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Abstract

Magnetic targeted therapies have been shown to be
very effective at treating tumours in animal models
(e.g. [22]), but have yet to be widely adopted in a
clinical setting. The aim of this work is to correct a
widely occurring, but subtle, error in the interpreta-
tion of models of magnetically targeted delivery. This
can result in inaccuracies in the predicted targeting
efficiency of up to an order of magnitude. In order
to correct this error a model for magnetic targeting
that is based upon a particle conservation law is de-
veloped. The close relationship between this model
and the standard approach is demonstrated. Inter-
pretation of magnetic particle dynamics in terms of
a conservation law leads to an improved understand-
ing of the overall process and results in an alterna-
tive, and correct, definition of the targeting efficiency.
The particle conservation law approach is illustrated
by considering targeting in a flow through a simple
network, consisting of a vessel that branches into two
daughter vessels, and compared to the standard pro-
cedure for computing targeting efficiency, which is
based solely on a count of representative particle tra-
jectories. It is shown that the analysis based on the
conservation law yields a prediction that compares
much more favourably to the results of simple in-vitro
experiments performed in this set-up [29] than the
standard, but erroneous, approach based on count-
ing particle trajectories. The method of computing
targeting efficiency that is developed here, has wider

applicability and can, for example, be applied to tar-
geting in complex mammalian vasculatures.

1 Introduction

Magnetic targeting is a non-invasive method to de-
liver medical therapies to specific sites in the body.
It works by (i) attaching the therapeutic agent (e.g.
drugs, genes or onco-viruses) to the magnetic nano-
particles (MNPs), typically via a functionalized car-
boxyl group [24], (ii) injecting the MNPs into the
circulation and (iii) directing them to the target site
by application of a suitable magnetic field [5, 33].
Its aims are to increase therapeutic efficiency and
reduce unwanted side effects by concentrating the
therapeutic agent in the target tissue and reducing
the total systemic dose required by the treatment.
The method has been successfully applied to deliv-
ery of chemotherapy [25] and cell therapy [22] to tu-
mours, stem cells to injury sites [14, 28] and drugs
through the blood-brain barrier [13]. It is particularly
suited to delivery of therapeutic agents to tumours,
because it relies on a transport vector (a magnetic
nano-particle), that is too large to extravasate in
healthy vasculature but which can nevertheless eas-
ily extravasate in compromised tumour vasculature.
This effect, termed the enhanced permeability and
retention (EPR) effect, is reviewed in [17].

The first clinical trials of magnetic targeting used
permanent magnets attached to the body to provide
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the targeting field. While this is effective for treating
surface tumours [15] it proves ineffective for target-
ing sites in deep tissues, since the magnetic field gra-
dient used to target the MNPs decays rapidly with
distance from the magnet [9]. An alternative, more
powerful approach, is to use the magnetic field gra-
dient coils of a Magnetic Resonance Imaging (MRI)
system [25, 22, 29]. The notable advantages of this
approach are the high magnetic field strengths that
can be obtained, the precise temporal and three-
dimensional spatial control over magnetic field gra-
dients, and the possibility of simultaneous high con-
trast imaging of the surrounding tissues.

To predict the efficacy of magnetic targeting, a
number of theoretical and numerical models have
been developed. Most of these rely on simulating
individual particles trajectories in response to the
applied magnetic field and vascular flow. The sim-
plest approaches consider non-interacting magnetic
particles inside simple vessel geometries [29, 20, 27,
30, 2, 1]. More complex models account for branch-
ing vascular networks [10, 11, 31], pulsatile vascular
flow [16], particle-particle interactions [11, 35, 12],
shear-induced diffusion [9, 26], interactions between
particles and red blood cells [7, 4, 6], particle-vessel
wall interactions [23], and penetration of particles
through vessel walls and tumor tissues [18, 32]. These
complex models typically require that a numerical ap-
proach is adopted, and thus limit the number of parti-
cle trajectories that can be considered in a simulation.
Nevertheless, an approach based on tracking individ-
ual particle trajectories provides a good approxima-
tion to MNP targeting and provides a useful tool for
predicting particle distribution in vascular networks.
Moreover, it yields simple analytical results that can
be readily used to evaluate the targeting efficiency of
various protocols. However, many works that adopt
this approach make significant errors in interpreting
their results and estimating targeting efficiency. In
particular, it is common practice to assess targeting
efficiency by starting with an homogeneous initial dis-
tribution of particles distributed across the entrance
of the vessel network, and then measuring the frac-
tion of these particles that end up being captured on
the walls of the vessels as they pass through the net-
work, see for example [29, 20, 27, 30, 2, 1, 31]. This

does not provide a true picture of the process as can
be seen by considering what happens in practice. In
in-vivo application, MNPs are typically injected into
a large vein, from where they are returned to the
heart and lungs (where they mix with the blood), be-
fore entering the main arterial network via the aorta.
In the large arteries, as discussed in [9], the effect of
the targeting field on the MNPs is insignificant, and
it is only once the MNPs reach the smaller vessels
(small arteries and downwards), where flow speeds
and vessel diameters are sufficiently small, that the
targeting field is strong enough to significantly affect
particle distribution across the vessel cross-section.
Thus, a representative model for in-vivo targeting,
which is nevertheless tractable, is to consider a net-
work of small vessels starting from a small artery into
which a well mixed dilute suspension of MNPs en-
ters continuously in time. Similarly for most in-vitro
experiments a well-mixed suspension of particles is
injected into the entrance of the network of artificial
vessels. Typical geometry of a phantom vessel net-
work often used in in vitro experiments [29, 27, 20, 35]
is shown in Figure 1. At the network entrance the
flow is reasonably well-approximated as a Poissueille
flow, and thus many more MNPs enter, per unit time
and per unit area, into a portion of the network’s
entrance close to the centre of the inlet vessel than
into a portion of the network’s entrance lying close
to the vessel wall. Accounting for this effect means
that, when assessing targeting efficiency, particle tra-
jectories starting close to the centre of the network
entrance should be weighted more heavily than those
starting close vessel wall. Notably this effect is miss-
ing from the assessments of targeting efficiency con-
ducted in [29, 20, 27, 30, 2, 1] and the related mod-
elling works [3, 10, 16, 31] in which all particle tra-
jectories are weighted equally. The same argument
also applies to theoretical treatments of the standard
in-vitro experiments that are used to assess targeting
efficiencies in phantom vessel networks [29, 27]. Fi-
nally, we note that there are some works that do prop-
erly account for this effect by using a particle conser-
vation equation and imposing constant concentration
at the network inlet, see for example [9, 26, 23, 6].
However, these works are all based on models that
include the effects of (shear-induced) diffusion in the
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Figure 1: Geometry of the model. The channel has
cylindrical geometry and a Poiseuille in-flow velocity
profile, the magnetic field gradient is perpendicular
to the flow. Fm and Fd are the magnetic and drag
force acting on a magnetic particle.

particle conservation equation and it is wrongly be-
lieved that, where these diffusive effects can be ne-
glected, formulation of the problem in terms of a con-
servation equation adds nothing to the understanding
of the physics.

In what follows we present a 3D approach to mod-
elling magnetically targeted delivery which is based
on a conservation law for magnetic particles. Al-
though this has extensive similarities with the simple
particle tracking approach employed in other works it
has the significant advantage that it allows the mag-
netic targeting efficiency to be computed correctly.
We illustrate our approach in the simple vascular net-
work shown in Figure 1 and use it to measure the
targeting efficiency by calculating the fraction of the
total particle flux that enters the (upper) targeted
branch. A nice feature of performing this calculation
in this geometry is that it is entirely analytic. How-
ever, the approach adopted here can equally be ap-
plied to more complex networks of vessels, albeit that
the resulting calculations are computational rather
than analytic. We model the targeting process by
continuous injection of MNPs, at uniform concentra-
tion, into the entrance of the vessel network. This
provides a much better way of assessing targeting
efficiency, for both in-vivo magnetic targeting (in
which the target particles are injected systemically)
and for in-vitro magnetic targeting, than the alterna-
tive method which is based on tracking representa-
tive particles starting from their initial distribution.

This is illustrated by the fact that it gives signifi-
cantly better agreement to the in-vitro experimental
results of Riegler et al. [29] than the alternative. We
also show that another source of error, that leads to
significant underestimation of targeting efficiency, oc-
curs if the model is based on a single “representative”
two-dimensional cross-section, of a three-dimensional
vessel (as in [29, 20]).

In §2 we formulate a model, based on a conserva-
tion law for magnetic particles, for magnetic target-
ing in a vessel network. We show how this model
is related to the particle trajectories and illustrate
its use in the simple network, with a single bifurca-
tion, depicted in Figure 1. We focus particularly on
targeting efficiency and, by considering the particle
flux division at the junction where the flow divides
into the daughter vessels, we are able to derive an
expression for targeting efficiency. In §3 we discuss
our results in terms of the experimental results re-
ported in [29] for a targeting experiment conducted
in a simple network of this form. Finally, in §4, we
summarise our results and present our conclusions.

2 Model of magnetic targeting

The phantom vessel geometry commonly used to as-
sess magnetic targeting efficiency in in-vitro experi-
ment is a symmetric Y-junction channel with cylin-
drical cross-section (see Figure 1). Magnetic gradient
force is applied perpendicular to the axis of the main
channel, which serves to drive the magnetic carrier
particles towards one of the output branches (often
called the targeting branch) [29, 20, 35]. The sym-
metry of the geometry means that the flow in the
mother vessel splits evenly between the two daugh-
ter vessels, so that particles that arrive at the end
of the mother vessel in its top half flow into the top
daughter vessel while particles that arrive at the end
of the mother vessel in its bottom half flow into the
bottom daughter vessel. In order to calculate the
targeting efficiency in this set up (i.e. the fraction of
the particle flux entering the top daughter vessel) we
thus need only to model the particle dynamics in the
mother vessel. The modelled geometry is a cylindri-
cal vessel of radius b and length L oriented along the
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Table 1: Notation
L Vessel length
b Vessel radius
u0 Maximal fluid flow velocity
uav Average fluid flow velocity
η Fluid viscosity
a Magnetic particle hydrodynamic radius
B Magnetic flux density
Fm Magnetic force action on a particle
Ff Hydrodynamic force action on a particle
m Particle magnetic moment
vp Magnetic particle velocity
c Magnetic particle concentration
j Magnetic particle flux density
x, y, z Coordinates on particle trajectory
x0, y0, z0 Initial particle position
x̃, ỹ, z̃ Dimensionless coordinates
βm Dimensionless magnetic parameter
Y1,Z1 Coordinates of separation surface 1
Y2,Z2 Coordinates of separation surface 2
Ntot Total number of particles
N1 Number of particles reaching the upper

(targeted) daughter vessel
n1 Fraction of particles reaching the upper

(targeted) daughter vessel
N2 Number of particles reaching the vessel

wall
n1 Fraction of particles reaching the vessel

wall
Nt Number of targeted particles
n1 Fraction of targeted particles

x axis. The model is based on the following assump-
tions: (i) the flow in the vessel has Poiseuille flow;
(ii) there is a continuous inflow of magnetic parti-
cles with a uniform particle concentration c0; (iii)
the magnetic particles have permanent magnetic mo-
ments; (iv) magnetic field gradient is uniform across
the vessel and oriented along the y axis; (v) dipole-
dipole interactions between particles are neglected.
With the possible exception of (v) these assumptions
are directly applicable to the in-vitro experiments of
[29, 20, 11, 35, 19]. In vivo, magnetic targeting occurs
primarily in the small vessels (below 1mm in diam-
eter), in which there is little or no pulsation, and
so here the Poiseuille flow assumption (i) is justified.
Assumption (iii) is valid for ferromagnetic particles
as well as for superparamagnetic particles in a strong
magnetic field, above the saturation point (such as
would occur in an MRI). Assumption (iv) is gener-
ally correct in the case of MRI-guided magnetic tar-
geting, as the magnetic gradient is created on a much
larger scale in comparison to the vessel dimensions.
With assumption (v) we neglect a process of particle
cluster formation inside small vessels. However, the
model can effectively describe the motion of particle
aggregates by treating an aggregate as a single par-
ticle with an effective size and magnetic moment. It
can also be easily generalised to describe aggregates
of anisotropic shape [27, 21].

The motion of magnetic particles in the flow is gov-
erned by magnetic and hydrodynamic drag forces.
The magnetic force acting on a particle in an applied
magnetic field B is:

Fm = (m · ∇)B, (1)

where m is the particle magnetic moment. In the
applications we consider (e.g. MRI targeting) it can
be assumed that the particle magnetisation is sat-
urated so that its magnetic moment is given by
m = VMsB/|B|, where Ms is the saturation mag-
netisation and V is the volume of magnetic material
in the particle. In the case of particle aggregates,
V is the total volume of magnetic material in the
cluster. In MRI experiments the gradient coils are
rapidly switched on and off in order to avoid over-
heating; the fraction of time that the gradient coils
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are in the on state can be accounted for by multiply-
ing the magnetic force (1) by a duty cycle parameter
Dc [29, 22].

The hydrodynamic drag force can be written as the
Stokes drag force for a sphere

Fh = −6πηa(vp − u), (2)

where η is the fluid viscosity, u and vp are the fluid
and particle velocities, and a is the particle hydrody-
namic radius. In the case of particle aggregates, the
drag force can be generalised by introducing a shape
factor. An elongated/asymmetric aggregate can also
be described by using two or three shape factors [8].

The balance between these two forces defines the
equilibrium particle speed as:

vp = u + vm, where vm =
Fm

6πηa
. (3)

The velocity of Poiseuille flow inside the mother
vessel is:

u = u0

(
1− y2 + z2

b2

)
ex, (4)

where u0 is the maximal fluid flow velocity in the
centre of the vessel. For the cylindrical geometry,
u0 = 2uav, where uav is the average fluid flow veloc-
ity.

In order to track particle distribution (and particle
flux) within a vessel network it is useful to formu-
late the problem in terms of average particle con-
centration c(r, t). Particles within the networks ad-
vect with the flow and in response to magnetic forces.
They may also experience some diffusive motion due
to shear induced motion caused by their interactions
with the red blood cells [7, 4] (thermally activated
diffusion is negligible). Here we neglect this effect,
noting that it is usually relatively small in compari-
son to the advective terms [26]. Under these assump-
tions conservation of MNPs gives rise to the following
advection equation for their concentration:

∂c

∂t
+∇ · (vpc) = 0. (5)

Here vp is the particle velocity defined in (3). This
equation can be rewritten in the form

∂c

∂t
+ c(∇ · vp) + (vp · ∇)c = 0, (6)

Upon recalling that the flow is incompressible ∇·u =
0 and making use of the assumption that magnetic
force, and hence magnetic velocity vm, is spatially
uniform, the second term in (6) can be seen to be
zero so that the advection equation reduces to:

∂c

∂t
+ (vp · ∇)c = 0. (7)

Note that even where the magnetic force is spatially
nonuniform, the second term is usually much smaller
than the third term [9], as the magnetic velocity is
usually much weaker than the fluid flow, so that (7)
is still a very good approximation to (6). In order
to close the problem, in-flow conditions are required
at the inlet of the network ∂Ωinlet together with zero
in-flow conditions on the walls of the vessel. The
choice of the in-flow conditions plays a key role in
the interpretation of the results of the model and the
conditions appropriate to most in-vitro experimental
set ups is that the concentration at the entrance to
the inlet vessel is constant

c|∂Ωinlet
= c0, (8)

which simulates the inflow of a well-mixed suspension
of particles, concentration c0, into the network. The
inflow conditions on the walls of the vessel ∂Ωwall

state simply that on those sections of wall where the
particle velocity v is directed into the flow that the
particle concentration is zero, i.e.

c|∂Ωwall
= 0 if v · n < 0, (9)

where n is the outward normal to the vessel.
The characteristics x = r(t) of the advection equa-

tion (7) are given by the particle trajectories, and
along these characteristics concentration of particle
is constant. That is

along the characteristic x = r(t)

{
dr/dt = v
dc/dt = 0

. (10)

The condition (8) implies that c = c0 along charac-
teristics emanating from the entrance to the network
∂Ωinlet, while the condition (9) implies that c = 0
along characteristics that emanate from one of the
vessel walls ∂Ωwall [9]. The interior of the network is
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thus divided into regions in which c = c0 and those
in which c = 0 and these regions are divided by a
separation surface which is defined by the particle
trajectories.

We now focus on the particle trajectories, or equiv-
alently the characteristics of the advection equation
(7), and use these trajectories to derive the solution
to (7). In particular, we show that it is possible to
interpret the solution in terms of the flux of particles
that are captured on the walls of the vessel network
and the flux of particles that makes its way through
the network without being captured by the targeting
field.

The equations for the particle trajectories are:

dx

dt
= u = u0

(
1− y2 + z2

b2

)
,

dy

dt
= vm,

dz

dt
= 0,

(11)

from which the particle trajectories can be obtained
as:

x(t) = u0

(
1− y2

0 + z2
0

b2

)
t− u0vmy0t

2

b2
− u0v

2
mt

3

3b2
,

y(t) = y0 + vmt,

z(t) = z0,

(12)

or in the non-parametric form as:

x
vm
u0

= (y − y0)
(

1− z2
0

b2

)
− y3 − y3

0

3b2

z = z0

 (13)

where y0 = y(0) and z0 = z(0) is the position of
the particle, in the y–z plane, at the entrance to the
mother vessel on x(0) = 0.

Figure 2(a) and (c) show trajectories of magnetic
particles in the central plane (z0 = 0) for two dif-
ferent values of vm. The characteristic trajectories
divide into three sets, (i) those below the blue curve
that enter the lower daughter vessel in the main flow,
(ii) those between the blue and red curves that en-
ter the upper daughter vessel in the main flow and

(iii) those above the red curve that hit the wall of the
mother vessel before the junction with the two daugh-
ter vessels. In terms of the in-vitro experiment MNPs
flowing along both sets of characteristics (ii) and (iii)
usually end up in the (upper) targeted daughter ves-
sel, although those flowing along characteristics in
set (iii) roll along the upper surface of the mother
vessel before reaching the junction and entering the
targeted daughter vessel.

2.1 Separation surfaces

Here we derive formulae for the surfaces that sepa-
rate regions of the particle flow that enter the upper
targeted vessel from those that end up on the walls
of the mother vessel and from those that enter the
lower untargetted vessel. For simplicity, we intro-
duce dimensionless coordinates in equation (13) for
the characteristics (i.e. particle trajectories), defined
by

x̃ =
x

L
, ỹ =

y

b
, z̃ =

z

b
.

Thus, where 0 ≤ x̃ ≤ 1 and ỹ2 + z̃2 ≤ 1, these trajec-
tories remain within the domain of interest (i.e. the
mother vessel). Under this rescaling the two parame-
ter family of characteristics defined in (13) transform
to

x̃βm = (ỹ − ỹ0)(1− z̃2
0)− ỹ3 − ỹ3

0

3
z̃ = z̃0

 ỹ2
0 + z̃2

0 ≤ 1, (14)

where βm is the dimensionless magnetic targeting pa-
rameter defined by

βm =
vm
u0

L

b
. (15)

Separation surface 1. In the experimental con-
figuration considered here, the fluid flow at the end
of the mother vessel divides equally between the two
daughter vessels. Streamlines that reach the end of
the mother vessel (at x̃ = 1) below the line ỹ = 0 flow
into the lower (untargetted) daughter vessel while
those that reach x̃ = 1 above the line ỹ = 0 flow
into the upper (targetted) daughter vessel. Near the
end of the mother vessel, close to the bifurcation, the
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Figure 2: (a) (c) Trajectories of magnetic particles
at the central plane (z0 = 0) calculated using Equa-

tion (14) for βm =
vm
u0

L

b
= 0.1 and 0.5, respectively.

The shaded regions show area where c = c0, while
in white regions c = 0. All the characteristic tra-
jectories below the blue line enter the lower (non-
targeted) vessel; all characteristics above the red line
reach the vessel wall before the bifurcation, while only
those between the red and blue lines enter the up-
per (targeted) vessel in the main flow. (b) (d) Show
the separation surfaces at the entrance to the mother
vessel. Particles entering between the blue and red
curves reach the upper (targeted) daughter vessel in
the main flow, those above the red curve end up hit-
ting the wall of the mother vessel (and may either
stick to it or propagate along the wall depending on
its properties) whilst those below the blue curve en-
ter the lower daughter vessel. The intersection of the
separation surfaces with the entrance are defined by
Y1 = Y1(z̃0) and Y2 = Y2(z̃0) (blue and red curves,
respectively) by Equations (16) and (19) and calcu-
lated for βm = 0.1 and 0.5, respectively.

flow is fully three-dimensional (i.e. the Poiseuille flow
approximation no longer holds). However this devia-
tion from Poiseuille flow only occurs over a region of
(dimensional) size O(b) from the bifurcation and so,
given that the (dimensional) length of the vessel L
is much greater than its width b, the magnetic force
is not strong enough to significantly alter the parti-
cle trajectories within this region. Thus, to a good
approximation, particles that reach x̃ = 1 (the end
of the Poiseuille flow region in the mother vessel) be-
low the line ỹ = 0 flow into the lower (untargetted)
daughter vessel, while those that reach it above the
line ỹ = 0 flow into the upper (targetted) daughter
vessel. In order to see which of the particle trajec-
tories entering the mother vessel flow into the (up-
per) targeted vessel and which flow into the (lower)
untargeted vessel, we seek to map the dividing line
(x̃, ỹ) = (1, 0) back to the surface x̃ = 0. Parametris-
ing the dividing line (x̃, ỹ) = (1, 0) by z̃ = z̃0 and
denoting its map back onto the surface x̃ = 0 by the
function ỹ = Y1(z̃0), we find, using (14), that Y1(z̃0)
satisfies the implicit equation

Y3
1 (z̃0)

3
− (1− z̃2

0)Y1(z̃0)− βm = 0. (16)

Another way of thinking of the curve ỹ = Y1(z̃0) is as
the intersection of the surface that separates particle
trajectories entering the upper and lower vessels with
the entrance to the mother vessel. Examples of this
curve are shown by the blue curves in Figures 2(b)
and (d). Particle trajectories entering the mother
vessel below the blue curves end up entering the lower
(untargetted) vessel, while those entering above the
blue curve either end up on the wall of the mother
vessel or entering the upper (targetted) vessel.

Notably (16) does not have solutions for all z̃0 in
the range −1 ≤ z̃0 ≤ 1. The solutions only exist for
z̃0 in the range

−Z1 ≤ z̃0 ≤ Z1 where Z1 =

√
1−

(3

2
βm

)2/3

, (17)

It follows that there are no solutions, for any z̃0, if

βm ≥
2

3
. (18)

7



Physically this condition corresponds to magnetic
forces that are sufficiently strong to ensure that no
particle trajectories entering the mother vessel at
x̃ = 0 are able to reach the lower (untargeted) daugh-
ter vessel.

Separation surface 2. The second separation sur-
face divides characteristics (particle trajectories) that
end up on the wall of the mother vessel from those
that enter the upper (targetted) vessel in the main
flow. The terminal points for the characteristics
on this separation surface lie on the curve segment

(x̃ = 1, ỹ =
√

1− z̃2
0 , z̃ = z̃0) where −1 ≤ z̃0 ≤ 1,

i.e. the upper half of the vessel wall at the exit to the
mother vessel. An algebraic relation ỹ = Y2(z̃0) for
the curve formed by the intersection of this family of
characteristics with the entrance to the mother ves-
sel x̃ = 0 can be determined from (14) and is readily
shown to be

Y3
2

3
− Y2(1− z̃2

0) +
2

3
(1− z̃2

0)3/2 − βm = 0. (19)

Examples of this curve are shown in Figure 2(b) and
(d) in red. Particle trajectories entering the mother
vessel above these red curves end up on the (upper)
wall of the mother vessel while those that enter the
mother vessel below these curves enter the daughter
vessels in the main flow.

It is readily shown that (19) only has solutions for
z̃0 in the range

−Z2 ≤ z̃0 ≤ Z2 where Z2 =

√
1−

(3

4
βm

)2/3

, (20)

In particular for sufficiently strong magnetic forces,
such that

βm ≥
4

3
, (21)

there are no solutions to this equation at all, a conse-
quence of all particle trajectories entering the mother
vessel (at x̃ = 0) ending up on the upper surface of
the mother vessel before the junction with the daugh-
ter vessels.

1
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1

0.8
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0

z /b0

y /b0

Figure 3: Colourmap shows normalized particle flux
density at the entrance of the mother vessel. Parti-
cles flowing into the mother vessel between the red
and blue curves enter the upper (targeted) daughter
vessel in the main flow. Blue and red curves show
ỹ = Y1(z̃0) and ỹ = Y2(z̃0), the intersection of the
separation surfaces with x̃ = 0, the entrance to the
mother vessel (as defined in (16) and (19)) and cal-
culated for βm = 0.1. The corresponding areas of
integration for N1 and N2, S1 and S2, are shown by
blue and red hatched regions.

2.2 Targeting efficiency

A key part of this analysis is to calculate (i) the to-
tal flux of particles reaching the lower (untargetted)
daughter vessel, (ii) the total flux of particles reaching
the upper (targetted) daughter vessel in the main flow
and (iii) the total flux of particles reaching the upper
wall of the mother vessel. In terms of the in-vitro
experiment it is usually the case that particles that
reach the upper wall of the mother vessel continue
to flow/roll along the wall of this vessel until they
enter the daughter vessel and so, when the method
for assessing targeting efficiency is simply to measure
fraction of particles that come out of the upper vessel
as a ratio of those that enter the mother vessel, we
can identify (ii) and (iii) as the targetted fluxes. In
order to assess the targeting efficiency, via the cal-
culation of these fluxes, we consider the conservation
equation for magnetic particle transport through the
network, as provided by (7), and identify the particle
flux density as j = cvp. We assume that the flow
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and magnetic field are steady and that particles are
fed into the network at the entrance to the mother
vessel at a uniform concentration c0. Since this is a
steady problem, (7) implies that the flux of particles
entering a given region is equal to the flux leaving
that region. It follows that the total flux of parti-
cles that enters (i) the lower (untargetted) daughter
vessel is equal to the total flux of particles entering
the mother vessel below separation surface 1, whose
intersection with the entrance to the mother vessel is
given by ỹ = Y1(z̃0), where Y1(z̃0) satisfies (16).

Notably the flux density of particles j · n̂|S0 flowing
in through the entrance to mother vessel, S0 (here
n̂ = ex is the unit inward normal to S0) is not uni-
form in space but has a parabolic Poiseuille profile
(shown in Figure 3), that is

j · n̂|S0 = c0u · ex|S0 = c0u0(1− ỹ2
0 − z̃2

0). (22)

In particular, the particle flux density near the centre
of the vessel is much greater than that near its edges,
a fact that is not accounted for in the calculations of
targeting efficiency made in [29, 20, 27, 30] and which
leads to the error in these calculations.

In order to calculate the total particle flux leaving
the vessel through a particular surface A, we can use
the characteristic trajectories (particle paths) to map
the area A back to a surface on the entrance of the
mother vessel, A0. As noted earlier, since this is a
steady problem and particles are conserved, NA the
total flux of particles through A, is equal to the total
flux of particles flowing through A0. It follows that

NA =

∫∫
A0

c0vp·n̂ dS = c0u0

∫∫
A0

(1−ỹ2
0−z̃2

0) dỹ0dz̃0

(23)
This can be compared to Ntot, the total flux of par-
ticles entering the network, which is obtained by in-
tegration over the whole input area S0:

Ntot = c0u0

∫∫
S0

(1− ỹ2
0− z̃2

0) dỹ0dz̃0 = c0u0
π

2
. (24)

In order to calculate N1, the sum of fluxes of par-
ticles entering the targeted daughter vessel (case (ii)
above) and reaching the upper wall of the mother ves-
sel (case (iii) above), we compute the integral of the

flux density j · n̂ above the first separation surface
ỹ = Y1(z̃0) (area S1 is shown by the blue hatched
region in Figures 3); that is

N1 = c0u0

∫∫
S1

(1− ỹ2
0 − z̃2

0) dỹ0dz̃0. (25)

Similarly N2, the total flux of particles onto the up-
per wall of the mother vessel (case (iii) above), is
computed from the integral of the flux density j · n̂
above the second separation surface ỹ = Y2(z̃0) (area
S2 is shown by the red hatched region in Figures 3);
that is

N2 = c0u0

∫∫
S2

(1− ỹ2
0 − z̃2

0) dỹ0dz̃0. (26)

The corresponding fraction of the total particle
fluxes, as defined by n1 = N1/Ntot and n2 = N2/Ntot,
are given by the expressions:

n1 =1 +

(
3βm
π
− 1

π

(
3βm

2

)1/3
)√

1−
(

3βm
2

)2/3

− 1

π
sin−1

√
1−

(
3βm

2

)2/3

,

(27)

n2 =1 +

(
3βm
π
− 2

π

(
3βm

4

)1/3
)√

1−
(

3βm
4

)2/3

− 2

π
sin−1

√
1−

(
3βm

4

)2/3

.

(28)

The dependence of n1 and n2 on parameter βm is
plotted in Figure 4. The fractions n1 and n2 reach 1
at βm = 2/3 and βm = 4/3, respectively, as shown in
Equations (18) and (21).

The treatment described here is not limited to a
particular type of particle-wall interaction. In or-
der to illustrate this, we consider two extreme cases:
firstly the case where the targetted particles stick to
the vessel wall when they reach it; and secondly the
case where the particles do not stick to the vessel
wall when they come in contact with it, but instead
continue to flow/roll along the wall, in the direction
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Figure 4: Dependence of particle fraction n1 and n2

on βm given by Equations (27) and (28), respectively.

of the flow, until they enter the upper (targetted)
daughter vessel. In the first case, the fraction of the
particle flux that enters the upper (targetted) daugh-
ter vessel is nt = n1 − n2, while the fraction of par-
ticle flux deposited on the wall of the mother vessel
is nd = n2. In the second case, particles do not de-
posit on the vessel walls and thus the fraction of the
total particle flux entering the upper daughter vessel
is nt = n1. In the real system, only a fraction of
particles that approach the sidewall will stick to it.
More precise particle-wall interaction models can be
found in [23, 34].

In the in-vitro experimental works [29, 27], target-
ing efficiency is measured by the parameter Te =
2(Nt/Ntot − 0.5), where Nt is the number of parti-
cles that reach the upper (targetted) vessel, and Ntot

is the total number of particles entering the mother
vessel. In terms of these definitions we can identify
Nt/Ntot as n1, and it follows (on using (27)) that
our model determines this measure of targetting effi-
ciency as

Te =1 +

(
6βm
π
− 2

π

(
3βm

2

)1/3
)√

1−
(

3βm
2

)2/3

− 2

π
sin−1

√
1−

(
3βm

2

)2/3

,

(29)

where βm is defined in (15). Plots of our theoretical
results for Te (red curve) are compared to the exper-
imental results of [29] (black symbols) and to their
theoretical results (blue dashed curve) in Figure 5.

3 Discussion

In Figure 5 we compare the result of our magnetic tar-
geting model (29) to the in-vitro experimental data
from [29], and show that with the correct interpreta-
tion of targeting efficiency (solid red curves) there
is good qualitative agreement to the experimental
data. Furthermore, the agreement obtained here is
around an order magnitude better than the incorrect
model interpretation proposed in [29] (dashed blue
curves). Nevertheless there is still around a factor
of two discrepancy between our model and the ex-
periment. We believe that this discrepancy can be
explained by small aggregations of cells occurring, as
a consequence of magnetic chaining effects, over the
course of the experiment. Since these aggregates are
larger than the individual cells (on which the model
is based), they are targeted more effectively, and this
explains why the theory underestimate the experi-
mental targeting efficiency. It is noticeable that with
the incorrect interpretation of the theory the target-
ing efficiency predictions are more than a factor of
10 below the experimental ones. For example, for
BioMag-labelled cells at flow velocity of 1 cm/s, the
experimental targeting efficiency is 49%, and with
our corrected model interpretation we obtain 29%,
while the erroneous model interpretation in [29] pre-
dicts only 4%. This is important because the authors
of [29] use their results to infer a very high level of
cell aggregation whereas we believe the level of ag-
gregation to be much lower. Following [29], we use
the number of cells per aggregate as a fitting param-
eter and find the best agreement between our model
and the experiment (shown by green dashed lines in
Figure 5) is found where there are 3 to 4 cells per ag-
gregate. This contrasts with the results of [29], where
the best agreement between model and experiment is
obtained for 30-40 cells per aggregate.

There are two main differences between our analy-
sis and that in [29], which explain why our results give
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Figure 5: Targeting efficiency depending on the
flow rate or cells labelled with (a) Endorem and
(b) BioMag particles. Points are experimental
data from [29]; dotted lines are theoretical results
from [29]; solid lines are theoretical results calcu-
lated using Equation (29) and experimental param-
eters from Table 2 and assuming no cell aggrega-
tion; dashed lines are theoretical results assuming
that there are on average 4 and 3 cells per aggre-
gate for Endorem and BioMag particles, respectively.
Notice that the theory described here is within a fac-
tor of 2 of the experimental results (without invoking
cell aggregation) while the theory given in [29] is an
order of magnitude out.

Table 2: Parameters of experiment [29]
Channel length, L [m] 0.06
Channel radius, b [m] 0.4× 10−3

Cell radius, a [m] 5× 10−6

Average fluid velocity, uav [m/s] 0.001 to 0.06
Fluid viscosity, η [kg/m/s] 1.6× 10−3

Magnetic gradient, dB/dy [T/m] 0.5
MRI duty cycle parameter, Dc 2/7
Saturation magnetization, Ms [A/m] 314× 103

significantly higher targeting efficiency that are more
in line with the experimental data. The main differ-
ence comes from the fact that the model formulated
in [29] does not consider the particle flux distribution
associated with the particle trajectories (characteris-
tics) when calculating targeting efficiency. Indeed,
they assume that all trajectories should be weighted
equally. However, as discussed above, this is incor-
rect, and leads to a significant underestimation of
targeting efficiency. In addition, the model used in
[29] is two-dimensional, and only considers the cen-
tral (z0 = 0) plane. The circular flow profile is ac-
counted for by introducing a heuristic weighting fac-
tor [20, 27]. However, as can be seen from Figure 3,
the fraction of targeted particles is lowest in the cen-
tral plane, as the flow velocity is the highest there,
and so it provides a poor picture of targeting across
the entirety of the cylindrical vessel.

Details of experiment in [29]. The data col-
lected in [29] comes from experiments in which hu-
man mononuclear cells labelled with commercially
available superparamagnetic iron oxide nanoparti-
cles Endorem (Guerbet Laboratories Ltd, UK) and
BioMag (Bangs Laboratories Inc, IN, USA) were
targeted in the phantom vessel geometry described
above (see figure 1) in an MRI scanner. The amount
of internalized iron per cell of Endorem and BioMag
was 15 and 295 pg/cell, respectively. All other exper-
imental parameters are given in Table 2.

e
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4 Summary and Conclusions

We have presented a model, based on a particle con-
servation law, that is capable of accurately predicting
magnetic targeting and targeting efficiency in a flow
through a network of vessels. We have illustrated
its use in a simple network, with a single bifurca-
tion, that is commonly used in in-vitro investigation
of magnetic targeting. In this context, we were able
to derive an analytic expression for the targeting ef-
ficiency, i.e. the fraction of the magnetic particle flux
entering the mother vessel that flows into the tar-
geted daughter vessel. Our analysis corrects a com-
mon error that is made in assessing the efficiency of
magnetic targeting, and that occurs widely through
the literature [29, 20, 27, 30, 2, 1, 3, 10, 16, 31].
Furthermore, we have demonstrated that the cor-
rected theory shows much better agreement to in-
vitro experimental results [29] than does the erro-
neous method. This error arises because of a fail-
ure to correctly weight particle trajectories entering
the vessel network. In particular, particle trajectories
entering near the center of the mother vessel (where
the flow is fast) are associated with a correspondingly
larger particle flux than trajectories that enter near
the edge of the mother vessel (where the flow is slow)
and so their effects need to be weighted accordingly.
The methods presented here can readily be extended
to more complex geometries and pave the way for ac-
curate numerical simulations of targeting in realistic
vascular networks.

Finally, we remark that in magnetic targeting in-
vivo it may be necessary, depending upon the vessel
size and its position in the network, to account for
shear-induced diffusion [26, 23, 6] arising from the
interaction of the magnetic particles with red blood
cells and for the non-Newtonian rheology of blood [6].
We note that continuum models that include shear-
induced diffusion have been analysed in [26] but that
there is considerable uncertainty as to how to cor-
rectly account for this effect. A key feature, predicted
by the solutions of such models, is a diffusion bound-
ary layer around the edge of the vessel, in which a
balance is established between the magnetic force
pulling particles onto the wall and diffusion which
acts to redistribute them. However, it is in these

regions that the F̊ahraeus–Lindqvist effect manifests
itself in the form of a red-blood cell depleted layer.
The lack of red-blood cells around the vessel walls
complicates the modelling because it leads to reduced
shear-induced diffusion in the boundary layer and
thus alters the behaviour of the solution there. A
microscopic treatment of these phenomena, which is
particularly pertinent in the smaller vessels, is given
in [7] in which the motion of magnetic particles in-
teracting with discrete red-blood cells, and subject to
an external magnetic force, are investigated.
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