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Abstract

Cerebral autoregulation (CA) refers to the ability of the brain vasculature to control blood flow in the
face of changing blood pressure. One of the methods commonly used to assess cerebral
autoregulation, especially in participants at rest, is the analysis of phase derived from transfer function
analysis (TFA), relating arterial blood pressure (ABP) to cerebral blood flow (CBF). This and other
indexes of CA can provide consistent results when comparing groups of subjects (e.g. patients and
healthy controls or normocapnia and hypercapnia) but can be quite variable within and between
individuals. The objective of this paper is to present a novel parametric bootstrap method, used to
estimate the sampling distribution and hence confidence intervals (Cls) of the mean phase estimate in
the low-frequency band, in order to optimise estimation of measures of CA function and allow more
robust inferences on the status of CA from individual recordings. A set of simulations was used to
verify the proposed method under controlled conditions. In 20 healthy adult volunteers (age 25.53.5
years), ABP and CBF velocity (CBFV) were measured at rest, using a Finometer device and
Transcranial Doppler (applied to the middle cerebral artery), respectively. For each volunteer, five
individual recordings were taken on different days, each approximately 18 min long. Phase was
estimated using TFA. Analysis of recorded data showed widely changing CIs over the duration of
recordings, which could be reduced when noisy data and frequencies with low coherence were
excluded from the analysis (Wilcoxon signed rank test p = 0.0065). The TFA window-lengths of 50s
gave smaller Cls than lengths of 100s (p < 0.001) or 20s (p < 0.001), challenging the usual
recommendation of 100s. The method adds a much needed flexible statistical tool for CA analysis in
individual recordings.

1. Introduction

Cerebral autoregulation (CA) is a control mechanism that ensures cerebral blood flow (CBF) remains relatively
constant when arterial blood pressure (ABP) varies (Greisen 2005, Caldas ef al 2017). Impairment of CA has been
linked with several serious medical conditions, including stroke, sub-arachnoid haemorrhage and traumatic
brain injury (Newell et al 1996, Dawson et al 2000, Vavilala et al 2002, Budohoski et al 2013) and a large body of
research has been developed in this field (Aaslid et al 1989, Panerai et al 1998, 2008, Liu et al 2010) over many
years. Clinical interest is driven by the desire to identify and optimise the treatment of vulnerable patients with
impaired CA. The measurement of CA has however remained a challenge. Initial studies assessed the blood flow
responses in the brain to sustained changes in ABP, which is now known as static CA. The advent of transcranial
Doppler (TCD) with its high temporal resolution, allowed investigating the responses to transient changes in
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ABP, known as dynamic cerebral autoregulation (dCA). Such transient changes can be provoked by a range of
experimental techniques including the inflation and deflation of pressure cuffs on a subject’s thighs, having a
subject alternate between standing and either a squatting or sitting positions or tilting a subject’s body up and
down. Even the spontaneous fluctuations in blood pressure can be exploited to assess dCA. Unlike methods
requiring a sustained blood pressure change, dynamic measurements are generally less intrusive and thus more
acceptable for clinical use and such studies have come to dominate the field in recent years.

The analysis of dCA requires continuous simultaneous measurement of arterial blood pressure (ABP—
typically measured using non-invasive methods applied to a finger) and CBF velocity (typically TCD ultrasound
is used to measure cerebral blood flow velocity—CBFV). Many methods with a wide range of complexity have
been proposed to analyse these signals and extract parameters that reflect CA status (Tiecks et al 1995, Panerai
etal 1998), but no gold standard has yet emerged that is generally accepted in the research or clinical
communities. One popular method, known as transfer function analysis (TFA), performs the analysis in the
frequency domain, and involves the estimation of either the phase or gain of the frequency response when
relating changes in pressure (as ‘input’) to those in flow (as ‘output’). Evidence that peaks (or troughs) in flow
precede those in pressure (positive phase angles in the frequency response in the frequency range say from about
0.07 t0 0.2 Hz), or that the gain in this frequency range is relatively low, are deemed to reflect active physiological
processes attenuating fluctuations in CBF, and thus indicate active autoregulation (Claassen et al 2015).
However, estimates of these indexes of autoregulation show considerable variability over time in the same
subject (including in measurements made in quick succession), between repeated experiments and across
cohorts of healthy subjects and patients (Birch et al 2001, Liu et al 2005, Budohoski et al 2013, Panerai 2014,
Sanders et al 2019, Elting et al 2020). This makes it difficult to assess individual’s autoregulatory impairment, and
test for any significant changes over time. Fluctuations in CA may be due to physiological changes (even ona
time-scale of only a few minutes (Panerai et al 2003, Rowley et al 2007)), but ‘noise’ in the measurements is also
expected to lead to estimation errors and broad confidence intervals (CIs) for any indices of CA estimated. This
‘noise’ may include noise in the recorded signals due to imperfect measurement techniques and equipment, the
effects of physiological variables not taken into account in the model (e.g. fluctuations in arterial CO, level or
intracranial pressure) and inaccurate assumptions about the relationship between ABP and CBFV (e.g. linearity)
(Panerai et al 1998, Mahdi et al 2017). It is thus highly desirable to obtain measures of the robustness of CA
indices estimated in a given recording, expressed for example by estimates of confidence limits for phase
estimates. This would permit any inferences to be made taking the likely precision of estimates into account and
subsequently to assess the statistical significance of any changes observed over time, or between measurement
conditions. The assessment of CA can thus become more nuanced, with a measure of the confidence in the
results from individual recordings. Recordings may then also be identified where the confidence range is so
broad that reliable inference of dCA function cannot be made.

The current paper presents a method for the estimation of Cls for estimates of average phase obtained from
TFA. This method is based on a parametric bootstrap approach. Performance is then evaluated using simulated
signals and data recorded from healthy human volunteers. Some examples of applications will be presented that
demonstrate the power of the method in identifying recordings (or sections of recordings) that do not permit
robust inferences of dCA, tracking changes in dCA over time and assessing the effect different TFA parameters
have on the results obtained. This paper thus addresses a long-standing need to obtain indicators of the quality of
dCA assessments in individual recordings, where the variability of results has long been a challenge. While the
current paper is focused on the mean phase of TFA, the approach could readily be expanded to other indices of
dCA or even the assessment of other physiological control systems such as baroreceptor sensitivity where system
identification is also commonly used.

2.Methods

2.1. Data acquisition and processing

The collection of data for this study was performed at the University of Southampton Hospital Trust and was
approved by the NHS research ethics committee for Northern Ireland ref: 14/N1/1146. Recordings of 18.5 + 1.1
(mean = standard deviation) minutes were collected from 20 healthy young adult volunteers (25.5 &+ 3.5 years,
height 168.3 & 12.3 cm, weight 64.5 %+ 16.4 kg, body mass index 22.6 + 4.5 kg m ™2, systolic blood pressure
119.6 £ 15.4 mmHg, diastolic blood pressure 70.5 &= 8.3 mmHg, 10 female) during rest. All volunteers had no
history of cardiovascular or neurological disorders.

ABP (see figure 1 for an example of signals acquired) was recorded non-invasively using a finger
plethysmography device (Finometer MIDI, Finapres Medical Systems, Amsterdam, The Netherlands). CBFV in
both the left and right middle cerebral arteries (MCA) was recorded non-invasively using TCD ultrasound with a
2 MHz transducer (Dopplerbox, DWL, Compumedics Germany GmbH). A three-lead electrocardiogram
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Figure 1. An example of the signals acquired for analysis, with two consecutive epochs highlighted and missing data pointed out. The
top signal is the mean ABP and lower figures are the mean CBFV for the left and right MCA respectively. Each epoch isa 300 s long
segment of the recording, and every epoch is shifted to the right of the previous epoch by a specific time interval, in this case 150 s. The
magnified figure is an example of a section of data where parts are missing.

(ECG) was also acquired for the duration of the recording. Recordings were taken on 5 separate occasions
approximately one week apart (8.9 & 6.4 d). All signals were sampled at 125 Hz, except the ECG, which was
sampled at 250 Hz, in order to increase temporal accuracy in identifying heart-beats, and stored for later offline
analysis. Custom software built in Matlab” was used to pre-process and edit the signals before analysis was
performed. Two recordings out of the 100 were omitted from the analysis due to their quality being too poor.

Processing of the signals began with a 9th order median filter applied to the CBFV signals to remove any
isolated spikes that are a common occurrence in these signals. The CBFV signals were then visually inspected
and any remaining spikes were replaced by linear interpolation. This was followed by a 5™ order Butterworth
low-pass filter with a cut-off frequency of 20 Hz applied both forwards and in reverse to negate the effect of any
phase shifts introduced by the filtering. R-peaks from the ECG signal were detected based on Pan-Tompkins
algorithm, and were used to compute the beat-to-beat average values of the ABP and CBFV signals, denoted
henceforth as mABP, mCBFV-L and mCBFV-R (for left and right middle cerebral arteries respectively). These
were then interpolated using a 3rd order polynomial and resampled at 10 Hz.

Because artefacts due to factors such as participant movements are unavoidable when collecting data, and
have been shown to negatively impact results (Meel-van den Abeelen et al 2016), every signal was visually
inspected and any sections of data with artefacts were marked as bad data. Any such sections shorter than 3 s
were replaced by linear interpolation, whilst the rest were treated as gaps in the data by replacing them with
NaNs (not-a-number) in Matlab”; those gaps were excluded in further analysis, with the effect of doing so on Cls
also being considered in this paper. Finally, the signals were normalised and expressed as relative change (in
percent) with respect to the mean values within the recording.

2.2.Data analysis

In this section we will first outline the TFA method and how phase is estimated from it. Then the new parametric
bootstrap method for estimating the sampling distribution and CIs will be explained. The sampling distribution
refers to a set of individual phase estimates generated from multiple simulations (the parametric bootstrap) of
the CBFV signals in the current recording. The approach taken to test and evaluate the methods will then be
presented, followed by methods used in exploring applications of the approach.
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A TFA based approach is used to estimate the phase. Phase estimates of the transfer function (H) between
pressure and flow signals provide an indication of the lag between the two signals, with a positive phase
indicating a functional autoregulatory system. Phase has been chosen for this paper due to its previous validation
as a metric with a strong relationship to dCA (Birch et al 1995, Diehl et al 1995) and its wide acceptance in current
dCA research (Claassen et al 2015). His based on the relation between mABP, denoted now as p, and mCBFV,
denoted as v:

Sp(f)
Spp()’

H(f) = )

where fdenotes frequency (in Hz or rads s~ ') and S,p the power spectrum of p and S,,, the cross-spectrum
between p and v. The average phase over a specific frequency band is commonly used as a metric of dCA. For this
study the low-frequency (LF) band from 0.07 to 0.2 Hz is adopted (Claassen et al 2015), though other frequency
bands are also commonly chosen (Meel-van den Abeelen et al 2014). In order to avoid the need for phase
unwrapping (which can give aberrant results especially in noisy data) the complex values of H in the chosen
frequency range are first all given a constant magnitude and then averaged, with the phase of the resultant
complex number providing the average phase value. The cross- (S,,) and autospectra (S,,) are usually evaluated
using the Welch method (Barbé et al 2010), where the signals are divided into overlapping ‘windows’, tapered at
both ends by a window function, and then Fourier transformed. The length of these windows and the function
used to taper them, as well as the frequency band chosen, are some of numerous parameters that can affect the
results of TFA. Another choice is the use of a coherence cut-off (C-C-O) such that any TFA estimates with a
coherence below this threshold are deemed to provide unreliable results for phase estimates and are therefore
excluded from further analysis. Coherence is also based on the relationship between the spectra, and is given by
the following equation:

L ISu(HP

=7 2
! Spp(f)Sw(f) @

A more detailed description of the parameters used in estimating TFA and their recommended values can be
found in Claassen et al (2015).

Due to the nature of the Fourier transform, the gaps in the recordings (missing data identified by NaNs) have
to be excluded from analysis. In order to do this, the overlap between windows are adjusted so that no windows
include the gaps and windows start and end immediately before or after the gaps, thus maximising the data used.
For example in figure 1, where some data is missing between approximately 650 and 670 s. Window overlap
would thus be adjusted so that a window stops at the last good sample around 650 s, and the next one starts at
approximately 670 s where good data is again available; the short data segment at around 660s is too short to fita
window (in the current work 20, 50 or 100 slong) and is lost to the analysis. Auto- and cross-spectral analysis is
then performed using these windows, as indicated in (1), using these modified window locations.

To track the phase throughout the entire recording, the recordings were divided into overlapping blocks
(known as ‘epochs’, see figure 1), each one shifted by a specific time interval compared to the previous one. For
each epoch, the recommended TFA process as described above (see also (Claassen et al 2015)) was performed to
acquire an estimate of the phase and subsequently its confidence interval.

2.3. Parametric bootstrap for phase estimates

To estimate the ClIs, a parametric bootstrap based approach is used, with figure 2 illustrating the process.
Through TFA (block H in the figure), the best fit relationship between ABP (p) and CBFV (v) is first estimated.
The phase (averaged over the selected frequency band) provides the estimate of phase (point estimate) for this
recording. The output of H provides a ‘clean’ estimate of v, known as ¥, based on the contribution that can be
explained by p. The ‘noise’ e(t) (also known as the residual) is estimated as the difference between the ‘clean’ and
the measured CBFV. If the linear model fitted the data perfectly and there were no noise present in the
recordings, the residual would be zero. Simulated signals of CBFV # are then obtained by adding simulated
noise é(t) to the ‘clean’ CBFV signal. This simulated noise has the same power spectrum as the residual, this
being achieved by filtering random white noise with a filter G, whose frequency response is determined by the
spectrum of e(f); an autoregressive model and the Burg algorithm (Rodriguez-Linares and Simpson 2019) are
used for this purpose. To determine the order of model used, the Bayesian information criterion (BIC) was used
to select the order which resulted in the lowest BIC in each individual recording. Visual inspection of the power
spectrum confirmed that the simulated noise signals provided a close approximation to the power spectrum of
the residual signal. Using this method, M = 200 simulated signals #(¢) are generated, each with independent
random noise. TFA is then applied to each of these signals, using the original p(#) as input. The average phase
value over the LF frequency range (Zhang et al 1998) is then found in each of these signal pairs in the same way as
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Figure 2. Parametric bootstrap process: the frequency response (transfer function) His estimated and used to generate a prediction of
flow v (¥). The error e (also known as residual) between this prediction and the original flow is calculated, and its spectrum is used to
determine a filter that, when applied to white noise w, provides a simulated error signal. This is then added to ¥ to generate a
simulation of v (#). This, together with p is then used in as input to TFA to obtain one bootstrap estimate of H (H ). By repeating the
operation below the bold (red) dotted line multiple times (each time with different random noise), the bootstrap distribution of H is
found. The dotted lines signify control lines, used in estimating H, H and G, respectively.

is done for the original recordings. This provides the estimated sampling distribution for the phase estimates,
with the 2.5th and 97.5th percentiles being taken as the confidence limits.

2.4. Verification of the method

2.4.1. Verifying confidence interval estimates

In order to verify that confidence interval estimates are reliable, a further simulation is performed, with the
process illustrated in figure 3. For this, the ‘true’ confidence interval should be known. To this end, first one
recording from one participant is randomly chosen, and the confidence interval is obtained, using the method
described above. This is deemed the ‘correct’ confidence interval for this set of simulated signals. If the proposed
parametric bootstrap method is reliable, then our method should provide good estimates of this confidence
interval when the method is also applied to any one of these simulated signals. As shown in figure 7, we therefore
randomly select 50 of the simulated signals ¥;(¢), i = 1..50) and apply the parametric bootstrapping method to
each of these (i.e. a second level of simulation) with p(#) as the input signal, to find Cls. The width of these 50 CIs
is then compared to the ‘correct’ confidence interval from the original simulations, and the percentage error in
confidence interval recorded. This analysis is repeated on 5 different recordings.

2.4.2. Validating assumptions

The method outlined previously relies on the assumption that noise is present in the output of the signal and not
in the inputi.e. itis present in the mCBFV recordings but not in the mABP recordings. However, blood pressure
measurements are also likely to be contaminated by some noise. In order to assess the potential impact of this,
the method outlined in 2.3 is applied once again, but now simulating noisy input signals p(¢) rather than noisy
output signals #(¢) using an approach equivalent to that discussed above.

2.5. Estimates of CIs for phase
Having verified the performance of the bootstrap method in simulated data, it is then applied to the recorded
data from healthy individuals in order to assess Cls of phase estimates and compare them within recordings (i.e.
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Figure 3. A double bootstrap process. The output of the original bootstrap () is treated as the input signal and used in a second
bootstrap which follows the same procedure as described in figure 2. Note that the processing below the top dotted line is repeated 50

times to generate 50 ¥ and the loop below that line is repeated 200 times to generate 200 bootstrap estimates for each of these 50
simulations.

between overlapping epochs) and between recordings (within and between individual variations). The standard
deviation of bootstrapped phase estimates from different epochs within one recording are averaged, and
compared to the dispersion of phase estimates (point estimates) from the different epochs in that recording. One
might expect these to be similar, but any time-varying behaviour of dCA may lead to greater dispersion between
epochs than predicted from the bootstrap, which only assumes additive noise in the data.

2.6. Assessment of the impact of data quality and tfa analysis parameters
Following on from the descriptive analysis of CI for phase estimates in a cohort of healthy volunteers at rest, the
potential of the bootstrap method in improving CA analysis is tested. In recordings where some data had
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previously been visually identified as containing bad segments (originally marked as gaps with NaNs) it is
expected that these segments will provide poor estimates of H and large Cls. The ability to thus ‘automatically
identify’ bad data informs on the potential of the bootstrap method to identify poor data segments without the
need for extensive visual analysis. A minimum length of 45 seconds of continuous missing data in mCBFV
(either left or right) is chosen for this analysis. This length is chosen as a trade-off between ensuring that a large
part of data in a window is of poor quality, and maximising the amount of data files available to perform the
investigation on. Any signals that fit this criteria are used in the test, with the remaining files being excluded,
resulting in 17 recordings of the left velocity and 9 recordings of the right velocity being used. For each of these
the average confidence interval size across all epochs is calculated under three different conditions: (1) after
removing bad data (‘normal’ analysis as described previously in Methods 2.2), (2) including all data in the
analysis and using the recommended coherence cut-off threshold (Claassen et al 2015), and finally (3) including
all data but performing analysis without applying the recommended coherence cut-off thresholding described in
Claassen etal (2015).

Wilcoxon signrank tests are carried out on the set of 26 recordings being analysed to determine the
significance of any difference between ClIs from these three analyses.

It is desirable that TFA estimates provide precise estimates of phase, i.e. narrow Cls. In order to test the effect
of different parameter choices when using the TFA on the CI, a range of different window sizes and epoch
lengths are tested, as outlined in section 3.3; epoch length refers to the length of data over which each TFA
analysis is performed, and window-length refers to the length of (Hanning) windows used when applying the
Welch method for the auto- and cross-spectral density estimation. For each combination of window size and
epoch length, analysis is performed on all 98 recordings, from which the average Cl across all epochsin a
recording was calculated and used to compare methods. This resulted in 98 CIs, from which the best-performing
choices are identified.

3. Results

3.1. Analysis of recorded signals
Mlustrative examples of bootstrap distributions of LF phase estimates over the duration of the recording are
shown in figure 4. The dots connected by straight lines indicate the phase estimates (point estimates) in each
epoch using only the recorded data, and the box and whiskers show the median, quartiles and 95% Cls (2.5th
and 97.5th percentiles) of the bootstrapped distributions. Estimates were obtained from overlapping 5 min
epochs in three 18 min recordings. It is evident that the phase varies considerably over time, and that the CIs
(given by the length of the whiskers in each epoch) can also fluctuate strongly in many of the recordings.
However, due to the often large size of the Cls only large changes in phase would be statistically significant, with
this being explored further in a follow-on paper. Figure 5(a) shows the range of phase estimates (point estimates,
i.e. without using the bootstrap method) obtained from the standard deviation of the overlapping epochs within
each recording, and compares them to the average of the standard deviations obtained from the bootstrap
method. This figure shows that the values from the two methods are similar, but differ considerably between
recordings, with generally lower values obtained from the bootstrap method. This is confirmed by the scatter
plotin figure 5(b), where most points lie below the line of identity. The discrepancy between the estimates is not
unexpected, and can probably be explained by the bootstrap method only taking random variability (‘noise’)
over 5 min epochs into account. The estimates from the dispersion from the point estimates of phase would
however also be affected by any physiological change in autoregulatory status that may occur over the duration
of the recordings. Figure 6 shows the estimated phase dispersion (average of the standard deviation of the
bootstrap estimates across the epochs within each recording) when noise is either added to the output (mCBFV)
(as described in figures 2 and 3) or the input (mABP) signal (see methods 2.4.2). It is evident that both lead to
similar results in this data. This alleviates the concern that the assumption of noise only in the output might
distort results.

Having explored the proposed method on some recordings, it will now be validated on simulated signals
after which the impact that different parameter choices in TFA analysis have on estimation errors for the phase
will be considered.

3.2. Verification of the bootstrap method

Figure 7(a) shows a histogram of M = 200 bootstrapped phase estimates for a single epoch in one recording, with
the CIs (95% range) derived for the epoch given by the dotted lines. Each phase has been derived after adding
simulated noise. For the purpose of verification, fifty of these simulated data epochs have been processed as if
they were the original data to produce K = 50 sub-distributions. The central sub-figure 7(b) shows the size of the
Cls for each of the K = 50 distributions as a vertical line with the mean phase estimate marked with a *. Given
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Figure 7. Verification of the parametric bootstrap method. Figure 7(a): a histogram of the distribution of phase estimates acquired
from one parametric bootstrap simulation. The two dotted lines indicate the lower and upper confidence limits (95%). Figure 7(b):
Confidence intervals for K = 50 second level parametric bootstrap simulations, performed on K random phase estimates taken from
the distribution in the left figure. The grey band indicates the confidence limits from the original parametric bootstrap, and the *
indicate the central (mode) phase estimates from each new distribution. Figure 7(c): the same K confidence intervals as in the previous
figure (7)b)), with their central phase estimates aligned, to facilitate visual assessment. It is noted that the K= 50 estimates of the CI all
agree quite closely with the expected width (grey band).

that each of the bootstraps is based on only one of the 50 simulated recordings, which each give different point
estimates, it is not surprising that their bootstrap distributions have distinct mean values. The estimates of CIs
from each of the K recordings are expected to provide an approximation to the ClIs shown in figure 7(a). In order
to make this clearer, in the right sub-figure 7(c), the CIs have been realigned, so that the mean phase estimates
agree. It can now be noted that the confidence interval in 7(a) (shown as a grey band) is of a similar size to the
intervals estimates from each of the 50 simulations. Similar results were obtained in the other four sets of similar
simulations carried out on other randomly selected recordings. The average absolute error between initial CIs

9



10P Publishing

Physiol. Meas. 42 (2021) 104004 ] Bryant et al

# 20 Second Window
O 50 Second Window

09 A 100 Second Window ||
T + 300 Second Window

08 ]

07} = 1

1=

=S
T
1

e
S
T
S
1

Confidence Interval Size (rads)
8
T
1

o
w
T
%
=K
[
7
1

01} .

D 1 1 ”l
180 300 600
Epoch Length (seconds)

Figure 8. The average size of the confidence intervals across all recordings as a function of the length of window used and the length of
epochs. The dotted—dashed lines show the average of the estimates for each epoch length. Window lengths of 20, 50 and 100s were
applied to all epochs, and for the 10 min epoch, 300s was also investigated.

(grey band in figure 7) and the sub estimates (plots in figure 7(c)) was 7.6%. These results are very encouraging
for the use of the technique in the recorded data sets.

3.3. Effect of tfa parameters on CIs of phase estimates

Figure 8 shows the effect of window size and epoch length on the bootstrap-estimated CIs. As might be expected,
longer epochs give more robust estimates (smaller confidence intervals). Less expected was that window lengths
of 50s consistently give smaller CIs than those of either 20 or 100s. For the commonly used five minute epochs, a
window length of 50 s resulted in significantly smaller CIs compared to 20 s (Wilcoxon signed rank p < 0.001)
and 100 second windows (Wilcoxon signed rank p < 0.001).

3.4. The effect of data quality on ClIs

Given the variable data quality that can be achieved in acquiring ABP and CBFV signals, it is recommended
(Claassen et al 2015) that data is selected so as to only process artefact-free segments. This, however, has to be
balanced against the impact of having less data in each epoch, which will tend to increase Cls of phase estimates
(see 3.1). Removing frequencies in which ABP and CBFV have low coherence is another means of controlling the
results of the analysis (Claassen et al 2015), but here again there may be aloss of information, that may degrade or
add bias to phase estimates. We therefore used the bootstrap confidence interval estimates to compare the
different options in applying TFA. Three alternatives were compared, firstly we excluded poor quality data
segments and applied a minimal threshold for coherence estimates, which corresponds to the standard approach
recommended in Claassen et al (2015) and is outlined in the methods section. It may be noted that with our
approach of fitting windows in between gaps, fewer windows or greater overlap between them will result from
removing data from some (fixed length) epochs. Secondly, we did not remove bad data, but did apply the
minimal coherence criterion. Thirdly, we neither removed bad data from analysis, nor applied the coherence
criterion. The results on mean phase estimates and mean Cls for this set of 98 recordings is shown in table 1.

The smallest Cls are obtained in this data set with the first method, with a non-significant increase in CIs
when bad data was included but the coherence criterion was still applied. Without the latter, CIs increased
significantly (Wilcoxon signed rank test p < 0.02) against both alternative approaches. It may also be noted that
the mean of the phase estimates did not change significantly between the first two cases, but did between cases
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Table 1. Comparison of mean phase estimates and mean confidence
interval estimates when excluding bad data in time and frequency
domains.

Excluding poor quality data

¢ (rads) 0.62
Confidence interval size (rads) 0.59
Including poor quality data, with coherence Cut-Off

¢ (rads) 0.70
Confidence interval size (rads) 0.66
Including poor quality data, with no coherence Cut-Off

¢ (rads) 0.58
Confidence interval size (rads) 1.11°

* The confidence intervals when excluding data and not using a cut-
off coherence were significantly different to both other test cases.

two and three (Wilcoxon signed rank test p = 0.044), with the mean phases being significantly lower when
coherence criterion was not used. These results confirm the importance of using the coherence criterion to
improve the robustness of estimates, as previously recommended (Claassen et al 2015), especially in the presence
of poor quality data.

4, Discussion

Confidence intervals of autoregulation estimates are routinely used in investigations into CA, when presenting
results (Eames et al 2002, Parthasarathy et al 2018). However, these are almost always based on estimates made
across a cohort, rather than referring to each recording individually. The former captures the between-subject
variability, as well as any additional estimation errors in TFA analysis in individual recordings. The current work
focuses on estimating these latter errors. We thus achieve a long-standing goal of obtaining an indication of how
robust estimates of phase from any given recording may be. By using a parametric bootstrap, a single recording
can effectively be used to generate an approximation of the sampling distribution of phase estimates obtained
from that recording, under the assumption of additive noise. Bootstrap based methods of estimating Cls have
been used extensively in many applications, including signal analysis (Efron 1985, Zoubir and Iskander 2004),
however their usage in regards to autoregulation remains limited. A bootstrap method was proposed in Simpson
etal (2004) to determine the spread of ARI based estimates from individual recordings, but the approach
employed there used resampling of recorded data rather than generating new surrogate signals with additive
noise (a parametric bootstrap approach), as employed here. In Simpson et al (2004), the results were used to
objectively select specific signals that provide more robust results. A parametric bootstrap approach more akin
to that used here was proposed in Beda et al (2017), but in the context of extracting frequency domain features
from heart-rate variability, rather than for TFA.

An alternative to estimating the CIs through the method shown is to use the theoretical variance of phase
estimates, based on the coherence and number of windows used in the TFA (Piersol and Bendat 2010). However,
this method relies on the assumption that recordings are of sufficient length to negate any resolution bias error
that may have arisen in estimating the cross-spectra. A detailed evaluation of this potential alternative method is
beyond the scope of the current paper.

The results presented here confirm the importance of considering the robustness of phase estimates from
individual recordings. Itis evident from figures 4 and 5—showing time-varying changes in point estimates and
Cls as well as dispersion between recordings—that some recordings provide much more reliable results than
others, with considerable variability evident along time even in the same recording (figure 5(a)) and between
recordings (figure 5(b)). That some recordings provide much more robust phase estimates than others is also
evident from the range of phase estimates obtained from multiple epochs within the same recording, as evident
from the range of standard deviation values shown along the horizontal axis in figure 5(b).

One may well envisage that decisions as to whether or not a patient is deemed to have impaired
autoregulation should be based not simply on whether or not the point estimate of phase in a given recording is
below a set threshold, but also whether the width of the confidence interval allows a clear decision to be made.

4.1. Determination of data quality

Whilst it has been widely understood since early assessments of CA that poor quality data, be that from noise or
artefacts, has a negative impact on the results gained and can lead to unreliability (Meel-van den Abeelen et al
2014, Claassen et al 2015), identification of such data seems to primarily revolve around visually inspecting the
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recorded signals. Whilst this is an effective method at improving confidence, it is not a quantitative method. The
need for detail visual inspection of data prior to TFA also makes it difficult to translate this approach to CA
assessment into clinical practice. One possible alternative to this visual identification is the use of the parametric
based CIs that can be estimated periodically throughout a recording. As demonstrated in 3.4, these Cls are able
to track changes in the performance of dCA over time, and give an indication of the reliability of the results
obtained. Further work is required to investigate the performance in specific challenging settings, such as when
there is data drop-out (flat data) or spike-like activity. It may be necessary that additional parameters, in addition
to the width of the Cls, are used in deciding whether specific estimates of phase should be deemed reliable.

This method highlights the impact of using a cut-off value of coherence, below which estimates can be said to
be not reliable, in reducing confidence interval size and thus improving the robustness of phase estimates.
Results showed that including poor quality data did not significantly increase the size of Cls. A possible
explanation for this is that removing data segments of poor quality lead to loss of data and thus fewer windows,
which also degrades results. It may be that having no data at all from these segments is almost as bad as having
poor quality data from these segments, especially when these segments may also contain some data that is less
degraded. The increase in CIs with lower numbers of windows was shown in 3.3, when different length epochs
were also analysed. Small amounts of artefacts were found to be acceptable in the work of Claassen (Meel-van
den Abeelen et al 2016) and also Deegan (Deegan etal 2011).

4.2, Parameters of TFA

Claassen et al (2015) recommend a 100 s window and at least five minute long recordings to achieve reliable
estimates of autoregulation using TFA. Mahdi et al (2017) also investigated the required data lengths for stable
estimates of autoregulation, and recommended that five minutes was the minimum required. Our results found
that when using five minute long epochs, the use of a 50 s window gave lower CIs than 100 and 20 s windows,
which counters the recommendation of 100 s windows given in Claassen et al (2015). Although ten minute
epochs were found to result in smaller Cls than five minute epochs, the difference between the interval size when
using three minute epochs in comparison to five minute epochs is considerably larger than the difference
between five and ten minute epochs, suggesting that the stabilising effect of using longer recordings diminishes
as the recording becomes longer. Five minute recordings appear to be an adequate length to achieve reliable
results, provided sensible choice of window length is made. It may also be noted that the benefits of shorter
window sizes have been pointed out in other recent work (Panerai et al 2020). These observations are just a small
demonstration of the capabilities of this method in optimising parameters for autoregulation assessment. Any
number of parameter combinations could be tested, including parameters for other methods such as ARI. This
could extend work such as that by Chacén et al (2008) assessing other parameter combinations for the ARI
model to find increased stability.

4.3. Limitations of the study

One of the main limitations of this study, in common with much work on CA, was the potential for errors in the
measurement methods. CBFV was used as an approximation for CBF, however, this is only a reasonable
approximation if the diameter of the blood vessel—in this case the MCA—is constant throughout the recording.
Whilst numerous studies have suggested this is a reasonable assumption under specific conditions (Schreiber
etal 2000, Serrador et al 2000), several authors have shown that MCA diameter changes do compromise the use
of CBFV as a surrogate for CBF (Altman 2005). Additionally, the Finometer device used to measure blood
pressure continuously can lead to errors due to drifting and smooth muscle activity in the finger during
recordings (Birch and Morris 2003).

The cohort chosen for the study was made up of only healthy adult volunteers without including patients or
others likely to have impaired autoregulation. However, the aim of the current work was to present and assess
the method to estimate Cls, rather than comparing results between different cohorts or experimental
conditions. That will be considered in a follow-on paper. The results presented illustrate the wide Cls that are
sometimes achieved, and how the method can be exploited in controlling estimation errors. It will be of great
interest to see if different experimental conditions could reduce the Cls and if some patient groups (e.g. with
stroke or TBI) provide more or less robust results.

The bootstrap approach is based on the hypothesis that errors in phase estimates are due to additive random
noise in the output signal. The Cls thus only reflect this source of error, and not others, such as time-varying
physiological behaviours. It would be very challenging to find robust models that could include this aspect in
estimates of CIs. When using the bootstrap method to find the sampling distribution or ClIs, it should always be
highlighted that these are estimates based on the assumption or additive random noise rather than other possible
sources of error.
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5. Conclusion

A new method for assessing the reliability of phase estimates has been introduced and results validated in a series
of tests. Some descriptive statistics of CIs in recordings from healthy adult volunteers have been provided and
some examples of how the methods can be used have been shown. The use of these as a tool for identifying poor
quality sections of recordings that do not allow for robust analysis has been discussed. Finally, some of the
recommendations of Claassen et al (2015) have been tested with a view to optimising the TFA method
(optimising parameter combinations). In conclusion, the study provides very encouraging results and promise
that this method will provide a useful additional new tool in the goal to be able to robustly identify CA and
changes in CA from individual recordings.
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