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Abstract 

Owing to inhomogeneous strain and high surface-to-volume ratio in nanostructures, it is imperative to account 

for the flexoelectricity as well as surface effect while analyzing the size-dependent electromechanical 

responses of nano-scale piezoelectric materials. In this article, a semi-analytical ‘single-term extended 

Kantorovich method (EKM)’ and ‘Ritz method’ based powerful framework is developed for investigating the 

static and dynamic electromechanical responses of graphene reinforced piezoelectric functionally graded (FG) 

nanocomposite plates, respectively. The residual surface stresses, elastic and piezoelectric surface modulus, 

and direct flexoelectric effects are taken into account while developing the unified governing equations and 

boundary conditions. The modified Halpin Tsai model and rules of mixture are implemented to predict the 

effective bulk properties. Our results reveal that the static deflection and resonance frequency of the proposed 

FG nanoplates are significantly influenced due to the consideration of flexoelectricity and surface effects. 

While such outcomes emphasize the fact that such effects cannot be ignored, these also opens up the notion of 

on-demand property modulation and active control. The effects are more apparent for nanoplates of lesser 

thickness, but they diminish as plate thickness increases, leading to the realization and quantification of a size-

dependent behavior. Based on the developed unified formulation, a comprehensive numerical investigation is 

further carried out to characterize the electromechanical responses of nanoplates considering different critical 

parameters such as plate thicknesses, aspect ratios, flexoelectric coefficients, piezoelectric multiples, 

distribution, and weight fraction of graphene platelets along with different boundary conditions. With the recent 

advances in nano-scale manufacturing, the current work will provide the necessary physical insights in 

modeling size-dependent multifunctional systems for active control of mechanical properties and harvesting 

electromechanical energy.  

Keywords: Flexoelectricity and surface effect; Size-dependence in composite materials; Graphene reinforced 

functionally graded materials; Extended Kantorovich method; Ritz method; Electromechanical responses. 
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1. Introduction 

 In recent decades, structures made of smart materials (piezoelectric) such as beams, wires, plates, 

membranes and shells have intrigued the researchers’ interest in developing the micro-/nano-electromechanical 

systems (M-/NEMS) for structural control and health monitoring applications such as smart actuators, sensors, 

capacitor, generator and distributors with capabilities of self-monitoring and -controlling (Beeby et al., 2006; 

Reddy, 1999; Song et al., 2006; Trindade and Benjeddou, 2009; Wang et al., 2006; Deng et al., 2014; Ghasemi 

et al., 2018). In 1880, French scientists Jacques and Pierre Curie observed piezoelectricity effects for the first 

time (Curie and Curie, 1880). Later, Gabriel Lippmann deduced mathematical relations for the converse 

piezoelectric effect from the fundamental thermodynamic principles (Lippmann, 1881), which was not 

estimated by Curie brothers. The piezoelectric phenomena are well-known for generating electrical response 

when subjected to uniform mechanical deformation, known as the direct piezoelectric effect. The reverse is 

also true when the electrical field is applied, known as the converse piezoelectric effect (electromechanical 

coupling in non-centrosymmetric crystals). The inversion centre is not present in non-centrosymmetric 

crystalline materials, which results in the generation of polarization when it is exposed to mechanical load. In 

elementary structures such as beams, wires, plates, membranes and shells, piezoelectric materials can be 

employed as a viable option for the application of distributed sensors and actuators due to the presence of 

unique electro-mechanical couplings as discussed above. For instance, both the static as well as dynamic 

response of functionally graded (FG) piezoelectric bimorph and sandwich composite beam structures are 

extensively studied using the commonly available piezoelectric materials such as polyvinylidene fluoride 

(PVDF) and Lead zirconate titanate (PZT-5H) (Beheshti-Aval and Lezgy-Nazargah, 2010; Komijani et al., 

2014; Lezgy-Nazargah et al., 2013; Reddy and Cheng, 2001; Vidal and Polit, 2008). PVDF is a ferroelectric 

polymer that exhibits tailorable piezoelectric, dielectric, ferroelectric properties as well (Dang et al., 2003). 

Recently, a novel class of active metamaterials has been developed by exploiting the electromechanical 

coupling of piezoelectric materials (Singh et al., 2021). The FG hybrid composite shell with carbon nanotubes 

(CNTs) as reinforcement element was investigated by Thomas and Roy (2017) using the Rayleigh damping 

model. They reported that after the incorporation of CNTs, the frequency response of composite shells showed 

enhanced magnitude because of enriched stiffness and damping performance which results in a decrease in its 

amplitude. Abolhasani et al., (2017) first prepared graphene reinforced PVDF nanocomposite and 

experimentally investigated its crystallinity, polymorphism, morphology, and electrical outputs. Since 2017, 

the pioneering works on the emerging area of FG graphene-based composites and their structures such as 

beams, plates, arches, and shells are being carried out by several researchers (Naskar, 2018a; Naskar et al., 

2019, 2018b). For instance, Feng et al. (2017) studied the nonlinear bending behavior of a novel class of multi-

layered FG graphene platelets (GPLs)-based composite nanobeams with non-uniform distribution of GPLs 

along thickness direction. They found the most effective technique to decrease the deflections of beams by 
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incorporating more GPLs in square shape with smaller amount of single graphene to its upper and bottom 

surfaces. Yang et al. (2018) investigated the free vibration and buckling response of FG GPLs-reinforced 

porous composite nanoplates based on Chebyshev-Ritz method and first-order shear deformation theory 

(FSDT). To attain enhanced vibration and buckling response of nanocomposite plates, a comprehensive 

parametric analysis was performed by considering different weight fraction, geometric parameters of GPLs 

nanofillers and the porosity coefficient. Zhao et al. (2020) systematically presented a brief review to study the 

graphene-based composites and newly FG graphene-reinforced nanocomposite using different 

micromechanical models. They also reviewed different theories required for investigating the mechanical 

analyses of FG composites structures with advantages, limitations and future technical challenges. In the case 

of FG graphene-based polymer composite nanoplate, Kitipornchai and his co-authors studied the free and 

forced vibration (Song et al., 2017), bending (Yang et al., 2017), and buckling responses (Song et al., 2018). 

From these studies, they have concluded that one can tailor the desired mechanical response including bending 

deflection, buckling, and post-buckling, as well as the natural frequency of the composite plates by altering the 

nonuniformity in the distribution pattern of GPLs. Based on HSDT, Shen and his co-authors investigated the 

nonlinear bending (Shen et al., 2017a), vibration (Chen et al., 2017), and buckling and post-buckling (Shen et 

al., 2017b) behavior of graphene-based layered composite plates including thermal loading. (Kiani, 2018) 

examined the free vibration of composite plates incorporated with GPLs to study large amplitudes with the 

help of iso-geometric finite element (FE) modeling. Researchers (Karsh et al., 2019; Shingare and Kundalwal, 

2019, 2020; Shingare and Naskar, 2021a; Trinh et al., 2020; Vaishali et al., 2020; Naskar et al., 2017) studied 

the electromechanical response of hybrid graphene-based nanocomposites (GNC) including beam, plate, wire, 

and shell by incorporating piezoelectric graphene nanofiber in a polyimide matrix. In such studies, they 

assumed graphene as nanofiber and found the effect of size-dependent phenomena (piezoelectricity, 

flexoelectricity, and surface effect) on these non-FGM GNC structures. Using analytical and numerical models, 

they were able to examine the piezoelastic and dielectric properties of GNC. They showed a substantial 

enrichment in the structural response of GNC structures by accounting for these size-dependent properties and 

also revealed that one should not ignore these effects at the nanoscale. Kundalwal et al. (2020) investigated the 

stress transfer characteristics and mechanical properties of composites including nano- and micro-scale 

reinforcements via micromechanical pull-out model and molecular dynamic (MD) simulations.  

In addition to piezoelectricity, flexoelectricity is also a noteworthy phenomenon, specifically in nano- 

and microscales (Hamdia et al., 2018; Li et al., 2021). This is the formation of electric polarization (𝑃𝑖) due to 

a strain gradient (εjk,l) inside all-dielectric material whether it is non-centrosymmetric (piezoelectric material) 

or centrosymmetric structure. Schematically, this can be expressed by the following relation: 𝑃𝑖 ≈ dijkεjk +

μijkl
dir εjk,l ; where μijkl

dir  and dijk are direct flexoelectric (non-zero for all-dielectric materials) and piezoelectric 

constant (zero for non-piezoelectric materials), respectively (Chandratre and Sharma, 2012; Shu et al., 2019). 
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Sharma et al. (2021) reported the substantial enrichment in resultant coupling in the presence of flexoelectricity 

and piezoelectricity both in an electrically poled material sample. Besides the piezoelectric and flexoelectric 

effects, the surface effect is a size-dependent property that has a significant impact on the elastic response of 

structural building block elements. Due to the high surface-to-volume ratio, it plays a crucial part in forecasting 

static and dynamic characteristics of nanostructures (Gurtin and Ian Murdoch, 1975; He and Lilley, 2008; Liu 

and Rajapakse, 2010; Miller and Shenoy, 2000; Shenoy, 2005). For instance, Gurtin and Murdoch initially 

proposed a fundamental theory of surface elasticity, namely, GM surface elasticity theory in order to account 

for the surface effects (Gurtin and Ian Murdoch, 1975). Rajapakse and co-authors (Liu et al., 2011; Liu and 

Rajapakse, 2010, 2013; Sapsathiarn and Rajapakse, 2017) explored the effect of different surface parameters 

such as surface elasticity, surface energy, levy parameters, etc., on different structural elements subjected to 

different loadings (point and UDL) and boundary conditions (cantilever, simply-supported and clamped-

clamped). Yan and Jiang (2012a) and Yan and Jiang (2012b) investigated the influences of surface parameters 

on the static bending, vibration, and buckling behavior of a non-FGM nanoplate where they mentioned two 

cases,  traction free boundary condition and without in-plane movement of plate’s mid-plane, and reported that 

the residual surface stress becomes more noticeable in the latter case. By using Mindlin and Kirchhoff plate 

theories, Ebrahimi and Hosseini (2020) studied the effect of flexoelectricity on nonlinear forced vibration of 

piezoelectric FG porous composite nanoplate subjected to electric voltage and external parametric excitation 

without considering surface effect. They also reported that electric voltage has no influence on the performance 

of piezoelectric and flexoelectric properties of the material on vibrational response. In this, they didn’t consider 

the surface effects and static response of nanocomposite plates. Shingare and Naskar (2021b) studied the effect 

of piezoelectricity and surface on a hybrid graphene-based composite plate to study its static and dynamic 

responses, but didn’t consider the effect of flexoelectricity. From the study of extensive literature in related 

fields, it is noticed that the classical continuum mechanics is not able to consider the small-scale effect of nano-

scaled structures due to the absence of any material length scale parameters. Considering the inadequacies of 

classical continuum theories to incorporate size effects, the higher-order non-classical continuum theories, 

which give more precise outcomes by taking size effects into account, have been strongly suggested. Moreover, 

due to the time-consuming nature of MD simulation presented by Chan and Pu (2011) and Mehralian et al. 

(2017) and limitations of experimentation (Li et al., 2018) for determining length scale parameters, in recent 

years, several non-classical elasticity theories such as non-local elasticity theory, shear deformation theory, 

modified strain gradient elasticity theory and modified coupled stress theory (MCST) have been suggested. 

For instance, based on nonlocal elasticity theory of Eringen in conjunction with surface elasticity theories,  

Ebrahimi and Barati (2017) studied the electromechanical buckling response of non-FG flexoelectric 

nanoplates. They compared their results for higher buckling loads with and without considering flexoelectric 

effects and reported that the flexoelectric nanoplate shows enhanced results at smaller thicknesses. More 
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recently, Ghobadi et al. (2020) and Ghobadi et al. (2021a, 2021b) developed a continuous-based thermo-

electromechanic model based on assumptions of Kirchhoff plate’s theory and the modified flexoelectricity 

theory in conjunction with the strain gradient theory in order to study the size-dependent nonlinear free 

vibration of FG flexoelectric nanoplate subjected to a thermo-electro-mechanical loading. They also 

investigated the effect of the diverse distribution of porosity on the static and nonlinear dynamic responses of 

a sandwich FG nanostructure. The nonlinear governing differential equations of the nanoplate and their 

respective boundary conditions were solved by using Hamilton’s principle and variation method, and the 

governing equations were solved by using Galerkin’s and perturbation methods. Furthermore, the advantage 

of modified coupled stress theory developed by Yang et al. (2002) over the earlier version of couple stress 

theory is that the former one needs only one material length scale parameter as compared to later which needs 

two parameters. Earlier, the MCST was frequently utilised for micro-scale structures, not for nanoscales. 

Furthermore, contrary to this, Akbarzadeh Khorshidi (2018) correctly showed that if experimental data within 

the relevant range is available, the material length scale parameter can be determined for micro- or nano-scaled 

thickness, and it is also concluded that MCST covers both micro and nano ranges if the material length scale 

parameter is determined in these ranges. Again, Akbarzadeh Khorshidi (2020) confirmed the conclusion of his 

aforementioned paper by comparing the results of MCST for two single-walled CNTs with MD simulation 

results by Wang and Hu (2005). Therefore, in present study, authors used the MCST as it is capable for 

considering the higher-order electro-mechanical coupling effects besides size effects. By taking inspiration 

from above mentioned work and approaches, authors proposed the MCST for advanced graphene-reinforced 

FG nanocomposites using the powerful frameworks of semi-analytical ‘single-term extended Kantorovich 

method (EKM)’ and ‘Ritz method’ for investigating the static and dynamic electromechanical responses 

considering flexoelectric as well as surface effects. It should be noted that the size effect is considered in this 

formulation based on the MCST for analyzing the anisotropic nanostructures and can also be used for isotropic 

structures. Besides, this formulation can also be converted into the classical plate formulation. 

From a careful review of literature, it can be noticed that researchers have worked on different types of 

theories such as Euler Bernoulli beam, Kirchhoff’s plate theory, weighted residual method, and approximated 

Ritz method for studying the mechanical behaviour of different structures. These methods consume significant 

computational time for convergence of results and hence, it is important to consider more efficient methods 

such as EKM for evaluating mechanical behaviour with a higher convergence rate. In 1968, reported the very 

effective EKM for obtaining semi-analytical solutions to 2-D elasticity problems including bivariate PDEs. 

Another advantage of EKM is that one can choose the priori function arbitrarily irrespective of whether it 

fulfills the boundary conditions of the concerned geometry or not. The iterations over the two axes are carried 

out in repetition till the convergence is attained, which turns out to be faster compared to Galerkin’s and Ritz’s 

methods. For instance, Kapuria and Kumari (2011, 2012, 2013) employed the powerful EKM in the 3-D 
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elasticity problem of transversely loaded laminated structures. They also envisaged the coupled 

electromechanical behaviour, comprising the edge effects of single-layer piezoelectric sensors and hybrid 

laminates, when subjected to electromechanical loadings conditions.  

With the tremendous recent advances in nano-scale manufacturing capabilities (Jang et al., 2013), while 

the literature categorically reveals the crucial influences of size-dependent properties such as piezoelectricity, 

flexoelectricity, and surface effect on the static and dynamic electromechanical behaviour of different structural 

elements, the aspect of effective and efficient modeling of the coupled behavior becomes a priority for better 

understanding of the physical behavior and subsequent engineering applications. However, the coupled 

electromechanical problems of functionally graded piezoelectric materials (FGPM) considering surface and 

flexoelectric effects in open-circuit have not been explored in a unified efficient framework so far. Therefore, 

the objective of the present work is to provide a unified mathematical formulation for the open-circuit electric 

boundary condition of the proposed composite nanostructure, as well as to analyze its size-dependent behaviors 

for various FGPM distributions: (i) linear distribution (LD), (ii) uniform distribution (UD) and (iii) parabolic 

distribution (PD). This paper hereafter is organized as: Section 2 presents the theoretical formulation to analyze 

the static and dynamic behavior of FGPM nanoplates subjected to electromechanical loading considering both 

flexoelectric as well as surface effects. Here two different semi-analytical models such as EKM for 

flexoelectric and surface effects as well as Ritz method would be incorporated for developing an efficient 

computational framework; Section 3 deals with the results and discussion on the effect of flexoelectricity and 

surface parameters on the static and dynamic behavior of FGPM nanoplates (referred to as “flexo-surface 

FGPM nanoplates”). Section 4 presents the summary of the results and concluding remarks. A comprehensive 

overview of the current research work is systematically presented in Fig. 1. These results would offer new 

insights to engineer the domain configurations for tailoring the desired static and dynamic electromechanical 

responses of the novel graphene reinforced FG materials considering surface and flexoelectric effects. This 

would be demonstrated by comparison of different sets of results such as (i) conventional nanoplate (without 

flexo and surface effects), (ii) flexo FGPM nanoplate (considering only flexoelectric effect), and (iii) flexo-

surface FGPM nanoplate (considering flexo and surface effects). Thus, the present study aims to complete a 

gap in our knowledge about the consideration of flexoelectric and surface effects for FGPM nanostructures. 

2. Theoretical formulations 

In the present section, the governing differential equations for thin square FGPM nanoplates subjected 

to electromechanical loading and boundary conditions are developed to study the static and dynamic responses 

using two different semi-analytical solution methods: (i) Extended Kantorovich method (EKM) and (ii) Ritz 

method, respectively. These solution approaches in the static and dynamic domains have been chosen here  
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Fig. 1. Detailed flowchart of electromechanical analysis of FGPM flexo-surface nanoplates.  

based on the consideration of computational convenience as per published literature (Jones and Milne, 1976; 

Singhatanadgid and Singhanart, 2019), which is further discussed later in this section. 
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2.1 Geometrical consideration 

Figure 2(a) represents a thin square undeformed FGPM nanoplate of length 𝑎, width 𝑏, uniform 

thickness ℎ and its associated rectangular coordinate system (𝑥, 𝑦, 𝑧), where 𝑧 −axis defines its out-of-plane 

direction and the in-plane axis (𝑥 − 𝑦) is lying in the mid-plane (𝑧 = 0). It is assumed that the piezoelectric 

polarization direction is along the 𝑧–axis. This FGPM nanoplate is subjected to a uniform transverse 

(downwards) loading q0 over its upper surface and placed in the open-circuit electric boundary conditions. In 

the context of FGM system, the variation of material property is expected to be continuous (Vatanabe et al., 

2014) and limited to the thickness direction (z– axis). 

 Here the FGM system with a regular shaped (square) geometry is considered for analysis because it 

exhibits a more prominent flexoelectric effect due to the large strain gradient and can reduce the geometry 

dependency requirement of flexoelectricity (Sharma et al., 2021). In this paper, both flexoelectric and surface 

effects are considered. The upper (z =
h

2
 ) and lower surface (z = −

h

2
 ) of the plate are denoted by S+ and S− 

which are schematically shown in figure 2(b). Here the whole FGPM system can be divided into two regions, 

the surfaces and the bulk region.    

2.2 Micromechanical models – effective material properties   

2.2.1 Material properties of the bulk region  

The present FGPM system consists of the graphene nanoplatelets (GPLs)-based nanocomposite where 

a piezoelectric polymer is used as the matrix phase. Polyvinylidene fluoride (PVDF) is a good choice for this 

composite as it shows excellent piezoelectric and dielectric properties. The GPLs are assumed as rectangular-

shaped solid reinforcement of average width 𝑤𝐺𝑃𝐿 , length 𝑙𝐺𝑃𝐿 and thickness 𝑡𝐺𝑃𝐿, where these are non- 

 
                                       (a)                                                                         (b) 

Fig. 2. (a) Geometry and coordinate system of thin FGPM nanoplates under open circuit condition, (b) upper 

and lower surface of the nanoplate. 
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Fig. 3. Distribution of WGPL across the thickness of FGPM nanoplates (x– z plane): (a) uniform, (b) linear and 

(c) parabolic pattern. 

uniformly dispersed with varying weight fractions across the thickness of the composite plate. To determine 

the effective elastic properties of the present nanocomposite incorporating geometrical parameters (Shingare 

and Naskar, 2021a), Halpin-Tsai (HT) model is adopted whereas the effective piezoelectric and dielectric 

properties are determined by the rule of mixture (ROM). 

In this work, three distribution patterns of GPLs are considered where the weight fraction of GPLs 

varies as per the following relations (Yang et al., 2017; Z. Zhao et al., 2020): 

Uniform distribution (UD): WGPL(z) = 100WcharWGPL
t  (1a) 

Parabolic distribution (PD): WGPL(z) = 300Wchar

4𝑧2

ℎ2
WGPL

t  (1b) 

Linear distribution (LD): WGPL(z) = 200Wchar (
z

h
+

1

2
)WGPL

t  (1c) 

where WGPL
t  and Wchar are the total weight fraction (%) and characteristic value of GPLs weight fraction (%), 

respectively. These three distributions are depicted in figure 3 schematically. The total volume fraction of 

GPLs is calculated with the help of the following relation: 

VGPL(z) =
WGPL(z)

WGPL(z) + (
ρGPL

ρPVDF
) (1 − WGPL(z))

 (2) 

where ρGPL and ρPVDF denote the respective mass densities of GPLs and PVDF matrix.  

The elastic modulus of the system from the HT model is determined as follows (Wang et al., 2020): 
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E(z) =
3

8
EL +

5

8
ET 

(3) 

whereas EL and ET indicate moduli in the longitudinal and transverse directions respectively and the values 

can be estimated from Eq. (4). Here,  
3

8
  and  

5

8
  are the reinforcing efficiency of GPLs considered in longitudinal 

and transverse directions, respectively. 

{EL(z), ET(z)} = {
1 + ξL

GPLηL
GPLVGPL(z)

1 − ηL
GPLVGPL(z)

,
1 + ξW

GPLηW
GPLVGPL(z)

1 − ηW
GPLVGPL(z)

}EPVDF (4) 

where the parameters ηL
GPL  and ηW

GPL can be expressed by:  

{ηL
GPL , ηW

GPL} = {
(

EGPL

EPVDF
) − 1

(
EGPL

EPVDF
) + ξL

GPL
,

(
EGPL

EPVDF
) − 1

(
EGPL

EPVDF
) + ξW

GPL
} (5) 

The parameters EGPL and EPVDF indicate the respective Young moduli of GPLs and PVDF matrix. The filler 

geometric factors  ξL
GPL and  ξW

GPL of GPLs are given by the following equation: 

{ ξL
GPL , ξw

GPL } = { 
2lGPL

tGPL
,
2wGPL

tGPL
 } (6) 

Due to the existence of the piezoconductive effect of graphene which is greatly dependent on its layer number 

(Xu et al., 2015), in the current mathematical model, it is supposed that the piezoelectric properties of GPL are 

𝛼 times stronger than PVDF (Mao and Zhang, 2018). Other material properties are derived from the ROM as 

follows: 

          ρ(z) =  ρGPLVGPL(z) + ρPVDF(1 − VGPL(z)) (7a) 

ν(z) =  νGPLVGPL(z) + νPVDF(1 − VGPL(z)) (7b) 

[e3i(z)] = α[e3i]
PVDFVGPL(z) + [e3i]

PVDF(1 − VGPL(z)) (7c) 

[aii(z)] = α[aii]
PVDFVGPL(z) + [aii]

PVDF(1 − VGPL(z)) (7d) 

where ν, e3i  (i = 1, 2), aii  (i = 3) and α are the Poisson’s ratio, coupling coefficient, electric permittivity, and 

piezoelectric multiple, respectively. Regarding the intrinsic flexoelectric coefficient of the present FGPM 

composite system, due to the unavailability of sufficient literature and difficulties in the experimental 

determination of  f14 (Shu et al., 2014) , we assume it constant throughout the bulk region under the assumption 

of crystal with cubic symmetry (f3223 = f3113 = f14). Also due to the incorporation of reinforcement elements  

(e.g. GPLs) in the PVDF matrix, there will be an increase in the value of  f14 (Hu et al., 2018). This is why the 
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flexoelectric coefficient (f14) is set within a range in the current model. The range of its values is taken as the 

same as that of the other two components of the flexoelectric tensor (i.e., f11 and f12) of PVDF-based polymers 

(Baskaran et al., 2011; Zhou et al., 2017). This range is also mentioned in section 3.2. However, note that the 

analytical model developed here is equally applicable for both varying and constant flexoelectric systems.  

2.2.2 Material properties concerning the surface layers (𝐒+ and 𝐒−) 

Due to lack of proper atomistic experiments and to deal with the problem of zero thickness outer layers, 

one characteristic length (ξc) is assumed to estimate the surface material constants of the present FGPM system. 

The surface constants of the upper and lower surface layers are related to their corresponding bulk constants 

by the following relations (Pan et al., 2011; Shingare and Kundalwal, 2020): 

Upper surface (𝑆+): cij
+ = ξc . cij (z =

h

2
) ,  eij

+ = ξc . eij (z =
h

2
)  (8a) 

Lower surface (𝑆−): cij
− = ξc . cij (z = −

h

2
) , eij

− = ξc . eij (z = −
h

2
)  (8b) 

From Eq. (8), it is evident that in the FGPM system, the surface properties of the upper and lower surface are 

different (Hosseini et al., 2017). Here, the value of the residual surface stress σxy
0  is considered as zero (Zhang 

et al., 2012).  

2.3 Constitutive relations of bulk and surface layer 

2.3.1 Bulk region 

To incorporate the flexoelectricity phenomena along with its inbuilt piezoelectricity within the bulk 

region, an extended linear theory of piezoelectricity is adopted under the assumption of infinitesimal 

deformation. Hence, the general expression of the electric Gibbs free energy density function for the bulk 

region can be given as follows (Liang et al., 2013):  

  Ubulk = −
1

2
aklEkEl +

1

2
cijklεijεkl − ekijEkεij − fijklEiεjk,l + rijklmεijεkl,m +

1

2
gijklmnεij,kεlm,n                      (9)   

where akl, cijkl, ekij, and fijkl are the element of material property tensors – permittivity (rank 2 tensor), elastic 

stiffness (rank 4 tensor), piezoelectric coupling (rank 3 tensor), and flexocoupling (rank 4 tensor), respectively. 

𝐸  and  𝜀  are the electric field vector and strain component, respectively. In Eq. (9), tensor f couples strain 

gradient and electric field whereas r and g are higher-order coupling terms which couple strain and its strain 

gradient, and strain gradient and strain gradient, respectively. Here the comma in the subscript of 𝜀 indicates 

its differentiation with respect to one spatial variable. Under the aforementioned assumption, the higher-order 

coupling terms r and g are neglected to simplify the current formulation. Following generalized constitutive 

relations for the bulk region are derived using Eq. (9). 
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σij =
∂Ubulk

∂εij
= cijklεkl − ekijEk (10a) 

σjkl =
∂Ubulk

∂εjk,l
= −fijklEi (10b) 

Dk = −
∂Ubulk

∂Ek
= aklEl + ekijεij + fklmnεlm,n (10c) 

where σij and εij are the classical stress and strain tensor. σjkl is the hyper stress tensor generated due to 

consideration of flexoelectricity; εjk,l is the higher-order strain gradient tensor. fijkl denotes fourth-order 

flexocoupling tensor; Dk and Ei are the electric displacement and electric field vector. akl and ekij denote the 

second-order permittivity and third-order piezoelectric tensor. In contrast to the conventional piezoelectric 

relation in Eq. (10c), it is observed that there is also a contribution of flexoelectricity in the electric 

displacement of the nanoplate.  

 While considering the flexoelectric effect, Shu et al. (2011) reported the direct flexoelectric coefficient 

tensor for a cubic crystal, and these can be expressed as: 

f3×18 = (
f11 0 0 f14 0 0 f14 0 0 0 f111 0 0 0 f111 0 0 0
0 f14 0 0 f11 0 0 f14 0 f111 0 0 0 0 0 0 0 f111

0 0 f14 0 0 f14 0 0 f11 0 0 0 f111 0 0 0 f111 0
) 

where f1111 = f2222 = f3333 = f11, f1133 = f2233 = f1122 = f2121 = f3232 = f3131 = f111, f1221 = f1331 =

f2112 = f2332 = f3223 = f3113 = f14. In addition to this, as the thickness of the proposed FGPM plate is 

considered as very small as compared to length and width, the electric displacement and electric field in the x- 

and y- directions are considered as zero (𝐸𝑥 = 𝐸𝑦 = 0; 𝐷𝑥 = 𝐷𝑦 = 0). This indicates the electric field and 

electric displacement to be present only along the z-direction (𝐸𝑧 = 𝐷𝑧 ≠ 0) and the strain variations are also 

considered along z-direction only i.e., εxx,z and εyy,z. In other words, in Eq. (10c), ‘k’ and ‘n’ will be ‘3’ and 

‘l’ and ‘m’ will be either 1 or 2 (i.e., f3223 = f3113 = f14). So, it is evident that the flexoelectric coefficients 

except 𝑓14 will be zero (𝑓14 ≠ 0). As the present thin FGPM plate is under the 2D assumption, all strains must 

be in-plane only. Therefore, 𝑒311 and 𝑒322 will be non-zero (𝑒311, 𝑒322 ≠ 0). Consequently, the second-order 

permittivity tensor is also considered in z-direction only (𝑎11, 𝑎22 = 0; 𝑎33 ≠ 0). Later the values of non-zero 

coefficients are given in Table 4 for the present study. 

For the present FGPM system, Eq. (10) can be rewritten by considering bi-subscript notations (Wang 

and Li, 2021) and cubic crystal symmetry as follows: 

σxx = c11(z)εxx + c12(z)εyy − e31(z)Ez (11a) 
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σyy = c12(z)εxx + c22(z)εyy − e32(z)Ez (11b) 

σxy = c66(z)γxy = 2c66(z)εxy (11c) 

σxxz = −f14(z)Ez (11d) 

σyyz = −f14(z)Ez (11e) 

Dz = a33(z)Ez + e31(z)εxx + e32(z)εyy + f14(z)(εxx,z + εyy,z) (11f) 

where εxx, εyy and εxy are classical in-plane strains. In this, all material constants are considered as the 

functions of 𝑧 due to the thickness-wise FGM system under consideration.  

2.3.2 Surface layers ( 𝐒+and 𝐒−) 

Similar to the bulk region, the general constitutive relations for the surfaces (𝑆+ and 𝑆−) of FGPM 

nanoplates can be derived from the surface energy density function Usur which are given as follows (Huang 

and Yu, 2006): 

σij
s =

∂Usur

∂εij
= σij

0 + cijkl
s εkl − ekij

s Ek (12a) 

Dk
s = −

∂Usur

∂Ek
= Dk

0 + akl
s El + ekij

s εij (12b) 

wherein σij
0  and Dk

0 are the surface residual stress and surface electric field, respectively. Here the surface 

quantities are indicated by superscript ‘s’. According to Zhang et al. (2013), the equations of  strain (εkl) and 

electric field (Ek) in case of surface effects are the same as that of the bulk one. Based on the present FGPM 

system, one can rewrite the surface stresses as follows: 

σxx
s = σ0 + c11

s (z)εxx +c12
s (z)εyy − e31

s (z)Ez (13a) 

σyy
s = σ0 + c21

s (z)εxx +c22
s (z)εyy − e32

s (z)Ez (13b) 

σxy
s = 2c66

s (z)εxy (13c) 

Dz
s = 0 (13d) 

2.4 Governing equations for static and dynamic analysis  

As the present model is under open-circuit (sensor type) condition, the electric displacement (Dz) on 

the surfaces of FGPM nanoplate is zero (Zhang et al., 2013) and it can be achieved if the top and bottom-most 
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surfaces are insulated (Wang and Zhou, 2013). It also satisfies Gauss law of dielectrics (div D⃗⃗ = Qfree) where 

free electric charge density (Qfree) is zero. From Eq. (11f), for the zero electric displacement (Dz = 0), the 

internal electric field (Ez) can be expressed as follows: 

Ez =
1

a33(z)
[e31(z)εxx + e32(z)εyy + f14(z)(εxx,z + εyy,z)]  (14) 

The same electric field relation as above is also applicable for the surface constitutive equations.  

In this mathematical formulation, the classical Kirchhoff plate theory is used for the thin FGPM 

nanoplate. As mentioned in the existing literature (Yan and Jiang, 2012a), to investigate the surface effect 

effectively, the mid-plane extensional deformations (u0, v0) are constrained to zero. The displacement fields 

can be expressed as: 

u(x, y, z, t) = −z
∂w0

∂x
 (15a) 

v(x, y, z, t) = −z
∂w0

∂y
 (15b) 

w(x, y, z, t) = w0(x, y, t) (15c) 

Neglecting Von-Karmen non-linear terms in strain formulae, the following linear strain-displacement relations 

and internal electric field are derived from Eq. (14) and (15): 

εxx =
∂u

∂x
= −z

∂2w0

∂x2
= zεxx

1   (16a) 

εyy =
∂v

∂y
= −z

∂2w0

∂y2
= zεyy

1   (16b) 

εzz =
∂w

∂z
= 0  (16c) 

γxy = 2εxy =
∂u

∂y
+

∂v

∂x
= −2z

∂2w0

∂x∂y
= zεxy

1  (16d) 

εxz = εyz = 0 (16e) 

εxx,z =
∂εxx

∂z
= −

∂2w0

∂x2
= εxx

1  (16f) 

εyy,z =
∂εyy

∂z
= −

∂2w0

∂y2
= εyy

1  (16g) 

Ez = −[f1z(z)εxx
1 + f2z(z)εyy

1 ] (16h) 
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where εxx
1 = −

∂2w0

∂x2  , εyy
1 = −

∂2w0

∂y2  , εxy
1 = −2

∂2w0

∂x∂y
 , f1z(z) =

(ze31(z)+f14(z))

a33(z)
 and f2z(z) =

(ze32(z)+f14(z))

a33(z)
. 

Equations (16c) and (16e) are found in coherence with the Kirchhoff hypothesis (Reddy, 2003). 

The governing equations for the present FGPM system are achieved from the principle of virtual 

displacements that can be given as follows: 

∫ [−(δUb + δUs) + δK + δWext] dt = 0
tf

ti

  (17) 

The virtual strain energy (δUb) for the bulk region is expressed as follows: 

δUb = ∫ ∫ ∫ (σxxδεxx + σyyδεyy + σxyδγxy + σxxzδεxx,z + σyyzδεyy,z)dxdydz 

h
2

−
h
2

b

0

a

0

 

= ∫ ∫ [(Mxx + Nxxz)δεxx
1 + (Myy + Nyyz)δεyy

1 + 2Mxyδεxy
1 ] dxdy

b

0

a

0

              (18) 

The virtual strain energy (δUs) considering both the surface layers can be written as follows: 

δUs =  ∬(σxx
+ δεxx + σyy

+ δεyy + σxy
+ δγxy)dS+ + ∬(σxx

− δεxx + σyy
− δεyy + σxy

− δγxy)dS−

𝑆−𝑆+

 

= ∫ ∫ [(Mxx
+ + Mxx

− )δεxx
1 + (Myy

+ + Myy
− )δεyy

1 + 2(Mxy
+ + Mxy

− )δεxy
1 ] dxdy

b

0

a

0

     (19) 

The virtual work done by the externally applied uniform transverse load 𝑞0 and loads induced by the traction 

jump and in-plane forces (Yan and Jiang, 2012; Zhang et al., 2014) can be written as follows: 

δWext = ∫ ∫ [ q(x, y)δw0 − (Nxx + Nxx
+ + N𝑥𝑥

− )w0,x δw0,x − (Nyy + Nyy
+ + N𝑦𝑦

− )w0,yδw0,y − (Nxy + Nxy
+

b

0

a

0

+ N𝑥𝑦
− )(w0,x δw0,y + w0,y δw0,x)] dxdy                                                                                        (20) 

Finally, the virtual kinetic energy considering the motions in all three directions is expressed in the following 

equation. Though we have shown all three directions for generality, only vibrational motion in the transverse 

plane of the nanoplate is considered in the final results.  

δK = ∫ ∫ ∫ ρ(u̇δu̇ + v̇δv̇ + ẇδẇ) dxdydz 

h
2

−
h
2

b

0

a

0

  

=  ∫ ∫ [ I0ẇ0δw0 ̇ + I2ẇ0,xδẇ0,x + I2ẇ0,yδẇ0,y ] dxdy
b

0

a

0

                    (21) 
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where I0 and I2 are the mass inertia terms and Nij , Mij , Mij
± , Nij

±, Nijk are the function resultants (stress and 

moment) whose definitions are given as follows: 

{Nij , Mij} = ∫ {σij , zσij }dz

h
2

−
h
2

 

{Nij
±, Mij

±} = (σij
± , zσij

± )
z=±

h
2

 

Nijk = ∫ σijk dz

h
2

−
h
2

 

By substituting Eq. (16) in the aforementioned resultants, the following matrix is derived. 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mxx

Myy

Mxy

Nxx

Nyy

Nxy

Mxx
±

Myy
±

Mxy
±

Nxx
±

Nyy
±

Nxy
±

Nxxz

Nyyz)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 A11 A12 0
0 A21 A22 0
0 0 0 2A66

0 B11
± B12

± 0

0 B21
± B22

± 0
0 0 0 2B66

A01
± A11

± A21
± 0

A02
± A12

± A22
± 0

A0
± 0 0 A±

B01
± B11

± B21
± 0

B02
± B12

± B22
± 0

B0
± 0 0 B±

0 A11
f A21

f 0

0 A11
f A21

f 0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(

 
 

1
εxx
1

 εyy
1

εxy
1

)

 
 

 (22) 

In Eq. (22), the stiffness coefficients and their algebraic expressions are given in Appendix A. Now, if we 

substitute Eqs. (18), (19), (20) and (21) into the Hamilton Eq. (17) and apply the principles of variational 

calculus, the following governing equation of the present FGPM system incorporating both flexoelectricity and 

surface effect can be derived.  

∂2Mxx
∗

∂x2
+

∂2Myy
∗

∂y2
+ 2

∂2Mxy
∗

∂x ∂y
+

∂2Nxxz

∂x2
+

∂2Nyyz

∂y2
+ q0 + Nxx

∗
∂2w0

∂x2
+ Nyy

∗
∂2w0

∂y2
+ 2Nxy

∗
∂2w0

∂x ∂y
− I0�̈�0

+ I2(�̈�0,𝑥𝑥 + �̈�0,𝑦𝑦) = 0                                                                                                                  (23) 

Here, Mij
∗  , Nij

∗  (i, j =  x, y) are obtained as follows: 

Mij
∗ = Mij + Mij

+ + Mij
−, 
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Nij
∗ = Nij + Nij

+ + Nij
−. 

2.5 Solution methodology based on EKM and Ritz approach  

In the present study, two semi-analytical solution methods are adopted for getting the solutions of the 

governing equation (23) which are the single-term extended Kantorovich method (EKM) and the Ritz method. 

These two methods are applied separately for the static and dynamic cases of FGPM nanoplates considering 

flexoelectricity as well as surface effects, and the results are validated in later sections. For the static analysis, 

the reason for selecting the EKM approach is its accuracy and rapid convergence rate. Its solution is also 

independent of the initially chosen functions. The traditional Navier approach can only be applied for all edges 

simply-supported (SSSS) plate whereas, the Levy method needs at least two simply supported edges of the 

concerned plate. In the Ritz and Galerkin method, the final solutions are dependent on initial guess (algebraic 

polynomials or basis) functions. It would be found in later sections of this paper that for a square thin plate 

(a/h ≥ 20) under the 2D assumption, a single-term EKM solution is sufficient to provide accurate results. On 

the other hand, the dynamic analysis is performed using the Ritz approach instead of EKM because the EKM 

method is computationally more intensive than other methods due to the existence of several vibrational 

frequencies of any continuous system and the presence of symmetric and antisymmetric vibration modes in 

many cases (Singhatanadgid and Singhanart, 2019). In the dynamic scenario, in each iteration of EKM there 

exists two unknown variables (second unknown single variable function and eigenfrequency) in the ODE 

obtained after substituting the first known priori function. To resolve this, we also have to take into 

consideration the symmetry and antisymmetry conditions about one direction of the structure and for that its 

final closed-form solution is dependent on the mode of vibration whether it is symmetric or 

antisymmetric(Jones and Milne, 1976). As in this paper, the focus is given to the analysis of the behavioural 

aspects of FGM nanoplate of different distributions within a semi-analytical framework, Ritz method is 

preferred in the dynamic scenarios. Before discussing the mathematical formulations of the analytical 

approaches, the boundary conditions and their mathematical representation need to be mentioned as both the 

techniques are based on the geometric and essential boundary conditions of the problem. We considered SSSS 

and clamped-clamped (CCCC) conditions for square plates which are schematically shown in figure 4.  

2.5.1 Static analysis based on EKM 

Substituting all the stiffness coefficients of Eq. (22) and strain-displacement relations of Eq. (16) into 

the governing equation (23), the following simplified form of Eq.(23) in terms of displacement can be written:  

H1

∂4w0

∂x4
+ H2

∂4w0

∂y4
+ H3

∂4w0

∂x2 ∂y2
+ H4 (

∂2w0

∂x2
)

2

+ H5 (
∂2w0

∂y2
)

2

+ H6 (
∂2w0

∂x2
)(

∂2w0

∂y2
) 
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+H7 (
∂2w0

∂x∂y
)

2

− H8 (
∂2w0

∂x2
) − H9 (

∂2w0

∂y2
) − H10 (

∂2w0

∂x ∂y
) − q0 + I0ẅ0 = 0           (24) 

 

                                         (a)                                                                         (b) 

Fig. 4. FGPM nanoplates subjected to mechanical boundary conditions: (a) CCCC and (b) SSSS.  

In Eq. (24), all the coefficients (Hi) of each term and their algebraic expressions are given in Appendix B. It 

is observed that Eq. (24) is non-linear in nature. Under infinitesimal deformation assumptions and to linearize 

the calculation process, we have neglected these four non-linear terms (H4 , H5 , H6 and H7) in further 

calculations. However, mathematical error due to neglecting the non-linearities becomes minimal if 

symmetrical distributions of FGM and non-flexoelectric (f14 ≈ 0) surface nanoplate is considered. For 

instance, it is observed from the present model that in the absence of f14, the magnitudes of H4, H5, H6 and H7 

are zero for UD and PD distribution whereas it is in the order of  10−6  for LD distribution. The magnitudes 

become more as plate thickness increases. To account for this, the results and discussions in section 3 are 

mostly focused on thicknesses and distributions (UD and PD) within a reasonable range. The following 

equation is the weak form of nanoplate under bending which is used in the EKM method: 

∫ ∫

[
 
 
 
 H1

∂4w0

∂x4
+ H2

∂4w0

∂y4
+ H3

∂4w0

∂x2 ∂y2
− H8 (

∂2w0

∂x2
)

−H9 (
∂2w0

∂y2
) − H10 (

∂2w0

∂x∂y
) − q0

]
 
 
 
 

δw0dxdy = 0                 
b

0

 (25)
a

0

 

In single-term EKM, first, it is essential to assume a solution into two bivariate functions for the Eq. (25) in a 

separable form which is shown below: 

                                                            w0(x, y) = f(x). g(y)                                                                   (26)  
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Here either f(x) or g(y) is taken as a priori function. To start the first iteration, in the first step, a function g1(y) 

is chosen as priori for g(y). Another advantage of the EKM is that one can choose this priori function arbitrarily 

irrespective of whether it satisfies the boundary conditions of the problem or not. Now, if the updated 

w0(= f. g1 ) function is substituted into the weak form (Eq. 25), one ordinary differential equation (ODE) of 

f(x) will be obtained which can be solved using any standard method of differential calculus. Following is the 

ODE and its associated boundary conditions after the first step.  

∫ [∫ (H1g1(y)
∂4f(x)

∂x4
+ H2f(x)

∂4g1(y)

∂y4
+ H3 (

∂2f(x)

∂x2
)(

∂2g(y)

∂y2
) − H8 g1(𝑦) (

∂2f(x)

∂x2
)

b

0

a

0

− H9f(x) (
∂2g1(𝑦)

∂y2
) − H10 (

∂f(x)

∂x
) (

∂g(y)

∂y
) − q0) g1(y)dy ] δf(x)dx = 0                          (27) 

From Eq. (27), the following ODE of f(x) is obtained: 

K11

∂4f

∂x4
+ K21f + K31

∂2f

∂x2
− K41 (

∂2f

∂x2
) − K51f − K61 (

∂f

∂x
) − Q11 = 0                    (28a) 

 where  

K11 = ∫ H1g1
2 dy

b

0

  (28b) 

K21 =  ∫ H2g1,yyyyg1dy
b

0

  (28c) 

K31 = ∫ H3g1,yyg1dy
b

0

 (28d) 

K41 = ∫ H8 g1
2dy

b

0

 
(28e) 

K51 = ∫ H9g1,yyg1dy
b

0

 
(28f) 

K61 = ∫ H10g1,yg1dy
b

0

 (28g) 

Q11 =  ∫ q0g1dy
b

0

 (28h) 

For solving Eq. (28a), the mechanical boundary conditions (CCCC, SSSS, CSCS, CSSC) in terms of f(y) 

mentioned in figure 4 can be used as listed below: 
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CCCC: f(0) = 0, f(a) =  0, f,x(0) = 0, f,x(a) = 0   (28i) 

SSSS: f(0) = 0, f(a) =  0, f,xx(0) = 0, f,xx(a) = 0   (28j) 

CSCS: f(0) = 0, f(a) =  0, f,x(0) = 0, f,x(a) = 0 (28k) 

CSSC: f(0) = 0,  f,x(0) = 0, f(a) =  0, f,xx(a) = 0 (28l) 

Here, CCCC represents fully clamped plate; SSSS represents fully simply supported plate; CSSC represents 

the plate with adjacent two edges clamped and remaining two edges simply supported; and CSCS represents 

plate with two opposite edges clamped and remaining two edges simply supported, whereas C denotes the 

clamped and S denotes the simply supported edge. In the present paper, we showed the utilization of the EKM 

only for CCCC and SSSS boundary, but this method can easily be extended to any arbitrary boundary 

conditions (Kumari and Shakya, 2017), just by changing Eqs. (28) and (30).  

 After solving Eq. (28), the obtained f(x) (let the solution is f(x) = f1(x)) is introduced as priori known 

function for f(x) in the next step of EKM whereas g(y) is taken as an unknown function that needs to be solved. 

In the same way as before, we can derive ODE of g(y) after substituting updated w0(= f1. g) in the weak form 

(Eq. 25). 

∫ [∫ (H1g(y)
∂4f1(x)

∂x4
+ H2f1(x)

∂4g(y)

∂y4
+ H3 (

∂2f1(x)

∂x2
)(

∂2g(y)

∂y2
) − H8 g(𝑦) (

∂2f1(x)

∂x2
)

a

0

b

0

− H9f1(x) (
∂2g(𝑦)

∂y2
) − H10 (

∂f1(x)

∂x
) (

∂g(y)

∂y
) − q0) f1(x)dx ] δg(y)dy = 0                         (29) 

From Eq. (29), the following ODE of g(y) is obtained. 

K12 g + K22 (
∂4g

∂y4
) + K32 (

∂2g

∂y2
) − K42  g − K52 (

∂2g

∂y2
) − K62 (

∂g

∂y
) − Q12 = 0             (30a) 

     where  

K12 = ∫ H1f1,xxxxf1 dx
a

0

  (30b) 

K22 =  ∫ H2f1
2dx

a

0

  (30c) 

K32 = ∫ H3f1,xxf1dx
a

0

 (30d) 
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K42 = ∫ H8f1,xx f1dx
a

0

 (30e) 

K52 = ∫ H9f1
2dx

a

0

 (30f) 

K62 = ∫ H10f1,xf1dx
a

0

 (30g) 

Q12 =  ∫ q0f1dx
a

0

 (30h) 

For solving Eq. (30a), the requisite boundary conditions in terms of g(y) from the mechanical boundary 

conditions shown in figure 4 can be given as: 

CCCC: g(0) = 0, g(b) =  0, g ,y(0) = 0, g ,y(b) = 0   (30i) 

SSSS: g(0) = 0, g(b) =  0, g ,yy(0) = 0, g ,yy(b) = 0   (30j) 

CSCS: g(0) = 0, g(b) =  0, g ,yy(0) = 0, g ,yy(b) = 0   (30k) 

CSSC: g(0) = 0, g ,y(0) = 0, g(b) =  0, g ,yy(b) = 0   (30l) 

After solving Eq. (30), the obtained g(y) (let the solution is g(y) = g1(y)) from the aforementioned first 

iteration is then used as the priori function for g(y) in the next iteration step where f(x) is taken as an unknown 

function. Likewise, one can perform multiple iterations using the same solution technique based on Eq. (28) 

and (30) until the converged results, i.e., converged w0(x, y) is obtained. Generally, after two or three 

iterations, the solution gets converged.      

2.5.2 Dynamic analysis based on Ritz method 

In dynamic analysis, free vibration (q0 = 0) of the present FGPM nanoplate incorporating both 

flexoelectricity and surface effect is performed using the Ritz method. In this section, in-plane vibration (x −

y plane) is neglected for the purpose of simplicity. The weak form of governing equation is derived from Eq. 

(17) and can be written as follows: 

∫ ∫ ∫ [ (Mxx
∗ + Nxxz)δεxx

1 + (Myy
∗ + Nyyz)δεyy

1 + 2Mxy
∗ δεxy

1 +
b

0

Nxx
∗ w0,x δw0,x + Nyy

∗ w0,yδw0,y

a

0

tf

ti

+ Nxy
∗  (w0,x δw0,y + w0,y δw0,x) + I0ẅ0 δw0] dxdydt = 0                                                      (31) 
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After substituting the stiffness coefficients of Eq. (22) and strain-displacement relations (Eq. 16) into Eq. (31) 

and considering the time-dependent harmonic function of w0(x, y, t), the final equation of the weak form can 

be written as follows: 

∫ ∫ [D1W,xxδW,xx + D1W,yyδW,yy + D3W,yyδW,xx

b

0

a

0

+ D4W,xxδW,yy + D5W,xyδW,xy 

+D15W,xδW,x + D16W,yδW,y + D17W,xδW,y + D18W,yδW,x − I0ω
2WδW ]dxdy = 0     (32) 

where ω is the frequency (Hz) of the FGPM nanoplate. The coefficients and their algebraic expressions are 

given in Appendix B. W(x, y) is taken from harmonic (Euler) relation of the mid-plane displacement which is 

given as follows: 

w0(x, y, t) = W(x, y)eiωt       (33) 

The Ritz solution of the displacement W(x,y) for the square plate is assumed in the following form (Reddy, 

2006): 

W(x, y) = ∑∑cijXi(x)Yj(y)

N

j=1

M

i=1

 (34) 

Selection of Xi(x) and Yj(y) depend on the boundary conditions of the problem geometry. Further, M and N 

may be infinity (i.e., Eq. (34) signifying an infinite series). Hence, the standard approximate functions for Xi 

and Yj for SSSS, CCCC, CSCS, SCSS etc. boundary conditions are chosen from the existing literature (Reddy, 

2006) of plate theory (note that we have focused on CCCC and SSSS boundary conditions only for presenting 

numerical results).  

CCCC: 

Xi(x) = ( 
x

a
 )

i+1

− 2( 
x

a
 )

i+2

+ ( 
x

a
 )

i+3

  

  Yj(y) = ( 
y

b
 )

j+1

− 2( 
y

b
 )

j+2

+ ( 
y

b
 )

j+3

 

(35a) 

SSSS: 

Xi(x) = ( 
x

a
 )

i

− ( 
x

a
 )

i+1

  

  Yj(y) = ( 
y

b
 )

j

− ( 
y

b
 )

j+1

  

(35b) 

CSCS: Xi(x) = ( 
x

a
 )

i+1

− 2( 
x

a
 )

i+2

+ ( 
x

a
 )

i+3

  (35c) 
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  Yj(y) = ( 
y

b
 )

j

− ( 
y

b
 )

j+1

 

SCSS 

Xi(x) = ( 
x

a
 ) [1 − ( 

x

a
 )]

𝑖+1

 

Yj(y) = ( 
y

b
 )

j

− ( 
y

b
 )

j+1

 

(35d) 

Substituting Eqs. (35a) and (35b) in the weak form and by arranging the expression in the matrix form, the 

following equation is derived, from which the frequencies (ω) of the system can be calculated using different 

combinations of M and N. 

([R]M×N − ω2[B]M×N){c} = {0} (36) 

where 

R(ij)(kl) = ∫ ∫ [ D1Xi,xxYjXk,xxYl + D2Yj,yyXiXkYl,yy + D3XiYj,yyXk,xxYl + D4YjXi,xxXkYl,yy

b

0

a

0

+ D5Xi,xYj,yXk,xYl,y + D15Xi,xYj Xk,xYl + D16XiYj,yXkYl,y + D17Xi,xYjXkYl,y

+ D18XiYj,yXk,xYl ] dxdy                                                                                                                 (37𝑎) 

B(ij)(kl) = ∫ ∫  IoXiYjXkYl

𝑏

0

 dxdy 
a

0

                                                              (37𝑏) 

For the sake of simplicity in formulation, we neglected the non-linear terms in the present study. In this 

context (regarding the non-linearity case), it is also possible to include nonlinear parameters within the 

computational framework. In other words, we can easily include geometric nonlinearity in the system and also 

nonlinearity in the Eqs. 25 and 32 for making the system more accurate. In that case, the solution will involve 

simultaneous nonlinear partial differential equations.  

3. Numerical results and discussions 

3.1 Validation and convergence studies  

 Before analyzing the numerical findings of the FGPM system, two different types of convergence and 

validation studies are needed to be performed to check the reliability of the results. In this investigation, two 

different approximate methods which are discussed in earlier section 2.5 are followed for studying the effects 

of flexoelectric and surface properties on an FGPM nanoplate. Among these, as the EKM approach is newly 

introduced here in the field of electromechanical analysis, to check the efficiency of this method for FGPM 

2D-plate problems, the convergence study is carried out by comparing the deflection curve, i.e., transverse 
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deflection along one edge (𝑥 − axis) of rectangular UD-FGPM nanoplates. Figure 5 shows that the 

convergence of the present iteration-based method is very rapid with a maximum of two or three iteration steps 

that are enough to get the converged results. Therefore, we have carried out a maximum of three iterations in 

the further analyses. As per the discussion in earlier sections, the initial guess function for g1(y) is needed to 

start the EKM method. 

 
Fig. 5. Convergence plot for transverse deflection of UD-FGPM nanoplates with respect to aspect ratio 

considering function, g1(y) = y(y − b). 

 
Fig. 6. Convergence plot for transverse deflection of UD-FGPM nanoplates with respect to aspect ratio 

considering three iterations. 



25 
 

 In Fig. 6, the results are calculated using three different types of function – polynomial, exponential 

and trigonometric, wherein it can be concluded that the final result is unaffected by the initial guesses. We get 

almost the same center deflection from each initial choice. The magnitudes of the center deflections are shown 

in Table 1. From this, it is found that the maximum deflection is occurring at the center of the plate for each 

function and the difference between obtained values are in the order of ~10−9 to ~10−8 which strongly 

confirm the convergence efficiency of the present EKM approach. The above two conclusions are precisely 

matching with the discussions presented in the preceding sections as per Kerr and Alexander (1968). In the 

following subsections, the validation study is performed with respect to existing literature (Shingare and 

Naskar, 2021c; Yang et al., 2015) considering two illustrative cases for the static and dynamic analysis of 

flexo-surface FGPM nanoplates. 

Table 1. Convergence study for transverse deflection of UD-FGPM nanoplates under three iterations. 

Priori Function 
Location of Max. 

deflection 

Magnitude of Max. deflection 

(mm) 

g1(y) = y(y − b) 0.5 17.198756520806104 

g1(y) = (y2 + by + b) 0.5 17.198756538984320 

g1(y) = ey+b + ey−b 0.5 17.198757361498956 

g1(y) = sin (
πy

b
) + cos (

πy

b
) 0.5 17.198756518719623 

 

3.1.1 Case 1: Static and dynamic response of non-FGM flexoelectric nanoplates 

 We have first examined the static and dynamic responses of a non-FGM flexoelectric nanoplate from 

(Shingare and Naskar, 2021c) using the present model where we just neglect the surface effects (ξc and σ0 =

0) on the upper and lower surface. This nanoplate is made of hybrid graphene reinforced piezoelectric 

composite (GRPC) material where all the edges are simply supported and a transverse load of 0.1MPa is acting 

upon it. Table 2 lists the material parameters and dimensions of the GRPC nanoplate used in this case study. 

For getting static and dynamic responses, Shingare and Naskar (2021c) used the Navier approach which we 

validate here for our present single-term extended Kantorovich method (EKM) and Ritz method, respectively. 

Figure 7 shows the static response of center deflection of hybrid GRPC nanoplate along the length whereas the 

dynamic response is shown by varying resonant frequency with plate aspect ratio in Fig. 8. From figures 7 and 

8, it can be observed that the results obtained from EKM and Ritz solutions are found to be in excellent 

agreement with the results estimated by Shingare and Naskar (2021c). Concerning the issue of non-linearity 
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mentioned in previous Section 2.5.1, these figures also clearly indicate that the effect of neglecting non-linear 

terms is acceptable even in flexoelectric cases (f14 ≠ 0). 

Table 2. Material properties and dimensions of hybrid GRPC nanoplates. 

Plate thickness, h 20 nm 

Plate aspect ratio, a/h 45 

c11 112.43 GPa 

c12 3.34 GPa 

c66 2.03 GPa 

e31 -6.9337 C/m2 

μ33 3.264 × 10−9 C/V.m 

f14 1 × 10−7 C/m 

 

 
Fig. 7. Comparison of two different models for the static transverse deflection of nanoplates along the length.  

3.1.2 Case 2: Static and electric potential response of non-FGM nanoplates considering surface effects 

 Here, we have examined and validated the surface effect of a 2D non-FGM nanoplate. As our problem 

statement is on open-circuit condition and due to lack of literature on open-circuit, we validate our results 

indirectly with Yan and Jiang (2012a) which is based on closed-circuit conditions. This validation is based on 

one simple observation of the internal electric field in both cases. If we compare Eq. (14) with the electric field  
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Fig. 8. Comparison of two different models for the resonant frequency of nanoplates in terms of aspect ratio. 

Table 3. Material and surface parameters of 2D non-FGM plates. 

Plate aspect ratio, a/h 30 

Material PZT-5H 

c11 126 GPa 

c12 55 GPa 

c66 2.03 GPa 

e31 -6.5 C/m2 

e33 23.3 C/m2 

μ33 1.30 × 10−8 C/V.m 

f14 0 C/m 

c11
s  7.56 N/m 

e31
s  -3.0 × 10−8 C/m  

σ0 1.0 N/m 

    

the internal electric field (Ez) is the same. We have also validated the aforementioned statement by plotting the 

electric potential distribution on the upper and lower layer of nanoplate in figures 9 and 10 from our analytical 

model considering two instances (UD and LD distributions) and observed that potential is zero on the upper 
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(Ez) equation mentioned by Yan and Jiang (2012a), we can conclude that non-flexo (f14 = 0) open-circuit case 

is equivalent to zero voltage (V = 0) close-circuit case for the present nanoplate problem because in both cases 

surface (≈ 0 V) and the lower surface is equivalent to a ground node. The material properties and surface 

parameters used in this case are enlisted in Table 3.   

In figure 11, it can be observed that there is a dependency of plate thickness on its deflection in the 

presence of positive residual surface stress (σ0 = 1 N/m) and with the increase of thickness, the effect of 

surface stress diminishes. From figure 11, it can also be concluded that the results obtained using the EKM 

solution are found in good agreement with the results estimated by Yan and Jiang (2012a). Now if we include 

flexoelectric property (f14 ≠ 0) in our present analytical model along with surface effects, there will be the 

inclusion of some non-zero potential in upper surfaces and it is observed that the value of this potential (V) is 

very less (nearly zero), but it is more than the previous non-flexo cases. Figure 12 shows the potential 

distribution of flexo-surface FGPM nanoplates considering UD and LD cases. The same trend is also observed 

in the case of a flexoelectric GNC nanowire (Kundalwal et al., 2020).    

         
                                       (a)                                                                                  (b) 

Fig. 9. Electric potential distribution on upper surface of nanoplates considering: (a) UD and (b) LD. 

3.2 Static response of FGPM nanoplates 

 The classical thin plate theory is adopted in this investigation by neglecting nonlinear terms to 

determine the electromechanical response (static, dynamic, and electrical behavior) of the FGPM nanoplate. 

The FGPM nanoplate is initially subjected to a uniformly distributed load q0 = 0.05 pN/nm2. Even though 

substantial advances are reported over the past couple of decades, still various complexities exist related to the 

flexoelectric coefficient (f14) for PVDF based structures. Several authors have stated that the range of its 
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magnitude typically varies in between 10−10 to 10−5 C/m (Baskaran et al., 2011; Zhou et al., 2017). The 

material properties of GPLs and PVDF and related dimensional parameters are summarized in Table 4. Here, 

 

      
                                         (a)                                                                                    (b) 

Fig. 10. Electric potential distribution on lower surface of nanoplates considering: (a) UD and (b) LD. 

 

Fig. 11. Variation of non-dimensional deflection of nanoplates with respect to thickness. 

for sake of simplicity, we have adopted the cubic crystal symmetry for graphene reinforced polymer matrix 

composites. The different influencing parameters on the static deflection of nanoplates are investigated and 

discussed here in two sections, i.e., considering only flexoelectric effect and considering both surface and 
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flexoelectric effects. In later sections, we have also pointed out few limitations of our present model in 

predicting its electromechanical characteristics.  

 

       
                                       (a)                                                                                  (b) 

Fig. 12. Electric potential distribution on the upper surface of flexo-surface nanoplates considering: (a) UD 

and (b) LD. 

3.2.1 Consideration of only flexoelectric effect (𝛏𝐜 𝐚𝐧𝐝 𝛔𝟎 = 𝟎) 

 In this section, we investigated the effect of various parameters such as plate thickness (h), aspect ratio 

(a/h), in-plane dimensions (a or b), etc., considering the center deflection and deflection ratio (rflex and rsur) 

as our reference. The deflection ratio is given by: 

rflex =
Deflection considering flexoelectric effect

Deflection without flexoelectric effect
 

Figure 13 shows the effects of thicknesses on a square FGPM nanoplate's deflection ratio with three different 

distributions for CCCC boundary condition. Here the width-to-thickness ratio of nanoplate is kept constant, 

i.e., a/h = 50. It can be observed, with the increase of thickness, the deflection ratio tends to unity which 

indicates that the flexoelectric effect is more pronounced in case of a lesser thickness of the plate. From this, it 

can be concluded that the phenomenon of flexoelectricity is size-dependent. In addition, the flexoelectric 

FGPM nanoplates with LD and UD distribution show almost the same behaviour while in the case of PD, we 

observe less flexoelectric effect than UD and LD because it achieves the saturation stage (rflex = 1) faster. In 

all three distributions, pure flexoelectricity stiffens the FGPM plate in terms of maximum static deflection.  

The effects of thickness and in-plane dimensions of the nanoplate on its static bending response are now 

investigated in the following figures. In figure 14, we have kept in-plane dimensions (a and b) constant  
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Table 4. Geometric and material properties of constituents of FGPM (Arefi et al., 2018; Z. Zhao et al., 2020). 

Elastic and geometrical properties Piezoelectric constants (C/m2) 

Wchar 1% e31
PVDF 50.535 × 10−3 

lGPL 3 nm e32
PVDF 13.212 × 10−3 

wGPL 1.8 nm Surface parameters 

tGPL 0.7 nm Charac. length (𝜉𝑐) 1 nm 

α 100 × 1000 𝜎0 1 or 0 N/m 

ρGPL 1060 kg/m3 σxy
0  0 N/m 

ρPVDF 1920 kg/m3 Dielectric constants (F/m) 

EGPL 1010 GPa 𝑎33
PVDF 0.59571 × 10−9 

EPVDF 1.44 GPa Flexoelectric parameters 

νGPL 0.186 f3113 ≈ 1 × 10−7 C/m 

νPVDF 0.29 f3223 ≈ 1 × 10−7 C/m 

whereas, in figure 15, the thickness (h) is kept constant. Figure 14 illustrates that all distributions have a 

stronger flexoelectric impact if the aspect ratio is large, i.e., when the thickness is small. Here, the deflection 

ratios of UD and LD both drop to 0.56, whereas PD only drops to 0.69 for aspect ratio, a/h = 100. 

 

Fig. 13. Effect of thickness (h) on deflection ratio (rflex) of flexo FGPM nanoplates at constant aspect ratio 

(a = b = 50h). 
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Figure 15 shows another important aspect of size-dependency of flexoelectric property. When the thickness is 

kept constant, in-plane dimensions have nearly no effect on the deflection ratio for that particular range of 

aspect ratios (10 to 100). In this case, we observe the deflection ratio of PD is more than UD. For the sake of 

brevity, we have not presented the results for LD nanoplates as it shows similar behavior as that of UD 

nanoplate. The reason for such thickness dependency is that the strain gradient has an inverse relationship with 

the material dimension i.e., size of structures (Kumar et al., 2018) while it has a direct effect on flexoelectricity 

(Kundalwal, et al., 2020). This is also the reason why we get more flexoelectric properties in the case of UD. 

We also observed from our analytical model that the strain gradient is more in the case of UD or LD as 

compared to PD-FGPM nanoplate. For example, the values of strain gradient (εxx,z) at centre in UD and PD 

for a square flexoelectric nanoplate (f14 = 10−7 C/m) with h = 20 nm,a = b = 50h are 2.476 × 105 m−1 

and 1.913 × 105 m−1, respectively.  

   

 

Fig. 14. Effect of aspect ratios (a/h) on the deflection ratio (rflex) of flexo FGPM plates at constant in-plane 

dimension (a = b =  500 nm).  

Figure 16 represents the maximum transverse deflections of UD- and PD-FGPM nanoplates with and 

without consideration of flexoelectricity. Here, we have used a plate thickness of h = 20 nm to study the 

flexoelectric effect on the static bending deflection because both distributions don’t reach saturation at h =

20 nm as shown in figure 13. The difference in transverse deflection due to the flexoelectric effect is maximum 

near the center of UD-FGPM nanoplates and is less for PD case which also validates the observations of figures 

13, 14 and 15. From figure 16 (a), it can be concluded that PD-FGPM flexoelectric plate shows stiffer behavior 

than the UD-FGPM plate, which is also in agreement with existing literature (Z. Zhao et al., 2020). Like 

conventional FGM plates (Talha and Singh, 2010), figure 16 (b) also shows the center deflection of the SSSS 

flexoelectric plate is more than the CCCC plate as the bending stiffness of the CCCC plate is higher. It is also 
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observed, due to consideration of the flexoelectric effect there is a significant reduction in deflection of FGPM 

nanoplates. 

 
Fig. 15. Effect of aspect ratios (a/h) on the deflection ratio (rflex) of flexo FGPM plates at a constant thickness 

(h = 20 nm). The results corresponding to LD nanoplates are similar to that of the UD case. 

  

                                          (a)                                                                                   (b) 

Fig. 16. Variation of transverse deflection of flexo FGPM nanoplates along longitudinal axis (x) with different 

distribution of GPLs. (a) the effect of flexoelectric effect over non-flexoelectric effect (b) SSSS and CCCC 

boundary conditions. The results corresponding to LD nanoplates are similar to that of the UD case in both 

cases. 

Figure 17 shows the variation of transverse deflection of the clamped-clamped FGPM nanoplate 

considering different distribution and flexoelectric coefficients ranging from 10−10 C/m to 10−6 C/m. It is 

evident that the effect of flexoelectricity significantly affects the overall static deflections of the FGPM 
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nanoplate. The deflection continues to decrease as the flexoelectric coefficient increases in magnitude. We 

observe the same trend of results in published literature (Shingare and Naskar, 2021c) which affirms the 

validity of our present model (EKM) further. In addition to this, in all three distributions, there exists a 

significant reduction in the magnitude of deflection in between  f14 = 10−6 C/m and f14 = 10−8 C/m whereas 

after f14 = 10−8 C/m, this reduction is almost negligible. From the observations of figures 16 (a) and 17, one 

can report another prominent conclusion that as flexoelectric coefficient increases there is a significant 

reduction in the static deflection (figure 17), while there will be one case where there will be no effect of 

flexoelectricity, i.e., deflection with and without flexoelectric effect will be same for all aspect ratios. In that 

case, the deflection ratio, rflex ≈ 1. The same trend of results was also observed in the existing literature 

(Shingare and Kundalwal, 2019) on the non-FGM graphene/polyimide nanocomposite structures. 

 

         

                                          (a)                                                                                   (b) 

Fig. 17. Variation of transverse deflection of flexo FGPM nanoplates for various flexoelectric coefficients and 

distributions: (a) UD and (b) PD. The results corresponding to LD nanoplates are similar to that of the UD 

case. 

Figures 18 and 19 illustrate the effect of two influencing parameters, the total weight fraction of GPLs 

(WGPL
t ) in the PVDF matrix and piezoelectric multiple (𝛼), on the static bending deflection of a square 

flexoelectric nanoplate. Due to the incorporation of more GPLs into the FGPM system or due to an increase in 

the theoretical value of piezoelectric multiple (𝛼), there is an increase in the overall stiffness of composite 

which directly influences the bending rigidity of nanoplates. This is one of the reasons for the decrement of 

static deflection with an increment of GPLs weight fraction and piezoelectric multiple. After analyzing figures 

17, 18 and 19, it is evident that the deflection ratio or effect of flexoelectricity on static deflection not only 
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depends on size parameters of the structure but also on the value of its flexoelectric coefficient, GPLs weight 

fraction and piezoelectric multiple.             

 

 
                                               (a)                                                                         (b) 

Fig. 18. Variation of transverse deflection of flexo FGPM nanoplates for different weight fractions of GPLs 

and distributions: (a) UD and (b) PD. The results corresponding to LD nanoplates are similar to that of the UD 

case. 

 

      
                                             (a)                                                                               (b) 

Fig. 19. Variation of transverse deflection of flexo FGPM nanoplates for various piezoelectric multiples and 

distributions: (a) UD and (b) PD. The results corresponding to LD nanoplates are similar to that of the UD 

case. 
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(a)      (b) 

 
(c) 

Fig. 20. Electric field variation along thickness of FGPM nanoplates for various distributions: (a) UD, (b) LD 

and (c) PD. 

Figure 20 depicts the distribution of internally generated electric field (Ez) along the thickness of CCCC 

flexoelectric nanoplate for three different distributions. As per the discussion in section 2.3, there will be 

contributions of both flexoelectricity and piezoelectricity in the induced electric field of the open-circuit case. 

The results associated with electric filed considering piezoelectricity, flexoelectricity, and both piezoelectricity 

and flexoelectricity are illustrated in Fig. 20 (a, b and c). In the case of UD-FGPM, a linear variation of the 

electric field is observed whereas in LD- and PD-FGPM, a linear variation is observed except end and center 

position, respectively. Such a linear variation in case of UD-FGPM is in coherence with the observations of 
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Yan and Jiang (2012b). In case of LD- and PD-FGPM, there exists a jump in the field at the end and middle 

position, respectively, and the magnitude of LD or PD field is more than that of the UD case.   

3.2.2 Consideration of flexoelectric and surface effects (𝛏𝐜 𝐚𝐧𝐝 𝛔𝟎 ≠ 𝟎) 

 Along with flexoelectricity, the surface effect is one of the important influencing factors in predicting 

the electromechanical behavior of nanoplates. In this analysis, we also considered the deflection ratio (rsur) 

and center deflection as our reference. The deflection ratio by considering surface effect can be given as: 

rsur =
Deflection considering flexoelectric  and surface effect

Deflection without flexoelectric  and surface effect 
 

 

                                                 (a)                                                                         (b) 

Fig. 21. (a) Effect of thickness (h) on deflection ratio (rsur) of flexo-surface FGPM nanoplates at constant 

aspect ratio (a = b = 50h) and (b) Effect of aspect ratios (a/h) on deflection ratio (rsur) of flexo-surface 

FGPM nanoplates for thickness (h = 20 nm). The results corresponding to LD nanoplates are similar to that 

of the UD case in both cases. 

In the static deflection of a plate, the sign of the surface residual stress (σ0) is crucial. In case of negative 

residual stresses, the mechanical buckling instability occurs at a certain range of thickness for the applied 

transverse load (q0) and thus, it results in large deformation. As in this paper, the discussion is being limited 

to the static deflection and dynamic behavior of nanoplates, we consider only non-negative residual surface 

stresses (σ0 = 1 and 0) in further analyses to avoid buckling.  

 Figures 21 (a and b) demonstrate the resultant effect of flexoelectricity and surface residual stress on 

the static bending deflection of square flexo-surface FGPM nanoplate against its thickness and aspect ratio, 

respectively. In figure 21(a), we kept the aspect ratio (a/h = 50) whereas, in figure 21(b), the thickness is kept 

constant (ℎ = 20 nm). In all these combinations, one can observe that the deflection ratio is less than 1 which 
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indicates that this combined effect stiffens the FGPM nanoplate. From our analysis, it can be observed that the 

percentage reduction of deflection is more when we incorporate the surface effect. For example, for a square 

UD-FGPM nanoplate (h = 20 nm;  a/h =  50), pure flexoelectricity reduces the static deflection of the 

conventional piezoelectric nanoplate by 4.71% whereas the combined effect of surface and flexoelectricity 

reduces it by 26 % – 91.5 % depending upon the sign and magnitude of residual surface stresses. In figure 

21(a), with the reduction of surface residual stresses (1 to 0 N/m), the combined effect also diminishes. Unlike 

pure flexoelectricity (refer to figure 13), when residual surface stress is zero, the deflection ratios of PD- and 

UD- FGPM are inverted, i.e., UD >  PD. 

 

 

Fig. 22. Variation of maximum deflection of flexo-surface FGPM nanoplates against the thickness (h) (a =

b = 50h). The results corresponding to LD nanoplates are similar to that of the UD case. 

In figure 21(b), it can be observed, for zero residual stress, the deflection ratio is almost independent of in-

plane dimensions if the thickness is fixed, which is similar to the pure flexoelectricity case. But when the 

residual surface stress is non-zero, there is a reduction in rsur  and it becomes dependent on in-plane 

dimensions. It can be also seen that there exists one critical aspect ratio (a/h = 15.8) where PD and UD give 

the same value of rsur and after that, we get rsur(PD) > rsur(UD). Surface effects become increasingly 

apparent in all distributions as in-plane dimensions increase. Figure 22 represents the maximum (center) 

deflection of flexo-surface FGPM nanoplate with respect to its thickness for UD and PD distribution with and 

without considering residual surface stress (𝜎0 = 1 and 0). It can be seen that the effect of surface and 

flexoelectricity decreases as there is an increment in the thickness of flexo-surface nanoplate, and for both the 

residual surface stresses, the deflection is less for PD which is similar to the previously discussed pure 

flexoelectricity case.                   
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                                                 (a)                                                                         (b) 

Fig. 23. Variation of transverse deflection of flexo-surface FGPM nanoplates along the longitudinal axis (x) 

for LD and UD distribution with surface effects: (a) 𝜎0 = 0 and (b) 𝜎0 = 1 N/m. (h = 20 nm,a = b = 50h). 

The results corresponding to LD nanoplates are similar to that of the UD case. 

 
                                              (a)                                                                         (b) 

Fig. 24. Variation of transverse deflection of CCCC and SSSS flexo-surface FGPM nanoplates along 

longitudinal axis (x) with different distributions: (a) UD and (b) PD. (h = 20 nm,a = b = 50h). The results 

corresponding to LD nanoplates are similar to that of the UD case. 

 Figure 23 investigates the effect of surface and flexoelectricity on flexo-surface FGPM nanoplate with 

thickness and in-plane dimension as h = 20 nm and a = b = 50h, respectively. As per the discussion in figure 

22, it can be seen that PD-FGPM shows less deflection than UD-FGPM. Here, the effect of flexoelectricity 

reduces when we increase the residual stress from 0 to 1 N/m. In figure 23(a) (𝜎0 = 0), the difference in static  
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                                             (a)                                                                         (b) 

Fig. 25. 3D representation of deflection of flexo-surface FGPM nanoplates with different boundary conditions: 

(a) CCCC and (b) SSSS. (h = 20 nm, a = b = 50h,σ0 = 1). 

 
                                               (a)                                                                         (b) 

Fig. 26. Variation of transverse deflection of flexo-surface FGPM nanoplates for different weight fractions of 

GPLs and distributions: (a) UD and (b) PD (h = 20 nm, a = b = 50h, σ0 = 1 N/m). The results 

corresponding to LD nanoplates are similar to that of the UD case. 

deflection with and without considering flexoelectricity is more prominent than in figure 23(b) (𝜎0 = 1). 

Furthermore, if we compare the deflection reduction by considering only surface effect (f14 = 0), then also 

there is a reduction in maximum deflection of nanoplate due to pure surface effect, which is in coherence with 

the theory proposed by (Lu et al., 2006). For example, in a square UD-FGPM nanoplate (h = 20 nm;  a = b =

50h), pure surface effect reduces the deflection by 91.47 %, whereas the combined surface and flexoelectricity 

reduce it near about the same magnitude ~91.52 %.      
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                                              (a)                                                                         (b) 

Fig. 27. Variation of transverse deflection of flexo-surface FGPM nanoplates for various piezoelectric 

multiples and distributions: (a) UD and (b) PD. (h = 20 nm,a = b = 50h, σ0 = 1 N/m). The results 

corresponding to LD nanoplates are similar to that of the UD case. 

Figure 24 shows the influences of the mechanical boundary conditions on the transverse deflection of 

flexo-surface FGPM nanoplate considering UD and PD distribution. In both cases (σ0 = 0 and σ0 = 1), it is 

apparent that CCCC nanoplate is stiffer than SSSS nanoplate as discussed in section 3.2.1. Another notable 

observation from this figure is that when we change residual surface stress from 0 to 1 N/m, the percentage 

reduction of deflection in the SSSS surface nanoplate is much more than the CCCC plate which is true in the 

case of both distributions. Figure 25 represents a 3D representation of the deformed shape of the PD-FGPM 

plate for a better understanding of the deflection. 

 Figures 26 and 27 show the influences of the total weight fraction of GPLs in PVDF and piezoelectric 

multiple (𝛼) in static deflection incorporating surface and flexoelectric effects. For the case of σ0 = 0, these 

variations and trends are similar as presented in figures 18 and 19. For the sake of brevity, we have omitted 

those results here. It can be also observed that there is a reduction in transverse deflection of flexo-surface 

FGPM nanoplate with the increment in weight fraction of GPLs in PVDF matrix as well as increment in the 

value of piezoelectric multiples. 

3.3 Dynamic response of FGPM nanoplates 

 In this section, we have performed free vibration analysis of FGPM structures with three different 

distributions of graphene nanoplatelets incorporating both flexoelectric and surface effects to carry out 

dynamic analysis. The material and dimensional parameters are same as that of the static case which is 

summarized in Table 5 and the Ritz method is implemented to extract all the dynamic results. As this is a free 

vibration case, the transverse load (q0) is zero, i.e., dynamic analysis is independent of the externally applied 
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load. Further analysis is performed in terms of mode (1, 1) natural eigenfrequency of the structure as this is 

fundamentally important for a range of applications.  

Table 5. Resonant frequency (𝜔11) (MHz) of SSSS flexoelectric FGPM nanoplates (a/h =  50, f14 =

1 × 10−7C/m). 

Distributions of 

FGM 
Thickness (h) (nm) Navier solution Ritz solution 

UD 

20 29.7605 29.7662 

40 14.5722 14.5751 

60 9.6763 9.6782 

80 7.2471 7.2485 

100 5.7939 5.7949 

LD 

20 29.7939 29.7996 

40 14.5905 14.5933 

60 9.6887 9.6905 

80 7.2563 7.2578 

100 5.8014 5.8025 

PD 

20 33.6339 33.6406 

40 16.6312 16.6346 

60 11.0645 11.0665 

80 8.2923 8.2939 

100 6.6315 6.6328 

 

 In Table 5, the resonant frequencies of one SSSS flexoelectric FGPM nanoplate are compared for 

different thicknesses and GPLs distributions obtained from two different solutions – exact (Navier) and present 

(Ritz) solution. It demonstrates that the current Ritz solution is capable of producing findings with high level 

of accuracy (average % of error is 0.0193%).  Having our semi-analytical framework validated with respect to 

exact solutions, we further investigate different critical aspects of free vibration and the effects of multiple 

influencing parameters. It can be noted in this context that the combined effect of surface and flexoelectricity 

becomes more noticeable with decreasing the dimensions of structures (thickness). It is observed that there is 

a significant increment in the magnitudes of eigenfrequencies due to the incorporation of surface effect and  
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                                              (a)                                                                         (b) 

Fig. 28. Variations of resonant frequency of FGPM nanoplates with thickness (h) considering different 

distributions of GPLs: (a) UD and (b) PD. (a = b = 50h). The results corresponding to LD nanoplates are 

similar to that of the UD case. 

this percentage increment reduces in the higher mode of vibration. Our further analysis also reveals that, in 

case of PD-FGPM flexoelectric nanoplates (h = 20 nm, a/h = 50), an increase of 193.9% can be observed 

in the mode (1,1) whereas this percentage reduces to 76.4% in the mode (3,3) when the surface effect is 

considered. Figure 28 depicts the fluctuation in resonant frequency as a function of plate thickness for all three 

distributions that include surface, as well as with and without the flexoelectric effect. As discussed in earlier 

sections (refer to figure 22), the stiffness of PD-FGPM nanoplate is more as compared to UD and LD, and  

 

Fig. 29. Variation of resonant frequency of flexo-surface FGPM nanoplates with thickness (h) for CCCC and 

SSSS boundary conditions (UD, a = b = 50h , σ0 = 1 N/m). 
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hence, it results in the highest natural frequency for PD distribution considering all residual surface stresses. 

For example, in case of σ0 = 1 N/m, a square UD or LD-FGPM nanoplate (h = 15 nm; a/h = 50) shows 

281.1 MHz fundamental frequency for mode (1,1), whereas in case of PD-FGPM, it is 290.3 MHz. From figure 

28, it is observed, due to the incorporation of surface and flexoelectricity, the natural frequency of FGPM 

nanoplate increases, and the results are in very good agreement with existing literature (Ebrahimi and Barati, 

2019). Nanoplate with non-zero residual surface stress (σ0 = 1 N/m) gives a higher resonant frequency than 

that of zero residual surface stress. For example, in the case of σ0 = 1 N/m in a square PD-FGPM nanoplate 

(h = 15 nm; a/h = 50), the fundamental frequency for mode (1,1) is 290.3 MHz, whereas it is 113.4 MHz for 

𝜎0 = 0. Similar trend of results were observed in the existing literature on annular nanoplate (Ghorbanpour 

Arani et al., 2021). In figure 28, the difference among these three curves reduces with the increase of thickness. 

This is due to the size-dependent effect of nano-scaled structures. 

 Figure 29 demonstrates the effect of mechanical boundary conditions such as SSSS and CCCC 

nanoplate on its resonant frequency. Here, the plate aspect ratio and residual surface stress are 50 and 1 N/m, 

respectively. Like conventional plates, the eigenfrequency in the case of CCCC plate is always higher than that 

of SSSS plate. Figure 30 represents the first four mode shapes of a square PD-FGPM nanoplate (h =

20 nm;  a/h = 50) with CCCC and SSSS boundary conditions incorporating both surface and flexoelectric 

effects. Figure 31 shows the variation of resonant frequency in terms of plate thickness for various aspect ratios 

and weight fractions of GPLs in the PVDF matrix. For instance, increasing aspect ratio (a/h) leads to a 

decrease in the frequencies of the UD-FGPM nanoplate. The same trend of results is also observed in the case 

of other remaining distributions. Incorporating more graphene platelets within the PVDF matrix as 

reinforcement leads to an increase in its overall stiffness. Therefore, we get higher values of natural frequency 

in the case of WGPL
t = 4%  than that of  WGPL

t = 1%. For example, in the case of  σ0 = 1 N/m, a square UD-

FGPM nanoplate (h = 40 nm; a/h = 50) shows an increase of ~20.01 % in natural frequency if we increase 

GPL’s percentage from 1% to 4%. This percentage increases with the aspect ratio, indication a coupled effect 

between GPL’s percentage and aspect ratio. 

Physical realization of the nano-scale structures, as discussed in this paper, is of crucial importance. From an 

experimental viewpoint, it is important to find out an appropriate fabrication technique to manufacture the nanocomposite 

structures. Nanofabrication techniques such as layer-by-layer (LbL) assembly, dispersion and solution blending route 

methods are widely used to fabricate multifunctional thin films (Gamboa et al., 2010). For instance, the assemblies of 

multi-layers of graphene oxide (GO) and polyethylenimine (PEI) were presented by tailoring the thickness of assemblies 

by varying the number of GO layers. In the case of bi-layer of GO and PEI, the thickness of assembly near about ~4.5-5 

nm was achieved. In some other studies (Yang et al., 2013; Prolongo et al., 2014; Tzeng et al., 2015; Prolongo et al., 

2018), the thickness of assembly was achieved in the range of 8-10 nm using 4 to 30 GPLs. Using all these techniques,  
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Fig. 30. Mode shapes of flexo-surface FGPM nanoplates with CCCC and SSSS boundary conditions (PD, h =

20nm, a = b = 50h , σ0 = 1 N/m). 
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Fig. 31. Variation of resonant frequency of flexo-surface FGPM nanoplates with thickness (h) for different 

aspect ratios and GPL weight fractions (UD, 𝜎0 = 1 N/m). Here a clamped boundary condition is considered. 

the fabrication of thin nanocomposite can be achieved on the order of nanometer. Therefore, one can use these 

techniques to fabricate graphene-based nanocomposite and achieve significant electromechanical response 

considering flexoelectric and surface effects. 

 In view of the analytical and numerical study, in the present study, the GPLs are assumed as rectangular-

shaped solid reinforcement of average width 𝑤𝐺𝑃𝐿 , length 𝑙𝐺𝑃𝐿 and thickness 𝑡𝐺𝑃𝐿, and the values of these 

parameters are taken 1.8 nm, 3 nm, and 0.7 nm, respectively. We used material properties and geometrical 

parameters of GPLs and PVDF from existing literature which are given in Table 4. Moreover, we make use of 

‘classical Kirchhoff plate theory’ (Eq. 15) which generally gives accurate results if the concerned plate is thin 

(𝑎/ℎ ≥ 20). Now for instance, if we take a square plate with aspect ratio (𝑎/ℎ = 100) and length (1000 nm), 

then it is evident that the GPLs with thickness 0.7 nm can easily be accommodated within the plate of 10 nm 

thickness. 

4. Concluding remarks 

The coupled electromechanical behaviour of graphene reinforced functionally graded piezoelectric 

material (FGPM) nanoplates is explored by taking into account the surface and flexoelectricity effects 

concerning the static and dynamic responses. Owing to inhomogeneous strain and high surface-to-volume ratio 

in nanostructures, it is important to account for the flexoelectricity as well as surface effect while analyzing 

the size-dependent electromechanical responses of nano-scale piezoelectric materials. An efficient semi-

analytical framework is developed here for the FGPM nanoplates under the open-circuit condition, wherein 

the single term extended Kantorovich method (EKM) is implemented for static analysis and the Ritz method 

is adopted for dynamic analysis. The numerical results are extensively validated with existing literature for 
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checking the accuracy of the present model. It is noted that the novel EKM based framework for graphene 

reinforced FGPM nanoplates provides rapid convergence for investigating the role of surface and 

flexoelectricity effects, while the Ritz method is capable of predicting accurate dynamic behavior of the system 

incorporating both the effects. 

Based on the unified semi-analytical framework, a comprehensive investigation is carried out on static 

deflection and free vibration considering different distributions of graphene platelets in FGPM nanoplates such 

as linear distribution (LD), uniform distribution (UD), and parabolic distribution (PD). In all cases, the 

parabolic distribution exhibits the stiffest behavior and higher natural frequency compared to the other 

distributions. In this study, the electromechanical response of nanoplates is investigated considering different 

crucial parameters such as plate thicknesses, aspect ratios, flexoelectric coefficients, piezoelectric multiples 

and weight fraction of graphene platelets along with different boundary conditions. Our findings reveal that 

the static deflection and dynamic resonance of FGPM are enhanced significantly due to consideration of 

flexoelectricity and surface effects, leading to the realization that such effects cannot be neglected. Further, 

these electromechanical effects can be exploited in designing novel materials and devices for active response 

control and energy harvesting. The electromechanical effects are found to be more pronounced for nanoplates 

of lesser thickness, and these diminish as plate thickness increases, indicating a novel size-dependent behaviour 

that could potentially be of significant importance for micro and nano architected materials. The current 

investigation further reveals that the stiffening behavior is greatly dependent on the sign and magnitude of 

residual surface stress. In the absence of surface effect, FG-PD shows a high correlation to the thickness change 

as compared to FG-UD and FG-LD. However, in the presence of a surface effect, this correlation can be 

modulated in different distributions as per application-specific demands. In the presence of non-zero residual 

stresses, the static and dynamic responses for different FGPM distributions are dependent on the in-plane 

dimensions of the plates in addition to thickness. Such numerical outcomes essentially open up the avenues of 

prospective exploitation and augmentation of the electromechanical responses in an expanded design space 

including the factors like open- and close-circuit condition, strain/electric field gradient, electrical and 

mechanical loading as well as converse piezoelectricity and flexoelectricity. With the recent advances in nano-

scale manufacturing and experimental capabilities, this article will provide the necessary physical insights in 

modeling the size-dependent electromechanical coupling in multifunctional materials, systems and devices for 

applications in sensors, actuators, nanogenerators, active controllers, nano-robotics and energy harvesters. 
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Appendix A 

The stiffness coefficients and their algebraic expressions in Eq. (22) are expressed as follows: 

A11 = ∫ (z2c11(z) + ze31(z)f1z(z))dz
h/2

−h/2

 B11 = ∫ (zc11(z) + e31(z)f1z(z))dz
h/2

−h/2

 

A12 = ∫ (z2c12(z) + ze31(z)f2z(z))dz
h/2

−h/2

 B12 = ∫ (zc12(z) + e31(z)f2z(z))dz
h/2

−h/2

 

A21 = ∫ (z2c12(z) + ze32(z)f1z(z))dz
h/2

−h/2

 B21 = ∫ (zc12(z) + e32(z)f1z(z))dz
h/2

−h/2

 

A22 = ∫ (z2c22(z) + ze32(z)f2z(z))dz
h/2

−h/2

 B22 = ∫ (zc22(z) + e32(z)f2z(z))dz
h/2

−h/2

 

A66 = ∫ (z2c66(z))dz
h/2

−h/2

 B66 = ∫ (zc66(z))dz
h/2

−h/2

 

A11
f = ∫ f14(z) f1z(z)dz

h/2

−h/2

 B+ = 2(
h

2
) c66

s (
h

2
) 

A21
f = ∫ f14(z) f1z(z)dz

h/2

−h/2

 B− = 2(−
h

2
)c66

s (−
h

2
) 
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Appendix B 

All the coefficients (Hi) of each term and their algebraic expressions in Eq. (24) are expressed as follows: 

H1 = A11 + A11
f + A11

+ + A11
−  

H2 = A22 + A21
f + A22

+ + A22
−  

H3 = A21 + A12 + A21
f + A11

f + 4A66 + A21
+ + A21

− + A12
+ + A12

− + 2A+ + 2A− 

Here, H4 , H5 , H6 and H7 are non-linear terms which are expressed as follows: 

H4 = B11 + B11
+ + B11

−  

H5 = B22 + B22
+ + B22

−  

H6 = B12 + B21
+ + B21

− + B21 + B12 + B12
+ + B12

−  

H7 = 4B66 + 2B+ + 2B− 

H8 = B01
+ + B01

−  

H9 = B02
+ + B02

−  

H10 = 2B0
+ + 2B0

− 

The coefficients and their algebraic expressions in Eq. (32) are expressed as:  

D1 = A11 + A11
f + A11

+ + A11
−  

D2 = A22 + A21
f + A22

+ + A22
−  

D3 = A12 + A21
+ + A21

− + A21
f  

D4 = A21 + A12
+ + A12

− + A11
f  
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D5 = 4A66 + 2A+ + 2A+ 

D15 = B01
+ + B01

−  

D16 = B02
+ + B02

−  

D17 = B0
+ + B0

− = D18 
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