-term evolvability. This is essentially due to the regu-
latory interactions internalising the problem structure that can be inferred from locally
optimal phenotypes in a multi-modal fitness landscape. The problem structure internal-
ised within the regulatory interactions is then used to help evolution avoid low-fitness
peaks altogether. Importantly, GRNs evolve long-term evolvability although selection is
only in the short-term.

Lastly, chapter 6 provided a brief outline of future work directions, with particular
emphasis on the relationship between the GRN and a family of model-building algorithms

79



80 conclusions

and on how our current model can help us improve our understanding of facilitated
variation.
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