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Abstract—The large-scale multiple-input multiple-output (MI-
MO) uplink is investigated in the presence of channel-induced
uncertainty, where variable-resolution analog-to-digital convert-
ers (ADCs) are used at the base station (BS) and a recon-
figurable intelligent surface (RIS) is employed for supporting
communications between the single-antenna users and the multi-
antenna BS. We formally maximize the system throughput by
jointly optimizing the ADC’s resolution, the transmit power, the
passive reflection coefficients of the RIS and the hybrid combiner
of the BS subject to practical constraints under statistical
cascaded channel state information (CSI) error model. The robust
nonconvex optimization problem is firstly decoupled via the
classic Lagrangian dual transform and fractional programming
method, followed by a powerful decoupling-based alternating
maximization (D-AltMax) algorithm to solve this challenging
problem. Our simulation results reveal the supremacy of our
proposed algorithm over the benchmark schemes by quantifying
the improved system throughput of this robust design.

Index Terms—Massive multiple-input multiple-output (MI-
MO), reconfigurable intelligent surface (RIS), fractional pro-
gramming, alternating optimization, robust beamforming design,
imperfect CSI.

I. INTRODUCTION

As a promising candidate for the next generation of wireless
communication networks, massive multiple-input multiple-
output (MIMO) schemes are capable of significantly en-
hancing the spectral/energy efficiency attained [1]. However,
massive MIMO systems adopting traditional fully-digital pro-
cessing using power-hungry high-resolution analog-to-digital
converters (ADCs) increase the complexity as well as the
cost of their practical implementation. Hence the concept of
hybrid analog-digital beamforming architectures relying on
low-resolution ADCs (LADCs) was conceived, which reduces
the number of radio frequency (RF) chains and hence the
power dissipation. To unleash the full potential of such archi-
tectures, there has been a number of studies on beamforming
optimization [2] and user scheduling [3], which significantly
increase the system’s rate and/or energy efficiency [1], [4].
Unfortunately, under unfavorable propagation conditions, es-
pecially in millimeter wave (mmWave) systems operating at
high-frequencies the link between the transmitter and receiver
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might be susceptible to blockages, which makes their commu-
nications inefficient.

To mitigate the effect of blockages, the cost- and power-
efficient reconfigurable intelligent surface (RIS) concept has
been proposed for remarkably improving the wireless com-
munication performance [5]. Specifically, RIS is a reflect-
ing/refracting surface composed of numerous low-cost pas-
sive elements, each of which is capable of adjusting the
amplitude and/or phase of the incident signal independently
via a controller connected to the base station (BS). Owing
to the above benefits, substantial research efforts have been
invested in the design of RIS-aided communication systems,
including full-duplex systems [6], unmanned aerial vehicle
(UAV) aided [7], [8] and mmWave communication [9]–[14],
etc. In [9], the authors exploited the refraction capability of
RISs and developed a RIS-tiled wall for intelligently transitting
the signal from an outdoor BS to indoor user equipment,
which increases the chance of high-integrity outdoor-to-indoor
communication. As a further advance, in [12], the authors
harnessed the RIS as a reflection-type surface and studied a
point-to-point RIS-aided mmWave system relying on hybrid
precoding/combining, where a manifold optimization based
algorithm was developed for maximizing the spectral effi-
ciency. In [14], the authors focused their attention on the
hybrid precoding design of a RIS-aided multiuser mmWave
system and formulated a mean-squared-error (MSE) minimiza-
tion problem, which was solved by employing the gradient
projection method. However, all these contributions rely on
high-resolution quantization, which incur potentially excessive
power dissipation.

There is however a paucity of contributions on RIS-aided
systems adopting LADCs [15]–[17]. In [15], the authors
studied the capacity of beamforming using LADCs and RIS.
In [16] the authors focused their attention on the attainable rate
of the RIS-aided mmWave uplink, where both LADCs and RIS
phase noise were considered. As a further development, the au-
thors of [17] investigated the uplink of RIS-assisted mmWave
systems employing adaptive-resolution ADCs (RADCs). The
system’s achievable rate was maximized by jointly optimizing
the beam selection matrix, the RIS coefficients, and the ADC
resolution under realistic hardware constraints. However, the
authors of [15]–[17] studied a fixed power allocation scheme,
which does not exploit the potential of per-user power control
in mitigating the interference. Moreover, perfect channel state
information (CSI) was assumed to be available at the BS,
which is impractical, since no signal processing can be used
at the passive RIS. To the best of our knowledge, the robust
beamforming design and power control of RIS-aided hybrid
massive MIMO systems using adaptive-resolution quantization
and realistic imperfect CSI have not been reported as yet.

Motivated by these observations, we conceive joint robust
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Fig. 1. An illustration of the RIS-aided uplink multiuser hybrid massive
MIMO system.

beamforming and resource allocation for RIS-aided hybrid
massive MIMO systems in the presence of imperfect cascaded
BS-RIS-user CSI, where the RIS acts as a reflective surface,
assisting in bypassing obstacles. Specifically, we aim for
maximizing the worst-case sum rate via jointly optimizing
the transmit power, bit allocation per ADC, hybrid combining
matrix at the BS and passive beamforming matrix at the
RIS. In order to solve the nonconvex optimization problem
formulated, we develop a low-complexity decoupling-based
alternating maximization (D-AltMax) algorithm having guar-
anteed convergence. Specifically, with the aid of Lagrangian
dual transform and fractional programming, we equivalently
transform the original problem into a mathematically tractable
form, and then solve the resultant problem in an alternating
manner. Our simulation results demonstrate the supremacy of
the proposed scheme over the benchmark schemes.

Notations: The upper bold letters are used for matrices and
the lower bold letters are used for vectors. (·)T and (·)H denote
the transpose and conjugate transpose, respectively. ∥·∥1 refers
to the ℓ1-norm operation of vectors. ℜ{·} stands for the real
part of a complex number. diag(·), Tr{·}, and E[·] denote the
diagonal, trace and expectation operators, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider the uplink of an RIS-
aided multiuser massive MIMO system. The BS is equipped
with a uniform linear array (ULA) of Mr > 1 antennas and
MRF ≪ Mr RF chains. Each RF chain is followed by a
pair of variable-resolution ADCs, which substantially reduces
both the power consumption and hardware cost. We assume
that K single-antenna users (denoted by K , {1, · · · ,K})
are distributed in the cell and can be served simultaneously
by the BS. An RIS composed of N = NR × NR reflecting
elements (denoted by N , {1, · · · , N}) arranged in the form
of a uniform planar array (UPA) is employed for assisting
communications between the users and the BS.

We assume that the direct links between the users and the
BS are blocked by potential obstacles (e.g., high buildings)
and neglected due to unfavorable propagation conditions. The
channels spanning from user k to the RIS and from the RIS to
the BS are denoted by hr,k ∈ CN×1 and G ∈ CMr×N , respec-
tively. We also assume that all the channels experience quasi-
static flat fading and remain approximately constant in each

fading block. Let us define a diagonal matrix Φ = diag(φ)
as the reflection coefficient matrix adopted at the RIS, where
we have φ , [φ1, · · · , φN ]T with φn = cne

jθn ,∀n ∈ N .
cn ∈ [0, 1] and θn ∈ [0, 2π) denote the amplitude coefficient
and phase shift of the n-th reflection element, respectively. In
this paper, the amplitude coefficient of each reflection element
is set to cn = 1 for the ease of passive beamforming design.
Then it follows that |φn| = 1,∀n ∈ N .

Let sk represent the symbol transmitted by user k. With-
out loss of generality, sk is modeled by an independent
and identically distributed random variable with zero mean
and unit variance, i.e., sk ∼ CN (0, 1). Further, we define
s , [s1, · · · , sK ] being the transmit signal vector, Hr ,
[hr,1, · · · ,hr,K ] ∈ CN×K being the channel matrix between
the RIS and users, and P , diag(p) with p = [p1, · · · , pK ]T

being the transmit power matrix, where pk represents the
transmit power of user k. Then, with the support of the
reflection operation by the RIS, the signal received by the
BS can be written as

y =

K∑
k=1

GΦhr,k
√
pksk + z = GΦHrP

1
2 s+ z, (1)

where z ∈ CMr×1 ∼CN (0, σ2
0I) denotes the additive white

Gaussian noise (AWGN) with corresponding variance σ2
0I.

Analog Combiner (Active analog beamforming): The re-
ceived signal y is first combined via the analog combiner
W ∈ CMRF×Mr . Since phase-shifters are used to realize
the analog combiner, the entries of W are restricted to
satisfy the element-wise constant-modulus constraint, namely,
|W(m, i)| = 1, ∀m ∈ {1, · · · ,MRF }, i ∈ {1, · · · ,Mr}.
Therefore, the resulting signal is given by

ȳ = WGΦHrP
1
2 s+Wz. (2)

Quantization: We consider that an ADC pair is connected
with an RF chain and at each RF chain the ADCs can operate
with different resolutions adaptive to the propagation char-
acteristics, which provides additional flexibility and reduced
quantization error. Specifically, the in-phase and quadrature
component of ȳm (the m-th entry of ȳ) is quantized at ADC m
with bm quantization bit. For analytical tractability, we adopt
an additive quantization noise model (AQNM) for obtaining
a linearized approximation of the quantization process. After
quantizing ȳ, we obtain the signal as follows

yq = Q(ȳ) = QaWGΦHrP
1
2 s+QaWz+ zq, (3)

where Q(·) stands for the quantization operator and Qa is
the diagonal matrix defined as Qa = diag([1 − a1, · · · , 1 −
am, · · · , 1 − aMRF

]). The normalized quantization error am
can be approximated as am = π

√
3

2 2−2bm for bm > 5. For
bm ≤ 5, the value of am is shown in [4, Table I]. Vector zq ∼
CN (0,Rqq) is the additive Gaussian distributed quantization
noise uncorrelated with ȳ. The covariance matrix Rqq for the
given channel is represented as Rqq=Qa(I−Qa)E[ȳȳH ].

Digital Combiner (Active digital beamforming): Once the
received signals are quantized, a linear digital combiner vk ∈
CMRF×1 is applied to yq aiming at mitigating interference
and quantization error. The retrieved symbol of user k can be
expressed as

xk = vH
k QaWGΦHrP

1
2 s+ vH

k QaWz+ vH
k zq. (4)



We note that only imperfect CSI is available in the con-
sidered system due to the channel estimation errors. Define
Θk = Gdiag(hr,k) as the cascaded CSI matrix from user k
to the BS via the RIS. Then the channel matrix Θk in the
presence of CSI errors is given by

Θk = Θ̂k +∆Θk, (5)
where Θ̂k denotes the estimated cascaded CSI matrix1 and
∆Θk represents the corresponding CSI error matrix. It is
assumed that ∆Θk is statistically independent of Θ̂k and
follows the circularly symmetric complex Gaussian (CSCG)
distribution2, i.e., vec(∆Θk) ∼ CN (0, σ2

kI), where σ2
k is the

variance of the individual CSI errors. Accordingly, we can
rewrite (4) as follows

xk=vH
k QaW

(∑
k

(Θ̂k+∆Θk)φ
√
pksk+z

)
+vH

k zq. (6)

In this case, the mutual information conditioned on estimated
channel matrix Θ̂k can be written as I(sk;xk|Θ̂), where Θ̂ =
{Θ̂k}k∈K. According to [20], expanding I(sk;xk|Θ̂) in terms
of the corresponding differential entropies results in

I(sk;xk|Θ̂) = H(sk|Θ̂)−H(sk|xk, Θ̂). (7)

Since sk follows the CSCG distribution with zero-mean and
unit-variance, the first term on the right hand side (RHS)
of (7) simplifies to log(2πe) [21]. Regarding the second
term on the RHS of (7), it is upper bounded by the en-
tropy of a Gaussian random variable with variance equal to
E[(sk − gkxk)(sk − gkxk)

∗|Θ̂] [22], where gkxk denotes the
(linear) MMSE estimation of sk. Then, it yields the following
inequality:

H(sk|xk, Θ̂)≤ log

(
2πe

(
1− pk|vH

k QaWΘ̂kφ|2

Γ

))
, (8)

where Γ ,
∑

j ̸=k pj |vH
k QaWΘ̂jφ|2 +∑

j pjσ
2
jφ

Hφ∥vH
k QaW∥2 + σ2

0∥vH
k QaW∥2 + vH

k Rqqvk,
and Rqq is the variance matrix of the additive quantized noise
zq , expressed as

Rqq ,Qa(I−Qa)diag
(∑

j

pjWΠjW
H (9)

+
∑
j

pjσ
2
jφ

HφWWH + σ2
0WWH

)
,

along with Πj , Θ̂jφφ
HΘ̂H

j . Hence, a lower bound of the
conditional mutual information can be derived by inserting (8)
into (7) which leads

I(sk;xk|Θ̂) ≥ Rk(W,V,p,b,φ)

, log

(
1 +

pk|vH
k QaWΘ̂kφ|2

Γ

)
, (10)

1The linear minimum MSE (MMSE) method is adopted for estimating
the cascaded CSI. Based on the linear MMSE estimator, the BS estimates
the cascaded channel through a time division duplexing (TDD) operation
including a two-phase pilot-based uplink training procedure by exploiting the
correlation among the cascaded user-RIS-BS channels of different users [18].
In fact, accurately estimating the cascaded channels is an important problem
and still remains open in the RIS literature, which is beyond the scope of this
compact Letter.

2Since the cascaded CSI can be estimated by applying the linear MMSE
algorithm, in the presence of additive Gaussian noise, the resultant channel
estimation errors obey the CSCG distribution [19].

where we define V , [v1, · · · ,vK ] and b , [b1, · · · , bMRF
]T

for convenience. Then, based on the sum of the lower bound
of the mutual information over all users representing the sum
of the achievable rate, we study the worst-case sum rate
maximization optimization problem by performing the joint
design of hybrid beamforming, bit allocation and transmit
power control. Mathematically, the optimization problem is
formulated as:

max
W,V,p,b,φ

R =
K∑

k=1

Rk (11a)

s.t. bm ∈ [bmin, bmax], bm ∈ N, ∀m, (11b)
∥b∥1 ≤MRF bavg, (11c)
0 ≤ pk ≤ Pk,∀k, (11d)
|φn| = 1,∀n, (11e)
|W(m, i)| = 1,∀m, i, (11f)

where bmin and bmax represent the minimum and maximum
number of quantization bits of an ADC, and bavg stands for
the average number of quantization bits for RADCs across the
different RF chains. Constraint (11b) limits the range of the
quantization bits for each RADC. The inequality constraint
(11c) is added to provide the threshold of the total number of
quantization bits for the system [3]. Constraint (11d) reflects
the transmit power budget of user k, while (11e) and (11f)
impose the constant-modulus constraints on all entries of the
RIS passive beamforming vector and the active analog com-
bining matrix, which are due to the practical implementations
of the RIS elements and analog combiner, i.e., using low-cost
phase-shifters.

III. ALGORITHM DESCRIPTION

Note that problem (11) is nonconvex and extremely chal-
lenging to tackle due to the coupled optimization variables
in the objective function, bit allocation constraints over a
discrete space and the constant-modulus constraints. To sum
up, we face an NP-hard mixed-integer nonlinear programming
(MINLP) problem. Aiming at solving problem (11), in this
section, we first handle the logarithm term in the objective
function based on the Lagrangian dual method. Thus, the
objective function can be converted into an equivalent yet more
tractable form. Then, we develop an efficient robust algorithm
to jointly design beamformers and achieve resource allocation
which is guaranteed to converge to a stationary solution of
problem (11).

A. Problem Transformation
We note that the objective function of problem (11) involves

complex logarithmic functions. To deal with it, we reformulate
the objective function as

R1=
∑
k

(
log(1+αk)−αk+

α̃k|vH
k QaWΘ̂kφ|2

pk|vH
k QaWΘ̂kφ|2+Γ

)
, (12)

where αk refers to an auxiliary variable introduced for each
ratio term in Rk and α̃k , (1 + αk)pk. Based on this, we
have the following proposition.

Proposition 1: The original optimization problem (11) is
equivalent to

max
W,V,p,b,φ,α

R1 s.t. (11b)− (11f), (13)



where α = [α1, · · · , αK ]T .
Proof: We note that the reformulated objective function

R1 is concave in α. Thus, by forcing the partial derivative of
R1 with respect to αk to zero, i.e., ∂R1

∂αk
= 0, we obtain

α⋆
k =

pk|vH
k QaWΘ̂kφ|2

Γ
. (14)

The objective function R can be obtained by substituting (14)
back into the objective function R1.

Note that R1 is still in a multiple sum-of-ratio form. In light
of the advanced fractional programming [23], by exploiting the
quadratic transformation, we formulate Proposition 2 below.

Proposition 2: By introducing the auxiliary variable β =
[β1, · · · , βK ]T with βk ∈ C for each ratio in the last term of
R1, the optimization problem (13) can be equivalently written
as

max
W,V,p,b,φ,α,β

R2 s.t. (11b)− (11f), (15)

where the new objective function is

R2=
∑
k

(
log(1+αk)−αk+2

√
α̃kℜ{β∗

kv
H
k QaWΘ̂kφ}

− |βk|2(pk|vH
k QaWΘ̂kφ|2 + Γ)

)
, (16)

and the optimal β⋆
k satisfies

β⋆
k =

√
α̃kv

H
k QaWΘ̂kφ

pk|vH
k QaWΘ̂kφ|2 + Γ

. (17)

Proof: Detailed proof of this proposition is similar to that
of Proposition 1, which is omitted due to page limitation.

Additionally, it is noteworthy that the bit allocation bm
is represented by a discrete variable, which further compli-
cates the problem. We subsequently relax the discrete inte-
ger constraint (11b) into a closed connected subset b̂m ∈
[bmin, bmax], ∀m. For notational clarity, we define b̂ =
[b̂1, · · · , b̂MRF ]

T . Therefore, problem (15) is rewritten as :

max
W,V,p,b̂,φ,α,β

R2 (18a)

s.t. b̂m ∈ [bmin, bmax], ∀m, (18b)

∥b̂∥1 ≤MRF bavg, (18c)
(11d)− (11f). (18d)

Since the constraints in problem (18) are separable, we can
solve problem (18) in an iterative manner with the aid of
the alternating optimization. The key idea is to optimize one
variable by fixing the others. Apparently, α and β are first
updated according to (14) and (17), respectively. In the next
several subsections, we will focus on how to solve the other
variables iteratively.
B. Beamforming Design

Optimizing RIS Passive Beamformer φ: We focus on how
to find a better beamforming vector φ while holding the other
variables fixed. The subproblem regarding to φ is a unit-
modulus constrained quadratic optimization problem, given by

max
|φn|=1

∑
k

2
√
α̃kℜ{β∗

kv
H
k QaWΘ̂kφ}

−
∑
k

|βk|2
(∑

j

pj |vH
k QaWΘ̂jφ|2

+
∑
j

σ2
j pjφ

Hφ∥vH
k QaW∥2 + vH

k Fvk

)
, (19)

where F , Qa(I − Qa)diag(
∑

j pjWΠjW
H +∑

j pjσ
2
jφ

HφWWH). By appropriate rearrangement

and defining some useful notations: Υ̂k , Qavkv
H
k Qa,

Υ̌k , V̄kV̄
H
k Qa(I − Qa) with V̄k = diag(vk), problem

(19) can be equivalently expressed as

max
|φn|=1

∑
k

2ℜ{Tr[φHu]}−
∑
k

Tr[φHΛφ], (20)

where u ,
√
α̃kβkΘ̂

H
k WHQavk, Λ ,∑

j |βk|2pj
(
Θ̂H

j WH(Υ̂k + Υ̌k)WΘ̂j + σ2
j ∥vH

k QaW∥2I +
σ2
jv

H
k Qa(I−Qa)diag(WWH)vkI

)
.

Under the separable unit-modulus constraints, we can read-
ily solve this subproblem recursively by resorting to the one-
iteration BCD-type algorithm presented in [24, Appendix B],
where the one and only entry of φ is updated with the others
fixed at each step.

Optimizing Analog Combiner W: The corresponding sub-
problem for variable W is given by

max
|Wm,i|=1

∑
k

(
2
√
α̃kℜ{β∗

kv
H
k QaWΘ̂kφ}

− |βk|2(pk|vH
k QaWΘ̂kφ|2 + Γ)

)
. (21)

For ease of addressing this problem, we rearrange it in a more
tractable form as

max
|Wm,i|=1

∑
k

(
2ℜ{Tr[WHΥk]}−Tr[WH(Υ̂k+Υ̌k)WῩk]

)
, (22)

where Υk ,
√
α̃kβkQavkφ

HΘ̂H
k , and Ῡk , |βk|2(σ2

0I+∑
j pj(Πj+σ

2
jφ

HφI)).
Similarly, we can utilize the same method as applied to (20)

to tackle this problem.
Optimizing the Digital Combiner V: By keeping the other

variables fixed, the subproblem with respect to vk can be
naturally decoupled among different k, and each one is an
unconstrained quadratic optimization problem. There exists a
closed-form solution of the optimal v⋆

k by examining the first
order optimality condition. The solution can be written as

v⋆
k =

√
α̃kβ

∗
k

|βk|2

(∑
j

pj(QaWΠjW
HQa+σ

2
jφ

HφQaWWHQa)

+ σ2
0QaWWHQa +Rqq

)−1

QaWΘ̂kφ. (23)

C. Bit Allocation
Here, we continue to solve the subproblem with regard to b̂

with the other variables fixed. It should be pointed out that in
nature the corresponding objective function R2 is nonconcave
in b̂. To handle this issue, we employ the successive concave
approximation (SCA) method for the objective function R2.
Then, in the t-th iteration of the SCA, we construct the
following concave surrogate function:

f t(b̂) = R2(b̂
t)+∇T

b̂
R2(b̂

t)(b̂−b̂t)−ξ∥b̂−b̂t∥2, (24)

where ∇b̂R2(b̂
t) is the partial derivative of R2(b̂) with

respect to b̂ at the current point b̂t, ξ > 0 can be any constant,
and the term ξ∥b̂−b̂t∥2 is used to ensure strong concavity of
the surrogate function f t(b̂). Therefore, the resulting linearly
constrained quadratic optimization problem that needs to be
solved in the t-th iteration is given by

b̂t+1 = argmax
b̂

f t(b̂) s.t. (18b), (18c), (25)

which can be optimally solved via off-the-shelf solvers such
as CVX [25]. To obtain an integer solution for the optimal
bit allocation in each ADC, we round b̂n to its nearby integer
based on the method in [3].



Algorithm 1 Proposed D-AltMax Algorithm
1: Define the tolerance of accuracy ϵ. Initialize the algorithm

with a feasible point. Set the iteration number τ = 0.
2: repeat
3: - Update α according to (14).
4: - Update β according to (17).
5: - Update φ by solving (20).
6: - Update W by solving (22).
7: - Update V according to (23).
8: - Construct a surrogate function f t(b̂) and update b̂ by

solving (25).
9: - Update p according to (26).

10: until The difference between successive values of the
objective function is less than ϵ. Otherwise, let τ=τ+1.

D. Power Control
Since the power control subproblem reduces to a concave

optimization problem along with linear constraints, it can
be uniquely solved by checking the first-order optimality
condition. As such, the optimal p⋆k is given by

p⋆k=min
{
Pk, (ℜ{

√
1 + αkβ

∗
kv

H
k QaWΘ̂kφ}/ωk)

2
}
, (26)

where ωk,
∑

j |βj |2(Tr[WΠkW
HΥ̌j+σ

2
kφ

HφWWHΥ̌j ]+

|vH
j QaWΘ̂kφ|2 + σ2

kφ
Hφ∥vH

j QaW∥2).
Finally, the proposed decoupled alternating maximization

(D-AltMax) algorithm is summarized in Algorithm 1.

E. Convergence and Complexity
It is noteworthy that each subproblem of the D-AltMax

algorithm is nondecreasing and guaranteed to converge to
its stationary point. Therefore, the objective value of (18) is
ensured to be nondecreasing at each iteration. As a result,
the D-AltMax algorithm will converge towards a stationary
solution to problem (18). Since problem (18) and problem
(11) are equivalent, the obtained solution is also a stationary
point of the original problem (11).

We then analyze the computational complexity of the D-
AltMax algorithm, which is measured by the number of
complex multiplication under the assumption Mr ≫ MRF ≥
K.Considering only the dominant components of the calcu-
lations, the complexity is dominated by the update of W,
V, φ and b. The corresponding computational costs of W
and φ are O(M2

rM
2
RF ) and O(N2), respectively [24]. The

calculation of V involves the inverse of the matrix at a
complexity of O(KM3

RF ). The computation complexity of
updating b is dominated by computing the Jacobian matrix
and using the toolbox CVX to solve problem (25), which leads
to O(KMrMRFN+MRF

3.5 log(1/ϵ)) to get an ϵ-optimal so-
lution [26]. Therefore, the overall complexity of the proposed
algorithm in each iteration can be expressed as O(M2

rM
2
RF +

N2 +KM3
RF +T (KMrMRFN +MRF

3.5 log(1/ϵ))), where
we let T denote the number of iterations of the SCA method.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
design via Monte-Carlo simulation. The BS and RIS are
located at (5m,0,0) and (0,20m,30m), respectively. There are
K = 6 users uniformly and randomly distributed in a circle
centered at (10m,25m,0) with radius 5m. In addition, we
assume a Rician fading channel model comprising a line-of-
sight (LOS) path and a number of non-LOS (NLOS) paths

[12]. Specifically, the user-RIS channel and RIS-BS channel
are modeled as follows

hr,k =

√
N

LI + 1

(
ϱk0ar(ψ

a
k0, ψ

e
k0) +

LI∑
l=1

ϱklar(ψ
a
kl, ψ

e
kl)

)
,

G=

√
MrN

LB + 1

(
η0ar(ϕ0)a

H
t (ϑ

a
0 , ϑ

e
0)+

LB∑
l=1

ηlar(ϕl)a
H
t (ϑ

a
l , ϑ

e
l )

)
,

where LI and LB denote the NLOS propagation paths for
the user-RIS link and RIS-BS link, respectively. ϱk0(η0) ∼
CN (0, 10−0.1κ) and ϱkl(ηl) ∼ CN (0, 10−0.1ϖ) denote the
complex gain associated with the LOS link and the l-th
NLOS link, respectively, where κ and ϖ express the path-loss
over a distance d between the transmitter and the receiver,
satisfying κ = 61.4 + 20 log(d) + ε1 with ε1 ∼ CN (0, σ2

1)
and ϖ = 72+29.2 log(d)+ε2 with ε2 ∼ CN (0, σ2

2). We set
σ1 = 5.8dB and σ2 = 8.7dB [27]. Furthermore, ψa

kl(ψ
e
kl)

and ϑal (ϑ
e
l ) are the azimuth (elevation) angle-of-arrival (AoA)

and azimuth (elevation) angle-of-departure (AoD) associated
with the RIS, respectively, while ϕl represents the AoA
associated with the BS. Also, ar and at denote the array
response vectors associated with the receiver and transmitter,
respectively. Unless stated otherwise, we assume Mr = 64,
MRF = 6, LB = LI = 7, N = 100, bmin = 1, bmax = 8,
bavg = 3, σ2

0 = −90dBm and Pk = Pmax = 30dBm, ∀k.
According to the statistical cascaded CSI error model [28],
σ2
k is defined as σ2

k = µ2
k∥vec(Θ̂k)∥2, where µ2

k ∈ [0, 1) is
the normalized CSI error measuring the CSI uncertainty level.
For convenience, we assume that the normalized CSI errors
of different users are identical, i.e., µ2

k = µ2.
We contrast the performance of the proposed D-AltMax

algorithm to the following benchmark schemes: 1) Random-
RIS, where the reflection coefficients of the RIS are randomly
selected; 2) Nonrobust, where the effect of channel estimation
error is not taken into consideration under imperfect CSI; 3)
MRC-case, where the maximum ratio combining (MRC) based
digital combiner is adopted [2]; 4) Full-power, where the users
transmit signals with full power; 5) Fixed-bit ADCs, where the
LADCs with uniform quantization bits are implemented at the
BS; 6) ZF-case, where the zero forcing (ZF) digital combiner
is used at the BS [2].

In Fig. 2, we illustrate the convergence performance. It can
be observed that the proposed D-AltMax algorithm attains the
maximum objective function value within a few iterations.
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Fig. 2. Convergence of Algorithm 1.

Fig. 3(a) shows the average sum rate versus the maximum
transmit power Pmax over 100 random channel realizations. It
can be seen that the proposed D-AltMax algorithm consid-
erably outperforms all the benchmarks, and the performance
gains become more significant as Pmax increases. The result
confirms the benefit of the joint design of bit allocation, power
control and beamforming in both interference suppression
and signal enhancement, especially when the transmit power
(interference) increases. Fig. 3(b) depicts the average sum rate
versus the normalized CSI error variance µ2. We observe
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Fig. 3. Average sum rate versus (a) maximum transmit power Pmax, (b)
normalized CSI error variance µ2.
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Fig. 4. Average sum rate versus (a) the size of RIS elements N , (b) the
number of average quantization bits bavg.

that the average sum rate decreases with the degradation of
CSI accuracy in all schemes. Particularly, compared to the
proposed scheme, the nonrobust scheme results in notable
performance degradation with the increase of µ2 due to the
fact that the nonrobust scheme is more sensitive to the CSI
errors. This result corroborates the robustness of our proposed
algorithm and illustrates the necessity of robust designs in RIS-
aided communication systems by considering the CSI errors.

In Fig. 4(a), the average sum rate of the system is plotted
for different RIS element values. We note that the average
sum rate increases monotonically upon increasing N in all
cases. Furthermore, it is readily seen that the performance
gap becomes more pronounced upon increasing the number of
RIS elements. In particular, in Fig. 4(b) we plot the average
sum rate versus the average number of quantization bits bavg,
where increasing the average number of quantization bits
bavg offers a prominent improvement of the average sum
rate. Observe that the proposed D-AltMax algorithm provides
the highest average sum rate in all quantization regimes.
We note that the performance gap between the proposed D-
AltMax algorithm and the Fix-bit ADCs case increases in the
moderate-resolution regime (e.g., bavg = 3 or 4). The reason
is that the proposed flexible RADC architecture has sufficient
freedom to adaptively allocate quantization bits relying on the
specific propagation conditions.

V. CONCLUSION

In conclusion, we incorporated an RIS in the uplink of
multiuser MIMO systems relying on realistic imperfect C-
SI. We then maximized the worst-case sum rate by jointly
optimizing the transmit power, robust beamforming, and the
number of ADC quantization bits under practical constraints.
We employed the Lagrangian dual method and fractional
programming techniques to transform the optimization prob-
lem formulated into an equivalent but more tractable form
and then conceived a new D-AltMax iterative algorithm for
solving it. Our simulation results confirmed the supremacy
of the proposed scheme over the benchmark schemes. As
future work, it is worth investigating the application of RISs

as refractors. We would consider the extension of the joint
design to a system where obstacles are empowered by the RIS
architecture and assist data transmission via smart refraction.

REFERENCES
[1] J. Mo et al., “Hybrid architectures with few-bit ADC receivers: Achiev-

able rates and energy-rate tradeoffs,” IEEE Trans. Wireless Commun.,
vol. 16, no. 4, pp. 2274-2287, April 2017.

[2] Y. Wang et al., “Stochastic hybrid combining design for quantized
massive MIMO systems,” IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 16224-16229, Dec. 2020.

[3] X. Chen et al., “Joint user scheduling and resource allocation for
millimeter wave systems relying on adaptive-resolution ADCs,” IEEE
Trans. Veh. Technol., doi: 10.1109/TVT.2021.3112930.

[4] W. B. Abbas et al., “Millimeter wave receiver efficiency: A comprehen-
sive comparison of beamforming schemes with LADCs,” IEEE Trans.
Wireless Commun., vol. 16, no. 12, pp. 8131-8146, Dec. 2017.

[5] M. Di Renzo et al., “Smart radio environments empowered by recon-
figurable AI meta-surfaces: An idea whose time has come,” EURASIP
J. Wireless Commun. Netw., vol. 129, no. 1, pp. 1-20, 2019.

[6] D. Xu et al., “Resource allocation for IRS-assisted full-duplex cognitive
radio systems,” IEEE Trans. Commun., vol. 68, no. 12, pp. 7376-7394,
Dec. 2020.

[7] S. Li et al., “Reconfigurable intelligent surface assisted UAV communi-
cation: Joint trajectory design and passive beamforming,” IEEE Wireless
Commun. Lett., vol. 9, no. 5, pp. 716-720, May 2020.

[8] L. Yang et al., “On the performance of RIS-assisted dual-hop UAV
communication systems,” IEEE Trans. Veh. Technol., vol. 69, no. 9, pp.
10385-10390, Sep. 2020.

[9] M. Nemati et al.,“Modeling RIS empowered outdoor-to-indoor commu-
nication in mmWave cellular networks,” IEEE Trans. Commun., doi:
10.1109/TCOMM.2021.3104878.

[10] C. Pradhan et al., “Hybrid precoding design for reconfigurable intelli-
gent surface aided mmWave communication systems,” IEEE Wireless
Commun. Lett., vol. 9, no. 7, pp. 1041-1045, Jul. 2020.

[11] P. Wang et al., “Intelligent reflecting surface-assisted millimeter wave
communications: Joint active and passive precoding design,” IEEE
Trans. Veh. Technol., vol. 69, no. 12, pp. 14960-14973, Dec. 2020.

[12] P. Wang et al., “Joint transceiver and large intelligent surface design
for massive MIMO mmWave systems,” IEEE Trans. Wireless Commun.,
vol. 20, no. 2, pp. 1052-1064, Feb. 2021.

[13] Q. Wu et al., “Intelligent reflecting surface aided wireless communica-
tions: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313-3351,
May 2021.

[14] C. Pradhanet et al., “Hybrid precoding design for reconfigurable intel-
ligent surface aided mmWave communication systems,” IEEE Wireless
Commun. Lett., vol. 9, no. 7, pp. 1041-1045, Jul. 2020.

[15] Z. Xu et al., “Analog combining in intelligent reflecting surface assisted
system with low-resolution ADCs,” Journal of Physics: Conference
Series, vol.1864, Nov. 2020.

[16] K. Zhi et al., “Uplink achievable rate of intelligent reflecting surface-
aided millimeter-wave communications with low-resolution ADC and
phase noise,” IEEE Wireless Commun. Lett., vol. 10, no. 3, pp. 654-
658, Mar. 2021.

[17] Y. Xiu et al., “Uplink achievable rate maximization for reconfigurable in-
telligent surface aided millimeter wave systems with resolution-adaptive
ADCs,” IEEE Wireless Commun. Lett, vol. 10, no. 8, pp. 1608-1612,
Aug. 2021.

[18] Z. Wang et al., “Channel estimation for intelligent reflecting surface
assisted multiuser communications: Framework, algorithms, and analy-
sis,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6607-6620,
Oct. 2020.

[19] Z. Zhou et al., “Joint transmit precoding and reconfigurable intelligent
surface phase adjustment: A decomposition-aided channel estimation
approach,” IEEE Trans. Commun., vol. 69, no. 2, pp. 1228-1243, Feb.
2021.

[20] M. Medard, “The effect upon channel capacity in wireless communica-
tions of perfect and imperfect knowledge of the channel,” IEEE Trans.
Inf. Theory, vol. 46, no. 3, pp. 933-946, May 2000.

[21] T. M. Cover et al., Elements of Information Theory: Wiley Series in
Telecommunications. New York, NY, USA: Wiley, 1991.

[22] Y. Cai et al., “Robust joint hybrid transceiver design for millimeter wave
full-duplex MIMO relay systems,” IEEE Trans. Wireless Commun., vol.
18, no. 2, pp. 1199-1215, Feb. 2019.

[23] K. Shen et al., “Fractional programming for communication systems-
Part I: Power control and beamforming,” IEEE Trans. Signal Process.,
vol. 66, no. 10, pp. 2616-2630, May 2018.

[24] Q. Shi et al., “Spectral efficiency optimization for mmWave multiuser
MIMO systems,” IEEE J. Sel. Toptics Signal Process., vol. 12, no. 3,
pp. 455-468, Jun. 2018.

[25] M. Grant et al., “CVX: Matlab software for disciplined convex program-
ming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[26] Y. Ye, Interior Point Algorithms: Theory and Analysis. New York: Wiley,
1997.

[27] M. R. Akdeniz et al., “Millimeter wave channel modeling and cellular
capacity evaluation,“ IEEE J. Sel. Areas Commun.,vol. 32, no. 6, pp.
1164-1179, Jun. 2014.

[28] S. Hong et al., “Robust transmission design for intelligent reflecting
surface-aided secure communication systems with imperfect cascaded
CSI,” IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2487-2501,
Apr. 2021.


