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Abstract: Optical nonlinearity depends on symmetry and symmetries vanish in the presence of 
defects. Vacancy defects in centrosymmetric crystals and thin films are a well-known source 
of even-order optical nonlinearity, e.g. causing second harmonic generation. The emerging 
ability to manipulate defects in two-dimensional materials and nanoparticles provides an 
opportunity for engineering of optical nonlinearity. Here, we demonstrate the effect of defects 
on the nonlinear optical response of two-dimensional dielectric nanoparticles. Using a toy 
model, where bound optical electrons of linear atoms are coupled by nonlinear Coulomb 
interactions, we model defect-induced nonlinearity. We find that defects at particle edges 
contribute strongly to even-order optical nonlinearity and that unique nonlinear signatures of 
different defect states could provide the smallest conceivable QR-codes and extremely high 
density optical data storage, in principle approaching 1 bit per atom. 
 

1. Introduction 
Harmonic generation is of key importance for wavelength conversion of optical signals and 
optical information processing. In the electric dipole approximation, media with inversion 
center cannot generate even order harmonics. However, defects can break the inversion center 
and enable even order harmonic generation in centrosymmetric media. Harmonic generation as 
well as wave mixing in nonlinear photonic crystals with defects have attracted attention [1-4] 
and defect-enhanced second harmonic generation (SHG) has been observed in various 
materials, including crystals [5, 6], 2D materials [7],  doped fibers [8], semiconductors [9], their 
superlattices [10, 11] and interfaces [12, 13]. Recent advances in micromachining [14, 15], 
nanoparticle decoration [16, 17], atomic healing [18], lateral heterostructures [19, 20] and 
heterocrystals [21] have established the feasibility of defect manipulation and postprocessing, 
which provides an opportunity for the development of two-dimensional (2D) materials with 
engineered optical nonlinearity [22]. Second harmonic generation has been used for monitoring 
of defects engineering in transition metal dichalcogenides [23] and controlling nonlinear 
properties through defect engineering has been reported [24, 25]. Effects of vacancy defect 
concentration on high-order harmonic generation have also been investigated [26-28]. 

In this paper, we present a model of defect-induced harmonic generation in 2D dielectric 
nanoparticles described as a lattice of linear oscillators coupled by Coulomb interactions. The 
model shows how specific defects affect the particle’s even and odd order optical nonlinearities 
(Fig. 1). Our results indicate that defects at particle edges have the largest influence on optical 
nonlinearity. Different nonlinear optical responses of different defect arrangements indicate 
that information could – in principle – be encoded in atomic defects and read optically, via their 
harmonic generation signature. This would allow nanoparticles with defects to serve as the 
smallest conceivable QR-codes. The fundamental information density limit of such optical data 
storage would not be determined by diffraction, but rather by the spacing of atoms. We illustrate 
this by showing that harmonic generation is controlled by the location of defects in a 
nanoparticle and by demonstrating harmonic-based recognition of nano-QR-codes representing 
different characters. Such information could be written by AFM-based techniques and read by 
scanning near-field microscopy techniques. 



 
Fig. 1. Defect-induced optical nonlinearity. (a) Along the optical axis, as shown, a square particle 
will only generate odd harmonics of the pump frequency ωp without polarization change. The 
presence of defects enables even harmonic generation (b) without and (c) with polarization 
change.  

 

2. Results and discussion 
2.1. Modelling defect-induced optical nonlinearity of 2D nanoparticles 

In the confined geometry of a two-dimensional nanoparticle, the collective nonlinear response 
of the atomic array can arise from the Coulomb interactions [29, 30]. We describe atoms as 
classical Lorentz oscillators [31], consisting of one optical electron bound to one nucleus. For 
an individual atom, the interaction between the electron with coordinate r(t) and its stationary 
nucleus at R is described by a linear restoring force. The electromagnetic response of the single 
atom is strictly linear and arises from a harmonic potential [29]. However, when an electric 
field is applied to a particle of N atoms, the optical electrons start to oscillate and these 
oscillations are affected by Coulomb interactions with other electrons and other cores, 
introducing a nonlinear term in the equation of motion for each atom: 

 𝒓ሷ ௞ ൅ 𝛾𝒓ሶ ௞ ൅ 𝜔଴ଶሺ𝒓௞ െ 𝑹௞ሻ ൌ ௤௠𝑬ሺ𝑡ሻ ൅ ௤మସగఌబ௠∑ ቀ 𝒓ೖି𝒓೔|𝒓ೖି𝒓೔|య െ 𝒓ೖି𝑹೔|𝒓ೖି𝑹೔|యቁே௜ஷ௞   (1) 
 
where rk is the displacement of electron k in the particle; γ is the damping frequency; q and m 
are the electron charge and mass; and ω0 is the angular resonance frequency of an isolated 
atomic harmonic oscillator. The resonance angular frequency of a single atom ω0 is set to 
9.4×1015 rad/s, corresponding to a resonance at 200 nm wavelength in the UV band, and the 
damping frequency is chosen as γ = 0.01ω0 to approximate a typical atomic response in 
dielectrics (such as ITO, TiOx and SiN). The spacing between atoms is chosen to be 0.5 nm. 
The pumping electric field angular frequency is 0.19ω0, i.e. far from the atomic resonance, and 
corresponds to the 1064 nm wavelength of an Nd:YAG laser. The pumping electric field 
magnitude (E0) is set to 8.68×1010 V/m to explore physical trends and higher-order nonlinear 
optical effects in a regime, where they are sufficiently large to make numerical errors of 
differential equation solvers irrelevant. 

We consider the radiation generated along z by 2D structures in the xy-plane (nanoparticle 
plane) in response to pumping along z, to mimic the structure’s nonlinear optical response along 
the propagation direction for pumping at normal incidence. In this case, radiation generated by 
the particle is determined only by its total (net) electric dipole moment. Higher multiples cannot 
contribute to the radiation along the z direction. The displacement of each optical electron in 
the particle is calculated in the time domain by solving the coupled equations of motion 
[Equation (1)]. We consider a square particle cut from a square lattice (main text) and a 
hexagonal particle cut from a hexagonal lattice (Supplement 1), introducing defects by 



removing atoms at specific positions in the lattice. The coupled system of differential equations 
is solved in Matlab starting without optical electron displacement and allowing transitional 
effects to pass before analyzing the oscillation of all electrons over 1000 periods of the driving 
field. The electric dipole moment of each atom dk is the charge times the electron displacement. 
The sum of these dipoles over all atoms, P=∑k dk., gives the total electric dipole moment P(t) 
of the nanostructure in the time domain. The total electric dipole moment is separated into linear 
and nonlinear components, P(1), P(2), P(3) … , oscillating at the driving frequency ωp and its 
harmonics 2ωp, 3ωp … , through Fourier transformation. In the presented Fourier series, the 
peak values are the dipole amplitudes in Coulomb meters at harmonic frequencies.  

2.2. Defect-induced nonlinearity in a square nanoparticle 

Since radiation of even order harmonics along z is forbidden in structures with even-fold 
rotational symmetry [32, 33], one can easily identify the defect-induced nonlinearity of such 
structures at even harmonics. Therefore, we first study a square particle with 25 atoms (D4 
symmetry, with square lattice) and then introduce one vacancy defect at three different 
positions. As examples, we have chosen the possible types of edge defects – at a corner, middle 
or intermediate edge position – which result in different symmetries of the particle. Fig. 2a 
illustrates harmonic generation in the square particle without defect. The frequency-dependence 
of the particle’s total electric dipole moment P generated by electric pump field E0cos(ωpt) is 
shown, where Pα,β refers to the α-component of the dipole moment caused by a β-polarized 
pump field and α,β is x or y. As required by symmetry, x-polarized excitation generates a dipole 
only along x, while y-polarized excitation generates a dipole only along y with the same 
magnitude. i.e. Px,x=Py,y, while Px,y and Py,x are forbidden. As expected for a particle with even-
fold rotational symmetry [32, 33], we observe only odd harmonics – P(1), P(3), P(5)– which 
appear as peaks in Fig. 2a. However, when there is a vacancy defect in the particle, even 
harmonics can occur, as shown by Fig. 2b-d.  

 
Fig. 2. Harmonic generation in a square nanoparticle without and with defects. (a)-(d) Frequency 
dependence of the electric dipole moment of a square particle (insert) with no defect (a), and (b-
d) one defect at three different locations, in response to optical pumping at frequency ωp. Pα,β 
indicates the α-component of the particle’s electric dipole moment caused by β-polarized 
pumping. Arrows indicate the magnitudes of Px,x, Py,y , Px,y and Py,x at the second harmonic 
frequency. 

The defect position has a great influence on the particle’s nonlinear response. When the 
defect occurs at a corner (Fig. 2b), x or y-polarized excitation generates dipole moments along 
both the x and y directions, and we observe Px,x=Py,y and Px,y= Py,x. When the defect occurs in 



between a corner and the middle of an edge (Fig. 2c), the four components Px,x, Py,y , Px,y and 
Py,x are all allowed and different. For a defect in the middle of an edge (Fig. 2d), only Px,x, Py,y 
and one of Px,y and Py,x are allowed.  

Vacancy defects in a hexagonal particle with 19 atoms (D6 symmetry, with hexagon lattice) 
have also been studied and lead to even-order optical nonlinearity in a similar way, see Fig. S1 
in Supplement 1. 

 
Fig. 3. Total electric dipole moment P of a square nanoparticle as a function of the position of a 
single vacancy defect. The amplitude at each atom position (black dot) represents the total dipole 
moment of the particle when the atom is vacant. The top (bottom) row shows the dipole 
component parallel (orthogonal) to the x-polarized pump. Stacked images for different – either 
even or odd – harmonics show the same qualitative behaviour. (Py,y and Px,y are obtained by 90° 
rotation of the color maps in the top and bottom rows, respectively.) 

 
2.3. The influence of defect position on harmonic generation 

The importance of the defect position was revealed by Fig. 2. Here we investigate the 
dependence of optical nonlinearity on the defect position systematically. Fig. 3 shows the 
calculated components of the total electric dipole moment P as a function of the position of a 
single defect. The top row shows the total electric dipole moment along the x-direction for x-
polarized pumping, Px,x at odd (left) and even (right) harmonic frequencies. At odd harmonic 
frequencies, Px,x is of almost the same magnitude for all the 25 defect positions. In contrast, Px,x 
at even harmonic frequencies depends strongly on the defect’s location, being strongest for 
defects on the left and right edges and vanishing only for defects that do not break the y 
symmetry axis of the nanoparticle. The bottom row shows the total dipole moment along the y-
direction for x-polarized pumping, Py,x at odd (left) and even (right) harmonic frequencies. At 
odd harmonics, defects at corners induce the strongest dipole moment Py,x, while this 
component does not arise from defects that maintain the horizontal or vertical mirror symmetry 
of the nanoparticle. In contrast, for even harmonics the total electric dipole Py,x is strongest for 
defects at top and bottom edges and vanishes only for defects that do not break the 



nanoparticle’s x symmetry axis. Due to the square particle’s symmetry with respect to x and y, 
the 25 possible single vacancy defect states give rise to 9 distinguishable nonlinear signatures, 
corresponding to the 9 possible vacancies within a quadrant of the particle, and the second 
harmonic total electric dipole components are sufficient to distinguish them. Similar behavior 
is seen for hexagonal particles (see Fig. S2 in Supplement 1). 
 

2.4. Harmonic generation signatures of atomic defect patterns 

Recent progress in 2D material fabrication demonstrates the feasibility of defect manipulation 
and postprocessing techniques and SHG has already been used for monitoring defect 
engineering in transition metal dichalcogenides [23]. Our model can instruct defect 
engineering. We argue that 2D defect patterns could act as the smallest conceivable 2D 
barcodes, i.e. nano-QR-codes, that could be read based on their nonlinear optical properties. 
Fig. 4 shows the frequency dependence of the total electric dipole moment of four defect 
patterns – “1, 2, 3, 4” – in a square lattice in response to a pump field E0cos(ωpt). We can 
identify each of them by looking into their second harmonic generation. Defect pattern “1” does 
not generate an overall electric dipole moment at the second harmonic frequency (Fig. 4a), 
while for pattern “3” (Fig. 4c) only the electric dipoles along x can be generated at the second 
harmonic frequency. Although all four electric dipole components are allowed for defect 
patterns “2” and “4” (Fig. 4b,d), components of equal amplitudes Px,x=Py,y and Px,y= Py,x are 
only observed for pattern “4”. Thus, the relative strength of the second harmonic total electric 
dipole components can be used to identify different defect patterns. We note that other 
polarizations and harmonics could also be considered. In general, both the number and position 
of defects affect a particle’s total electric dipole response. Indeed, odd harmonic total electric 
dipole moments (Px,x, Py,y) scale with the number of atoms [30], and could thus be used to reveal 
the number of occupied atom positions. 
 

 
Fig. 4. Nano-QR-codes. Harmonic generation in a square nanoparticle with different atomic 
defect patterns. (a)-(d) Frequency dependence of the electric dipole moment of a square particle 
(insert) with defect patterns (a) “1”, (b) “2”, (c) “3”, (d) “4” in response to optical pumping at 
frequency ωp. Pα,β indicates the α-component of the particle’s electric dipole moment caused by 
β-polarized pumping.  

 



In principle, a square lattice containing N atom positions can have 2N different defect states. 
Mirror symmetry with respect to x and y in Fig. 3 implies that up to four different defect states 
– that are related by reflections with respect to x, y, or both – share the same nonlinear signature. 
(Fewer in case of defect states that have one or more relevant mirror symmetries.) Therefore, 
≥2N-2 defect states of a particle with N atom positions may have distinguishable nonlinear 
signatures. As 2N-2 distinguishable states would be sufficient to store N-2 bits of information, 
this suggests that nonlinear detection of defect states could enable extremely high density 
optical data storage, in principle approaching 1 bit per atom position.   

 

3. Conclusion 
In summary, we have shown that defects have a large influence on even harmonic generation 
by 2D nanostructures. Information could be encoded in atomic defects via defect engineering 
and read by its harmonic generation signature. Such information could be written by AFM-
based techniques and read by scanning near-field microscopy techniques. We illustrate this by 
showing that harmonic generation is controlled by the location of defects in square and 
hexagonal particles and by demonstrating the harmonic-based recognition of nano-QR-codes 
representing different characters.  
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