
1

A Data-driven Base Station Sleeping Strategy Based
on Traffic Prediction

Jiansheng Lin, Youjia Chen, Member, IEEE, Haifeng Zheng, Member, IEEE
Ming Ding, Senior Member, IEEE, Peng Cheng, Senior Member, IEEE

Lajos Hanzo, Fellow, IEEE

Abstract—Due to the rapidly increasing number of deployed
base stations (BSs) in current cellular networks, energy consump-
tion has emerged as a great challenge in network operation.
In this paper, we propose a novel data-driven intelligent BS
sleeping mechanism based on a wireless traffic prediction model
that measures the BSs’ capacity in different regions. Firstly,
a spatial-temporal traffic prediction model is proposed, where
a multi-graph convolutional network (MGCN) is developed to
capture spatial features, and a multi-channel long short-term
memory (LSTM) involving short-term, daily, and weekly peri-
odic data is used to capture temporal features. Secondly, the
capacities of macro-cell BSs (MBSs) and small-cell BSs (SBSs)
with different environment characteristics are modeled, where
both clustering and transfer learning algorithms are adopted
to quantify the traffic supported by MBSs and SBSs. Finally, an
optimal BS sleeping strategy is proposed to minimize the network
power consumption. Experimental results show that the proposed
MGCN-LSTM model outperforms the existing models in terms
of traffic prediction, and the proposed BS sleeping strategy using
an approximated non-linear model of capacity function achieves
a near-optimal energy-saving performance with relatively low
complexity.

Index Terms—BS sleeping, traffic prediction, graph convolu-
tion network, transfer learning.

I. INTRODUCTION

Network operators are deploying a large number of base
stations (BSs) to meet the traffic requirements in peak hours.
Hence, network densification has become an irresistible trend
since 3G network. With the development of dense and ultra-
dense small-cell networks, the excessive power consumption
has become a major issue of network operation. For example,
BSs account for two-thirds of the total energy consumption in
a wireless network [1, 2]. Even if there is no or little traffic
load, a BS can still consume more than 90% of their peak
energy. The ultra-dense deployment of small-cell BSs (SBSs)
leads to a low energy utilization in most time [3].

In this light, the BS sleeping strategy aiming at reducing the
base operating power of BSs, becomes an attractive method
to save energy consumption. Various strategies to enable
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dynamic on-off for BSs have been proposed in these years.
In [4], the BS sleeping mode was designed according to a
deterministic traffic changes over time. A similar idea was
proposed in [5], where some BSs are shut down during the
night time. All of these works utilize the periodic traffic
fluctuation to save energy by switching some BSs to sleep
mode. In Fig. 1, we plot the wireless traffic of Milan city at
10am and 10pm. From the figure, we can observe a significant
traffic disparity between different regions for a given time
instance. Meanwhile, comparing the traffic at 10am and that at
10pm, we can find that some regions tend to have traffic peaks
in the day time, while some regions behave in a opposite way.
Hence, in [6–9], the authors propose to selectively shut down

(a) 10pm. (b) 10am.

Fig. 1. The spatial distribution of cellular traffic at different time periods.

BS resources in the network during off-peak hours based on
the traffic monitor.

Taking a further step, it becomes desirable to develop BS
sleeping strategies based on more specific and real-time traffic
data. In [10], the authors design a deep Q-network (DQN) to
obtain the effective BS sleeping policy by high-dimensional
raw observations or un-quantized state vectors. It is proposed
to enhance the original DQN algorithm with action-wise
experience replay and adaptive reward scaling to deal with
the challenges in non-stationary traffic. With the technique of
deep learning, the traffic prediction enables the real-time BS
sleeping strategy. Besides that, the accurate capacity model of
BSs is another key factor of sleeping strategy. It is known
that macro-cell BSs (MBSs) aim at providing an umbrella
coverage while small-cell BSs (SBSs) target at throughput
enhancement in traffic hotspots. The sleeping strategy should
consider the different roles and capacities of BSs in the
network operation. Moreover, the network environment greatly
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affects the transmission of wireless signal. For instance, city
CBD is full of tall buildings while the rural area is usually
scattered with low-density houses. Therefore, an accurate
capacity model of different types of BSs considering various
region characteristics should be constructed.

The main contributions of this paper are three-fold:
• We propose a novel cellular traffic prediction method,

where a multi-graph convolutional network (MGCN) is
used to extract the spatial features, and a multi-channel
long short-term memory (LSTM) network is adopted to
efficiently capture the major frequency components in the
traffic data. In addition, an attention scheme is designed
to distinguish the significance of traffic sequences at
different time.

• The capacity models of MBSs and SBSs are established
where the performance impacts of environment charac-
teristics are considered. Since the original dataset does
not differentiate MBSs and SBSs, a clustering algorithm
is utilized to distinguish the areas deployed with MBSs
only, and transfer learning is then adopted to identify the
portions of traffic supported by MBSs and SBSs in an
area.

• Based on the predicted traffic demand and the learned
MBS and SBS capacity models, the optimal numbers
of active MBSs and SBSs are obtained to minimize the
power consumption in a given area. Due to the intractable
expression of the capability functions obtained by the
neural network, we have used both linear and non-linear
fitting models to derive the optimal strategies without the
high complexity of exhaustive searching.

II. RELATED WORK

In this section, we investigate the related works on traffic
prediction and BS sleeping control.

A. Traffic Prediction

Many works on traffic forecasting are based on neural
networks. In [11], bilinear recurrent neural networks were
designed in the aspects of training and structure for the
real-time Ethernet traffic prediction. In [12], the differential
evolution algorithm was combined with the back propagation
algorithm to optimize the fuzzy neural network forecasting
network traffic. A deep belief network (DBN) with Gaussian
models was proposed in [13] to forecast the traffic demand in
wireless mesh networks. In [14], the multitask learning (ML)
was incorporated with DBN, where the DBN is employed for
feature learning and the multitask regression is used at the
top for supervised prediction. These models mainly focused
on capturing temporal features of the training data, while not
utilizing the potential features in other domains.

In contrast, autoencoders were utilized to extract the spatial
features in [15], then LSTM was adopted after to perform
the traffic prediction.In [16–18], convolution neural network
(CNN) and LSTM were combined to construct a spatial-
temporal neural network for traffic prediction, where the CNN
concentrates on the spatial features. In [19], the attention
mechanism was introduced into the Conv-LSTM network,

which automatically exploited the different importance of the
traffic data at different time periods. Moreover, in [20] the
authors proposed a spatial-temporal cross-domain neural net-
work, where multi-domain data were integrated to obtain the
complex patterns hidden in wireless cellular traffic. However,
cellular traffic are time-series data distributed over the wire-
less network, whose structure is non-Euclidean. Thus, spatial
features learned in CNN are not optimal for representing the
traffic network structure.

Graph convolutional network (GCN) has also been widely
used in traffic prediction, which generalizes the convolution
operation to non-Euclidean domains based on the spectral
graph theory [21]. In [22], T-GCN was proposed, where
a GCN was utilized to learn the traffic network topology.
In [23], the authors adopted the GCN in the spatial domain
and the gated CNN in the temporal domain. MGCN has been
used in road traffic prediction recently [24, 25]. In [24], the
connectivity between regions, i.e., the road information, con-
structs an important graph, together with the distance between
regions and the region functionalities. In [25], three graphs
were involved: the distance between any two bike stations,
the number of rides between them, and correlation of ride
record between them. In contrast to the road traffic, where the
road connectivity and the start-end stations are key factors, for
cellular network traffic, the geographical environment and the
city functionality are more important information. Although
MGCN can explore more pair-wise relationships in different
domains, it may introduce higher computational complexity
and some extra noise due to overestimated relationships.

B. Base Station Sleeping Control

Various approaches have been proposed to reduce the energy
consumption of a mobile cellular network, which can generally
be divided into the two categories: 1) improving the energy
efficiency of the network components, and 2) turning off some
of the network resources selectively. The BS sleeping strategy
is a typical approach in the second category. Deactivating
some deployed BSs during off-peak hours, not only the energy
consumption but also the inter-cell interference in the network
can be reduced.

In [26], the state of a BS was adjusted according to its
cell load. An N -policy was proposed in [27] to achieve the
best energy-delay trade-off, where a BS remains in the sleep
mode until N users are accumulated in its coverage. Such
kind of methods controlled the BS mode based on the real-
time detection of the traffic load or user requirements. In the
scenarios of dense networks, the real-time detection in each
BS and frequent hand-over operation among BSs results too
much cost in the control signalling.

Furthermore, the rapid development of big data technology
and deep learning offers more possible approaches for network
control. However, the works on data-driven intelligent BS
sleeping control are still rare. In [28], a self-organizing ultra-
dense small cell network was proposed, where the necessary
active SBSs are determined by traffic loads, and high-rank
SBSs transmit at the maximum power while the transmission
power of low-rank SBSs will be adjusted. In [29], the authors



3

partitioned the network into multiple communities, and a
heuristic switch-off strategy was adopted independently in
each community to maximize its energy saving while guaran-
teeing the minimal service requirement. In this work, the traffic
requirement is the main concern while the characteristics of
different communities are not considered, which are highly
related with the network performance as mentioned in [20].

III. PROBLEM STATEMENT AND THE PROPOSED
FRAMEWORK

In this section, we formulate the BS sleeping optimization
problem and propose our solution.

A. Problem Statement

As mentioned before, in this paper we focus on a data-driven
strategy of BS-sleeping control to save energy consumption,
which relies on the traffic prediction and the capacity model-
ing. The current cellular networks consist of two kinds of BSs:
1) MBSs with a high transmission power, providing an um-
brella wide coverage and support user mobility. 2) SBSs with
a relative low transmission power, enhancing network capacity
in traffic hot-spots. Due to these different properties, different
power and capacity models should be adopted for MBSs and
SBSs. Moreover, for an area, its physical environment and its
regional function play important roles in the wireless traffic
patterns [30]. Hence, in this work, the area characteristics are
also considered.

Given an area with a characteristic vector r, and a traffic
requirement µ, the investigated BS-sleeping control problem
can be formulated as

min
nm,ns

nmPm + nsPs, (1a)

s.t. Cm(r, nm) + Cs(r, ns) ≥ µ+ ∆, (1b)
A(r) ≤ nm ≤ Nm, (1c)
0 ≤ ns ≤ Ns, (1d)
nm, ns ∈ N, (1e)

where nm, ns represent the numbers of active MBSs and SBSs
in this area, respectively. Nm and Ns denote the numbers of
deployed MBSs and SBSs, i.e., the maximum MBSs and SBSs
can be activated. The power consumptions of an active MBS
and SBS are denoted by Pm and Ps, respectively. In addition,
to satisfy the basic network coverage of this area with the
characteristic vector r, a minimum number of active MBSs are
needed, denoted by A(r). Moreover, Cm(·) and Cs(·) denote
the capacities that MBSs and SBSs could provide in this area,
and ∆ denotes the traffic surplus that can be provided by the
network.

In more detail, Eq. (1a) means that the objective is to
minimize the power consumption by adjusting the number
of active MBSs and SBSs. Eq. (1b) indicates that the active
BSs should provide enough capacity to support the traffic
requirement with a desirable surplus. Eq. (1c) and (1d) regulate
that the activated number of MBSs and SBSs are upper
bounded by the overall number of deployed BSs, and a specific
number of MBSs are needed to ensure the basic network
coverage.
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Fig. 2. Three components of the proposed data-driven BS sleeping control.

B. Framework
To solve this optimization problem, we propose a big-data-

driven framework, which consists of three components, as
shown in Fig. 2. The first component realizes the traffic pre-
diction function to quantify the real-time traffic requirement,
i.e., µ in Eq. (1b). The second component aims at modeling
the capacities of MBSs and SBSs in different areas, i.e.,
the capacity functions Cm(·) and Cs(·). The third component
implements the optimal BS sleeping strategy. The detail steps
of the three components are described as follows:
• Traffic Prediction: In this module, the historical cellular

traffic data is used to perform the traffic prediction
for the current time, together with multi-domain data
which are highly related to the wireless traffic, such as
the number of restaurants, schools etc., named POIs.
Based on the analysis of the time-domain and spatial-
domain characteristics, a spatial-temporal hybrid deep
learning framework is proposed to perform the traffic
prediction, which includes an MGCN network, a multi-
channel LSTM network, an attention mechanism and a
fully-connected layer.

• Capacity Modeling: In this module, the maximum traffic
that a number of MBSs and SBSs can provide in differ-
ent area environments are analyzed. Firstly, a clustering
algorithm is adopted to classify an area into one of the
interested regions. Then the data of the areas classified
as rural regions with MBS-only deployments are utilized
as the source domain, and transfer learning is used to
identify the numbers of MBSs and SBSs in the rest
of the areas. After that, based on the maximum traffic
and deployed number of MBSs and SBSs, a multi-layer
perceptron (MLP) neural network is used to construct the
capacity models.

• BS Sleeping Strategy: In this module, the optimization
problem is addressed based on the predicted traffic de-
mand and the model-based BS capacities. The optimal
numbers of active MBSs and SBSs are derived to mini-
mize the power consumption, while a number of MBSs
are firstly activated to ensure the basic network coverage
requirement, and then a number of MBSs and SBSs are
selected to meet the traffic requirement.

C. Cellular Network Datasets
1) Cellular Traffic Dataset: The cellular traffic involved in

this paper was provided by a large telephone service provider
in European, as a part of the “Big Data Challenge” [31]. The
raw dataset was collected from 11/01/2013 to 01/01/2014 with
a temporal interval of 10 minutes over the entire city of Milan.
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TABLE I
DATA OF WIRELESS TRAFFIC IN MILAN CITY.

Square ID Country code Time-stamp SMS-in SMS-out Call-in Call-out Internet
1 39 1383260400000 0.14186 0.15679 0.16094 0.05227 11.02837
1 0 1383261000000 0.13658 * 0.02730 * *
... ... ... ... ... ... ... ...

6359 39 1383306000000 7.18483 3.21435 6.72216 4.98282 142.80549
... ... ... ... ... ... ... ...

10000 39 1383432600000 * 0.638219 0.145000 * 24.14275

The city of Milan is divided into 100 × 100 square grids,
and the size of each square is about 0.235 × 0.235km2.
In each square, three kinds of cellular traffic are recorded:
short message service (SMS), call service (Call) and Internet
service. The original dataset consists of Square ID, Time
stamp, SMS-in, SMS-out, Call-in, Call-out and Internet. The
details of the records in this dataset. In this work, the time
interval is adjusted to 1 hour for traffic aggregation.

The cellular traffic can be represented by a spatial-temporal
sequence of data elements, X(s,t)

(i,j) , which denotes the cellular
traffic at t-th interval of the square grid (i, j) for the service
type, s ∈ {SMS, Call, Internet}. Omitting s, Xt denotes the
traffic of one service type at the time interval t in the entire
city of Milan given by:

Xt =


Xt

(1,1) Xt
(1,2) · · · Xt

(1,J)

Xt
(2,1) Xt

(2,2) · · · Xt
(2,J)

...
...

. . .
...

Xt
(I,1) Xt

(I,2) · · · Xt
(I,J)

 . (2)

Hence, X = {Xt|t = 1, 2, 3, . . . , T} ∈ RI×J×T represents
all the traffic data recorded. Note that, the traffic in the
datasets is measured with a unit: number of events, which
is proportional to the number of call detail records (CDRs).
Moreover, a CDR is a record created when a connection
lasts for more than 15 mins or generates more than 5 MB
traffic [31].

2) Other Related Datasets: As mentioned before, the wire-
less traffic and the deployment of MBSs and SBSs in an
area highly depend on the the spatial/region information,
the propagation environment and the population distribution.
Hence, to analyze the characteristics of an area, several related
datasets are introduced in this work: POIs, social activities,
and the number of BSs deployed [20]. All these dataset
are transformed to represent the 10000 square grids like the
cellular traffic dataset.

• POI: In this dataset, the numbers of 12 kinds of POIs
1 in each square grid are collected, including banks,
bars, etc., which are listed in Table II. Similar to the
traffic data X , a matrix P is defined to represent the
POI data in the entire Milan city, where the element
p(i,j) =

[
pBank, · · · , pLodging

]
denotes the numbers of

POIs in the square grid (i, j).

1POIs information be crawled using Google Places API. Available:
https://developers.google.com/maps

• BS number: Meanwhile, we have the number of de-
ployed BSs 2 in each square grid. Denoted by a matrix
B the BS number deployed in the entire city, the element
b(i,j) represents the BS number in the grid (i, j).

• Social activity: Social activity 3 is a measure of how
active users are and how dependent they are on network
services. For the Milan city, the data about Twitter
usage from 11/01/2013 to 01/01/2014 is collected [20].
Similarly, dividing them into 10000 square grid, a matrix
S is defined where its element s(i,j) denotes the number
of social activity generated in the square grid (i, j).

IV. TRAFFIC PREDICTION BY MGCN-LSTM

In this section, a deep learning-based prediction model is
proposed, which consists of an MGCN, an LSTM network,
and an attention mechanism, referred to as MGCN-LSTM.

As shown in Fig. 3, in the spatial domain, we use the
correlation between square grids to construct three graphs,
where each vertex denotes a square grid and the edge between
them represents their correlations. Then GCN is used to
capture the spatial characteristics in each graph. In the time
domain, the LSTM network is used to extract the temporal
features in short term, daily period and weekly period. Then
the attention mechanism exploits different levels of importance
for the feature extracted from at different time intervals.

A. Spatial Features and Multi-Graph Convolution Network

The undirected graph G = (V,A) is constructed to presents
the correlation between different square grids, where V de-
notes the set of nodes andA ∈ R|V |×|V | denotes the adjacency
matrix between the nodes.

1) Multi-Graph Construction: Different graphs are con-
structed to encode the different types of correlation among
nodes: 1) Neighborhood graph, GN = (V,AN ), represents
the spatial distance between the square grids. 2) Functional
similarity, GF = (V,AF ), denotes the similarity of regional
functions in each square grid. 3) Spatial traffic correlation,
GS = (V,AS), represents the spatial correlation of traffic
flow among the square grids.

• Neighborhood graph, GN = (V,AN ): During a period
of time, the user’s activities are physically limited in a

2BSs information is obtained from OpenCellID. Available:
https://opencellid.org/

3Social activity is collected through Dandelion API. Available:
https://dandelion.eu
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Fig. 3. An illustration of the proposed MGCN-LSTM network.

TABLE II
DATASETS OF SOCIAL ACTIVITY, POI AND BS NUMBER.

Square ID Social BS Point of interest
activity number Bank Bar Cafe Church Park Parking Restaurant School Store Subway Library Lodging

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

5970 122 24 3 1 1 0 0 1 2 0 13 100 0 3
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

10000 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Graph Convolutional 
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Function similarity

Spatial traffic correlation

Graph Convolution Network
Generate

multiple graphs

Traffic Data X

Physical 

distance

POI  & Social 

Activities 

Graph Convolutional 

Graph Convolutional 

Fig. 4. An illustration of multi-graph convolution networks adopted in the
spatial domain.

certain range. The neighborhood graph aggregates infor-
mation from adjacent nodes and quantifies their correla-
tionship through physical distance. Intuitively, the closer
distance of two nodes, the higher correlation between
them. Hence, the element in adjacency matrix, ANh,w, is
defined using the Euclidean distance between nodes, that
is

ANh,w = exp

(
−||vh − vw||

2

2σ2

)
,∀h,w, (3)

where vh denotes the location of node h and ||vh − vw||

representing the Euclidean distance between node h and
w4, σ is a free parameter. Note that, in the used Milan
dataset, the distance between two nodes (i.e., square
grids) can be calculated from the distance between their
grid centers.

• Functional similarity graph, GF = (V,AF ): Square
grids with similar regional functions, for instance, res-
idential area, office area and transportation area, have
commonality in their traffic pattern [32]. Here we use
the POI matrix P , social activity matrix, S, and BS
number matrix, B, to represent the area characteristic
vector ri,j = [pi,j , si,j , bi,j ]. Cosine similarity function
is introduced to measure the functional similarity, that is,
the element in the adjacency matrix is given by

AFh,w =
〈rh, rw〉
||rh|| · ||rw||

, (4)

where 〈·〉 represents inner product operation and || · ||
represents 2-norm.

• Spatial traffic correlation graph, GS = (V,AS): The
Pearson coefficient is adopted to analyze the spatial cor-
relation between the wireless traffics in different square
grids [20]. Hence, this coefficient is used to define the
adjacent matrix as

ASh,w =
cov(Xh,Xw)

σXh
σXw

, (5)

4A node w of graph can be expressed as w = 100× i+ j, where (i, j) is
the coordinate of square, this conclusion also applies to other nodes.
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where cov(·) is the covariance operator, and σ is the
standard deviation, Xh and Xw denote the cellular traffic
of node h and w, respectively.

Denoted by A the adjacent matrix for each graph con-
structed before, with the traffic data X as the other input
parameter, a graph convolutional network is utilized to capture
the spatial characteristics. The detail process is explicated as
follows.

2) Graph Convolutional Network : With the adjacent ma-
trix A ∈ RV×V of a constructed graph, a degree matrix
D can be calculated with elements Dii =

∑
j Aij . Since

A is a symmetric matrix, D is a diagonal matrix. Hence,
the normalized Laplacian matrix can be obtained by L =
IV −D−1/2AD−1/2, where IV denotes the identity matrix.
With eigenvalue decomposition L = UΛUT , we can obtain
the eigenvector matrix U and a diagonal matrix Λ.

Since L is also a symmetric matrix with V linearly in-
dependent eigenvectors, the corresponding eigenvector matrix
U is an orthogonal matrix, which can be used as a basis
set of Fourier transform. Hence, with U , we perform Fourier
transform on the input feature X: X̂ = UTX , where (·)T

denotes the transpose.
Following Eq. (4) in [21], a filter gθ(Λ) can be con-

structed by the Chebyshev polynomial Tk(·) [33]: gθ(Λ) =∑K−1
k=0 θkTk ˜(Λ), where Λ̃ = 2

λmax
(Λ) − IV , and λmax =

max{Λii} is the largest eigenvalue. Then, a graph convolution
operation, ∗G , is performed between the constructed filter
gθ(Λ) and input feature X . That is,

gθ(Λ) ∗G X = Ugθ(Λ)UTX.

B. Time Domain Properties and Multi-channel LSTM

1) Characteristics of Traffic Data: Based on Parseval the-
orem, the major frequency components play the key roles in
signal recovering. In order to analyze the periodic character-
istics in wireless traffic data, the discrete fourier transform
(DFT) is used to investigate its frequency components, that is,
X̂[k] =

∑N
n=1 x[n]exp−2πikn/N , where N is the number of

traffic cellular samples.

k=4

k=28

Fig. 5. Frequency Analysis of Traffic Data.

Fig. 5 shows DFT results of square grid (10, 0), from
which it can be seen that there are two main frequency
components: k = 4 and k = 28. Since the data duration is 4
weeks, the frequency component related with k can be derived
from the formula 4weeks

k : 1) The first frequency component,
k = 4, represents 1 week; 2) the second frequency component,
k = 28, means 1 day. A similar conclusion about cellular
traffic period was obtained in [32].

2) Multi-channel Data: To aggregate these periodic char-
acteristic, multi-channel traffic data are used as inputs in time-
domain prediction. That is, to predict the traffic from Xt+1

to Xt+Tp
, three traffic sequences are fed into the prediction

model as training data:
• Recent segment: Due to the continuity of the cellular

traffic, the traffic data in previous Tr time intervals acts
as an important role in prediction. Hence, we define a
recent segment, X r ∈ RI×J×Tr , with a length Tr, as the
first input:

X r , (X(t−Tr+1),X(t−Tr+2), . . . ,Xt). (6)

• Daily periodic segment: As analyzed, the wireless traffic
shows an apparent daily period, hence the traffic data at
24 hours before, 48 hours before, and so on, are used as
the second input:

X d ,
(
Xt−24Td+1, · · · ,Xt−24Td+Tp

,

Xt−24(Td−1)+1, · · · ,Xt−24(Td−1)+Tp
,

· · ·Xt−24+1, · · · ,Xt−24+Tp

)
,

(7)

where Td is the number of days taking into consideration.
• Weekly periodic segment: Similarly, the weekly periodic

segment is adopted as the third input:

Xw ,
(
Xt−24∗7∗Tw+1, · · · ,Xt−24∗7∗Tw+Tp

,

Xt−24∗7∗(Tw−1)+1, · · · ,Xt−24∗7∗(Tw−1)+Tp
,

· · ·Xt−24∗7+1, · · · ,Xt−24∗7+Tp

)
,

(8)
where Tw is the number of weeks taking into considera-
tion.

The proposed multi-channel LSTM is illustrated in Fig. 6. In
each channel, we adopt two-layer LSTM, because such tempo-
rally concatenated model always achieves a good performance
in sequence modeling problems. Since LSTM is widely used
model, we omit its introduction here and only briefly introduce
attention network in the following.

3) Attention Mechanism: As an optimization model algo-
rithm, the attention mechanism has been proposed to explore
the inherent features of data and improve the efficiency of
information processing. The main feature lies in its ability to
distinguish the importance of different data. In our prediction
model, the information provided by the data flow at different
times may be not equally important for prediction perfor-
mance. However, the standard LSTM cannot detect which is
the important part for a traffic data sequence. Hence, we embed
the model of attention mechanism into the LSTM system,
which allows the model to have direct dependence between the
states at different times. At each time slot t, given the traffic
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Fig. 6. An illustration of the LSTM network and attention scheme adopted
in the time domain.

dataset X , the scores st = (s1, s2, · · · , st) indicate the impor-
tance of the traffic flow sequence at different time slots, which
can be obtained as st = Us tanh(WxsX +Whsh

s
t−1 + bs),

where Us,Wxs,Whs are the learnable parameters, bs is the
bias parameter and hs

t−1 is the hidden output from the
LSTM network. The weights at different moments, named
attention weights, can be expressed as αk = exp(sk)∑t

k=1 exp(sk)
,

which normalize the scores. The larger the weight, the more
important it is. At each time step t, the output of the LSTM
hidden state hs

t , attention mechanisms can be calculated a
vector Ht as a weighted summation Ht =

∑t
k=1 αkh

s
k. Note

that the attention weight α depends on the input X and the
hidden variables hs

t−1, so it depends not only on the present
moment but also on the previous moment. The attention weight
α can be regarded as the activation of flow selection gate. The
set of gates control the amount of information from each flow
to enter the LSTM network. The larger the attention weight,
the greater the impact on the prediction results.

V. CAPACITY MODELING OF MBSS AND SBSS

In this section, MBSs’ and SBSs’ capacity functions, Cm(·)
and Cs(·), are modeled, to reveal the maximum traffic volume
(i.e., throughput) that a number of MBSs or SBSs can provide
in an area with a characteristic vector r. Different from the
theoretical capacity function, such as Shannon Theorem, in
this section, the neural network is utilized to construct the
capacity model.

A. Capacity Impacts of Environment Characteristics

For each square grid, the peak of cellular traffic during a
period of 3 months is used to model the capacity of the de-
ployed BSs. This approximation is reasonable, since operators
often deploy a specific number of BSs based on peak cellular
traffic. The maximum traffic for a square grid (i, j) can be cal-
culated as z(i,j) = max

t
{X(sms,t)

(i,j) +X
(call,t)
(i,j) +X

(internet,t)
(i,j) },

t ∈ (0, T ).

As we know, the maximum traffic of an area highly depends
on the characteristic of this area, e.g., its functionality and the
population distributed. Hence, we investigate the relationship
between the maximum wireless traffic and the area character-
istic vector r. In Fig. 7 we plot the network capacity, deployed
BS number, and the total POIs number in each square grid.
For clarity, we make the x-axis represents the 1-10000 square
grids. From the figure, the three curves show an obvious
correlation among them.

Fig. 7. The number of all kind of POIs, the number of deployed BSs and
the maximum traffic in each square grid.

To better quantify the correlation among them, the cross
correlation is calculated and plotted, i.e., Rkm(τ) =∑N

l=0 k(l)m(l+τ)

σk(l)σm(l)
, where the maximum traffic sequence is sub-

stituted into k(l) and the number of overall POIs or the number
of BSs is substituted into m(l). Note that, around the Square
ID 9100 in Fig. 7, there is a spike on the POI number but
not on maximum traffic. From map [34], we can see this area
is likely to be a mixture of agricultural and industrial areas,
where a few main roads and railways have been constructed.
Hence, although they are marked with a large number of
subway stations, the number of mobile users may be not large.
From Fig. 8, we can see that the obvious peak in τ = 0, which
implies that in each square grid the maximum traffic highly
depends on the number of overall POIs and the BS number,
i.e., the environment vector r. However, when τ 6= 0 the
correlation coefficient rapidly decreases. This phenomena tell
us that due to the difference of environment characteristics in
different area (i.e., square grids), the deployed BS number, the
POIs and the traffic are all different. This difference becomes
more significant with the increase of their physical distance.

With these results, we can clear see the impact of the
environment characteristics and the number of BSs on wireless
maximum traffic, which verifies our modeling of the capacity
functions Cm(nm, r) and Cs(ns, r). That is, the capacity is
highly dependent on r. Since the number of BSs deployed
in a square grid determines the provided wireless resource,
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we choose it as one parameter of the capacity function [35].
Meanwhile, the geographic environment greatly impacts the
propagation model of wireless signals [36]. Hence, the area
characteristic vector is chosen as another parameter of the
capacity function.
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Fig. 8. Lag correlations between maximum traffic and overall POI, BS
number.

B. Clustering of Different Regions

From Fig. 1 and 7, we can also see that the wireless traffic
is quite different in different geographic locations. The areas
close to the city CBD area have a large population, which
contributes to a large wireless traffic distributed over a large
number of POIs and deployed BSs. In contrast, the sparse
population in remote areas leads to a much less traffic volumn
and hence a small number of deployed BSs. Considering these
differences, a clustering algorithm is used to classify the 10000
square grids into different regions.

In more detail, the number of BSs, the number of POIs, the
maximum traffic are collectively used to construct the feature
vector for each square grid, then a K-means algorithm is
utilized to cluster the whole Milan area into different regions.
An unsupervised K-means algorithm is used to implement
the clustering, which aims at minimizing the distance within
the same cluster and maximize the distance within different
clusters.

Fig. 9 shows the result of the adopted clustering algorithm,
where the square grids with similar characteristics are grouped
into a cluster. Following the typical scenarios defined in
3GPP [36], and considering the region locations in Milan’s
map, we name the four regions as rural, suburban, urban, and
city CBD area. Although the population information is not
involved in the classification due to the data unavailability, the
relationship between wireless traffic and population ensures
the accuracy of classification [37]. We can see that the entire
city area is classified into 4 kinds of regions:
• Rural: This region mostly include the edge areas on the

map, which is sparsely populated. Hence, there are few

Fig. 9. Clustering result by K-means.

traffic, few activities and few deployed BSs. As shown in
Fig. 10, the number of BSs in the square grids belonging
to this region is in the range 1-5 and with a median of 3.
Considering the area of each square grid is 0.055/km2,
according to the typical inter-site distance of MBSs in
3GPP [36], it can be conclude that in most of the square
grids belong to this region only MBSs are deployed.

• Suburban: Compared with the rural region, the number
of BSs in this area mostly ranges in 6-20, with a median
of 12. Comparing with the typical density of MBSs,
apparently, in suburban region both MBSs and SBSs are
deployed.

• Urban: The number of BSs in urban ranges in 19-38,
with a median of 27. Due to the large transmission power
of MBSs, the interference will quickly increase if the
number of MBSs grows. Hence, the increasing number
of BSs is mostly contributed by the deployment of SBSs.

• City CBD: The number of BSs in city center ranges in
32-63, with a median of 48. This region has the highest
level of traffic activity, and thus more SBSs are deployed
to support the larger traffic volume than other regions.

From the above analysis, we can conclude that: 1) in mostly
rural region, only a few MBSs are deployed to ensure a basic
network coverage; 2) for the other three regions, the MBSs
and SBSs are both deployed, while the number of SBSs is
increasing with the higher traffic requirement.

C. Quantifying MBSs’ and SBSs’ Capacities by Transfer
Learning

As introduced in Section III-C and mentioned above, the
original dataset does not differentiate MBSs and SBSs. That
is, it only provides the overall traffic and the number of BSs
in each square grid. Hence, it is difficult to obtain the capacity
functions of MBSs and SBSs directly. However, according to
our previous analysis, we know that in most square grids
classified as rural regions, only MBSs are deployed. This
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CBD area

Fig. 10. The distribution of BSs in different regions (”◦” means abnormal
point).

partition of data can be used to characterize the traffic feature
of MBSs, with which the traffic feature of SBSs can be
deduced from the data in the other regions.

Following this idea, transfer learning is adopted, which
utilizes the knowledge gained from a source domain to ef-
ficiently solve a similar problem or the same problem in a
target domain. According to [38], the transfer learning can be
categorized into three kinds: inductive transfer learning aiming
to solve a different but related problem, transductive transfer
learning aiming at the same problem but with different data
distribution, and unsupervised transfer learning focusing on
unsupervised learning tasks.

In our work, with the learned knowledge about the traffic
that a number of MBSs can provide in rural regions, trans-
ductive transfer learning can use this knowledge to find the
number of deployed MBSs in the other regions. Since each
square grid has the same size, 0.055/km2, the number of
MBSs in each grid should remain stable.

Fig. 11. Transfer Learning with Different Regions.

As shown in Fig. 11, firstly, the traffic features provided by
MBSs is captured by an MLP network using the data of rural
regions. With the obtained relationship between the traffic X ,
the number of MBSs Nm, and the environment characteristics
r, the numbers of MBSs deployed in the square grids of the
other three regions are obtained by the transfer learning. Due to
the similarity measure of environment characteristics among
different regions, the transfer learning is proceeded step by
step, that is, from rural to suburban, from suburban to urban,
and then from urban to city CBD.

During this process, with the numbers of MBSs and SBSs
in each square grid, Nm and Ns, the MLP is adopted here to
modeling the capacity functions Cm(Nm, r) and Cs(Ns, r).
Note that, the maximum traffic z is used to represent the
capacity of BSs.

VI. THE OPTIMAL BS SLEEPING STRATEGY

In this section, the optimal BS sleeping strategy is inves-
tigated which aims to minimize the energy consumption in a
given area. Since the data related to each BS’s detail deploy-
ment parameters and users’ traffic are always unavailable due
to business confidentiality at the network operators or laws
and regulations to protect users’ privacy. Hence, it is difficult
to obtain such kind of public data sets. In this work, we aim
to develop a data-driven BS sleeping strategy based on public
data with limited general cellular networks [39], e.g., overall
traffic and BSs’s number, therefore, we define a cellular energy
saving problem to seek the optimal BSs’ number in an area.

According to [40], the energy consumption of a BS mainly
includes the following parts: 1) the fixed operating energy
consumption of a BS, 2) the energy consumption of the circuit
components in BS’ antennas which is proportional to the
number of antennas, 3) the energy consumption of the power
amplifier, and 4) the energy consumption on traffic load which
is linear with the traffic provided. The efficiency of traffic
load consumption of MBSs and SBSs denoted by κm and
κm, respectively. Except the energy related to traffic load, the
other three parts of energy consumption can be viewed as
a fix consumption for a BS. Denoted by pm and ps the fix
consumption of an MBS and an SBS, respectively, the energy
optimization problem in Eq. (1) can be reformulated as:

min
ns,nm

nmpm + κmCm(nm, r) + nsps + κsCs(ns, r), (9a)

s.t. Cm(nm, r) + Cs(ns, r) ≥ µ+ ∆, (9b)

dNm
2
e ≤ nm ≤ Nm, (9c)

0 ≤ ns ≤ Ns. (9d)

Here, we assume that at least one half of the deployed MBSs
should be activated to ensure a reliable umbrella coverage.

1) Global Optimal Solution by Exhaustive Searching:
Reviewing the optimization problem in Eq. (1), its formula-
tion and convexity depends on the functions, Cs(ns, r) and
Cm(nm, r). Since they are computed by a neural network, their
rigorous math expressions are hard to formulate. Hence, an
exhaustive searching algorithm can be used to find the optimal
results of nm and ns in the feasible region defined by the
problem constraints.

2) Optimization with Linear Capacity Model: In many ex-
isting research works on cellular network analysis, the network
throughput is usually assumed to increase linearly with respect
to the number of deployed BSs, especially in sparse scenarios
where the aggregated interference is relatively small [41, 42].
This phenomenon is also supported by many industry reports.
In Fig. 13, it can be seen that, for a given square grid with
characteristics r, 1) Cs(ns, r) almost increases linearly with ns
in the investigated density range, and 2) Cm(nm, r) increases
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linearly when the density of MBSs is less than 50/km2, i.e.,
3 MBSs in a square grid.

Inspired by these results, linear capacity model can be used
to approximately fit the results of Cs(ns, r) and Cm(nm, r).
Then the problem in Eq. (9) can be rewritten as

min
ns,nm

nmpm + κm(a1nm + b1) + nsps + κs(a2ns + b2),

(10a)
s.t. a1nm + b1 + a2ns + b2 ≥ µ+ ∆, (10b)

dNm
2
e ≤ nm ≤ Nm, (10c)

0 ≤ ns ≤ Ns. (10d)

Apparently, Problem (10) is a linear programming problem,
whose optimal result can be quickly found using math tools
like CVX. The complexity is much lower than the exhaustive
search.

3) Optimization with Nonlinear Capacity Model: Appar-
ently, the rapidly increasing aggregated inter-cell interfer-
ence in the network densification will suppress the growth
of the network throughput, such kind of results have been
verified by many theoretical analysis on dense and ultra-
dense networks [43]. Even with various kinds of interference
coordination and cancelation techniques, the linear increase of
network capacity cannot be achieved in the dense networks.

Also from our results shown in Fig. 13, compared with the
SBSs with a low transmission power, the capacity of MBSs
increases much slower when the number of deployed MBSs
exceeds 3 or 4 per square grid. To better approach the real ca-
pacity achieved by the datasets, a non-linear function function
to fit the outcome of Cm(nm, r), such as a1n

2
m+b1nm+c1. For

SBSs, due to the density range in the dataset, this performance
degradation does not appear in the outcome. Since the linear
model works well and leads to a smallest fitting error, the
linear model is still preferred for Cs(ns, r). With such models,
the optimization problem can be reformulated as

min
ns,nm

nmpm + κm(a1n
2
m + b1nm + c1) + nsps + κs(a2ns + b2),

(11a)

s.t. a1n
2
m + b1nm + c1 + a2ns + b2 ≥ µ+ ∆, (11b)

dNm
2
e ≤ nm ≤ Nm, (11c)

0 ≤ ns ≤ Ns. (11d)

Since this optimization is not a convex one. Hence, non-linear
programming tools are utilized to find the optimal results. Al-
though the computational complexity is higher than the linear
programming for Problem (8), the higher accuracy of this non-
linear model is supposed to achieve better performance.

To better present the procedures adopted in our work,
Algorithm 1 is organized, which includes: 1) using the MGCN-
LSTM network to predict the traffic requirement, µ; 2) K-
means algorithm to cluster the square grids into different
regions; 3) transfer learning to obtain the numbers of MBSs
and SBSs in each square grid, and MLP to model the capacity
functions Cm(·) and Cs(·); 4) for a given square grid, fitting
the outcome of Cm(:, r) and Cs(:, r) by linear or non-linear
models, and calculate the optimal solutions nopt

m and nopt
s .

Algorithm 1 BS Sleeping Strategy Based on Traffic
Prediction and Capacity Modeling.

Offline Stage
1. MGCN-LSTM Model for Traffic Prediction:

Input: adjacency matrix AN ,AF ,AS based on Eq.(3),
Eq.(4) and Eq.(5),cellular traffic data segments
X r,X d,Xω from Eq.(7), Eq.(8) and Eq.(9)

Output: Learned MGCN-LSTM network with parameter
θ

Step 1. Randomly initialize the MGCN-LSTM network
parameter;

While not end of epoch do
Step 2. train the MGCN-LSTM as illustrated in Fig. 3

using {AN ,AF ,AS} and {X r,X d,Xω};
Step 3. update the MGCN-LSTM network parameter θ

by adaptive moment estimation (ADAM)
optimizer;

End While
2. Capacity Modeling by Transfer Learning

Input: maximum traffic z, BS number B, POI P , area
characteristic r

Output: capacity models: Cm(·) and Cs(·), Nm and Ns
Step 1. K-means uses feature {z,B,P } to cluster the

entire city into different regions, Rq;
Step 2. use data of grids {z, r, B} in R1 as source

domain data to train Cm(·) using MLP;
For region Rq: q from 2 to 4

Step 3. use data of grids {z, r, B} in Rq as target
domain data to fine-tuning Cm(·) and
obtain Nm.

Step 4. use data {z − Cm(r, Nm), r, B −Nm}
to train Cs(·) using MLP, and further
fine-tuning.

End For
Online Stage Part

3. Optimal BS Sleeping Strategy for a Square Grid:
Input: MGCN-LSTM network with parameter θ, capacity

models Cm(·) and Cs(·); parameters of the square
grid: traffic X , BS number Nm and Ns, area
characteristic r;

Output: the optimal number of active MBSs and SBSs,
nopt
m and nopt

s in this interval
Step 1: use the MGCN-LSTM network to achieve the

predicted traffic µ;
Step 2: linear fitting: Cm(r, nm) ≈ CL

m(nm) , a1nm+
b1, Cs(r, ns) ≈ CL

s (ns) , a2ns + b2;
Step 3: nonlinear fitting: Cm(r, nm) ≈ CN

m(nm) ,
a1n

2
m + b1nm + c1;

Step 4: Find nopt
m and nopt

s with different approaches;
Approach 1: use original capacity models Cm(·) and

Cs(·)
For nm = dNm

2 e to Nm
For ns = 0 to Ns

If Cm(r, nm) + Cs(r, ns) ≥ µ+ ∆
Pall = nmPm + nsPs;
record {Pall, nm, ns};

End If
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TABLE III
THE PERFORMANCE ACHIEVED BY MGCN WITH DIFFERENT GRAPHS.

Data Performance One graph Two graphs Three graphs
metrics GN GF GS GN and GF GN and GS GF and GS GN , GF and GS

SMS
RMSE 107.14 110.01 105.66 91.60 94.73 97.48 90.14
MAE 72.08 80.47 76.77 65.32 64.86 68.68 63.88

R2 0.963 0.958 0.955 0.975 0.969 0.965 0.978

Call
RMSE 109.16 113.65 106.81 84.98 95.32 101.35 72.07
MAE 77.87 80.40 67.77 58.58 65.37 65.71 48.44

R2 0.963 0.971 0.965 0.981 0.971 0.967 0.985

Internet
RMSE 561.52 635.69 553.18 519.20 535.43 572.49 493.88
MAE 457.39 486.62 414.75 424.52 397.19 417.33 359.61

R2 0.961 0.943 0.957 0.968 0.967 0.957 0.972

End For
End for

nopt
m , n

opt
s = arg min

nm,ns

Pall;

Approach 2: with approximated models CL
m(·) and

CL
s (·)

solve problem in Eq.(7) by CVX;
Approach 3: with approximated models CN

m(·) and
CL
s (·)

solve problem in Eq.(9) using matlab function
fmincon();

VII. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, extensive experiments are conducted to
evaluate the performance of our cellular traffic prediction
model and the proposed dynamic BS sleeping strategy. For
MBS and SBS, the parameters are adopted according to [40,
44]: 1) the fixed operating energy consumption: 10W and 5W ;
2) the number of antennas: 3 and 1, and the circuit components
energy consumption of antennas: 1W and 0.8W ; 3) power
amplifier efficiency: 0.128 and 0.12, and input power of BS:
43dBm and 33dBm; 4) the efficiency of load consumption:
1.15 · 10−9J/bit and 1.05 · 10−9J/bit.

A. Traffic Prediction by MGCN-LSTM

1) Evaluation metrics and prediction performance of the
proposed model: Three performance metrics are investigated
in our work: root mean square error (RMSE), mean absolute
error (MAE) and R-square (R2), which are formally written

as: RMSE =

√∑n
t=1(µt−Xt

(i,j)
)2

n , MAE =

√∑n
t=1 |µt−Xt

(i,j)
|

n ,

R2 = 1 −
∑n

t=1(µt−Xt
(i,j))

2∑n
t=1(µ̄−Xt

(i,j)
)

, where Xt
(i,j) represents the

ground-truth traffic flow and µ is the corresponding predicted
traffic flow, n is the size of traffic flow, and µ̄ is the average
of µ. Note that, the smaller the MSE and RMSE values are,
the more accurate the performance will be, while R2 indicates
in an opposite way.

2) Prediction performance achieved by MGCN: In Ta-
ble III, we show the performance achieved by the MGCN
when different types of graphs are joined. Generally, it can be
seen that the more graphs are involved, the better performance
can be achieved.

For instance, in the prediction of SMS traffic, compared with
an one-graph convolution network, the two-graph structure
achieves a better performance, and the three-graph structure is
superior to the former two. In more detail, for the SMS traffic
prediction, MGCN with a three-graph structure improves the
RMSE and MAE by 7.5% and 7.0%, respectively, compared
with that achieved by MGCN with a two-graph structure (GF
and GS). In addition, MGCN with three-graph improves the
RMSE and MAE by 12% and 15.3%, respectively, compared
with that achieved by MGCN with the one graph (GN ).

To verify the convergence of proposed prediction model, the
loss function in each training and testing epoch are plotted
in Fig. 12. It can be observed that the value of the loss
function quickly decreases and converges to a small value,
after 10 epochs, the loss performance is relatively stable. And
the training and testing loss performance tend to be stable after
40 epochs, indicating that MGCN-LTSM can converge and the
training process is time efficient.

0 10 20 30 40 50 60
0.00

0.02

0.04

0.06

0.08
Training loss 
Testing loss

Fig. 12. The convergence illustration.

3) Comparison with other algorithms: To guarantee the
comparison fairness, the network parameters and training data
are kept consistent. In Fig. 13, the proposed MGCN-LSTM
algorithm is compared with several conventional prediction
methods: autoregressive integrated moving average (ARIMA),
LSTM networks and ConvLSTM.
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(a) SMS (b) Call (c) Internet

(d) SMS (e) Call (f) Internet

Fig. 13. Comparisons of prediction versus ground truth for all methods on dataset.

Fig. 13(a), 13(b) and 13(c) show the prediction results of the
traffic in SMS, CALL and Internet, respectively. It can be seen
that the ARIMA model has the largest deviation since ARIMA
pays attention to the average value of the past moments.
Moreover, LSTM outperforms ARIMA since LSTM is able
to capture the temporal correlation. Furthermore, ConvLSTM
can simultaneously extract spatial-temporal characteristics, so
it has a better prediction performance than LSTM. Most
importantly, the proposed MGCN-LSTM exhibits the best
performance, especially in terms of peak and valley of traffic
prediction. This can be attributed to the fact that MGCN-
LSTM utilizes multi-graph convolution, which captures spatial
features from various aspects.

To show the performance comparison in a clearer way,
Fig. 13 (d)-(f) plot the cumulative distribution function (CDF)
of the predicted error. From Fig. 13(d), we can see that for
SMS traffic that 80% prediction errors with ARIMA, LSTM,
ConvLSTM and MGCN-LSTM are less than 1335, 622, 158,
103, respectively. Compared with ConvLSTM, MGCN-LSTM
achieves a performance improvement of 34.8%. Similarly,
in Fig. 13(e) and Fig. 13(f), MGCN-LSTM achieves about
47% and 11.6% improvement compared with ConvLSTM,
respectively.

In addition, the detail values of the performance metrics
related to these 4 algorithms are listed in Table IV. We can see
that, for SMS, MGCN-LSTM brings about 56.7%, 43.3% and
43.5% improvements in terms of RMSE compared to ARIMA,
LSTM and ConvLSTM, respectively. The improvements in
Call traffic are 59.4%, 56.1% and 39.1%, and in Internet traf-
fic, 46.2%, 45.6% and 22.7%. For MAE and R2, a significant

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT PREDICTION ALGORITHMS

Dataset Metrics ARIMA LSTM Conv-LSTM MGCN-LSTM

SMS
RMSE 189.00 144.22 144.86 81.79
MAE 135.31 105.96 106.77 58.74

R2 0.889 0.917 0.932 0.978

Call
RMSE 177.67 164.06 118.42 72.07
MAE 115.04 109.09 85.31 48.44

R2 0.917 0.937 0.967 0.985

Internet
RMSE 919.91 910.65 640.22 494.95
MAE 579.67 611.68 431.53 374.18

R2 0.908 0.912 0.953 0.972

performance improvement brought by MGCN-LSTM can also
be observed.

The advantage of the proposed algorithm is achieved by
the following reasons: 1) The multiple spatial features are
extracted by multi-graph through the GCN module; 2) Multi-
domain data sets: POIs, BSs, social activity and multiple
periodic features are involved in time-domain prediction; 3)
The attention mechanism is adopted to optimize the features
extracted.

B. Capacity Modeling of MBSs and SBSs

Fig. 14 plots the capacity functions of MBSs and SBSs
obtained in two square grids, where the first grid belongs
to the city CBD and the second grid belongs to suburban
region. Firstly, it is observed that although the environment
characteristics r in two grids are different, the capacity curves
vs. the BS number are quite similar. That is, the network
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Fig. 14. The capacity modeling of MBSs and SBSs in city CBD area and
suburban.

capacity mainly depends on the number of deployed BSs, and
the performance impact caused by environment difference is
limited.

Secondly, in both grids, with the increasing number of
deployed MBSs, the capacity provide firstly increases almost
linearly with the BS number. However, in the grid belonging
to city CBD, with the further increase of MBSs’ number,
the capacity increase slows down, which is consistent with
the analysis in [43]. The main reason behind is the sever
interference aggregated during the process of densification.
In contrast, this phenomenon dose not show in the capacity
curves of SBSs learned by the Milan’s data. Due to the low
transmission power of SBSs, the degradation caused by inter-
ference appears in ultra-dense scenarios. For the investigated
data of Milan at several years ago, it seems that the deployment
of SBSs has not entered this regime.

C. Performance of BS Sleeping Strategy

In Fig. 15, we plot the predicted traffic flow, the optimal
numbers of active MBSs and SBSs based on 1) search using
the obtained C(nm, r) and C(ns, r), 2) linear programming
using linear approximations of C(nm, r) and C(ns, r), and 3)
non-linear programming using approximate quadratic function
for C(nm, r). Here, the results in square grids (50, 61) and
(38, 61) are shown, which belong to city CBD region and
suburban region, respectively.

Firstly, we can see that no matter what kind of method is
used and what region the square grid belongs to, the number
of active SBSs changes with the traffic flow, while the number
of active MBSs changes little. Since MBSs aim at ensuring

the cell coverage and handling the user mobility, a minimum
number of MBSs is guaranteed to power on in our strategy.
When the traffic requirement exceeds this basic level, more
SBSs and MBSs are activated to enhance the network capacity.
Since the power consumption of SBSs is much less than
MBSs, with the aim of energy saving, SBSs will be activated
firstly to boost the network throughput.

Secondly, compared the three methods, the optimal numbers
of MBSs and SBSs achieved by the approximated nonlinear
model are very close to those obtained by exhaustive search-
ing. In more detail, the approximated linear model leads to a
more frequent change of MBSs’ number, and a bigger number
of active SBSs in peak times. From these results, it can be
concluded that the approximate quadratic function is more
accurate than the linear function.

Thirdly, comparing the curves in the square grids of the
suburban region with those of the city CBD regions, we can
see that the traffic is much less than that in city CBD, and
hence the deployed MBSs and SBSs are both less than those
deployed in city CBD.

Moreover, from the figure, even the number of active SBSs
changes more quickly than MBSs, on average it changes
every 2-3 hours in a relatively regular pattern . That is, the
curves oscillate on a multi-hour basis. This frequency is more
slower than the strategies proposed in many previous works
by detecting the real-time cell load.

To show the energy consumption with these three methods
in the two square grids, Fig. 16 is plotted, apparently, the
energy consumption is highly related to the numbers of active
MBSs and SBSs in this square grid. Hence, similar with the
results in Fig. 15, the nonlinear model, i.e., quadratic function
fitting, for Cm(nm, r) achieves near-optimal performance in
energy consumption. Since the energy consumption also de-
pends on the traffic load, the curve is continuously

Moreover, compared with the energy consumption with all
active MBSs and SBSs as 100%, the energy saved by the
BS sleeping strategy using non-linear model is more obvious
in city CBD. In more detail, the energy saved in city CBD
approaches 63% in one week, and near 54% of the energy is
saved in suburban regions. This is because the large number
of BSs deployed and the traffic disparity between the peak and
off-peak time.

Moreover, we compare the saved energy achieved by our
proposed algorithm with the strategy in [45]. In detail, square
grid with index 5061 in city CBD region and grid 3859 in
suburban region are investigated, with the all active power
consumption as 100%. As shown in Table V, it can be
observed that in both regions our proposed algorithm has better
performance, and in the city CBD region with more BSs, the
effect of energy-saving is more obvious.

TABLE V
THE AVERAGE ENERGY SAVED(%) IN DIFFERENT ALGORITHMS.

comparison algorithm our proposed algorithm (%)
Suburban 52% 55%
City CBD 57% 63%
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Fig. 15. The top subgraph is the predicted traffic flow, the middle and bottom are the number of active MBSs and SBSs, respectively.

0 50 100 150

Hour

0

500

1000

1500

2000

2500

P
ow

er
 c

on
su

m
p

ti
on

 (
W

at
t)

All Active

Optimal by Search

Approx. Linear Model

Approx. Non-linear Model

(a) City CBD area.

0 50 100 150

Hour

0

200

400

600

800

1000

P
ow

er
 c

on
su

m
p

ti
on

 (
W

at
t)

All Active

Optimal by Search

Approx. Linear Model

Approx. Non-linear Model

(b) Suburban.

Fig. 16. Performance comparison of different algorithms for power consump-
tion.

VIII. CONCLUSION

In this paper, a data-driven BS sleeping control strategy was
designed based on the traffic prediction and capacity model-
ing. To better extract the spatial characteristics in different
domains, a MGCN framework was introduced together with
the LSTM network in time domain prediction and an attention

mechanism. The proposed MGCN-LSTM framework achieved
a favorable performance in traffic prediction. The capacity
models of MBSs and SBSs in different environments were
learned by transfer learning using the data in rural regions as
the source domain. At last, optimal BS sleeping algorithms
were proposed to minimize the power consumption. From
the simulation results, more energy can be saved by in the
regions with a large number of deployed BSs or with a more
sever traffic fluctuation. The approximate non-linear model of
capacity function achieved a near-optimal performance with a
relatively low complexity.
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