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Abstract—Convolutional neural networks (CNNs) often extract
similar features from successive video frames due to having
identical appearances. In contrast, conventional CNNs for video
recognition process individual frames with a fixed computational
effort. Each video frame is independently processed, resulting
in numerous redundant computations and an inefficient use
of limited energy resources, particularly for edge computing
applications. To alleviate the high energy requirements associated
with video frame processing, this paper presented similarity-
aware CNNs that recognise similar feature pixels across frames
and avoid computations on them. First, with a loss of less than
1% in recognition accuracy, a proposed similarity aware quan-
tization technique increases the average number of unchanged
feature pixels across frame pairs by up to 85%. Then, a pro-
posed similarity-aware dataflow improves energy consumption
by minimising redundant computations and memory accesses
across frame pairs. According to simulation experiments, the
proposed dataflow decreases the energy consumed by video frame
processing by up to 30%.

Index Terms—Deep neural networks, Quantization, Object
Detection, Video Recognition

I. INTRODUCTION

In recent years, deep convolutional neural networks (CNNs)
have provided superior performance in computer vision [1], [2]
and natural language processing [3]. The superior accuracy of
CNNs, however, comes at a high computational complexity
and energy cost. Although CNN training usually runs ex-
clusively on powerful server farms, concerns about privacy,
reliability, and connectivity have introduced an increasing push
to transition inference to the edge [4]. While advantageous,
inference at the edge is challenging because devices are
usually constrained in terms of computational and energy
resources. Therefore, to enable inference at the edge, various
energy-efficient and high-performance CNN accelerators have
been developed over the years, which are often optimised for
image data [5]. However, a particular challenge is that input
data streams at the edge are often continuous (e.g. a continuous
feed of video from a smart security camera) rather than non-
continuous (e.g. an intelligent disease detection system using
MRI images) and there is a genuine need for optimising CNNs
and CNN accelerators for video data.

Between consecutive frames, the data rate is typically much
higher than the real information rate. For example, as shown
in figure 1, a home security doorbell may generate many
megabytes of video each second [6]; however, the actual
information is substantially lower because objects of interest

are not at the door for the majority of the time. Similarity
between successive video frames occurs even more frequently
in applications such as facility monitoring, CCTV surveillance,
and portable wildlife surveillance systems, where the camera
is stationary and there are fewer moving objects in the videos.
However, due to sources of environmental ’noise’ e.g., chang-
ing lighting conditions, most pixel values change between
consecutive frames, despite the high degree of similarity that
may exist between the content of video frames. Therefore, the
computational results from processing a video frame cannot
be stored and reused for successive frames, even when the
content of frames is the same. Accordingly, inference must
be performed on each frame, individually and independently,
leading to an inferior use of limited energy resources. Figure 2
indicates that, during the processing of two consecutive video
frames by a state-of-the-art video recognition CNN [7], less
than 11% of input data to the CNN layers remains unchanged.

To overcome the energy bottleneck associated with perform-
ing the same computations for each video frame individually,
this paper introduces similarity-aware CNNs, in which the
required computation effort for each frame is proportional
to the change in the feature pixels from the previous frame.
Similarity-aware CNN is comprised of two main components.
The first component is a proposed quantization approach
(SQS) for reducing differences between feature pixel values
across consecutive frames by abandoning floating-point rep-
resentation and adopting a lighter fixed-point. The second
component is a similarity-aware dataflow (SRS) that subtracts
features from subsequent frames to identify pixels that remain
unchanged. Computational results from the previous frame
are reused for such pixels, and multiply and accumulation
(MAC) operations, as well as memory accesses associated
with such pixels, are avoided to reduce energy consumption
of the processing frame while maintaining inference time.

Fig. 1: Content similarity map between two video frames
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Fig. 2: The averaged of unchanged pixels into all convolutional
layers between consecutive frames when processing Video1,
video2 and video3. We employed Yolo-V3 [7] as the object
detection model and videos are sampled from VIRAT Ground
dataset [8]. 1

SQS preserves up to 85% of feature pixels over succeeding
frames, and by avoiding computations for unchanged pixels,
SRS reduces video recognition’s energy consumption by up to
30%.

The contributions of this paper are as follows:
• A Similarity-aware Quantization Scheme (SQS) enables

the maximum possible reuse of previous video frame
processing computational results. SQS minimises the
difference in feature pixel values between consecutive
frames by optimising the granularity with which CNNs
are quantized for a given hardware architecture and
accuracy tolerance. The evaluation of SQS for video
object detection networks demonstrates that the proposed
approach increases unchanged feature pixels in CNNs by
up to 85% on average while sacrificing less than 1% of
recognition accuracy.

• An energy-efficient Similarity-aware Row Stationary
dataflow (SRS) optimizes data movements and operations
for processing successive data. To improve energy effi-
ciency, SRS subtracts features from consecutive frames
and identifies pixels with unchanged feature values, skip-
ping redundant computations/memory accesses for such
pixels. SRS is evaluated using the Timeloop simulator
[9], and the results indicate that SRS reduces the energy
consumption of processing consecutive frames by 30%
for various CNNs, including Resnet [10] and Darknet [7].

The remainder of this paper is organised as follows. Pre-
vious work is reviewed in section II . Section III introduces
the proposed Similarity-Aware convolutional neural networks.
Evaluation results are discussed in section IV, and the paper
is concluded in section V

II. RELATED WORK

Our work improves the prior art aspects, as discussed in the
next sub-sections. SQS minimizes the required computations
for video recognition by maximizing unchanged successive
data into CNN layers. SRS reduces the energy consumption

1Video1, video2 and video3 are named VI-
RAT.S.010003.09.000779.000861, VIRAT.S.010207.07.001195.001260,
and VIRAT.S.010107.02.000282 in VIRAT dataset, respectively.

of video recognition by skipping the redundant computations
and memory accesses.

A. Computation Reduction

Various approaches are intended to exploit temporal infor-
mation between the video frames to reduce the computation
complexity of CNNs [11] . Riera et al. [12] proposed applying
a uniform distributed linear quantizer on the feature maps
to increase unchanged pixels between consecutive frames.
Since the feature maps in CNNs are not uniformly distributed,
the proposed uniform quantization introduces significant and
unacceptable quantization error. Consequently, the proposed
approach is only applicable for small and shallow neural
networks.

Sigma-Delta [13] computes the difference between the con-
secutive input data into CNN layers. Then, the different values
are rounded to integers and processed by the CNN. Output
values from network layers are added to their values from
previous executions of the network. SigmaDelta was designed
and evaluated only for classification tasks that are less sensitive
to temporal information between frames. Since per-frame
video classification is less sensitive to spatial changes between
consecutive frames, whether SigmaDelat can achieve the same
accuracy for real-world video recognition applications, e.g.,
object detection, is questionable.

In a different line of work to ours, CBinfer [14] uses a
software-level solution to increase unchanged pixels between
consecutive frames by comparing and filtering the difference
between pixels with a threshold value. To achieve considerable
computation reduction, threshold values need to be chosen
as large numbers, which subsequently leads to a significant
accuracy loss in recognition. DeepCache [15] pursues a similar
direction to CBinfer. However, to detect blocks of the image
that are matched to blocks in the previous frame, this method
requires a high tolerance when comparing image tiles to
be able to find matches, thereby introducing considerable
accuracy losses. Unlike mentioned approaches, our proposed
SQS method re-adjusts model parameters with the effects
of similarity-aware quantization errors and recovers accuracy
degradation. Therefore, SQS outperforms those approaches
and achieves higher accuracy for the stat-of-the-art deep CNN
for video recognition applications.

B. CNN Dataflows for Video Recognition

A CNN’s dataflow defines how data is stored in different
levels of the memory hierarchy of a CNN accelerator. Dataflow
also schedules, partitions and parallelises operations across
computation units. While the topic of CNN dataflows is widely
studied for image data [16]–[19], less attention has been
paid to specialised dataflows for consecutive executions of
CNNs. In a recent work, Zhe et al. [20] proposes a hybrid
precision accelerator for video processing that employs inter-
frame data re-use. In the proposed approach, only difference
frame data is processed for sequential frames. To process
difference frames, they are divided into a low precision 4b
tensor and a sparse 8b tensor. These tensors are processed



separately and added together for final results. The accelerator
improves power/speedup by providing extra on-chip SRAM
memory to store the latest intermediate feature maps and
avoid off-chip accesses. Therefore, the proposed approach is
applicable to a limited class of CNNs (e.g., MobileNet [21])
with small feature maps that can be fitted into on-chip SRAM
memory.

Riera et al. [12] proposed an accelerator architecture with
a large 35MB on-chip memory to store all weight parameters
in the on-chip memory to avoid off-chip accesses. A 35MB
on-chip memory, on the other hand, is not feasible or cost-
effective for use in real-world CNN accelerators.Additionally,
the proposed architecture was examined for small CNNs with
a maximum of eight convolutional layers. Therefore, for a
state-of-the-art video recognition network, e.g., Darknet53, the
proposed architecture requires hundreds of megabytes of on-
chip memory. However, we propose SRS as a new dataflow for
repeated execution of a CNN. By skipping redundant compu-
tations and memory accesses, the proposed dataflow reduces
the energy consumption of conventional dataflows. Moreover,
unlike the mentioned dataflows, our proposed approach does
not require additional large on-chip memory to store the latest
feature maps and weight parameters.

III. PROPOSED METHOD: SIMILARITY-AWARE
CONVOLUTIONAL NEURAL NETWORKS

We introduce similarity-aware convolutional neural net-
works in this part as a novel approach for reducing the
energy consumption of video recognition applications by
leveraging similarity between features in consecutive frames.
The proposed approach involves increasing the number of
unchanged feature pixels across successive frames using a
novel quantization technique (SQS), followed by avoiding
computation on unchanged pixels via a newly introduced
dataflow (SRS). We discuss the fundamental concepts of
Similarity-Aware Quantization Scheme (SQS) and Similarity-
Aware Dataflow (SRS), as well as their major components and
thorough implementation.

A. Similarity-aware CNNs

Deep convolutional neural networks are multi-layered net-
works, consisting of convolution, pooling, fully connected and
batch normalization layers. Convolutional layers are extremely
computation and energy-intensive, accounting for more than
90% of overall computations in CNNs and generating a large
amount of data movement [22]. As illustrated in figure 3,
we represent the convolutional layer l as

(
Xl,Yl,Wl,bl

)
,

where Xl ∈ RC×(Q+S−1)×(P+R−1) is the input feature map
(ifmap), Yl ∈ RN×K×P×Q is output feature map (ofmap),
Wl ∈ RK×C×R×S filter weight and bl ∈ RC represents bias
parameters, respectively. The convolutional layer computes:

Yl = Xl ∗Wl + bl, (1)

Where * is the convolution operation.

Fig. 3: The representation and computational loop of a Con-
volutional layer

However, instead of processing ifmaps of individual
frames independently, a convolutional layer in the similarity-
aware CNNs processes the difference in textitifmaps between
consecutive frames. Then, the convolutional results are accu-
mulated with the ofmaps from previous frame. Therefore, for
similarity-aware-CNN, equation (1) can be re-written as,

Yt
l = ((X(t) −X(t−1)) ∗Wl + bl) +Y

(t−1)
l , (2)

where, t represents the order of consecutive ifmaps/ofmaps.
The key idea of similarity-aware CNNs is to update ofmap
pixels incrementally based on the difference of ifmap pixel
values relative to the previous frames. However, regarding
similarity-aware CNNs, the main question is how can the
incremental update of ofmap be exploited to reduce the
energy consumption of video recognition? Section III-B
addresses this question by proposing SQS, which minimizes
incremental updates through consecutive ifmap. Then, section
III-C demonstrates how SRS reduces the energy consumption
of conventional dataflows by leveraging small incremental
updates.

B. Similarity-Aware Quantization Scheme

The use of network quantization for model compression has
been widely reported [23] [24]. CNN quantization attempts to
approximate floating-point data with fixed-point precision in
order to minimise model size without sacrificing detection ac-
curacy. Quantization, on the other hand, quantifies the degree
of change in the values of feature pixels across consecutive
frames when a continuous data stream is present [12]. This
section discusses SQS, an approach for minimising changes
in feature pixels between consecutive frames.

Let f be the floating-point data to be quantized (feature
maps or parameters), We define a quantizer as,

q = clip(

[
round(

f

s
) + z

]
, qn, qp) (3)

Where q is the quantized data type. z denotes zero-point, an
integer to ensure that zero is quantized with no error. This is
important to ensure that common operations like zero padding
do not cause quantization error. s is the floating-point valued
step-size that defines the difference between two representable
numbers in quantized data type. The round(m) rounds m to



nearest integer. Given a hardware architecture with bw, qn =
−2bw−1 and qp = 2bw−1 − 1. Function clip(.) is defined as,

clip (k, rmin, rmax) =


rmin k ≤ rmin

k rmin < k < rmax

rmax k ≥ rmax.

(4)

Following equation (3), the quantization can be performed
either symmetric or asymmetric. Symmetric quantization par-
titions the range of floating-point values using a symmetric
range. However, symmetric quantization, simplifies the quan-
tization function in equation (3) by replacing the zero point
with z = 0. For symmetric quantization, the step-size s is
calculated as follows.

s = 2 max (|fmin| , fmax) / (qp + qn) , (5)

where fmin and fmax defines the range of floating-point data.
The symmetric quantization has the advantage of easier im-
plementation, as it leads to z = 0. However, it is sub-
optimal for cases where the range of floating-point data could
be significantly skewed and not symmetric. For such cases,
asymmetric quantization is preferred. For the asymmetric
quantization scaling factor and zero point are calculated as
follows.

s = (fmax − f min) / (qp − qn) , (6)

z = qmin − round

(
fmin

s

)
, (7)

where qmin is the minimum of quantized data type.
Figure 4 visualises an overview of symmetric and asymmet-

ric quantization. While asymmetric quantization of network
parameters (weights and biases) achieves slightly higher accu-
racy, it requires additional subtraction or linear linearoperation
(due to the zero-point value) prior to multiplication, which
consumes an additional 10%–20% of energy [25]. As a result,
symmetrical quantization of parameters is compatible with
current fixed-point CNN accelerators and has been widely
implemented in chip design [26]. As a result, we employ
symetric quantization to achieve parameter quantization. How-
ever, we examine asymmetric and symmetric modes for ifmap
quantization.

To obtain the scaling factor, s in equation (3), and quantize
data the key challenge lies in determining the optimal range
of floating-point data (fmin fmax) in order to minimizing
quantization error. The next sections explain how SQS obtains
the scaling factor for quantizing parameters and ifmap by
searching for the optimal range of floating-point data.

1) Parameter Quantization: To symmetrically quantize
weights, W, in layer l, the step-size, slw, is calculated using
equation (5). The optimal range of floating-point weights
(Wmin and Wmax) are calculated as the average minimum
and maximum of kernel (filter) tensors, Kl, as follows,(

Wl
min,W

l
max

)
=

1

N l
k

∑
i∈N l

k

(
min

(
Kl

i

)
,max

(
Kl

i

))
. (8)

Where N l
k and Kl

i denote the number of kernels and the ith

kernel in layer l, respectively. The same procedure is also
employed to determine the optimum step-size for biases. While
determining the step-size for a specific layer, other layers keep
the floating-point precision to prevent the influence of other
quantization noise on optimization.

2) Activation Quantization: Whereas parameter quantiza-
tion primarily affects model accuracy and size, ifmap quan-
tization has an effect on model accuracy and the degree of
change between ifmap pixels across successive frames in a
continuous data stream. More specifically, a bigger step-size
minimises the difference between pixel values and results in
fewer changes between successive ifmap pixels. Nevertheless,
the reduced data resolution caused by a very large step-size
results in a considerable rise in model accuracy loss. The
step-size ,slx , for symmetric and asymmetric quantization of
ifmap X in layer l are calculated using equations (5) and (6),
respectively.

Unlike parameter quantization where the range of the
floating-point weights can be computed ahead of time, the
range of ifmap values (Xl

min and Xl
max) is determined by

the input data to network. Hence, we propose the range of
ifmap into each layer to be derived from the floating-point
precision histogram of ifmap pixel values. To this end, we
introduce the cost function fl in equation (9) as the weighted
sum of quantization error (mean square error - (MSE)) and
similarity of ifmap values in layer l, denoted by SIM. The
aim of the proposed cost function is to identify the optimal
range of ifmaps to co-optimize the quantization error and
degree of changes between ifmap pixels across frames. During
the optimization introduced in algorithm 1, we look for the
optimum Xmin and Xmax to minimize fl,

fl = argmin
Xmin,Xmax

(MSE + γ.β/SIM) , (9)

In the following, we will describe each term in more details.
3) Quantization Error (MSE): Given the floating-point pre-

cision histogram of ifmap X, quantization error is measured
as the ℓ2 norm of the difference between the floating-point
and quantized value of ifmap [27]. Figure 5 visualizes a
histogram of ifmap and the quantization intervals for a simple
INT3 quantizer. Let zi and h(zi) be i-th bin value and its
corresponding frequency, ∀i ∈ {1, . . . , n}, where n denotes
the number of bins , then the MSE is defined as:

MSE =
1

n

n∑
i=1

h (zi)× (zi − zqi )
2 (10)

where zqi is the quantized value of zi, driven from equation
(3). We set n to 2048 in our experiments.

4) Similarity (SIM): In equation (8), SIM defines similarity
as the probability that the difference between two consecutive
ifmap pixels is less than the quantization step-size of that
ifmap. In other words, similarity can be interpreted as the
probability that a floating point pixel value in two consecutive
executions of the CNN falls in the same quantization interval
i.e., a quantization interval is equal to step-size value which



Fig. 4: Illustration of symmetric quantization (left) and asymmetric quantization (right).
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Fig. 5: Histogram of a floating point precision ifmap. Quanti-
zation intervals (↔) for a INT3 quantizer are superimposed.

is shown as ↔ in figure 5. Given k quantization intervals,
similarity is computed as follows,

SIM(X) =
∑k

i=1 P (Xt ∈ Invi) ∗ P (Xt−1 ∈ Invi) , (11)

where Invi is the i-th quantization interval and k = |qp|+ |qn|.
Given the floating-point histogram of X, P

(
Xt/t−1 ∈ Invi

)
can be estimated as the proportion of data in histogram of
X between Invi and Invi+1. Therefore, given Xmin, Xmax,
k, and histogram of X, with zi and h(zi), bin values and
frequencies, similarity is computed as follows.

SIM(X) =

1
H

∑k−1
i=0

(∑
∨zi∈[Xmin+i∗s,Xmin+(i+1)∗s] h (zi)

)2

,
(12)

Where H is total number of data in histogram of X and is
computed as follows.

H =

n∑
i=1

h (zi) . (13)

5) Hyper-parameters (β and γ): β in (9) is a hyper-
parameter which normalize SIM and MSE values. γ is a
hyper-parameter that controls the strength of our preference
for similarity. γ = 0 imposes no preference on the degree of
similarity, and larger γ values force the step-size to become

larger. The γ parameter can vary for different network layers
and be chosen as a function of the layer’s computational
complexity and depth. Hence, γ gives us the flexibility to
change the degree of computational complexity and power
consumption reduction of video recognition.

6) Optimization: Contrary to parameter quantization, where
the weights and biases are quantized ahead of time, the
step-size for ifmaps are computed based on observing the
behaviour of the CNN during a calibration process. In the
calibration, random images are fed into the network, and the
histograms of floating point ifmaps into convolutional layers
are recorded. Specifically, this is done by inserting observer
modules before each convolutional layer to record that data.
Then, the optimization algorithm 1 performs a deep search in
the histogram bins to choose the clip threshold bins, Xmin

and Xmax, to minimize quantization error and maximize the
similarity (or minimize changes in data) in ifmap.

In algorithm 1, cSum is the cumulative histogram of X.
Lb and Ub are the lower and upper bounds parameters with
an initial value of 0 and 1, respectively. sBin, eBin and nBin
indicate the start bin, end bin and number of bins, respectively.
In our experiments, nBin is set to 2048. minCost stores the
minimum cost function value so far, during the optimization.
minCost has a large value of (infinite) at the beginning. total
is defined as the total number of data in histogram of X and is
computed in equation (13). std is the search stride parameter
that defines the granularity of search in histogram and is set to
1× 10−5 in our experiments. In algorithm 1 the clipping bins
(sBin and eBin) are initially set to the first (zero) and last bins
(nBin) in the histogram, respectively. Such a clipping setting
provides maximum similarity (largest quantization step-size)
with large quantization error at the beginning of search. Then,
the right and left clipping bins (eBin and sBin) are gradually
moved toward the centre of the histogram to optimize the
quantizaton error. This process continues till it reaches the
optimum clipping bins which minimize the cost function
fl. Finally, the optimum clipping bins are returned as the
Xmin and Xmax parameters for activation quantization. The
algorithm refalg:1 is an offline iterative process which only
takes a few seconds on a regular CPU.

7) Model Fine-tuning: To recover the quantization error,
once the optimum step-sizes are determined, they are frozen
to retrain the network. We employed the training approach
proposed by Jacob et.al. [28] to fine-tune the network. This
approach simulates the quantization effects during the forward
pass, while the back propagation is still performed using full



Algorithm 1: Identifying optimum clipping bounds
Data: Histogram(X)
Result: Xmin, Xmax

while Lb < Ub do
nLb ← Lb + std # next Lower bound
nUb ← Ub - std # next Upper bound
l ← startBin
r ← endBin
while l < eBin and cSum [l] < nLb*total do

l = l+1
end
while r > sBin and cSum [r] < nUb*total do

r ← r-1
end
nSBin ← sBin # next start bin
nEBin ← eBin # next end bin
if (l-sBin) > (eBin-r) then

nSBin ← l
Ub ← nUb

else
nEBin ← r
Lb ← nLb

end
fl ← MSE (Histogram, nSBin, nEBin) + γ ·
β/SIM (Histogram, nSBin, nEBin)

if fl < minCost then
minCost ← fl sBin ← nSBin eBin ← nEbin

end
end
Xmin ← sBin , Xmax ← eBin

precision.

C. Similarity-Aware Dataflow - SRS

By quantizing CNNs through SQS, the majority of ifmap
pixel values remain unchanged between consecutive video
frames. Therefore, the computational results (ofmap) from pro-
cessing a video frame can be stored and reused for subsequent
frames. Accordingly, computations and memory accesses asso-
ciated with the unchanged pixels can be eliminated. However,
to efficiently reuse computation results and eliminate unneces-
sary computations, a specialized dataflow is required for CNN
accelerators. Existing dataflows aim to maximize data reuse
and minimize accesses to high energy consumption memory
hierarchy levels like DRAM. However, they are not designed
to skip redundant computation and memory accesses when
input data remains unchanged between consecutive frames.
Therefore, it is desirable for the dataflow to be aware of the
similarity between ifmaps, and hence optimize computation
and data movement energy costs. We achieve this goal by
proposing a novel dataflow, called similarity-aware dataflow
(SRS). SRS adapts row-stationary (RS) dataflow for similarity-
aware CNNs, and leverages unchanged pixels between suc-
cessive ifmap (or incremental update of ofmap) to reduce the
power consumption of video recognition tasks. This section

Fig. 6: An abstract on CNN accelerator consists of an array
of processing elements, each equipped with a register buffer,
a global on-chip buffer and an off-chip DRAM memory

introduces row-stationary dataflow and shows how SRS adapts
it for similarity-aware CNNs.

1) Row-Stationary Dataflow : Figure 6 shows an abstract
view of a CNN accelerator architecture, pervasive in many
state-of-the-art CNN accelerators [29]–[31]. CNN accelerators
are primarily composed of off-chip DRAM, a global buffer
(GB) and an array of processing element (PE) components.
Each PE is equipped with a local register file (RF).

Row-stationary dataflow divides the 7D convolution opera-
tion, shown in figure 3, into 1D simple convolution primitives.
Each primitive includes one row of filter weights and one
row of ifmap pixels, which are used to generate one row
of partial sum (psum). The psums from different primitives
accumulate together to generate one row the ofmap pixels
[32]. The computations for each primitive are mapped to one
PE. Row-stationary dataflow reads a row of ifmap pixel from
DRAM and passes it to the GB and then from GB to RFs
inside PEs. A row of weights is read from the DRAM and it
is directly passed to the RFs. The computation process inside
each PE starts by sending each ifmap pixel from the RF to the
MAC engine. Each ifmap pixel is multiplied by a row of filter
weights and generates one psum pixel. Once a row of psum
pixels is computed, it is forwarded to the neighbour PEs to
compute one row of ofmap. The computed ofmap is sent back
to GB and ultimately will be stored in DRAM.

2) Energy Consumption Analysis of row-stationary
Dataflows : The energy consumption of a convolutional layer
can be estimated (with 95% accuracy [9]) by accounting
for the total number of required MAC operations and the
number of accesses to each level of memory hierarchy for
all data types (ifmap, weights, psums/ofmap), and weighing
them with the energy cost of MAC operation and the energy
cost of accessing that specific memory level [9], [32]. Figure
7 shows the energy breakdown of a row-stationary dataflow
for five convolutional layers. The energy consumption of
convolutional layers in row-stationary is dominated by RF
accesses, because the dataflow fully exploits different types
of data movement in the local RFs and between PEs to
minimize accesses to DRAM and GB (which have a higher
access energy cost).
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Fig. 8: Computational flow of a PE in SRS

3) Similarity-Aware Dataflow (SRS): Similar to row-
stationary dataflow, SRS operates on 1D primitives. A 1D
primitive in SRS consists of one row of ifmap from the current
frame (ifmapt), one row of ifmap from the previous frame
(ifmapt−1), and one row of filter weight. After the computed
rows of psum from different primitives are accumulated to-
gether, the results are added to the row of ofmap from the
previous frame.

SRS maps each primitive into one PE to provide maximum
ifmap and filter reuse at the RF level. Figure 8 shows the
abstract of computation flow of a PE in SRS to process a 1D
primitives. Initially, SRS detects the unchanged ifmap pixels
(between ifmapt and ifmapt−1) coming to the PE. As shown
with dotted red lines in figure 8, for the unchanged pixels, SRS
gates accesses to weight and Psum RF. Accordingly, MAC
operations are eliminated and psum pixel remains unchanged.
Since most of the ifmap pixels remain unchanged between
consecutive video frames, SRS skips numerous redundant

MAC operations and RF accesses. On the other hand, when a
pixel changes between ifmapt and ifmapt−1, ifmap pixels are
subtracted from each other and the MAC operations are per-
formed between subtraction result and a row of filter weights.
The computation result is accumulated to the input psum pixel
values. The SRS reduces the number of MAC operations and
RF accesses for weight and ofmap. However, SRS increases
RF accesses for ifmap. The next section shows that SRS
reduces the overall energy consummation of convolutional
layers by eliminating MAC operations and RF accesses for
ofmap and filter weights. It is notable that SRS uses the
similar data movement scheme between PEs as row-stationary
dataflow.

4) Energy Consumption Analysis of SRS : The energy
consumption of SRS evaluated by accounting for the number
of required MAC operations and the number of accesses to
each level of the memory hierarchy. This section shows that in
the presence of similarity between ifmap pixels, SRS improves
the energy consumption of original row-stationary dataflow
by reducing the number of accesses to RFs and eliminating
numerous MAC operations.

RF Accesses: As shown in figure 7, the energy consumption
of convolutional layers in row-stationary dataflow is dominated
by the RF accesses. This is because of numerous accesses
to RF to read/write ifmap, filter weight and psum pixels.
However, SRS skips the majority of RF accesses for the un-
changed ifmap pixels. By quantizing CNNs through SQS, most
of the ifmap pixels remain unchanged between consecutive
frames; therefore, SRS eliminates accesses to RF for fetching
filter weights and psum, resulting in an energy consumption
reduction of convolutional layers. Nonetheless, compared to
a row-stationary dataflow, SRS requires more accesses to the
ifmap RF to read ifmap pixels(for processing each ifmap pixel
two accesses are required to read ifmapt−1 and ifmapt ).
However, since each ifmap pixel shared between a row of
filter weights, the increased number of accesses to ifmap RF
to read ifmap pixels is significantly less than the eliminated
RF accesses by SRS.

GB and DRAM accesses The general flow of data in SRS is
similar to the original row-stationary dataflow. However, SRS
stores and reuses ifmap/ofmap from previous frames to reduce
computational complexity. Therefore, SRS increases access to
DRAM and GB for both ifmap and ofmap tensors. However,
SRS doesn’t increase the number of DRAM and GB accesses
for filter weights.

Computational Operations SRS eliminates the MAC op-
eration for unchanged ifmap pixels. However, Compare to
row-stationary dataflow SRS requires an additional subtraction
operation is required for the changed ifmap pixels. Since a
MAC operation consumes 10× more energy than a subtraction
[33], the energy overhead of extra subtraction operations is
small compared to the saved energy by eliminated MAC
operations.



IV. RESULTS AND DISCUSSION

A. Evaluation

We evaluate SQS on YOLOv3 network [7], as the widely
used per-frame video object detection model for mobile de-
vices, trained on the MS COCO dataset [34]. We evaluate
the accuracy of SQS on the test set of MS COCO. We use
a small subset (5k random images) of COCO test set for
SQS calibration. We implemented SQS using the PyTorch
framework. To evaluate the energy consumption of SRS, we
employed and adapted the Timeloop engine [9], a powerful
and accurate infrastructure for modelling and evaluating the
design space of DNN accelerator architectures. We evaluate
and compare the power consumption of SRS with the row-
stationary dataflow on the Eyeriss architecture [32], which uses
168 PEs (each with a 224b ×16-b SRAM filter scratch pad,
16b×12 and 16b×24 register files for ifmap and ofmap scratch
pads, respectively), a single shared 108KB global buffer, and
a backing DRAM. We provide videos for evaluating the
efficiency of SRS from VIRAT Ground dataset [8]. VIRAT
Ground consists of videos from stationary cameras in urban
streets. Videos are sampled sampled at 15 fps.

Metrics: We use accuracy, computational complexity, and
energy consumption to evaluate the performance of our frame-
work. To report the accuracy results, we use different metrics.
We report the top-k accuracy for classifier models and mAP
(Mean Average Precision) as the accuracy for object detection.

B. Accuracy and Computation Complexity

We evaluate SQS’s efficiency in reducing the computational
complexity of processing consecutive video frames, as well
as the impact of quantization on the accuracy of object
detection results. We investigated symmetric and asymmetric
quantizations of ifmaps.

Accuracy: Figure 9 compares the mAP of SQS imple-
mentation of Yolo-V3 [7] against 32-bit floating-point preci-
sion (FP32), conventional quantization approach [28] (INT8),
CBinfer [14] , and DeepCach [15] implementations. The SQS
is repeated for γ = 0.1, γ = 0.3, and γ = 0.5, using both
symmetric, SQS(sym), and asymmetric, SQS(asym), quanti-
zation. While CBinfer and DeepCach use the mean square
error (MSE) of objectness score to evaluate the accuracy
of object detection, we use the mAP as the standard detec-
tion metric because the objectness score doesn’t reflect the
accuracy of predicted bounding boxes. Figure 9 shows that
SQS reduces the mAP only by 0.52% and 0.3% compared to
FP32 and INT8, respectively. However, the SQS outperforms
CBinfer and DeepCach because they impose errors introduced
by thresholding differences between frames. However, unlike
these approaches, our proposed approach fine-tunes network
parameters to recover. We evaluate the impact of γ value
in accuracy of similarity-aware CNN. Increasing γ value
leads to mAP reduction because a large γ value forces the
quantizer to select a larger step-size that consequently leads
to more quantization error. However, larger γ reduces the
computational complexity of video recognition, as we will
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Fig. 9: Comparing mean average precision of video object
detection of floating-point precision (FP32), INT8, CBinfer,
DeepCach with SQS implementation of YOLOv3. Both asym-
metric and symmetric SQS are repeated for γ0 = 0.1, γ0 = 0.3
γ0 = 0.5 [7].

discuss in the next section. According to the observations,
asymmetric quantization has a marginally greater accuracy
than symmetric quantization. The rule of Batch normalisation,
on the other hand, causes ifmaps to be symmetrical in most
cases. Aside from that, network parameters are trained to be
zero centred in order to avoid gradients that explode or vanish
[35]. As a result, the detection accuracy of symmetric and
asymmetric quantizations is nearly identical in both cases,
as both ifmaps and parameters are symmetrically distributed.
Due to the fact that symmetric quantization has nearly the
accuracy of asymmetric quantization and a low computational
cost during inference, we use it in the building of SRS.

Table I shows the Top1 and Top-5 errors of SQS, INT8
[28] and SigmaDelta [13] compared to the FP32 accuracy
of the VGG-16 [36] classifier network. The symmetric and
asymmetric quantizations are examined for SQS. The SQS
achieves classification accuracy close to INT8. However, the
proposed SQS outperforms the SigmaDelta in both Top-1 and
Top-5 accuracy. Moreover, asymmetric quantization of SQS
has slightly lower quantization error than symmetric mode.
Notably, we did not involve the proposed approach by Riera
et al. [12] in our evaluations because it introduces significant
accuracy loss for state-of-the-art CNN. The proposed approach
can examined only for the shallow CNN.

Figure 10 visualizes further evaluation results. Figure 10
compares the detection result and unchanged ifmap pixels
while processing the security camera videos from VIRAT.
Instead of processing consecutive frames, we process video
frames with five and three time-step distances. The top row



in figure 10 shows the detection results of processing video
frames with the FP32 network. The horizontal arrows between
the two frames indicate the proportion of data that remains
unchanged between frames. The vertical arrows show the
average of intersection over union (IoU) of bounding boxes
predicted by FP32 and similarity-aware CNN. Using the
FP32 network, only 11%-13% of ifmaps remains unchanged
between frames with five and three time-step distances. The
bottom row shows the detection results of processing the same
video frames as in the top row, processed by the SQS quantized
network. While getting the high detection accuracy as FP32
CNN, SQS increases unchanged ifmaps between frames up to
67%- 76%.

Computational Complexity Reduction: Previous works
such as CBinfer [14], DeepCach [15], and SigmaDelta [13]
aim to identify unchanged pixels and skip computations at the
software level. Therefore, they use general-purpose GPU/CPU
platforms to execute their approach. For example, DeepCach
and CBinfer use Nexus 6 and Jetson TX1, respectively, that
consume tens of Joules of energy. Yet, we propose SRS as
a novel hardware-level solution to detect unchanged pixels
and skip redundant computations. We use the Eyeriss [32]
accelerator platform that consumes tenths Joules of energy.
Therefore, comparing the energy consumption of our pro-
posed SRS with software-level approaches does not provide
a fair comparison. Hence, we use the required number of
MAC operations to compare the efficiency of SRS with those
approaches. Figure 11 compares the average required MAC
operation for our proposed similarity-aware CNN (SRS+SQS)
for both symmetric and asymmetric quantization, CBinfer,
DeepCach and FP32 to process a series of random video
sequences. Figure 11 also shows the required MAC operations
when running our proposed similarity-aware CNN but using
the conventional quantization approach (SRS+INT8). We mea-
sured the number of MAC operations of proposed similarity
aware CNN for γ = 0.1, γ = 0.3 γ = 0.5. Figure 11 reveals
that the proposed similarity aware CNN requires fewer MAC
operations compare to other approaches because SRS skips
MAC operations associated with individual unchanged pixels.
Furthermore, asymmetric quantization requires slightly more
MAC operations than symmetric quantization. This is due to
the fact that asymmetric quantization often results in a smaller
clipping range. Due to the lower clipping range, the step-
size factor is reduced, resulting in an increase in ifmap pixels
changes between subsequent frames.

However, the throughput of CBinfer and DeepCach is highly
dependent on the pattern of changes between consecutive
frames i.e., when a row of ifmap pixels changes between two
consecutive frames, CBifer loses all its performance. On the
other hand, the computational complexity reduction of our
proposed similarity-aware CNN is independent of the pattern
of similarity between consecutive frames. Notably, SRS+INT8
outperforms CBinfer and DeepCach. However, figure 11 shows
that SRS+SQS outperforms SRS+INT8 as SQS increases the
similarity between consecutive pixels. More computations can
be skips with larger γ values; however, larger γ reduces

TABLE I: The classification error of VGG-16 using SQS,
conventional quantization, and SigmaDelta network compared
to full precision FP32 network. SQS is repeated for γ0 = 0.1,
γ0 = 0.3 γ0 = 0.5 [7].

Error (Top-1) Error (Top5) MACs (Gops)

INT8 [28] 2.22% 1.65% 5.1

SQSsym
γ0 2.61% 1.72% 3.14

SQSsym
γ1 2.83% 1.77% 3.01

SQSsym
γ2 3.01% 1.83% 2.94

SQSasym
γ0 2.56% 1.69% 3.18

SQSasym
γ1 2.81% 1.76% 3.01

SQSasym
γ2 2.92% 1.81% 2.98

SigmaDelta 2.93% 1.76% 3.11

TABLE II: Normalized energy cost relative to a MAC opera-
tion [33]

ADD MAC Register File Global Buffer DRAM

Norm
Energy 0.1× 1× 1× 6× 200×

the detection accuracy. The fourth column of table I com-
pares the averaged required mac operations for performing
image classification on a series of random sequences of video
frames. Table I shows that our proposed approach outperforms
the SigmaDelta and INT8 in the required number of MAC
operations. However, asymmetric SQS requires more MAC
operations compared to symmetric SQS. Notably that in this
paper we only aim to imrove the energy consumption of video
recognition and we don’t aim to improve the inference time
and we leave it as feature work.

Notably, SRS does not attempt to improve execution time by
utilising unchanged pixels, as SRS does not leverage the MAC
engine’s idle cycle for ifmap pixels. As a result, the number of
cycles required by SRS and RS for each convolutional layer
is identical, and the runtime of similarity-aware CNNs and
conventional CNNs is similar to that of the other layers, i.e.,
activation is identical between similarity-aware and traditional
CNNs.

C. Energy consumption

We evaluate the energy consumption of the proposed
similarity-aware CNN by calculating the energy consumption
of convolutional layers, as they are responsible for 90% of the
overall required energy for CNNs [9]. Energy consumption
of a convolutional layer is estimated by accounting for the
total MAC operations alongside with the number memory
accesses, weighting them with their energy costs. Table II
shows the normalized energy consumption of accessing data
from different storage levels relative to the computation of a
MAC. These numbers are extracted from a commercial 45-nm
process, and we used them in our final experiments [33].

We examine the SRS energy consumption behaviour on
a variety of convolutional layer configurations. We conduct



Fig. 10: Detection result (bounding boxes) , average of IoU between bounding boxes (yellow arrows), and unchanged ifmap
pixels (red arrows) when processing video frames with five and three time step distances with FP32 Yolo-V3 [7] (top row)
and SQS Yolo-V3 (Bottom row)

TABLE III: Comparing the configuration of convolutional layers of YOLO and the energy consumption of RS and SRS
dataflows for those layers

Layer ofmap
(K,P,Q)

filter
(C,S,R)

ofmap
(MB)

filter
(MB)

ifmap
(MB)

RS
(µJ)

SRS
(µJ)

Threshold
(%)

Conv1 (16,416,416) (3,3,3) 0.00864 5.3 0.0037 548 778 100
Conv2 (32, 208, 208) (16,3,3) 0.018e 2.76 5.3 2904 2266 53
Conv3 (64,104,104) (32,3,3) 0.073 1.38 2.76 2849 2238 49
Conv4 (256,52,52) (128,3,3) 0.29 0.69 1.38 2940 2140 47
Conv5 (512,26,26) (256,3,3) 1.8 0.34 0.69 3135 2616 58
Conv6 (1024,13,13) (512,3,3) 4.7 0.17 0.34 3127 2176 48
Conv7 (11024,13,13) (512,1,1) 0.0128 0.17 0.17 709 900 100
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Fig. 11: Comparing the average required number of MAC
operation for video object detection of floating-point precision
(FP32), CBinfer, DeepCach, and SRS implementations of
YOLOv3 [7]. SRS is repeated for symmetric and asymmetric
SQS with γ0 = 0.1, γ0 = 0.3 γ0 = 0.5

the energy consumption evaluation on Darknet (Darknet is
the backbone network of Yolo-V3) [7] and Resnet-18 [10]
workloads as widely used backbone networks for object
detection applications. Table III shows the configuration of
seven convolutional layers (Conv1 to Conv7) with different
configurations (ofmap and filter sizes). These convolutional
layers are driven from Resnet [10] and Darknet [7].

Similar to CBinfer [14], DeepCach [15], and SigmaDelta
[13], we compare the energy consumption of our pro-
posed similarity-aware CNN with processing individual video
frames, independently. Figure 12 compares the energy break-
down of the Conv2 layers processing by row-stationary
dataflow (RS) and similarity-aware dataflows (SRS). As can be
seen, the energy consumption of the row-stationary dataflow
is dominated by RF accesses. Among RF accesses, the weight
RF consumes more energy than ifmap and psum RF accesses
because there are more accesses. MAC operations and GB
accesses consume more energy than DRAM accesses. Assum-
ing that 80% of ifmap pixels remained unchanged compared to
the previous frame (the average unchanged data over VIRAT),
the energy breakdown of SRS shown in the right columns.
Since SRS eliminates all weight and psum RF accesses and
MAC operations for unchanged ifmap pixels, the energy
consumption of weight and psum RF and MAC operations are
reduced by 80%. On the other hand, SRS increases accesses
to ifmap RF, GB and DR. Consequently, SRS increases the
energy consumption of DRAM and GB. Despite increasing
ifmap energy consumption, due to the significant reduction in
weight and psum RF energy consumption, SRS decreases the
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Fig. 12: Energy breakdown of Conv2 for RS and SRS
dataflows

overall energy consumption of RF.
Figure 13 compares the energy consumption of process-

ing an ifmap by Conv1-Conv7 with SRS and row-stationary
dataflows. For SRS, we assume that 80% of ifmap pixels
remained unchanged compare to the previous ifmap pixels. For
Conv2 to Conv6, SRS reduces the total energy consumption of
processing ifmap by 21%, 21%, 27%, 16%, 30%, respectively.
Since the energy consumption of row-stationary dataflow in
Conv2-Conv6 is dominated by the RF, eliminating 80% of
weight/psum accesses and MAC operation by SRS leads to a
reduction in total energy consumption for these layers.

Figure 13 shows that energy consumption of row-stationary
dataflow in Conv1 and Conv7 is dominated by DRAM and GB,
respectively. This is because of small filter size of these layers.
Consequently, increasing DRAM accesses by SRS leads to
small growth in overall energy consumption of Conv1 and
Conv7. As the table III shows, the energy consumption of
Conv1 and Conv7 are considerably less than Conv2-Conv6.
Hence, a small increase in energy consumption of these layers
does not significantly increase the total energy consumption of
similarity-aware CNNs.

Generally, the energy efficiency of SRS depends on the con-
figuration of the convolutional layers, specifically the size of
ofmap/weights, and the level of the similarity between ifmap.
For each convolutional layer when the similarity between
consecutive ifmaps is less than a threshold value, SRS loses
it’s performance because the energy overhead of extra GB and
DRAM accesses by SRS will be more than the saved energy
by eliminating MACs and RF accesses. The ninth column of
table III shows the minimum similarity between ifmap required
by SRS to reduce the energy consumption. It can be seen that
with less than 50% similarity between ifmap, SRS improves
the energy consumption of convolutional layers. The threshold
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Fig. 13: Energy Consumption breakdown of Convolutional
layers in table 3 processed by row-stationary dataflow (RS)
and similarity-aware dataflow (SRS).

value is smaller for convolutional layers with a large filter size.
Threshold value increases with for smaller filter size; therefore,
more similarity between ifmaps are required for those layers
to improve energy consumption of the convolutional layer.

D. Accuracy-Efficiency Trade-Off

While for some scenarios any drop in accuracy is un-
acceptable, many applications allow for some trade-off be-
tween accuracy and energy consumption [37]. We analyse
and demonstrate the trade-off between energy consumption
and quantization error in consecutive execution of CNNs for
Conv2-Conv5 in figure 15. The γ in equation (9) controls
our preference for lower energy consumption over quanti-
zation error. Increasing γ factor immediately results a gain
in unchanged ifmap pixel and consequently reducing power
consumption. However, larger γ value increases the quantiza-
tion step-sizes which consequently increases the quantization
error (MSE). It’s notable that further increasing of γ value
the doesn’t significantly improve the energy consumption of
CNNs because despite the increased step-size, some ifmap
pixels changes between consecutive frames. According to our
experiments the optimal value for γ is around 0.1 - 0.2.

E. Overhead

Energy overhead: Figure 14 compares the energy break-
down of Conv1-Conv7 for SRS (for ten level of similarity)
with RS dataflow. For each convolutional layer, the most left
bar shows the energy breakdown of row stationary dataflow.
Moving from the second left bar to the most right bar of
each convolutional layer, bars show the energy consumption of
SRS for 100%, 90%,...,10%, and 0% similarity, respectively.
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lutional layer for different level of similarity between ifmaps.
For each convolutional layer, the bars from left to right show
the energy breakdown for RS dataflow, SRS with 100% ,90%,
→, 0% similarity, respectively.

As can be seen, the energy efficiency of SRS reduces with
the reduction in the level of similarity between consecutive
ifmaps. For example in Conv4 bars, for any level of similarity
above the 50% SRS outperforms the row-stationary dataflow.
When the similarity between ifmaps drops below 50%, row-
stationary outperforms SRS. For 0% similarity SRS increases
the energy consumption by 26%. Our observation shows that
the similarity between ifmaps often remains above 70-80%
even when there is significant changes between consecutive
frames. Therefore, SRS outperforms row-stationary dataflow
when processing consecutive video frames. Notably, SRS does
not utilize the idle cycle of MAC engines for unchanged ifmaps
pixels. To avoid idle cycles, unchanged pixels need to be
identified ifmaps before feeding them to the PEs array. Also,
a control unit is required to restructure ifmaps by removing
and indexing unchanged pixels. Since unchanged pixels are
irregular and unstructured, designing an efficient fine-grain
irregular sparse accelerator remains a challenging problem in
the space of CNN accelerator design.

Memory overhead: Similarity-aware CNN requires more
memory, because it needs to store and use additional in-
termediate ifmaps and the previous output. For example in
Eyeriss accelerator architecture, SRS requires an extra ifmap
scratchpad (12b × 16 register file) in each PE, an extra global
buffer space of 30KB, and 40MB extra DRAM memory.
Considering that modern CNN accelerators often come with
around 0.1-24MB on chip memory [38], a 35KB kilobytes
extra memory is acceptable for modern CNN accelerators.

Memory Bandwidth Overhead: The majority of DRAM
bandwidth in the CNN accelerators is associated with weight
parameters. The bandwidth for weight parameters in Yolo-
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Fig. 15: Trade off between energy consumption and quantiza-
tion error of convolutinal layer

V3 varies between 0.75 to 9 world/cycle across convolutional
layers. However, ifmaps only require bandwidth within 0.04 to
0.41 world/cycle. Therefore, the additional bandwidth requires
by SRS to read the latest ifmaps does not impose significant
overhead on total DRAM bandwidth. SRS increases the re-
quired bandwidth by 3%-14% for the Yolo-V3 network.

F. Similarity-aware CNNs for Stationary and non-stationary
cameras

The energy consumption of a similarity-aware CNN can be
precisely approximated by adding the energy consumed by
each of its convolutional layers [9], as convolutional layers
consume about 90% of total energy in CNNs [22]. To fully in-
vestigate the proposed approach, we compare the energy con-
sumption of similarity-aware Resnet18 and Yolov3 networks
when the similarity between consecutive frames is between 5%
and 95% to the energy consumption of the conventional ap-
proach, which processes video frames individually. The figures
17a and 17b compare the energy consumption of conventional
CNNs (RS) and similarity-aware CNNs (RSR) approaches for
Resnet18 and Yolov3, respectively, at various levels of similar-
ity. It’s worth noting that the similarity indicated on the x-axis
of figures 17a and 17b refer to the similarity of feature maps
pixels between consecutive frames in the first convolutional
layer. However, we observed that this similarity varies by 30%
in deeper convolutional layers. In the final convolutional layer,
this variation reaches a maximum of 50%. While the energy
consumption of RS remains constant over all range of similar-
ity between frames, SRS consumes energy dynamically and is
dependent on the similarity of video frames. As seen in Yolov3
and Resnet18, conventional RS outperforms RSR when the
similarity is less than about 40%-50%, because the overhead
associated with fetching additional feature maps from DRAM
outweighs the energy saved by avoiding computations and
memory accesses. However, as similarity increases between



video frames, SRS skips more computations and memory
accesses and its energy consumption decreases almost linearly,
outperforming RS approach. Given figures (17a and 17b), we
can infer whether similarity-aware CNNs (Yolov3 and Resnet)
outperform conventional CNNs if we know the degree of
similarity between features in successive frames. Therefore,
we measured feature similarity between consecutive frames
across an entire dataset to demonstrate the application and per-
formance of similarity-aware CNNs. We extended the analysis
to include both stationary and non-stationary camera videos.
Figure 16b depicts the histogram of similarity between feature
maps in ImagenetVID dataset [1], captured by non-stationary
cameras. ImagenetVID is a collection of videos captured at a
rate of 20-25 fps by dynamic cameras including fast-moving
objects. Regardless of the fast-moving senses between frames,
the average of similarity between frames remains slightly
above 50%; thus, the similarity-aware CNNs are capable of
achieving acceptable performance even for dynamic videos.
Furthermore, figure 16a illustrates the histogram of VIRAT
ground dataset [8] captured by stationary cameras. As can be
seen, the average similarity between features in consecutive
frames exceeds 80%, implying that similarity-aware CNNs
performed particularly well when processing stationary camera
videos. We observed that a lower degree of similarity between
the features of consecutive frames (as indicated by the green
bars in figure 16a) is associated with frames containing fast
moving objects that are typically close to the camera; however,
when the moving objects are further away from the camera or
there are no moving objects in the environment, the degree of
similarity between the features of consecutive frames remains
greater than 80%. In conclusion, while similarity-aware CNNs
perform better with static cameras due to their high degree of
similarity, they can also be used with dynamic cameras but
perform less well.

V. CONCLUSIONS AND FUTURE WORKS

Given the computational bottleneck associated with process-
ing a large number of video frames individually by CNNs
for video recognition applications, this article proposes a
novel similarity-aware CNN that takes advantage of small
differences in the feature pixels of consecutive frames to
reduce the computational complexity of video recognition.
The proposed similarity-aware CNN employs a similarity-
aware quantization technique (SQS) to minimise the difference
in pixel values between frame pairings. When frames have
similar appearances, minimising differences results in feature
pixels remaining intact.Similarity-aware CNNs employ a novel
similarity-aware computational dataflow (SRS) that detects
unchanged feature pixels between successive frames and omits
redundant MAC procedures and memory accesses associated
with them. SQS increases theunchanged feature pixels between
frames by up to 85% while incurring a negligible accuracy
loss of < 1%. Additionally, SRS reduces video recognition’s
energy consumption by up to 30%.
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(ImagenetVID dataset) cameras, When frames are processed by Yolov3.
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