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RIS-aided AANETs: Security Maximization Relying
on Unsupervised Projection-based Neural Networks

Tiep M. Hoang, Thien Van Luong, Dong Liu, and Lajos Hanzo

Abstract—The security aspects of aeronautical ad-hoc networks
(AANET) relying on reflective intelligent surface (RIS) are
considered. A projection-based deep neural network (DNN) is
designed for maximizing the secrecy rate of the proposed RIS-
aided AANET. While the multiple-layer architecture of the
DNN enables learning the functional relationship between the
target variables of the optimization problem and the ground-air
channels, the projection method guarantees that the constraint of
the optimization problem is not violated. Our design outperforms
the state-of-the-art projected gradient descent algorithms and
that the RIS is capable of enhancing the security.

Index terms—Physical layer security, reliability, deep learn-
ing, projection neural network.

I. INTRODUCTION

The concept of aeronautical ad-hoc networks (AANET) has
been developed with the objective of allowing aircraft to assist
information exchange in 6G [1]. In this vein, AANETs are
expected to combine spaceborne and terrestrial networks to
improve the global connectivity in remote areas. One of the
challenges to be faced by AANETs is the maintenance of
stable connection with aeroplanes that move at high speeds
and hence experience both link delays and grave Doppler
effects. Additionally, like other wireless networks, an AANET
faces potential information leakage to eavesdroppers due to the
broadcast nature of wireless propagation. Thus, the physical
layer security (PLS) of an AANET has also been examined
as one of the important aspects [2]. However, there is still
a paucity of investigations into this salient topic. In parallel
with AANETs, reflective intelligent surfaces (RISs) have also
been developed for high-integrity transmissions. An RIS may
act as a passive relay, because it does not have to amplify
(or detect/decode) its received signal, as in classic amplify-
and-forward or decode-and-forward relaying. Inspired by this,
RIS-assisted PLS has been touched upon in [3]–[6], but it is
still in its infancy.

Nijsure et al. [2] developed a geolocation mechanism to
estimate the location of aircraft in support of reliable and
secure air-to-ground communication links. However, no RISs
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and security optimization were considered in [2]. On the
other hand, the authors of [3] and [4] considered the PLS of
RIS-aided terrestrial systems and used conventional iterative
algorithms for solving their security maximization problem.
The algorithm proposed in [3], as well as that in [4], re-
quires multiple sub-algorithms to deal with the optimiza-
tion of individual variables. At the same time, the authors
of [5] investigated the security of an RIS-aided terrestrial
communication system and optimized the secrecy rate using
reinforcement learning. In [7] and [8], the beamforming and
the phase shifts of RISs are jointly optimized for enhancing
the security. Furthermore, Song et al. [6] investigated a similar
system but used supervised learning for optimizing the secrecy
rate. From an experimental perspective, the loss function of
the supervised neural network of [6] depends heavily on
the availability of built-in functions of the tensorflow
framework; thus, it cannot be readily extended to any other
loss functions. Another drawback of [6] is the requirement of
specific target values for the comparison of the values found
by the supervised learning algorithm. In contrast to [5], we
consider unsupervised learning, which has the advantage of
not requiring rewards and punishments through the interaction
with the environment. Additionally, in contrast to [6], our
approach does not require the availability of target values
and reflects a more flexible approach, because the objective
function of our optimization problem can be readily converted
into the loss function of an unsupervised neural network.
Moreover, the focus of our work is on the PLS of AANETs
characterized by extremely high Doppler effects, rather than
on the security of terrestrial networks. Our bold and explicit
novelty statement is contrasted to the literature in Table I,
which is detailed on the next page.

Again, the PLS solutions considered in [3]–[8] were not
dedicated to AANETs, while the PLS-aided AANETs of [2]
did not consider the benefits of RISs. We will thus investigate
the PLS of an RIS-aided AANET, given that AANETs can
play a pivotal role in 6G and RISs have the potential of recon-
figuring the propagation environment to protect against eaves-
dropping. Moreover, we also aim to find a joint beamforming
and RIS design for maximizing the average secrecy rate of
our proposed system. To deal with the proposed optimization
problem, we design a so-called projection-based deep neural
network (DNN), which will output suitable solutions. Note that
joint optimization problems are also considered in [7] and [8],
but no DNN solutions are proposed. Harnessing the power of
deep learning (DL), our projection-based DNN is constituted
by an intrinsic analysis of the DNN and of the projection
method [9]. While the the DNN solves the proposed opti-
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TABLE I: Contrasting our contribution to the literature

[2] - 2015 [3] - 2019 [4] - 2019 [5] - 2020 [6] - 2020 [7] - 2020 [8] - 2020 This work
RIS-assisted security X X X X X X X
Security for AANETs X X
Unsupervised learning X
Reinforcement learning X
Projection methods X
Joint reflecting and precoding design X X X X X X
Rician fading X X X X
Temporal/spatial correlation X X X X

A

B

ERIS

Fig. 1: System model.

mization problem without constraints, the projection method
guarantees that the output of the DNN will then be projected
onto the constraint domain. To demonstrate the efficiency of
our projection-based DNN, we compare it with two different
conventional techniques, i.e. the projected gradient descent
(PGD) and Nesterov’s PGD [10]. Our proposed technique is
shown to outperform a pair of PGD approaches. Moreover, our
results show that a useful positive secrecy rate can be attained
under diverse circumstances.

The remainder of the paper is organized as follows. Section
II presents both the system model and the channel model of the
RIS-aided AANET. Section III formulates the security maxi-
mization problem and also presents the proposed projection-
based DNN in detail. Section IV provides our numerical results
and finally, Section V provides the conclusions of the paper.

Notations: Cm×n denotes the complex field that includes
all complex-valued matrices of size m × n; The operation
diag ([z1, . . . , zK ]) diagonalizes a row vector [z1, . . . , zK ] into
a diagonal matrix; In denotes the identity matrix of size
n × n; The upperscripts (·)>, (·)∗, and (·)† represent the
transpose, conjugate, and Hermitian operators, respectively;
z ∼ CN (m,Σ) is a complex Gaussian random vector with
mean m and covariance matrix Σ; ∇zf(z) denotes the gra-
dient of f(z) with respect to z; ∇zf(z)

∣∣
z=z0

represents the
gradient of f(z) evaluated at z = z0.

II. SYSTEM MODEL AND CHANNEL MODELLING

A. System Model

We consider an AANET, which operates in the super-high-
frequency (SHF) band spanning (from 3 GHz to 30 GHz).
Moreover, the AANET relies on a reconfigurable intelligent
surface (denoted by R) of multiple reflecting elements placed
near the ground station in order to assist the transmission.
In this RIS-aided AANET, a ground station (denoted by A)
communicates with a legitimate aircraft (denoted by B) in the
presence of an unintended eavesdropping aircraft (E). While
B and E are assumed to be moving aircraft, A and R are static
objects on the ground. Moreover, R is near A to assist the

transmission. We assume that A is equipped with NA antennas,
while both B and E have a single SHF antenna.1 Due to
the broadcast of wireless transmission, both B and E receive
confidential messages from A, even though A only wants to
convey its confidential messages to B. Since a fraction of the
local oscillator signal can leak out from the local oscillator of
E [12], A is supposed to have the statistical knowledge of the
estimated eavesdropping channels.

1) The signals received at B and E: The signal received at
B, with the aid of the RIS, can be given by

zB =
(
10−

LARB
20 hRBΨRHAR + 10−

LAB
20 hAB

)
f>sA + nB, (1)

LAB is the path loss (in dB) of the direct A→ B link; LARB is
the effective path loss (in dB) of the A→ R→ B link; HAR ∈
CKR×NA is the small-scale channel fading for the A→ R link;
hRB ∈ C1×KR is the small-scale channel fading for the R→ B
link; hAB ∈ C1×NA is the small-scale channel fading for the
A → B link; ΨR = diag

([
ej2πψ1 , . . . , ej2πψKR

])
∈ CKR×KR

is the diagonal matrix that reflects the phase-shift caused by
the RIS; f ∈ C1×NA is the beamforming vector; sA is the
original signal with the average power E

{
|sA|2

}
= PA in

Watt (W); nB is the additive white Gaussian noise (AWGN) at
B, which obeys the complex Gaussian distribution with zero-
mean and noise variance N0, i.e., nB ∼ CN (0, N0). To ensure
that the transmit power is less than or equal to PA, we have
the constraint ‖f‖2 ≤ 1.

Similarly, the signal received at E is given by

zE =
(
10−

LARE
20 hREΨRHAR + 10−

LAE
20 hAE

)
f>sA + nE, (2)

where LAE is the path loss (in dB) of the direct A → E link;
LARE is the effective path loss (in dB) of the A→ R→ E link;
hRE ∈ C1×KR is the channel of the R→ E link, hAE ∈ C1×NA

is the channel of the A → E direct link, nE is the AWGN at
E with nE ∼ CN (0, 1).

B. Channel Modelling

Due to the short distance between A and R, we assume
that there are blockages around them, which wipe out the
line-of-sight component. Each entry in HAR is thus assumed
to obey an independent complex Gaussian distribution with
zero-mean and unit variance. However, for the channels
hRB,hAB,hRE,hAE, we assume that they are Rician fading
channels having both line-of-sight (LoS) and non-line-of-sight

1In addition to the SHF antenna, an aircraft is also equipped with other types
of antennas (e.g., the HF, VHF, UHF and SatCom antennas) each having a
specific purpose [11].
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(NLoS) components. To be more precise, a channel hij , with
i ∈ {A,R} and j ∈ {B,E}, can be modelled as follows [13]:

hij =
√
κ/(κ+ 1) hL

ij +
√
1/(κ+ 1) hN

ij , (3)

where κ is the Rician factor, {·}L
ij denotes the deterministic

LoS component, and {·}N
ij denotes the scattered NLoS channel

component. Since both B and E represent aircraft moving at a
high speed, we have to consider the Doppler effect. To capture
this phenomenon analytically, we use the first order stationary
Gauss-Markov process to describe the temporal correlation
between the realization of hN

ij at the t-th time slot, namely
hN
ij [t], and the realization of hN

ij at the (t + 1)-th time slot,
namely hij [t+ 1]N. According to [14], we have

hN
ij [0] = h̃N

ij [0],

hN
ij [1] = τj hN

ij [0] +
√

1− τ2j h̃N
ij [1],

. . .

hN
ij [t+ 1] = τj hN

ij [t] +
√
1− τ2j h̃N

ij [t+ 1],

(4)

where τj is the temporal correlation coefficient associated
with the high mobility of the object of interest j ∈ {B,E}.
Note that each element in h̃N

ij [0], as well as each element in

h̃N
ij [t + 1], obeys CN (0, 1). Furthermore, τj is described by

the Jakes model (see [14]) as τB = J0(2πfD,jΥsymbol), where
J0(·) is the zeroth-order Bessel functions of the first kind [15,
eq. (8.402)], Υsymbol is the transmit symbol interval, and fD
is the maximum Doppler frequency shift for j ∈ {B,E}.
Note that the product fD,jΥsymbol , fD,j is the maximum
normalized Doppler shift [16], [17]. To model fD,j , we will
use fD,j = fD,jΥsymbol = (vjfc/c)×(1/fBaud) , where vj [m/s]
is the velocity of j ∈ {B,E}; c = 3×108 [m/s] is the speed of
light; and fBaud is the Baud rate of the L-DACS1 of the L-band
digital aeronautical communication system (L-DACS), which
is a potential framework for the future AANET, where fBaud
can be chosen to be 625 kHz.

III. SECURITY MAXIMIZATION RELYING ON
UNSUPERVISED LEARNING

We can deduce from (1) and (2) that the instantaneous SNRs
received at B and E are as follows:

ΓB = PA
∥∥(βARBhRBΨRHAR + βABhAB) f>

∥∥2 , (5)

ΓE = PA
∥∥(βAREhREΨRHAR + βAEhAE) f>

∥∥2 , (6)

where βARB =
√

10−(LARB/10)

N0
, βARE =

√
10−(LARE/10)

N0
, βAB =√

10−(LAB/10)

N0
and βAE =

√
10−(LAE/10)

N0
. From a practical

perspective, we assume that hAE and hRE are not available;
instead, we only have imperfect channel state information for
E. Let hest

AE and hest
RE be the estimate of hAE and that of hRE,

respectively. According to [18], the relationship between hest
AE

and hAE can be modelled as hAE =
√
1− ζ2 hest

AE + ζ eAE,
where eAE ∼ CN (0, 1) is the channel estimation error, and
ζ ∈ (0, 1) denotes the estimation error coefficient. Similarly,
we have hRE =

√
1− ζ2 hest

RE+ζ eRE, where eRE ∼ CN (0, 1).

Let Γ est
E be the instantaneous estimated SNR at E, known to

the operators, which can be readily calculated upon replacing
{hAE,hRE} in (6) by {hest

AE,h
est
RE}, i.e.,

Γ est
E = PA

∥∥(βAREhest
REΨRHAR + βAEh

est
AE

)
f>
∥∥2 . (7)

Then, relying on (5) and (7), we will be able to quan-
tify the instantaneous secrecy rate at the t-th time slot
as Cs

(
ψ, f

∣∣∣S [t]est

)
= max

(
0, log2

(
1+ΓB
1+Γ est

E

))
, where ψ =

[ψ1, . . . , ψKR ], and S [t]est is the channel observations at the t-th
time slot, i.e.,

S [t]est , {HAR[t],hRB[t],hAB[t],h
est
RE[t],h

est
AE[t]}. (8)

The relationship between ψ and ΨR can be expressed as ΨR =
diag

(
ej2πψ

)
, where ej2πψ ,

[
ej2πψ1 , . . . , ej2πψKR

]
. Finally,

the average secrecy rate can be calculated as

Cs (ψ, f) =
1

B

B∑
t=1

Cs

(
ψ, f

∣∣∣S [t]est

)
, (9)

over a batch of B samples.2

A. Security Maximization

Our goal is to find the functional relationship between the
channels and (ψ, f) so that Cs (ψ, f) is maximized. Thus, the
proposed optimization problem can be expressed as follows:

Given a batch B =
{
S [1]est , . . . ,S

[B]
est

}
, (10a)

maximize
ψ={ψk}KR

k=1,f

1

B

B∑
t=1

Cs

(
ψ, f

∣∣∣S [t]est

)
, (10b)

subject to ‖f‖2 ≤ 1 and 0 ≤ ψk ≤ 1. (10c)

Recall that the first constraint originates from the maximum
normalized transmit power E

{
‖fsA‖2

}
≤ 1, given that

E
{
|sA|2

}
= 1. By contrast, the second constraint is related to

the reflecting elements of the RIS.

B. Deep Learning-aided Approach

In general, the constrained optimization problem (10) is
non-convex and difficult to be solved analytically. In other
words, it is an open challenge to find the closed-form expres-
sion for ψ and f , even when the distribution of the channels
are know. In this work, we first parametrize the elements of ψ
and f as the functions to be optimized, we will then propose an
unsupervised DL-aided approach for tackling this problem. In
particular, we do not rely on a prior knowledge of the channels,
but rather on the observed/measured values of the channels to
find suitable values of ψ and f .3

Prior to describing our DL-aided approach in detail, we first
provide Table II capturing our notations at a glance. Based on
the definitions in Table II, we have the following facts:

2To calculate the actual average secrecy rate, we replace S[t]est in (9) by S[t].
3Our problem can also be extended to the case of multiple antennas at B

and/or E, as investigated in [19]. In such a case, the vector f will be replaced
by some matrix F and the goal will be to optimize the column/row vectors
of F. To this effect, we can replicate the process of finding f and harness
more output neurons. However, we leave this direction for future research.
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TABLE II: A list of main notations associated with the RIS and the DNN.

Parameters Definitions
θ the vector capturing all the weights and biases of a DNN
ψθ ψθ =

[
ψθ,1, . . . , ψθ,KR

]
, where each element is a real-valued function parameterized by θ

fθ fθ =
[
fθ,1, . . . , fθ,NA

]
, where each element is a complex-valued function parameterized by θ

f̂θ and f̃θ f̂θ =
[
R
{
fθ,1

}
, . . . ,R

{
fθ,NA

}]
and f̃θ =

[
I
{
fθ,1

}
, . . . , I

{
fθ,NA

}]
{·}[t,ε] the indicator of the t-th sample and the ε-th epoch
ψ
[t,ε]
k the observed value of the k-th element ψθ,k in ψθ at the ε-th epoch, w.r.t. the sample S[t]est

f
[t,ε]
n the observed value of the n-th element fθ,n in fθ at the ε-th epoch, w.r.t. the sample S[t]est

f̂
[t,ε]
n and f̃ [t,ε]n f̂

[t,ε]
n = R

{
f
[t,ε]
n

}
and f̃ [t,ε]n = I

{
f
[t,ε]
n

}
f̂ [t,ε] and f̃ [t,ε] f̂ [t,ε] =

[
f̂
[t,ε]
1 , . . . , f̂

[t,ε]
NA

]
and f̃ [t,ε] =

[
f̃
[t,ε]
1 , . . . , f̃

[t,ε]
NA

]
are the realizations of f̂θ and f̃θ at the ε-th epoch, w.r.t. the sample S[t]est

ψ
[t,ε]
n the observed value of the k-th element in ψθ at the ε-th epoch, w.r.t. the sample S[t]est

ψ[t,ε] the observed value of ψθ at the ε-th epoch, w.r.t. the sample S[t]est

• The DNN is trained over multiple epochs to improve
performance. At epoch ε, we have f̂ [t,ε], f̃ [t,ε] and ψ[t,ε]

when passing S [t]est through the DNN.
• Upon convergence, i.e., when ε is high enough, we

consider f [t,ε] and ψ[t,ε] as the desired values corre-
sponding to the t-th sample S [t]est upon passing the batch

B =
{
S [t]est

}B
t=1

, we will obtain
{

f [1,ε], . . . , f [B,ε]
}

and{
ψ[1,ε], . . . ,ψ[B,ε]

}
as the desired values.

• The functional relationship between the sample S [t]est and
the value ψ[t,ε] is then described as follows:

ψ[t,ε] ,
[
ψ
[t,ε]
1 , . . . , ψ

[t,ε]
KR

]

=

ψθ

(
S [t]est

)
,
[
ψθ,1

(
S [t]est

)
, . . . , ψθ,KR

(
S [t]est

)]
. (11)

The above relationship can be further simplified by the
mapping ψθ,k : S [t]est → ψ

[t,ε]
k . Note that the mapping ψθ,k

is a parameterized function, which is found by the DNN
by the process of learning the samples {S [t]est}Bt=1.

• The functional relationship between the sample S [t]est and
the value f [t,ε] can be described as follows:

f [t,ε] ,

= f̂ [t,ε]︷ ︸︸ ︷[
f̂
[t,ε]
1 , . . . , f̂

[t,ε]
NA

]
+ j ×

= f̃ [t,ε]︷ ︸︸ ︷[
f̃
[t,ε]
1 , . . . , f̃

[t,ε]
NA

]

=

fθ

(
S [t]est

)
,
[
f̂θ,1

(
S [t]est

)
, . . . , f̂θ,NA

(
S [t]est

)]
︸ ︷︷ ︸

= f̂θ

(
S[t]

est

)
+ j ×

[
f̃θ,1

(
S [t]est

)
, . . . , f̃θ,NA

(
S [t]est

)]
︸ ︷︷ ︸

= f̃θ

(
S[t]

est

)
. (12)

The above relationship can be further simplified by the
mappings f̂θ,n : S [t]est → f̂

[t,ε]
n and f̃θ,n : S [t]est → f̃

[t,ε]
n

for the real part and the imaginary part, respectively.
The rationing of fθ into f̂θ,n and f̃θ,n is because the
DNN cannot find the complex-valued function fθ directly.
Instead, the DNN will find two real-valued functions f̂θ,n
and f̃θ,n, where f̂θ,n = R {fθ} and f̃θ,n = I {fθ}.

On the basis of what is discussed above, we can now convert
the problem (10) into the following form:

minimize
ψθ={ψθ,k}KR

k=1,fθ

− 1

B

B∑
t=1

Cs

(
ψθ, fθ

∣∣∣S [t]est

)
, L (θ)

(13a)

subject to ‖fθ‖2 = 1 and 0 ≤ ψθ,k ≤ 1, (13b)

where L (θ) is defined as the loss function. Note that the DNN
actually learns to solve the functional optimization problem
(13) rather than the original problem (10). The main difference
between the two problems is as follows: ψθ and fθ in (13)
are θ-parameterized functions, while ψ and f in (13) are not
parameterized. Since each element of ψθ, as well as each
element of fθ, is a parameterized function, the DNN is thus
trained to find the suitable values of θ that satisfy (13).

1) The iterative algorithm applied to the DNN: Since the
training process of the DNN is carried out over multiple
epochs and the termination of the process relies upon con-
vergence subject to some tolerance, any solution provided by
the DNN can only be deemed to constitute an approximate
solution rather than the actual optimal solution to (13). During
the training, θ will be updated iteratively. Upon denoting the
value of θ at the ε-th epoch by θ[ε] and the learning rate of
the DNN by λ, and then using the stochastic gradient descent
(SGD) algorithm, we can calculate the value of θ at the (ε+1)-
st epoch as

θ[ε+1] = θ[ε] +
λ

B

B∑
t=1

∇θCs
(
ψθ, fθ

∣∣∣S [t]est

)∣∣∣∣∣ψθ=ψ
[t,ε]

fθ=f [t,ε]

. (14)

The convergence analysis of DNNs relying on the SGD can
be found in [20, Proposition 1] and references therein. Since
the SGD update in (14) implies a loop over multiple iterations,
we set up the stopping criterion based on a sufficiently large
number of iterations given a predetermined threshold.

2) The architecture of the DNN: In order to facilitate the
implementation with the aid of the open-source framework
tensorflow, it is necessary to construct the input data
for ensuring that the arrangement of each sample complies
with the requirements of the framework. Accordingly, the t-th
sample S [t]est will be arranged in the row format as follows:

x[t]
raw =

[
r1[t], . . . , rKR [t],hRB[t],hAB[t],h

est
RE[t],h

est
AE[t]

]
, (15)
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Fig. 2: The convergence of the proposed DNN compared to
the projected gradient descent (PGD) and the Nesterov’s PGD.

where rk[t] ∈ C1×NA denotes the k-th row vector of HAR[t],
with k ∈ {1, . . . ,KR}. Note that x

[t]
raw ∈ C1×(NAKR+2KR+2NA)

is a complex-valued row vector. Since the state-of-the-art DNN
architectures are typically designed for real numbers, we will
arrange the input data of the DNN as

x
[t]
in =

[
R
{

x[t]
raw

}
, I
{

x[t]
raw

}]
∈ R1×(2NAKR+4KR+4NA). (16)

As for the output of the DNN, we also use a real-valued
row vector to host the content of the output. In particular, the
output will be designed as follows:

y
[t,ε]
out =

[
y
[t,ε]
1 , . . . , y

[t,ε]
KR︸ ︷︷ ︸

relating to ψ[t,ε]

, y
[t,ε]
KR+1, . . . , y

[t,ε]
KR+2NA︸ ︷︷ ︸

relating to f̂ [t,ε] and f̃ [t,ε]

]
. (17)

The first KR nodes of the output layer are activated by the
sigmoid functions so that 0 ≤ y

[t,ε]
k ≤ 1, k ∈ {1, . . . ,KR}.

As a result, we can assign ψ[t,ε] =
[
y
[t,ε]
1 , . . . , y

[t,ε]
KR

]
, while

the remaining 2NA nodes of the output layer are activated
by the linear functions so that −∞ ≤ y

[t,ε]
k ≤ ∞,

k ∈ {KR + 1, . . . ,KR + 2NA}. Upon defining f̂
[t,ε]
raw ,[

y
[t,ε]
KR+1, . . . , y

[t,ε]
KR+NA

]
, f̃

[t,ε]
raw ,

[
y
[t,ε]
KR+NA

, . . . , y
[t,ε]
KR+2NA

]
and

f
[t,ε]
raw , f̂

[t,ε]
raw +

√
−1 f̃

[t,ε]
raw , we can find f [t,ε] from f

[t,ε]
raw by the

classic projection method [21]

f [t,ε] = argmin
z∈C

‖z− f [t,ε]raw ‖, (18)

where C = {z ∈ C1×NA : ‖z‖2 ≤ 1} is a constraint set that is
explicitly deduced from the constraint (13a).

IV. NUMERICAL RESULTS

In this section, we will offer numerical examples for quanti-
fying the security performance of the RIS-aided AANET with
the help of the projection-based DNN. Simulation parame-
ters: We model the path loss as

LAj [dB] = −154.06 + 20 log10(fc) + 20 log10(dAj), (19)

where fc [Hz] is the operating SHF, and dAj [m] is the distance
from A to j ∈ {B,E,RB,RE}. In our simulations, we set
fc = 3 GHz, dAB = 9 km, dAE = 10 km, dARB = 9.05 km,
and dARE = 10.05 km. We model the noise variance N0 as

Fig. 3: The average secrecy rate versus the transmit power in
3 different schemes.

N0 = BW × $Boltzmann × $temp × $fig, where BW is the
bandwidth in Hz, $Boltzmann = 1.38 × 10−23 (Joule/Kelvin)
is the Boltzmann constant, $temp is the noise temperature in
Kelvin, and $fig is the noise figure in dB. In our simulations,
we set BW = 5 MHz, $temp = 290 Kelvin and $fig = 9 dB.
Concerning the Doppler effect, we set vB = 200 m/s, vE = 180
m/s and fBaud = 625 kHz. Unless otherwise specified, the
default values of the other system parameters are as follows:
NA = 5 antennas, KR = 5 elements, κ = 5, ζ = 0.2, the
learning rate is λ = 0.001, the number of hidden layers
is 4, each hidden layer has 60 neurons, the batch size is
|B| = B = 500 samples. The dataset that is used as the DNN
input data is the set {x[t]

in }Bt=1, where the t-th input sample
x
[t]
in is defined in (16). Recall that x

[t]
in contains the real and

imaginary parts of the channel observations at the t-th time slot
(see the formation of x

[t]
in from S [t]est through the expressions

(8), (15) and (16)).
Fig. 2 compares the convergence of the proposed deep

unsupervised learning algorithm to a pair of two conventional
algorithms, i.e., the projected gradient descent (PGD) and the
Nesterov’s PGD [10]. It is clear that our algorithm converges
faster than the conventional ones, requiring less iterations to
converge to some local optima. Fig. 3 shows the average
secrecy rate Cs (ψ, f) versus the transmit power PA for three
different schemes. It is shown that the security performance is
also improved upon increasing PA, but gradually saturates at
high PA. Moreover, the proposed system exhibits the highest
security performance for the projection-based DNN, while the
PGD results in the worst performance.

In general, the superiority of the DNN over its conventional
counterparts is because the DNN is capable of learning the
complex functional relationship between the channel-based
data and the target variables {ψ, f} by approximately adjusting
the DNN parameters. In other words, the DNN can output
{ψ, f} as the parameterized functions of the data and find
the updated solutions quite promptly, when the dataset is
changed. Thus, in the next two figures, we will only consider
the proposed DNN. To be more specific, in Fig. 4, we also
depict Cs (ψ, f) w.r.t PA, where two cases are considered:
i) without RIS and ii) with RIS KR = {5, 10, 15}. In both
cases, Cs (ψ, f) increases with PA. Moreover, Cs (ψ, f) also
increases with KR. Hence, the security performance is the
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Fig. 4: The average secrecy rate versus the transmit power.
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Fig. 5: The intercept probability versus the outage probability.

worst in the case of no RIS, i.e. the integration of the RIS
into the AANET improves the security level of the system.

Fig. 5 shows the intercept probability (IP) versus the outage
probability (OP) at NA = 5 and KR = 5. Herein, the IP is
defined as Pr{log2(1+ΓE) ≥ p} with p ranging from 0 to 1,
while the OP is defined as Pr{log2(1+ΓB) ≤ p}. Additionally,
the effect of the Rician factor κ is also taken into account,
given its importance in modelling the channel fading of the
AANET. Observe from Fig. 5 that at a fixed κ, there is an
IP-versus-OP trade-off, because the IP increases when the OP
decreases and vice versa. This means that we accept a higher
probability of incorrectly detecting signals at B in return for
a system with a higher probability of security. However, both
the IP and the OP are reduced when κ increases, indicating
that the more influence the LoS component has, the higher the
security level of the RIS-aided AANET.

V. CONCLUSIONS

In this paper, we considered a RIS-aided AANET and
designed a deep unsupervised learning algorithm for max-
imizing the average secrecy rate. The proposed algorithm
relied on a projection-based DNN, which outperformed a pair
of conventional schemes, namely, the PGD and the PGD
using Nesterov’s acceleration. The results showed that the
employment of the RIS improved the security of the system.
Finally, the security was also further enhanced in the case of
having stronger LoS.
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