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Abstract 26 

Background: RNA-sequencing of patient biosamples is a promising approach to 27 
delineate the impact of genomic variants on splicing, but variable gene expression 28 
between tissues complicates selection of appropriate tissues. Relative expression 29 
level is often used as a metric to predict RNA-sequencing utility. Here, we describe a 30 
gene- and tissue-specific metric to inform the feasibility of RNA-sequencing, 31 
overcoming some issues with using expression values alone. 32 
Results: We derive a novel metric, Minimum Required Sequencing Depth (MRSD), 33 
for all genes across three human biosamples (whole blood, lymphoblastoid cell lines 34 
(LCLs) and skeletal muscle). MRSD estimates the depth of sequencing required 35 
from RNA-sequencing to achieve user-specified sequencing coverage of a gene, 36 
transcript or group of genes of interest. MRSD predicts levels of splice junction 37 
coverage with high precision (90.1-98.2%) and overcomes transcript region-specific 38 
sequencing biases. Applying MRSD scoring to established disease gene panels 39 
shows that LCLs are the optimum source of RNA, of the three investigated 40 
biosamples, for 69.3% of gene panels. Our approach demonstrates that up to 59.4% 41 
of variants of uncertain significance in ClinVar predicted to impact splicing could be 42 
functionally assayed by RNA-sequencing in at least one of the investigated 43 
biosamples. 44 
Conclusions: We demonstrate the power of MRSD as a metric to inform choice of 45 
appropriate biosamples for the functional assessment of splicing aberrations. We 46 
apply MRSD in the context of Mendelian genetic disorders and illustrate its benefits 47 
over expression-based approaches. We anticipate that the integration of MRSD into 48 
clinical pipelines will improve variant interpretation and, ultimately, diagnostic yield. 49 
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Introduction 50 

Pinpointing disease-causing genomic variation informs diagnosis, treatment and 51 

management for a wide range of rare disorders. An underappreciated group of 52 

pathogenic variants is those that lie outside of canonical splice sites but act through 53 

disruption of pre-mRNA splicing, the process whereby introns are removed from 54 

nascent pre-mRNA to produce mature and functional transcripts (Supplementary 55 

Figure 1a). The ways through which genomic variants can disrupt pre-mRNA splicing 56 

are diverse (Supplementary Figures 1b-g), including both protein-coding and intronic 57 

variants that are well described as causes of rare disorders (1-3). However, the 58 

omission of intronic regions in targeted sequencing approaches (4, 5), discordance 59 

between in silico variant prioritization tools (6) and the lack of availability of the 60 

appropriate tissue from which to survey RNA for splicing disruption (7, 8) limit 61 

effective identification of pathogenic splice-impacting variants. 62 

 63 

RNA sequencing (RNA-seq) offers a potential route to overcome issues of variant 64 

interpretation (3, 9-12). The complex impacts of variants on splicing can be fully 65 

characterized through RNA-seq. Moreover, aberrant splicing events can be identified 66 

from RNA-seq datasets without prior knowledge of genomic variants driving their 67 

impact. Whilst targeted analyses, such as RT-PCR, also enable detection of splicing 68 

aberrations (3), such approaches are designed to test the presence of specific 69 

disruptions and may not identify the complete spectrum of splicing disruption caused 70 

by a single genomic variant.  71 

 72 

There is growing evidence that RNA-seq can substantially improve diagnostic yield 73 

across a variety of disease subtypes (3, 10, 13-15) through identification of variants 74 
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impacting splicing, or leading to impairment of transcript expression or stability (16). 75 

However, there remain several hurdles to the effective and routine integration of 76 

RNA-seq into diagnostic pipelines. For example, surveying a whole transcriptome 77 

identifies a large number of aberrant splicing events – in the order of hundreds of 78 

thousands – and there is little consensus regarding the best approach to filter for true 79 

positive and pathogenic events. Furthermore, diagnostic analysis using RNA-seq is 80 

only effective when sufficient levels of sequence coverage of a relevant gene 81 

transcript are present in the sampled tissue.  82 

 83 

In this study, we develop an informatics approach to quantify the likelihood that a 84 

gene/transcript, or a defined set of genes or transcripts, can be appropriately 85 

surveyed using RNA-seq. We name our framework the Minimum Required 86 

Sequencing Depth (MRSD), which can be utilized in a flexible and customized 87 

manner to assess the suitability of RNA-seq derived from different tissues to identify 88 

pathogenic splicing aberrations in specific genes of interest. MRSD scores (available 89 

at: https://mcgm-mrsd.github.io/) can be utilized to select the most appropriate 90 

biosample to detect splicing aberrations for a candidate set of genes/transcripts or to 91 

guide the amount of sequencing reads from a specific biosample required to 92 

generate appropriate transcriptomic datasets for a gene of interest. We apply these 93 

techniques to the study of monogenic disease genes, and assess three clinically 94 

accessible biosamples for their appropriateness to survey all known monogenic 95 

disease genes. 96 

 97 

 98 

 99 
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Results 100 

Minimum Required Sequencing Depth scores differ across biosamples 101 

We first derived MRSD scores, corresponding to the required sequencing depth (in 102 

M uniquely mapping sequencing reads) for a specified level of coverage of a 103 

transcript, for 3112 known multi-exon disease genes in three distinct tissues (blood, 104 

LCLs and skeletal muscle). Three parameters can be altered for the MRSD model; 105 

we observed that MRSDs differed dependent on the values chosen for these 106 

parameters, comprising the number of reads desired to cover each splice junction, 107 

the proportion of splicing junctions for each gene that meet this coverage threshold 108 

(75% or 95%), and the proportion of samples for which the prediction is predicted to 109 

be sufficient (the “confidence level” of either 95% or 99%; Figure 1). For example, 110 

across all three tissues at a specified read coverage level of eight reads per splicing 111 

junction, we observed that increases in the desired proportion of covered splice 112 

junctions from 75-95% was associated with an increase in median MRSD of between 113 

5.4% (in blood) to 61.2% (in LCLs; Figure 1a, top). In general, increasing desired 114 

confidence level for appropriate splice junction coverage from 95% to 99% resulted 115 

in an increase in median MRSD of between 25.8-85.8%. Conversely, for skeletal 116 

muscle samples, when stipulating 95% splice junction coverage, we observed a 117 

decrease of 3.1% in MRSD scores when desired confidence level was increased 118 

from 95% (n = 1241, median = 41.83) to 99% (n = 921, median = 40.54); this was 119 

accounted for by an increase in the number of genes that were considered 120 

“unfeasible” for surveillance, i.e. those for which zero reads cover the given 121 

proportion of junctions (n unfeasible at 95% confidence = 1873, n unfeasible at 99% 122 

confidence = 2193). This definition of feasibility is limited by the sequencing depth of 123 

the control models on which the predictions are based. For example, no coverage of 124 
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splice junctions in a particular transcript may have been observed simply due to low 125 

sequencing depth; with ultra-deep sequencing of the same sample, we may have 126 

observed coverage of splice junctions and so have been able to generate a feasible 127 

MRSD prediction. 128 

 129 

Overall, these analyses suggested that, of the three investigated biosamples, LCLs 130 

would enable investigation of the most comprehensive set of genes for aberrant 131 

splicing. This conclusion was supported by LCLs displaying, across all four 132 

parameter combinations, the lowest median MRSDs (range = 12.86-33.77, Figure 1b, 133 

top), and the fewest “unfeasible” genes (43-63%). On the other hand, whole blood 134 

exhibited the highest number of unfeasible genes across the different parameter 135 

combinations (61-84%). 136 

 137 

Accuracy of Minimum Required Sequencing Depth calculations 138 

We next obtained RNA-seq datasets for 68 samples from the three investigated 139 

tissues (blood, n = 12; LCLs, n = 4; muscle, n = 52), with a wide range of sequencing 140 

depths (Supplementary Figure 2). We assessed the performance of the MRSD 141 

model against these datasets, defining the positive predictive value (PPV) of MRSD 142 

as the likelihood that appropriate sequencing coverage was obtained given that the 143 

level of sequencing depth exceeded the MRSD prediction. Conversely, the negative 144 

predictive value (NPV) was defined as the likelihood that appropriate sequencing 145 

coverage was not obtained, given that the sample did not meet the specified criteria 146 

of the MRSD prediction. Across all investigated MRSD parameters, we observed 96% 147 

PPV and 79% NPV, on average, for the 68 samples (Figure 2a). We observed a 148 

general trend that the PPV and NPV of MRSD decreased and increased, 149 
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respectively, as higher levels of required coverage were imposed (Figure 2b-c). 150 

Across all parameter combinations, PPV values ranged from 90.1-98.2%, while NPV 151 

ranged from 56.4-94.7%, suggesting MRSD is a fairly conservative model that 152 

primarily returns positive results with high certainty. 153 

 154 

Interestingly, although MRSD scores were derived from 75 bp paired-end RNA-seq 155 

data, evaluating the ability of the model to predict transcript coverage in 150 bp 156 

paired-end data (LCLs, n=20) shows higher PPV than with 75 bp data for half of the 157 

four parameter combinations tested, while NPV was only slightly lower for all 158 

combinations (Supplementary Figure 3). This suggests that, while care must be 159 

taken applying this approach to datasets derived using alternative experimental 160 

approaches, the MRSD model described here may provide a suitable approximation 161 

in the case of alternative sequencing read lengths. 162 

 163 

Comparison of MRSD and TPM as a guide for appropriate surveillance 164 

We compared MRSD to the use of relative expression level (in transcripts per million, 165 

TPM) as a possible indicator of RNA-seq suitability for the detection of aberrant 166 

splicing events. We compared the expression levels, in TPM, of PanelApp genes 167 

against tissue-specific MRSD predictions, finding a negative correlation between the 168 

level of gene expression and its predicted MRSD across all three tissues (r2 = 0.539-169 

0.669; Figure 3a-c). This comparison confirms that more highly-expressed genes are 170 

associated with lower MRSD scores. However, we noted significant overlap between 171 

genes grouped into low-MRSD (< 100 M reads) and high-MRSD (≥ 100 M reads) 172 

brackets. For example, among genes considered low-MRSD, TPM values ranged 173 

from 1.25-1390, while genes with high-MRSD values had TPM values between 0-174 
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4880 (Figure 3d). We quantified the overlap between these distributions, 175 

demonstrating that 98.6% of high-MRSD genes had higher TPM values than at least 176 

one low-MRSD gene. We calculated the tissue-specific median and the lowest TPM 177 

values within the low-MRSD bracket for the top 95% and 70% percentiles, and 178 

observed higher TPM values in 52.2%, 13.3% and 5.3% of high-MRSD genes, 179 

respectively (Figure 3d). The substantial overlap in the TPM values for low and high 180 

MRSD genes suggests that relative expression does not provide a wholly accurate 181 

representation of transcript coverage in RNA-seq data. Such inconsistencies may 182 

arise from bias in the regions of genes that are sequenced, for example, genes with 183 

high degrees of 3’ bias in RNA-seq datasets (Supplementary Figure 4). 184 

 185 

Traits of pathogenic splicing variation vary widely between genes and events 186 

We identified pathogenic aberrations to splicing in 20 of the 88 samples utilizing a 187 

previously described analysis pipeline (13) with a wide variety of mis-splicing effects 188 

(Supplementary Figure 5), and calculated respective median TPM and MRSD values 189 

(Supplementary Table 1). The method for aberrant splicing detection pooled 190 

evidence for splicing junctions in reference sets to generate tissue-specific models of 191 

“healthy” splicing. We incorporated RNA-seq datasets from relevant samples into the 192 

healthy splicing models (Supplementary Table 1) and collected metrics indicative of 193 

aberrant splicing events (Box 1). We observed high variability in all metrics 194 

associated with pathogenic aberrant splicing events (Table 1). All patients harbored 195 

at least one pathogenic splicing event supported by two reads and with normalized 196 

read counts (NRCs) ≥ 0.19, and 80% of these events had a relative fold change in 197 

NRC > 19x relative to controls (Table 1). While a blanket set of parameters for all 198 

aberrant splicing events may be unsuitable, our data suggests that 90% of 199 
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pathogenic events could be retained if filtering for events that were singletons 200 

(evident only in a single sample), or were non-singletons with an NRC > 0.25.  201 

 202 

Box 1. Metrics collated during splice event analysis 203 

- Read count – Number of split reads supporting the existence of a given splice 204 

junction 205 

- Normalized read count (NRC) – Ratio of reads supporting a given junction 206 

compared to the adjoining canonical junction with the highest read count 207 

- NRC fold change – fold difference in NRC for a given event between an 208 

individual and the control individual with the next-highest NRC for that event 209 

- Number of samples – the number of individuals, across both case and 210 

controls, in which an event is present 211 

- Rank – position of a given event in a list of significant events, when ordered 212 

by decreasing read count (for singleton events) or fold change (for non-213 

singleton events) 214 

 215 

Table 1. Range of metrics observed for pathogenic splicing events 216 

 217 
 Tissue 

Metric Whole blood (n=3) LCLs (n=7) Skeletal 
muscle (n=10) 

Read count 2-40 4-38 2-462 

NRC 0.48-1.25 0.19-1.52 0.34-3.19 

NRC fold 
change Singletons 3.7-8.2 + 

singletons 
19.6-442 + 
singletons 

Number of 
samples 1 1-48 1-110 

Rank 2-5 10-232 1-342 
 218 
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Factors influencing the likelihood of pathogenic splicing variation identification & 219 

MRSD predictions 220 

To further define the most informative parameters for use in the MRSD model, we 221 

investigated the impact of a variety of metrics on the capability to identify pathogenic 222 

splicing events, including number of samples within the healthy reference set, the 223 

extent of read support for splicing junctions, and the relative expression of genes of 224 

interest. Overall, our analyses suggested that two supporting reads for an aberrant 225 

splicing event that is novel or has an NRC > 0.25 would reliably highlight pathogenic 226 

aberrations amongst transcriptome-wide splicing variation. These parameters are 227 

conservative and could be relaxed for the targeted investigation of variants of 228 

interest. 229 

 230 

We first identified how the number of control samples used as a reference set for 231 

“healthy splicing” impacted our ability to identify aberrant splicing events. For all 232 

samples within our healthy splicing set, we iteratively selected groups of control 233 

samples at sizes of 30, 60 or 90. We observed that moving from 30 to 60 controls is 234 

associated with a mean reduction in event count of 19.3% (28.1% of non-singleton 235 

events, 17.1% of singleton events) across the three tissues, while increasing the 236 

control size to 90 results in a further reduction of 10.2% of events (16.5% of non-237 

singleton events, 9.5% of singleton events; Figure 4); this effect was consistent 238 

across tissue types. 239 

 240 

We next investigated how read count filters impacted the number of events observed 241 

for a given individual (Figure 4). Filtering out all splicing events supported by just a 242 

single read against a background of 90 control samples removes, on average, 91.2% 243 
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of events (60.4% of non-singleton events, 97.3% of singleton events). Increasing 244 

read support thresholds to 10 unique sequencing reads results in a total of 99.4% of 245 

events being excluded on average (96.2% of non-singleton events, 99.99% of 246 

singleton events), while retaining only those events supported by 100 reads or more 247 

removes an average of 99.97% of events (99.8% of non-singleton events, 100.0% of 248 

singleton events). To understand how the level of read support impacted the ability 249 

to identify specific events, we collated 31 aberrant splicing events across 22 muscle-250 

derived RNA-seq samples, and downsampled reads in the genes containing these 251 

events. We observed that we could identify the same aberrant splicing events at 252 

reduced relative expression levels, and, while read support decreased (Figure 5a), 253 

the ranked position of the event within the rank-ordered output remained 254 

approximately the same in most cases (Figure 5b). However, the weakened read 255 

support increased the risk of eliminating the variant from consideration when read 256 

count filters were applied (Figure 5c). This analysis further emphasized that TPM 257 

values alone may not be a reliable measure of ability to survey all splicing junctions 258 

within a gene; we observed that splice junctions in different samples covered by the 259 

same number of sequencing reads belonged to genes with widely ranging TPM 260 

values (Supplementary Figure 6). For example, splice junctions covered by eight 261 

reads were associated with TPMs ranging between 0.17 and 52. 262 

 263 

Implications for investigation of variants in known disease-causing genes 264 

We applied our MRSD model to all established disease genes included in the 265 

Genomics England PanelApp repository, encompassing 275 distinct gene panels 266 

and 3199 unique genes. 87 single-exon genes were excluded from analysis, leaving 267 

3112 unique disease genes. Based on our investigations of MRSD, we applied the 268 
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following parameters: read coverage = 8; proportion of junctions = 75%; confidence 269 

level = 95%. Using this approach (with expected PPV = 0.936-0.974, NPV = 0.776-270 

0.880 across the three tissues) we observed that 58.0% (1806/3112) of PanelApp 271 

genes were predicted to be low-MRSD (< 100 M reads required) in at least one of 272 

whole blood, LCLs or skeletal muscle (Figure 6a). At the individual tissue level, 27.0% 273 

(841/3112) of PanelApp genes in whole blood, 49.0% (1524/3112) in LCLs and 44.0% 274 

(1369/3112) in skeletal muscle were predicted to be low-MRSD (Figure 6a). Of note, 275 

LCLs were observed to have the highest proportion of low-MRSD panel genes in 276 

190/275 disease-gene panels (69.3%, Figure 6c). Whole blood exhibited the highest 277 

proportion of genes with low MRSDs in just 24/275 disease-gene panels (8.8%). 278 

 279 

MRSD predictions revealed many use cases for specific tissues: in the familial 280 

rhabdomyosarcoma panel, for example, none of the 11 genes were predicted to be 281 

low-MRSD in blood, while 10/11 were predicted low-MRSD in LCLs (Figure 6c), of 282 

which nine were actually assigned an MRSD < 50 M reads. Results across all 275 283 

panels are shown in Supplementary Figures 8 & 9. 284 

 285 

Overall, this analysis suggests both that whole blood may often represent the 286 

poorest choice of RNA source tissue in terms of disease gene coverage; in contrast, 287 

LCLs appear to show robustly high expression of many disease genes across 288 

diverse disease subtypes, and so may constitute a more reliable source of RNA for 289 

clinical transcriptomic investigations. 290 

 291 

 292 

Quantifying the resolving power of RNA-seq for variants of uncertain significance 293 
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To analyze the possible impact of diagnostic RNA-seq integration on variant 294 

interpretation, we curated variants of uncertain significance (VUSs) from the ClinVar 295 

variant database (17) that were predicted by SpliceAI (18) to impact splicing (score ≥ 296 

0.5; see Materials and Methods). Of a total of 352,011 ClinVar variants, 185,119 297 

(52.6%) were identified as VUSs, and 7,507 (2.1%) were retained after filtering 298 

based on SpliceAI score. Cross-referencing the MRSDs of the genes harboring 299 

SpliceAI prioritized variants across tissues revealed that, depending on model 300 

stringency, between 22.1% and 59.4% of these variants may lie in genes that are 301 

low-MRSD in at least one of the three tissues (Figure 7a). Further, among the 30 302 

genes in which the greatest number of predicted splice-impacting VUSs were 303 

identified, 21 were predicted to be low-MRSD in at least one tissue (Figure 7b). 304 

Similar patterns were observed when using a more relaxed SpliceAI score filter of 305 

0.25 (Supplementary Figure 10). The guided integration of RNA-seq into diagnostic 306 

services alongside predictive bioinformatics tools is therefore likely to provide a 307 

significant improvement to interpretation of VUSs in a variety of disease contexts. 308 

 309 

Discussion 310 

The recent development of machine learning approaches has underpinned 311 

improvements to the prioritization of variants that impact splicing and cause rare 312 

disease (19). Despite these advances, corroboration of the effect of such variants 313 

remains a major obstacle to improving diagnostic yield for Mendelian disorders. This 314 

obstacle is amplified by the unexpected functional impact of some variants on 315 

splicing, which may change the way the variant is classified in accordance with 316 

current guidelines (6). The MRSD-based approach described here allows the 317 

informed selection of biosample(s) for bulk RNA-seq, based on the required number 318 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2021. ; https://doi.org/10.1101/2021.03.19.21253973doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.19.21253973
http://creativecommons.org/licenses/by/4.0/


 13

of sequencing reads that need to be generated for appropriate surveillance of genes 319 

of interest. This approach enables the effective identification of patients, disease 320 

groups and genomic variants that are amenable for functional assessment of mis-321 

splicing through RNA-seq, and may help to improve the efficiency and accuracy of 322 

genomic diagnostic approaches.  323 

 324 

The primary purpose of MRSD is to predict the likelihood of observing pathogenic 325 

splicing defects in a given gene and tissue, and we quantify the utility of three distinct 326 

biosamples in this manner for known monogenic disease genes (Figure 6). Through 327 

this analysis, we are able to highlight biosamples that may be most informative for 328 

RNA-seq based analysis datasets for specific disease subsets. Although our model 329 

is conservative (Figure 2), we demonstrate through MRSD-guided re-inspection of 330 

VUSs in ClinVar that it may be possible to use RNA-seq to clarify the effect of up to 331 

2.4% of variants of uncertain significance (Figure 7a). 332 

 333 

Other approaches to select genes amenable to functional analysis through RNA-seq 334 

include leveraging relative gene expression metrics (14, 20), or tools which assess 335 

the similarity of transcript isoforms between tissues, e.g. MAGIQ-CAT (7). We show 336 

that, whilst TPM values are well correlated with MRSD scores (Figure 3a-c), uneven 337 

sequencing coverage across the length of the transcript may, in some cases, falsely 338 

identify specific genes or splice junctions as being amenable to RNA-seq-based 339 

analysis (Supplementary Figure 5). 3’ sequencing bias, which is a known artefact of 340 

poly-A enriched mRNA sequencing (21-23), may elevate the risk of inaccurately 341 

selecting genes that could be surveyed through RNA-seq when considering TPM 342 

alone. Additionally, the normalization against sequencing depth that occurs during 343 
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the calculation of TPM obscures information about raw read count, which is 344 

important when analyzing the utility of RNA-seq for clinical diagnostics. MRSD 345 

scoring, conversely, leverages variation in sample read depth to provide quantitative 346 

predictions about optimal sequencing depths. 347 

 348 

On the other hand, the recently released tool MAGIQ-CAT (7) assesses the degree 349 

to which transcript isoforms in a sampled tissue accurately resemble those in the 350 

primary disease-affected tissue. However, MAGIQ-CAT primarily captures the 351 

degree of similarity between isoform structure and does not aim to provide a 352 

quantitative readout to guide the diagnostic route. Thus, a proxy tissue may be 353 

described as suitable for RNA-seq-based analysis despite having poor coverage of 354 

splice junctions. We envision that the use of both MAGIQ-CAT and MRSD could 355 

comprehensively capture information about the utility of RNA-seq, both in terms of 356 

similarity of isoform structure relative to the disease-affected tissue and in terms of 357 

the likelihood of observing disruptions to this structure. 358 

 359 

There are several limitations of the current MRSD model, which could be 360 

incorporated into future work. Firstly, the MRSD model cannot directly be extended 361 

to predict the suitability of datasets to detect allele-specific expression biases and 362 

differential gene expression, which have been demonstrated to be evidence of 363 

pathogenic mechanisms in known disease-causing genes (10, 11, 14, 24). Although 364 

further investigations are required to quantify and prove this suitability, it is likely that 365 

genes with low MRSD scores (Figure 3d) are also amenable to investigations of 366 

differential gene expression and isoform imbalance. 367 

 368 
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Secondly, further extensions to the model could incorporate genomic background 369 

which influences gene expression profiles. For example, interferonopathies are a 370 

class of genomic immune disorders (25, 26) that are characterized by the aberrant 371 

upregulation of large numbers of transcripts belonging to so-called “interferon-372 

stimulated genes” (25, 27). As a result of these wide-ranging impacts on their 373 

transcriptomes, MRSD predictions, which ostensibly represent the “normal” 374 

transcriptomic landscape, may not accurately reflect the degree of sequencing 375 

coverage for certain transcripts in patients with interferonopathies, or indeed other 376 

disease groups where disrupted expression of many transcripts is characteristic, 377 

such as disorders where chromatin structure (28, 29) or the function of the 378 

spliceosome (30-32) is disrupted. Moreover, the current MRSD model does not 379 

explicitly account for the presence of expression quantitative trait loci (eQTLs) or 380 

splicing quantitative trait loci (sQTLs) which are known to influence gene expression 381 

profiles (33-35). We have demonstrated that modulation in expression levels may 382 

disrupt our ability to reliably highlight pathogenic splicing events (Figure 5c). As a 383 

greater number of paired transcriptome and genomic datasets become available, we 384 

expect that MRSD scores can be generated in a dynamic manner to account for the 385 

presence of eQTLs, sQTLs or other modifiers of gene expression profiles. 386 

 387 

Thirdly, our approach is built for a specific set of RNA-seq-based analyses; namely, 388 

the analysis of a selection of tissues by bulk short-read poly-A enrichment RNA-seq, 389 

followed by a specific bioinformatics analysis pipeline (13). This experimental RNA-390 

seq approach currently remains widespread (3, 10, 13-15); however, our model may 391 

be readily applicable to RNA-seq generated using alternative methodologies, such 392 

as increased read length, with only minor variations in model performance 393 
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(Supplementary Figure 3). As other technologies, such as long-read (36-38), single-394 

cell (39, 40) and spatially resolved RNA-seq (41-44), become more prevalent in a 395 

clinical setting, appropriate control datasets must be generated to develop 396 

corresponding MRSD models. Similarly, recent research has shown noticeable 397 

improvements to diagnostic yield for neuromuscular disorders by conducting RNA-398 

seq on in vitro myofibrils generated by a fibroblast-to-myofibril transdifferentiation 399 

protocol (45). Such patient-derived cell line approaches represent a promising 400 

avenue to scrutinize transcripts not otherwise observable in proxy tissues (31, 46). 401 

As these protocols gain wider use, generation of control RNA-seq data from healthy 402 

individuals using these approaches will be vital both to allow the generation of MRSD 403 

scores and to accurately assess pathogenicity of any identified mis-splicing events. 404 

 405 

Conclusions 406 

In summary, the novel MRSD model presented here offers a gene-specific readout 407 

to predict the most suitable biosample for interrogation of splicing disruption at the 408 

transcript level. This may uncover previously unintuitive choices of biosample, as 409 

discussed above in the case of familial rhabdomyosarcoma (Figure 6c). The use of 410 

different biosamples is associated with different costs: while whole blood is routinely 411 

taken in the clinic, cell-based RNA-seq requires harvesting and culturing of patient 412 

cells, and muscle biopsy is an invasive procedure that is generally only undertaken if 413 

deemed necessary. Our tool may allow clinical staff to make informed decisions 414 

about the likely cost-benefit balance of RNA-seq analysis to ensure such costs are 415 

not incurred unnecessarily. We expect that the use of MRSD will allow effective and 416 

appropriate integration of RNA-seq into diagnostic genomic services, and ultimately 417 

improve variant interpretation and diagnostic yield. 418 
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 419 

Methods 420 

Minimum required sequencing depth (MRSD) score 421 

We generated a collated map of splice junction coverage for GTEx samples from 422 

three tissues (peripheral blood: n = 151; LCLs: n = 91; skeletal muscle: n = 184; see 423 

RNA-seq data acquisition, below), using established methods (Cummings et al., 424 

2017). These samples were designated as reference sets. Our model considers the 425 

level of sequencing coverage for splice junctions in each tissue-specific reference 426 

set and calculates the minimum required sequencing depth (MRSD), in millions of 427 

uniquely mapping 75 bp reads, that would be required for the desired proportion of 428 

splice junctions in a given gene to be covered by a desired number of sequencing 429 

reads. Our model is dynamic, and can be adjusted by the user to account for 430 

customized levels of desired sequencing coverage per splicing junction, the 431 

proportion of splicing junctions covered, and the confidence level with which MRSD 432 

will generate datasets with the specified level of coverage (suggested usage of 95 or 433 

99%). 434 

 435 

MRSD is defined for a given gene in a given sample as: 436 

 437 

���� �  �/ 	����

 · 10�� 

 438 

Where � is the desired level of read coverage across desired proportion � of splice 439 

junctions, � is the set of read counts supporting all junctions in the transcript of 440 

interest, and 
 is the total number of sequencing reads in the RNA-seq sample (by 441 

default, the number of uniquely mapping sequencing reads). The term ���� 442 
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corresponds to the number of reads covering the junction with the “1 � �”-th-highest 443 

read count across all splice junctions in the transcript of interest.  444 

 445 

MRSD scores have been generated for specified transcripts across all samples 446 

within the reference set in the three tissues of interest. The score at the Xth percentile 447 

position in the reference set list is returned as the MRSD, where X is termed the 448 

“confidence level” and is customizable by the user (default = 95%, Supplementary 449 

Methods 1). 450 

 451 

Transcript selection 452 

MRSD can be calculated for any transcript sets of interest. Here, we utilized a 453 

hierarchy for transcript selection for all genes present in the GENCODE v19 human 454 

genome annotation (Supplementary Methods 2). We prioritized transcripts in the 455 

MANE v0.7 curated transcript list, providing that all splicing junctions were supported 456 

in the GENCODE v19 annotation. Genes without MANE transcripts were assigned 457 

composite transcripts, consisting of the union of all junctions found in transcripts in 458 

NCBI RefSeq transcripts. For genes that matched neither criteria, the union of all 459 

junctions present in all GENCODE v19-listed transcripts for that gene were used as 460 

the transcript model. 461 

 462 

Control RNA-seq data acquisition 463 

FASTQs were downloaded from the Database of Genotypes and Phenotypes 464 

(dbGaP) under the project accessions phs000424.v8.p2 and phs000655.v3.p1.c1 for 465 

GTEx control individuals and neuromuscular disease patients, respectively. GTEx 466 

controls were selected for LCLs (n = 91), skeletal muscle (n = 184) and whole blood 467 
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(n = 151) according to tissue-specific criteria (Supplementary Methods 3) to ensure 468 

use of only high-quality samples in generating control splicing datasets.  469 

 470 

In-house RNA-seq generation 471 

RNA-seq datasets used to evaluate model performance were accessed from 472 

previously published datasets (13), under dbGaP project accession 473 

phs000655.v3.p1.c1, through international consortia (47), or for individuals in whom 474 

written informed consent was obtained and ethical approval for the study granted by 475 

Scotland A (refs: 06/MRE00/76 and 16/SS/0201), South Central-Hampshire A (ref: 476 

17/SC/0026), South Central-Oxford B (ref:11/SC/0269) or South Manchester (ref: 477 

11/H10003/3). 478 

 479 

For in-house peripheral blood samples, RNA was extracted from PAXgene Blood 480 

RNA Kits and underwent poly-A enrichment library preparation using the TruSeq 481 

Stranded mRNA assay (Illumina) followed by 76 bp paired end sequencing using an 482 

Illumina HiSeq 4000 sequencing platform. For in-house LCL samples, RNA was 483 

extracted from pelleted LCLs thawed directly into TRIzol reagent (Invitrogen, 15596-484 

026) using chloroform, and treated with TURBO DNase (Invitrogen, AM1907), both 485 

following the manufacturers’ instructions. RNA was prepared using the NEBNEXT 486 

Ultra II Directional RNA Library Prep kit (NEB #7760) with the Poly-A mRNA 487 

magnetic isolation module (NEB #E7490), according to manufacturer’s instructions, 488 

and 75bp paired end sequencing was performed using the Illumina NextSeq 550 489 

sequencing platform. Ribosomal RNA depleted datasets were generated using RNA 490 

extracted via the PAXgene Blood RNA system, and 150bp paired end sequencing 491 

performed via Novogene (Hong Kong) using the NEBNext Globin and rRNA 492 
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Depletion and NEBNext Ultra Directional RNA Library Prep Kits on a HiSeq 2000 493 

instrument (Illumina). RNA samples from 20 LCLs were obtained from the kConFab 494 

consortium. Poly(A)-selected RNA was generated using the TruSeq Stranded mRNA 495 

Library Prep Kit (Illumina), and 150bp paired end reads created using the NextSeq 496 

500 instrument (Illumina).  497 

 498 

Splice event identification 499 

All FASTQs were aligned and processed as previously described (Cummings et al., 500 

2017). Briefly, this analysis consisted of two-pass alignment using the STAR v2.4.2 501 

aligner, marking of suspected PCR duplicates, and processing of the resultant 502 

alignments to generate tissue-by-tissue lists of splice junctions present within the 503 

cohort. Metrics for each splicing event were collected (Box 1), and splicing junctions 504 

were filtered to retain only those events that were unique to single samples 505 

(singletons) or that were present in multiple samples (non-singletons) but with an 506 

increased usage in the sample of interest, that is, with a higher normalized read 507 

count (NRC), than any control. The resulting list was ranked according to NRC fold 508 

change, with singletons with high read counts considered the most significant events. 509 

The resulting junctions were considered “events of interest”. 510 

 511 

Factors influencing the likelihood of aberrant splicing identification 512 

To calculate how the level of background splicing aberrations was altered by sample 513 

size, each individual in the three control splicing datasets was processed using the 514 

above pipeline (13) and compared against 2000 bootstraps of 30, 60 and 90 controls 515 

each from their respective control tissue dataset with replacement. Events were then 516 

filtered to retain only those events for which the NRC was higher in the given 517 
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individual than in any controls, and then counted for each bootstrap. Median counts 518 

for singleton and non-singleton events were then collated for each control group size. 519 

We selected 32 aberrant splicing events identified in neuromuscular patient RNA-seq 520 

data. From the genes in which we identified these variants, samtools was used to 521 

remove random subsets of reads in 10% intervals from each of these events to 522 

simulate variability in the number of reads generated for the gene of interest. The 523 

resulting datasets, exhibiting variable expression of a single gene, were then rerun 524 

through the splice analysis pipeline and the above metrics gathered for these 525 

simulated datasets. 526 

 527 

Genomics England PanelApp data collection 528 

Tabulated versions of 284 gene panels were downloaded from the Genomics 529 

England PanelApp repository. Each panel was filtered to retain only genes assigned 530 

a “green” classification for that panel, representing the highest level of confidence of 531 

a real genotype-phenotype association. 532 

 533 

Curation of ClinVar variants of uncertain significance 534 

A tabulated version of the comprehensive ClinVar variant listing (17) for January 535 

2021 was downloaded and filtered to retain only those variants that were annotated 536 

as either “Uncertain significance” or “Conflicting interpretations of pathogenicity”. 537 

SpliceAI scores (v1.2.1; (18)) were generated for these variants and those with a 538 

score of 0.5 or greater retained for downstream analysis. 539 
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 729 

Figure 1. Minimum required sequencing depth (MRSD) predictions vary with 730 

changes in model parameters and across tissues. (a) When all other parameters are 731 

constant (default parameters used here), increasing the desired level of read 732 

coverage of a gene results in a proportional increase in MRSD. The distribution of 733 
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MRSD scores for 3112 PanelApp genes in lymphoblastoid cell lines (LCLs) appears 734 

to be the lowest of the 3 tissues (median = 14.89 M at 10 reads), while whole blood 735 

exhibits the highest overall MRSD scores (median = 45.91 M at 10 reads), 736 

suggesting coverage of disease genes is generally poorer in blood. (b, top) In most 737 

cases, for a given level of splice junction (SJ) coverage, increasing the desired 738 

confidence level (the proportion of RNA-seq runs for which the MRSD prediction is 739 

expected to be sufficient) results in an increase in median MRSD score. (b, bottom) 740 

The number of genes for which no amount of sequencing is predicted to yield the 741 

specified level of coverage increases gradually as parameter stringency increases. 742 

At the highest level of stringency, the specified coverage was predicted unfeasible 743 

for between 63.1% (1964/3112, in LCLs) and 84.1% (2616/3112, in blood) of 744 

PanelApp genes. 745 

 746 

Figure 2. Performance metrics of the MRSD model. The ability of MRSD to 747 

accurately predict levels of PanelApp disease gene coverage based on sequencing 748 

depth was tested on unseen RNA-seq datasets from blood (n = 12), LCLs (n = 4) 749 

and muscle (n = 52). (a) The mean positive predictive values (PPVs) and negative 750 

predictive values (NPVs) averaged across all parameter combinations for each RNA-751 

seq dataset show that the median PPV is slightly lower, and the median NPV slightly 752 

higher, for whole blood than for LCLs and skeletal muscle. Breakdown of (b) PPVs 753 

and (c) NPVs for the MRSD model by parameters shows that specifying an 754 

increasing required read coverage results in a gradual decrease in PPV and 755 

increase in NPV across all tissues and parameter combinations. Dependent on 756 

parameter stringency, and limiting analysis to a maximum specification of 20-read 757 

coverage, PPV predictions range from 90.1-98.2%, while NPV ranges from 56.4-758 
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94.7%. Overall, the model is fairly conservative and returns positive predictions only 759 

when they are deemed likely to be true. 760 

 761 

Figure 3. Comparison of MRSD and transcripts per million (TPM) predictions. MRSD 762 

and TPM predictions for 3112 genes present in the Genomics PanelApp repository 763 

are inversely correlated in (a) whole blood (r2 = 0.549), (b) LCLs (r2 = 0.539) and (c) 764 

skeletal muscle (r2 = 0.669), as might be expected; however, the correlation is broad 765 

and there is high variation in the TPMs both of genes considered low- and high-766 

MRSD (MRSD ≤ or > 100 M reads, respectively, dotted line). (d) Bracketing 767 

PanelApp genes by MRSD range shows that there is substantial overlap in the TPMs 768 

of genes across different MRSD predictions, to the extent that sufficient coverage of 769 

genes with TPMs up to 2796.5 is predicted unfeasible in some cases. This suggests 770 

relative expression level alone is not an adequate proxy for transcript coverage. The 771 

y-axis is limited to 100 TPM in (a-c) for ease of visualization. Log transformation in (d) 772 

excludes 491 entries with TPMs of 0. Default MRSD parameters (8-read coverage of 773 

75% of splice junctions, confidence level of 95%) used throughout. 774 

 775 

Figure 4. Expanding control datasets and enforcing read count thresholds improves 776 

filtering power when analyzing mis-splicing events. Counting the significant events 777 

identified in each individual in a control splicing dataset when analysed against 2000 778 

bootstraps each of 30, 60 and 90 other individuals from within the control dataset for 779 

the same tissue reveals a small decrease in the number of total events identified as 780 

control dataset size increases, predominantly from non-singleton events. Enforcing a 781 

read coverage threshold has a more significant effect on event counts, particularly 782 

for singleton events, where filtering out events supported by a single read removes 783 
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up to 95% of singletons. LCLs appear to exhibit the greatest number of splicing 784 

events regardless of filter, although this may be due to differences in sequencing 785 

depth between tissues. 786 

Figure 5. Variability in expression level influences the capacity to identify mis-787 

splicing events. Genes harboring a selection of 31 splicing events that were 788 

identified during analysis of 52 muscle-based RNA-seq datasets (and which would 789 

be identified as events of interest using a filter of normalized read count (NRC) > 790 

0.19) were artificially downsampled to simulate variation in expression. (a) Reduction 791 

in expression leads to an intuitive and proportional reduction in the number of reads 792 

supporting each mis-splicing event. (b) The rank position – where the event appears 793 

in a list of all splicing events in its respective sample, ordered by decreasing NRC 794 

fold change relative to controls, and – is generally consistent as expression of the 795 

gene decreases; however, for a subset of events, reduction in expression is 796 

sufficient to cause stochastic changes in the NRC value, and so cause movement of 797 

the event down the prioritized list. (c) Variation in expression impacts our ability to 798 

identify events of interest when filters of read count supporting the events are 799 

enforced. When the 31 events experience a 50% reduction in expression, for 800 

instance, the application of a minimum 15-read filter leads to the exclusion of 41.9% 801 

(13/31) of events. For ease of visualization, the y-axis in (a) is limited to 50 reads, 802 

resulting in the truncation of some data series on the graph. 803 

 804 

Figure 6. Application of MRSD scores to disease genes listed in the Genomics 805 

England PanelApp repository. (a) Comparison of PanelApp panel gene MRSD 806 

predictions between tissues shows blood to exhibit markedly poorer coverage of 807 

disease genes than do LCLs or skeletal muscle. (b) When comparing MRSD 808 
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predictions for genes in blood and LCLs, 1522 genes are considered ”high-MRSD” 809 

(i.e. have an MRSD > 100 M reads) in both tissues (grey). Genes which are 810 

exclusively low-MRSD (i.e. MRSD ≤ 100 M) in blood are far fewer in number (with 66 811 

genes, red box), while the remainder are almost evenly split between those that are 812 

low-MRSD in both (775 genes, purple box) and low-MRSD in LCLs only (749 genes, 813 

blue box). (c) Comparison of PanelApp panel gene MRSDs between tissues shows 814 

many panel genes have substantially greater coverage in LCLs than blood and, to a 815 

lesser extent, skeletal muscle over a variety of disease subtypes. Panels where 816 

skeletal muscle shows the best coverage of panel genes intuitively correspond to 817 

phenotypes such as neuromuscular disorders and distal myopathies. 40 exemplar 818 

panels shown here, to see results for all 275 panels, see Supp. Figs. 8 & 9. (d) Top 819 

10 panels with most significant difference between low- and high-MRSD gene counts 820 

between blood and LCLs (chi-squared test). (e) Venn diagrams showing number of 821 

low-MRSD genes predicted in blood and LCLs for (top) the paediatric disorder panel, 822 

the most significantly divergent between the two tissues, and (bottom) the bleeding 823 

and platelet disorders panel, which did not reach statistical significance in the 824 

aforementioned chi-squared analysis. 825 

 826 

Figure 7. The scope for resolution of variants of uncertain significance (VUSs) using 827 

RNA-seq-based analysis. MRSD scores were derived for the genes harbouring 828 

VUSs present in ClinVar if the variants were predicted by the predictive tool SpliceAI 829 

to impact splicing (score ≥ 0.5; Jaganathan et al., 2019) (a) Depending on the 830 

stringency of the MRSD model parameters, between 22.1% (1663/7507) and 59.4% 831 

(4462/7507) of variants predicted to impact splicing are expected to be adequately 832 

covered by 100 M uniquely mapping reads or fewer in at least one of the 3 tissues 833 
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(whole blood, LCLs and skeletal muscle). Variants were most likely to be found to be 834 

in low-MRSD genes (MRSD ≤ 100 M) in LCLs, irrespective of model parameters. (b) 835 

Among the 30 genes with the greatest number of predicted splice-impacting VUSs, 836 

21 were predicted to be adequately covered (using default parameters) with 100 M 837 

uniquely mapping reads or fewer in at least one of the 3 tissues. An 8-read junction 838 

support parameter was used throughout. 839 
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