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Abstract

In Data Envelopment Analysis (DEA), a variety of approaches have been used in the context of single-

stage and basic serial two-stage systems to attain fairness in the evaluation of decision-making units (DMUs).

Little work, however, has been done to address this challenge in a generalised two-stage structure featuring

additional inputs in the second stage and a proportion of first-stage outputs as final outputs. In this paper, we

argue that in this context, fairness is enhanced by increasing measures related to the discriminatory power and

the weighting scheme of the method. We describe a mechanism that gives prominence to a more contemporary

concept of fairness, incorporating diversity and inclusion of minority opinions. These aspects have, to our

knowledge, not yet received explicit attention in the methodological development of DEA. We propose a

novel combination of an additive self-efficiency aggregation model, a minimax secondary goal model, and the

CRiteria Importance Through Inter-criteria Correlation (CRITIC) method, in order to promote these aspects

of fairness, and thus achieve a better degree of cooperation between the stages of a DMU and among DMUs.

The additive aggregation model is chosen over the alternative multiplicative approach for a variety of reasons

relating to the emphasis on the intermediate products exchanged and the simplification. The minimax model

offers peer evaluation in which each DMU aims to evaluate the worst of the others in the best possible light.

Application of the CRITIC method to DEA addresses the aggregation problem within the cross-efficiency

concept. Practical applications of this approach could include supporting the determination of training needs

in job rotation manufacturing, or evaluation of sustainable supply chains. The paper includes a description

of a numerical experiment, illustrating the approach.

Keywords Data envelopment analysis; two-stage; fairness; cross-efficiency; CRITIC

1 Introduction

Data Envelopment Analysis (DEA) is a non-parametric approach for evaluating the performance of Decision-

Making Units (DMUs) that use inputs to produce outputs (Cook et al., 2014). DEA was developed by

Charnes et al. (1978) (CCR) for the constant returns-to-scale assumption. Traditional DEA does not model

the internal processes in a DMU. As a result, a relatively large proportion of DMUs emerge as DEA-efficient,

without a means to distinguish them (Ma et al., 2017). To enable the study of internal structures, research

has extended DEA models to consider network structures (Kao, 2009; Kao and Hwang, 2011; Wanke

and Barros, 2014; Kao, 2014; Guo et al., 2017; Chen and Zhu, 2017; Örkcü et al., 2019). In a

two-stage process in particular, inputs used by a DMU feed into a first stage, producing intermediate outputs

that feed into a second stage, producing the final outputs of the entire system. Such a structure facilitates the

measurement of both the overall system and its individual stages’ efficiencies (Mahdiloo et al., 2016).

Measuring the performance can be challenging when inputs and outputs are shared among different processes

and are not easily distinguished (Zha and Liang, 2010). Yu and Shi (2014) examine a two-stage structure

with additional inputs in the second stage and some of the intermediate products as final outputs, towards
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building cooperative and leader-follower models. Jianfeng (2015) considers a network DEA model, in which

the inputs are classified into those that are entirely integrated into one stage and those that are shared between

the two stages. Ma et al. (2017) propose a parallel-series hybrid two-stage DEA model utilising the principles

of additive and multiplicative efficiency decomposition.

While two-stage DEA models have the potential to increase managerial insight into the sources of inefficiency,

two major problems similar to those in a single-stage emerge. The first one concerns the lack of discrimination

power due to a high number of efficient DMUs (Mahdiloo et al., 2016). The second challenge relates to an

‘unrealistic’ weighting scheme. Indeed, it is allowed for high relative-importance weights to be assigned to ‘less

important’ inputs or outputs, and/or low weights to significant factors. This choice of weights could turn a

DMU into an efficient unit (Ghasemi et al., 2014).

In this paper we are interested in methods which aim to avoid a low degree of discrimination, unrealistic

weight schemes, and to use a system of ranking that encourages cooperation by the units being evaluated.

While doing so, we also wish to provide a mechanism that gives a voice for minority opinions. This aspect

has, to our knowledge, not yet received explicit attention in the methodological development of DEA. In short,

we say that we intend to tweak DEA methodology to improve the fairness1 in the evaluation outcomes. We

summarize the core literature, relevant to fairness evaluation in DEA, in Table 1.

Among those methods tested towards fairness is cross-efficiency (CE), which adds peer-evaluation to the

self-evaluation principle (Sexton et al., 1986). As stressed by Anderson et al. (2002), CE improves

the probability of obtaining a unique ranking. A critical drawback of CE is the non-uniqueness of optimal

weights, which leads to the non-uniqueness of cross-efficiencies. To alleviate this, Doyle and Green (1994)

recommended the adoption of alternative secondary goals in an aim to select unique optimal multipliers. In

particular, they introduced an aggressive and a benevolent model, while the secondary objective functions in

Liang et al. (2008) reflected the minimisation of total deviation, maximum deviation, and mean absolute

deviation from an ‘ideal’ point. The interested reader could also check Wang and Chin (2010a), Wang et

al. (2011), Wu et al. (2012), Wu et al. (2016b) and Li et al. (2018). The non-uniqueness issue is also

critical in a network system. Kao and Liu (2019) developed an aggressive CE model to measure the efficiency

in two basic network structures. Örkcü et al. (2019) came up with a neutral CE model in a two-stage system,

which is indifferent to the preference choice between the aggressive and benevolent formulations.

The aggregation of the cross-efficiency scores is another issue in CE. An appropriate aggregation strategy

can enable the DMUs to accept their ranking. Although the average method has proven effective in ensuring a

credible ranking (Liang et al., 2008, Wang and Chin, 2010b), it loses sight of the weights assigned to scores

(Wang and Wang, 2013). To accommodate this issue, Wu et al. (2011) utilised the Shannon entropy,

allocating a fixed but different weight to each DMU. Wu et al. (2012a) highlighted that this is problematic,

1No attempt is made to give a formal definition of fairness, but aspects which might reasonably be considered to contribute to
this are discussed throughout this paper.
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since it ignores the primary role of the self-evaluated efficiency of each DMU. They, thus, embedded the Shannon

entropy into the CE by considering the association among the self and the peer-evaluation values. For more

recent work on this, see Wang and Chin (2011), Wang and Wang (2013), and Song and Liu (2018).

Fairness in the evaluation outcomes has been achieved even via the integration of game theoretic concepts

within traditional single-stage and two-stage DEA networks. For instance, Zhou et al. (2013) introduced

a Nash bargaining game model to obtain a unique efficiency decomposition for the two constituent sub-stages

of the centralized model. Their approach leads to a fair context, in that it reflects how the two sub-stages

bargain with each other for better efficiencies. An et al. (2017) also used Nash bargaining, but introduced a

framework for setting fair target values for intermediate products of two-stage systems, so that the two stages

are encouraged to collaborate with each other within a pre-agreed range of fair outcomes. Wu et al. (2016a)

proposed a CE evaluation approach based on Pareto improvement. A merit of their approach is that it always

generates a set of Pareto optimal cross-efficiencies for the DMUs. Li (2017) introduced a sequence of leader-

follower procedures as to ensure a fair evaluation in the sense that it guarantees that the same result is obtained

for the second (=follower) stage of a DMU as would be obtained applying the standard DEA model to the

second stage independently. A number of studies have been reported in this direction, such as Yu and Shi

(2014), Ma et al. (2014), and Li et al. (2018).

Table 1: Related literature on fairness evaluation in DEA.
Type of
network

Cross-
efficiency

Aggregation
method

Game
approach

Efficiency
measurement

Zhou et al. (2013) two-stage × × Nash bargaining decomposition
Yu and Shi (2014) two-stage × × cooperative & leader-follower ×
Ma et al. (2014) two-stage centralized arithmetic average non-cooperative inspired decomposition

Wu et al. (2016a) single-stage Pareto improvement arithmetic average Pareto optimality n/a
An et al. (2017) two-stage × × Nash bargaining ×

Li (2017) two-stage × × cooperative & leader-follower ×
Li et al. (2018) single-stage optimal balanced balanced adjustment game-like iterative algorithm n/a

Örkcü et al. (2019) two-stage neutral geometric average × ×
This Paper two-stage minimax CRITIC × aggregation

In summary, fairness in the evaluation of DMUs has been extensively explored via CE towards single-stage

and basic network structures. Nevertheless, when the discussion shifts to more complex structures where inputs

and outputs are shared among different processes, there is limited attention to how to achieve more meaningful

results for the DMUs. This intricacy is due to the additional inputs in the second stage obtained from the

external environment and the dual role of the intermediate products. There are several enlightening applications,

especially in logistics, supply chain, and manufacturing, that could justify the necessity of exploring fairness

in the performance evaluation of a generalised two-stage structure. These are discussed in more depth with an

example in Section 3 and in the implications of Section 4.2.

In our paper, we firstly introduce an additive self-efficiency aggregation model that can highlight the strength

of each sub-stage and obtain the most favourable efficiency for the DMU overall. Since the optimal set of
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weights derived from the aggregation model may not be unique, we employ a minimax secondary goal model.

The reasons for the adoption of this model are twofold: (i) it corresponds to cooperative situations (Liang et

al., 2008b), since sub-stages behave benignly, and (ii) it is compatible with multi-stage systems where the

individual sub-stages pursue mutual cooperation via the maximisation of the overall efficiency (Yu and Shi,

2014). The multi-objective model is converted using the Compromise Programming methodology as a means

to identify a good solution that balances the objectives.

On the aggregation of the individual CE, existing frameworks (Wang and Chin, 2011; Wu et al., 2012a)

pay attention to the reasonable allocation of the weights by limiting the range between self and peer-assessment

efficiencies. This condition may indicate consistency from the perspective of the majority opinion. However,

considering that many organisations are moving towards systems of evaluation in which also the opinions of

minorities are valued (Park and DeShon, 2010), we introduce an aggregation method that rewards contrast.

We rely upon the CRiteria Importance Through Inter-criteria Correlation (CRITIC) method (Diakoulaki et

al., 1995), an objective method for eliciting weights in multi-criteria problems.With the exception of He and

Ma (2015), our paper is the first to apply the CRITIC method in the context of DEA. Its novel function and

meaning as deployed in the paper is further described in Section 3.3.2, and differences with the above study are

discussed in Section 4.2. Besides, CRITIC would be compatible with the minimax model introduced herein;

this is justified by the model’s nature to highlight the best behaviour of the worst-performing unit, while the

scores of the other better-performing units might decrease.

The remainder of the paper is organised as follows. Section 2 describes the methodological background. In

Section 3, we develop the alternative modelling approach for the generalised two-stage DEA structure. Section

4 illustrates the methods with a numerical example. Section 5 presents conclusions and further research.

2 Methodological Background

In the typical input-oriented CCR DEA model (Charnes et al., 1978), each DMUj (j = 1, 2, ..., n) uses m

inputs (i = 1, 2, ...,m) to produce s outputs (r = 1, 2, ..., s). Let Xij be the input value of i ∈ M for DMU j

∈ N and Yrj be the output value of r ∈ S for DMU j ∈ N . These values are known and non-negative. The

multiplier-form model that evaluates the efficiency of the target DMUk is the following:

Ekk = Max

s∑
r=1

µrkYrk

subject to

m∑
i=1

νikXik = 1,

s∑
r=1

µrkYrj −
m∑
i=1

νikXij ≤ 0,∀j,

µrk, νik ≥ 0,∀r, i,

(1)
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where µrk, νik are the rth output and the ith input virtual multipliers, respectively. These are unknown

decision variables and they are determined by the linear program. If the set of non-negative optimal multipliers

makes the associated objective function equal to 1, then the target DMUk is called DEA efficient; otherwise,

it is called DEA non-efficient.

Two significant challenges of the black-box DEA model, recall the discussion in Section 1, are to acquire

a unique ranking order of the existing DMUs (dealing with the lack of discrimination power) and to obtain a

more realistic weight scheme (Örkcü et al., 2019). They are inter-related and concurrent (Li and Reeves,

1999).

2.1 Cross-efficiency concept

A commonly used approach to overcome these inabilities is the cross-efficiency (CE) evaluation, proposed

by Sexton et al. (1986). Conventional DEA models provide a self-appraisal of the DMUs, using their

own optimal weights (Örkcü et al., 2019). Assume that for model (1), µ∗rk, ν
∗
ik formulate the optimal set

of multipliers. Based on this optimal solution, DMUk is characterised as efficient if and only if E∗kk = 1

(Charnes et al., 1978). Model (1) needs to be resolved for each DMU (in total n times) to obtain an

optimal set of weights for the corresponding DMU. Then by applying the cross-efficiency concept, in which

peer-appraisal is the main idea, we evaluate each DMU, considering the weight profiles of all DMUs. In

particular, Ekj =
∑s

r=1 µ
∗
rkYrj/

∑m
i=1 ν

∗
ikXij indicates the individual cross-efficiency of the DMUj , according to

the optimal weighting scheme of DMUk. A cross-efficiency matrix is a valuable tool for such cases. In this

matrix, elements Ekj depict the peer-efficiency scores of DMUj , based on the optimal weights of DMUk. The

diagonal elements of the same matrix indicate the self-efficiency scores of DMUk. The cross-efficiency score

that attributes the final rank of a DMU, is usually estimated by averaging all individual cross-efficiencies of

the corresponding DMU which is being evaluated. Thus, êj = 1
n ·

∑n
k=1Ekj (j = 1, 2, ..., n) (Anderson et al.,

2002).

A key difficulty of the CE evaluation is that the optimal weights obtained by model (1) may not be unique,

resulting in the non-uniqueness of cross-efficiency scores and rankings of DMUs. To tackle this difficulty,

Doyle and Green (1994) proposed the use of aggressive and benevolent models, as alternative secondary

goals. Model (2) is the aggressive. It maximises the performance of the DMU under consideration while

minimising the cross-efficiencies of all other DMUs. Model (3) is the benevolent that ensures the maximisation

of the cross-efficiencies of all other DMUs, whilst maintaining the performance of the target DMU.
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Min

s∑
r=1

µrk(

n∑
j=1,j 6=k

Yrj)

subject to

m∑
i=1

νik(

n∑
j=1,j 6=k

Xij) = 1,

s∑
r=1

µrkYrk − E∗kk
m∑
i=1

νikXik = 0,

s∑
r=1

µrkYrj −
m∑
i=1

νikXij ≤ 0,∀j; j 6= k,

µrk, νik ≥ 0,∀r, i,

(2)

Max

s∑
r=1

µrk(

n∑
j=1,j 6=k

Yrj)

subject to the same constraints as in model (2).

(3)

Troutt (1997) and later Liang et al. (2008) developed a novel secondary goal, based on the minimisation

of the maximum k-inefficiency (or deviation) score. By identifying an optimal set of multipliers that assigns the

maximum efficiency score to the DMU with the worst performance, they achieved the reduction of deviations

among all the other DMUs. Hence, they presented the following linear programming model, where α∗k = 1−E∗kk:

Min θk

subject to

s∑
r=1

µrkYrj −
m∑
i=1

νikXij + αj = 0,∀j,

m∑
i=1

νikXik = 1,

s∑
r=1

µrkYrk = 1− α∗k,

θk − αj ≥ 0,∀j,

µrk, νik, αj , θk ≥ 0,∀r, i, j.

(4)

Model (4) corresponds to a cooperative situation towards a single-stage DEA structure. In Section 3.2, it

will be amended and customised to the specifications of the generalised two-stage structure to accommodate

the purposes of our DEA methodology.

3 Models Development

Yu and Shi (2014) recommended a DEA structure in which each DMU consists of two sub-stages connected

in series, as in Figure 1. The initial inputs Xij (where i = 1, 2, ...,m) entering stage 1 are converted into

intermediate products Zdj (where d = 1, 2, ..., D). Part of intermediate products αdjZdj is consumed during
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stage 2, and the remaining part (1−αdj)Zdj is channeled out of the system as final output. αdj is the allocation

proportion, dividing this intermediate product into the aforementioned two parts, where 0 ≤ αdj ≤ 1. In stage

2, additional inputs X2
hj (where h = 1, 2, ...,H) are also supplied from outside. Finally, Yrj (where r = 1, 2, ..., s)

are the outputs from stage 2 produced for outside.

Note that αdj is pre-specified externally by the decision maker; it is therefore an observed rather than a

decision value, that is subjectively designated prior to solving the corresponding mathematical model. This

conceptual idea contrasts with the handling of αdj as a variable, according to Yu and Shi (2014). Our

decision to illustrate αdj as an observed value determined by the decision maker (externally) and not the model

(internally) may represent the reality better, reflecting for example: the market conditions, the contractual

requirements, the produced quantity of sub-stage 1, and the alternating requirements and needs of the decision-

maker.

To gain a better understanding of the reason we have selected αdj as an observed value, we can refer

to a real-life example that clearly describes the two-stage structure (Figure 1). A stock-farmer in a cattle

farm (DMU) feeds with corn, wheat, and pasture land (initial inputs in stage 1) dairy cows to produce raw

milk (intermediate product at the end of stage 1). The farmer ought to decide how much quantity of the

produced milk will be further processed (part of intermediate product as input of stage 2) to get butter,

cheese, and yoghurt (final output), and how much quantity will be directly allocated to the outside market

(remaining intermediate product as final output). Finally, the fungi for the flash pasteurisation of milk could

be an additional (exogenous) input of stage 2. In this example, the decision maker i.e. the stock-farmer

freely determines beforehand the way to utilise the produced quantity of milk. Evidently, his decision could be

influenced by the laws of supply and demand, the production capacity of the cattle farm, and/or the state of

health of the cows.

Figure 1: The generalised two-stage structure; Yu and Shi (2014).

3.1 Additive efficiency aggregation

The constant-returns-to-scale (CRS) efficiency scores for the target DMUk can be calculated by the following

two CCR models, respective to the first and second stage; they are based upon the CCR model (Charnes et

al., 1978):
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ECCR1

kk = Max

∑D
d=1 ηdkZdk∑m
i=1 νikXik

subject to

∑D
d=1 ηdkZdj∑m
i=1 νikXij

≤ 1,∀j,

ηdk, νik ≥ 0,∀ d, i.

(5)

ECCR2

kk = Max

∑s
r=1 µrkYrk +

∑D
d=1 ηdk(1− αdk)Zdk∑H

h=1 qhkX
2
hk +

∑D
d=1 ηdkαdkZdk

subject to

∑s
r=1 µrkYrj +

∑D
d=1 ηdk(1− αdj)Zdj∑H

h=1 qhkX
2
hj +

∑D
d=1 ηdkαdjZdj

≤ 1,∀j,

ηdk, µrk, qhk ≥ 0,∀ d, r, h.

(6)

Yu and Shi (2014) do not measure (1− α)Z flows as outputs of the second stage, which merits a comment.

This might make sense when part of the outflow of stage 1 is directly forwarded to an outside market without

affecting the remaining outflow processed in stage 2. In this way, stage 2 does not need to consider the trade-off

and the two sub-stages act rather as being independent. On the other hand, our model (6) measures the

(1 − α)Z flows. This conceptual difference justifies our motivation to examine how the outflows of stage 1

(intermediate products) are split into two distinctive instances which interact with one another. As a further

reason of the inclusion of the (1− α)Z flows in our study, we draw attention to the commonly used efficiency

aggregation method to build our models. As discussed in Kao (2017), in such a case the efficiency of the

system is defined as a function of those of the constituent sub-stages. The intermediate products (αZ flows,

(1−α)Z flows) should be initially involved in measuring the efficiency of the corresponding sub-stage and then

in calculating the overall efficiency.

The system efficiency of the DMUk can be computed from the following CCR model (7). Its objective

function illustrates the ratio of the aggregate exogenous outputs to that of the aggregate exogenous inputs,

considering only the operations of the entire system.

ECCR
kk = Max

∑s
r=1 µrkYrk +

∑D
d=1 ηdk(1− αdk)Zdk∑m

i=1 νikXik +
∑H

h=1 qhkX
2
hk

subject to

∑s
r=1 µrkYrj +

∑D
d=1 ηdk(1− αdj)Zdj∑m

i=1 νikXij +
∑H

h=1 qhkX
2
hj

≤ 1,∀j,

ηdk, µrk, νik, qhk ≥ 0,∀ d, r, i, h,

(7)

ηdk, µrk, νik, qhk correspond to the weights associated with intermediate measure d, output r and inputs i and

h, for the DMUk, respectively. Note that the weights (or multipliers) of the intermediate measures are assumed

to be the same for both sub-stages (Kao and Hwang, 2008).

Model (7) disregards the internal operations of DMUs and treats each DMU as a black box that uses
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exogenous inputs to produce exogenous outputs. Neglecting the internal operations of DMUs could spur us to

results that are not accurate. For instance, while the overall system could be characterised as efficient, one or

both of its individual stages may be inefficient. This is one of the main reasons why we need to examine and

model the operations of the internal structures for each DMU.

To accommodate the aforementioned issue, we explore the efficiency aggregation method as previously dis-

cussed. It is known that it might take either an additive or a multiplicative form depending on the nature of the

problem. To Chen et al. (2009), additive efficiency aggregation models are a way of aggregating components

in a two-stage structure. This type of aggregation requires the allocation of a relative importance weight to

each sub-stage. The weights can be user-specified. They can alternatively be DMU-specific to recognise the

strength of each stage as well as the discrepancies between them, and to facilitate the transformation of the

non-linear model to a linear one (Guo et al., 2017). As discussed in Kao (2016), the DMU-specific weights

will obtain the most favourable efficiency for the system under evaluation. We believe that this might be a

reason towards ensuring a fairer and more cooperative environment for the competing DMUs. This approach

can also estimate how much more the inputs of the system can be reduced, while ensuring the same level of

output production. Finally, it is applicable to both constant and variable returns-to-scale assumptions.

On the other hand, the multiplicative efficiency aggregation method does not require predetermined weights

for building the model. Nevertheless, it can put less emphasis on the intermediate products that are being

exchanged between the sub-stages of a DMU, whereas a weighted aggregation method does and thus better

reflects the level of cooperation between the stages of a DMU. In addition, when it handles a generalised

two-stage network structure with exogenous outputs leaving from stage 1 and/or exogenous inputs entering to

stage 2, it is extremely nonlinear and cannot be easily converted into a linear model using the Charnes-Cooper

transformation. Even the utilisation of a heuristic search method cannot guarantee a global optimal solution

(Chen and Zhu, 2017). For the above reasons, this study selects to define the system efficiency as the

weighted (arithmetic mean) approach (Chen et al., 2009) of its two sub-stage efficiencies.

(w1
k

∑D
d=1 ηdkZdk∑m
i=1 νikXik

+ w2
k

∑s
r=1 µrkYrk +

∑D
d=1 ηdk(1− αdk)Zdk∑H

h=1 qhkX
2
hk +

∑D
d=1 ηdkαdkZdk

), (8)

where w1
k and w2

k are weights determined by the decision-maker, so that w1
k + w2

k = 1. These weights are not

unknown variables, but functions of the optimisation variables. We can, thus, estimate the overall efficiency of

the DMUk by solving model (9).
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Max (w1
k ·

∑D
d=1 ηdkZdk∑m
i=1 νikXik

+ w2
k ·

∑s
r=1 µrkYrk +

∑D
d=1 ηdk(1− αdk)Zdk∑H

h=1 qhkX
2
hk +

∑D
d=1 ηdkαdkZdk

)

subject to

∑D
d=1 ηdkZdj∑m
i=1 νikXij

≤ 1,∀j,∑s
r=1 µrkYrj +

∑D
d=1 ηdk(1− αdj)Zdj∑H

h=1 qhkX
2
hj +

∑D
d=1 ηdkαdjZdj

≤ 1,∀j,

w1
k + w2

k = 1,

w1
k, w

2
k, ηdk, µrk, νik, qhk ≥ 0,∀ d, r, i, h.

(9)

Weights w1
k and w2

k represent the relative importance of the performances of stages 1 and 2 respectively, divided

by the overall performance of the evaluated DMU. A larger weight indicates the corresponding stage’s stronger

effect on the entire performance of the system. To Chen et al. (2009) and Kao (2016), the portions of total

resources devoted to each stage could correspond to the relative size of a stage. This is also due to the nature

of the models which are input-oriented. Therefore, we define:

w1
k =

∑m
i=1 νikXik∑m

i=1 νikXik +
∑H

h=1 qhkX
2
hk +

∑D
d=1 ηdkαdkZdk

(10)

and

w2
k =

∑H
h=1 qhkX

2
hk +

∑D
d=1 ηdkαdkZdk∑m

i=1 νikXik +
∑H

h=1 qhkX
2
hk +

∑D
d=1 ηdkαdkZdk

. (11)

Substituting (10) and (11) into the objective function of model (9), we obtain the following linear fractional

programming model:

ECCR
kk = Max

∑D
d=1 ηdkZdk +

∑s
r=1 µrkYrk +

∑D
d=1 ηdk(1− αdk)Zdk∑m

i=1 νikXik +
∑H

h=1 qhkX
2
hk +

∑D
d=1 ηdkαdkZdk

subject to

∑D
d=1 ηdkZdj∑m
i=1 νikXij

≤ 1,∀j,∑s
r=1 µrkYrj +

∑D
d=1 ηdk(1− αdj)Zdj∑H

h=1 qhkX
2
hj +

∑D
d=1 ηdkαdjZdj

≤ 1,∀j,

ηdk, µrk, νik, qhk ≥ 0,∀ d, r, i, h.

(12)

By applying the variable substitution technique in Charnes and Cooper (1962) and by replacing ηdkαdk =

φ1dk and ηdk(1 − αdk) = φ2dk, we introduce the self-evaluation CCR performance score model (13), which is

equivalent to model (12). According to the following (implicitly) linear model, it is possible to measure the

performance for each DMU, whose internal structure is illustrated by the two-stage DEA process of Figure 1.

This relational model estimates the aggregated system efficiency while considering the internal mechanisms of

its individual stages.
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ECCR
kk = Max

D∑
d=1

ηdkZdk +

s∑
r=1

µrkYrk +

D∑
d=1

φ2dkZdk

subject to

m∑
i=1

νikXik +

H∑
h=1

qhkX
2
hk +

D∑
d=1

φ1dkZdk = 1,

D∑
d=1

ηdkZdj −
m∑
i=1

νikXij ≤ 0,∀j,

s∑
r=1

µrkYrj +

D∑
d=1

φ2dkZdj −
H∑

h=1

qhkX
2
hj −

D∑
d=1

φ1dkZdj ≤ 0,∀j,

ηdk, µrk, νik, qhk ≥ 0, φ1dk + φ2dk = ηdk, φ1dk ≥ 0, φ2dk ≥ 0, ∀ d, r, i, h.

(13)

At the optimality of model (13), the system efficiency is computed as ECCR
kk = (

∑D
d=1 η

∗
dkZdk +

∑s
r=1 µ

∗
rkYrk +∑D

d=1 φ
2∗
dkZdk)/(

∑m
i=1 ν

∗
ikXik +

∑H
h=1 q

∗
hkX

2
hk +

∑D
d=1 φ

1∗
dkZdk), the efficiency of sub-stage 1 as E1

kk = (
∑D

d=1 η
∗
dkZdk)/

(
∑m

i=1 ν
∗
ikXik), and the efficiency of sub-stage 2 as E2

kk = (
∑s

r=1 µ
∗
rkYrk +

∑D
d=1 φ

2∗
dkZdk)/(

∑H
h=1 q

∗
hkX

2
hk +

∑D
d=1 φ

1∗
dkZdk).

3.2 Proposed cross-efficiency model

Model (13) searches for the optimal most favourable weights ηdk, µrk, νik, qhk, φ
1
dk, φ

2
dk to yield an optimistic

self-efficiency score for DMUk. However, this DEA flexibility of the DMUk in choosing its own weights could

sometimes lead to an unrealistically high efficiency score of the corresponding DMU. This results in a lack of

discrimination power and therefore in unrealistic weight distribution. Besides, the optimal solution for model

(13) may not be unique, reducing the theoretical value of the potential results (Mahdiloo et al., 2016).

A point to focus on in this paper is the best possible treatment of the limited discriminatory power and the

unrealistic weight distribution, for the two-stage structure (Figure 1).

To overcome these weaknesses, we apply the cross-efficiency concept in the two-stage DEA structure that

we examine. We initially propose an alternative secondary goal model to mainly encounter the shortcoming

of the non-unique optimal set of multipliers of model (13). This model contains two objective functions (i.e.

criteria); each of them represents one of the two stages of the whole system. These two criteria need to be

optimised simultaneously.

To advance our multiple criteria-based secondary goal, we have been influenced by the concept of the

“minimisation of the maximum k-inefficiency” (Troutt, 1997; Liang et al., 2008). In the minimax model

(14), there are two independent objective functions. The first objective (θ1) represents the situation in which

we have to minimise the maximum deviation of stage 1 among all DMUs. The second objective (θ2) illustrates

the minimisation of the maximum deviation of stage 2 among all DMUs. There is no preference order between

these criteria. Considering the theoretical framework of the concept, this approach might be proved useful in

cooperative situations (Liang et al., 2008). In our case this is vital, as the two stages that constitute the

entire system should have the same bargaining power and should cooperate in order to maximise the overall
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efficiency (Halkos et al., 2014).

Min θ1

Min θ2

subject to

m∑
i=1

νikXik +

H∑
h=1

qhkX
2
hk +

D∑
d=1

φ1dkZdk = 1,

D∑
d=1

ηdkZdk +

s∑
r=1

µrkYrk +

D∑
d=1

φ2dkZdk = ECCR∗

kk ,

D∑
d=1

ηdkZdj −
m∑
i=1

νikXij + b1j = 0,∀j,

s∑
r=1

µrkYrj +

D∑
d=1

φ2dkZdj −
H∑

h=1

qhkX
2
hj −

D∑
d=1

φ1dkZdj + b2j = 0,∀j,

θ1 ≥ b1j ,∀j,

θ2 ≥ b2j ,∀j,

b1j , b
2
j , ηdk, µrk, νik, qhk ≥ 0,∀ j, d, r, i, h,

φ1dk + φ2dk = ηdk, φ1dk ≥ 0, φ2dk ≥ 0,∀ d.

(14)

In the above model, ECCR∗

kk denotes the optimal objective function value of model (13). The reason why we

are using the restrictions “θ1 ≥ b1j” and “θ2 ≥ b2j” (where j = 1, 2, ..., n) is to set θ1 as the maximum deviation of

stage 1, and θ2 as the maximum deviation of stage 2. This model results in an optimal set of weights that will

highlight the best behaviour of the worst-performing DMU, underpinning the fairness in the decision-making

process.

Model (14) is a bi-objective programming model that can hardly obtain a global optimal solution. A

multi-objective program usually provides a set of non-dominated solutions (see Li and Reeves, 1999). The

researcher could either apply the objectives interactively (Mahdiloo et al., 2016) or identify an alternative

way of satisfying the conditions simultaneously. Goal programming has been proposed for optimising all criteria

at the same time (Ghasemi et al., 2014; dos Santos Rubem et al., 2017).

We apply the concept of dos Santos Rubem et al. (2017) to convert the MOLP model (14) into a

goal programming model. However, given the utopian values assigned to each of the two objective functions

(goals), the model should be aligned more closely to Compromise Programming. Moreover, since b1j , b
2
j ≥ 0,∀ j,

it follows that θ1, θ2 ≥ 0 and thus there is no need to use the negative deviations, d−1 and d−2 , in such a model.

Actually θ1 = d+1 and θ2 = d+2 . Hence, the model is just formulated as follows:

Min θ1 + θ2

subject to the same constraints as in model (14).
(15)
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Model (15) is the proposed minimax secondary goal model for the two-stage structure (Figure 1) in this

paper and is run under the CRS assumption. It is seeking a particular solution on the Pareto frontier of model

(14) i.e. one with equally weighted deviations. This model can significantly reduce the number of zero weights

assigned to the known factors and better discriminate the DEA-efficient DMUs.

3.3 Alternative aggregation approach

Recalling the discussion in Section 2.1, we are going to calculate the individual cross-efficiencies, based on the

representative optimal weights from model (15). In addition, we will determine the cross-efficiencies to get the

final ranks of the considered DMUs, based on the CRITIC method.

3.3.1 Individual & ultimate cross-efficiencies

Like all DEA models for cross-efficiency evaluation, the proposed secondary model (15) needs to be solved

n times, once for every DMU. There will be n sets of input, intermediate measure and output weights avail-

able for cross-efficiency evaluation. According to Kao and Liu (2019), in a series DEA structure as the

one we probe in this paper, the discriminatory power is stronger due to the increasing number of restrictions;

thus, there are less chances that the optimal set of multipliers derived from the first secondary goal model

for each DMU is non-unique. Therefore, we can adopt Kao and Liu’s (2019, p.73) belief that this opti-

mal set is “representative enough” for our analysis. At the optimality of model (15), for each DMUj (j 6=

k), Ekj = (
∑D

d=1 η
∗
dkZdj +

∑s
r=1 µ

∗
rkYrj +

∑D
d=1 φ

2∗
dkZdj)/(

∑m
i=1 ν

∗
ikXij +

∑H
h=1 q

∗
hkX

2
hj +

∑D
d=1 φ

1∗
dkZdj), E

1
kj =

(
∑D

d=1 η
∗
dkZdj)/(

∑m
i=1 ν

∗
ikXij), E

2
kj = (

∑s
r=1 µ

∗
rkYrj +

∑D
d=1 φ

2∗
dkZdj)/(

∑H
h=1 q

∗
hkX

2
hj +

∑D
d=1 φ

1∗
dkZdj).

These are referred to as the cross-efficiency values of the DMUj of the overall system, of stage 1 and of stage

2, according to the optimal weight scheme of DMUk respectively, and reflect the peer-evaluation of DMUj .

For each DMUj , the weighted average cross-efficiency score, produced by the weighted cross-efficiency

aggregation is the following:

êj =

∑n
k=1 wk · Ekj∑n

k=1 wk
, ê1j =

∑n
k=1 wk · E1

kj∑n
k=1 wk

, ê2j =

∑n
k=1 wk · E2

kj∑n
k=1 wk

. (16)

They are called the cross-efficiencies for the overall system, stage 1 and stage 2, respectively. w1, ..., wn are the

relative importance weights for cross-efficiency aggregation and satisfy the conditions: wk ≥ 0 (k = 1, ..., n) and∑n
k=1 wk = 1.

3.3.2 CRITIC method in DEA

To estimate the weights in (16) and solve the aggregation problem, we apply the CRITIC method, an objective

way to determine the relative importance in multi-criteria decision-making (MCDM) situations. This objectivity
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stems from its formal mathematical procedure and the fact that it is less prone to subjective modifications by

a decision-maker. CRITIC considers the evaluation decision-making matrix (in our case the cross-efficiency

matrix) to elicit information involved in the evaluation criteria. The elicited information is capable of altering

the decision situation and the order of preference. This information delves into two dimensions: the contrast

intensity and the conflict among the evaluation criteria (Diakoulaki et al., 1995). Below, we will provide an

overview of their method as we would apply it to single-stage DEA structures; we further explain why it is a

sensible tool for promoting fairness, and why it is compatible with the proposed minimax secondary model.

For a finite set A with j = 1, 2, ..., n alternatives and k = 1, 2, ..., n evaluation criteria Ek, the multi-criteria

decision making problem is as follows: Max {E1(α), E2(α), ..., En(α) | α ∈ A}. Initially, we obtain the generalised

cross-efficiency matrix (Table 2), considering the Ekj values for k, j = 1, 2, ..., n. See more details of that in

Section 2.1.

Table 2: Cross-efficiency matrix; Doyle and Green (1994).
Target DMUj

Evaluator DMUk 1 2 ... n

1 E11 E12 ... E1n

2 E21 E22 ... E2n

... ... ... ... ...
n En1 En2 ... Enn

We proceed to converting the initial cross-efficiency matrix (Table 2) into a matrix of relative scores (Table

3) with the generic element Xkj , where Xkj = (Ek(j) − Emin
k )/(Emax

k − Emin
k ). In this mathematical formula,

Emax
k is equivalent to max{Ek1, Ek2, ..., Ekn} and Emin

k is equivalent to min{Ek1, Ek2, ..., Ekn}.

Table 3: Matrix of relative scores.
Target DMUj

Evaluator DMUk 1 2 ... n

1 X11 X12 ... X1n

2 X21 X22 ... X2n

... ... ... ... ...
n Xn1 Xn2 ... Xnn

We generate a vector Xk signifying the scores of all n alternatives Xk = (Xk(1), Xk(2), ..., Xk(n)). This vector

is characterised by the standard deviation σk, which quantifies the contrast intensity of criterion k. Define

σk =

√∑n
j=1(Xk(j)− ˆXk)2

n , where X̂k =
∑n

j=1Xk(j)/n. Then, a symmetric matrix of n⊗n criteria with Rkj elements

(Spearman rank correlation coefficients) is constructed (Table 4), connecting the rank orders of the elements

included in the vector Xk and Xj . Note that, in contrast to the previous two tables, Table 4’s columns do not

list the ‘target’ DMUs. Instead, each element Rkj is a measure of how the degree by which the viewpoint of

DMU k as evaluator corresponds to the viewpoint of DMU j as evaluator.
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Table 4: Symmetric matrix.
Evaluator DMUj

Evaluator DMUk 1 2 ... n

1 R11 R12 ... R1n

2 R21 R22 ... R2n

... ... ... ... ...
n Rn1 Rn2 ... Rnn

The amount of information Ck emitted by the kth criterion can be determined by multiplying the two

measures σk (i.e. contrast intensity) and
∑n

j=1(1−Rkj) (i.e. conflict):

Ck = σk ·
n∑

j=1

(1−Rkj). (17)

The higher the Ck, the more information we receive from criterion k and the higher its relative importance.

Thereby, they define the formula for the weight of criterion k as:

wk =
Ck∑n
l=1 cl

. (18)

The value of the weights wk (k = 1, 2, ..., n) in formula (18), can be used to determine the cross-efficiency

of DMUj for the overall system (êj), the stage 1 (ê1j ), and the stage 2 (ê2j ) in (16). CRITIC should, in effect,

run three times, based on the investigation of the cross-efficiency matrix of the respective system/stage.

Using the traditional average method, we would assign equal weights (1/n) to everyone’s opinion, thus

conforming to the majority vote. It would also not matter how diversified or not each of these opinions are.

CRITIC, however, emphasises the value of those opinions that are more diversified and less mainstream. In

particular, criterion k (here, evaluator DMUk) will receive more weight if it achieves a wider gap between the

best and the worst alternative (here, the target DMUs) in the process of evaluation. This explicitly leads to a

higher standard deviation (contrast intensity), implying that its opinion is taken more into account. In other

words, the opinion of someone who ranks everyone the same is given less importance, which agrees with the

widely accepted viewpoint of Zeleny (1982). This may be justified in the context of DEA, or peer evaluation

in general, if the lack of discriminatory signals in the evaluation report of one particular evaluator is believed

to represent less reliable information. The only way in which such a viewpoint is able to receive importance

would be through the number of evaluators sharing this opinion.

The second feature of the CRITIC method, known as the conflict measure, assigns more weight to the

criterion (opinion of evaluator DMU) that puts emphasis on the minority opinion with respect to peer evaluation.

The less someone corresponds to a mainstream evaluation profile, the more their opinion is opposed to the

majority, the higher their conflict score. This indicates that their opinion will be more valued under these
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circumstances.

One way to give the application of CRITIC to DEA an interpretation is to say that the CRITIC method

infuses a flavour of the ‘scientific’ approach into a ‘political’ voting system. Politics is usually in compliance

with the majority vote, but in matters of science we often value the most transparent and well-documented

opinion. The ‘conflict’ measure of CRITIC is quite in accordance with the latter viewpoint. However, this

analogy is certainly not exact since in science it suffices to have one new opinion that is proven to be correct

that can overturn all other opinions (the status quo). CRITIC does not go that far as it does still account for

everyone’s opinion; the ultimate efficiency measure a DMU receives is still a weighted average.

Another, and perhaps more fruitful interpretation we believe, is that the CRITIC method avoids assigning

too large a weight to the majority vote which, by definition, excludes the minority opinion. In this way, it does

not let the mass influence too much the public opinion, and in addition, promotes diversity and inclusion. This

reflects a contemporary understanding of fairness as an accommodative attitude which is inclusive of a broad

variety of legitimate opinion rather than simply mirroring the viewpoint of the majority.

Finally, CRITIC could be compatible with the proposed minimax secondary goal model (see Section 3.2),

since it rewards contrast intensity. Hence, it is more likely that while the worst performing DMU attempts to

assess itself in its best possible light, the efficiency scores of the other better performing DMUs might decrease

(Liang et al., 2008). Since this situation increases the contrast intensity, our proposed model seems to be an

acceptable option to coexist with the CRITIC method.

4 Numerical Experiments

This section illustrates the use of the mathematical concepts developed/presented in Section 3 to examine

the issue of fairness in DEA context. Our study applies the figures drawn from Yu and Shi (2014) for

the evaluation of the efficiency of 10 generalised two-stage supply chains of different milk and dairy farm

communities. The cattle farms compete with each other, aiming to decide on a sensible allocation of the

available raw milk produced. The generalised two-stage DEA structure is considered for this example (see

Figure 1), with part of intermediate measures as final outputs and additional inputs in the second stage.

The input resources corn (X1), wheat (X2), and pasture land (X3) are the food of dairy cows consumed

by stage 1 to produce raw milk. The raw milk illustrates the intermediate product at the end of stage 1. We

distinguish the raw milk between high-fat (3.5 − 4.5%) content and low-fat (≤ 2.5%) content. The former

represents the intermediate measure Z1 and the latter the Z2. The farmer (i.e. the decision maker) in each

community needs to pre-specify how much of these quantities will be further processed in stage 2 and how much

will be forwarded to the external environment (i.e. the end-market), as final output. αdj is a proportion, freely

determined by the decision-maker, that acts as a regulator of the amount of the dth intermediate measure

assigned for processing to stage 2. In this example, we can assume that the stock-farmer has set each αdj
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equal to 0.7 for simplicity, reflecting market conditions, customer requirements, and updated research surveys;

they desire a major proportion of the produced outputs of stage 1 to be further processed in stage 2, while

nevertheless channelling a significant quantity as final output. This proportion might consider, for example, the

degree to which raw milk contains amino acids, vitamins, minerals, and fatty acids as well as to what extent

it is a proper option for those with lactose intolerance, asthma, and allergic conditions. The current observed

values of αdj could have been any continuous value between 0 and 1, leading to equally meaningful results.

Once the quantity of the respective type of raw milk is processed, the working time for the flash pasteurisation

of milk (X2
1 ) and the working time for its homogenisation through fine nozzles (X2

2 ) will be taken into account.

The final (exogenous) outputs will be pasteurised milk (Y1) and cheese (Y2). The dataset with the 10 farming

communities (DMUs) is summarised in Table 5. For modelling, running, and analysing our data, we have

utilised the programming language Python 3.7.6 and in particular the version 2.1 of PuLP as the free linear

programming library. The experiment ran on a computer with 16GB RAM.

Table 5: The numerical example of Yu and Shi (2014).
DMUs X1 X2 X3 Z1 Z2 X2

1 X2
2 Y1 Y2

1 9 50 1 20 10 5 8 100 25
2 10 18 10 10 15 7 10 70 20
3 9 30 3 8 20 2 8 96 30
4 8 25 1 20 20 10 10 80 20
5 10 40 5 15 20 5 15 85 15
6 7 35 2 35 10 5 5 90 35
7 7 30 3 10 25 8 10 100 30
8 12 40 4 20 25 4 8 120 10
9 9 25 2 10 10 5 15 110 15
10 10 50 1 20 15 9 10 80 20

4.1 Findings

We first consider solving the problem of evaluation and ranking with the classic self-evaluation DEA approach.

This serves as a benchmark for comparison with our proposed approach. Table 6 exhibits the optimal multipliers

from solving the proposed additive self-evaluation two-stage DEA model (13), i.e. the basic model without the

further model improvements we have introduced in Section 3.2. There are 35 zero weights in total, assigned to

the respective known factors. The existence of a zero weight indicates that the information of the corresponding

known factor is not considered. The larger this number of zeros, the more uneven the weight distribution

becomes.

Table 7 shows the CCR self-efficiency scores and their corresponding rankings of the 10 cattle farms for the

overall system (ECCR
kk ), the stage 1 (E1

kk), and the stage 2 (E2
kk), respectively. Recall that the efficiency scores

have been calculated via the optimal weights of model (13). DMUs 3,6 and 8 are characterised as DEA-efficient

for the overall system, DMUs 1,4,6 and 7 are DEA-efficient for stage 1, and DMUs 3,6,8 and 9 are DEA-efficient

for stage 2. Only DMU 6 can be deemed as entirely efficient, since the efficiency of their sub-stages is one.
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It is evident from the results in Table 7 that the cattle farms cannot be easily ranked via the self-evaluation

method, and from the results in Table 6, that this is also based on many flows receiving zero weights and thus

not being accounted for.

Table 6: Optimal multipliers for the proposed self-evaluation model (13).
DMUs ν1k ν2k ν3k η1k η2k q1k q2k µ1k µ2k

1 0 0 0.3030 0.0152 0 0 0.0606 0.0049 0.0022
2 0 0.0337 0 0.0143 0.0279 0 0 0.0001 0.0087
3 0.0000 0 0 0.0000 0 0.1444 0.0889 0 0.0333
4 0.0513 0.0071 0 0.0109 0.0186 0 0 0.0004 0.0048
5 0.0413 0.0040 0 0.0086 0.0130 0.0064 0.0080 0.0022 0
6 0 0.0140 0 0.0140 0 0 0.0332 0 0.0104
7 0.0592 0.0058 0 0.0123 0.0186 0 0 0.0005 0.0047
8 0 0.0000 0 0.0000 0.0000 0.1000 0.0750 0.0083 0
9 0 0.0217 0.0008 0.0017 0.0254 0.0357 0.0058 0.0034 0
10 0 0 0.5919 0.0278 0.0018 0 0 0.0011 0

Table 7: CCR self-efficiencies for the overall system, stage 1, and stage 2, derived via model (13).
DMUs Overall

Efficiency
ECCR

kk

Rank
Overall
System

Efficiency
Stage1
E1

kk

Rank
Stage1

Efficiency
Stage2
E2

kk

Rank
Stage2

1 0.936 5 1 1 0.908 5
2 0.909 6 0.924 7 0.886 7
3 1 1 0.889 8 1 1
4 0.894 7 1 1 0.741 8
5 0.690 10 0.676 9 0.709 9
6 1 1 1 1 1 1
7 0.955 4 1 1 0.890 6
8 1 1 0.935 6 1 1
9 0.728 9 0.499 10 1 1
10 0.844 8 0.985 5 0.640 10

We now consider the proposed minimax secondary goal model (15). In this manner, we will be able to

find flow weights in a cross evaluation approach that exhibit some desirable characteristics. In particular, as

discussed in Section 3.2, this model will keep the DMU’s optimal overall self-efficiency score unchanged, but

seeks to minimise the maximum k-inefficiency for each of the stages across all DMUs. Table 8 lists the optimal

weights from solving model (15). The reduction of zero weights compared to the foregoing results of Table 6 is

noteworthy. In total, there are now only 19 zero weights (compare with 35 in the previous model), improving

the weight distribution and providing more balanced results for the evaluated DMUs. The optimal weights

from Table 8 are subsequently used to calculate the elements of the cross-efficiency matrices for the overall

system, stage 1, and stage 2, respectively (see Appendix A, Tables A.1.1, A.2.1, and A.3.1). The latter are

the decision-making matrices, whose elements (peer-efficiency scores for each DMU) are found according to the

discussion in Section 3.3.1.
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Table 8: Optimal multipliers for the proposed minimax secondary model (15).
DMUs ν1k ν2k ν3k η1k η2k q1k q2k µ1k µ2k

1 0.0000 0 0.3030 0.0152 0 0 0.0606 0.0049 0.0022
2 0 0.0337 0 0.0143 0.0279 0 0 0.0001 0.0087
3 0.0000 0.0000 0.0000 0 0.0000 0.0882 0.1029 0.0096 0.0027
4 0.0575 0.0048 0.0089 0.0109 0.0186 0 0.0000 0.0004 0.0048
5 0.0413 0.0040 0 0.0086 0.0130 0.0064 0.0080 0.0022 0.0000
6 0.0561 0.0046 0.0041 0.0111 0.0173 0 0.0087 0.0007 0.0058
7 0.0592 0.0058 0.0000 0.0123 0.0186 0 0 0.0005 0.0047
8 0.0000 0.0000 0 0.0000 0.0000 0.0791 0.0854 0.0082 0.0019
9 0.0000 0.0217 0.0008 0.0017 0.0254 0.0357 0.0058 0.0034 0
10 0.0000 0 0.5919 0.0278 0.0018 0 0 0.0011 0

The next step in our proposed approach is to apply the CRITIC method, see Section 3.3.2, to help determine

an appropriate weight set for combining the individual cross-efficiency scores into a final cross-efficiency score for

each DMU and stage. This technique initially converts the cross-efficiency matrix into a matrix of relative scores

for the respective sub-stage, identifying the standard deviation; this indicates the contrast in the viewpoints of

the same evaluator DMUk (see in Appendix A, Tables A.1.2, A.2.2, and A.3.2). It then displays the symmetric

matrix for the respective sub-stage, identifying the conflict, the information, and the final weight, for each DMU

(see in Appendix A, Tables A.1.3, A.2.3, and A.3.3). Conflict particularly gives voice to the less mainstream

opinions of the different evaluators regarding a certain evaluated DMU. An evaluator will be assigned a greater

relative importance (final weight) if it provides more valuable information. This information should reward

contrast, diversity, and inclusion, in the case of the CRITIC multi-criteria method. As an example, in stage 1,

the evaluator (cattle farm) 1 is assigned the highest final weight (0.119) due to its standard deviation (0.442)

and conflict (11.024) measures, which are the highest among their peers. Similarly, in stage 2, the evaluator

with the highest final weight (0.128) is cattle farm 3.

Recalling that the weights derived by formula (18) are used to estimate the final cross-efficiencies in (16),

see Sections 3.3.1 and 3.3.2, we display the CRITIC cross-efficiencies for each DMU and stage, in Tables 9-11. In

particular, the CRITIC cross-efficiencies (êj) with their respective ranks for the overall system are summarised

in the fourth and fifth columns of Table 9. The proposed minimax secondary model (15) evaluated that cattle

farm 6 is the most efficient (0.888) and cattle farm 5 has the worst performance (0.532) compared to others;

thus, a unique ranking order is achieved. In addition, it can be statistically concluded that the rankings derived

from the CRITIC and the traditional average method (third column of table 8) are not significantly different

based on a Spearman rank correlation coefficient test (Daniel, 1978), with rs = 0.94. This is significant at

the 0.01 level (two-tailed).

The CRITIC cross-efficiencies (ê1j ) with their respective ranks for the stage 1 are exhibited in the fourth

and fifth columns of Table 10. Model (15) deemed cattle farm 4 as the most promising (1.000), attaining a

unique ranking order once again. The differences between the ranks of CRITIC and average cross-efficiencies

(third column of Table 10) are also statistically insignificant. With respect to the fourth and fifth columns of
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Table 11 (CRITIC cross-efficiencies and their corresponding ranks for stage 2), cattle farm 3 is located in the

first place, with a perfect efficiency score. The dissimilarities with the average cross-efficiency rankings are also

negligible based on the Spearman rank correlation test (rs = 0.988). Note that the average cross-efficiencies

have been computed following the same reasoning as in CRITIC cross-efficiencies with the sole exception of the

method to aggregate the individual cross-efficiencies (see Section 2.1). Although their difference is negligible,

we consider that the averaging method, privileges the majority vote, and downplays minority opinion by failing

to fully respect diversity and the principle of inclusion. CRITIC method fills this gap, assigning more weight

to “mavericks” and promoting the modern concept of fairness, as discussed in Section 3.3.2.

The CRITIC cross-efficiency scores obtained with our proposed minimax secondary model (15) are also com-

pared with the geometric average cross-efficiency scores obtained with Kao and Liu’s (2019) aggressive-based

approach. Note that prior to executing our analysis, we have easily adjusted their model to the specifications of

our generalised two-stage DEA structure. The geometric average cross-efficiency scores along with their ranks

of the overall system, the stage 1, and the stage 2, are respectively depicted in the sixth and seventh columns

of Tables 9, 10, and 11. Correlation analysis suggests that there is a highly strong association between the

ranks of these two approaches, as indicated by the correlation values 0.927 (overall system), 0.976 (stage 1),

and 0.988 (stage 2), which are significant at the 0.01 level (two-tailed). This can be demonstrated even by the

fact that both methods achieve total agreement towards the most desirable unit in all three tables. However,

there are a number of points that need to be considered, highlighting the preferability of our method over the

other in terms of attaining fairer evaluation results.

Firstly, by solving Kao and Liu’s (2019) model, we obtained an optimal set of multipliers containing

23 zero weights (as compared with the 19 zero weights of our proposed model). This may indicate a less

realistic weight scheme for their method. Secondly, in our minimax model both sub-stages of the generalised

two-stage structure have the same bargaining power and improve the overall efficiency. This is conducive to

the development of a cooperative situation, where the sub-stages behave altruistically even without having

reasons to assume that their cooperation will be returned. This stands in sharp contrast with the aggressive

method proposed by Kao and Liu (2019). Although they guaranteed unique cross-efficiencies, they selected

a non-cooperative approach, in which DMUs act egoistically with a view to maximising their self-evaluation

and downplaying the peer-evaluation. Thirdly, we have managed to acquire a higher absolute cross-efficiency

score for each DMU and stage (compared to the respective score in Kao and Liu’s (2019) results), associated

with some performance reward; this is connected with the cooperative role of our model (15).

4.2 Implications

This example has illustrated the approach proposed in this paper, which is a novel combination of the use of an

additive self-efficiency aggregation model, a minimax secondary goal model, and the CRITIC method in order to

improve fairness and objectivity in a cross evaluation context for a generalised two-stage DEA system. Firstly,
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a more sensible weight distribution has been obtained via the proposed minimax model (15) than the basic

self-evaluation model (13) and the aggressive-based model of Kao and Liu (2019), highlighting our successful

efforts in obtaining more meaningful rankings. Secondly, the minimax model developed has in addition been

combined with the CRITIC approach to obtain a greater discrimination power than model (13) (see Tables

9-11). Thirdly, on the aggregation of the individual cross-efficiencies, we have compared the traditional average

method with the weighted average method, in which the weights are computed via the CRITIC approach. In

the former, the opinions of the evaluators are centred around the average (majority) viewpoint. In the latter,

more credence and higher inclusion is given to these evaluators that exhibit diversity. These may be desirable

characteristics, supporting the more modern mindset of many organisations. Fourthly, it has been proven that

our minimax model results in higher absolute efficiency scores (than Kao and Liu’s (2019) scores) connected

with some performance prize; this is due to the cooperative nature of the model.

In addition, it is noteworthy that the final rankings obtained are very similar between the three different

methods displayed in Tables 9-11. In practice, however, we think that it is very important for DMUs, when

subject to peer evaluation leading ultimately to a ranking, that the methods by which this is achieved are

agreeable to modern standards of inclusiveness and diversity and provide an acceptable level of objectivity. We

can expect that results are more easily accepted, indeed, if these characteristics are more prominently present

in the theoretical foundations of the methods deployed.

As stated in the introduction, the only study having used CRITIC in a DEA context before, seems to be

He and Ma’s (2015). In that article, CRITIC was used to objectively determine weights used within a DEA

collaborative development evaluation model for comparing the internal mechanisms of the regional economy

and regional logistics within a 10-year period. Our approach differs in that we use it in the context of peer-

evaluation, as an alternative method to address the aggregation problem, in addition to the considering this

in the generalised two-stage DEA structure. But more importantly, our study highlights how CRITIC’s main

components of conflict and contrast intensity can contribute towards a fairer and more diversified cross-efficiency

perspective.

As for the possible areas where our study could be applicable, we begin by referring to the manufacturing job

shop or to line configurations like clothes manufacturing. In such contexts, the Just-in-Time philosophy takes

significantly into account the worker rotations. This practice can eliminate employees’ fatigue, encourage their

development, and help identifying where they can work best. In this example, it is doable to take day-to-day

snapshots (DMUs) of the same factory floor, where the workers are being rotated. In this way, it is possible

to measure which of the working stations and settings are (in)efficient and on which days. This will facilitate

management towards fairly identifying all those workers that need additional training for certain tasks.

Another promising area could be, for instance, the process of the refinement of the selected cocoa beans

into chocolate within a specialized factory. From the first stage, where the cocoa beans are roasted and the

cocoa nibs are ground, we mainly obtain cocoa powder. The production manager, in collaboration with the
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marketing and sales department as well as the outbound logistics manager, will eventually decide on a sensible

allocation of the available cocoa powder. On this basis, a proportion of this quantity will be directly forwarded

to the outside market for sale, and the remaining will be further blended back with the butter, milk, and liquor

in varying quantities, in the second stage, to make different types of chocolate. The main target is to fairly

compare the efficiency of several generalised two-stage supply chains of different factory branches or farming

communities that make use of cocoa beans from different species of cocoa trees.

As a general ascertainment, it is imperative to improve the processes of efficiency measurement and decision-

making under a multi-criteria context and within more advanced network DEA structures; an organisational

environment that will promote cooperation, leniency, diversity, and inclusion can result in more effective bench-

marking strategies.

Table 9: Average cross-efficiencies, CRITIC cross-efficiencies, Geometric average cross-efficiencies (Kao and
Liu, 2019), and their respective ranks for the overall system.

DMUs Average
CE

Ranking CRITIC
CE êj

Ranking Geometric average
CE (Kao and Liu,
2019)

Ranking

1 0.705 6 0.701 6 0.688 5
2 0.531 9 0.533 9 0.444 10
3 0.760 2 0.747 3 0.699 4
4 0.742 4 0.755 2 0.726 2
5 0.531 10 0.532 10 0.495 9
6 0.895 1 0.888 1 0.878 1
7 0.732 5 0.734 4 0.684 6
8 0.746 3 0.732 5 0.716 3
9 0.567 8 0.567 8 0.566 8
10 0.599 7 0.605 7 0.590 7

Table 10: Average cross-efficiencies, CRITIC cross-efficiencies, Geometric average cross-efficiencies (Kao and
Liu, 2019), and their respective ranks for the stage 1.

DMUs Average
CE

Ranking CRITIC
CE ê1j

Ranking Geometric average
CE (Kao and Liu,
2019)

Ranking

1 0.577 6 0.553 7 0.555 6
2 0.492 9 0.523 9 0.384 10
3 0.575 7 0.596 6 0.509 7
4 1.000 1 1.000 1 1.000 1
5 0.526 8 0.540 8 0.492 8
6 0.828 2 0.814 3 0.889 2
7 0.794 3 0.818 2 0.694 3
8 0.648 4 0.664 4 0.618 5
9 0.412 10 0.421 10 0.411 9
10 0.646 5 0.624 5 0.627 4
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Table 11: Average cross-efficiencies, CRITIC cross-efficiencies, Geometric average cross-efficiencies (Kao and
Liu, 2019), and their respective ranks for the stage 2.

DMUs Average CE Ranking CRITIC
CE ê2j

Ranking Geometric average
CE (Kao and Liu,
2019)

Ranking

1 0.910 3 0.916 3 0.914 2
2 0.676 7 0.706 7 0.673 7
3 1.000 1 1.000 1 0.997 1
4 0.607 9 0.627 9 0.614 9
5 0.606 10 0.620 10 0.605 10
6 0.924 2 0.921 2 0.912 3
7 0.774 6 0.796 6 0.781 6
8 0.840 4 0.809 5 0.826 4
9 0.818 5 0.837 4 0.815 5
10 0.639 8 0.662 8 0.645 8

5 Conclusions & Future Research

Single-stage and the basic serial two-stage DEA systems have fruitfully used various quantitative methods to

attain fairness in the evaluation outcomes. Little work, however, has been done addressing the challenge of

attaining fairness in a network with more complex interactions among its internal elements. This paper provides

new insight to the generalised two-stage DEA structure of Yu and Shi (2014). We have here proposed a

modelling approach for this structure, which promotes fairness among the evaluated DMUs.

In this study, we argue that fairness, or the acceptance of an evaluation and ranking by the different

DMUs and their stages, is improved by increasing measures related to the degree of discriminatory power, the

weight scheme, and the minority vote. We particularly propose a combination of an additive self-efficiency

aggregation model, a multi-objective minimax secondary model, and the CRITIC method in an aim to achieve

these aspects of fairness and thus a better degree of cooperation between stages of a DMU and among DMUs.

This combination is novel in the DEA literature.

The proposed minimax secondary goal model helps tackle the non-unique optimal multipliers derived from

the additive self-evaluation model. The minimax model has the capacity to better discriminate the efficient

DMUs than the additive self-evaluation model. In addition, it has significantly reduced the number of the zero

weights assigned to the respective known factors by the additive self-evaluation model and the aggressive-based

approach of Kao and Liu (2019).

We have shown in this paper that the CRITIC method can be applied in DEA to alternatively address the

aggregation problem within the DEA cross-efficiency concept. This approach will objectively determine the

weights assigned to individual cross-efficiencies to obtain the final cross-efficiencies. By taking into consideration

both the contrast intensity and the conflict measures among the DMUs, it manifests the general message of

this paper towards satisfying a more contemporary concept of fairness about diversity and inclusion of minority

opinions. Moreover, the proposed minimax model seeks for peer evaluation whereby each peer aims to evaluate
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the worst of the other players in the best possible light. Its benign and cooperative nature, in conjunction with

CRITIC, has the benefit to obtain higher absolute efficiency scores for each DMU and stage than the geometric

average efficiencies based on the aggressive method of Kao and Liu (2019). This might be connected with

some performance reward, encouraging in a way the DMUs to join the efficiency evaluation and ranking.

In this study, we have proposed an additive self-efficiency aggregation model in the spirit of Chen et al.

(2009). This is the basic self-evaluation model without the further improvements introduced in later sections.

In such a model, the system efficiency is defined as the weighted arithmetic average of its sub-stages. As for its

decomposition weights, Ang and Chen (2016) proved that they are non-increasing in the order of sub-stages.

Put simply, they highlighted that earlier stages would be assigned higher relative importance, affecting the

system’s efficiency to a greater extent. Based on that, they also demonstrated that the overall and sub-stages’

efficiency scores are prone to the impact of the decomposition weights. We acknowledge this as a limitation

of our study, and we believe that a re-definition of the weights, reflecting Ang and Chen’s (2016) research,

could accommodate such an issue. In addition, this study could also focus more on the testing of the proposed

models and frameworks with empirical data, that is testing their practical value. It would be desirable, for

instance, to evaluate the performance of these methods in one of the potential areas described in Section 4.2,

or other (fair-trade) supply chains.

The models in this study were developed under the assumption of the constant returns-to-scale. A direc-

tion for future research could be their advancement to variable returns-to-scale input-oriented DEA models.

Another potential path could be the intention to tweak the CRITIC method by focusing perhaps on the level

of acceptance of the participants on the final evaluation and ranking scheme obtained. To this end, the conflict

measure could be adapted, for example, to fine-tune the impact of opinions with large contrast intensity in

relation to their distance to majority opinions. Finally, current research studies the evaluation of the perfor-

mance of DMUs with a generalised two-stage structure, only when the data are positive real numbers, and the

DEA models are based on this condition. In particular in the envisaged areas of application such as sustainable

supply chains, datasets can be expected to be incomplete or less accurately described. Future research could

thus relax this assumption by allowing the data points to be imprecise and lie in an interval, for example. Other

cases to be investigated concern missing data or intervals, where some values are more likely to occur over other

values. In the latter case, since there is no information of the probability distributions, fuzzy numbers and

mathematical operations (Zimmermann, 2011) could be used as an ideal alternative option.
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A Appendix

A.1 Overall system

Table A.1.1: Cross-efficiency Matrix of the overall system for the proposed model (15).
DMUs 1 2 3 4 5 6 7 8 9 10

1 0.936 0.461 0.810 0.654 0.691 0.673 0.647 0.801 0.473 0.859
2 0.155 0.909 0.440 0.615 0.640 0.629 0.666 0.433 0.767 0.077
3 0.467 0.771 1.000 0.772 0.794 0.785 0.772 1.000 0.885 0.224
4 0.738 0.891 0.429 0.894 0.837 0.866 0.891 0.420 0.731 0.850
5 0.287 0.604 0.430 0.677 0.690 0.649 0.689 0.431 0.651 0.208
6 0.941 0.767 1.000 0.955 0.939 1.000 0.964 0.975 0.602 0.738
7 0.462 0.851 0.598 0.955 0.905 0.943 0.955 0.588 0.818 0.263
8 0.524 0.675 1.000 0.706 0.827 0.710 0.715 1.000 0.837 0.326
9 0.472 0.605 0.551 0.581 0.669 0.559 0.588 0.553 0.728 0.362

10 0.738 0.503 0.450 0.661 0.644 0.656 0.653 0.442 0.463 0.844

Table A.1.2: Matrix of relative scores for the overall system for the proposed model (15).
DMUs 1 2 3 4 5 6 7 8 9 10

1 0.993 0.000 0.668 0.194 0.171 0.259 0.158 0.657 0.024 1.000
2 0.000 1.000 0.019 0.091 0.000 0.158 0.208 0.022 0.721 0.000
3 0.397 0.691 1.000 0.511 0.516 0.514 0.490 1.000 1.000 0.189
4 0.742 0.959 0.000 0.835 0.658 0.697 0.807 0.000 0.635 0.989
5 0.168 0.319 0.003 0.255 0.168 0.204 0.268 0.019 0.446 0.167
6 1.000 0.683 1.000 1.000 1.000 1.000 1.000 0.957 0.329 0.845
7 0.391 0.869 0.297 0.998 0.887 0.870 0.976 0.289 0.841 0.238
8 0.469 0.478 1.000 0.333 0.627 0.342 0.338 1.000 0.886 0.319
9 0.403 0.320 0.214 0.000 0.097 0.000 0.000 0.229 0.627 0.364

10 0.742 0.093 0.036 0.213 0.013 0.220 0.173 0.037 0.000 0.980
Std Deviation 0.332 0.354 0.446 0.374 0.370 0.331 0.361 0.436 0.347 0.397
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Table A.1.3: Symmetric Matrix for the overall system for the proposed model (15).
DMUs 1 2 3 4 5 6 7 8 9 10

1 0.538 -0.655 0.383 -0.185 -0.163 -0.129 -0.262 0.386 -0.473 0.508
2 -0.536 0.384 -0.360 -0.368 -0.362 -0.353 -0.282 -0.359 0.250 -0.467
3 -0.438 0.238 0.429 -0.219 0.077 -0.211 -0.192 0.449 0.771 -0.608
4 0.109 0.019 -0.745 0.007 -0.290 -0.018 0.026 -0.763 -0.584 0.350
5 -0.160 0.160 -0.621 -0.138 -0.248 -0.183 -0.105 -0.628 -0.118 -0.020
6 0.339 0.107 0.345 0.607 0.541 0.620 0.582 0.335 -0.050 0.247
7 -0.245 0.577 -0.477 0.382 0.258 0.317 0.437 -0.488 0.187 -0.183
8 -0.380 -0.143 0.454 -0.423 -0.124 -0.417 -0.429 0.480 0.562 -0.530
9 -0.103 -0.567 -0.107 -0.861 -0.760 -0.834 -0.877 -0.092 -0.228 -0.040

10 0.610 -0.578 -0.137 -0.128 -0.303 -0.093 -0.189 -0.149 -0.827 0.737
Conflict 10.265 10.459 10.836 11.326 11.375 11.301 11.290 10.829 10.509 10.005
Information 3.412 3.707 4.828 4.236 4.213 3.743 4.081 4.725 3.642 3.967
Final Weight 0.084 0.091 0.119 0.104 0.104 0.092 0.101 0.117 0.090 0.098

A.2 Stage 1

Table A.2.1: Cross-efficiency Matrix of the stage 1 for the proposed model (15).
DMUs 1 2 3 4 5 6 7 8 9 10

1 1.000 0.335 0.319 0.526 0.526 0.535 0.526 0.526 0.266 0.970
2 0.050 0.924 0.412 0.516 0.578 0.541 0.578 0.578 1.000 0.052
3 0.133 0.664 0.889 0.666 0.666 0.663 0.666 0.666 0.800 0.145
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 0.150 0.572 0.557 0.659 0.676 0.669 0.676 0.676 0.613 0.153
6 0.875 0.660 0.398 0.962 1.000 1.000 1.000 1.000 0.413 0.837
7 0.167 0.830 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.182
8 0.250 0.728 0.697 0.743 0.755 0.749 0.755 0.935 0.770 0.254
9 0.250 0.500 0.437 0.449 0.456 0.452 0.456 0.456 0.499 0.250

10 1.000 0.417 0.464 0.602 0.596 0.605 0.596 0.596 0.383 0.985

Table A.2.2: Matrix of relative scores for the stage 1 for the proposed model (15).
DMUs 1 2 3 4 5 6 7 8 9 10

1 1.000 0.000 0.000 0.139 0.128 0.150 0.128 0.128 0.000 0.968
2 0.000 0.886 0.137 0.121 0.223 0.162 0.223 0.223 1.000 0.000
3 0.088 0.495 0.837 0.394 0.386 0.385 0.386 0.386 0.728 0.099
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 0.105 0.357 0.350 0.380 0.404 0.396 0.404 0.404 0.473 0.107
6 0.868 0.488 0.116 0.932 1.000 1.000 1.000 1.000 0.200 0.828
7 0.123 0.744 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.137
8 0.211 0.592 0.555 0.533 0.550 0.542 0.550 0.880 0.686 0.213
9 0.211 0.248 0.174 0.000 0.000 0.000 0.000 0.000 0.318 0.209

10 1.000 0.124 0.213 0.277 0.257 0.280 0.257 0.257 0.160 0.984
Std Deviation 0.442 0.323 0.383 0.377 0.380 0.381 0.380 0.399 0.379 0.429
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Table A.2.3: Symmetric Matrix for the stage 1 for the proposed model (15).
DMUs 1 2 3 4 5 6 7 8 9 10

1 0.705 -0.673 -0.416 -0.253 -0.297 -0.257 -0.297 -0.316 -0.663 0.703
2 -0.565 0.206 -0.272 -0.471 -0.418 -0.457 -0.418 -0.418 0.236 -0.571
3 -0.661 0.318 0.318 -0.098 -0.083 -0.107 -0.083 -0.092 0.410 -0.658
4 0.285 -0.078 -0.224 -0.491 -0.502 -0.502 -0.502 -0.413 -0.082 0.290
5 -0.621 0.568 0.370 0.309 0.344 0.313 0.344 0.375 0.531 -0.619
6 0.411 0.087 0.059 0.581 0.580 0.592 0.580 0.620 -0.065 0.411
7 -0.570 0.617 0.525 0.456 0.482 0.455 0.482 0.509 0.580 -0.566
8 -0.652 0.517 0.307 0.160 0.193 0.161 0.193 0.346 0.513 -0.650
9 -0.063 -0.434 -0.521 -0.850 -0.850 -0.851 -0.850 -0.892 -0.313 -0.069

10 0.706 -0.688 -0.389 -0.252 -0.300 -0.258 -0.300 -0.321 -0.669 0.704
Conflict 11.024 9.559 10.242 10.908 10.853 10.910 10.853 10.601 9.520 11.025
Information 4.869 3.092 3.921 4.115 4.123 4.162 4.123 4.231 3.610 4.727
Final Weight 0.119 0.075 0.096 0.100 0.101 0.102 0.101 0.103 0.088 0.115

A.3 Stage 2

Table A.3.1: Cross-efficiency Matrix of the stage 2 for the proposed model (15).
DMUs 1 2 3 4 5 6 7 8 9 10

1 0.908 1.000 0.810 1.000 1.000 0.969 0.978 0.801 1.000 0.696
2 0.604 0.886 0.440 0.889 0.734 0.802 0.884 0.433 0.610 0.782
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 0.641 0.735 0.429 0.741 0.679 0.710 0.736 0.420 0.547 0.636
5 0.482 0.684 0.430 0.715 0.709 0.617 0.715 0.431 0.703 0.717
6 1.000 1.000 1.000 0.945 0.868 1.000 0.913 0.975 0.937 0.568
7 0.840 0.886 0.598 0.890 0.812 0.876 0.890 0.588 0.670 0.905
8 1.000 0.571 1.000 0.634 0.936 0.645 0.639 1.000 0.926 0.736
9 0.605 0.903 0.551 1.000 1.000 0.762 1.000 0.553 1.000 1.000

10 0.641 0.795 0.450 0.800 0.718 0.750 0.791 0.442 0.592 0.640

Table A.3.2: Matrix of relative scores for the stage 2 for the proposed model (15).
DMUs 1 2 3 4 5 6 7 8 9 10

1 0.822 1.000 0.668 1.000 1.000 0.920 0.940 0.657 1.000 0.297
2 0.236 0.735 0.019 0.696 0.172 0.483 0.680 0.022 0.137 0.494
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 0.307 0.382 0.000 0.293 0.000 0.243 0.269 0.000 0.000 0.158
5 0.000 0.263 0.003 0.221 0.096 0.000 0.212 0.019 0.343 0.345
6 1.000 1.000 1.000 0.850 0.590 1.000 0.758 0.957 0.862 0.000
7 0.691 0.735 0.297 0.699 0.415 0.676 0.696 0.289 0.270 0.779
8 1.000 0.000 1.000 0.000 0.801 0.073 0.000 1.000 0.837 0.388
9 0.237 0.775 0.214 1.000 1.000 0.379 1.000 0.229 1.000 1.000

10 0.307 0.523 0.036 0.453 0.124 0.348 0.420 0.037 0.099 0.165
Std Deviation 0.383 0.343 0.446 0.361 0.410 0.372 0.354 0.436 0.419 0.353
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Table A.3.3: Symmetric Matrix for the stage 2 for the proposed model (15).
DMUs 1 2 3 4 5 6 7 8 9 10

1 -0.263 0.121 -0.215 0.153 -0.073 -0.023 0.158 -0.219 -0.012 0.142
2 -0.307 0.111 -0.540 -0.030 -0.698 0.048 -0.052 -0.562 -0.768 -0.357
3 0.338 -0.063 0.343 -0.040 0.324 0.068 -0.049 0.344 0.360 -0.022
4 -0.029 0.348 -0.260 0.198 -0.376 0.336 0.160 -0.282 -0.451 -0.417
5 -0.723 -0.125 -0.804 -0.029 -0.444 -0.399 0.000 -0.803 -0.576 0.173
6 0.479 0.310 0.526 0.332 0.516 0.395 0.333 0.527 0.527 0.246
7 -0.145 0.235 -0.380 0.051 -0.573 0.225 0.004 -0.405 -0.615 -0.592
8 0.226 -0.095 0.422 0.056 0.682 -0.061 0.081 0.445 0.704 0.345
9 -0.853 -0.268 -0.911 -0.222 -0.679 -0.528 -0.200 -0.913 -0.719 0.036

10 -0.172 0.254 -0.381 0.119 -0.498 0.205 0.090 -0.403 -0.552 -0.338
Conflict 11.450 9.172 12.201 9.410 11.820 9.733 9.476 12.271 12.103 10.785
Information 4.382 3.143 5.437 3.401 4.848 3.616 3.356 5.354 5.076 3.807
Final Weight 0.103 0.074 0.128 0.080 0.114 0.085 0.079 0.126 0.120 0.090
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