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AN INVESTIGATION INTO VISUAL CONTROL OF SMALL REMOTELY PILOTED
AIRCRAFT IN GPS-DENIED ENVIRONMENTS

by Chang Liu

This thesis studies the design and implementation of a quadrotor system with the take-off mass
lower than 1 kg, which is capable of autonomous navigation in unstructured and initially un-
known environments, without the assist from any external localisation information. This is
particularly useful for indoor or urban applications. While operating in such constrained space
without GPS access poses multiple challenges for localisation, control, onboard sensor and com-
putation. It focuses on monocular vision based methods to realise this goal, due to its size,
power consumption and rich information captured. The aim of this research is to firstly explore
the method for the real-time six degree-of-freedom (DOF) state estimation for the quadrotor,
based on onboard inertial sensors and an onboard monocular camera; secondly develop the pre-
cise control method for the highly dynamic system, and thirdly realise a small platform with all

the computation onboard.

It shows that the real-time 6 DOF state estimation can be realised by adding a smartphone com-
puter onboard the quadrotor, to process the visual and inertial data. Specifically, it performs
a loosely coupled visual-inertial sensor fusion algorithm, overlaid on top of a state-of-the-art
monocular simultaneous localization and mapping (mSLAM) algorithm. Due to the comple-
mentary nature between visual SLAM and inertial measurement, the combination results in a
fast state estimation with sub-centimetre accuracy. Moreover, given the high quality state es-
timation, we have shown that the quadrotor position can be precisely controlled by a cascaded
model-based PID-like controller. A micro quadrotor testbed was developed from the ground up,
including the vehicle mechanical structure and autopilot electronics. Since all the computation
executes onboard the airborne platform, it results in a power-on-and-go system without the need
for a ground station. Finally, a novel launching method and active SLAM planner were imple-
mented, as well as a tether power solution was implemented to provide indefinite power to the
platform. This summaries the thesis as a thorough work going from initial sensor preparation to

detailed theory, through careful implementation downto the real world testing.
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Chapter 1

Introduction

In nature, the sensor capturing the richest information is probably the eye. It is believed that the
pigment eye spots on fossils show the origin of eye appeared from 540 million years ago, and
since then it rapidly evolved towards various shapes and functionalities, ranging from the pinhole
eyes, the compound eyes as insect eye to the sophisticated lens based colour eye as human eye.
Even though we feel the perception of the scene as immediate actions, the processing of the
vast visual information for the brain actually takes about 60 milliseconds, which means any
consecutive events with smaller temporal distance can not be distinguished by the brain, thus
this delay is generally treated as the approximate reference for the real-time standard for visual
processing. Moreover, our brain subconsciously decides when and what part of the image to be

fully processed, to further optimise the efficiency.

In the robotic world, all those subconscious actions in nature have to be explicitly programmed in
artificial computer, which operates as the brain processing series of streaming images from lens-
mounted colour camera. In the early research, image processing, such as structure from motion
(SFM) and image filtering, was well considered as the off-line technique, due to the mismatch
between the high computational requirement for real time image processing, and the limited
computing capacity of the processors. Thus, at the time, sonar and laser were the favourite
sensors for mobile robots to provide distance information about their surroundings, which leads
to the beginning of the Simultaneous Localization And Mapping (SLAM) technique for robotic
real-time online operation. However, due to the limitations of such sensors, i.e. limited range
and low dimension information (generally one dimension), the techniques have to have strong
assumptions over the operating artificial environment, such as small square space and negligible
sensor orientation changes. However, in real world scenarios, none of the above assumption is
true. Thus more powerful sensing solutions and more intelligent algorithms are needed to enable
the real world robotic operation. Given the vast information gathered by the image sensor, it is

certainly a key element to eliminate those assumptions.

In recent years, as the realisation of mass-producing good quality integrated cameras, their price

and size has dropped significantly. Besides, over the last twenty years, the development of



2 Chapter 1 Introduction

Figure 1.1: The modern insect compound eye in comparison with the arthropod eye
500 million years ago, showing similar level of complexity. Yong and Liittschwager
(2016)

efficient algorithms for rapid image processing, mainly with the introduction of feature points
extraction and optical flow techniques, dramatically reduces the computational requirements for
real time image processing, and concurrently, thanks to the nano silicon manufacture techniques,
system on chip technique and multicore parallel processing functionality, the computing speed
of the same size processors grows exponentially over the years. As a result, the computing
capacity of the small embedded processors, now starts to match the computation required by the
rapid image processing algorithm capable of real-time operation. This shows the possibility to
develop the computer vision system, which is small enough to be carried onboard a mobile robot
and perceives the surroundings fast enough to be engaged in-line to mobile robotic operation.
With all those in mind, one of the main goals in this thesis is to shrink the system in size, and
use vision as the primary sense to localise the pose of a small robotic platform for its navigation
in unstructured and unknown environments.

Certainly, for successful navigation and localization, vision is not the only sense in nature. For
example bats developed sonar like sensors, birds can sense the earth magnetic field, and almost
all animals can sense gravity field, acceleration and rotation through their vestibular system.
When working with multiple sensors, nature finds its way to optimally fuse them. As an exam-

ple, we can easily confuse our vestibular system, by spinning around our vertical axis. However
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if at the same time we fix one specific visual reference point, we can then subconsciously use this
visual feedback to prevent the confusion. In this case, it can be considered as a system fusing fast
dead-reckoning sensors for accelerations and angular velocities together with a slower sensor for
visual correction to estimate a gravity-aligned pose. It is shown by nature again, that the opti-
mal fusion of multiple sensor information can be very powerful for robotic localisation. Further
with visual and inertial sensors as the main cues, it is sufficient for high performance localisa-
tion in three dimensional space. Therefore, we also seek to identify an appropriate sensor-fusion

approach for state estimation.

1.1 Motivation

Remotely Piloted Aircraft (RPA) is one subset of Unmanned Aerial Vehicles (UAVs), which are
mainly used to replace manned aircraft, for the purpose of reducing downside risk and rising
confidence in mission success. In contrast to ground robots, the 3D manoeuvrability of UAVs in
space, makes them unbounded by the terrain surface. This makes them ideal for reconnaissance,

search and rescue, and coverage tasks.

Manually controlled RPAs generally require (a) highly skilled human pilot(s) performing con-
tinuous operation throughout the flight, while the autonomous and semi-autonomous RPAs are
able to operate without the skilled human pilot. It greatly reduces the pilot training cost before
the flight, and reduces the pilot working load in the flight. According to the author in RPAS
Steering Group (2013), the safe integration of autonomous RPA into the European airspace will
start in 2016, and the preparation for related regulation, technology research, and study on soci-

etal impact has already started.

The development of the Global Positioning System (GPS) has been the key to enabling the au-
tonomous behaviours of RPA by providing the external localization information in global scope.
Note that different providers use different terminologies (Russian service is called GLONASS,
Chinese service is called BEIDOU and European service is called GALILEO), thus for the sake
of simplicity, this thesis will use GPS to denote all the similar services. Given that the GPS by
itself, is not very accurate (+2 m Circular Error Probable (CEP, shown in Figure 1.2) with good
Horizontal Dilution of Precision (HDOP), and £10 m CEP with general HDOP) and not fast
(generally 1 Hz update rate) enough to stabilise a RPA, thus, extensive research Abdelkrim et al.
(2008); Yun et al. (2008), has brought the precision of position estimation up to decimetres accu-
racy by fusing the measurements from differential GPS (DGPS) and Inertial Navigation System
(INS), called the INS/GPS approach. Nowadays, similar approaches drive most of the outdoor
autonomous RPA systems.

However, there are multiple circumstances where GPS is not reliable or not available:

1. Due to the natural weakness of the GPS signal, it can be easily blocked by any large object

between the satellite and the receiver, which results in poor GPS position measurements



Chapter 1 Introduction

Figure 1.2: Circular error probable (CEP) shows the circular area which covers 50% of
the sampling points. Zimmerman (2014)

or complete GPS signal loss. This is likely to happen indoor environments and even in

outdoor urban area, where large buildings are close to each other.

. Given that there are a range of GPS jamming devices available in the market with afford-
able prices, it can be easily jammed by anyone. Thus it can happen in both civilian and

military applications where GPS is purposely jammed by people.

. Some careless RPA design can easily interfere with the GPS signal, such as placing the

GPS antenna too close to a power wire or covering by a radio reflective material.

. The GPS satellite failure happens occasionally, which results in direct failure in any GPS

dependent devices.
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5. GPS and similar services are only provided by a limited number of large organisations
(US Airforce, Chinese Army etc.). In some large military activities, countries may decide
to temporarily switch off their GPS service, which will also result in the corresponding
GPS failure.

Among the above, the indoor applications are the most general cases when GPS fails to operate,
while there is high demand to remotely obtain information from inside a building, such as search
and rescue, disaster response, safety and security, and military scenarios. Recently the UK
Ministry of Defence (MOD) launched a series of activities to match the high demand in indoor
applications: Unmanned Air Systems Capability Development Centre (UAS CDC) requested
indoor flight demonstration; and Centre for Defence Enterprise (CDE) initialised the themed

competition on the title "What’s inside that building?’.

Although autonomous RPA offers multiple advantages, and attracts a high demand for indoor
operations, it leads to multiple challenges for robust operation. Firstly, for the autonomous
flight in three dimensional space without GPS, the full 6 degree of freedom of the RPA has to be
sufficiently measured without any physical contact to any fixed structure. Secondly, operations
in the very constrained indoor space require the size of the RPA to be very small (less than 700

mm3

occupying space for hovering), which significantly reduces its endurance, and payload
capability for onboard sensors and computational power. Thirdly, the small size makes the RPA

highly dynamic, which requires fast controller performance as well as measurement updates.

1.2 Contribution to Knowledge

This thesis investigates the methods for vision based navigation and control for a micro RPA.
The main goal is to develop a complete micro quadrotor system, which uses an onboard camera
and other available onboard sensors to achieve reliable and autonomous localisation and ma-
noeuvre in indoor and close to ground outdoor environments, without the use of GPS or similar
external aid. This goal requires intensive research in a multitude of areas. This thesis presents

the core contributions, listed as following:

1. Development and evaluation of a novel, loosely coupled, visual-inertial sensor fusion al-
gorithm, based on a monocular SLAM, an accelerometer and a gyroscope, which requires
so little computation that it is suitable for high speed 6 DOF state estimation on low power

embedded computer.

2. Development of a complete micro (250 mm motor-to-motor size) quadrotor system capa-
ble of navigation in GPS-denied environments, based on onboard sensors and computa-

tion only.

3. Development and evaluation of a novel model based control algorithm for micro quadro-

tor autopilot system.
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4. Design and Implementation of a novel low cost high performance quadrotor autopilot

hardware based on commercial-off-the-shelf (COTS) components.

5. Design and Implementation of a novel hand-launching method for micro UAV, for intuitive

operation.

6. Design and Implementation of a novel active planning algorithm, which leads to safer

vision-based flight in low contrast environments.

7. Design and Implementation of an electrical tether system providing power to the micro

UAV from offboard power sources.

The detailed justifications and comparisons of the listed contributions are shown in the following
subsections. They can be generalised as visual-inertial fusion framework, platform and control,

active planning for safe vision operation, and tether power system for small UAV.

1.2.1 Novelty of the visual-inertial fusion framework

The following explains the novelty of the contribution (1) listed above. The implementation

detail is shown in Chapter 4.

The combination of visual and inertial sensors has been shown to be viable, and the significant
performance improvement over a single sensor system has attracted many researchers into the
field after the success of SFly project in Weiss and Siegwart (2011), which enabled the worlds
first autonomous unmanned aerial vehicle (UAV) in GPS-denied environments. Blosch et al.
(2010)

In the past five years, many prominent research institutions began to develop advanced monocu-
lar visual-based simultaneous localization and mapping (mSLAM) algorithms based on structure
from motion (SFM) theory Engel et al. (2014, 2013); Forster et al. (2014); Klein and Murray
(2007); Montemerlo et al. (2003); Newcombe et al. (2011b); Pizzoli et al. (2014); Roussillon
et al. (2011); Vogiatzis and Hernandez (2011), which are suitable to modern onboard embed-
ded computers. Moreover, the visual scale problem, which was the main challenge of involving
monocular vision into the control loop, has been addressed by fusing onboard inertial measure-
ments (accelerometer and gyroscope), called the visual-inertial navigation system (VINS) Dunk-
ley et al. (2014); Jones and Soatto (2011); Kelly and Sukhatme (2009, 2016); Li and Mourikis
(2013); Lobo and Dias (2003); Lynen et al. (2013); Shen et al. (2013b); Weiss et al. (2012a).

Almost all of the visual-inertial fusion algorithms, to the best of my knowledge, rely on nonlinear
Kalman filter techniques (extended Kalman filter, unscented Kalman filter, etc.) to process both
the orientation and the position measurement in the same process. This type of fusion has the
following drawbacks. Firstly, it results in a large state vector (usually more than 20 dimensions)

and a complex nonlinear system model, which causes high computational cost and relying on



Chapter 1 Introduction 7

theoretical approximation to linearise the model. Secondly, it suffers from the lack of robustness
in operation both in terms of filter initialisation and in terms of fail-safe implementation for aerial

robotic applications, since the orientation estimation can be easily affected by the filter illness.

However, recent advances in computationally efficient inertial measurement unit (IMU) orienta-
tion estimation, Madgwick et al. (2011a), shows a competitive accuracy against Kalman-based
algorithms by utilising optimisation based methods. Thus, in this thesis, a computationally effi-
cient visual-inertial fusion algorithm is proposed by separating the orientation and the position
fusion processes. This filter maintains the same level of accuracy against nonlinear Kalman fil-
ter approach, while significantly reduced the computational cost for real-time operation, as well
as improved robustness due to that the orientation is separated from the position estimation. The
algorithm is designed to perform a six degree of freedom state estimation, based on a gyroscope,

an accelerometer and a mSLAM measurement. It also recovers the visual scale for the mSLAM.

1.2.2 Novelty of the platform and control

The following explains the novelty of the contributions (2-5) listed above. The implementation

detail is shown in Chapter 3 and Chapter 5.

In order to make a UAV system practically functional in very constrained indoor space, the plat-
form size becomes very important. Given that the UK typical doorway is 762 mm wide, which
limits the platform motor to motor distance up to 300 mm with maximum 7 ¢nch propellers, to
allow gap of minimum 100 mm for safety margin. Given that the payload capacity (about 150
¢) and endurance (about 15 min) is very limited for the platforms of this size, packing all the
necessary computation and sensors onboard is almost impossible without the combination of
software and hardware optimisation. This constraint significantly limits the available platforms

to choose from.

In recent years, since the mass-production of micro-electro-mechanical systems (MEMS) based
inertial measurement units (IMUSs), their size and price have been reduced significantly. This
leads to extensive research on mini quadrotor development, such as Elsamanty et al. (2013); Fer-
nando et al. (2013); Jeong and Jung (2013); Mahony et al. (2012). Nowadays, the 250 mm size
platform is popular in first person view (FPV) racing communities, where the systems are de-
signed for maximum controllability and simplicity for pilot to show off their skills. For them,
only low computation is required for basic attitude stabilisation. However, none of the above
considers vision feedback in the quadrotor control loop. On the contrary, the world’s top com-
puter science research groups are keen on advancing their high level computer vision algorithms,
based on third party platforms such as AR-drone from Parrot or Hummingbird quadrotor from
Ascending Technologies described in Kushleyev et al. (2013). Recent work includes Engel
et al. (2012); Faessler et al. (2015); Huang and Bachrach (2011); Sa et al. (2013); Shen et al.
(2013a,b); Weiss et al. (2012a). However, these solutions generally require very close collabo-

ration with the platform manufacturers to access their source code or reverse-engineer from first



8 Chapter 1 Introduction

principle. These problems stop most ordinary researchers from accessing the platform outside

the communities.

Therefore, an all-in-one platform testbed designed specifically for vision based control is highly
desirable. The testbed also needs to be highly integrated to keep the size within the constraint,
and highly accessible both for hardware and software to allow all levels of researchers to explore
its full potential. Hence, in this thesis, a 250 mm size platform is developed from scratch with an
industry level monocular camera and an onboard computer with standard quadcore smartphone
processor. The onboard electronics were designed for maximum integration of commercial-
off-the-shelf (COTS) components, which also allows maximum accessibility. The autopilot
software was developed from scratch in the Arduino environment, based on the state-of-the-art
control algorithm by Mahony et al. (2012), while taking into account the physical dynamics
of the individual rotor and the whole UAV platform. Besides, due to the all-in-one nature, the
autopilot was modelled and tuned specifically for this platform, which allows high accuracy
control performance. The original mechanical design ensures maximum rigidity and the opti-
mal component layout. This testbed allows all the onboard computer vision, sensor fusion and

control algorithm to be developed and tested.

Additionally, a physical button was introduced onto the vehicle body. It allows the quadrotor
to be launched in the place-and-hover manner for rapid deployment from hand or without a flat
takeoff area. While in comparison against the throwing-launch of a quadrotor in Faessler et al.
(2015), it is not only safer, but also allow the user to still have precise control on the quadrotor

initial position.

1.2.3 Novelty of active planning for safe vision operation

The following explains the novelty of the contributions (6) listed above. The implementation

detail is shown in Chapter 6.

Recent advances in onboard monocular vision-based simultaneous localisation and mapping
(mSLAM) for unmanned aerial vehicles (UAVs) enables their autonomous navigation in GPS-
denied environments. However, unlike the GPS-based navigation, the accuracy of the mSLAM-
based navigation performance highly depends on the motion of the UAV and the scene within
the camera’s field of view. Therefore, instead of passively performing mSLAM while the UAV
travels to the destination (target waypoint), we integrate the perception requirements of mSLAM
into the navigation control of the UAV. Specifically, we present a novel active one-step-ahead
planning algorithm which dynamically generates the optimal next action command in real-time
for an autonomous quadrotor based on its current mSLAM observations, so that it not only
approaches the target waypoint, but also maximises the localisation accuracy for the onboard
mSLAM algorithm. Especially in scenarios similar to the one shown in Figure 6.1 in Chapter
6, where large area with low contrast occupies the significant portion of the direct path for UAV

to approach the target position (indicated by yellow path), with the active planning algorithm,
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the UAV will choose the green path to avoid the low contrast area while approaching the target
area. This active planning algorithm serves as the complementary to the state-of-the-art passive
mSLAM algorithm, and aiming to improve the operational safety and robustness of the real

world GPS-denied scenarios.

Therefore, to address this problem, the active SLAM planning algorithm serves as the comple-
mentary to the existing passive mSLAM algorithm. The objective is to actively command the
vehicle movement to minimise the localisation uncertainty while performing the high level tasks,
in a computationally efficient manner. In particular, given the next desired waypoint, a novel ac-
tive planning algorithm was developed to choose the optimal UAV trajectory for an autonomous
quadrotor, to maximise the accuracy of the onboard SLAM algorithm, while approaching the

waypoint. More specifically, the active planner aims to command the UAYV, so that it:

1. Tries to approach the next way point as close as possible;

2. Tries to minimise the localisation uncertainty of the mSLAM algorithm.

To the best of my knowledge, a similar robust active planner for monocular localisation on
UAV has only been implemented by Mostegel et al. (2014). Based on a forward facing camera
and PTAM (an open-source mSLAM algorithm by Klein and Murray (2007)), he measured the
localization quality by the weighted sum of the number of mapped points in the frame, due to the
lack of uncertainty measurement from PTAM. Furthermore, based on the measured localization
quality, a threshold based planner was developed to switch among localization improvement
mode, new point generation mode or way point following mode. although the system is capable
of handling the challenging target command, like pure yaw rotation, it considers neither the

optimal tradeoff between the two objectives, nor the physical dynamics of the quadrotor.

Different from the above approach, its aim is to develop a probability theory driven optimal
planner, with a downward facing camera, which naturally avoids the pure yaw rotation problem.

Therefore, the following contributions was made in part of this PhD work to the state of the art:
1. It presents the first theoretically optimal cost function for the two objectives from the
probability theory perspective;

2. It presents the first approach to predict the localisation accuracy for any camera view

point, based on the extended information filter (EIF);

3. The first active planning algorithm was designed for downward facing camera, which

takes the physical dynamic constraints of the quadrotor into consideration.

1.2.4 Novelty of tether power system for small UAV

The following explains the novelty of the contributions (7) listed above. The implementation

detail is shown in Chapter 7.
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For the small-scale stable hovering platforms (such as standard multirotors) the available sources
of power are limited to the on-board electric storage cells (batteries). There exists a range
of possible crucial applications, where long term operation of such systems is required, such
as precise inspection of large industrial structures, and tasks involving physical manipulation
of the environments. Those applications can be achieved by UAVs, at the cost of significant
power requirements. Also, there exist tasks which require close collaboration of aerial and
ground robots, but inherently take a significant amount of time to accomplish, such as the aerial
detection of land mines using radar-bullets and their safe removal using robotic agents. Within
those tasks, agile flight and aggressive manoeuvre abilities might not be the key prerequisite,

rather than stable operation while hovering at high altitudes.

There is little research currently on the tethered UAYV, recent tethered UAV research mainly
focuses on the control aspect of such system Abdelkrim et al. (2008); Zikou et al. (2015). There
are also some commercial companies developing system tethered UAVs, such as Elistair, PARC
from Cyphy work, Cardinal security, ECA group, while their systems are only suitable for large
scale multirotors. Although, a small size tether powered UAV was developed by Fotokite, which

is rather an expensive system.

The developed small tether system focuses on implementing a cost effective method for remotely
powering of small-scale hovering UAVs via a ground-to-air Power-over-Tether link which car-

ries power to the vehicle.

1.3 Publications and Public Engagements

1.3.1 Journal publications

1. Liu, C., Prior, S. D., and Scanlan, J. P. Design and Implementation of a Low Cost Mini
Quadrotor for Vision Based Manoeuvers in GPS Denied Environments. Unmanned Sys-
tems, pages 4(3):185-196, DOI: 10.1142/S2301385016500059 (Liu et al., 2016a)

2. Liu, C., Prior, S. D., Teacy, W. L., and Warner, M. Computationally efficient visual- iner-
tial sensor fusion for Global Positioning System-denied navigation on a small quadrotor.
Advances in Mechanical Engineering, 8(3):1-11, DOI: 10.1177/1687814016640996 (Liu
et al., 2016b)

3. Liu, C., Nash, J., and Prior, S. D. A Low-Cost Vision-Based Unmanned Aerial System for
Extremely Low-Light GPS-Denied Navigation and Thermal Imaging. International Jour-
nal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering,
9(10):1740-1747. URL: http://waset.org/publications/10002835 (Liu
et al., 2015)
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4. Submitted to the Journal of Intelligent and Robotic Systems, in the title The Practical
Implementation of an Autonomous Micro Quadrotor in GPS-denied Environments, on
3rd September, 2016. Author list: Liu, C, Prior, S.D., and Scanlan, J.P.

1.3.2 Conference publication

1. Liu, C. and Prior, S. D. Design and Implementation of a Mini Quadrotor Control System
in GPS Denied Environments. 2015 International Conference on Unmanned Aircraft
Systems, ICUAS 2015 - Conference Proceedings, pages 462-469. DOI:
10.1109/ICUAS.2015.7152324 (Liu and Prior, 2015c¢)

2. Liu, C. and Prior, S. D. Computationally efficient visual-inertial sensor fusion for GPS-
denied navigation on a small quadrotor. 2015 International Conference on Innovation,

Communication and Engineering. (Liu and Prior, 2015b)

3. Liu, C. and Prior, S. D. A low-cost vision-based unmanned aerial system for extremely
low-light GPS-denied navigation and thermal imaging. 2015 17th International Confer-

ence on Intelligent Unmanned Systems. (Liu and Prior, 2015a)

4. Presentation in 2015 Next Gen Drones conference in Washington DC. US, with the ti-
tle: Design and Implementation of an Open Source Small Quadcopter for GPS-Denied
Environments. 23-24th June, 2015

1.3.3 Other public engagements

1. Attended 2016 Farnborough International Airshow as exhibitor. 11-17th July, 2016.

2. Successful indoor flight demonstration to Unmanned Air Systems Capability Development
Centre (UAS CDC) in Canary Wharf, London. 11th June, 2015.

3. Presented research work in 2015 Engineering @ Southampton Autonomous Systems Show-

case at the Royal Academy of Engineering (RAe). 9th June, 2015.

1.4 Thesis Overview

Chapter 2 presents the literature review work conducted. It summarises all UAS navigation
solutions in GPS-denied environment, derives the advantages of camera based methods, and

then investigates into the monocular vision based solutions and visual inertial navigations.

Chapter 3 presents the design, implementation and testing work for the testing platform in terms
of electronic and mechanical hardware, and high performance autopilot control algorithm for

quadrotor.
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Chapter 4 presents the design, implementation and testing work for the visual-inertial onboard
sensor fusion algorithm developed for the vehicle six degree of freedom state estimation and

visual scale recovery, aiming for low computation.

Chapter 5 presents the implementation detail of the final power-on-and-go platform, which is
equipped with the controller from Chapter 3 and pose estimator from Chapter 4, as well as the
final test result evaluating the performance of the overall system. Besides, it also described a

novel hand-launching method implemented for the ease of consumer level usage.

Chapter 6 shows the mathematical derivation of a probability theory based active planning algo-

rithm to avoid featureless environments by commanding the vehicle movement.

Chapter 7 presents the engineering and implementation detail of a tether powering solution
for micro UAVs, to shift the power source from onboard UAV to the ground. This boost the
endurance of micro UAVs to indefinite flight time.

Chapter 8 concludes and lists the publications and related project activities and future work.



Chapter 2

Literature Review

Over the last decades, there has been rich literature accumulated for localising and navigating
mobile robots based on various methods. This chapter draws an overview of the state-of-the-art
navigation solutions as an alternative to GPS. It starts with the review of different popular sen-
sors used for the GPS-denied navigation research, with the emphasis on the sensors which are
onboard the vehicle, which are called onboard sensors. It includes radio detection and ranging
(RADAR) systems, Light Detection And Ranging (LIDAR) systems and camera(s) based sys-
tems, and also learned from the driverless car technologies. By comparing different sensors, it
proves the advantages of the single camera based solution over other sensors. Then, it focus into
the literature review specifically on monocular visual navigation and visual inertial navigation,
and poses the visual scale problem in monocular vision and how it can possibly be recovered by
fusing the inertial sensor. Finally, together with a brief review on platform and control theory,
the literature review finishes with a summary of research methodology towards the following

chapters.

2.1 Navigation Solutions in GPS-denied Environments

This section overviews the state-of-the-art navigation solutions as an alternative to GPS, us-
ing different sensors, regardless of application context. The autonomous car industry is also
reviewed, due to their similar problems. Moreover, towards the end of this section, the com-
parison between different sensor is summarised in a single chart to highlight the advantages of
the monocular vision based solutions. This forms the logic, which leads to the focus in the next
section on the detailed and more specific review on monocular visual navigation in the next

section.

13



14 Chapter 2 Literature Review

2.1.1 External offboard localization methods

Recent research seeks alternative external localization systems. Some of them use external cam-
era(s) Altug (2005); Park et al. (2005) or stereo camera(s) Klose et al. (2010). Some of them
have recently gained promising results by applying the Vicon™ (motion capture system) How
et al. (2008); Michael et al. (2010), shown in Figure 2.1. However, those external localization
approaches are not of our interest, because in those cases, the vehicle still depends on the as-
sistance of external infrastructure. However, what we are looking for is a fully self-contained
and extendable system, which means all sensors would be onboard, self-contained and immune

from interference.

Figure 2.1: A quadrotor platform with Vicon markers Michael et al. (2010).

2.1.2 Onboard RADAR based methods

RADAR named after radio detection and ranging. The antenna transmits the radio wave or
microwave, and by detecting the wave bounced back by object, it determines the range, altitude,

direction, or speed of the object.

Automotive Micro RADAR is a group of low cost (around £700) RADAR systems mounted on
a car, which are used to detect obstacles. These have been used on the autonomous cars,
discussed in Section 2.1.5. They have the advantage to reliably operate in any weather
with relatively long range. The detailed products are shown in Appendix A.2. Their
general weight is 300 g.



Chapter 2 Literature Review 15

Synthetic Aperture Radar (SAR) is a form of RADAR that uses the relative motion between
its antenna and the target to obtain refined spatial information in the detected area. It
is generally capable of obtaining very fine (0.3 m resolution) at a range of over 1km,
under any weather condition. However, the size of the sensor limits it to large scale RPA
platforms. The smallest application, to the best of my knowledge, is over 0.5 kg, such as
IMSAR NanoSAR.' Please see Appendix A.1 for more SAR and specifications.

Because of its long range, robustness and resistance to any weather condition, the RADAR
system is widely used in autonomous driving and aerospace industry. With the continuously
improved integration level, its size and mass can be dropped in the future. While for their
current level of pricing and weight, they are generally suitable for obstacle sensing or acting as

an altimeter for medium size drone.

2.1.3 Onboard LIDAR based methods

LIDAR is the short for LIght Detection And Ranging. Two kinds of LIDAR systems are de-

scribed in below.

Laser Scanner is a remote sensing technique, which illuminates the target by laser and pro-
cesses the reflected light to obtain distance information. Recently, in Massachusetts Insti-
tute of Technology (MIT), an impressively accurate state estimation for aggressive flight
is achieved by only using a laser scanner and IMU data,” Bry et al. (2012) as shown in Fig-
ure 2.2a. A picture of the opened vehicle body.? is shown in Figure 2.2b A laser scanner
has the advantage of obtaining the distance information and operate well in textureless
environments, however, limited range and field-of-view (normally 1D or 2D), and high
mass, price and power consumption make it not optimal. The detailed products are shown

in Appendix A.4.

Flash LIDAR with the development of Time-of-flight (TOF or Flash LIDAR) camera, which is
able to obtain distance information of every pixel in images and output as 3D point cloud,
such as Microsoft Kinect* and PrimeSense, which is a subsidiary of Apple, and powering
the Structure sensor®, Please see Appendix A.3 for more Flash LIDAR sensors and spec-
ifications. MIT has successfully used the Kinect for navigation of a quadrotor® (shown in
Figure 2.3), where a RGB-D SLAM algorithm is developed Huang and Bachrach (2011).
Many researchers are keen to use it for 3D scanning to reconstruct dense model of an ob-

ject Newcombe et al. (2011a), which is theoretically similar with SLAM, but designed to

'http://www.imsar.com/pages/products.php?name=nanosar
Mttp://www.youtube.com/watch?v=VUeKKvKEVYT
*http://www.gizmag.com/mit-autonomous—indoor-uav/23686/pictures#5
*https://msdn.microsoft.com/en-us/library/3j131033.aspx
Shttp://structure.io

*http://www.youtube.com/watch?v=aiNX-vpDhMo


http://www.imsar.com/pages/products.php?name=nanosar
http://www.youtube.com/watch?v=VUeKKvKEvYI
http://www.gizmag.com/mit-autonomous-indoor-uav/23686/pictures#5
https://msdn.microsoft.com/en-us/library/jj131033.aspx
http://structure.io
http://www.youtube.com/watch?v=aiNX-vpDhMo
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(c) 3D map constructed.

Figure 2.2: MIT aggressive state estimation using laser scanner Bry et al. (2012).

be used in a small scene without considering error drifting (can be overcome by bundle
adjustment and loop closure Strasdat et al. (2011)). Software tool libraries are available
as open source software, such as Point Cloud Library (PCL)Rusu and Cousins (2011)
and OpenNIL.’ Popular algorithms are developed to map the point cloud, such as Iterative
Closest Points (ICP) algorithm. Some interesting results have been obtained on real-time
dynamic 3D reconstruction Keller et al. (2013), which is capable of dynamic segmenta-
tion of moving and static objects, and dynamic scene update. However, similar to other
LIDAR devices, the detection range is generally limited to several metres in consumer-end
applications. Also those dense based SLAM Algorithm generally computationally expen-
sive, and rely on massively parallel computation in GPU. With the more recent advance
in commercial TOF cameras since 2015, . For example Intel realsense technology, which
enables a range of smaller size TOF cameras optimized for robotic applications, such as

Realsense R200 and ZR300.8 Additionally, Intel also provides processor and software

"http://www.openni.ru
$https://click.intel.com/realsense.html
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—3

Figure 2.3: MIT Microsoft Kinect based airborne platform Huang and Bachrach
(2011).

support for the system. similar systems can potentially form a lighter solution, and can

also allow the easier integration of obstacle avoidance capabilities.

2.1.4 Onboard camera based methods

Camera as a passive sensor, generally has the advantage of low power consumption, comparing
with active sensors such as LIDAR and RADAR, and it is capable of capturing very rich infor-
mation, with adjustable field of view. However, obtaining the depth information in the scene is

nontrivial with camera.

Stereo Camera is a pair of cameras with a fixed and known baseline (baseline refers to the rel-
ative position between the two cameras). Similar with animal eyes, triangulation is done
in each frame to directly obtain a depth information in the scene. It outputs a point cloud,
which is similar with Flash LIDAR. A pair of front-facing stereo camera has been imple-
mented on a UAV (shown in Figure 2.6b), with the help of a downward-facing monocular
camera computing optical flow, to achieve an autonomous navigation at the ASL research
lab (ETHZ) Fraundorfer et al. (2012). Besides, stereo camera has also been used cooperat-
ing with a laser scanner for UAV autonomous flight in MIT Achtelik et al. (2009). Nikolic
et al. (2014) have also shown a stereo camera designed specifically for robotic navigation.
However, because of the fixed baseline, when the scene exceeds the maximum distance,
it will lose the ability to recover the depth in the scene. Also, doing triangulation for each
frame is computationally intensive for onboard computation. Moreover, it is not reliable

in textureless or repetitive scenes. This is our potential interest for further development.
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Figure 2.4: MIT Microsoft Kinect 3D reconstruction Huang and Bachrach (2011).

Monocular Camera in contrast, further reduces the mass and size required, but the depth in-
formation is completely lost in each frame. While the Structure From Motion (SFM)
technique (discussed in Section 2.2.1.1) addresses this problem by triangulating a se-
ries of frames, which are captured by the same camera, but from different 3D positions.
Therefore this technique has the advantage of flexible baseline, while because of this flex-
ible but unknown baseline, it can only recover the depth upto scale. The scale can never
be recovered without an external helper device. Therefore, to recover the scale for on-
board monocular camera, many ideas have been proposed: an ultrasonic altitude sensor is
used to recover the depth of a third party monocular vision algorithm Klein and Murray
(2007), in the work? in Engel et al. (2012), which is implemented on a Parrot AR-Drone'?
to achieve the autonomous waypoint following in small area, as shown in Figure 2.6a; or
Inertial Measurement Unit (IMU) data is used Niitzi et al. (2011), and it has been suc-
cessfully implemented by Weiss in Weiss (2012) to accurately navigate an autonomous
quadcoptor in unknown environment, only using one downward facing camera and an
IMU (shown in Figure 2.5).

‘http://vision.in.tum.de/data/software/tum_ardrone (the published source code can also
be found in this link)
Ohttp://ardrone2.parrot.com
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Figure 2.5: ETHZ monocular camera navigation Weiss (2012).

(a) TUM monocular camera based navigation En-  (b) ETHZ stereo camera based navigation Fraun-
gel et al. (2012). dorfer et al. (2012).

Figure 2.6: Monocular camera based navigation.

Optical Flow Sensors based on very low resolution cameras have been developed in recent
years. Optical mouse was using the same sensor for human interaction with computer.!!
The same sensor was also used on modern UAV as a speed sensor, and resulting sen-
sor achieves a very high update rate (around 6300 Hz) for fast flight.!> The recent work
by Gageik et al. (2013) achieved autonomous flight using this type of optical flow sen-
sor. However, those sensors require bright lighting condition to operate, thus they are not
suitable for indoor or low light outdoor environments. In order to avoid this limitation,
Honegger et al. (2013) published a robust velocity and position estimator at high speed
(250 Hz) based on optical flow, computed from a generic camera sensor, which is very

sensitive to light. A detailed table about optical flow cameras can be found in Appendix

"https://people.ece.cornell.edu/land/courses/eced4760/FinalProjects/s2009/
ncr6_wijw27/ncr6_wijw27/docs/adns_3080.pdf
Phttp://diydrones.com/profiles/blogs/adns3080-optical-flow-sensor-now-available-in-the-d


https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2009/ncr6_wjw27/ncr6_wjw27/docs/adns_3080.pdf
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2009/ncr6_wjw27/ncr6_wjw27/docs/adns_3080.pdf
http://diydrones.com/profiles/blogs/adns3080-optical-flow-sensor-now-available-in-the-diydrones-store
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A.5. By assuming relatively flat surface, the optical flow camera is able to directly mea-
sure the horizontal velocity of the UAV, when combined with ultrasonic distance sensor
and IMU.

Visual landmark based Methods Some researchers have explored localisation methods by us-
ing external landmarks, where prior knowledge about the landmark is used to derive rela-
tive 3D position between vehicle and the landmark. This method significantly reduces the
computation, but requires direct visual contact between vehicle and the landmark, which

limits its operation area.

2.1.5 Autonomous car

In recent years, autonomous car has be well investigated and developed. Very good results have
been achieved to enable relatively reliable driver-less operation on the real road. Even though,
it is a slight different problem to navigate a ground vehicle in the road, it still shows some

guideline for a safe navigation system.

Google Autonomous Vehicle is recently stated to drive better than the human driver. Guizzo
explained how a Google Autonomous Vehicle works.'> A Velodyne 64-beam laser'* is
used as the primary sensor for mapping and localization, whose operation is illustrated in
Figure 2.8. Moreover, as shown in Figure 2.7, four radars are mounted on the front and
rear bumpers for long distance detection to deal with fast traffic on freeways; a camera is
positioned near the rear-view mirror to detect traffic lights; and a GPS, inertial measure-
ment unit, and wheel encoder, that determine the vehicle’s location and keep track of its
movements. A picture of the new google car released in late May 2014 is show in Figure
2.9.

VisLab International Autonomous Challenge (VIAC) is a recent autonomous vehicle test
hold by VisLab (University of Parma), which is carried out from Parma to Shanghai
between July and October 2010 Bertozzi et al. (2013); Broggi et al. (2012). As an
extended test for heterogeneous road condition with real traffic over BRAiVE (VisLabs
main testing prototype for well structured and predictable environments Grisleri and
Fedriga (2010)), the sensor suite is based on the BRAIVE experience, except for an
additional laser scanner, to frame the ground during off-road driving. Specifically, Stereo
cameras and laser scanners are the primary sensors. The configuration is shown in Figure
2.10 and 2.11. As shown, seven cameras are installed on the vehicle (five forward and

two backwards). The five forward facing cameras includes a pair of stereo cameras and a

Bhttp://spectrum.ieee.org/automaton/robotics/artificial-intelligence/
how-google-self-driving-car-works
“http://velodynelidar.com/lidar/hdlproducts/hdl64e.aspx
Bhttp://spectrum.ieee.org/automaton/robotics/artificial-intelligence/
how-google-self-driving-car-works
16http://recode.net/2014/05/27/googlesfnewfselffdrivingfcarfditchesfthefsteeringfwheel/


http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://velodynelidar.com/lidar/hdlproducts/hdl64e.aspx
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-driving-car-works
http://recode.net/2014/05/27/googles-new-self-driving-car-ditches-the-steering-wheel/
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Autonomous Driving

Google's modified Toyota Prius uses an array of sensors to navigate public roads without a human
driver. Other components, not shown, include a GPS receiver and an inertial motion sensor.

L 3o e o et
A rotating sensor on the roof
scans more than 200 feet in all
directions to generate a precise
three-dimensional map of the
car's surroundings.

FOSITION ESTIMATOR

A sensor mounted on the left
rear wheel measuras small
movements made by the car
and helps to accurately locate
its position on the map.

VIDEO CAMERA - & Wy
A camera
meounted near the
rear-view mimror
detects traffic
lights and helps
the car's onboard
computers
recognize moving
obstacles like
pedestrians and
bicyclists.

Four standard automotive radar sensors, three in front and one
in the rear, help determine the positions of distant objects.

Spurce GIIIQlE THIE KEW YORK TIIES; PHEOTOCIAFHS BY BAMIN RAHEM AN FOR THE KEW YORE TIMES

Figure 2.7: Google autonomous vehicle configuration.
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Figure 2.8: Velodyne 64-beam laser scanning output.'>
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16

Figure 2.9: Reported new google car.

three-camera group to provide 180 ° panoramic view, while the two backward cameras
are a pair of stereo camera. Moreover, four laser scanners are all mounted in front of the
vehicle. A four-layer laser scanner in the middle of bumper and two normal laser
scanners are mounted on each side of the bumper and The last one is on the roof rack,
facing down to frame the ground. Also, the vehicle is equipped with GPS, IMU and

Vehicle to Vehicle communication systems.

2.1.6 Summary

Therefore, as indicated in Table 2.1 (bottom two rows). Because of the low mass, low power
consumption, adjustable field of view (FOV) and unlimited depth recovery ability, the monoc-
ular camera based navigation strategy in our scope is the most effective method for a small
RPA.
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Table 2.1: Comparison between different navigation solutions.

Solution Type

Independent

Mass

Power

Accuracy

FOV

Cost

Information Captured

Image Depth  for
. g Depth Maximum
Pixels .
Distance
External Local- around Yes with
ization (Vicon | No 0.226 kg I5W 0.5 mm 82° x 66° Yes multiple | 12 m
. £20,000 .
Bonita 3) devices
APDrox ApDrox Depends on Yes with
Visual Land Mark | No PPIOX. PPIOX. Image Reso- | Adjustable| Approx. £50 | Yes multiple | 1m-50m
0.03kg 0.3W . .
lution devices
Automotive o o | Approx. Inaccurate
RADAR Yes < 0.5kg 3.7TW-12W | 0.3m 45° X 5 £700 No distance 60 m-500 m
o ro Approx. 3D Point | 1000 m-
SAR Yes > 2kg > 15W 1m 5° x 5 £60.000 No Cloud 92000m
0.2ke- 180° 10| 4 oprox
Laser Scanner | Yes o8 3W-10W | 20mm 270° 2D | - }PPIO%. No | 2DPlanc | 5m-50m
0.8kg £4,000
plane
3D Point
Flash LIDAR Yes 0.05kg-1kg | 2.5W-15W | Over 20mm | 60° x 45° | £50-£2,000 | No Cloud 0.5m-10m
Depends on Approx. .
Approx. Approx. . 3D Point | Approx.
Stereo Camera Yes 0.07ke 07W Can.lera Res- | Adjustable| £100 (two | Yes Cloud 10m
olution cameras)
Depends on 3D Point
Monocular Cam- Approx. Approx. . Cloud .
era Yes 0.03 kg 03W Camera Res- | Adjustable| Approx. £50 | Yes without Unlimited
olution Scale
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2.2 Monocular Visual Navigation

This section starts with introducing two classic background techniques: Structure from mo-
tion and Kalman-based filters, which enables monocular visual navigation. Then, it reviews
and compares different types of monocular simultaneous localisation and mapping algorithms.
Among them, a typical algorithm, called parallel tracking and mapping is discussed in detail
to demonstrate the advantages and limitations of the similar algorithms. The optical flow tech-
niques is also mentioned as a different solution using monocular vision. This section is ended
by the discussion on the general scale problem of the monocular camera navigation, which leads

to the introduction of the next section.

2.2.1 Core techniques briefing
2.2.1.1 Structure from motion (SFM)

Structure From Motion (SFM) is a range imaging technique in computer vision, which is de-
rived from photogrammetry, and aims to recover 3D structure of the scene from a sequence of
2D images. When the relative motion is observed between object and camera, the depth in-
formation can be obtained. SFM problem involves many different techniques, such as kinetic
depth effect, feature tracking, epipolar geometry and bundle adjustment. The basic principle is
very similar with recovering 3D structure from stereo camera: the epipolar geometry is com-
puted from different images, but the difference is that the stereo camera processes single frame
from two cameras, while SFM processes series of frames from single camera. This is the core
technique to enable the monocular Simultaneous Localization and Mapping (SLAM) in Section
2.2.2. The book by Opower (2002) is suggested for detailed reading.

2.2.1.2 Kalman filter

The Kalman filter, also known as a linear quadratic estimation (LQE), was firstly developed in
the 1960s. It is an optimal recursive state estimator for linear system Kalman (1960), which
combines the prior known linear model of the system with a series of noisy state measurement
observation, to iteratively estimate the true state and filter out the noise. This estimator is origi-

nally from Bayesian Theorem and assumes a Gaussian noise distribution.

The general process can be summarised as:

1. Predict: predict current state estimation (including both estimation and covariance of the

prediction probability) according to the prior linear system model and last state estimation.

2. Update: update the current state estimation considering the current state observation (in
the form of measurement residual) in the fact of optimal Kalman Gain, which is computed

after probability covariances of both prediction and measurement residual.
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Then the updated state estimation is the output from Kalman Filter, and will be treated as the

last state estimation in next iteration.

Extended Kalman filter is the nonlinear version of the Kalman Filter. By nonlinear, it means
that instead of a linear function, the prior model of the system can also have differentiable
functions (the classic EKF deals with first-order nonlinear functions). To adapt to this
nonlinear model, instead of directly computing the covariances, the Jacobians matrix (a
matrix of partial derivatives) of the model are used. This adaptation essentially linearises
the non-linear function around the current estimate. Recently, higher order EKFs are de-
scribed in Einicke (2012). These extension makes Kalman Filter more practical to real
world problems with the cost of linearisation error, since majority of the real world sys-
tems are nonlinear, and the computational complexity is proportional to m? in theoretical
best condition, where m is the number of elements in system state. Thus it works well

only when the system is close to linear.

Unscented Kalman filter is a more sophisticated filter over EKF in terms of performance in
nonlinear systems, which is originally proposed in 1997 in Julier and Uhlmann (1997).
Essentially, because the linearisation in the classic EKF is done by computing the Ja-
cobian of the model, which is the approximation based on Taylor Series Expansion, the
reliable performance of the classic EKF requires the system to be almost linear on the
time scale of the updates Julier and Uhlmann (2004). On the other hand, instead of com-
puting the Jacobian, UKF uses Unscented transform to select Sigma points (a minimum
set of sample points), and propagates them through the nonlinear functions, and then,
the mean and covariance of the estimate are computed directly on the propagated Sigma
points. By using the better way for linearisation, this method is proved to have significant
improvement on estimating the true mean and covariance of system state. However, this
improvement is cost by additional computation requirement (computational complexity is
generally proportional to m>, where m is the number of elements in system state), and it

becomes significant when the size of the state is large.

2.2.2 Simultaneous localization and mapping (SLAM)

SLAM is a sub-field of mobile robotics research, which aims to build a map of its surrounding
environment without prior knowledge, and at the same time dynamically localise itself with
respect to the map. Recently a gap has been bridged between the SFM (as discussed in Section
2.2.1.1) and SLAM Strasdat et al. (2010), which enables the Monocular camera to be evolved in
SLAM technique. In this subsection, we are only interested in Monocular camera based SLAM.
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2.2.2.1 Filter based SLAM

Filter based SLAM employs filters (such as EKF or UKF) as the core to manage mapping and lo-
calisation (Typically refers to EKF-SLAM Civera et al. (2010), FastSLAM 2.0 Montemerlo et al.
(2003) and RT-SLAM Roussillon et al. (2011)). In EKF-SLAM Civera et al. (2010), the state of
the EKF is defined as a matrix including camera pose and observed feature positions. Therefore
the EKF updates both camera pose and all feature positions, whenever camera captures a new
frame. The computation complexity, which can be approximated from Section 2.2.1.2, is lin-
early proportional to n2, where n is the number of observed features. It is generally known to be
computationally expensive for high dynamic applications. The reason is that, those incremental
SLAM methods updates camera pose and map feature positions in every frame, which wastes
computation, particularly when there is no significant movement between two frames, the map
is not necessarily to be rebuilt, and this is normally the case in general robotic operation, since
the robot motion is slow relative to normal camera frame rate. In real-time application, where
the computation efficiency is crucial for operation performance, This type of absolute synchro-
nised SLAM has a significant limitation in principle. Therefore, it is not possible to involve this
type if SLAM into the feedback loop of the RPAS flight controller.

2.2.2.2 Keyframe based SLAM

Keyframe based SLAM is a more straight forward solution to completely separate tracking (lo-
calization) and mapping as two separate threads, which enables the highly dynamic tracking
operation while leaving map building slowly processed in background. This method has been
proven to give the more accuracy per unit of computing time than filter based method Strasdat
et al. (2010). Fundamentally different with previous SLAMs, it performs the localization solely
with respect to a keyframe, based on the map (including tracked features and keyframes!”) built
previously whereas the map is built in a separate thread with the help from the localization out-
put. This dramatically increases localization speed. The revolutionary framework is named
as Parallel Tracking and Mapping (PTAM),'® Klein and Murray (2007) which was originally
designed for Augmented Reality (AR) application. It demonstrates fast and accurate localiza-
tion and relatively sophisticated mapping. The basic operation process has been summarised in
Figure 2.12. As shown, the mapping thread and tracking thread are separated, which allows dif-
ferent operation rates: tracking thread processes every frame, prior pose is predicted with simple
motion model and then coarse to fine pose update are carried out relative to a keyframe; whereas
in mapping thread, sophisticated keyframe and feature insertion only operates when significant
movement are observed, and local and global bundle adjustment are conducted periodically to
maintain long term map consistency. The tracking computational complexity is linearly propor-

tional to the number of features observed. In recent years, sinceWeiss et al. (2011) demonstrates

7keyframes are snapshots taken by the handheld camera at various points in time. Each keyframe has an associated
camera-centred coordinate frame, and the observed features are in the position relative to its keyframe
Bhttp://www.youtube.com/watch?v=F3s3M0mokNc
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the feasibility to use PTAM for effective Micro UAV navigation, it becomes popular to be used in
this area, such as Brockers et al. (2012); Engel et al. (2012); Jama (2011); Jama and Schinstock
(2011); Nyman (2012). As shown in those papers, PTAM still needs significant modification be-
fore physically implemented in flight controller. However, keyframe based methods do not deal
with uncertainty, and since they based on image features, it relies heavily on feature detection,
matching threshold and robust estimation techniques (such as RANSAC), while in order for
real-time performance, those techniques are all optimised for speed rather than accuracy. There-
fore the drift of motion estimation is always significant, unless some computationally intensive
optimisation methods (such as bundle adjustment) take place, which will in return reduce the

speed.

ETHZ-PTAM Weiss and Siegwart (2011), which has been used as the primary visual navigation
sensor in SFly project (world’s first successful vision based autonomous micro aerial vehicle in
GPS-denied environments), is a improved version of PTAM Klein and Murray (2007). PTAM is
a efficient monocular visual SLAM algorithm, which successfully utilises multiple view geome-
try principles to recover the depth of tracked features in the video stream in real time. However, it
is originally developed for augmented reality (AR) applications in small area. Several modifica-
tions from PTAM to ETHZ-PTAM , which enables it to be a feasible onboard vision navigation

algorithm.

The testing was conducted under ROS (Robotic Operating System) in a consumer laptop. A
customised USB camera driver node was made to continuously publish 640 x 480 image frame
to a predefined topic in 30 Hz, and ETHZ-PTAM node subscript the same topic, and process

whenever a new frame is available.

In terms of the algorithm operation, after the initialisation, the system starts the tracking opera-
tion (as shown in Figure 2.13), while dynamically building a virtual sparse 3D feature map (as
shown in Figure 2.14) concurrently. Figure 2.13 indicates the operation from camera perspec-
tive. As shown, features in the video stream are tracked and indicated as colour-coded points,
overlaid upon the original video stream. The colour-code indicates the level of pyramid, where
the feature is tracked (indicating the size of the feature), and the grid indicates the virtual map
that that the features are located. It is the same grid as the white grid in Figure 2.14. There-
fore, when camera moves, the features will move together with map grid. On the other hand,
Figure 2.14 indicates the operation from virtual map perspective. The colour-coded points are
the same features as the above Figure. As we can see, the 3D position tracked features are ac-
curately recovered in the virtual map, and the highlighted white-green-red frame indicates the
current camera 3D position estimated by the algorithm, while the darkened frames are the last
16 keyframes used to construct the map. Therefore, when camera moves, the tracked feature
will stay, while the camera frame will move the same way as the camera moves in 3D. More-
over, when camera gradually moves away from the current scene, the map will be dynamically
updated and the old features and keyframes will be erased, which makes the algorithm to main-
tain the constant computation intensity, regardless of the increase the moving area. Furthermore,

because of the dynamically updated map, the algorithm handles zooming nicely, so the camera
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Figure 2.14: ETHZ-PTAM visualisation from virtual map perspective.

can start at very close to the keyboard and moves to 5 metres away from keyboard, while the
algorithm easily remains tracking. Moreover, when camera is held in roughly fixed position
(mocking RPA hovering), as expected, the map remains static (the mapping thread does not add
new map points or update existing points). This saves significant amount of computation for the
tracking thread. This is one of the big advantages of PTAM over filter-based SLAM algorithms.

Furthermore, many algorithm parameters can be adjusted dynamically by *Dynamic-config’
node provided by ROS. Two important parameters are the number of maximum keyframes main-

tained and number of maximum features tracked. More keyframes maintained effectively leads
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to bigger size of the map it will keep in the memory, which directly introduces more compu-
tation, but provides more features for the tracker to potentially track, thus makes the algorithm
more robust. More features tracked for the tracker also means more computation for tracker
thread to update and output denser feature map for mapping thread. However, this will give
more accurate 3D camera state estimation, due to more features used to minimise reprojection
error in "Pose Update’ step. Moreover, the algorithm also supports automatic reinitialisation
procedure, which greatly improves the robustness of the system, especially when integrated into

RPA control. Tracking failure therefore can be recovered, by reinitialising a new map.

PTAM optimisation towards onboard visual navigation sensor

Parallel Tracking and Mapping (PTAM) was the revolutionary design. because it was actu-
ally the first visual SLAM algorithm, which is fast enough to be involved into UAV control
loop. Since Blosch et al. (2010) demonstrates the feasibility of employing PTAM as the primary
positioning feedback for UAV navigation. It has also been improved by different researchers

emphasising on solving different problems.

Automatic (re-) initialization: The PTAM uses manual stereo initialization for the first two
frames. Making the PTAM initializes automatically, can make PTAM more robust to
tracking failure, which means we can reinitialize another map when tracking failure can-
not be recovered, and also this enables PTAM to operate in clustered and complicated
environment. Jama and Schinstock (2011) have successfully used SURF matching for
initialization. However Nyman (2012) has shown that this approach slightly costs map-
ping quality. Later in Weiss et al. (2012b), Stephen uses OF-inertial speed estimator to
initialise the PTAM. In our method, we use the robust key frame extraction method based

on Ahmed et al. (2010) for automatically selecting first two frame for stereo initialization.

Scale recovery with altimeter: The scale recovery is essential for fusing other sensor measure-
ment into PTAM. The work in Niitzi et al. (2011) uses EKF filter to estimate scale factor
and gyro offset while fusing optical flow speed measurement with IMU reading. Then
later in Engel et al. (2012), instead of filtering method, Jakob proposed a more compu-
tationally efficient approach, which use statistical formulation directly to estimate scale
factor by fusing any monocular SLAM with other direct metric position or velocity mea-

surement (such as ultrasonic sensor, pressure altimeter).

Gyro-aided tracking: Jama and Schinstock (2011) have proved that by replacing the simple
motion model by the gyro integral as the prior pose estimation for tracking, the tracking
performance can be significantly improved, especially for low frame rate and high rota-
tional change circumstance. However, since PTAM tracks features in the scene, when
high rotation takes place, the blurry scene will make it really difficult to track. The au-
thor of PTAM has already addressed this problem in Klein and Murray (2008), by adding
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edgelets to PTAM, which ends up better tracking robustness. We will implement gyro

reading and edgelets into our application.

Map expansion with insignificant translation: In the case when the camera rotates signifi-
cantly with no translation, the new scene needs to be mapped, which desires new keyframe
to be introduced. This is a common operation for Vertical Take-off and Landing (VTOL)
platform. However, the original PTAM examine the translation between current scene and
last keyframe, and will not introduce new keyframe because of this condition. This will
cause tracking failure, thus seriously effect the robustness of the PTAM navigation. Con-
sidering this, instead of using last keyframe for epipolar triangulation, Jama and Schin-
stock (2011) chooses the one has sufficient translation from current scene from all previ-
ous keyframes for mapping expansion. This method shows slight improvement on map-
ping ability over original PTAM. Since the keyframe-based SLAM does not include the
probabilities in the map as EKF SLAM Civera et al. (2010) does, it saves computation but

costs mapping ability when feature location is uncertain.

Map feature and keyframe management In terms of the computation complexity, firstly, it
increases linearly with both the number of features and the number of keyframes in the
map; secondly, the local and global bundle adjustment uses a big portion of the whole al-
gorithm computation time, while the consistency of the map is not essential for short term
control performance. In Weiss et al. (2012b), a keyframe manager is added to limit the
number of keyframe stored in memory. Thus, only local bundle adjustment is performed.
This approach significantly reduces the computation, while the system has to rebuild the
map when revisiting the same place, where the keyframe has been deleted. In our ap-
proach, in addition to deleting the keyframe, the onboard computer sends the keyframes
back to the ground station before deleting them. On the ground side, the ground station
will save all the keyframes and do the global bundle adjustment, then sends the key frame
back when the air system needs the keyframe again. In this way we reduces the computa-
tion while remaining the map consistency. Moreover, the feature management approach
proposed in Weiss et al. (2012b) only stores the feature from highest three pyramid lev-
els, which not only reduces computation, but also improves the tracking performance in

self-similar scene. We will also implement this approach in our design.

Reusable feature map: One other problem with PTAM is that, any camera exposure change or
light change will end up with tracking failure. In order to deal with that, we propose to
normalize every individual feature in the map, and do normalization before patch search.

By doing that, the map can be tracked in brightness-invariant manner.
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2.2.2.3 Dense based SLAM

Dense SLAM was studied extensively most for ranging sensors such as Flash LIDAR (men-
tioned in Section 2.1.3). The framework for monocular camera is called DTAM (Dense Track-
ing and Mapping) Newcombe et al. (2011b), which is a monocular tracking and 3D recon-
struction method. Based on the high performance GPU based Optical Flow estimator (FlowLib
Werlberger et al. (2010)), to achieve real-time 3D dense reconstruction. Then it tracks the con-
structed dense model directly instead of extracted image features. Thus it makes use of every
pixel in camera frame. It claims to achieve very robust performance in blurry and fast motion
scenarios.!” Moreover, an online generated 3D model of the environment greatly facilitates au-
tonomous obstacle avoidance and recognition, path planning. Also, based on this SLAM, the
technique for 3D reconstruction in dynamic scene in Keller et al. (2013) can be implemented.?’
However, the state-of-art dense methods still have the problem of high computation complex-
ity, and heavily relies on massive parallel computation in the GPU. A recent paper from 2013
proposed semi-dense monocular SLAM Engel et al. (2013), which significantly reduced com-
putation requirement by only estimating dense inverse depth map for the pixels on the edge
(the areas have a non-negligible image gradient). The resulting algorithm is capable of running

real-time in CPU only.?!

2.2.2.4 Combination of keyframe and dense

The combination of keyframe and dense is the real state-of-the-art SLAM technology to obtain
both speed and accuracy. Some very recent articles have investigated some potential approaches
and obtained some promising results. Engel from TUM university proposed a semi-dense vi-
sual odometry method for monocular camera Engel et al. (2013), which significantly reduces
the computation by performing dense reconstruction only on pixels with large gradient, and
achieved CPU only operation in real-time. More excitingly, a fast semi-direct monocular visual
odometry (SVO) method?? by Forster et al. (2014). It is based on the parallel framework from
keyframe SLLAM, but eliminates feature extraction and robust matching techniques, which are
slow and inaccurate for motion estimation. Instead, their algorithm operates directly on pixel
intensities for motion estimation, which results in a highly accurate localization in a very high
speed (300 fps). In addition to that, a probabilistic mapping method takes fully consideration of
mapping uncertainty, which significantly out-performs the keyframe based methods in terms of

outlier rejection. The Source code®® was published in June 2014.

the fast semi-direct monocular visual odometry (SVO), to our knowledge, is the latest and
most advanced open source SLAM implementation. It utilises the same keyframe-based par-

allel framework with PTAM, nonetheless, it tracks the features by directly conduct optimisation

Yhttp://www.youtube.com/watch?v=Df9WhgibCQA
Onttp://www.youtube.com/watch?v=2BdwMdh5M7Q
Hhttp://www.youtube.com/watch?v=LzChzEcLNzI
Zhnttps://www.youtube.com/watch?v=2YnIMfw6bJY
23https ://github.com/uzh-rpg/rpg_svo
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on image density. Thus, by eliminating the costly feature extraction step in tracking thread, it
reduces more than half of the computation. This enables the onboard embedded computer to

conduct all the essential process in near real-time.

In order to confirm the advantages and limitation of the SVO running on an embedded platform,
a real experiment is conducted. As shown in Fig. 2.15, an embedded Linux single board com-
puter, Odroid-U3%*, which features an 1.7 GHz quad-core processor, is installed on the quadrotor
platform, and a global shutter high speed monocular camera with 90 degree FOV fisheye lens,
is installed and connected to Odroid-U3.

In terms of the software setup, Robotic Operating System (ROS) is installed in both onboard
Odroid-U3 and ground station laptop. The ground station laptop is able to access the onboard
computer through wireless wifi link, through secure shell (SSH). SVO implementation is exe-
cuted as an individual node in ROS on the onboard Odroid-U3 and all the data visualisation is
performed remotely on the ground station laptop using RViz, which is a ROS package. The vi-
sualisation is shown in Fig. 2.16, which is a screen capture of one typical experiment trial, in

which the camera points to the floor.

The core SVO process is able to perform 38 FPS in the onboard Odroid-U3 computer with real-
time serial communication to autopilot and visual-inertial fusion algorithm running 100 Hz in
parallel, which is sufficient for quadrotor position control purpose. The over all performance
shows a promising tracking even with significant rotation, thanks to the wide angle fisheye
lens. The 3D feature map constructed in real-time shows significantly less number of outliers
than ETHZ-PTAM as tested before. That is because the map outlier in SVO is handled by the

probability of each feature observed over multiple frames.

However, there are some situations, in which SVO loses track easily:

Camera too close to the scene: When the camera is less than 1 metre above the ground, the
tracking quality will reduce significantly, and when the camera is less than 0.5 metre above
the ground, the tracking will almost fail every time. This may caused by the inaccurate
camera calibration with fisheye distortion, or the shadow of the quadrotor itself, which

covers the area in the frame, when the camera is close to ground.

Unsuitable or sudden change of camera exposure: If the camera is setup as automatic shut-
ter adjustment, when the camera changes the shutter speed while tracking, the SVO will
immediately lose track, because all the contrast of the registered features are changed,
thus there will not be any feature matching. Therefore, in most cases, the camera is force
to setup as fix shutter speed, to prevent sudden exposure changes. However, the same
shutter speed will never suitable for all the lighting conditions. therefore if the fixed shut-
ter speed is too high or too low for the current lighting condition, then the captured image

frame will be over or under saturated, which make it difficult for feature tracking. Thus

®nttp://www.hardkernel.com/main/main.php
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Figure 2.15: Hardware setup for testing SVO.

the robustness over dynamic lighting conditions will be an interesting future improvement
for SVO.

Fast and sudden acceleration: The tracking optimisation of SVO assumes small changes be-
tween frames, which becomes untrue when the camera moves too fast or suddenly moves.
Therefore, it is also interesting to fuse the short term inertial measurement back into the

SVO as initial assumption for each optimisation step.

Rolling shutter camera: Generally for a rolling shutter camera, one image frame is captured
by multiple shutter in a scanning manner, which means the different portion of the same
image is captured in different time. The image can be easily distorted when the camera is
in motion. This is widely called rolling shutter effect. While the global camera captures
one image frame in a single shutter. The rolling shutter effect is not compensated in the
SVO algorithm, thus a global shutter camera needs to be used for the algorithm for the

maximal accuracy.
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Table 2.2: Comparison between SLAM algorithms. (n is the number of observed fea-
tures)
Handle
. . Handle Mo-
Algorithms Computation| Update rate Output Uncer- . andle Mo
Map . . tion Blur
tainties
Filter-based SLAM Sec- | best at 50 Hz on | Sparse Fea-
tion 2.2.2.1 (RT-SLAM) n* at best Core2 2.2 GHz | ture Map | Yes No
- CPU (low dense)
Keyframe-Based SLAM n ZtoiZ;St ;02 HZGI(_)II; Sparse Fea- No No
Section 2.2.2.2 (PTAM) ’ ture Map
CPU
30 Hz on NVIDIA
Dense SLAM Section | High (rely | GTX 480 GPU | Dense Map Yes Yes
2.2.2.3 (DTAM) on GPU) hosted by an i7 | Model
quad-core CPU
300 Hz on Intel i7,
8 cores, 2.8 GHz
’ No  (small
P H .
Keyframe-dense SLAM CPU, and 35 Hz on Sparse Fea- blur with
Section 2.2.2.4 (SVO) " ARM Cortex A9, 1 Mo Yes high frame
e 4 cores, 1.6 GHz “ p ra;ge)
Embedded proces-
sor

Too little features in the scene: Same as all other feature based SLAM algorithms, SVO also

relies on the features in the scene. The more feature rich is the scene, the more accurate

will the SVO tracking measurement will be.
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2.2.3 A comparison between SLAM algorithms

The comparison between different monocular SLAM is summarised in the Table 2.2. Note
that this comparison chart is only for brief listing test results from corresponding papers. It is
clear that the system configurations are different across different algorithms. Therefore, the fair
comparison of the algorithm speed should take into account both the update rate and hardware
configuration. From this perspective, it is worth noticing that SVO shows a significant speed
boost over all the other algorithms. Reminding that it is also an open-source project. These facts

encourage the usage of this specific algorithm in our following implementation works.

2.2.4 Optical flow (OF)

Optical Flow (OF) was a bionic computer vision technique, which computes image motion be-
tween two frames. It was originally derived by Horn and Schunk Horn and Schunck (1981) in
1980, based on brightness constancy assumption, which states the corresponding pixel inten-
sities in the two consecutive frames are roughly the same, and smoothness constraint, which
states the OF between the neighbour pixels are roughly the same, and the resulting algorithm
iteratively computes the refined OF for every pixel between two frames. Then just one year
later in 1981, Lucas and Kanade published a more efficient algorithm Lucas and Kanade (1981),
which computes OF directly in a single iteration. This method is also based on brightness con-
stancy assumption, and it further assumes the OF is same within a 3 x 3 pixel window. The
resulting algorithm finds the compromise solution for the 3 x 3 window by the least squares
principle. Moreover, since both of the methods computes the optical flow in 2 X 2 or 3 x 3
mask, they are not capable of handling larger OF than the mask. Thus the technique called Pyra-
mid is used to reduce the image resolution to different levels, so that high OF can be estimated
correctly. Several years ago, Kanade, Lucas and Tomasi came up with the KLT feature tracker
Baker and Matthews (2004), based on the OF principle. The KLT tracks the features detected
by Harris Corner Detector, by computing and linking the motion vector for each feature. The
recursive manner is applied, since not only the OF (only indicate feature translation), but also

other motion model (rigid, affine or projection model) is computed for more robust tracking.

2.2.4.1 PX4Flow optical flow camera

PX4Flow? is an optical flow camera, which is also equipped with an ultrasonic sensor and a
gyroscope, as shown in Fig. 2.17. It has a native resolution of 752 x 480 pixels and calcu-
lates optical flow on a 4x binned and cropped area at 100 Hz and scales the optical flow value

according to ultrasonic floor distance measurement to compute 2D translational velocity.

Because of the onboard gyroscope, it also compensates the optical flow caused by rotation.

Unlike many mouse sensors, it has very high light sensitivity, thus it also works indoors and in

Bhttps://pixhawk.org/modules/px4flow
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Figure 2.17: Installed PX4Flow camera.

low outdoor lighting conditions without the need for an illumination LED. It can also be freely

reprogrammed to do any other basic, efficient low-level computer vision tasks.

The experimental test shows a very reliable performance, in terms of lighting condition and
floor texture. It provides effective velocity measurement on almost any non-reflective surface.

However, it limits the maximum distance from the floor to be 5 m.

2.2.5 Visual scale problem

All monocular navigation methods have the advantage of the ability to operate in the scene
with any scale, since the flexible epipolar baseline is always relative to the scale of the local
map. However, since the actual length of the epipolar baseline is unknown, the scale of the
map is unknown. Thus, scale recovery becomes crucial when monocular SLAM is involved in
the vehicle control, especially, when data fusion is desired between SLAM and other absolute
scale sensors, such as an IMU or Ultrasonic altitude sensors. Generally, scale recovery can
be achieved while the fusion is taking place. Different approaches has been proposed, Weiss
and Siegwart (2011) estimates the scale continuously by fusing IMU measurement in EKF; the
author in Engel et al. (2012) proposed a maximum likelihood (ML) approach with ultrasonic
altitude sensor, which estimates the scale by minimising the negative log-likelihood. The latter
shows faster convergence to the true scale. More interestingly, Hilsenbeck et al. (2012) presents
a fast and robust scale recovery and visual reinitialisation method focusing on the long-term
robustness and consistency of the system. The results demonstrate that errors and convergence
times for scale estimation are considerably reduced, also recovery and reinitialization in parallel

allowing almost seamless tracking.
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2.3 Visual Inertial Navigation System (VINS)

Visual measurement is generally slow but accurate, while inertial measurement is fast but suffers
from error accumulation. Due to this complementary nature between visual measurement and
inertial measurement, the combination of visual and inertial sensors has been shown to be viable
to achieve significant performance improvement over a single sensor system. Besides, since the
absolute acceleration can be measured by inertial sensors, the visual scale problem discussed in

Section 2.2.5 can be solved by the visual inertial fusion.

2.3.1 Inertial odometry

Inertia Measurement Unit (IMU) is a fundamental device used in RPA to stabilise flight. It
generally consists of a 3-axis gyroscope, which senses vehicle angular velocity, a 3-axis ac-
celerometer, which senses vehicle linear acceleration, and optionally a 3-axis magnetometer,
which senses the absolute heading of the vehicle with respect to earth’s magnetic field. Theo-
retically, when RPA is equipped with an IMU, the orientation can be obtained from the integral
of angular velocity, while the position can be obtained from the combination of the orientation
and double integral of the linear acceleration. However, in practice, since the current avail-
able IMUs are typically MEMS (Microelectromechanical systems) IMUs, they normally have
non-negligible error. Also, the crystal oscillator clock is not sufficiently accurate. This results
in the badly distorted pose estimation of the vehicle, especially for position estimation, because
the double integral amplifies the error hugely. In order to overcome the problem, much research
has been carried out to smartly fuse the three sensors measurements. Typical fusion is achieved
by EKF, while recent investigations shows a effective improvements in orientation estimation
using advanced complementary filter Calusdian et al. (2011); Mahony et al. (2008); Tian et al.
(2013a) and gradient decent algorithm Madgwick et al. (2011a) (performance is demonstrated
in open source IMU by x-io technologies?®). This has been an interesting area for body move-
ment tracking for movie and 3D gaming applications. While the position estimation still has
non-negligible drift for long term applications. The advantage of the available IMU is that it is

fast (typically 100 Hz) and responsive in short time intervals.

Recently, following the development of quantum mechanics, DARPA?’ is working on a Micro-
PNT (Micro-Technology for Positioning, Navigation and Timing) program to TIMU (Timing
and Inertial Measurement Unit), which essentially integrates a highly accurate chip scale atomic
clock (CSAC) with an IMU, thus the accurate master clock significantly reduce the accumulated
error when computing pose from integral of IMU data. Besides, extremely sensitive IMU is
developed based on quantum interferometer. Those future technologies suggests possibility to
achieve absolute pose estimation using Inertial information only Smith and Johnson (2013).

However, those very expensive technologies are out of the scope in this review.

Phttp://www.x-i0.co.uk
Thttp://www.darpa.mil
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2.3.2 Visual inertial fusion

On the contrary to the high speed and high drift IMU state estimation, vision based state estima-
tion has the advantage of low accumulated position drift, nonetheless, because of the massive
data to be processed, the latency of the estimation is significant. Thus, visual measurement
has the potential to correct the drift and observe the bias of the inertial measurement, whereas,
inertial measurement has the potential to estimate scale, and bridge the between frames and vi-
sual failure. Therefore, fusing the inertial measurement with visual state estimation is the key
operation to involve vision in the high performance control loop. The typical fusion method
is Extended Kalman Filter (EKF), such as Engel et al. (2012); Tian et al. (2013b); Weiss and
Siegwart (2011). Moreover, some recent implementations applied UKF for more accurate state
estimation Shen et al. (2013a,b).

Tightly coupled fusion is based on filter based SLAM (see Section 2.2.2), where IMU mea-
surements are introduced into the system state for filter estimation (normally EKF). Thus
the filter is responsible to manage all observed features as well as IMU measurements
and camera pose. The overall computational complexity that can be derived from Section
2.2.1.2, where for EKF the complexity is proportional to m?. In this case, m is approxi-

mately the number of features.

Loosely coupled fusion Recently, majority of the promising results are achieved in the man-
ner of loosely coupled structure, which treats the visual pose measurement as separate
black box, and apply filtering methods (EKF or UKF) onto the outputs from the black box
with IMU measurements. This method make the filter have constant computational com-
plexity, regardless of the detail operation inside the visual black box, and this also leaves
the choice for visual measurement open for different techniques. The following subsec-
tion discusses two very interesting recent achievements based on loosely coupled fusion
method.

2.3.3 Two strong examples

Two very interesting recent achievements which are based on the loosely coupled fusion
method, are discussed in this subsection. The first one is the Swiss SFly project in Autonomous
System Lab (ETHZ university) in 2012, and the second one is the project of American GRASP
lab in University of Pennsylvania.

The recent achievement in ETHZ SFly?® project Weiss et al. (2012b); Weiss and Siegwart (2011)
(shown in Figure 2.5 in Section 2.1), is the first to successfully demonstrate the capability of

monocular vision-based control of autonomous MAVs, which uses a single downward facing

BSFly project: www.sfly.ethz.ch
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camera with complete onboard computation to achieve a power-on-and-go system for long-term
navigation in large and initially unknown environments. As shown in Figure 2.18, It combines
the modified version of PTAM Klein and Murray (2007) with Optical Flow (OF) based visual-
inertial odometry. By refining the keyframe management, feature management and map point
filter, the modified PTAM provides very efficient and powerful state estimation and mapping,
whereas the OF-based visual-inertial odometry measures the scaled speed and calibrates the
IMU online simultaneously, and then it is used to (re)initialise PTAM, correct drift, and bridge
the pose estimation while tracking failure. In this setup, since the tracking computation for
keyframe based SLAM has the linear computation cost against the number of features, and
loosely coupled EKF has constant complexity, the overall computation is linear to the number
of features. However, the system is limited to the operations which are far from ground or slow
movement close to the ground, the reason is that /) the method used to recover the visual scale
OF assumes the slowly varying image depth, which has the potential to change fast in close-
to-ground fast flight; 2) The PTAM assumes that all features can be seen from all directions in
the map, which is not sure in clustered environment; 3) downward facing camera is insufficient

when close to ground.

Inspired by Weiss et al. (2012b), Shaojie in Shen et al. (2013a,b) proposed an hybrid visual
approach (combination of monocular SLAM and stereo SLAM) towards high speed flight, as
shown in Figure 2.19. He replaced PTAM by a redesigned monocular SLAM, which /) re-
duces the computation further by taking the initial guess from IMU measurement and decouple
orientation and position estimation, 2) becomes more robust for feature outliers, and instead
of employing OF, he used a low speed secondary camera to obtain stereo correspondence of
the tracked features, which is then used to recover the visual scale directly. This stereo corre-
spondence /) removes the assumption of slowly-varying scale in OF method in [2], 2) provides
instant initialisation for monocular SLAM, 3) continuously checks tracking failure and recovers
scale/position drift. Finally, output visual state estimation and the IMU measurement are fused
into an Unscented Kalman Filter (UKF), which results in an accurate state estimation in 100 Hz.
The summarised block diagram is shown in Figure 2.20. However, in this approach, /) although
scale/position drift is recovered continuously by stereo correspondence, the output feature map
is assumed noiseless, without key-frame, where no global optimisation (bundle adjustment or
loop closure) are considered. 2) No sensor calibration is performed online; therefore, the sensor
pre-calibration is required, and IMU bias is not compensated for longer-term flight. 3) Forward
facing cameras cannot capture enough features in higher altitude. 4) The stereo camera pair with
small fixed baseline will lose its ability to recover depth in far scene, which will be insufficient
to correct monocular SLAM. Therefore, all the three reasons make it not suitable for long-term

flight in large environments.
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Figure 2.19: GRASP lab hybrid visual based navigation (Shen et al. (2013a)).

2.4 Platform and Control

Cascaded control structure is the most popular control framework for control of modern RPS,
where inner loop controls three degree of freedom (DOF) attitude of RPS in very high speed
(400-1000 Hz); outer loop controls the 3D position and then outputs the attitude command as

the input of the inner loop.

2.4.1 Platform and modelling

Since this project focuses on civilian applications, where small or micro RPAS is more
effective, it is better to employ RPAS as a testing platform of this project. So, in terms of small
and micro RPAS constraints, it has very limited payload (less than 0.5 kg), which further limits
the onboard power consumption, onboard computation and available sensors. Therefore, in
future design, it is important to simplify onboard sensors configuration, to develop very

efficient algorithm to process the rich vision information.

Moreover, it is very important to model and identify RPAS dynamics for high performance con-
trol method design and simulations. Kendoul in Bibuli et al. (2007) suggested various of method
to achieve that, such as first-principle modelling, system identification technique Mettler et al.
(2002) and combination of the two Abbeel et al. (2010). We are interested in the combination
approaches, so that we can derive relatively accurate models with less mathematical complexity.
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Figure 2.21: PID controller flow chart.

2.4.2 Proportional-integral-derivative (PID) controller

PID (Proportional-Integral-Derivative) controller is a popular industrial standard feedback con-
troller for controlling most linear systems, which firstly appears in 1890s for automatic ship
steering and been originally published in 1911 Bennett (1996). Generally speaking, a PID con-
troller measures the difference (called error) between a measured process variable and a desired
set-point, where the process variable is the system output variable, that the PID controller at-
tempts to control. Then the controller intends to minimise the error, thus the process variable is

close to the desired set-point.

To minimise the error, PID scales the error, integrate the error with respect to time and derivate
the error with respect to time, thus the three terms (proportional, integral and derivative) are
constructed. Then the sum of the weighted of the three terms forms the output from the controller
to the linear system. The flow chart is shown in Figure 2.21. where r(t) is the user set point, y(t)
is the measured output from the linear system, e(t) is the error, u(t) is controller output as well
as input to the linear system, and Kp, K7, Kp are the corresponding gains. The weighting of
the three terms are called gains, which are the main parameters to be tuned to achieve different
control performances. Also a PID controller will be called PI, PD or P controller when the gains

for the corresponding terms are set to be zero.

To be more intuitive, the three term of PID controller can be interpreted in terms of time: pro-
portional term is direct representation of current error; integral term is the accumulated error
over the past time; and derivative term is the prediction of the future error based on the current
rate of change of the error. Then, the gains determine the weighting of different terms effect-
ing the controller output. A P controller is generally able to control a linear system, however it
suffers from steady state error, which causes an offset from the set point when the system set-
tles. It will be eliminated by sufficient integral gain, while too much integral gain will introduce

instability. Moreover, a small derivative gain improves system stability.

The general manual tuning process starts with K p, while leave K and Kp as zero. Increase

Kp until the system starts oscillate, then use half of that Kp value for a ’quarter amplitude
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Figure 2.22: PDF controller flow chart.

decay” type response, and increase K until any offset is corrected within the sufficient time.

Finally, gradually increase K p until a load disturbance can be quickly recovered.

2.4.3 Pseudo-derivative-feedback (PDF) controller

A simple yet effective control structure was defined by Phelan (1977). This structure provides
all the control aspects of PID control, but without system zeros that are normally introduced by
a PID compensator. Phelan named this structure ’Pseudo-derivative feedback (PDF) control”
from the fact that the rate of the measured parameter is fed back without having to calculate a

derivative.

The structure of the PDF and PID controllers are similar. The differences between PID and
PDF control are best illustrated by comparing the controller flow chart of each structure. The
PDF controller is shown in Figure 2.22. Instead of processing the error for all PID terms, for
the PDF, the proportional gain only act on the system output as the negative feedback. This
change effectively reduce the overall system overshoot. Thus it is considered to be a very useful

controller type for UAV.

2.4.4 Visual servoing

Visual servoing is a concept of a special case in control problem which involves computer vision
as its feedback to control the motion of robots. This research area focuses more on the control
aspect of the system, which can be summarised as minimising the error between desired state
and current state. Two schemes are generalised corresponding to how visual signal is used to
describe the system state: Image-based Visual Servoing (IBVS) considers state as the features
position in the image plane; whereas, Position-based Visual Servoing (PBVS) considers state
as 3D camera pose with respect to reference coordinate frame, which can be derived based
on computer vision (such as 3D localization). Chaumette and Hutchinson (2006, 2007) are a

two-part series tutorial for visual servoing, which are recommended for detailed reading.
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2.4.5 General flight control strategies

Based on the cascaded control framework, many different control theories have been applied.
The linear control, such as classic PID controller, linear-quadratic regulator by Bergerman et al.
(2007) and H-infinity control by Natesan and Bhat (2007), is the most popular and well sup-
ported method, while the performance suffers in aggressive manoeuvres. Besides, learning-
based control, such as Fuzzy-logic by Garcia and Valavanis (2009), reinforcement learning by
Abbeel et al. (2010) and neural-network by Dierks and Jagannathan (2010), has the advan-
tages of flexibility on cross platforms and low computation requirement, while the stability
and robustness have not been examined. Furthermore, model-based nonlinear control, such as
feedback-linearization by Mellinger and Kumar (2011), adaptive control Kendoul et al. (2009),
model-predictive control by Qi et al. (2010) and backstepping method by Liu et al. (2010),
achieves higher level of flying capability. Versatile quadrotor controller has been achieved by

Lee et al. (2010b), which demonstrates the quadrotor recovers from being initially upside down.

2.5 Summary towards Research Methodology and Framework

In this Section, a flow chart is presented as a summary of literature review, and also it represents
the position-based visual servoing (PBVS) design framework, that will lead the present work

and future work. Details are shown in Figure 2.23.



49

Chapter 2 Literature Review

o] reando 7

(I DVSNVY NAS U0 paseq)

(orey 2repdy morp)

uoneWwnNsSq
OAS VLA ‘WV.LA INVIS| | vonrsog »
(e30WIE)) JOSUIG UONESIALN] [ENSIA PFEOqu() PRV
> UOTID93307) £390009y R
el S[edg  UORTWRSH
Sprmy
isny WO “I3H
J1NI p*eoquQ
SIOSUAQ
preoquQ

(1IN “IIH uo paseq)
Uorsny [eRIoul

rensia pajdnoo-£psoo

‘SNIA

Vdd

|~

pUBWIWO)
JOJ0IN]

Jo[[0RU0d (OId

II[[OFVO))

opInIy

(Kem yoTUyMm

Pop1o9p 10U)
UONBWNSH UONBWNSH
SR BOTHSO4

J2[[OFTOD Fe2U| ‘l

-UOU Paseq-[oPO

FI[ORNTVOT)
purWwIwo)) uonisod purwiwo))
opnmimy UonIsoJ
180

Figure 2.23: The proposed PBVS design framework.






Chapter 3

Quadrotor Modelling and Control
Architecture Implementation

This chapter presents the design and implementation details of an advanced mini quadrotor sys-
tem, including low cost commercial-off-the-shelf (COTS) electronics and advanced control al-
gorithm. The proposed quadrotor has a gross takeoff mass of 758 g and 360 mm frame diagonal
size. It is capable of semi-autonomous manoeuvre in GPS denied environments, solely relying
on onboard sensors and computers. A globally defined quadrotor model is formularised, and a
nonlinear velocity tracking controller is implemented on the special Euclidean group SE(3). An
optical flow and ultrasonic based onboard downward-facing camera is used as the primary sen-
sor to provide velocity and altitude measurement feedback for the controller. The control and

sensor fusion algorithm is developed under Arduino compatible open source electronics.

The rest of this chapter is formed as follows: in Section 3.3, it explains the modelling of the
quadrotor dynamics, and Section 3.4 describes the control architecture design based on the
dynamic model. Then, Section 4.5 summarizes quadrotor implementation details, and then,
Section 3.6 shows the test data to demonstrate the system performance. Lastly, Section 4.7

concludes and proposes future work.

Part of this chapter was accepted as Liu, C., Prior, S. D., and Scanlan, J. P. Design and Im-
plementation of a Low Cost Mini Quadrotor for Vision Based Manoeuvers in GPS Denied En-
vironments. Unmanned Systems, pages 1-12, DOI: 10.1142/52301385016500059 (Liu et al.,
2016a)

3.1 Introduction

Unmanned aerial vehicles (UAVs) are being considered in an increasing number of defence-

related applications, for the purpose of reducing the risk of failure, and rising confidence in

51
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mission success. Moreover, the civilian market is predicted to rapidly expand over the next
decade Kendoul (2012). The quadrotor is one of the most popular subset of UAVs. Because
of its agile manoeuvrability, as well as its ability of vertical take-off and landing (VTOL) and
stable hovering, it is commonly agreed to be an ideal candidate for search and rescue, surveil-
lance, exploration, agriculture, monitoring and military applications in both indoor and outdoor

environments.

Over the last decade, Global Positioning System (GPS) has been the key to enabling the au-
tonomy of UAVs. It provides a global localization service with the best accuracy of 1-2 m.
However, recently, due to the proven weakness of the GPS signal and rapid development of
onboard sensing and computation capability, there has been growing interest in developing and
researching alternative navigation methods for UAVs in GPS denied environments Achtelik et al.
(2012); Bachrach et al. (2010); Bry et al. (2012); Engel et al. (2012); Jones and Soatto (2011);
Shen et al. (2013a). The successful implementations will not only improve system robustness

under GPS failure, but also enable a new range of applications out of GPS coverage.

A mini quadrotor is defined to carry under 2 kg payload by Kendoul (2012), which is sufficient
for light weight perception sensors (such as cameras, laser scanner, radar and ultrasonic sen-
sor) and embedded computer, which are essential for an autonomous navigation. Additionally,
because they are low cost, easy to maintain, and safe to operate, these make them very good

test-beds for research and development as stated by Mahony et al. (2012).

In this chapter, the vision-based method is believed to be the optimal sensor for navigation.
The reason is that a camera has significant advantages over other sensors, such as low mass,
low power consumption, low cost, adjustable field of view (FOV), high accuracy, additional
colour information and long range. During the past five years, world’s top research institutes
had paid attention on developing advanced visual-based simultaneous localization and mapping
(vSLAM) algorithms based on structure from motion (SFM) theory Engel et al. (2014, 2013);
Forster et al. (2014); Klein and Murray (2007); Montemerlo et al. (2003); Newcombe et al.
(2011b); Pizzoli et al. (2014). Those algorithms are efficient enough to execute in near real
time on the modern onboard embedded computer, which makes it possible for a mini quadrotor
to perform complete autonomous tasks in GPS-denied environments solely relying on onboard
sensors and computers by utilising similar technology. Moreover, the visual scale problem,
which was the main challenge of involving vision in control loop, is addressed to various extent
by fusing onboard inertial measurements (accelerometer and gyroscope), which is named visual
inertial navigation system (VINS) Dunkley et al. (2014); Jones and Soatto (2011); Kelly and
Sukhatme (2009, 2016); Li and Mourikis (2013); Lobo and Dias (2003); Lynen et al. (2013);
Shen et al. (2013b); Weiss et al. (2012a).

Therefore, in order to integrate the similar technologies into mini quadrotor platforms and for fu-
ture improvements and developments, a suitable platform is required as the fundamental testbed.

The most popular research platform in this category is the Hummingbird quadrotor sold by
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Figure 3.1: The developed quadrotor.

Ascending Technologies technical detail published in Kushleyev et al. (2013), with the state-of-
the-art quadrotor autonomous control theory presented by Mahony et al. (2012). Thus, extensive
research has been conducted on mini quadrotor development Elsamanty et al. (2013); Fernando
et al. (2013); Jeong and Jung (2013). However, none of the above considers vision feedback
in the quadrotor control loop. On the contrary, there are a few of commercial platforms, which
are capable of vision based navigation, such as AR-drone and Bebop by Parrot, Phantom-3 and
Inspire-1 by DJI. However, due to the nature of their consumer level application and the in-
tellectual properties, they have very limited accessibility and extendibility for the usage as a
research platform with onboard processing. Given this situation, as a continuous work based on
the previous publication by Liu and Prior (2015c), this mini quadrotor, as shown in Fig. 3.1, is
designed and implemented aiming to provide a test-bed for developing similar algorithms in the

near future.

The rest of this chapter is formed as follows: in Section 3.3, it explains the modelling of the
quadrotor dynamics, and Section 3.4 describes the control architecture design based on the
dynamic model. Then, Section 4.5 summarizes quadrotor implementation details, and then,
Section 3.6 shows the test data to demonstrate the system performance. Lastly, Section 4.7

concludes and proposes future work.
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Symbols

D Rotor Diameter, m
p Air Density, 1.225 kg/m?
Cr Propeller Thrust Coefficient
Co Propeller Torque Coefficient
Cp Propeller Power Coefficient
A Advance Ratio
Re

Blade Reynolds Number
Mp Propeller Efficiency
NMm Motor Efficiency
w Total Air Flow Velocity, m/s
o Angle of Attack, rad
T Propeller Thrust, N
Q Propeller Torque, Nm
Ky Motor Speed Constant, rev/s/V
R Motor Resistance, (2
10 Motor No-load Current, A
Qm Motor Torque, Nm
Pspaft Shaft Power, W

3.2 Propulsion System Fundamentals

Propellers are the only mechanical parts that produce force to lift the vehicle. If a propeller

spins at a angular speed n with the forward axial travel speed perpendicular to the pro-
peller plane at V,,, due to the angle of attack between total oncoming flow velocity and
propeller pitch, the resultant force is generated by triangle-composing the blade lift force
and drag force, which can in turn be triangle-decomposed into the propeller thrust (7°) and

propeller torque (QQ). The theoretical expressions for 7" and () are:

T = pn®D*Cy, (3.1)
Q = pn*D°Cy, (3.2)

where 7 is rotor angular speed in rev/s, p is air density and D is propeller diameter. Cp
is the thrust coefficient and C is the torque coefficient (in many documentations it is
also called power coefficient and denoted as C'p). The characteristic of a propeller can
be specified by Cr and Cg, which depend primarily on the advance ratio (), the blade
Reynolds number ([2.) and the prop geometry. The mathematical expressions of advance
ratio (M) defined as:

A= 2 (3.3)
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where V,, is also called the speed of advance, typically the true airspeed of the aircraft,

and D is propeller diameter. The blade Reynolds number (R,) are ratios defined as:

inertial force VL

Re = , (3.4)

viscous force v

where ) is mean velocity of propeller blade relative to the air, L is characteristic linear

dimension (travelled length of air on the blade) and v is kinematic viscosity.

However, to measure the value of C'r and C, we simply reverse equation (3.1) and (3.2),

which yields:

T

Or = LDt 3-3)
Q

Co = 55 (3.6)

Then, the propeller efficiency (7)), which is defined by the ratio between thrust power

and torque power, can be computed by:

_ PropulsivePowerout  V,T" )\@ 3.7)
I = ShaftPowerin  nQ  Cg ’

The static test data in Brandt and Selig (2011); Deters and Selig (2008) implies the lack
of efficiency for small propellers used on small RPA (maximum 60%). The reason is
that they have low blade Reynolds number ([?.). The most important propeller geometric
parameters are diameter and pitch value, which are quoted by almost every commercial
propeller, such as 7 x 5 propeller corresponds to 7 inch diameter and 5 inch pitch. Here
the pitch value is defined as the distance that the propeller would travel in one revolution
if advanced into a solid material. The results in Brandt and Selig (2011); Deters and Selig
(2008) also show that propellers with larger diameter and lower pitch were more efficient,
in lower speed of advance, whereas higher pitch gives propeller better efficiency in higher

speed of advance. A typical comparison graph' is shown in Fig. 3.2.

Motors drive propellers by applying torque. The characteristic of a electric motor can be mostly
specified by motor speed constant (K7, which is the ratio of motor internal back-EMF

over rotation rate), motor resistance (R), and no load current (ig), which all can be tested

"http://www.rcex.cz/?p=3593
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Figure 3.2: Typical propeller efficiency graph.

by bench experiments. Once the three motor constants are obtained, the motor torque

(Qm), shaft power (Pspqf¢) and motor efficiency (7,,,) can be computed as:

n 1 |
Qm(n,?}) = [('U — Kiv)ﬁ — ZO]Ki‘/, (38)
1
Psnage(n,v) = [(v — KLV)E - z‘O]KLV, (3.9)
. . ’ioR n
Um(n»v) - [1 U_KLV]UK'U’ (310)

where v is the applied voltage to the motor terminals. ¢ is the current flow in the motor.
Note here, we assume Ky is in rad/s/Volt, while it generally given in RPM/Volt. Thus

the motor efficiency can be computed by:

PShaft
= — 3.11)
" PElec
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Figure 3.3: Coordinate system and quadrotor setup.

where electrical input power Pgi.. = vi. A further problem for selecting motor is match-
ing motor/propeller pair. Since the motor shaft and propeller always rotates at the same
speed, the equilibrium operating speed occurs when Q,,, = @, the impedance matching
takes place to ensure the peaks in 77, and 7),,, occur by roughly the same rotational rate and

at the required thrust. This determines the size of the motor, given a propeller.

3.3 Quadrotor Dynamics Modelling

This section presents the nonlinear dynamic model of the mini quadrotor, which forms the basis

for the controller synthesis in Section 3.4.

The coordinate frames and system setup is indicated in Fig. 3.3. Quadrotor body frame is
fixed to the quadrotor body following right hand rule with X—axis pointing forward, Y;—axis
pointing left, Zp—axis pointing up. World frame is fixed to the world, and is defined to have the
same origin with body frame at the moment when the quadrotor connects to a battery. Z,,—axis
points to the opposite direction of gravity and X,,—axis points to the same direction as quadrotor
heading when connects to battery. The angles defined in the system follow the right hand rule.
Fig. 3.3 also shows that the quadrotor has the cross configuration and four motors are numbered

1-4, with spinning directions as indicated.

The rest of the chapter uses Xvw, Yw, Zw € IR3 to denote unit vectors of the three world coordi-
nates, thus Xy = (1,0,0)",yw = (0,1,0) 7,z = (0,0,1)7, and the unit vectors of the body
frame are expressed in world frame as X, y1,, zp, € R3. The 3D rotation of the quadrotor body

is represented by rotation matrix R € SO(3). Therefore, we have xp, = Rxw, yb = Ryw.
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Figure 3.4: Overview of quadrotor dynamics model.

zp = Rz, thus R can also be expressed as:

R:[xb Vb zb}. (3.12)

Note that we express the heading of the quadrotor as the unit vector parallel to the projection of

Xjp—axis onto the X,,~Y,, plane in world frame, denoted as proj[xp] € R?, in Fig. 3.3.

The overview of the nonlinear model is shown in Fig. 3, where inputs of the model, 6,,, are
the normalized pulse width modulation (PWM) command signal to the electronic speed con-
troller (ESC) of motors, and outputs of the model are 3 dimensional (3D) position vector py
(= (x,y,2)") in world frame and body rotation matrix R. The following subsections will ex-

plain the included components individually.

3.3.1 Rotor dynamics

The propulsion system of the quadrotor includes two pairs of counter-rotating ESC-motor-
propeller systems. The dynamics of the four systems are identical and are approximated by
the rotor dynamics model. The model receives the normalized PWM command ¢ and outputs
thrust, 7', in g and torque, J, in Nm. If a propeller, with diameter D, rotates at n angular veloc-
ity in free air, whose density is p, assuming that the propeller drag is equal to the torque applied

to spin, the thrust 7" and torque () that it produces can be modelled as:

T = pn®D*Cr (3.13)
Q = pn*D°Cy, (3.14)

where C7 and Cg are thrust and torque coefficients respectively, which depend on propeller
geometry, profile and Reynolds number. Furthermore, by assuming an ideal closed-loop ESC-

motor system, which spins the propeller at the angular velocity that is linear to the normalised
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pulse width modulation (PWM) command, 6, ranging from O to 1, without mechanical delay:
n==~kd—c, (3.15)

where k and c are constants. Therefore, to model the propulsion system, simply substitute
(3.15) into (3.13) and (3.14). However, in practice, to model the propulsion system with given

parameters (p, D, Cr and Cg), the derived equations can be simplified as:

T =cr(6 — o), (3.16)
Q = coT, (3.17)

where cr, cg and ¢, are constants determined by the given parameters, and c7 and ¢, can be

easily obtained from static thrust tests.

3.3.2 Force and moment generation

All the forces and moments applied to the quadrotor result in movement. They are generally
generated by four different sources, stated byPhang et al. (2014), i.e., the gravitational force, the
rotor thrust and moment, rotor reaction torques, and their gyroscopic effects. However, the last
two have insignificant effect on overall forces and moments, thus we only consider the former
two. Therefore, this module converts all the forces and moments into a force vector, Fy, € R?

in world frame, and a moment vector, M € R? about each body axis.

The gravitational force in world frame only applies to negative Z,, axis, which yields:

0
Fgravity = 0 5 (3.18)

where m is quadrotor mass and g is standard gravitational acceleration.

Besides, each of the four rotors on the quadrotor generates thrust, 7;,, and torque, (J,,, where
n = 1,2, 3,4 (the numbering order is indicated in Fig. 3.3). The force generated by the four

rotors applies to the positive Z; axis in body frame, thus by rotating it into the world frame, we

get:
0
Fthrust =R 0 = Zthotala (319)
Ttotzzl
Tiotar = T1 +To + T3+ Ty, (3.20)

where T}, is the total thrust provided by the four rotors. R is the rotation matrix of the body

frame, and zy, is the unit vector of Zp—axis, as defined in (3.12).
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Therefore, the total force applied onto the quadrotor in world frame can be derived as:

Fw = Fgravity + Finrust- (3.21)

The other output from the module is the moment vector in body frame, which is approximated
in this chapter to be generate by the thrusts and torques of the four rotors. Roll moment is con-
tributed by the thrust difference between rotors 1, 4 and 2, 3. Pitch moment is contributed by
the thrust difference between rotors 1, 2 and 3, 4. Yaw moment is contributed by the torque dif-

ference between rotors 1, 3 and 2, 4. Thus, by also substituting (3.17), it then can be formulated

as:
M = BCT, (3.22)
where:
21 0 0
B=|0 ¥ o, (3.23)
| 0 0 cq
(1 -1 -1 1
C=1|-1 -1 1 1], (3.24)
1 -1 1 -1
T = (11,1, T3,Ty) . (3.25)

The thrust vector, T, represents the thrusts generated by the four rotors, and [ is the distance

between rotors and quadrotor centre of mass.

3.3.3 Rigid-body dynamics

Rigid-body dynamics formularises the translational and rotational dynamics of the quadrotor,
by utilising the simplified Newton-Euler formalism. Therefore, the resulting position vector,
pw € R3? in world frame, and angular speed vector £2 € R3 about each body axis, can be

obtained as:

mPuw = Fu, (3.26)
JN =M, (3.27)
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Figure 3.5: Overview of the nonlinear controller.

where J is the inertia matrix of the quadrotor, and since our quadrotor is approximately four

way symmetrical, J is assumed to be a diagonal matrix, as:

Jx 0 0
J=|0 J 0], (3.28)
0 0 Jg

where Jx, Jy, Jz are the moment of inertia values around each axis of body frame.

3.4 Controller Design

Based on the dynamics model developed in the previous section, a nonlinear robust controller
is designed to ultimately control the quadrotor 3D position py and heading proj[xp] to match
user input command p}, and proj[xj]. As shown in Fig. 3.5, three sub-controllers: attitude
controller, acceleration controller and position controller, are developed. The quadrotor is con-
trolled accordingly by taking the feedback measurement from inertial measurement unit (IMU)
and vision based position sensor. Note that the detail of the position sensor design is not the

focus of this section, thus here we assume the position is obtained from the position sensor.

3.4.1 Attitude controller

The attitude controller receives the desired body orientation represented as rotation matrix R*,
and desired total thrust provided by the four rotors, 737, ;, from acceleration controller output.
With the help of attitude feedback measurement, R, from IMU attitude fusion, and angular
velocity, 2, directly measured from gyroscope, then it commands normalised PWM signals, 4,

to the four ESCs of motors. It is designed to minimise both the attitude tracking error, eg € R?,

and angular velocity error, eq € R3, while maintaining the total thrust, T},4;, as commanded.
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Given the desired orientation, R*, the attitude error, e, is defined to be the sine of the angle of

rotation about each body axis to go from R to R*. It can be formularised as Lee et al. (2010a):
1
eRx = 5(R*TR ~R'RY), (3.29)

which yields a skew-symmetric matrix in the form of:

0 —€R. €Ry
R x — €R~ 0 —C€Rz | » (330)
—€Ry  €Ru 0

where the cross map x : R?® — s0(3), thus we get eg = (eRx,eRy,eRz)T. Moreover, the

angular velocity error, eq, is defined as Lee et al. (2010a):
eq =0 - R'R*Q*, (3.31)

where Q* € R3 is the angular velocity of the desired rotation, R*, about each axis of the desired
body frame. It can be obtained by the tangent operator equation of the desired rotation matrix,

as:

O = (R* 'RV, (3.32)

Then, we can apply the proportional—derivative (PD) control law to compute the desired angular
acceleration vector, a* € R3, about each body axis to be applied to quadrotor body in order to

minimise the difference between R and R*, thus:
o = —kper — kqeq, (3.33)

where kp, kq € R3 are non-negative gain vectors, can be tuned, depending on the aggressive-

ness of the required manoeuvre.

Therefore, based on (3.27), the desired moment, M* € R3, to be generated onto quadrotor body

can be computed by:
M* =J 'a*, (3.34)
And then we add total thrust control. Thus, by combining (3.20) and (3.22) we can say:

M*

*
Ttotal

C

1ix4

B  03x1

T, (3.35)
01><3 1

1
4
where matrix B and C are defined in (3.23) and (3.24) respectively, and T* =

(T, Ts,Ts,TF) " is desired thrust vector, which represents the desired thrust command to each
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rotor. Therefore, the thrust command for individual rotors can be computed by reversing (3.35):

| C B 03| | M* (336
lixa 01x3 1 %Ttt)tal '

This expression of thrust commands not only applies the desired moment to the quadrotor, but

also ensures the total thrust provided by the four rotors is equal to T}, ;.

Finally, to generate the normalised PWM signal command, d7;, for individual rotor, simply apply

s Uns

T*
58 =1/ +c,. (3.37)
cT

This nonlinear attitude tracking controller is demonstrated to recover from any initial orientation

inverted (3.16) on 7). Then we get:

in simulation by Lee et al. (2010a), and it is proved to have exponential stability when the initial
attitude error is less than 90°, and it yields almost global exponentially attractiveness when the

initial attitude error is less than 180°.

3.4.2 Acceleration controller

The Acceleration controller receives the desired acceleration command vector,
* — * * *
a* = (a3,a;,a;

command, proj[Xp], from user. It then converts the commands into the desired orientation, R*,

)T € R3, from the position controller output, and quadrotor heading

and desired total thrust, T, ,, commands for attitude controller.

For a given acceleration command, a*, based on (3.26) and (3.21), the desired thrust force acts

on the quadrotor in world frame, F}, ., ., can be computed as:

:hrust =ma* — Fgravity- (3.38)

Based on (3.19), F§}, ..« 15 shown to have the same direction with the desire body Zj—axis, zj,

with the magnitude equals to desired total thrust, 777, .. Thus:
Tt*otal = ”F:hrustH? (339)
F,
7} = % (3.40)

Then by assuming the desire heading command, proj[xy), is not parallel to zj, we can obtain

the unit axis vectors y}, and xj, by:
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zj, X proj[Xp)

vy = : ) (3.41)
P Iz, x projlx]|
Xy = ¥b X Zp- (3.42)
Therefore, the output desired quadrotor rotation matrix will be:
R =[x, vi 7 (343)

However, when the acceleration command a* given to the acceleration controller results in a
desired total thrust, T, ., which is higher than 80% of the maximum total thrust, Tg,, that the

otal’
four rotors can provide, the system will encounter the tracking instability.

Therefore, an acceleration limit must be conducted in this case. Here, we scale down a* to
a* = fa*, with 0 < 8 < 1, so that the quadrotor body acceleration maintain the same direction,

while the resulting total thrust is equal to Tg;. Thus, in other words:

:hrust =ma* — Fgravity» (3.44)
To% = ||F:hrust”> (3.45)
a* = fga’, (3.46)

which results in a quadratic equation of 3, in the form of:

af?+bB+c=0, (3.47)
where:

a = ||ma*|?, (3.48)

b= 2m2ga?, (3.49)

c=m?g* — Ty (3.50)
Thus /3 can be obtained from the quadratic formula g = =b+vb-—dac W. Then a* can be replaced

by a*, T}

tota

1 = T50%, and R* can be computed in the same form as (3.40), (3.41), (3.42), (3.43).

3.4.3 Velocity controller

The velocity controller outputs the desired acceleration vector, a*, to the acceleration controller,
in order to minimises the error between desired velocity, p':;,, commanded from the user, and

quadrotor velocity measurement, py, in the world frame.
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Table 3.1: Platform details.

Quantity name  Value Unit
Takoff mass(m) 758 g
Arm Length (1) 180 mm
Propeller size 9.4x%5.0 inch
Motor Kv 960 RPM/)V

The position error vector, e, and velocity error vector, ey, are defined as:

€p = Pw — P> (3.51)
ey = Pw — D%, (3.52)

Then proportional-integral-acceleration (PI-A) control law is applied, which yields an expres-

sion as:
a* = —kjep, — ke, — k;puw, (3.53)

where ki, k;) and k), are non-negative controller gain vectors, which can be tuned according to
the require aggressiveness of the position tracking performance. pZ, is from user command and
pw is measured from velocity estimator described in next section. p}, and py, are obtained by

integrating p%v and pw, and py is obtained directly from accelerometer measurement.

Additionally we add a position-error-integral term with gain value kj, for z-axis position con-

troller to remove altitude control steady-state error.

3.5 Implementation

This section summarises the implementation details for the working UAS system, including me-
chanical setup, and autopilot electronics and software description. The quadrotor basic details

are summarised in Table. 3.1.

3.5.1 Chassis and propulsion system

We selected a GF360 carbon fibre quadrotor frame? for industrial standard design suitable for
fast prototyping applications. The 360 mm motor span optimised for 9.4 inch propeller, here
we use DJI E310 propulsion system® for robustness and simplicity. This results in a 600 mm
tip-to-tip span, which is almost the maximum safe size to manoeuvre through standard UK

doorways (762 mm width).

http://www.dhgate.com/product /gf-360-carbon-fiber-folding-four-axis—quadcopter/
187566640.html
*http://www.dji.com/product/e310


http://www.dhgate.com/product/gf-360-carbon-fiber-folding-four-axis-quadcopter/187566640.html
http://www.dhgate.com/product/gf-360-carbon-fiber-folding-four-axis-quadcopter/187566640.html
http://www.dji.com/product/e310
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Figure 3.6: Propulsion system model.

We then conducted bench static thrust test of the E310 propulsion system and obtained cr and c,
in (3.16) by applying linear regression on square root of 7" versus . The obtained ¢, is 48.1385
and cr is 0.09376, which gives 95% accuracy, as shown in Fig. 3.6, where the blue curve is the
measured data from thrust test, and the red curve is generated from (3.16) with ¢y and ¢, equal

to above values.

3.5.2 Moment of inertia

The moment of inertia of the quadrotor is obtained by averaging between analytical method and

direct measurement.

In order to obtain the analytical measurement of the moment of inertia, an approximated CAD
model is constructed in SolidWorks®, with the mass assigned to all components individually.

The constructed model is shown in Fig. 3.7.

The direct measurement of moment of inertia is obtained by applying the bifilar pendulum the-
ory, where for each axis, the moment of inertia, J, can be computed by measuring the twist
oscillation period with the setup as shown in Fig. 3.8, the equation used to compute the moment

of inertia is:

- mgT?b?

where 7' is the period measured over one oscillation. Here, to improve the accuracy, the averaged

period from 40 oscillations is obtained with manual stopwatch, and L, b is indicated in Fig. 3.8.

The results obtained from the CAD simulation, bifilar pendulum experiment and the average of
both are summarised in Table 3.2. Note that the averaged value is used as the final measurement

result.
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Figure 3.7: Quadrotor CAD model.

Figure 3.8: The bifilar pendulum experiment setup for the three body axis.
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Table 3.2: Moment of inertia experiment results.

Quantity Value from Value from Bi- Averaged Unit

name CAD filar Pendulum Value
Jx 0.01030 0.00875 0.00953 kg x m?
Jy 0.02021 0.01863 0.01942 kg % m?2
Jz 0.01073 0.00921 0.00997 kg x m?
333 Hz PWMs
Servo i ESCs
Controller 5

P ManualRC ¥ 5
UART1 IMU
> ‘1'400 KHz 12C
UART1
RX

Main Interface Velocity and
RC receiver > < " < Altitude
Controller ~ |UARTS | Arduino [100KHz| o

Figure 3.9: Block diagram.

(a) Top view. (b) Bottom view.

1. Main Teensy controller; 1. PX4Flow camera;

2. FreeIMU; 2. Li-Po battery.

3. Servo controller; 3. Interface to additional camera payload.

4. Interface Arduino;
5. Voltage regulator.

Figure 3.10: Mechanical system layout.

3.5.3 Flight controller implementation

Thanks to the high speed Teensy 3.1 processor and a dedicated servo controller, the control loop
implementing Section 3.4 executes within 3 ms. The physical layout is shown in Fig. 3.10a and

Fig. 3.10b, and the block diagram in Fig. 3.9 shows the interactions between components.
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1. Main Controller Board is based on Teensy 3.1 MCU board*. It is an ARM based Ar-
duino compatible development board, which features very small form factor (35 x 18
mm) and fast processor (ARM Cortex—M4 with up to 96 MHz clock speed). It is ideal

for a flight controller.

2. IMU is based on FreeIMU sensor suite® Varesano (2013), including a MPU6050
gyroscope-accelerometer combo-chip, a HMC5883L magnetometer and MS5611-01BA
high resolution pressure sensor. However, only the MPUG6050 chip is used in this
implementation. The orientation fusion estimation uses the library provided with the

SENSor.

3. Servo Controller is based on Pololu Mini Maestro Servo Controller board®. It is a dedi-
cated servo controller board, which features high resolution (0.25 ps) servo PWM output
to 12 channels, with update rate up to 333 Hz, and the fast UART Serial protocol makes

it easy to receive command from the main controller board.

4. Ground Station Software was developed in MATLAB® for graphical user interface
(GUI) along with the quadrotor development. As shown in Figure 3.11, it was devel-
oped for the purpose of monitoring real time sensor measurement, 3D data visualisation,
in-air parameter tuning, flight data logging and post-processing. The wireless commu-
nication is realised by XBee low power RF module. A customised bidirectional serial
protocol is developed for reliable transmission and minimised data package. Two frame
bytes are used at beginning and end of the package, also one byte checksum is used for
each data package. A hand-shake procedure is followed for in-air parameter tuning, so

that data transmission only happens when updating new parameters.

3.5.4 Velocity and altitude estimator implementation

The horizontal position is obtained by integrating the horizontal velocity. The horizontal ve-
locity of the vehicle is obtained by fusing the measurements from PX4Flow Honegger et al.
(2013) camera’ and IMU. The vertical position is directly measured by the ultrasonic sensor on
PX4Flow camera. On the PX4Flow, the CMOS high speed vision sensor with 21 degree field
of view, measures the optical flow at 100 Hz. Then it obtains the ground velocity relative to
quadrotor by scaling the average optical flow by the ground distance. Moreover, by subtract-
ing the scaled gyroscope rate, thus it compensates for the optical flow caused by roll and pitch

rotation.

In particular, the PX4Flow camera measures the horizontal velocity, Ve = [Vex, Uey, 0]" and

vertical position, /. Note that v is always measured with respect to vehicle heading, proj[xp)],

4https ://www.pjrc.com/teensy/teensy31.html
Shttp://www.varesano.net/projects/hardware/FreeIMU
*http://www.pololu.com/product/1352
"https://pixhawk.org/modules/px4flow


https://www.pjrc.com/teensy/teensy31.html
http://www.varesano.net/projects/hardware/FreeIMU
http://www.pololu.com/product/1352
https://pixhawk.org/modules/px4flow
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Figure 3.11: MATLAB® ground station graphical user interface.

thus the measured vehicle horizontal velocity vZ, is:
Vi = Proj[xp] © ve, (3.55)

where © represents vector element-wise multiplication.

Then, given the IMU sampling time, A7, and measured body acceleration, a, in body frame
from accelerometer, we apply multiple rate complementary filter to compute the estimated ve-

hicle horizontal velocity V' = [vyz, Vuy, Vwr] | at time ¢

Vw! = n(vw! ™t + ATRa) + (1 — n)V! (3.56)

W)

where the coefficient n can be computed by

(3.57)

Thus, 7 is the time constant for the complementary filter. Therefore the vehicle position py, can

be computed by

Pw = [waavaah]—r- (3.58)

The filter executes at IMU sampling frequency, and v, remains the latest measurement value

before new velocity is updated from PX4Flow camera.
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Table 3.3: Components cost summary with retail prices.

Item Price (£)
Teensy 3.1 Main Controller 15
GF360 Frame 64.9
Turnigy 4500mah 3S Battery 37.8
DIJI E310 Propulsion System 168.7
FreeIMU 4.0.3 45
Pololu Maestro Servo Controller 39.1
Optical Flow Camera (PX4FLOW) 120.8
Voltage Regulator 11.8
Prototype PCB Manufacture 25.7
Total £529

Table 3.4: PID parameters.

Controller x-axis y-axis z-axis

kp 2200 2200 15
kq 460 460 10
K, 07 07 1.4
K, 32 32 23
K/, 045 045 05
K, - - 0.7

3.5.5 Components cost summary

Table 3.3 summarises the cost of individual onboard components. The total cost of the entire
system is £529, which is indicated in the last row. Note that the cost will be significantly reduced

with higher quantity production.

3.6 Test Results

An indoor flight test was conducted as indicated in Fig. 3.12. The manual tuning was conducted

in advance of this trial and the following tuning parameters in Table. 3.4 were used.

Flight data was recorded to demonstrate the control performance and validate the theory. Fig.
3.13 and Fig. 3.14 show the command-response graphs of terms directly controlled by the user,
including horizontal velocity, altitude and heading angle, over 50 seconds duration (from 50s
to 100s). Fig. 3.13a and Fig. 3.13b shows the horizontal velocity can be effectively controlled
within +0.2 m/s accuracy and 0.5 s response time. Due to the position feedback error
introduced in the velocity controller in (3.51), the steady state velocity error was completely
removed, since the position feedback error acts as the integral of the velocity feedback error.
Moreover, it acts as the position hold effect when encounter an external turbulence. Fig. 3.14a
shows that the altitude is controlled within £0.15 m accuracy. Fig. 3.14b shows the heading

angle is controlled within £0.1 rad with a small steady-state error as a result of the PD attitude
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Figure 3.12: Indoor flight test scene.

controller.

Moreover, to verify the cascaded control architecture, Two 28-second command-response
graphs are shown in Fig. 3.15 (122s to 150s), indicating the velocity controller performance
and the intermediate control signal between acceleration controller and attitude controller at the
corresponding time. Note that we have rotated the velocity in the world frame to match the
quadrotor heading so that the pitch angle of the quadrotor will result in the change in x-axis

velocity change in match-heading frame.

It is clearly shown that the output from the acceleration controller (dashed in Fig. 3.15b reacts to
the velocity error (indicated as the difference between dashed and solid in Fig. 3.15a), and acts
as the command input to the attitude controller, although the output from acceleration controller
also reacts to the acceleration measured directly by the accelerometer, which is not shown in
the graph. Moreover, Fig. 3.15b also shows that there is significant offset (steady-state error)
as expected from the PD attitude controller design with an imperfect mass balance of quadrotor
body, which has been sufficiently compensated by the higher level velocity controller. It is
indicated by the resulting pitch angle (solid in Fig. 3.15b centred at 0 rad.
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(a) Command-response graph of velocity in x-axis in the world frame.
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(b) Command-response graph of velocity in y-axis in the world frame.

Figure 3.13: Velocity control performance evaluation graphs.
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(a) Command-response graph of altitude.
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(b) Command-response graph of the heading angle.

Altitude and heading control performance evaluation graphs.
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(b) Short-term command-response graph of pitch angle.

Figure 3.15: Cascaded control validation graphs.

Moreover, a noticeable delay (about 0.5 s) in the velocity responds graphs (Fig. 3.13a, Fig.
3.13b and Fig. 3.15a) were introduced by the physical inertia of the UAV after for acceleration.

3.7 Conclusion

This chapter has shown the quadrotor modelling and controller design principle, as well as im-
plementation details. The flight test result showed a good attitude and altitude hold and an
acceptable velocity control performance. The cascaded control architecture of the developed
quadrotor is suitable for testing vision based localization algorithms, and testing new control
strategies. The fully customised design makes it easy to integrate new sensors and manipulat-
ing controller. The further work includes implementing simultaneous localisation and mapping

algorithm to provide positional feedback, and fine tuning the controller parameters.



Chapter 4

Onboard Sensor Fusion for State

Estimation

Because of the complementary nature of visual and inertial sensors, the combination of both is
able to provide fast and accurate six degree-of-freedom (6 DOF) state estimation, which is the
fundamental requirement for robotic (especially unmanned aerial vehicle) navigation tasks in
GPS-denied environments. This chapter presents a computationally efficient visual-inertial fu-
sion algorithm, by separating orientation fusion from the position fusion process. The algorithm
is designed to perform 6 DOF state estimation, based on a gyroscope, an accelerometer and a
monocular visual-based simultaneous localisation and mapping (mSLAM) algorithm measure-
ment. It also recovers the visual scale for the mSLAM. In particular, the fusion algorithm treats
the orientation fusion and position fusion as two separate processes, where the orientation fu-
sion is based on a very efficient gradient descent algorithm, whereas the position fusion is based
on a 13-state linear Kalman filter. The elimination of the magnetometer sensor avoids the prob-
lem of magnetic distortion, which makes it a power-on-and-go system once the accelerometer is
factory calibrated. The resulting algorithm shows a significant computational reduction over the
conventional extend Kalman filter, with sub-centimetre accuracy. Moreover, the separation be-
tween orientation and position fusion processes enables the algorithm to be easily implemented
onto two individual hardware elements and thus allows the two fusion processes to be executed

concurrently.

Part of this chapter was published as Liu, C., Prior, S. D., Teacy, W. L., and Warner, M.
Computationally efficient visual- inertial sensor fusion for Global Positioning System-denied

navigation on a small quadrotor. Advances in Mechanical Engineering, 8(3):1-11, DOI:
10.1177/1687814016640996 (Liu et al., 2016b)

The position fusion algorithm is open sourced in the link:

https://github.com/Changliub52/vi_ekf.git

75


https://github.com/Changliu52/vi_ekf.git

76 Chapter 4 Onboard Sensor Fusion for State Estimation

4.1 Introduction

The combination of visual and inertial sensors has been shown to be viable, and the significant
performance improvement over a single sensor system has attracted many researchers into the
field after the success of SFly projectWeiss and Siegwart (2011), which enabled the world’s first
autonomous unmanned aerial vehicle (UAV) in GPS-denied environments, as stated by Blosch
et al. (2010).

In the past five years, many prominent research institutions began to develop advanced monocu-
lar visual-based simultaneous localization and mapping (mSLAM) algorithms based on structure
from motion (SFM) theory Engel et al. (2014, 2013); Forster et al. (2014); Klein and Murray
(2007); Montemerlo et al. (2003); Newcombe et al. (2011b); Pizzoli et al. (2014); Roussillon
et al. (2011); Vogiatzis and Herndndez (2011), which are suitable to modern onboard embed-
ded computers. Moreover, the visual scale problem, which was the main challenge of involving
monocular vision into the control loop, has been addressed by fusing onboard inertial measure-
ments (accelerometer and gyroscope), called the visual inertial navigation system (VINS) Dunk-
ley et al. (2014); Jones and Soatto (2011); Kelly and Sukhatme (2009, 2016); Li and Mourikis
(2013); Lobo and Dias (2003); Lynen et al. (2013); Shen et al. (2013b); Weiss et al. (2012a).

Almost all of the visual-inertial fusion algorithms, to our knowledge, rely on nonlinear Kalman
filter techniques (extended Kalman filter, unscented Kalman filter, etc.) to process both the ori-
entation and the position measurement in the same process, this results in a large state vector
(usually more than 20 states) and a complex nonlinear system model. However, recent advances
in computationally efficient inertial measurement unit (IMU) orientation estimation, Madgwick
et al. (2011a), shows a competitive accuracy against Kalman-based algorithms by utilising op-
timisation based methods. Thus, in this chapter, a computationally efficient visual-inertial fu-
sion algorithm is proposed by separating the orientation and the position fusion processes, this
maintains the same level of accuracy with nonlinear Kalman filter approach. The algorithm
is designed to perform a six degree of freedom state estimation, based on a gyroscope, an ac-

celerometer and a mSLAM measurement. It also recovers the visual scale for the mSLAM.

The rest of this chapter is organised as follows: Section ”Algorithm Preliminaries” gives an
overview of the visual-inertial fusion algorithm; section ”Orientation Fusion Process™ presents
the mathematical expression of the orientation filter, and section “Position Fusion Process”
presents the mathematical expression of the position filter. The implementation, test result and

conclusion are shown in the last three sections.
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Figure 4.1: Coordinate system.

4.2 Algorithm Preliminaries

4.2.1 Coordinate system

The coordinate system used is shown in Fig.4.1. All the coordinate frames are defined following
the right hand rule. The earth frame { E£'} is fixed to the world, and zgp—axis is defined to be
parallel to gravity vector. The sensor frame {S'} is shared by the gyroscope, the accelerometer
and the camera, where xg—axis points to sensor front, and zg—axis points to sensor top. The
vision frame {V'} is the world frame assumed in the mSLAM algorithm, in which the projection
of x,—axis on the xg—yg plane is parallel to x g, and the orientation of zy—axis is arbitrary
depending on how the mSLAM is initialised. Note that there are two assumptions under this
coordinate system: firstly, the origin of { E'} is assumed to be very close to the origin of {V'}
(here we separate the two frames in Fig.4.1 for the sake of clearance); secondly, the zy —axis is

assumed to not be perpendicular to the 2 g~y plane in { E'}.

The orientation of {S} with respect to {E} can be expressed as g, € R* in quaternion or
Ry € SO(3) in rotation matrix, and the position as p, € R*. Similarly, the orientation of
{S} with respect to {V'} can be expressed as q,,, € R* or R, € SO(3), and the position as
p,, €RL

4.2.2 Algorithm overview

As shown in Fig.4.2, the visual-inertial fusion algorithm assumes rotation q, ., as well as the

unscaled position p, are provided by a mSLAM algorithm, which is treated as a black box.
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Figure 4.2: Algorithm overview.

Moreover, it receives angular rates measurement wg € R* from gyroscope, acceleration mea-
surement ag € R* from accelerometer. The output of the fusion process is to estimate rotation
q, and position p, . € R? of {S} in { E}. Furthermore, the position filter also estimates the
linear velocity v,,, € R3, linear acceleration a,,, € R?, and accelerometer bias b, € R3, as

well as the metric scale of the mSLAM position measurement A.

The fusion is separated into two fusion processes: orientation fusion process and position fusion
process. The orientation fusion is based on very efficient gradient descent algorithm Madgwick
et al. (2011a), and position fusion is based on a 13-state linear Kalman filter. The following two

sections will present the mathematical expression of the two algorithms respectively.

4.3 Orientation Fusion Process

The orientation fusion algorithm fuses the gyroscope, accelerometer and vision (mSLAM) mea-
surement to output a final orientation estimation. It is based on the gradient descent algorithm
in quaternion representation. The origin of the algorithm comes from Madgwick et al. (2011a),
where the detailed mathematical derivation and proof is presented. However, different from

the original algorithm, the following fusion derivation eliminates the magnetometer sensor,
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Figure 4.3: Gravity field and vision field.

while, instead, the rotation correction about gravity vector is compensated by fusing the vi-
sion (mSLAM) measurement. Therefore, it avoids the problem of magnetic field distortion, thus

only factory calibration is required once for accelerometer.

Moreover, given that all the mSLAM orientation measurement tend to drift over time and dis-
tance due to the accumulated error, fusing the vision measurement in the same way as the mag-
netometer will result in the estimation error on gravity direction. This can be very sensitive for
the quadrotor stabilisation and control. Thus, the following algorithm decouples vision mea-
surement with the gravity direction estimation, while maintaining the effective fusion about the

gravity vector.

In order to perform orientation estimation, as shown in Fig.4.3, three coordination frames are
used: Sensor frame {S} represents the orientation of all the coincide sensors (gyroscope, ac-
celerometer and camera); Earth frame { E'} represents the reference frame of the inertial sensors
(gyroscope and accelerometer); Vision frame {V'} represents the reference frame of the mSLAM
algorithm based on the camera. Additionally, gy, is the unit vector representing the true grav-
ity direction, which is also called gravity field vector in the rest of the chapter; and proj[xy| is
the unit projection vector of the xy —axis onto the x g—yg plane, which is also called vision field

vector in the rest of the chapter.

The purpose of the orientation fusion is to estimate optimal quaternion transformation g, from
{E} to {S} so that, (1) the zg—axis is align with the gravity field; (2) the x,—axis is align with
the vision field.
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The essential mathematical expression of one iteration at time ¢ is shown as follows. Note that
the orientation estimation from last iteration g, , is assumed to be known, and the sampling

period is denoted as At.

4.3.1 Orientation derivative estimated by gyroscope

The 3-axis gyroscope measures the angular velocity (rate) in rad/s about the three axis of {S}
frame, which we denote as wg = [0, wy, wy, w.] . The quaternion derivative of the gyroscope

estimation g, , at time ¢ can be computed by (4.1), given g as the previous orientation

ES,t—1
estimation from all sensors.

. 1
9wt = §qES,t—1 Qwg, (4.1)

)

where ® denotes a quaternion product. Note that all the quaternions in this chapter follow

q = [qw, 4z, 9y, ¢:] T, and they are all unit quaternions (¢2, + ¢2 + qZ +q¢2=1).

4.3.2 Orientation optimisation from homogenous field

In order to obtain the optimal orientation estimation g, = [qo, q1, g2, 3] ', the field measured
from the sensor has to be aligned with the predefined reference field as close as possible. Thus,
this can be formularised as an optimisation problem, where, for any homogenous field b,, € R*

in {E'}, (4.2) is solved to minimise an objective error function.

min ,b.,s.), 4.2
VQES€R4f(qES e 8s) 42

where s, € R* is the field vector measured by the corresponding sensor in {S}. The gradi-
ent descent algorithm is one of the most computationally efficient optimisation algorithms to
solve the above problem. (4.3) describes it for n iterations, which starts from initial orientation

estimation g, = to final estimation g, o

q =q — W Af(qu,k’ by, s)
ES,k+1 ES,k HAf<qES,k7bE7S>H

k=0,1,2..n (4.3)

where p is the an non-negative scalar, named as step-size, and the error direction

Af(4,y, by, s) is computed by the objective error function f and its jacobian matrix J.

Af(qESJC’bE?s) = JT(qES’k)f(quyk7 bE7 S) (4'4)



Chapter 4 Onboard Sensor Fusion for State Estimation 81

4.3.2.1 Gravity field objective error function

The gravity field objective error functionrepresents the error between gravity vector in principle
and the sensed gravity acceleration vector, expressed in {S'}. Thus, given the gravity field vector

g, the gravity field objective error function f, is defined as

foa,5.9,.05) =0, ®9,®q,, —ag, (4.5)

where qTE ¢ 1s the conjugate of ¢, and @y, = 0, az, ay, az]—r is the normalised accelerometer

measurement. Since g, = [0,0,0, —1]T, then it can be further simplified as (4.6).

—2(q193 — Q0q2) — Az
fola,sas) = | —2(q0q1 + @243) —ay | - (4.6)
20 - - @) —a:

Therefore, its jacobian matrix is
22 —2¢q3 290 —2q

Je(a,s) = |20 —2q0 —2¢3 —2¢2| - 4.7
0 4q1  4qo 0

4.3.2.2 Vision field objective error function

The vision field objective error represents the difference between the vision field vector
projlx, | and the zp—axis of {E} represented in {S}, thus the vision field objective error
function f, is defined as (4.8).

fv<qu’wE7wvs):q);S®$E®qES—wvs, (4.8)

where x, ¢ is proj[x, | represented in {S'} as shown in Fig.4.3. It is treated as a constant vector

once been pre-computed by (4.9, 4.10, 4.11).

T, =q;,®(q,, 2T, ®q5,) Dq,, 4.9)
x x
rojlz. ] = [0, i, 2 0], 4.10
et =0 e @10
x5 =q,, projlr,]®q,,, 4.11)
where z,, = [0,2,,,%.,,Ty,]  is the unit xy—axis vector in {E}, and proj[z,] is the nor-

malised projection of x,, onto the x p—yg plane measured by mSLAM algorithm, which can be
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computed by (4.10). Since ¢, = [0,1,0,0]", it can then be simplified as

2(% - q% - q%) ~—Tygsy
Fold,e2vs) = | 2(q102 — q0a3) — Ty, | 4.12)
2(qoq2 + 1G3) — Ty g,

where x,, = [0,2,,,%

»Lysis Z

v Ly gs)- Thus, its jacobian matrix is

0 0 —4qo —4gs3
J(@,) = | 243 202 2¢1 —2q0] - (4.13)
22 293 290 2q1

4.3.3 Fusion of three sensors

As stated in the gradient decent algorithm by Madgwick et al. (2011a), given that the conver-
gence rate of the estimated orientation is equal or greater than the angular rate of the physical
orientation, only one iteration is required to be computed per sample time, At. Therefore an un-
conventional gradient descent algorithm is derived to fuse all the three sensor measurements. To

compute the orientation in next time stamp q ., the process is summarised as

qES,t+1 = qES,t + qES,t+1At’ (4~14)

. . Af
Desiv1 = Do — g ”AfH )

(4.15)
where ﬁ can be assigned a physical meaning as the normalised direction of the error of

and it can be expressed as g_

qES,t+1 ? 410

. Af
= . 4.16
Gt = &S 10

Moreover, 3 is the only adjustable parameter of this filter. It represents the magnitude of the
gyroscope measurement error, which is removed in the direction according to the accelerom-
eter and vision sensor. The higher (3, the faster that the estimated orientation converge to the

accelerometer estimation. The theoretically optimal value of 5 is

B = za}mam 4.17)

where W4, 1S the maximum gyroscope measurement error for each axis. Moreover, since IMU
and the vision sensor operate in asynchronously, depending on which sensor measurement is

available, A f can then be expressed as:

. (4.18)

Jgy (@p5) S gy (Ayss a5, Ty ),

Af — { HACEREACHNEN
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where f, (q,.,as,%,5) and J4..(q,) are the combined measurement of both field from

the sensors, which can be expressed as:

— fg(gES’ a’S)
fgm(quaas?e’Bvs) - [fv(qES,mVS)] ) 4.19)
Jy(q,,)
Jovla,) =775 |. (4.20)
o 25) Jv<qES>]

4.3.4 Gyroscope bias online estimation

Given the fact that the gyroscope bias drifts with temperature and motion in practice, any high
accuracy fusion algorithm must be able estimate the varying gyroscope bias online. Kalman
based methods generally cope with this by introducing the bias variables into the state vector.
However, a much more computationally efficient estimation method is used by DC component

of the angular error feedback, similar with Madgwick et al. (2011b).

The normalised direction of the error in the rate of change of orientation, g_, which is defined

by (4.16), can be converted to the angular error w_ in {S} frame by inverting (4.1). This yields

w, , = QqZﬂS’t_1 ® qe’t. 4.21)

The gyroscope bias, w,, can then be represented as the DC component of w_, and thus can be

removed from the gyroscope measurement, w, as the integral of w_, weighted by a gain, .

w,, =¢ / w,_,dt, (4.22)
wc t = ws t

W (4.23)

b,t?

where w, is the corrected gyroscope reading, thus it can be used to replace the raw gyroscope

reading, w, in (4.1).

Note here, the weighting factor, ¢, decides the convergence rate of the gyroscope bias estimation,
where the higher the ( is, the faster and noisier the convergence is. While the theoretical optimal

value of ( is defined as

= Zwm 4.24)

where w4, 1s the maximum rate of change of the gyroscope measurement error of each axis.
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4.4 Position Fusion Process

This position fusion algorithm assumes the orientation of the sensors is known, and only esti-
mates the translational state of the system. being able to avoid estimating the orientation, not
only reduces the length of the state vector significantly, but also keeps the system model almost
linear. It takes three inputs: (1) the orientation estimation q . in { £/} from the result of the ori-
entation fusion process; (2) the raw sensor acceleration measurement "a, € R* in m / s? from
accelerometer; (3) the unscaled position p, ; € R* and orientation q,, € R* in {V} from the
mSLAM. It outputs its state vector, which contains: position estimation p, . € R3, velocity
estimation v,,, € R?® and acceleration estimation a,, € R3, in {E}, and accelerometer bias
b, € R3, as well as the metric scale A > 0 of the mSLAM position estimation, which is defined
as p,, = Ap, .- The position fusion algorithm is formed of a coordinate frame management
process and a 13-state linear Kalman filter. The Kalman filter conducts in the earth frame {E'},
thus, all the sensor measurement values have to be converted to { E'} in the coordinate frame

management process.

4.4.1 Coordinate frame management process
4.4.1.1 Dynamic acceleration in earth frame

Different with the orientation fusion process, in the position fusion process, we consider that
the accelerometer not only measures the gravity, but also measurements the pure dynamic ac-
celeration caused by the movement of the body frame, and since the orientation estimation q
obtained from orientation fusion process, recovers the gravity vector g, = [0,0,0, —1] in {E},

therefore the dynamic acceleration *a, € R3 in {E} can be easily obtained by:

0
[S ] = HTCLSH(qES ®ag ®qzs _QE)7 (4.25)
ES
recalling the normalised accelerometer measurement a , = H:ZS B
S

4.4.1.2 Unscaled vision position in earth frame

The unscaled position estimation from mSLAM algorithm *p_ . € R? in { E'} can be obtained

0
SpES

Therefore, the resulting measurements in {E'} frame (°a

=4q,,9(q,,2D,,24,,) D}, (4.26)

ps and °p_ ) can be passed to the

position Kalman filter as two individual sensor measurement, which will be described as follows.
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4.4.2 Linear Kalman filter

The conventional Kalman filter (KF) framework consists of a prediction step, which performs
the state vector time update in constant time interval; and a measurement update step, which
performs the correction of the state vector based on the new sensor measurement. Here in order
to encounter the asynchronous measurements from both accelerometer and mSLAM algorithm,
two different measurement update models are constructed, and will be executed depending on

which sensor measurement is available.

4.4.2.1 State representation and prediction model

The state of the Kalman filter is represented as a state vector € R13:

T T T pT \T
T=[P,, Ve Qb A, 4.27)
where position estimation p , velocity estimation v, and acceleration estimation a ¢ are in
{E}, and accelerometer bias b, is in {S}, as well as the metric scale A > 0 of the mSLAM

position estimation, which is defined as p ., = Ap, .

The state vector is updated once every time interval, following the rule defined by the prediction

model, which defines the physics of the inertial system. It is summarised as:

Do = Vpss (4.28)
Vps = Qs (4.29)
Qs =Ma, by=mny \=ny. (4.30)

The linear acceleration a 4, accelerometer bias b, and mSLAM metric scale factor A are mod-
elled as Gaussian random walk. Thus, n, € R?, n;, € R? and n, are independent zero-mean

normal distribution Gaussian process noise:

p(na) ~ N(0,Qa), 4.31)
p(ny) ~ N(0,Qyp), (4.32)

where QQ, = 031 3 and Q = agI 3 are the process noise covariance of acceleration and ac-
celerometer bias respectively. o,, oy and o) are the standard deviations of n,, n; and n)

respectively, and I3 is three by three identity matrix.

Following Welch and Bishop (2006), the discrete Kalman filter time update includes two steps:
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(1) state vector propagation to predict the state vector in next time step:
:i?k = A:kal, (4.34)

where A is the state transition matrix, which is the Jacobian matrix of partial derivatives of the

prediction model with respect to .

R13><13

(2) state covariance matrix P € propagation to predict the state noise in next time step:

P, = AP, AT+ WQW T, (4.35)

where W is the Jacobian matrix of partial derivatives of the prediction model with respect to the
noise vector, P is the state covariance matrix and @ = diag(0gx6, Qa, @b, 0/2\) is the process

noise covariance matrix.

4.4.2.2 Measurement model

The measurement model is derived in the form of:
z, = Hyx + e, (4.36)

where z, is the measurement from the mSLAM vision sensor or the IMU, H, is the measure-
ment model matrix, and e, denotes the measurement error from the sensor, where , can be .
or ,s depending on which sensor measurement is available between acceleration sensor mea-
surement and vision sensor measurement. Here, e, is also modelled as independent zero-mean

normal distribution Gaussian process noise:
p(e*) ~ N(Ov R*)v (437)

where R, is the measurement noise covariance of e,.

When the accelerometer measurement a4 is available, the Kalman filter performs accelerom-
eter measurement update, to adjust state vector and state covariance matrix according to the
accelerometer measurement model. Here the accelerometer measurement model is defined by
matrix H,s € R3*13

Hu.s =034 I3 R 03x1], (4.38)

ES

where R, € SO(3) is the corresponding rotation matrix to q,,, and the accelerometer mea-

surement noise covariance R,; = agsI 3, where o, is the standard deviations of e

When the unscaled position measurement “p, . is available from mSLAM algorithm, the
Kalman filter performs vision measurement update, to adjust state vector and state covariance

matrix according to the vision measurement model. Here the vision measurement model is
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defined by matrix H,, € R3*!3

HUSZ[)\I;J, 03><9 pES]. (4.39)

And the vision measurement noise covariance R,; = agsI 3, where o, is the standard devia-

tions of e,.
Following Welch and Bishop (2006), the measurement update steps are summarised as:

(1) Compute Kalman gain K, € R13x6:

Ky = PH] (H,P,H] + R\ (4.40)
(2) State vector update:
xp = T + Ki(z — Hop). (4.41)
(3) State covariance update:
Py = (Ig — KpH,) P (4.42)

Measurement update process handles different sampling rate between mSLAM and IMU esti-
mation, by only updating state with the corresponding measurement, which becomes available.
Thus by assuming the orientation fusion reaches steady state, the state vector & can be effec-

tively estimated over time.

4.5 Implementation

This section describes the detail on the algorithm implementation on an embedded platform.

The entire system was installed on a 250 mm size quadrotor platform, as shown in Fig.4.4.

FreeIMU v0.4.3' hardware was used as the inertial measurement unit, which includes an
MPU6050 gyroscope-accelerometer combo chip, an HMC5883 magnetometer and MS5611
high resolution pressure sensor. However, only the MPU6050 was used in the state estimation
algorithm. We performed orientation estimation in Teensy 3.12, which features an ARM
Cortex-M4 processor with 96 MHz clock cycle. Both FreeIMU and Teensy 3.1 are soldered
onto a custom designed autopilot board as shown in Figure 4.5a. The Autopilot board was

designed to electronically and mechanically interface the FreeIMU, Teensy processor, voltage

Uhttp://www.varesano.net/projects/hardware/FreeIMU
Zhttps://www.pjrc.com/teensy
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Figure 4.4: Entire micro UAV system equipped with the visual inertial controller.

regulator and XBee Radio. This PCB board also provides mechanical interface to the onboard

camera and onboard Linux computer.

Besides, The real-time video frame was captured by a downward-facing onboard global shutter
uEye monocular camera (Figure 4.6) in maximum 80 frames per second. Then, both the video
frame and the orientation estimation are processed by the SVO mSLAM framework with the
EKEF position fusion algorithm operating in parallel on a separate processor core in Odroid-U33,
as shown in Figure 4.5b. The Odroid-U3 is single board embedded Linux smartphone computer,
which features an 1.7 GHz Quad-Core processor with 2 GByte RAM. The communication be-
tween software packages is realised by Robot Operating System* (ROS).

3http://www.hardkernel.com/
*http://www.ros.org
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‘: Era

(a) FreeIMU sensor (top) and Teensy 3.1 pro- (b) Onboard Linux smartphone computer
cessor (middle), where it runs orientation fusion (Odroid-U3), where it runs position fusion
and autopilot algorithm, and a voltage regulator and monocular visual SLAM based on ROS

(bottom). interface.

Figure 4.5: The hardware setup.

i

Figure 4.6: Downward facing global shutter monocular Ueye camera.
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Table 4.1: Parameters setup.

Parameter Value

15} 0.5
Oq 0.5
op 1xe S
o 1xe S
Oas 0.013
Ous 0.005

The Teensy processor is capable of executing the orientation fusion alongside with autopilot
control algorithm at 300 Hz, while communicating with Odroid-U3 computer with ROS pro-
tocol, including publishing orientation estimation and acceleration measurement at 200 Hz and
subscribing the pose estimation from SVO mSLAM framework in Odroid-U3. Moreover, in
the Odroid-U3 computer, the SVO mSLAM is executed at 40 FPS with the KF position fusion

algorithm running at 200 Hz in parallel.

We measured the SLAM processing delay and set the message buffer manually without hard
synchronisation. The parameters setup for both orientation and KF position fusion algorithm is
summarised in Table.4.1. § was left as default value, 0.5, by assuming &, Was approximately
0.58 rad/s. The value of 0,5 was selected according to the accelerometer standard noise
from the data sheet of the MPU6050, and 0,5 was set to be 0.005 in the map scale. o, o} and
o were manually tuned through experiments. Here we assumed accelerometer bias and visual
scale change very slowly, thus o, and o), were set very small. o, determines the confidence level
for the prediction model, which means the higher was o, the less confidence is the estimator

about its prediction model, thus the easier the sensor measurements effect the estimation.

4.6 Test Results

Three sets of test trials were performed to demonstrate the effectiveness of the algorithm. The
trials were performed in real-time under general indoor condition, and handholding the quadro-

tor to produce motion, as shown in Figure 4.7.

4.6.1 Ground truth

Under the VICON® motion capture system, since the VICON cameras emits high power flashing
750 nm wave-length near infrared (IR) light, the Ueye camera had to use the lens with 650 nm
wave-length IR filter. As shown in Figure 4.7, four reflective markers were rigidly installed onto
the UAV body, in a pre-defined non-symmetrical form. The position of n” marker in vehicle

body frame was directly observed by the VICON system at 200 Hz, which can be expressed as

>https://www.vicon.com
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Figure 4.7: VICON indoor testing environment. (University of Southampton, Health
Sciences Faculty, Active Living and Rehabilitation Group, VICON lab)
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P = [Pn0s Pn1, Pn2, 1] € R%. Then one can obtain the marker matrix M € R*** as:

M = [p1,p2, P3, Pa). (4.43)

Since the 3D position of individual marker can be recovered by the VICON system. The position
of n'" marker in world frame can be expressed as Py, = [“Pn0." Pn1," Pn2, 1] TR* € R Then

one can obtain the marker matrix as * M € R**4:

YM = [“p1,"p2,“p3, “pal. (4.44)

Thus in this case, the relation between M and “ M can be expressed as a rigid transformation
T, € RV

TiM ="M, 4.45)

which can be seen as the ground truth pose measurement from VICON system. The affine

transformation 7} € R*** can be obtained by the linear least square solution:
T/ ="MMT, (4.46)

where M is the pseudo inverse of the marker matrix M. However, in order to estimate the ori-
entation and position, the affine transformation must be approximated into the form of the rigid
transformation constraints. Given that the marker position was measured sufficiently accurate,

it is safe to directly approximate the affine transformation.

The affine transformation 7/ can be seen in the form of:

T = (4.47)

’ / !
Ty Yy 2y Pt
)
T o T3 T4

where x}, y;, z;, Pt € R3, r1, r9, 3 are random value close to 0, and r, is random value close

to 1. Then the approximation can be achieved by:

Ty =) (4.48)

[eAL
% /

2=t Yt (4.49)
[ETETA
Zt X @I

yp = ot (4.50)
||z X x|

4.51)
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Value

Time (s)

(a) Scale factor \.

Position (m)

Time (s)

(b) The scaled position measurement from KF position estimator.

Figure 4.8: KF position fusion result.

Then the ground truth vehicle body rotation matrix is R; = [z, Y, 2] and ground truth vehicle
body translation is p;. This direct pose (orientation and position) measurement is treated as the

ground truth, used as the comparison against the pose estimated by the implemented system.

4.6.2 First trial: scale convergence

The first trial focused on the evaluation of the scale factor () estimation from an arbitrary initial
value. The trial was conducted by handholding the quadrotor with gentle movement within
0.3 x 0.3 x 0.3 m?3 space. Note that the position fusion assumes the orientation fusion reaches
the steady state before initialisation. The KF position fusion algorithm is initialised with the
state vector ©g = [01x12,10] ", note that we initialise the scale factor A to 10 as an arbitrary
positive initial value to show how it converges to the true value. As shown in Fig.4.8, The record
starts at 227 second, when the initialisation occurred, and the record shows a 39-second trial.
It is clear that the scale factor A converged and sufficiently recovered as 1.26, despite that its

initial value was set to 10, as shown in Fig.4.8a, and during the converging period, the position
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3D trajectory

visual inertial estimation
vicon
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Figure 4.9: 3D trajectory illustration against ground truth comparison.

estimation output from KF position estimator is scaled accordingly with with the change of A

over time, as shown in Figure 4.8b.

4.6.3 Second trial: accuracy evaluation

The second trial evaluated the six degree-of-freedom (position and orientation) estimation per-
formance, by comparing the pose estimation from the filter against the ground truth from VI-
CON motion capturing system. The random movement was generated by handheld motion in

about 2 x 2 x 2 m? space as shown in Figure 4.9 for 17 seconds duration.
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Figure 4.11: Position estimation ground truth comparison.
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Figure 4.12: Attitude Euler angle estimation ground truth comparison.

The estimated scale factor of the SVO is shown in Fig.4.10. As shown, the scale factor was

initialised close to the true scale. The initial scale varying was due to the large uncertainty at

start up. Besides, since the SVO initialised a high volume of new map points at the initialisation,

which results in the delay of the SVO pose measurement, thus it causes small timing error due to

the soft manual synchronisation as mentioned in Section 4.5. Nonetheless, the scale estimation

became more stable after 6 second and approaches towards the true value (as shown around 1.1).

The position estimation for each axis is shown in Fig.4.11. It is shown that the position estima-

tion experienced the delay before 8 second. This is also due to the initial large uncertainty and

timing error, and the position estimation approaches very close to the true value after 8 second.

The orientation estimation is represented as the Euler angle, as shown in Fig.4.12. As explained
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Figure 4.13: Overall position error.

in Section 4.3, since the roll and pitch angle are highly related to the vehicle control perfor-
mance, in order to avoid the gravity vector drift from the SVO, only the yaw angle (heading)
was computed from the fusion between SVO and IMU, while roll and pitch angle are computed
directly from IMU fusion. It is shown clearly, that the attitude of the vehicle has been estimated
accurately, especially when fusing the vision measurements to correct the yaw angle estima-
tion in IMU, the final yaw angle experienced zero drift over the period. Roll and pitch angle
can be sufficiently estimated without gyro and accelerometer only, which accuracy is sufficient
enough and shows even faster responds than the ground truth VICON system, due to the fast
IMU internal fusion process at 400 H z.

Finally, the position estimation error was computed and shown in Fig.4.13. The positional error
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along the three dimensional axis were computed separately. Besides, the total positional error
was computed as the root mean error (RME, also known as the quadratic mean) of all three axis
errors. It was shown clearly that once the filter converges (after 8 second), the position error
was kept below 0.05 m in all dimensions. Moreover, the remaining position error is believed to
be mainly introduced by the small error in visual scale estimation, which could be the result of

small timing error from manual synchronisation or slow converging rate close to the true value.

4.6.4 Third trial: figure movements

In order to clearly demonstrate the performance of the visual inertial system, two additional fig-
ure movements were conducted. The 3D trajectory of figure eight movement is shown in Figure
4.14, and the 3D trajectory of cube figure movement is shown in Figure 4.15. Moreover, as
shown in Figure 4.15, despite that the system experienced several temporary wrong measure-
ments from SVO, the system was still able to back track from the wrong estimation. This shows

the good robustness of the system.

4.7 Conclusions and Future Work

This chapter has shown the design and implementation work of a sensor fusion framework,
which is capable of performing the six degree of freedom sensor state estimation, by fusion a 3-
axis gyroscope, a 3-axis accelerometer and a monocular vision based simultaneous localization

and mapping algorithm.

Three test trials were carried out to demonstrate the effectiveness of the system. The first trial
showed that scale factor of the mSLAM can be sufficiently estimated from an arbitrary value,
thus the position output is scaled accordingly. The second trial showed in detail about the com-
parison of the real-time pose estimation against ground truth. It shows that the 3D position can
be accurately estimated, and the drift-free attitude estimation, especially the yaw rotation can be
estimated drift-free without the need for magnetometer. Further figure movements demonstrates
the robustness of the system against different types of movement and also against the temporary

tracking failure of the used SLAM system.
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Figure 4.14: Figure 8’ motion position estimation ground truth comparison.
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Figure 4.15: Cubic motion position estimation ground truth comparison.



Chapter 5

System Integration and Test Results

This chapter focuses on integrating the controller designed in Chapter 3 with the visual inertial
state estimation system developed in Chapter 4 on a challengingly small 250 mm quadrotor
platform. It describes the mechanical and electronics design behind the integration. It also
describes the failure handling implementation towards the complete power-on-and-go system.
Additionally, thanks to the small size of the quadrotor, it is safe to launch it from hands. A novel
launching button designed onto the UAV body for fast and intuitive launch. Finally, test results
are presented to demonstrate the effectiveness and robustness of the system performance.

Part of this chapter was Submitted to the Journal of Intelligent and Robotic Systems, in the
title The Practical Implementation of an Autonomous Micro Quadrotor in GPS-denied Environ-
ments, on 3rd September, 2016. Author list: Liu, C, Prior, S.D., and Scanlan, J.P.

5.1 Platform and Electronics Implementation

This section summarises the development history over a range of platforms, which eventually
leads to the final design. The mechanical and electronic design of the final platform is described
in detail, showing the realisation of a 250 mm size autonomous quadrotor with all the sensor
and computation onboard. The design includes the body structure, onboard components layout,

electrical and electronic systems.

5.1.1 Platform iterations history

The evolution of the past implemented platforms is shown in Figure 5.1. From the top left,
as the initial version 1, to bottom right, as the newest version 4. The shown platform-lineup
clearly shows the variational trend of the platform size. Initially, the relatively large (500 mm

size) platform, as shown in version 1, offers large onboard space and payload capacity, which

101
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provides flexibility for onboard components arrangement and reconfiguration. This allows dif-
ferent onboard electronic setup to be implemented and tested quickly without the need for tight
integration. They were mainly used to develop the customised autopilot system described in
Chapter 3 operating with an off-the-shelf PX4FLOW camera, for the purpose of verifying the

control performance.

Then, when the onboard electronics are approaching stable configuration, the system was re-
built while increasing the integration level and developing the visual inertial fusion algorithm.
Thus, the following versions shows gradual size reduction. The size of the version 2 is 360 mm,
and version 3 and 4 size are 250 mm. They were mainly used to implement and test the visual
inertial fusion algorithm described in Chapter 4, as well as coupling it with the customised au-
topilot system, which takes the visual inertial position estimation as the feedback to the position

controller. This will be discussed in detail later in this chapter.

Version 1 and 2 employed the COTS quadrotor chassis, since 500 mm and 360 mm class
quadrotors are very popular in hobby aerial photography market. However, due to the higher
integration requirement for the smaller platforms, components need to be in the exact place with
non-standard configuration. This means that it is almost impossible to use the COTS chassis
after the version 2. Hence, the version 3 and 4 were designed in SolidWorks. Version 3 was
manufactured based on CNC routing the carbon-foam sandwich sheet from university EDMC
workshop. However, due to the raw finish and the suboptimal components layout, the system
was redesigned into version 4 to have much more stable flight performance. The version 4,
which will be discussed in detail in the following sections, was manufactured by an external

Chinese company.

5.1.2 Final platform design

The final platform, as the version 4 shown in Figure 5.1, was designed by learning from the
failure of all the previous versions. The resulting platform is shown in Figure 5.2, which is a

250 mm platform with 600 g takeoff mass, including all the sensors and computation.

The vehicle chassis was designed as two parallel parts reinforcing each other. The CAD model
was developed in SolidWorks as shown in Figure 5.3. The main body frame was a CNC routed
3 mm thick 3K woven carbon fibre sheet for its omnidirectional force bearing ability and ease
of machining, whilst the secondary reinforcement part was CNC routed 1 mm thick 3K woven
carbon fibre sheet to provide additional rigidity in the vertical axis. The finished sheets are
shown in Figure 5.4, and the finished quadrotor system is shown from different viewing angle
in Figure 5.5. The forward leaning design maintains the centre of mass of the final system at
the geometrical centre between the four motors, whilst allowing the battery kept clear of the

downward facing camera.

It is also shown in Figure 5.5 that, as the secondary part only reinforces the main frame, all

the motors and electronics attach directly onto the main frame as the uniform-body mechanical
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Figure 5.1: The evolution of the previous chassis.

interface. More specifically, the brushless motor propulsion system attaches directly onto the
main carbon-fibre part, whose excellent stiffness rejects most of the low frequency vibration
directly from the propulsion system, whilst the autopilot attached on the frame via four silicon
vibration dampers, which filter out the most of the remaining high frequency vibration. Both

methods combine to have a very good vibration isolation throughout the spectrum.

The T-motor AirGear200 propulsion system provides more than 500 g lift per motor, providing
over 3.3 thrust to weight ratio, which gives more than enough headroom for stable manoeuvre.
Similar with the method used in Section 3.5.1, the propulsion system was tested using a static
thrust test rig and curve-fitted as quadratic regression model described in 3.16. The obtained ¢,
is 2.575 and cr is 0.1954, which gives 95% accuracy, as shown in Fig. 5.6, where the blue stars
are the measured data from the static thrust test, and the red curve is generated from (3.16) with
cr and ¢, equal to above values. Note here, the PWM value p was normalised to the range from
1 to 100.

The autopilot board was designed in the Eagle PCB design software, as shown in Figure 5.7
and Figure 5.8, for the purpose of minimising the onboard components by maximising the inte-
gration. It was designed as a printed circuit board (PCB) for the electronic interface for all the
onboard COTS electronics, as well as the mechanical interface for all sensors and the additional

Linux computer. The assembled autopilot is shown in Figure 5.9. As shown in dashed green, the
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Figure 5.2: The final platform.
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Figure 5.4: The main chassis structure.

interface for silicon damper, onboard linux computer and downward facing camera are designed
on the board (four large holes at the corner). Therefore, the autopilot board directly attaches
onto the main frame through silicon dampers, and the downward facing camera and the linux
computer are hard fixed onto the autopilot by standoffs. This helps to fix all the sensors relative
positions, additionally, the mass of all the electronics helps further damping the vibration from

the motors. This is also shown in Figure 5.5.

The components, as shown in solid yellow in Figure 5.9, are hand-soldered on the autopilot
board. They include a IMU sensor package board, an embedded processor board, a voltage

regulator and an indicator LED:

1. Main processor board is based on Teensy 3.1 MCU board. It is an ARM based Arduino
compatible development board, which features very small form factor (35 x 18 mm) and
fast processor (ARM Cortex—M4 with up to 96 MHz clock speed). The fast speed and

small size is ideal for a flight controller.

2. IMU is based on the FreeIMU sensor suite by Varesano (2013). It includs a MPU6050
gyroscope-accelerometer combo-chip, a HMC5883L magnetometer and MS5611-01BA
high resolution pressure sensor. However, only the MPU6050 chip is used in this imple-

mentation. The orientation fusion estimation uses the library provided with the sensor.
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3. Voltage regulator converts the 3 cell battery voltage (about 12 V) to stable 5V output, to
power the autopilot as well as the onboard computer. It is a regular 5 V' 5 A linear voltage

regulator.

4. Indicator LED is controlled by the main processor board. The different lighting pattern
indicates the system states and the healthiness of the pose estimation in real-time. This
is very useful for debugging the faulty operation, and quick pilot recovery from system

failure.

The electronic system signal interaction diagram between onboard electronics can be seen in
Figure 5.10. Note that different from the previous autopilot designed described in Section 3.5.3,
the Teensy board now commands the ESCs directly through PWM, instead of going through a
dedicated servo controller in between. This design avoids the extra complexity and reduces the

communication latency by about 0.02 second, which results in a much more responsive control.

5.2 Robust Integration of Visual-inertial Feedback

In order to involve the visual-inertial state estimation into the quadrotor control loop, we must
ensure the reliability and safety of the state estimation to handle all the possible situations could
encounter. Therefore, as shown in Figure 5.11, careful heuristic reasoning was designed to en-
able smooth initialisation and re-initialisation, ensure the tracking robustness, as well as interac-

tion with autopilot for failure handling. This will be discussed in detail in following subsections.
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5.2.1 Pose healthiness check

In order to ensure control safety, when the visual-inertial system is in healthy and active opera-
tion, the healthiness of the pose estimation must be constantly monitored at all time, in parallel
with the active autopilot positional control. In the case of estimation failure, the system has to
properly detect the failure event, and perform reinitialisation procedure. In our case, when the
visual inertial system is initialised, the scale value is used as the quick indication of the healthi-
ness of the EKF estimation. Here the scale is treated as valid when it is between 0.2 to 5. While
concurrently, the SLAM tracking status is given by the SVO package, which is a direct indica-
tion of the SLAM performance. Note that it allows SVO to temporarily lose track in order to give
the SVO package a chance for its internal re-localisation procedure, however, it has been tested
that when temporary tracking loss persists more than 0.5 second, the chance for re-localisation

is very low.

Only in the case that both the scale is in valid range and SVO is in track, the autopilot position
controller can be engaged. Furthermore, whilst the position controller is engaged, the vehicle
body acceleration offset, which might be caused by a constant wind direction or the body centre
of mass offset, are estimated by integrated the positional error while control. Besides, the gy-
roscope rate measurement offset are estimated, when fusing the SLAM heading measurement
back to IMU attitude estimation.

The pose healthiness check is indicated as green and orange in the 'robust pose estimation’
column in Figure 5.11. Any continuously unhealthy estimation must trigger the reinitialisation
of both SLAM and visual inertial EKF, and disable the position control, which will be discussed

in the following sections.

5.2.2 Smooth initialisation and re-initialisation

The smooth initialisation and re-initialisation process is summarised as the yellow and grey in

the 'robust pose estimation’ column in Figure 5.11.

The sensor fusion framework developed in Chapter 4 requires the heading of the IMU sensor
frame and SLAM sensor frame are aligned before initialisation. This is crucial for both initial-
isation before the flight, and re-initialisation in the flight. Particularly, assuming that the IMU
orientation estimation already converged, in the event of SLAM (re)-initialisation, the SLAM al-
gorithm was modified, so that it reads the current orientation from IMU, and use this orientation

and (0, 0, 0) as its initial pose. By doing this, the both frames are aligned at (re)-initialisation.

Once the SLAM is initialised, the visual inertial EKF filter would initialise after 20 continuously
successful SLAM measurements. This was set in order to void unreliable SLAM measurements,
which generally presents after unsuccessful initialisation. It is often shown as discontinuous

pose giant jump immediately after initialisation, with repeating tracking loss, due to the faulty
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triangulation. If not taken care of, the EKF can easily diverge, resulting in a corrupted filter

estimation.

In terms of re-initialisation, it effectively performs the same with the initialisation procedure.
However, since the SLAM re-initialises at the origin, the EKF also has to re-initialise at the
origin. Indeed, when re-initialising in the flight, this would reset the origin of the pose estimation
to the current position. In this case, the position controller of the autopilot must be notified for
this re-initialisation action, and reset the origin of the position controller at the same time. This
was achieved by the communication between Teensy board and Linux computer through the
USB.

Note as stated in the pose healthiness check in Section 5.2.1, since it takes more than 0.5 second
to confirm the SLAM tracking loss, the total reinitialisation process takes about 1 second. More-
over, the EKF filter takes roughly 1 second to converge the map scale factor from initial guess to
the true value, while the exact converging time depends on the difference between initial guess
and the true value. During this re-initialisation period, no positional or velocity estimation is

available, thus the SLAM failure handling process must takes over.

5.2.3 SLAM failure handling

A short (less than 0.5 second) and temporary tracking loss can be recovered internally in the
SVO package. The tracking loss persist for more than half a second will hardly have a chance
to recover, thus a reinitialisation of the map is needed, which can be handled by the smooth
reinitialisation stated in Section 5.2.2. If the reinitialisation continuously fails, it is likely that

the system encounters hardware failure or suffers from bad lighting condition.

During reinitialisation process, the autopilot does not have any positional or velocity informa-
tion, thus the it must disengage the position controller, whilst maintaining an open loop control
to minimise the vehicle acceleration in all directions. This can be effectively achieved when
acceleration offset and gyroscope rate measurement offset has been estimated during active po-
sition control. This process can be found in as the yellow steps in autopilot reaction column in
Figure 5.11.

5.2.4 Visual-inertial synchronisation and delay compensation

The synchronisation between visual and inertial data significantly effects the performance of the
fusion system. Here, the typical data sampling flow is shown in Figure 5.12. Given the 5.5 ms
IMU sampling period, the 20 ms processing delay from SLAM computation causes a mismatch
against the IMU measurement update, by about four measurements. Here, in order to deal with
this situation, a software synchronisation was used. Specifically, a delay buffer was developed
for the IMU in the EKF software package, which stores and lists the latest four measurements

from the IMU. Then, at each IMU sampling action, the buffer publishing and popping the oldest
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Figure 5.12: Sampling time mapping indication.

IMU measurement, while storing the new measurement. This buffer action effectively delays
the IMU measurements by 4 measurements, which roughly synchronised visual and inertial

sampling action.

However, this delay operation will result in significant delay (20 ms) in the overall output from
the EKF package. This delay in the feedback consequently impacts the overall control perfor-
mance of the UAV. Especially for the vehicle velocity feedback, the 20 ms delay will easily
cause control oscillation with high differential gain, whilst the delay in position measurement
only has a minor effect. Therefore, in order to compensate for this delay in the velocity feed-
back, a pre-integration buffer was developed in the autopilot, which always stores the latest 10
IMU measurements (note: IMU update rate in the autopilot is 400 Hz), and integrates the 10
dynamic accelerations to obtain the velocity compensation value.

5.3 Overall Position Control Performance Result

The final control performance was tested and the test results are shown in this section, demon-

strating the accuracy and robustness of the system. Three trials were carried out: hovering test,
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trajectory following test and disturbance recovery test. For each trial, the 3D trajectory graph

and 2D command-response graph of all 6 DOF are shown individually.

The high level positional waypoints and trajectory are commanded from user remote controller
directly. The remote controller stick was mapped to velocity command and the velocity is inte-
grated to obtain the positional command. Given the high measurement accuracy of the onboard
visual inertial sensor fusion as demonstrated in the Section 4.6, the true vehicle position can be
sufficiently obtained by the onboard visual inertial estimation. The test trials were conducted in
an indoor environment, as shown in Figure 5.13. Colourful carpets were used to provide rich

contrast on the ground for the ease of visual tracking.

5.3.1 Hovering test

This test shows the stability of the system hovering against towards a single 3D position point.
Figure 5.14 shows that the vehicle hovers around the target position. Note that the target posi-
tion point (red) is covered by the vehicle position measured (blue), and the position motion in
each axis were recorded individually in Figure 5.15, with the position command from user are
represented by red line, and real time position measurements are represented by blue line. In
the case of hover the red lines are constants, and blue lines approach them as close as possi-
ble. Finally, Figure 5.16 shows the performance of the inner attitude controller, with the angle
commanded by the outer position controller about each axis is shown in red and the true angles

reaction measured from IMU are shown in blue.

As shown in Figure 5.14 and 5.15, the system hovers within 10 centimetre accuracy with no ex-
ternal disturbance. While noticeably, as shown in Figure 5.15, it experienced micro (about 0.05
rad) oscillation at about 1 H z especially in world x-axis, this is believed to be caused by the im-
perfect 3D velocity measurement from visual inertial fusion, due to the manual synchronisation
error between visual slam and IMU. Although the attitude has the integral term to compensate
small centre of mass offset, it is limited to a very small value. Thus, as shown in Figure 5.16,
the pitch angle shows an offset, due to the significant center of mass offset along the quadrotor
body x-axis, while it was compensated by the integral term of the outer position controller, as

the result, the true pitch angle still kept about 0 rad.

5.3.2 Trajectory following

This test shows the stability of the system tracking a dynamic target 3D trajectory. Figure 5.17
shows the target horizontal square-like trajectory (red) followed by the vehicle estimated po-
sition measurement (blue), and the position motion in each axis were recorded individually in
Figure 5.18, with the position command from user are represented by red line, and real time
position measurements are represented by blue line. In the case of hover the red lines are tra-

jectories commanded by user, and blue lines approach them as close as possible. Finally, Figure
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Figure 5.13: Testing environment setup.
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Figure 5.14: 3D trajectory of hovering.

5.19 shows the performance of the inner attitude controller, with the angle commanded by the
outer position controller about each axis is shown in red and the true angles measured from IMU

are shown in blue.

The horizontal square-like trajectory was commanded from user remote controller. As shown in
the 3D view in Figure 5.17 and in time series in Figure 5.18, the trajectory can be sufficiently
tracked with the error less than 20 centimetre, for any motion directions. Besides, as shown
in Figure 5.19, the excellent attitude controller performance was demonstrated in this dynamic
operation. It is shown that the pitch control integral were built up, allowing the control without
steady state error. This is different from the hovering test, because the battery offset is different,

due to the manual installation.
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Also note that the trajectory following was tested in a relatively small room, where the down

wash from the propeller can be reflected by walls, causing the disturbance.

5.3.3 Disturbance recovery

This test shows the stability of the system with the focus on disturbance recovery in the hovering
situation. The system was initially commanded to hover, then the quadrotor was pulled three
times to one direction, simulating the disturbance. When released, the quadrotor recovers to the
initial hover position. Figure 5.20 shows the vehicle position measured (blue) along the process
against the target position point (red). It is shown clearly that the vehicle was pulled towards

one direction and recovers with a small overshoot.
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For more detail, the positional motion in each axis was recorded individually and shown in
Figure 5.21, with the position command from user are represented by red line, and real time
position measurements are represented by blue line. In the case of hover the red lines are trajec-
tories commanded by user, and blue lines approach them as close as possible. It can be clearly
seen that three pull actions were conducted at 230 second, 250 second, 290 second respectively.
The quadrotor was pulled towards negative x-axis for 0.7 m and negative z-axis for about 0.3

m.

Finally, Figure 5.22 shows the performance of the inner attitude controller, with the angle com-
manded by the outer position controller about each axis is shown in red and the true angles

measured from IMU are shown in blue.
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Figure 5.23: Hand-launching quadrotor.

5.4 Hand Launching with a Button on Vehicle Body

Previous sections have shown that the integrated system is capable of manoeuvre with centimetre
accuracy. However, with a downward facing camera, it struggles to perform close to ground
operation (less than 10 cm between camera and the ground), and it does require movement for
visual SLAM initialisation. Especially when launching the quadrotor from ground, the pilot
always needs to perform a manual takeoff to initialise the visual SLAM, which is not ideal for

the general usage of such power-on-and-go system.

The results in previous section shows that the system is accurate and robust enough to perform
close to human flight. In this section, we demonstrate the design of an intuitive method to
launch this system by hand(s). This launch method not only allows the human pilot to intuitively
position the quadrotor in the 3D space within reach, but also solves the problem of downward-
facing camera when operating close to the ground. The typical use case is demonstrated in
Figure 5.23.
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Figure 5.24: The state machine for hand-launching quadrotor.

Specifically, this hand launching method was achieved by installing a push button on the quadro-
tor body as shown in Figure 5.23. Therefore, by pressing the button on quadrotor body, user can
easily launch the quadrotor from anywhere it is placed. To dis-arm the quadrotor, the user sim-
ply holds the same button. The entire procedure does not require any remote control activity.
However, in order to ensure the visual inertial pose estimation is available before launching,
user is required to slowly wiggle the platform and confirm the successful visual inertial system
initialisation by watching the indicating LED on the autopilot. Thus to avoid users’ miss oper-
ation, a finite state machine is designed for the safe button control. The state chart is shown in
Figure 5.24.

5.5 Conclusion

This chapter has shown the implementation of closing the UAV control loop by feeding the
visual-inertial state estimation back to the controller. It summarised the details of practically
integrating the controller designed in Chapter 3 with the visual inertial state estimation system
developed in Chapter 4 on a challengingly small 250 mm quadrotor platform. It has shown the
mechanical and electronics design behind the integration. It also described the failure handling
implementation towards the complete power-on-and-go system. Besides, thanks to the small
size of the vehicle, it is safe to launch it from the hand. A novel launching button was designed
onto the UAV body for fast and intuitive launch. Finally, test result was presented to demonstrate

the effectiveness and robustness of the system performance.

The overall system accuracy, robustness and user-friendly design has demonstrated the feasi-

bility of deploying such system in the real world applications. By relying on the drift free (for
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hovering) pose estimation from the SLAM based visual-inertial sensor fusion, the system en-

ables fully autonomous drone operation in GPS-denied environments.



Chapter 6

Active Simultaneous Localisation and
Mapping

Recent advances in onboard monocular vision-based simultaneous localisation and mapping
(mSLAM) for unmanned aerial vehicles (UAVs) enables their autonomous navigation in GPS-
denied environments. However, unlike the GPS-based navigation, the accuracy of the mSLAM-
based navigation performance highly depends on the motion of the UAV and the scene within
the camera’s field of view. Therefore, instead of passively performing mSLAM while the UAV
travels to the destination (target waypoint), we integrate the perception requirements of mSLAM
into the navigation control of the UAV. Specifically, we present a novel active one-step-ahead
planning algorithm which dynamically generates the optimal next action command in real-time
for an autonomous quadrotor based on its current mSLAM observations, so that it not only
approaches the target waypoint, but also maximising the localisation accuracy for the onboard
mSLAM algorithm. Especially in scenarios similar to the one shown in Figure 6.1, where large
area with low contrast occupies the significant portion of the direct path for UAV to approach
the target position (indicated by yellow path), with the active planning algorithm, the UAV will
choose the green path to avoid the low contrast area while approaching the target area. This
active planning algorithm serves as the complementary to the state-of-the-art passive mSLAM
algorithm, and aiming to improve the operational safety and robustness of the real world GPS-

denied scenarios.

6.1 Introduction

Over the last decade, the Global Positioning System (GPS) has been the key to enabling the
autonomy of UAVs. It provides global localization service with the best accuracy of 1-2 me-
tres. However, recently, due to the proven weakness of GPS signal and rapid development of
onboard sensing and computation capability, there has been growing interest in developing and

researching alternative navigation methods for UAVs in GPS denied environments Achtelik et al.
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Figure 6.1: Active SLAM demonstration. (UAV automatically avoids area with low
contrast.)

(2012); Bachrach et al. (2010); Bry et al. (2012); Engel et al. (2012); Jones and Soatto (2011);
Shen et al. (2013a). Successful implementations will not only improve system robustness under

GPS failure, but also enable a new range of applications out of GPS coverage.

Monocular visual-based simultaneous localization and mapping (mSLAM) algorithm, based on
structure from motion (SFM) theory, is widely considered to be the optimal navigation solu-
tion for GPS denied environments, due to the minimum number of sensors required (a single
monocular camera) and unlimited operation range. Recent advance in computationally efficient
mSLAM Engel et al. (2014, 2013); Forster et al. (2014); Klein and Murray (2007); Montemerlo
et al. (2003); Newcombe et al. (2011b); Pizzoli et al. (2014); Roussillon et al. (2011); Vogiatzis
and Hernandez (2011) enables such system to effectively operate in near real-time on highly dy-
namic platforms, such as UAVs. while most of them focus on passively estimating the camera
state for any given image frames, regardless how well the camera view point is suitable for this

localization task.

However, not all the camera views are equally suitable for mSLAM localisation tasks. Unlike
GPS-based navigation, the accuracy of the mSLLAM-based navigation performance highly de-
pends on the motion of the UAV and the scene within the camera’s field of view. In real world

scenarios, due to the lack of texture or contrast in the scene, the localisation performance of
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the mSLAM can be dramatically influenced. Besides, the 3D uncertainty of the mapped fea-
tures mainly depends on the triangulation angle between observations, which in turn effects the

localisation uncertainty.

Similar problems have been widely explored as the Next-Best-View (NBV) problem in computer
vision community Haner and Heyden (2011); Vasquez-Gomez et al. (2014); Wenhardt et al.
(2007), which suggests that given an approximate reconstruction it seeks a single next view
that minimises the reconstruction error. While similarly, the active SLAM problem Carlone
et al. (2014); Chaves et al. (2014); Kim and Eustice (2013); Kontitsis et al. (2013); Leung et al.
(2006); Valencia et al. (2012) in robotics community tries to find the optimal action that can
improve map building for exploration purpose. Wenhardt Wenhardt et al. (2007) compared the
three general criteria to determine the NBV: (D)terminant-optimal, (E)igenvalues-optimal and
(T)race-optimal based on covariance matrix, and showed no significant advantage of one criteria
over another. Besides, ChavesChaves et al. (2014) and Kim Kim and Eustice (2013) proposed
active visual SLAM path planning algorithms that plans coverage efficient loop-closure paths.
Moreover, Carlone Carlone et al. (2014) investigated the usage of particle filter in active SLAM
and exploration to allow robot to autonomously decide between exploration and place revisiting
actions, and Valencia Valencia et al. (2012) proposed a computational efficient one step look

ahead exploration strategy for pose SLAM.

Both topics focus on ground robotic applications, which benefit from their naturally stable ve-
hicle dynamics and the ability to perform direct odometry such as wheel encoding. Thus, the
main purpose for mSLAM in such systems is to correct the long term drift accumulated from the
direct odometry. Therefore, it can operate in a very low update rate, which allows costly com-
putation, and the tracking failure can be easily handled and recovered. On the contrary, UAYV,
as an extremely dynamic platform, does not allow any direct odometry without GPS. Thus the
mSLAM is mostly used as its primary localisation method, and any short tracking lose could
cause a crash, with little chance for recovery. Therefore, the safety, robustness and update rate
of the mSLAM for UAV is the primary concern, when involved in its high speed control loop.
Moreover, the long term drift for UAV is less of concern, given their short operation endurance

(10 to 30 mins in general).

Therefore, to address this problem, the active SLAM planning algorithm serves as the comple-
mentary to the existing passive mSLAM algorithm. The objective is to actively command the
vehicle movement to minimise the localisation uncertainty while performing the high level tasks,
in a computationally efficient manner. In particular, given the next desired waypoint, an novel
active planning algorithm is developed to choose the optimal UAV trajectory for an autonomous
quadrotor, to maximise the accuracy of the onboard SLAM algorithm, while approaching the

waypoint. More specifically, the active planner aims to command the UAYV, so that it:

1. Tries to approach the next way point as close as possible;

2. Tries to minimise the localisation uncertainty of mSLAM algorithm.
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To the best of my knowledge, similar robust active planner for monocular localisation on UAV
has only been implemented by Mostegel et al. (2014). Based on a forward facing camera and
PTAM Klein and Murray (2007) mSLAM algorithm, he measured the localization quality by
the weighted sum of the number of mapped points in the frame, due to the lack of uncertainty
measurement from PTAM. Furthermore, based on the measured localization quality, a thresh-
old based planner was developed to switch among localization improvement mode, new point
generation mode or way point following mode. although the system is capable of encountering
the challenging target command, like pure yaw rotation, it considers neither the optimal tradeoff

between the two objectives, nor the physical dynamics of the quadrotor.

Different from the above approach, its aim is to develop a probability theory driven optimal
planner, with a downward facing camera, which naturally avoids the pure yaw rotation problem.

Therefore, the following contributions was made in part of this PhD work to the state of the art:

1. It presents the first theoretically optimal cost function for the two objectives from the

probability theory perspective;

2. It presents the first approach to predict the localisation accuracy for any camera view

point, based on the extended information filter (EIF);

3. The first active planning algorithm was designed for downward facing camera, which

takes the physical dynamic constraints of the quadrotor into consideration.

In the next section, the problem is formularised from the probability distribution prospective.
In the following sections, it starts with formularising the problem in Section 6.2, and presents
the extended information filter based localisation quality measurement in Section 6.3. Then the
optimisation search procedure is describe in Section 6.4 and experimental test result in Section

6.5, and finally conclude in Section 6.6.

6.2 Problem Formulation

In highly unstructured unknown environments, multiple steps look ahead planning hardly makes
any sense, thus the purpose of this active planner is to compute no more than one step look ahead
trajectory waypoint action pj, € R3 that satisfies the overall objectives the most. As shown in
Fig. 6.2, the active planner receives the next desired waypoints w* € R3 from user or higher
level planner, and command the planned next trajectory waypoint py, € R3, by monitoring the
camera position estimation p,, € R3 with its covariance matrix P, and the camera orientation R,
and the mapped features I,, € R3, (n = 1,2, ...), with their covariance matrix R, from mSLAM
engine. As shown, the system assume a separate mSLAM engine running concurrently, and able
to provide current camera pose estimation and mapped features. Note that in this chapter, we do

not consider obstacle avoidance or occlusion of the mapped sparse points.
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Figure 6.2: System block diagram.

We then consider this as an optimisation problem based on probability distribution. Therefore,
we define our objective cost (energy) function C' as the expectation of the squared difference

between the UAV next actual position p} and desired waypoint w*:
C(p},w*) = E(p; — w*)?], (6.1)

where the superscript 2’ represents the inner product of itself. It can then be derived as a function

of the position mean pj, and desired waypoint w™:
Cpy, w*) = Tr[By] + (p), — w*)?, 6.2)

where Py € R3*3 is the predicted noise covariance matrix for odometry in the next trajectory
waypoint, T'r[*] denotes the trace of the matrix, and I is the identity matrix. Therefore, the
objective of the planner is to search for the optimal next trajectory waypoint pj, within a search

space S C R3, that minimise the cost function in (6.2):

p;, = arg %1}51}5‘ C(p}, w*). (6.3)

This expression theoretically defines the optimal trade-off between the future localisation un-
certainty P}, and the distance between the next trajectory waypoint p,, and desired waypoint

w*.

The next section will focus on computing the localisation uncertainty (quality) P



134 Chapter 6 Active Simultaneous Localisation and Mapping

6.3 Localisation Quality Measurement

The localisation quality of the mSLAM algorithm can be represented as the covariance matrix
of the localization estimation. Thus, the purpose of the localisation quality prediction process
is to predict the covariance matrix P of any given future positions pj, within the search space
S, based on the current observations from the concurrently running mSLAM algorithm. The
current observations include the current camera position estimation p,, with its covariance P,
the estimated 3D location of the mapped features points I,, in the map, with their covariance

matrices R, .

Then the localisation quality measurement model can be derived in the similar fashion with the
measurement step of the extended information filter (EIF) Yaakov et al. (2013) based on fisher

information matrix Frieden and Binder (2000).

6.3.1 Expected orientation and active points

For a given future position pj,, the planner assumes the UAV approaches the future position in a
fixed acceleration a*, which can be computed by:

a* = 5 : (6.4)

where 4t is the time interval for UAV to reach the future position, and p,, is the current velocity
measurement. Then given the current user yaw command x4, as a unit vector on X-Y plane in

world frame, the expected UAV orientation matrix R, can be computed as:

a* —
R = gl (©2)
ZR X Tyaw
Y5 e X @yl (©0)
TR =Yg X ZR, (6.7)
Re=[rr yr =zgl (6.8)

where g, Yy and zp are the three unit axis vector of the UAV frame, and g = [0, 0, —9.8]—r is

the gravity vector.

All the mapped points can be projected onto the image plane based on the camera projection
model 7 : R? — R2, which is determined by the intrinsic camera parameters which is known
from camera calibration. Thus, the 2D position of n'" projected feature u,, € RZ?, can be

expressed as:

u, = 7(ly), (6.9)
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where the superscript ¢ in [, denotes that the 3D point coordinates are expressed in camera

frame, and it can be obtained by applying the rigid body transformation on the mapped points:

n

15 =R/ (I, — p})). (6.10)

Note here the UAV frame and camera frame is assumed coincide. Therefore, all the projected
points which lie inside the dimension of the image are named active points, which will be used

to measure the localisation quality.

6.3.2 Fisher information modelling for one active point

Given that the keyframe based visual mSLAM provides independent measurement on consecu-

tive frames over time, thus the uncertainty propagation over time is ignored.

The measurement model formularises the geometric relationship between the feature points and
the mSLAM localisation process. Here we take the k*" active point as an example. Then based

on (6.9) and (6.10) the camera projection of the active point can be modelled as:
u, =m(R (I, —p+e,)) +e,, 6.11)

where u;, € R? is the corresponding feature position in image coodinate. I, € R3 is the position
of the active point in the 3D sparse map; e, € IR? is the mapping error of the active point, and
e, € R?is the tracking error of the active point in camera frame. Both of them are modelled as

zero-mean Gaussian white noise:

p(e,) ~N(O,R,), 6.12)
p(eck) ~ N(O, Rck)? (6.13)

where the point covariance matrix R, and the tracking covariance matrix R, are assumed to

be diagnose and provided by the mSLAM algorithm.

Then, the information gained from the & active points can be represented as its information

matrix, I, which can be propagated as:
I,=H"(VR, V™ 'H, (6.14)

where H € R?*3 is the Jacobian matrix of the measurement model (6.11) with respect to p;;

and V' € R?*3 is the Jacobian matrix of the measurement model (6.11) with respect to e,, .
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6.3.3 Probability of point recognition

In real operation, not all the active points can be successfully recognised, due to the change of
viewing angle, viewing distance and potential occlusion. In our model, only the viewing angle

is considered.

Based on the result in Mostegel et al. (2014), by assuming that each feature point is a flat planar
patch, the recognition accuracy depends on the viewing angle towards the patch. Thus the point

recognition probability for k" active point p;, can be reasonably approximated by:

cosoy,  ifa€[—-m/2,m/2]
Pk = )
0 otherwise

where o, is the viewing angle from the norm of the planar patch.

6.3.4 Likelihood of keeping track

Besides the tracking accuracy, the reliable continuous tracking of the visual mSLAM system
is directly related to the number of features being tracked in the current frame, and in the real
implementation, this number of tracking features usually limited by a hard threshold. In other
words, any measurements with the number of tracking features less than the threshold will be
treated as insufficient measurement, and the closer the number to the threshold, the less likely
that the mSLAM will keep the continuous tracking. This cut off behaviour will result in zero

information gain from the current frame, when triggered.

In order to take this behaviour into account, the likelihood of keeping track, p:, linearly scales
the information matrix, and it is assumed that the p; is in second order relationship to the number

of active points m in the scene:

(%)2 itm e [mmin7 mmax]
pe=141 if m € [mmaz, +00)
0 otherwise

where myyq, and My, are the maximum and minimum allowed number of tracking features in
the frame, which are defined in the mSLAM algorithm.

6.3.5 Computing the localisation quality for one future position

Given any future position, pj,, the localisation information is gained from all the active points
projected to that future position. Since the probability of point recognition is also considered,

given m active points, the information gained from all the active points is then represented as
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the total information matrix, /, which can simply be computed by the weighted sum of the

information matrix of the individual active point Thrun (2004):

I=p) peli. (6.15)
k=1

Then the localisation quality (covariance matrix ;) can be computed as:

py=1" (6.16)

6.4 Optimal Trajectory Action Point Search

Given the ability to predict the localisation quality P for one future position py;, as described
in the last section, the planner is able to compute the cost energy for this position based on (6.2).
While in order to select the optimal next trajectory point in the search area .S, to minimise the
cost energy, as described in (6.3), the following action search process will be conducted. The
action search executes in a fixed time interval dt. Specifically, the Monte-Carlo tree search is

performed within a 3D space constrained by the UAV physical dynamics.

6.4.1 UAV dynamics constraints

Considering the physical limitation of the UAYV, in order to ensure the selected next trajectory
point is feasible for UAV to smoothly reach within the time interval d¢, we define our search
space .S, so that the resulting trajectory point commands the UAV with less than maximum
acceleration a4, and less than maximum velocity v,,4,. Thus given the current position mea-
surement p,, and the current velocity measurement p,,, the search space S can be expressed as

the intersection between the two ellipsoids:

maa:(StQ

. a
Sa={p € R’|[lp— p, — POt < 55—}, (6.17)
So = {p € R?||lp — p,|| < vimaa6t}, (6.18)

S =S,N5,. (6.19)

Here, this constrained space is further simplified as a cube by defining the maximum edge point

Pimae And minimum edge point p,,,;,, as:
. . amax5t2
Prnaz = Min{p, + p,0t + Tl’pu + UmazOt}, (6.20)
. am(lmét2
Prin = maaz{pu + puét - 71,17“ - Umaxét}a (6-21)

2
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6.4.2 Monte-Carlo tree search

The Monte-Carlo tree search technique has been widely explored in the field of machine learn-
ing, to rapidly solve the optimisation problems without the knowledge of the hidden underlying
system model, widely called multi-armed bandit problem. Bubeck et al. (2008); den Broeck and
Guy Driessens (2011); Weinstein and Littman (2012)

The optimal next action within searchable space as the constrained cube, which is defined by
the two edge points p,,,,, and p,,;,, can be discovered by executing the spatial Monte-Carlo
tree search algorithm. The algorithm generates an hierarchical tree of nodes by expanding from
the root, which represents the entire searchable space. The tree is formed of multiple connected
nodes. Starting from the root node as the top hierarchy, the nodes in lower level present the
subspace of the nodes in higher level, which is called child and parent nodes. Besides, the
action, which is a sampling position generated from the corresponding node, is used to input to
the simulator in order to generate a reward, which in this case is generated by the cost energy
function defined. The leaf is defined as the node with no child or has never be visited. This

algorithm is described in Algorithm 1.

Algorithm 1 Spatial Monte-Carlo tree search
1: procedure MCTS
2: loop:
3: Npest < T00L.
while n.s; # leaf do

Npest < aTgmaxcGCHILDREN(nbest)B (c).

4

5

6: action <— ACTION (npest)-

7 reward <— REW ARD(action).

8 Nassociated $— Mbest-

9: while 74ssociated 7 T00t do
10: UPDATE_STATISTICS (ngssociated)-
11: Nassociated < PARENT(nassociated)-

122 UPDATE_STATISTICS(nassociated)-
13: CHILDREN(”best) A {Cl(nbest)y C2(nbest)}-
14: goto loop.

The line 3 to the line 5 show that from the root, it finds the best leaf node as the highest B-value
(ties are broken arbitrarily). In the it jteration, to minimise the regret rate, the B-value of the

node n can be computed by applying the upper confidence bound policy, which is defined as:

- 2In (i
U(m) = Bn) + 1) 20 40,0 (622)
B(n) = min{U(n), maz{ B(C1(n)), B(C2(n)}}, (6.23)
where R(n) is the average reward per visit and v is the number of visit for the corresponding

node. v; > 0,0 < p < 1 are preset parameters, and A is the hierarchical level of the node.
C4(n) and Ca(n) are the two children of the node.
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Line 6 generates the the action from the best node selected, by selecting a random position pj,,
and line 7 shows that this action (position py) sent to the simulator by calling the

REW ARD (action) function. Here, the simulator, is the cost energy function defined in (6.3).

Then after the reward function, line 8 to line 11 propagate the reward back to all the higher level
nodes associated (or nodes containing the chosen action). This includes updating their total

rewards and the number of visits.

Finally, the best selected node is expanded by line 13. This is achieved by creating two child
nodes, following the space splitting policy. The policy defines that the parent node splits into

half along one axis, while this splitting axis is chosen randomly from the three in each iteration.

6.5 Implementation

This active SLAM algorithm performs the one-step-look-ahead planning for the UAV to make
action decision, which offers the optimal balance between approaching the target position and

avoiding the featureless scene.

The algorithm was implemented on the onboard linux computer (Odroid U3 from HardKernel)
on a real UAV platform, which was built in Chapter 5, with a downward-facing monocular cam-
era. All the computations, including a monocular SLAM algorithm, Extended Kalman Filter
for visual-inertial fusion and active planning algorithm, were executed simultaneously utilising
all four CPU cores of the onboard Odroid U3, with Robotic Operating System (ROS) as back-
ground interface. The localisation quality measurement algorithm was based on a third party
SLAM algorithm called Semi-direct Visual Odometry (SVO), which also offers ROS interface.

The first test aimed to show the effectiveness of the localisation quality measurement algorithm
described in Section 6.3. The localisation quality was expressed by the trace of the position
covariance matrix obtained by (6.16). This was tested by computing the quality value only for
the current UAV position, in real time. The generated map points and the camera state from
SVO were passed into the localisation quality measurement to compute the active points, then

the localisation quality measurement algorithm was executed to obtain the quality measurement.

The test was conducted by hand-holding the quadrotor to move above a feature-rich square car-
pet, which is laid on top of the pure grey ground, as shown in Figure 6.3. With this setup, the
onboard downward-facing camera can only track the features on the carpet, thus when moving
towards the edge of the carpet, the localisation quality should be measured with large uncer-
tainty. The localisation uncertainty was graphically expressed as the thickness of the UAV tra-
jectory (thicker means larger uncertainty), which is merged with the 3D feature map generated
from SVO. Note that since the uncertainty is very small when SVO is in good tracking, in order
to show the readable effect in the map, the quality value was scaled 300 times to directly define

the thickness of the trajectory.
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Area with low contrast

Figure 6.3: Active SLAM testing environment.
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Figure 6.4: Active SLAM testing horizontal movement (side view).
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Figure 6.5: Active SLAM testing horizontal movement (top view).

Figure 6.4 and 6.5 show the side view and the top view of a horizontal spiral trajectory towards
the edge of the carpet. The pink points are the features mapped by the SVO, while the blue
points are the active points estimated by the quality estimation algorithm. Note that most blue
points are overlaid on top of the pink points with negligible error, due to the unsynchronised
projection. It is shown clearly that the localisation uncertainty increases significantly at the edge

of the carpet.

Then, a vertical helix movement test was performed to show how the scene distance effect the
quality estimation. As shown in Figure 6.6, the localisation uncertainty increases when UAV
moves far away from the scene. This is because when features are further away, the translational
motion of the camera causes less motion of the feature in the image frame. Besides, since
most of the tracking features are limited inside the carpet, when the carpet is far away, the
carpet occupies a small part of the image frame, which significantly increases the localisation

uncertainty along the vertical axis.

Finally, a complex motion was performed to show the robustness of the estimation. As shown in
Figure 6.7, the localisation quality of the system was estimated in the same manner regardless

of the complex motion.
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Figure 6.6: Active SLAM testing vertical movement.
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Figure 6.7: Active SLAM testing complex movement.

6.6 Conclusion

Instead of passively performing mSLAM while directly traveling to the destination (target way-
point), we integrated the perception requirements of the mSLAM into the navigation control of
the UAV. Specifically, we present a novel active one-step-ahead planning algorithm which dy-
namically generates the optimal next action command in real-time for an autonomous quadrotor
based on its current mSLAM observations, so that it not only approaches the target waypoint,
but also maximising the localisation accuracy for the onboard mSLAM algorithm. This active
planning algorithm serves as the complementary to the state-of-the-art passive mSLAM algo-
rithm, and aiming to improve the operational safety and robustness of the real world GPS-denied
scenarios. We have incorporated the active planning algorithm with a third party mSLAM algo-
rithm, and implemented the localisation uncertainty estimation algorithm in real UAV system.
We have shown that the algorithm is able to reasonably estimating the localisation uncertainty
from the given pose. However, further work needs to be done to implement the Monte-Carlo

tree search, which employs the estimation algorithm.



Chapter 7

Tether Power Solution

For a micro size platform, the average endurance is between 10 ~ 20 min, which is significantly
lower than larger size platforms. The improvements in efficiency and battery technology can
only have marginal effects on the endurance. In order to break the barrier of flight endurance
for the small size platform, a tethering solution is proposed to provide power from offboard
ground station. Due to the complete separation between the airborne and its main power source,
this implementation will dramatically boost the flight endurance to indefinite. However, the
challenge for such tether power system for the micro size platform is the trade-off between
the mass and power capacity of the system, so that to allow substantial power draw for UAV
manoeuvre, while minimising system size, which minimises the impact of such system on the
payload capacity of the platform. This chapter summarises the design and engineering of the

tether power system for the long endurance flight.

7.1 Introduction

Unmanned Aerial Vehicles (UAVs) have become one of the main field of robotics research
in recent years, with a number of significant breakthroughs being achieved in order to tackle
the challenges associated with their airborne nature. More specifically, the field of small-scale
UAV design, the field of high precision model-based control and autonomous navigation, the
field of robotic manipulation, and the field of robotic visual perception, along side with the
development of small form-factor and high speed embedded systems. This momentum has
sparked a keen interest in employing small-and-medium size UAVs in a wide range of civilian
applications, without being limited to environment mapping and precision agriculture, industrial
infrastructure inspection, and disaster response missions. For the small-scale stable hovering
platforms (such as standard multirotors) the available sources of power are limited to the on-
board electric storage cells (batteries), in which optimising the battery and design only gives

minor improvement on the endurance.
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(a) Murata 500 W voltage regulator on airborne (b) 500 W, 48 V' AC-DC converter on ground sta-
platform. tion.

Figure 7.1: Voltage converters for ground and air.

However, there exists a range of possible crucial applications, where long term operation of such
systems is required, such as precise inspection of large industrial structures, and tasks involving
physical manipulation of the environments. Those applications can be achieved by UAVs, at the
cost of significant power requirements. Also, there exist tasks which require close collaboration
of aerial and ground robots, but inherently take a significant amount of time to accomplish, such
as the aerial detection of land mines using radar-bullets and their safe removal using robotic
agents. Within those tasks agile flight and aggressive manoeuvre abilities might not be the key

prerequisite, rather than stable operation while hovering at high altitudes.

There is little research currently on the tethered UAYV, recent tethered UAV research mainly focus
on the control aspect of such system Abdelkrim et al. (2008); Zikou et al. (2015). There are also
some commercial companies developing system for large scale tethered UAVs, such as Elistair
! PARC from Cyphy work 2, Cardinal security 3, ECA group *, and a small size drone Fotokite

3. Those solutions mainly focus on large or expensive powered tether UAVs.

This work focuses on implementing a cost effective method for remotely powering of small-
scale hovering UAVs via a ground-to-air Power-over-Tether link which carries power to the
vehicle. In the rest of this chapter, the power method selection process is shown in Section 7.2,
then tether selection in Section 7.3, furthermore, the transient current and backup battery are

investigated in Section7.4. Finally, conclude in Section 7.5.

7.2 Power Method Selection

While one cannot deny the fact that the physical tether will limit the flight operational range,

there are many applications, such as continuous monitoring, inspection, which does not require

"http://elistair.com

http://cyphyworks.com/parc/
*http://cardinalsecurity.co.uk/tethered-drone-systems/
*nttp://www.ecagroup.com/en/aerospace/airborne-monitoring-survey
Shttp://fotokite.com
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long range

but long endurance are highly desirable.
Given that the range is the biggest factor, the
target tether length must be decided before
hand. Here 10 m was selected considering

the payload capacity of the tiny platform.

Moreover, the power supply method was de-
cided to be direct current (DC), since only
2 wires are required in this case, and mar-
ket available DC power switching regulator is
much smaller than AC transformer, since the
switching regulator does not require any in-
ductive coil. In order for the maximum ef-
ficiency, and wider margin for tether resis-
tance selection, the voltage supplied into the
tether should be as high as possible. How-
ever, due to the limitation of current available
off the shelf DC power switching regulator,
48 V was selected. Here the Murata DRQ-
12/42-D48NBA-C 500 W voltage regulator
(mass: 72.5 g), as shown in Figure 7.1a, is
selected for the airborne to convert the 48 V'
tether output voltage into 12 V' for the direct
three cell battery replacement for aircraft op-
erations. On the ground side of the tether, a
500 W AC to DC power supply was selected
convert from 230 VAC main socket to 48 V'
stable voltage into the tether, as shown in Fig-
ure 7.1b.

7.3 Tether System Selection

Given the 10 m target tether length, and about
100 W power consumption to hover the craft
and 500 W maximum, the engineering chal-
lenge is to select right thickness of the coper
wire, subject to the constraints that the total

mass of the copper wire should be lower than
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of operation,
Table 7.1: General copper wire.

Standard Cross- Q20m g/20m
Wire sectional

Gauge area

(mm?)

10 8.30 0.0416 1482
11 6.82 0.0506 1216
12 5.48 0.063 978
13 4.29 0.0804 766
14 3.24 0.1064 578
15 2.63 0.1312 468
16 2.08 0.1662 370
17 1.59 0.218 284
18 1.17 0.296 208
19 0.811 0.426 145
20 0.657 0.526 117
21 0.519 0.664 93.6
22 0.397 0.868 70.8
23 0.292 1.182 52.0
24 0.245 1.406 43.8
25 0.203 1.702 36.2
26 0.164 2.1 29.2
27 0.136 2.54 244
28 0.111 3.1 19.8
29 0.094 3.68 16.7
30 0.078 4.42 13.9
31 0.068 5.06 12.2
32 0.059 5.84 10.5
33 0.051 6.8 9.04
34 0.043 8.04 7.66
35 0.036 9.64 6.38

100 g, and the maximum output power should be more than 500 W, which is determined by the

wire resistance.
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20 m Copper Wire Mass

10000 A
1000 -

100 -

gram

10 -

1 .
1011121314151617181920212223242526272829303132333435

Standard Wire Gauge

Figure 7.2: 20 m copper wire mass. (as a 10 m twin wire tether)

Given the conversion chart from standard wire gauge (SWG) to copper wire cross sectional area
(A.), as shown in Table 7.1, the total mass (M.) of the 20 metre copper wire (., as a 10 metre

twin-wire tether) can be computed as:

M. = pcAcl., (7.1)

where p, is the copper density (8.96 g/cm?). Note that this only indicates the mass of the pure
copper. However, depending on the insulation, the tether mass can vary significantly. Thus
in the design 100 g copper wire target was set to allow additional payload for insulation. The
copper mass is plotted in Figure 7.2, where green zone is highlighted showing the satisfaction

of the mass requirement.

On the contrary, the resistance increases when wire gets thinner, which then limits the maximum
power output from tether. From Biot and Lowrie (2007), the resistance of the copper wire (R.)

can be computed as:

Pole
R, = , 7.2
A (7.2)

where p,, is the resistivity of copper (1.68 x 1078 Qm). Then the possible maximum power

output from tether (F,) at 48 V' input voltage (V;) can be computed from Ohm’s law as:
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Maximum Output Power at 48 V Input
Voltage

100000

10000

1000

100

10

1 .
1011121314 1516 17 18 1920 21 22 23 24 25 26 27 28 2930 313233 34 35

Standard Wire Gauge

Figure 7.3: 20 m copper wire output power with 48 V' input voltage. (as a 10 m twin
wire tether)

V2
P= i (73)

This maximum output power from tether is then plotted in Figure 7.3, where the green zone
highlights the wires that satisfies 500 W output requirements. It can be easily seen that the two
satisfaction zones overlaps at 22-23 SWG wire, thus 22 SWG tether was selected.

7.4 Transient Current and Backup Battery

Theoretically, with the above setup, the system would work. However, in practice the transient
current for sudden motor acceleration results in spikes up to 90 A, which causes the power
draw reaches about 1 KW, as shown in Figure 7.4, when testing with direct battery power.
This generally happens when quadrotor takes off with sudden throttle increase. When using the
converter for a direct replacement of the onboard battery, this power spike can easily trigger
the over current protection of the voltage converters. The converters reset themselves results in

sudden power loss.

Therefore, an onboard small 350 mAh 3 cell backup battery is introduced to provide the extra
power demanded at the transient time, in order to smooth down the spike, and with this backup
battery, even if the current protection was accidentally triggered, the backup battery is able to
bridge out the converter reset time. Besides, in any cases, at the event of converter failure, this

backup battery is capable to provide 1 minute flight time for safely landing the quadrotor.
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Therefore, to interface the onboard converter with the backup battery, an interface PCB board
was designed in Eagle PCB design software as Figure 7.5 and Figure 7.6a, and manufactured as
Figure 7.6b.

An Schottky power diode is used at the output of the onboard converter to stop the current
flows from backup battery into the converter. A small resistance was added to the output of
the onboard converter to adjust the tradeoff between the backup battery and the converter, and
determines the equilibrium voltage at hover. Here a very small 22 m2 power resister is used.
Besides, a Transient Voltage Suppressor (TVS) diode is used at the input of the converter to
bypass the input voltage spike from tether. This generally happens when the converter was reset
by its over current protection, sudden current drop in tether creates the voltage spike due to the

relatively large inductance in the tether.

A further test was conducted to confirm the current smoothing performance. The dynamic volt-
age, current and power were logged directly from the output of onboard converter. Although,
due to the internal resistance of the Li-Po battery, the transient current spike still existed, its
magnitude is significantly reduced to 35 A (400 W) maximum, which is small enough to avoid

triggering the converter reset.

The resulting tether system is then installed onto a quadrotor as shown in Figure 7.8. The tether
attachment point locates at the centre-of-mass of the aerial platform, and the tension force is

offloaded from the tether electrical connection.

The complete tether system in operation is shown in Figure 7.9. Note that the system can be

powered from main socket, or a large 12 cell battery, when considering a mobile ground station.

7.5 Conclusion

In this chapter, the engineering detail of a Power-over-Tether system was presented, which was
used to sufficiently power a small size quadrotor from a ground source. The corresponding low
price tether powering system utilises a 10 metre standard twin 22 SWG copper cable, running 48
VDC through the tether. The air and ground voltage converters/transformers were out sourced
from commercial-off-the-shelf components, while an additional backup battery interface for the
airborne was developed in-house, for the purpose of reducing the transient current in the tether

and backup power in case of tether failure.

The real flight test was conducted with a manually controlled quadrotor, while the electrical
performance of the tether system was demonstrated through the recorded data. The future work
includes designing the automatic tether management system on the ground, and integrating the
GPS-denied navigation system with the tether. Besides, in addition to the power transmission in
the tether, the Power-line communication (PLC) technology can be implemented into the system
to allow ethernet connection on the tether. It not only offloads the power source to the ground,

but also offloads computation to the ground, without additional cable.
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Figure 7.5: Backup battery interface board schematic.



Chapter 7 Tether Power Solution

153

N

©0
©0e
©0
©0
0

| 1
-~ _ 1 Power

(b) Assembled PCB.

Figure 7.6: Backup battery interface board.

| W®;resistor




154 Chapter 7 Tether Power Solution

,n
[imtce [ ] o

Sions )  Min 0.00_Max 39587 Avg 33,98

S

~ e £

~ S 5 5

N2 5 E &

g - :} Q E :

L Q.= =

: S Do

[4p X o O ~ El

0B > i

L © ®© 5 — :
A O of

: S X N x

1
380

i s s
\

\

S

L}

oo, end

\
\
al

i

(i

!

£
Seconds (Start

S

340

esions ) Min 0.00_Max 11.56_Avg 1144 | PackAmps_ (All Sessi

b= e am i masa )
[Fask_valsa Cans:

Quadrotor Hovers
il

F =
k

0

8 i
|
1

i ChartStyle XAXs YAXs Sessons Cursor

BEEBEEEBABISUBYBS SR ERERRRURRRARARARIRE

|© 20032014 Eagle Tree Systems, LLC _www.eagletreesystems.com _Windows Application Version 10.69

Figure 7.7: Transient power output from converter test log at 100 H z. (blue is voltage,
red is current and yellow is power)



Chapter 7 Tether Power Solution 155

b} converter

Figure 7.8: The onboard tether power system.
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Figure 7.9: The tether power system in operation.



Chapter 8

Conclusion and Further Work

8.1 Conclusion

In this dissertation, we realised a complete, power-on-and-go 250 mm size quadrotor system,
using a monocular camera and an onboard IMU as its sensors, relying only on the onboard
processing power, to perform autonomous navigation without the assistance from any external

infrastructure or offboard sensors.

The model based control architecture implementation and testing work in Chapter 3 demon-
strated that the system, which is based on commercial-off-the-shelf components, is able to semi-
autonomously operate using a camera as the primary velocity sensor and potentially integrate
additional sensors. Besides, the visual inertial sensor fusion architecture implementation and
testing work in Chapter 4 has shown the potential of combining the visual SLAM based local-
isation method with inertial measurement to provide fast and accurate six degree of freedom
state estimation, and finally, in Chapter 5, when combining the model based control with visual
inertial fusion algorithm, and some additional hardware design optimisation, the entire system
was packed into a tiny 250 mm size quadrotor platform, and realising impressive performance.
Additionally, with the novel button-on-body design, this quadrotor can be launched from hand
without involving remote control. Finally, an innovative tether system was engineered to pro-
vide indefinite power to the small size platform. The experimental test result provide a detailed
proof of the effectiveness of the flight control performance as well as the sensor localisation per-
formance in real world scenarios. All the mathematical derivations behind the design are clearly

presented in this thesis.

Furthermore, instead of passively performing mSLAM while directly traveling to the destination
(target waypoint), we integrated the perception requirements of the mSLAM into the navigation
control of the UAV. Specifically, we present a novel active one-step-ahead planning algorithm

which dynamically generates the optimal next action command in real-time for an autonomous
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quadrotor based on its current mSLAM observations, so that it not only approaches the tar-
get waypoint, but also maximising the localisation accuracy for the onboard mSLAM algo-
rithm. This active planing algorithm serves as the complementary to the state-of-the-art passive
mSLAM algorithm, and aiming to improve the operational safety and robustness of the real
world GPS-denied scenarios. We have cooperated the active planning algorithm with a third
party mSLAM algorithm, and implemented the localisation uncertainty estimation algorithm in
real UAV system. We have shown that the algorithm is able to reasonably estimating the local-
isation uncertainty from the given pose. However, further work needs to be done to implement

the Monte-Carlo tree search, which employs the estimation algorithm.

Finally, the engineering detail of a Power-over-Tether system was presented, which was used to
sufficiently power a small size quadrotor from a ground source. The corresponding low price
tether powering system utilises a 10 metre standard twin 22 SWG copper cable, running 48
VDC through the tether. The air and ground voltage converters/transformers were outsourced
from commercial-off-the-shelf components, while an additional backup battery interface for the
airborne platform was developed in-house, for the purpose of reducing the transient current in

the tether and backup power in case of tether failure.

8.2 Discussion of Contributions

The findings and results presented in this thesis are a step towards practically realising vision
based navigation for agile, airborne power-on-and-go systems in a challengingly small form fac-
tor. Although this is not the first work using vision processing assist navigating on a UAV, this
work is the first realising the full vision navigation functionality on a 250 mm size platform,
with all the computation onboard, and with the additional features including button-on-body
design and tether power solution. These functionalities could not be achieved without the devel-
opment of the model-based control algorithm, the highly computationally efficient sensor fusion

framework and highly integrated system layout developed along this thesis.

8.2.1 Recall the list of contributions

1. Development and evaluation of a novel loosely coupled visual-inertial sensor fusion al-
gorithm, based on a monocular SLAM, an accelerometer and a gyroscope, which requires
less computation enough to be suitable for high speed 6 DOF state estimation on low

power embedded computer.

2. Development of a complete micro (250 mm motor-to-motor size) quadrotor system capa-
ble of navigation in GPS-denied environments, based on onboard sensors and computa-

tion only.

3. Development and evaluation of a novel model based control algorithm for micro quadro-

tor autopilot system.
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4. Design and Implementation of a novel low cost high performance quadrotor autopilot

hardware based on commercial-off-the-shelf (COTS) components.

5. Design and Implementation of a novel hand-launching method for micro UAV, for intuitive

operation.

6. Design and Implementation of a novel active planning algorithm, which leads to safer

vision-based flight in low contrast environments.

7. Design and Implementation of an electrical tether system providing power to the micro

UAV from offboard power sources.

8.2.2 Journal publications

1. Liu, C,, Prior, S. D., and Scanlan, J. P. Design and Implementation of a Low Cost Mini
Quadrotor for Vision Based Manoeuvers in GPS Denied Environments. Unmanned Sys-
tems, pages 1-12, DOI: 10.1142/52301385016500059 (Liu et al., 2016a)

2. Liu, C., Prior, S. D., Teacy, W. L., and Warner, M. Computationally efficient visual- iner-
tial sensor fusion for Global Positioning System-denied navigation on a small quadrotor.
Advances in Mechanical Engineering, 8(3):1-11, DOI: 10.1177/1687814016640996 (Liu
et al., 2016b)

3. Liu, C., Nash, J., and Prior, S. D. A Low-Cost Vision-Based Unmanned Aerial System for
Extremely Low-Light GPS-Denied Navigation and Thermal Imaging. International Jour-
nal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering,
9(10):1740-1747. URL: http://waset.org/publications/10002835 (Liu
et al., 2015)

4. Submitted to the Journal of Intelligent and Robotic Systems, in the title The Practical
Implementation of an Autonomous Micro Quadrotor in GPS-denied Environments, on
3rd September, 2016. Author list: Liu, C, Prior, S.D., and Scanlan, J.P.

8.2.3 Conference publication

1. Liu, C. and Prior, S. D. Design and Implementation of a Mini Quadrotor Control System
in GPS Denied Environments. 2015 International Conference on Unmanned Aircraft
Systems, ICUAS 2015 - Conference Proceedings, pages 462-469. DOI:
10.1109/ICUAS.2015.7152324 (Liu and Prior, 2015¢)

2. Liu, C. and Prior, S. D. Computationally efficient visual-inertial sensor fusion for GPS-
denied navigation on a small quadrotor. 2015 International Conference on Innovation,

Communication and Engineering. (Liu and Prior, 2015b)
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3. Liu, C. and Prior, S. D. A low-cost vision-based unmanned aerial system for extremely
low-light GPS-denied navigation and thermal imaging. 2015 17th International Confer-

ence on Intelligent Unmanned Systems. (Liu and Prior, 2015a)

4. Presentation in 2015 Next Gen Drones conference in Washington DC. US, with the ti-
tle: Design and Implementation of an Open Source Small Quadcopter for GPS-Denied
Environments. 23-24th June, 2015

Other public engagements

1. Attended 2016 Farnborough International Airshow as exhibitor. 11-17th July, 2016.

2. Successful indoor flight demonstration to Unmanned Air Systems Capability Development
Centre (UAS CDC) in Canary Wharf, London. 11th June, 2015.

3. Presented research work in 2015 Engineering @ Southampton Autonomous Systems Show-

case at the Royal Academy of Engineering (RAe). 9th June, 2015.

8.3 Implication and Application

After the successful test of the system, it have been shown that vision only navigation is pos-
sible as long as it only concerns about local consistency of the map. Thanks to the advantage
of the SLAM algorithm, when hovering or moving within a small area, since the camera points
at the same scene all the time, the system produces zero drift for all three dimensions. With
a sub-centimetre accuracy, the developed UAV system can easily achieve stable and respon-
sive manoeuvre. The precise control and the small form factor, make it safe to operate close
to humans. Besides, the 3D sparse map produced from the SLAM algorithm has the poten-
tial to be used to generate an elevation mesh map indicating the rough structure of the terrain.
Additionally, with the image contained in the keyframe of the SLAM algorithm, the structure-
from-motion 3D reconstruction can be conducted by a separate software module for detailed 3D

reconstruction.

Moreover, with the button-on-body design and the intelligent self stabilisation capability, it
demonstrates an extremely intuitive method for a non-technical person to easily operate a UAV
by the place-and-hover action. The capability takes almost all the control work from the human
operator to the UAV itself. This ease of use functionality has a huge potential application in

consumer personal UAV market, which has shown an exponential growth over the last decade.

Lastly, with a tether power solution, the endurance was boosted from 10 mins to indefinite.
This essentially opens up a whole range of applications, which requires long endurance, such as
long term monitoring, and some journalism operation, as well as tasks, which require the UAV

to physically interact or manipulate the environment.
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The resulting small size intelligent hovering platform is an ideal candidate to perform au-
tonomous indoor information gathering tasks in various domains. For example, in military or
search and rescue scenarios, such system can be used to gather room structure information, po-
tential hazards information or search for human targets or item of interest, before or without
human entry. Besides, the same system can also be used for logistic applications in large ware-
houses, such as autonomous inventory monitoring. Additionally, for large industrial power plant,
it can be used for pipe or other system inspections. Also, with the help of the tether powering

system, the restriction of the endurance is removed completely, for long term operation.

8.4 Future Work

8.4.1 Robust operation against extreme and dynamic lighting

There are still multiple limitations to the developed system. The camera based system is very
sensitive to the lighting condition, such as extremely dark and bright, and highly dynamic light-
ing. Therefore, in the current implementation, the camera shutter speed has to be manually fixed
to avoid flicking effect by the dynamic shutter speed adjustment. However, this poses the prob-
lem that when the lighting condition changes significantly, the vision system might not work
due to improper video exposure. This problem can be potentially solved by adding a lighting
factor for all tracked features to cancel out the effect of exposure changes. Or in an other way,

instead of processing the raw images, the image can be preprocessed by the canny edge filter.

Additionally, thermal/infrared camera can be used for extremely dark situations when no possi-
ble light source can be carried with the UAV.

8.4.2 Fusion between PX4Flow camera with SLAM

The camera uses optical flow to measure translational velocity. Vehicle position control can be
achieved by integrating the velocity. Since it only requires two consecutive image frames to
compute the optical flow, it has the advantage over the SLAM algorithm for its relatively robust
performance in terms of fast motion, tracking loss and close to scene operation, whilst it suf-
fers from accumulating error (drifting) by integrating the velocity, and the maximum operational
height is 3 m. On the contrary, the visual SLAM solution has much smaller drift with theoret-
ically unlimited height limit (the higher the less accurate, but the more tracking robustness),
however, it suffers from the challenge of smooth reinitialisation and close scene operations.
Therefore, the proper combination of both sensors will result in a much more robust localisa-
tion solution. Given the fusion framework developed in Chapter 4, only minor changes need to

be done to fuse PX4Flow measurement, SLAM and inertial measurement.
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8.4.3 Active SLAM further implementation

Unlike the GPS-based navigation, the accuracy of the mSLAM-based navigation performance
highly depends on the motion of the UAV and the scene within the camera’s field of view. Es-
pecially with a downward facing camera, when flying above the featureless ground, the SLAM
algorithm is very likely for failure. Therefore, in order to avoid this situation in the first place,
An active SLAM algorithm was developed in Chapter 6 to integrate the perception requirements
of mSLAM into the navigation control of the UAYV, instead of passively performing mSLAM
while the UAV travels to the destination (target waypoint). Specifically, a novel active one-step-
ahead planning algorithm was proposed, which dynamically generates the optimal next action
command in real-time for an autonomous quadrotor based on its current mSLAM observations,
so that it not only approaches the target waypoint, but also maximised the localisation accu-
racy for the onboard mSLAM algorithm. The aim was to trade-off between the two conflicting

objectives.

However, there are still many area for improvements, such as detailed implementation for
Monte-Carlo tree search to find the optimal trajectory based on the localisation quality pre-
diction and tradeoff energy function. Also, the further improvement energy function taking into

account the tracking robustness prediction when camera is close to the scene.

8.4.4 Tether system further development

Given the physical connection to the ground station, as a tether. There are multiple advantages
that the system can utilise. First of all, this contact to the ground can be seen as a form of sensor,
which can be potentially used to localise the quadrotor. This can then be used as a secondary
method for GPS-denied navigation. Secondly, given this physical connection, the power-line
communication (PLC) method can be used to establish connection between the ground station
and the air platform. This form of wired communication becomes extremely secure compared

with any form of the wireless communication.

8.4.5 Front facing stereo camera and obstacle avoidance

Although the system has the ability to precisely control its position, it does not yet have any
obstacle sensing capability. When a new position is commanded, the UAV will approach the
target position blindly. This may introduce a safety hazard by operator fault, or by a dynamic
object running into the aircraft. In order to avoid this issue, obstacle sensing and avoidance are
required. In this case, stereo vision might be used to add dynamic depth measurement on all

pixels.

Moreover, the same stereo camera can also be used for state estimation based on monocular

camera odometry techniques with the help from stereo depth perception. In comparison to the
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Figure 8.1: Tara stereo camera by E-con systems. (sourced from e-consystems.com)

downward facing monocular camera, it is not only independent to the ground texture, but also
potentially suitable for additional 3D reconstruction and obstacle avoidance capabilities. With
the current stereo camera production improvements, there are several newly released off-the-
shelf small form factor stereo camera, which is factory calibrated and with IMU integration.

Tara stereo camera ' as shown in Figure 8.1.

8.4.6 Multiple UAV collaboration

Since the developed system performs the computation completely onboard, this gives the system
outstanding scalability, which allows multiple UAV collaboration in distributed computation
approaches. However, in order for the sufficient collaboration between multiple agents, there
must be a common coordination shared between different UAVs. In the current stage, the system
only has a local coordination system, which resets at the power-on. Thus, the key challenge is to
share, match and stitch the sparse map between different UAVs, so that all UAVs are localising

themselves with respect to the same master map.

8.4.7 Extend the use case for fixed wing operations

For the fixed wing UAV platforms, although they are not likely to fly indoors, the presented
vision based GPS-denied system can be a very useful back-up and enhancement system in the
case of GPS failure.

"https://www.e-consystems.com/3D-USB-stereo—camera.asp
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When flying outdoor at higher altitude, the demonstrated monocular SLAM solution has a signif-
icant range advantage over other systems, such as optical-flow-ultrasonic solutions, laser scan-
ner solutions. Since theoretically, there isn’t a range limit for such system, given its flexible
stereo baseline, while only experience the degrade of accuracy with higher altitude, depend-
ing on the camera resolution. Moreover, it naturally avoids the featureless ground problem for
a downward-facing camera, since the camera viewing area covers significantly large ground
space, so that it is almost impossible to encounter a featureless scene. Besides, the forward

flying motion also helps the algorithm initialisation procedure.

However, there are still challenges for the extension. The fixed wing UAV launching motion
generally require fast horizontal speed close to ground, which will cause problem for the current
system to track the rapid moving scene. Besides, the SLAM algorithm operates on local coordi-
nate which originated at its initialisation, thus the fusion of GPS measurement, which operates

on global coordinate, must be implemented carefully.

8.4.8 Modular design with ’head-body’ separation

It is clear that with the extended intelligence on RPAs, the system is able to obtain substantial
autonomy, which is characterised by the robotic field. In other words, the system can be treated
more as an aerial robot rather than the remotely controlled aircraft. Although the actuation prin-
ciple is different from a ground robot, the high level perception and navigation is fundamentally

the same with a robot.

Based on such principle, the development of the uniform "head’, which is the hardware to per-
form high level perception and navigation, with a standard interface to different types for *bod-
ies’, which perform low level perception and actuation, so that the same "head’ can be easily

installed onto a specific type of body for the best fit of a specific mission.

8.4.9 Navigation with bio-inspired camera

Conventional camera sensors see the world as a series of image frames with fixed image size.
Successive frames contain enormous amounts of redundant information, wasting memory ac-
cess, RAM, disk space, energy, computational power and time. In addition, each frame imposes
the same exposure time on every pixel, making it difficult to deal with scenes containing very

dark and very bright regions.

Inspired by the biological eyes, the event-based cameras (popularly produced by DVS?2, as
shown in Figure 8.2) solve these problems by using the artificial retina. Instead of waste-
fully sending entire images at fixed frame rates, only the local pixel-level changes caused by

movement in a scene are transmitted at the time they occur. The result is a stream of events at

http://inilabs.com/products/dynamic-vision-sensors/
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Figure 8.2: DVS event-based cameras. (sourced from inilabs.com)

microsecond time resolution, equivalent to or better than conventional high-speed vision sensors
running at thousands of frames per second. Power, data storage and computational requirements
are also drastically reduced, and sensor dynamic range is increased by orders of magnitude due

to the local processing.

The successful integration of the event-based camera into the robotic applications especially for
aerial robots, whose situational perception suffered from its fast manoeuvre and little payload
for onboard computation, will open up the door to practical solutions to the current limitations of
real-world high performance and robust robotic operation. World’s top research institutes just
started to pioneer the investigation of using such event-based cameras to perform high speed
SLAM since 2014. Bardow et al. (2016); Gallego et al. (2015); Kim (2014); Kim et al. (2016)
It is worth restating that the measurement rate of the event-based camera is on the order of a mi-
crosecond, its independent pixel architecture provides very high dynamic range, and the band-
width of an event stream is much lower than a standard video stream. These superior properties
of event-based cameras offer the potential to overcome the limitations of real-world computer
vision applications relying on conventional imaging sensors. One very recent implementation
Kim et al. (2016) from Imperial College shows the impressive initial result of the real-time 6-
DOf tracking and 3D reconstruction based on one single event-based camera on a general PC,

with the impressive performance specifically on the fast motion.

It is believed that the SLAM algorithm based on the event-based camera will soon become
practical, and then the focus will be how to implement efficient algorithm into the embedded
platform, and utilise the tracking and reconstruction on the UAV to control its motion for the

next level performance.
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8.4.10 Google Tango system deployment

Given the recent advance in Augmented Reality (AR) and Virtual Reality (VR) on mobile de-
vices like smartphone and tablet, they have gained the core capabilities for spatial perception.
The spatial perception particularly refers to 6 DOF motion tracking, scene depth perception and
place recognition. Although, the capabilities were developed for Augmented Reality and Virtual

Reality applications, all of them are crucial for robotic perception.

In this field, the Project Tango by GOOGLE is leading the technological advancement. By
utilising the modern mobile parallel computing architecture, and advanced imaging and sensor
technology (inferred time-of-flight camera, stereo vision and fisheye monocular vision, IMU),
a complete hardware-software solution is developed into a single package. It is able to perform
real-time 6 DOF motion tracking (state estimation) at over 100 Hz. With the depth sensing,
it can also perform real-time 3D reconstruction at over 1Hz, and perform loop closure with
recognising the same place being revisited. Such devices is a key advance for the enabling the

autonomous robot.

Their developer level smartphone and tablet® platform has been released to public. More ex-
citingly, with the partnership with LENOVO, the world’s first consumer level tango-enabled

smartphone is released*.

One example is shown in Figure 8.3, where the room is 3D reconstructed in real-time using the

tango developer tablet.

Although, The integration of Tango phone on a quadrotor has been implemented in Kumar’s

Lab’, further implementation for the higher level perception is left to be investigated.

3https ://store.google.com/product/tango_tablet_development_kit
*nttp://shop.lenovo.com/us/en/tango/
5https 1/ /www.youtube.com/watch?v=RE1YH1I1XHo
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Figure 8.3: Tango developer tablet testing.
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A.1 SAR Systems Comparison

Table A.1: SAR comparison.
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A.2 Automotive RADAR Systems Comparison

Table A.2: Automotive RADAR comparison.
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A.3 Flash LIDAR Systems Comparison

1S0n.

Flash LIDAR compari

Table A.3

0s3 J oorF P 083~ 0073 y 8973
siadojanap/wodruonowdes mmm//:sdily  duaiayRl/s301AI3s~s30npoud /wod 03 pwid//:dy 0€058£9289TITEN=W=1|¢xdse10npo.d/1onpold/wod 8Famaummm//:diy
as 313/dwo) 1dv' D FENLSEN 1odns [NuadO oN
81eJ awel4 ysiy ‘aj8uy apIm 1amod mo| pue azis ||ews AJap INusdQ INuadQ Yl dAIIDE puE 03PIAUSBIISAPIM dOBOT
MsT MST>
YW 00s @AS
SOEXLTIXTIL STXOEXLE 6°LZXTEIT 05 X SE X 08T
T 3z'66
99T~ 06=> 09 ‘0€ 09 ‘0 OE
0vZX0ZE ‘08YX0V9 0YTXOTE “08YX0V9 005%00S
20ST -89 X.,06 oGP % .5, <SP % .85 .09 % ,0L
%T
Wt~ ws'0-500 WS'e-Wwy'0 WIS'E pue wg'o woy-weo
uonop dea oueu pieogwe) g[uoisilpwd 57 1uden asuagawilig 014 uopy snsy 0'z1up
093 P ozT3 a 00023~
pd-gaMsI0SURSQE S3SURSAWILG/TT/ZT0Z/Speo]d! 9-d /W05 5757 TerarE-000Y- BuiBew |-ySIIN/Wi/WoKega mmm//:diy  03813/519nPoad,/ LU0} dedUo00l FUBISPIIUEAPE" M /51NPOId/W03'S3da0U0IYUBIISPIIUEAD
ainjesadwiay 93.3ap g Mojaq una3,ued 1M pIEOQUO GB-X310D NYY 2409-[enQ ZHOS'T

INu3dO INuado )d ‘INU3dQ “++) D 10§ |de-Z4 :IdV 3 IdV gepleyl “++2 D eJ3We) J3seT JAydaz [eusaixg aeisaiu| 03 3|qy waisAs 8uljoo) 3A31a81L YL

MsT'T M 0Z Xew M 0T [eaidAL MZT M ST

AT (v 8°01e2dA3) v 0'T Winwixew ‘(%0T+ '%2-) A ZT J0AYT (A7 -/+)20 A YT
SEX STX08T £98%08%08 (12usay3) 92 x 59 x 59 “(8SN) 89 X 59 X 59 OTT X QOT X OFT :(su?| anoyym) £0T X (0ST/ETT) X OTT
3008 (19u3123)3 015 ‘(85N) 8 0LY (sqig’1) 348'0 Mo'T Biz
[V 09 SS 0s 0€-02 0E
087X0v¥3 08v%x0v9 (n) 02T X (4) 09T YW X 9LT 8TIX8TT 194871 ‘BTT48ZT
oL S X oEV 09V% oS°LS oFE X oSt €S X 0L (M) 295 X (4) 669 40 (A) 9FE X (4) 9°EV o€ ‘29'8 20€ .S .09 of ‘06 ‘alTwaSl 2S¥
WWOy-/+~0T-/+ WwST-/+ ‘WWoT-/+

we-L'0 WG'e-wg'o woT-0 ‘WL-0 WOT-T°0 "WS-1°0 WOTT ‘WoSy ‘WOST ‘Wog

$31435-3 JINOLOd

0T 303Uy 80°T dujwuE) 35U

.

) BI3WED YY QI Yseld aE 34281

wiWeD Yy ar Yseld ag qno4asiL

000VYS wdBuEYSSIMS

20ud
a1nog

saimeay

1amogd
Ayddng age3jon
(ww) az15
UETETYY
(sdy) a1ey aweiq "xepy
uonnjosay
M3IA J0 PRI
Aseanooy
a8uey

aunld

awey

aoud
a1nos

saimeay

1amog
Aiddns agejjon
(ww) 3z15
Wwsm
(sdy) a1ey awelq "xe
uopnjosay
M3l Jo pay
Koenaoy
2duey

g

awey



Appendices

A.4 Laser Scanners Comparison

Table A.4: Laser scanner comparison.

Laser Scanner
Manufacturer Picture Laser Scanner Mass Power Range Best Resolution (distance/angle) | Horizontal FOV | Scan Rate Price
UTM-30LX £4180
i 370g 84w 0.1mto60m 30 mm / 0.25 degree 270 degree 40 Hz
. UTM-30LX-EW £3830
n UXM-30LX-EW 800¢g now 0.1mto50m 50 mm / 0.25 degree 190 degree 20 Hz £3613
Hokuyo
>
\/ UHG-08LX 500 g 36W 03mtollm 30 mm / 0.36 degree 270 degree 15 Hz £2460
URG-04LX 160 g 25w 02mto5.6m 10 mm / 0.36 degree 10 Hz £1900
240 degree
URG-04LX-UGO1 160 g 25wW 02mto5.6m 30 mm / 0.36 degree 10 Hz £1000
., PBS-03JN 500g 6W 0.2mto3m / 1.8 degree 180 degree 3.6 Hz £1000
SICK LMS100 20w £2360
05mto20m
1100 g 12 mm / 0.25 degree 50 Hz
SICK LMS111 £2850
sick w OW 270 degree
SICK LMS151 0.2mto50m £3647
|
X SICK TiM310 150g ER 005mto4m 30 mm /0.25 degree 7.5 Hz £916
Velodyne VLP-16 600 g <10 W 150-200 meters 360 x 30 degree £4864
i
RoboPeak RPLIDAR360 170g 1w 0.2mto6m 10 mm/ 1 degree 360 degree 5.5 Hz £259
PulsedLight LIDAR-Lite Laser Rangefinder 20g 4d 4h 48m 40m 25mm /x 0 degree 100 Hz £49
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A.5 Camera Systems Comparison

Table A.5: Camera comparison.
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