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Abstract
Cerebral autoregulation (CA) refers to the ability of the brain vasculature to control bloodflow in the
face of changing blood pressure. One of themethods commonly used to assess cerebral
autoregulation, especially in participants at rest, is the analysis of phase derived from transfer function
analysis (TFA), relating arterial blood pressure (ABP) to cerebral blood flow (CBF). This and other
indexes of CA can provide consistent results when comparing groups of subjects (e.g. patients and
healthy controls or normocapnia and hypercapnia) but can be quite variable within and between
individuals. The objective of this paper is to present a novel parametric bootstrapmethod, used to
estimate the sampling distribution and hence confidence intervals (CIs) of themean phase estimate in
the low-frequency band, in order to optimise estimation ofmeasures of CA function and allowmore
robust inferences on the status of CA from individual recordings. A set of simulations was used to
verify the proposedmethod under controlled conditions. In 20 healthy adult volunteers (age 25.53.5
years), ABP andCBF velocity (CBFV)weremeasured at rest, using a Finometer device and
Transcranial Doppler (applied to themiddle cerebral artery), respectively. For each volunteer, five
individual recordings were taken on different days, each approximately 18min long. Phasewas
estimated using TFA. Analysis of recorded data showedwidely changingCIs over the duration of
recordings, which could be reducedwhennoisy data and frequencies with low coherencewere
excluded from the analysis (Wilcoxon signed rank test p= 0.0065). TheTFAwindow-lengths of 50s
gave smaller CIs than lengths of 100s (p< 0.001) or 20s (p< 0.001), challenging the usual
recommendation of 100s. Themethod adds amuch neededflexible statistical tool for CA analysis in
individual recordings.

1. Introduction

Cerebral autoregulation (CA) is a controlmechanism that ensures cerebral blood flow (CBF) remains relatively
constant when arterial blood pressure (ABP) varies (Greisen 2005, Caldas et al 2017). Impairment of CAhas been
linkedwith several seriousmedical conditions, including stroke, sub-arachnoid haemorrhage and traumatic
brain injury (Newell et al 1996,Dawson et al 2000, Vavilala et al 2002, Budohoski et al 2013) and a large body of
research has been developed in this field (Aaslid et al 1989, Panerai et al 1998, 2008, Liu et al 2010) overmany
years. Clinical interest is driven by the desire to identify and optimise the treatment of vulnerable patients with
impairedCA. Themeasurement of CAhas however remained a challenge. Initial studies assessed the bloodflow
responses in the brain to sustained changes in ABP,which is now known as static CA. The advent of transcranial
Doppler (TCD)with its high temporal resolution, allowed investigating the responses to transient changes in
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ABP, known as dynamic cerebral autoregulation (dCA). Such transient changes can be provoked by a range of
experimental techniques including the inflation and deflation of pressure cuffs on a subject’s thighs, having a
subject alternate between standing and either a squatting or sitting positions or tilting a subject’s body up and
down. Even the spontaneous fluctuations in blood pressure can be exploited to assess dCA.Unlikemethods
requiring a sustained blood pressure change, dynamicmeasurements are generally less intrusive and thusmore
acceptable for clinical use and such studies have come to dominate the field in recent years.

The analysis of dCA requires continuous simultaneousmeasurement of arterial blood pressure (ABP—
typicallymeasured using non-invasivemethods applied to afinger) andCBF velocity (typically TCDultrasound
is used tomeasure cerebral bloodflowvelocity—CBFV).Manymethodswith awide range of complexity have
been proposed to analyse these signals and extract parameters that reflect CA status (Tiecks et al 1995, Panerai
et al 1998), but no gold standard has yet emerged that is generally accepted in the research or clinical
communities. One popularmethod, known as transfer function analysis (TFA), performs the analysis in the
frequency domain, and involves the estimation of either the phase or gain of the frequency responsewhen
relating changes in pressure (as ‘input’) to those inflow (as ‘output’). Evidence that peaks (or troughs) inflow
precede those in pressure (positive phase angles in the frequency response in the frequency range say from about
0.07 to 0.2 Hz ), or that the gain in this frequency range is relatively low, are deemed to reflect active physiological
processes attenuatingfluctuations inCBF, and thus indicate active autoregulation (Claassen et al 2015).
However, estimates of these indexes of autoregulation show considerable variability over time in the same
subject (including inmeasurementsmade in quick succession), between repeated experiments and across
cohorts of healthy subjects and patients (Birch et al 2001, Liu et al 2005, Budohoski et al 2013, Panerai 2014,
Sanders et al 2019, Elting et al 2020). Thismakes it difficult to assess individual’s autoregulatory impairment, and
test for any significant changes over time. Fluctuations inCAmay be due to physiological changes (even on a
time-scale of only a fewminutes (Panerai et al 2003, Rowley et al 2007)), but ‘noise’ in themeasurements is also
expected to lead to estimation errors and broad confidence intervals (CIs) for any indices of CA estimated. This
‘noise’may include noise in the recorded signals due to imperfectmeasurement techniques and equipment, the
effects of physiological variables not taken into account in themodel (e.g. fluctuations in arterial CO2 level or
intracranial pressure) and inaccurate assumptions about the relationship betweenABP andCBFV (e.g. linearity)
(Panerai et al 1998,Mahdi et al 2017). It is thus highly desirable to obtainmeasures of the robustness of CA
indices estimated in a given recording, expressed for example by estimates of confidence limits for phase
estimates. This would permit any inferences to bemade taking the likely precision of estimates into account and
subsequently to assess the statistical significance of any changes observed over time, or betweenmeasurement
conditions. The assessment of CA can thus becomemore nuanced, with ameasure of the confidence in the
results from individual recordings. Recordingsmay then also be identifiedwhere the confidence range is so
broad that reliable inference of dCA function cannot bemade.

The current paper presents amethod for the estimation of CIs for estimates of average phase obtained from
TFA. Thismethod is based on a parametric bootstrap approach. Performance is then evaluated using simulated
signals and data recorded fromhealthy human volunteers. Some examples of applications will be presented that
demonstrate the power of themethod in identifying recordings (or sections of recordings) that do not permit
robust inferences of dCA, tracking changes in dCAover time and assessing the effect different TFAparameters
have on the results obtained. This paper thus addresses a long-standing need to obtain indicators of the quality of
dCA assessments in individual recordings, where the variability of results has long been a challenge.While the
current paper is focused on themean phase of TFA, the approach could readily be expanded to other indices of
dCAor even the assessment of other physiological control systems such as baroreceptor sensitivity where system
identification is also commonly used.

2.Methods

2.1.Data acquisition and processing
The collection of data for this studywas performed at theUniversity of SouthamptonHospital Trust andwas
approved by theNHS research ethics committee forNorthern Ireland ref:14/NI/1146. Recordings of 18.5± 1.1
(mean± standard deviation)minutes were collected from20 healthy young adult volunteers (25.5± 3.5 years,
height 168.3± 12.3 cm,weight 64.5± 16.4 kg, bodymass index 22.6± 4.5 kg m−2, systolic blood pressure
119.6± 15.4 mmHg, diastolic blood pressure 70.5± 8.3 mmHg, 10 female) during rest. All volunteers had no
history of cardiovascular or neurological disorders.

ABP (see figure 1 for an example of signals acquired)was recorded non-invasively using afinger
plethysmography device (FinometerMIDI, FinapresMedical Systems, Amsterdam, TheNetherlands). CBFV in
both the left and rightmiddle cerebral arteries (MCA)was recorded non-invasively using TCDultrasoundwith a
2MHz transducer (Dopplerbox, DWL, Compumedics GermanyGmbH). A three-lead electrocardiogram
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(ECG)was also acquired for the duration of the recording. Recordings were taken on 5 separate occasions
approximately oneweek apart (8.9± 6.4 d). All signals were sampled at 125 Hz, except the ECG,whichwas
sampled at 250 Hz, in order to increase temporal accuracy in identifying heart-beats, and stored for later offline
analysis. Custom software built inMatlab®was used to pre-process and edit the signals before analysis was
performed. Two recordings out of the 100were omitted from the analysis due to their quality being too poor.

Processing of the signals beganwith a 9th ordermedianfilter applied to theCBFV signals to remove any
isolated spikes that are a commonoccurrence in these signals. TheCBFV signals were then visually inspected
and any remaining spikes were replaced by linear interpolation. This was followed by a 5th order Butterworth
low-pass filter with a cut-off frequency of 20 Hz applied both forwards and in reverse to negate the effect of any
phase shifts introduced by the filtering. R-peaks from the ECG signal were detected based on Pan-Tompkins
algorithm, andwere used to compute the beat-to-beat average values of theABP andCBFV signals, denoted
henceforth asmABP,mCBFV-L andmCBFV-R (for left and rightmiddle cerebral arteries respectively). These
were then interpolated using a 3rd order polynomial and resampled at 10 Hz.

Because artefacts due to factors such as participantmovements are unavoidable when collecting data, and
have been shown to negatively impact results (Meel-van denAbeelen et al 2016), every signal was visually
inspected and any sections of data with artefacts weremarked as bad data. Any such sections shorter than 3 s
were replaced by linear interpolation, whilst the rest were treated as gaps in the data by replacing themwith
NaNs (not-a-number) inMatlab®; those gaps were excluded in further analysis, with the effect of doing so onCIs
also being considered in this paper. Finally, the signals were normalised and expressed as relative change (in
percent)with respect to themean values within the recording.

2.2.Data analysis
In this sectionwewillfirst outline the TFAmethod and howphase is estimated from it. Then the new parametric
bootstrapmethod for estimating the sampling distribution andCIswill be explained. The sampling distribution
refers to a set of individual phase estimates generated frommultiple simulations (the parametric bootstrap) of
theCBFV signals in the current recording. The approach taken to test and evaluate themethodswill then be
presented, followed bymethods used in exploring applications of the approach.

Figure 1.An example of the signals acquired for analysis, with two consecutive epochs highlighted andmissing data pointed out. The
top signal is themeanABP and lowerfigures are themeanCBFV for the left and rightMCA respectively. Each epoch is a 300 s long
segment of the recording, and every epoch is shifted to the right of the previous epoch by a specific time interval, in this case 150 s. The
magnifiedfigure is an example of a section of datawhere parts aremissing.
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ATFAbased approach is used to estimate the phase. Phase estimates of the transfer function (H) between
pressure andflow signals provide an indication of the lag between the two signals, with a positive phase
indicating a functional autoregulatory system. Phase has been chosen for this paper due to its previous validation
as ametric with a strong relationship to dCA (Birch et al 1995,Diehl et al 1995) and its wide acceptance in current
dCA research (Claassen et al 2015).H is based on the relation betweenmABP, denoted now as p, andmCBFV,
denoted as v:

( )
( )
( )

( )=H f
S f

S f
, 1

pv

pp

where f denotes frequency (inHz or rads s−1) and Spp the power spectrumof p and Spv the cross-spectrum
between p and v. The average phase over a specific frequency band is commonly used as ametric of dCA. For this
study the low-frequency (LF) band from0.07 to 0.2 Hz is adopted (Claassen et al 2015), though other frequency
bands are also commonly chosen (Meel-van denAbeelen et al 2014). In order to avoid the need for phase
unwrapping (which can give aberrant results especially in noisy data) the complex values ofH in the chosen
frequency range are first all given a constantmagnitude and then averaged, with the phase of the resultant
complex number providing the average phase value. The cross- (Spv) and autospectra (Spp) are usually evaluated
using theWelchmethod (Barbé et al 2010), where the signals are divided into overlapping ‘windows’, tapered at
both ends by awindow function, and then Fourier transformed. The length of thesewindows and the function
used to taper them, aswell as the frequency band chosen, are some of numerous parameters that can affect the
results of TFA. Another choice is the use of a coherence cut-off (C-C-O) such that any TFA estimates with a
coherence below this threshold are deemed to provide unreliable results for phase estimates and are therefore
excluded from further analysis. Coherence is also based on the relationship between the spectra, and is given by
the following equation:

∣ ( )∣
( ) ( )

( )g =
S f

S f S f
. 2

pv

pp vv

2
2

Amore detailed description of the parameters used in estimating TFA and their recommended values can be
found inClaassen et al (2015).

Due to the nature of the Fourier transform, the gaps in the recordings (missing data identified byNaNs) have
to be excluded from analysis. In order to do this, the overlap betweenwindows are adjusted so that nowindows
include the gaps andwindows start and end immediately before or after the gaps, thusmaximising the data used.
For example infigure 1, where some data ismissing between approximately 650 and 670 s.Windowoverlap
would thus be adjusted so that awindow stops at the last good sample around 650 s, and the next one starts at
approximately 670 s where good data is again available; the short data segment at around 660s is too short tofit a
window (in the current work 20, 50 or 100 s long) and is lost to the analysis. Auto- and cross-spectral analysis is
then performed using these windows, as indicated in (1), using thesemodifiedwindow locations.

To track the phase throughout the entire recording, the recordings were divided into overlapping blocks
(known as ‘epochs’, see figure 1), each one shifted by a specific time interval compared to the previous one. For
each epoch, the recommended TFAprocess as described above (see also (Claassen et al 2015))was performed to
acquire an estimate of the phase and subsequently its confidence interval.

2.3. Parametric bootstrap for phase estimates
To estimate theCIs, a parametric bootstrap based approach is used, withfigure 2 illustrating the process.
ThroughTFA (blockH in thefigure), the bestfit relationship betweenABP (p) andCBFV (v) isfirst estimated.
The phase (averaged over the selected frequency band)provides the estimate of phase (point estimate) for this
recording. The output ofHprovides a ‘clean’ estimate of v, known as v̂ , based on the contribution that can be
explained by p. The ‘noise’ e(t) (also known as the residual) is estimated as the difference between the ‘clean’ and
themeasuredCBFV. If the linearmodel fitted the data perfectly and therewere no noise present in the
recordings, the residual would be zero. Simulated signals of CBFV ṽ are then obtained by adding simulated
noise ˜( )e t to the ‘clean’CBFV signal. This simulated noise has the same power spectrum as the residual, this
being achieved byfiltering randomwhite noise with afilterG, whose frequency response is determined by the
spectrumof e(t); an autoregressivemodel and the Burg algorithm (Rodríguez-Liñares and Simpson 2019) are
used for this purpose. To determine the order ofmodel used, the Bayesian information criterion (BIC)was used
to select the order which resulted in the lowest BIC in each individual recording. Visual inspection of the power
spectrum confirmed that the simulated noise signals provided a close approximation to the power spectrumof
the residual signal. Using thismethod,M= 200 simulated signals ˜( )v t are generated, eachwith independent
randomnoise. TFA is then applied to each of these signals, using the original p(t) as input. The average phase
value over the LF frequency range (Zhang et al 1998) is then found in each of these signal pairs in the sameway as
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is done for the original recordings. This provides the estimated sampling distribution for the phase estimates,
with the 2.5th and 97.5th percentiles being taken as the confidence limits.

2.4. Verification of themethod
2.4.1. Verifying confidence interval estimates
In order to verify that confidence interval estimates are reliable, a further simulation is performed, with the
process illustrated in figure 3. For this, the ‘true’ confidence interval should be known. To this end,first one
recording fromone participant is randomly chosen, and the confidence interval is obtained, using themethod
described above. This is deemed the ‘correct’ confidence interval for this set of simulated signals. If the proposed
parametric bootstrapmethod is reliable, then ourmethod should provide good estimates of this confidence
interval when themethod is also applied to any one of these simulated signals. As shown infigure 7, we therefore
randomly select 50 of the simulated signals ˜ ( )v ti , i= 1..50) and apply the parametric bootstrappingmethod to
each of these (i.e. a second level of simulation)with p(t) as the input signal, tofindCIs. Thewidth of these 50CIs
is then compared to the ‘correct’ confidence interval from the original simulations, and the percentage error in
confidence interval recorded. This analysis is repeated on 5 different recordings.

2.4.2. Validating assumptions
Themethod outlined previously relies on the assumption that noise is present in the output of the signal and not
in the input i.e. it is present in themCBFV recordings but not in themABP recordings. However, blood pressure
measurements are also likely to be contaminated by some noise. In order to assess the potential impact of this,
themethod outlined in 2.3 is applied once again, but now simulating noisy input signals ( )˜p t rather than noisy
output signals ˜( )v t using an approach equivalent to that discussed above.

2.5. Estimates of CIs for phase
Having verified the performance of the bootstrapmethod in simulated data, it is then applied to the recorded
data fromhealthy individuals in order to assess CIs of phase estimates and compare themwithin recordings (i.e.

Figure 2.Parametric bootstrap process: the frequency response (transfer function)H is estimated and used to generate a prediction of
flow v (v̂ ). The error e (also known as residual) between this prediction and the original flow is calculated, and its spectrum is used to
determine a filter that, when applied towhite noisew, provides a simulated error signal. This is then added to v̂ to generate a
simulation of v (ṽ). This, together with p is then used in as input to TFA to obtain one bootstrap estimate ofH (H̃ ). By repeating the
operation below the bold (red) dotted linemultiple times (each timewith different randomnoise), the bootstrap distribution of H̃ is
found. The dotted lines signify control lines, used in estimatingH, H̃ andG, respectively.
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between overlapping epochs) and between recordings (within and between individual variations). The standard
deviation of bootstrapped phase estimates fromdifferent epochswithin one recording are averaged, and
compared to the dispersion of phase estimates (point estimates) from the different epochs in that recording.One
might expect these to be similar, but any time-varying behaviour of dCAmay lead to greater dispersion between
epochs than predicted from the bootstrap, which only assumes additive noise in the data.

2.6. Assessment of the impact of data quality and tfa analysis parameters
Following on from the descriptive analysis of CI for phase estimates in a cohort of healthy volunteers at rest, the
potential of the bootstrapmethod in improvingCA analysis is tested. In recordings where some data had

Figure 3.Adouble bootstrap process. The output of the original bootstrap (ṽ) is treated as the input signal and used in a second
bootstrapwhich follows the same procedure as described infigure 2.Note that the processing below the top dotted line is repeated 50
times to generate 50 ṽ and the loop below that line is repeated 200 times to generate 200 bootstrap estimates for each of these 50
simulations.
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previously been visually identified as containing bad segments (originallymarked as gapswithNaNs) it is
expected that these segments will provide poor estimates ofH and large CIs. The ability to thus ‘automatically
identify’ bad data informs on the potential of the bootstrapmethod to identify poor data segments without the
need for extensive visual analysis. Aminimum length of 45 seconds of continuousmissing data inmCBFV
(either left or right) is chosen for this analysis. This length is chosen as a trade-off between ensuring that a large
part of data in awindow is of poor quality, andmaximising the amount of data files available to perform the
investigation on. Any signals that fit this criteria are used in the test, with the remaining files being excluded,
resulting in 17 recordings of the left velocity and 9 recordings of the right velocity being used. For each of these
the average confidence interval size across all epochs is calculated under three different conditions: (1) after
removing bad data (‘normal’ analysis as described previously inMethods 2.2), (2) including all data in the
analysis and using the recommended coherence cut-off threshold (Claassen et al 2015), andfinally (3) including
all data but performing analysis without applying the recommended coherence cut-off thresholding described in
Claassen et al (2015).

Wilcoxon signrank tests are carried out on the set of 26 recordings being analysed to determine the
significance of any difference betweenCIs from these three analyses.

It is desirable that TFA estimates provide precise estimates of phase, i.e. narrowCIs. In order to test the effect
of different parameter choiceswhen using the TFA on theCI, a range of different window sizes and epoch
lengths are tested, as outlined in section 3.3; epoch length refers to the length of data over which eachTFA
analysis is performed, andwindow-length refers to the length of (Hanning)windows usedwhen applying the
Welchmethod for the auto- and cross-spectral density estimation. For each combination of window size and
epoch length, analysis is performed on all 98 recordings, fromwhich the average CI across all epochs in a
recordingwas calculated and used to comparemethods. This resulted in 98CIs, fromwhich the best-performing
choices are identified.

3. Results

3.1. Analysis of recorded signals
Illustrative examples of bootstrap distributions of LF phase estimates over the duration of the recording are
shown infigure 4. The dots connected by straight lines indicate the phase estimates (point estimates) in each
epoch using only the recorded data, and the box andwhiskers show themedian, quartiles and 95%CIs (2.5th
and 97.5th percentiles) of the bootstrapped distributions. Estimates were obtained fromoverlapping 5 min
epochs in three 18 min recordings. It is evident that the phase varies considerably over time, and that the CIs
(given by the length of thewhiskers in each epoch) can alsofluctuate strongly inmany of the recordings.
However, due to the often large size of the CIs only large changes in phasewould be statistically significant, with
this being explored further in a follow-on paper. Figure 5(a) shows the range of phase estimates (point estimates,
i.e. without using the bootstrapmethod) obtained from the standard deviation of the overlapping epochs within
each recording, and compares them to the average of the standard deviations obtained from the bootstrap
method. This figure shows that the values from the twomethods are similar, but differ considerably between
recordings, with generally lower values obtained from the bootstrapmethod. This is confirmed by the scatter
plot infigure 5(b), wheremost points lie below the line of identity. The discrepancy between the estimates is not
unexpected, and can probably be explained by the bootstrapmethod only taking randomvariability (‘noise’)
over 5min epochs into account. The estimates from the dispersion from the point estimates of phasewould
however also be affected by any physiological change in autoregulatory status thatmay occur over the duration
of the recordings. Figure 6 shows the estimated phase dispersion (average of the standard deviation of the
bootstrap estimates across the epochswithin each recording)when noise is either added to the output (mCBFV)
(as described in figures 2 and 3) or the input (mABP) signal (seemethods 2.4.2). It is evident that both lead to
similar results in this data. This alleviates the concern that the assumption of noise only in the outputmight
distort results.

Having explored the proposedmethod on some recordings, it will nowbe validated on simulated signals
after which the impact that different parameter choices in TFA analysis have on estimation errors for the phase
will be considered.

3.2. Verification of the bootstrapmethod
Figure 7(a) shows a histogramofM= 200 bootstrapped phase estimates for a single epoch in one recording, with
theCIs (95% range)derived for the epoch given by the dotted lines. Each phase has been derived after adding
simulated noise. For the purpose of verification,fifty of these simulated data epochs have been processed as if
theywere the original data to produceK= 50 sub-distributions. The central sub-figure 7(b) shows the size of the
CIs for each of theK= 50 distributions as a vertical linewith themean phase estimatemarkedwith a *. Given
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Figure 4.Examples of phase estimates from three recordings together with confidence intervals, fromoverlapping epochs (3min long
epochs with a time-shift of 60 s) along recordings of approximately 18min duration. The box shows the upper and lower quartiles,
and thewhiskers show the 95% confidence intervals for the estimates. The topfigure 4(a) is an example of a recordingwithmore
consistent point estimates and smaller confidence intervals, whereas the centralfigure 4(b)hasmore variation, with larger confidence
intervals highlighting areas of dramatic variation in the estimates. The finalfigure 4(c) provides an example of very large variation in
point estimates, with consistently large confidence intervals.

Figure 5.Comparison of standard deviations of point estimates and bootstraps.
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that each of the bootstraps is based on only one of the 50 simulated recordings, which each give different point
estimates, it is not surprising that their bootstrap distributions have distinctmean values. The estimates of CIs
from each of theK recordings are expected to provide an approximation to theCIs shown infigure 7(a). In order
tomake this clearer, in the right sub-figure 7(c), the CIs have been realigned, so that themean phase estimates
agree. It can nowbe noted that the confidence interval in 7(a) (shown as a grey band) is of a similar size to the
intervals estimates from each of the 50 simulations. Similar results were obtained in the other four sets of similar
simulations carried out on other randomly selected recordings. The average absolute error between initial CIs

Figure 6. Standard deviation of confidence intervals estimated from the same recordings used in 2.6, for both the left and rightMCA
(red circles indicate left and blue crosses indicate right). The standard deviation of each recordingwhen assuming noisy input signals
andwhen assuming noisy output signals are plotted against each other. The identifiable approximately linear relationship indicates
errors on the input or output have little effect on the overall size of the confidence interval when compared to each other.

Figure 7.Verification of the parametric bootstrapmethod. Figure 7(a): a histogramof the distribution of phase estimates acquired
fromone parametric bootstrap simulation. The two dotted lines indicate the lower and upper confidence limits (95%). Figure 7(b):
Confidence intervals forK = 50 second level parametric bootstrap simulations, performed onK randomphase estimates taken from
the distribution in the left figure. The grey band indicates the confidence limits from the original parametric bootstrap, and the *

indicate the central (mode) phase estimates from each newdistribution. Figure 7(c): the sameK confidence intervals as in the previous
figure (7)b)), with their central phase estimates aligned, to facilitate visual assessment. It is noted that theK= 50 estimates of theCI all
agree quite closely with the expectedwidth (grey band).
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(grey band infigure 7) and the sub estimates (plots infigure 7(c))was 7.6%. These results are very encouraging
for the use of the technique in the recorded data sets.

3.3. Effect of tfa parameters onCIs of phase estimates
Figure 8 shows the effect of window size and epoch length on the bootstrap-estimatedCIs. Asmight be expected,
longer epochs givemore robust estimates (smaller confidence intervals). Less expectedwas that window lengths
of 50s consistently give smaller CIs than those of either 20 or 100s. For the commonly usedfiveminute epochs, a
window length of 50 s resulted in significantly smaller CIs compared to 20 s (Wilcoxon signed rank p< 0.001)
and 100 secondwindows (Wilcoxon signed rank p< 0.001).

3.4. The effect of data quality onCIs
Given the variable data quality that can be achieved in acquiring ABP andCBFV signals, it is recommended
(Claassen et al 2015) that data is selected so as to only process artefact-free segments. This, however, has to be
balanced against the impact of having less data in each epoch, whichwill tend to increase CIs of phase estimates
(see 3.1). Removing frequencies inwhichABP andCBFVhave low coherence is anothermeans of controlling the
results of the analysis (Claassen et al 2015), but here again theremay be a loss of information, thatmay degrade or
add bias to phase estimates.We therefore used the bootstrap confidence interval estimates to compare the
different options in applying TFA. Three alternatives were compared, firstly we excluded poor quality data
segments and applied aminimal threshold for coherence estimates, which corresponds to the standard approach
recommended inClaassen et al (2015) and is outlined in themethods section. Itmay be noted that with our
approach offittingwindows in between gaps, fewerwindows or greater overlap between themwill result from
removing data from some (fixed length) epochs. Secondly, we did not remove bad data, but did apply the
minimal coherence criterion. Thirdly, we neither removed bad data from analysis, nor applied the coherence
criterion. The results onmean phase estimates andmeanCIs for this set of 98 recordings is shown in table 1.

The smallest CIs are obtained in this data set with the firstmethod, with a non-significant increase in CIs
when bad datawas included but the coherence criterionwas still applied.Without the latter, CIs increased
significantly (Wilcoxon signed rank test p< 0.02) against both alternative approaches. Itmay also be noted that
themean of the phase estimates did not change significantly between thefirst two cases, but did between cases

Figure 8.The average size of the confidence intervals across all recordings as a function of the length ofwindowused and the length of
epochs. The dotted–dashed lines show the average of the estimates for each epoch length.Window lengths of 20, 50 and 100swere
applied to all epochs, and for the 10 min epoch, 300swas also investigated.
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two and three (Wilcoxon signed rank test p= 0.044), with themean phases being significantly lowerwhen
coherence criterionwas not used. These results confirm the importance of using the coherence criterion to
improve the robustness of estimates, as previously recommended (Claassen et al 2015), especially in the presence
of poor quality data.

4.Discussion

Confidence intervals of autoregulation estimates are routinely used in investigations intoCA,when presenting
results (Eames et al 2002, Parthasarathy et al 2018). However, these are almost always based on estimatesmade
across a cohort, rather than referring to each recording individually. The former captures the between-subject
variability, as well as any additional estimation errors in TFA analysis in individual recordings. The current work
focuses on estimating these latter errors.We thus achieve a long-standing goal of obtaining an indication of how
robust estimates of phase from any given recordingmay be. By using a parametric bootstrap, a single recording
can effectively be used to generate an approximation of the sampling distribution of phase estimates obtained
from that recording, under the assumption of additive noise. Bootstrap basedmethods of estimating CIs have
been used extensively inmany applications, including signal analysis (Efron 1985, Zoubir and Iskander 2004),
however their usage in regards to autoregulation remains limited. A bootstrapmethodwas proposed in Simpson
et al (2004) to determine the spread of ARI based estimates from individual recordings, but the approach
employed there used resampling of recorded data rather than generating new surrogate signals with additive
noise (a parametric bootstrap approach), as employed here. In Simpson et al (2004), the results were used to
objectively select specific signals that providemore robust results. A parametric bootstrap approachmore akin
to that used herewas proposed in Beda et al (2017), but in the context of extracting frequency domain features
fromheart-rate variability, rather than for TFA.

An alternative to estimating theCIs through themethod shown is to use the theoretical variance of phase
estimates, based on the coherence and number of windows used in the TFA (Piersol and Bendat 2010). However,
thismethod relies on the assumption that recordings are of sufficient length to negate any resolution bias error
thatmay have arisen in estimating the cross-spectra. A detailed evaluation of this potential alternativemethod is
beyond the scope of the current paper.

The results presented here confirm the importance of considering the robustness of phase estimates from
individual recordings. It is evident from figures 4 and 5—showing time-varying changes in point estimates and
CIs aswell as dispersion between recordings—that some recordings providemuchmore reliable results than
others, with considerable variability evident along time even in the same recording (figure 5(a)) and between
recordings (figure 5(b)). That some recordings providemuchmore robust phase estimates than others is also
evident from the range of phase estimates obtained frommultiple epochs within the same recording, as evident
from the range of standard deviation values shown along the horizontal axis infigure 5(b).

Onemaywell envisage that decisions as towhether or not a patient is deemed to have impaired
autoregulation should be based not simply onwhether or not the point estimate of phase in a given recording is
below a set threshold, but alsowhether thewidth of the confidence interval allows a clear decision to bemade.

4.1.Determination of data quality
Whilst it has beenwidely understood since early assessments of CA that poor quality data, be that fromnoise or
artefacts, has a negative impact on the results gained and can lead to unreliability (Meel-van denAbeelen et al
2014, Claassen et al 2015), identification of such data seems to primarily revolve around visually inspecting the

Table 1.Comparison ofmean phase estimates andmean confidence
interval estimates when excluding bad data in time and frequency
domains.

Excluding poor quality data

f̄ (rads) 0.62

Confidence interval size (rads) 0.59

Including poor quality data, with coherence Cut-Off

f̄ (rads) 0.70

Confidence interval size (rads) 0.66

Including poor quality data, with no coherenceCut-Off

f̄ (rads) 0.58

Confidence interval size (rads) 1.11a

a The confidence intervals when excluding data and not using a cut-

off coherencewere significantly different to both other test cases.
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recorded signals.Whilst this is an effectivemethod at improving confidence, it is not a quantitativemethod. The
need for detail visual inspection of data prior to TFA alsomakes it difficult to translate this approach toCA
assessment into clinical practice. One possible alternative to this visual identification is the use of the parametric
basedCIs that can be estimated periodically throughout a recording. As demonstrated in 3.4, these CIs are able
to track changes in the performance of dCAover time, and give an indication of the reliability of the results
obtained. Further work is required to investigate the performance in specific challenging settings, such as when
there is data drop-out (flat data) or spike-like activity. Itmay be necessary that additional parameters, in addition
to thewidth of theCIs, are used in decidingwhether specific estimates of phase should be deemed reliable.

Thismethod highlights the impact of using a cut-off value of coherence, belowwhich estimates can be said to
be not reliable, in reducing confidence interval size and thus improving the robustness of phase estimates.
Results showed that including poor quality data did not significantly increase the size of CIs. A possible
explanation for this is that removing data segments of poor quality lead to loss of data and thus fewerwindows,
which also degrades results. Itmay be that having no data at all from these segments is almost as bad as having
poor quality data from these segments, especially when these segmentsmay also contain some data that is less
degraded. The increase inCIswith lower numbers of windowswas shown in 3.3, when different length epochs
were also analysed. Small amounts of artefacts were found to be acceptable in thework of Claassen (Meel-van
denAbeelen et al 2016) and alsoDeegan (Deegan et al 2011).

4.2. Parameters of TFA
Claassen et al (2015) recommend a 100 swindow and at least fiveminute long recordings to achieve reliable
estimates of autoregulation using TFA.Mahdi et al (2017) also investigated the required data lengths for stable
estimates of autoregulation, and recommended that fiveminutes was theminimum required. Our results found
thatwhen using fiveminute long epochs, the use of a 50 swindow gave lowerCIs than 100 and 20 swindows,
which counters the recommendation of 100 swindows given inClaassen et al (2015). Although tenminute
epochswere found to result in smaller CIs than fiveminute epochs, the difference between the interval sizewhen
using threeminute epochs in comparison tofiveminute epochs is considerably larger than the difference
betweenfive and tenminute epochs, suggesting that the stabilising effect of using longer recordings diminishes
as the recording becomes longer. Fiveminute recordings appear to be an adequate length to achieve reliable
results, provided sensible choice of window length ismade. Itmay also be noted that the benefits of shorter
window sizes have been pointed out in other recent work (Panerai et al 2020). These observations are just a small
demonstration of the capabilities of thismethod in optimising parameters for autoregulation assessment. Any
number of parameter combinations could be tested, including parameters for othermethods such as ARI. This
could extendwork such as that byChacón et al (2008) assessing other parameter combinations for theARI
model tofind increased stability.

4.3. Limitations of the study
One of themain limitations of this study, in commonwithmuchwork onCA,was the potential for errors in the
measurementmethods. CBFVwas used as an approximation for CBF, however, this is only a reasonable
approximation if the diameter of the blood vessel—in this case theMCA—is constant throughout the recording.
Whilst numerous studies have suggested this is a reasonable assumption under specific conditions (Schreiber
et al 2000, Serrador et al 2000), several authors have shown thatMCAdiameter changes do compromise the use
of CBFV as a surrogate for CBF (Altman 2005). Additionally, the Finometer device used tomeasure blood
pressure continuously can lead to errors due to drifting and smoothmuscle activity in the finger during
recordings (Birch andMorris 2003).

The cohort chosen for the studywasmade up of only healthy adult volunteers without including patients or
others likely to have impaired autoregulation. However, the aim of the current workwas to present and assess
themethod to estimate CIs, rather than comparing results between different cohorts or experimental
conditions. That will be considered in a follow-on paper. The results presented illustrate thewideCIs that are
sometimes achieved, and how themethod can be exploited in controlling estimation errors. It will be of great
interest to see if different experimental conditions could reduce theCIs and if some patient groups (e.g. with
stroke or TBI) providemore or less robust results.

The bootstrap approach is based on the hypothesis that errors in phase estimates are due to additive random
noise in the output signal. TheCIs thus only reflect this source of error, and not others, such as time-varying
physiological behaviours. It would be very challenging tofind robustmodels that could include this aspect in
estimates of CIs.When using the bootstrapmethod tofind the sampling distribution orCIs, it should always be
highlighted that these are estimates based on the assumption or additive randomnoise rather than other possible
sources of error.
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5. Conclusion

Anewmethod for assessing the reliability of phase estimates has been introduced and results validated in a series
of tests. Some descriptive statistics of CIs in recordings fromhealthy adult volunteers have been provided and
some examples of how themethods can be used have been shown. The use of these as a tool for identifying poor
quality sections of recordings that do not allow for robust analysis has been discussed. Finally, some of the
recommendations of Claassen et al (2015) have been testedwith a view to optimising the TFAmethod
(optimising parameter combinations). In conclusion, the study provides very encouraging results and promise
that thismethodwill provide a useful additional new tool in the goal to be able to robustly identify CA and
changes inCA from individual recordings.
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