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Abstract

A method based on conditional Monte Carlo is introduced to con-

struct the one-sided and two-sided simultaneous confidence bands of

the constant width and hyperbolic shapes.
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1 Introduction

Consider the standard normal-error linear regression model with n obser-

vations (yi, xi1, . . . , xik), i = 1, . . . , n, which can be written in the following
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matrix form:

Y = Xβ + e (1)

where Y = (y1, . . . , yn)T , X is the full column rank design matrix whose

ith row is given by (1, xi1, . . . , xik), i = 1, . . . , n, β = (β0, β1, . . . , βk)
T , and

e ∼ N(0, σ2I).

The estimators of β and σ2 are given by β̂ = (XTX)−1XTY and

σ̂2 = YT [I − X(XTX)−1XT ]Y/ν, respectively, with ν = n − k − 1, β̂ ∼
N(0, σ2(XTX)−1), σ̂2/σ2 ∼ χ2

ν/ν, and β̂ and σ̂2 being independent. S-

ince the matrix (XTX)−1 is a positive definite matrix, exists a symmet-

ric matrix P, such that (XTX)−1 = P2. Let N = [P−1(β̂ − β)]/σ and

T = [P−1(β̂ − β)/σ]/(σ̂/σ) = N/(σ̂/σ). Then N ∼ N(0, I) and T has

a multivariate t-distribution with mean 0, covariance I, and ν degrees of

freedom. Furthermore, F = ‖T‖2/(k + 1) has an F-distribution with k + 1

and ν degrees of freedom.

The two-sided confidence band for the linear regression function xTβ

has the following form:

xTβ ∈ xT β̂ ± cσ̂Υ(x̃), x̃ ∈ Θ (2)

where x = (1, x1, . . . , xk)
T , x̃ = (x1, . . . , xk)

T , c is a critical constant, Θ =

{(x1, . . . , xm) : x1 ∈ (a1, b1), . . . , xm ∈ (am, bm)}, and Υ(x̃) is a function

of x̃. The confidence band in (2) is a constant width confidence band when

Υ(x̃) = 1, and a hyperbolic confidence band when Υ(x̃) =
√

xT (XTX)−1x.

The one-sided upper confidence band has the form

xTβ < xT β̂ + cσ̂Υ(x̃), x̃ ∈ Θ (3)

and the lower confidence band has the form

xTβ > xT β̂ − cσ̂Υ(x̃), x̃ ∈ Θ (4)
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For a polynomial regression function xTβ, x = (1, x1, . . . , xk)T , x̃ =

x, Θ = {x : x ∈ (a, b)}, the ith row of the design matrix X becomes

(1, x1
i , . . . , x

k
i ), and the confidence bands in (2), (3) and (4) become the

corresponding confidence bands for the polynomial regression function xTβ

over the covariate interval (a, b).

The main idea of using simulation to construct confidence bands is to

express c as the (1−α) quantile of a random variable, which can be approx-

imated by the (1 − α) sample quantile of a sample of the random variable.

The sample quantile can be a highly accurate approximation to the popu-

lation quantile c if the sample size is sufficiently large. Generation of the

random variable involves different algorithms of maximization for multiple

regression and polynomial regression, and so these two cases need to be

treated differently.

The purpose of this paper is to propose a new simulation-based method

for computing c in (2), (3) and (4) for either multiple or polynomial re-

gressions, and to demonstrate that the new method is more efficient than

the currently used simulation-based method (the HM method). The new

simulation-based method uses conditional Monte Carlo (referred to as CM-

C), which was introduced by Trotter and Tukey (1956) and generalized by

Hammersley (1956). In the proposed method, the conditional Monte Carlo

is designed for estimating conditional expectations of functions by sampling

from unconditional distributions obtained by certain weighting schemes. A

suitable weighting scheme will reduce variances of the estimators. A simple

proof is given in Section 3.1.

This paper is divided as follows. Section 2 describes some preliminary

results. Section 3 computes the confidence levels. Section 4 computes the

critical constants. Section 5 offers some summary comments.
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2 Preliminary results

The transformation from cartesian to polar coordinates is central to the new

simulation method, which is introduced briefly in this section.

Define the polar coordinates of the vector N = (N0, N1, . . . , Nk)
T ∼

N(0, I) to be (R, θ1 . . . , θk)
T given by Nj = Rsinθ1 . . . sinθj−1cosθj for 0 ≤

j ≤ k − 1 and Nk = Rsinθ1, . . . , sinθk−1sinθk where 0 ≤ θj ≤ π for 1 ≤
j ≤ k − 1, 0 ≤ θk ≤ 2π and R ≥ 0. The Jacobian of the transformation is

|J | = Rk sink−1 θ1 sink−2 θ2 . . . sin θk−1.

It follows directly from the transformation that ‖N‖ = R and the joint

density function of R, θ1, . . . , θk is given by

f(R, θ1, . . . , θk) = (2π)−(k+1)/2e−R
2/2Rk sink−1 θ1 sink−2 θ2 · · · sin θk−1 (5)

which implies that R and θ1, · · · , θk are independent. From the joint density

function of R, θ1, . . . , θk in (5), it is easy to derive the joint density function

of θ1, . . . , θk:

g(θ1, · · · , θk) =
1

2
π−(k+1)/2Γ ((k + 1)/2) sink−1 θ1 sink−2 θ2 · · · sin θk−1

where Γ(·) denotes the gamma function.

3 Computation of the confidence level

In this section, we consider the computation of the confidence level for a

given critical constant c. We provide the details for two-sided hyperbolic and

constant width confidence bands, while one-sided hyperbolic and constant

width confidence bands can be dealt with in a similar way, and so the details

are omitted.
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3.1 Two-sided hyperbolic confidence bands

The two-sided hyperbolic confidence band from (2) is given by

xTβ ∈ xT β̂ ± cσ̂
√

xT (XTX)−1x, x̃ ∈ Θ. (6)

Hence its confidence level 1− α can be expressed as follows:

CLH2(c) = Prob

{
sup
x̃∈Θ

|xT (β̂ − β)|
σ̂
√
xT (XTX)−1x

< c

}
= Prob

{
‖N‖
σ̂/σ

sup
x̃∈Θ

∣∣(Px)TN
∣∣

‖Px‖‖N‖
< c

}
= Prob {‖T‖QH2(θ1, . . . , θk) < c} (7)

= Prob
{
F < c2/[(k + 1)Q2

H2(θ1, . . . , θk)]
}

=

∫ π

θ1=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0
g(θ1, · · · , θk)Fk+1,ν

(
c2

(k + 1)Q2
H2(θ1, . . . , θk)

)
dθ1 . . . dθk

= Eθ1,...,θk

{
Fk+1,ν

(
c2

(k + 1)Q2
H2(θ1, . . . , θk)

)}
(8)

where QH2(θ1, . . . , θk) in (7) is defined as

QH2(θ1, . . . , θk) = sup
x̃∈Θ

∣∣(Px)TN
∣∣

‖Px‖‖N‖
(9)

whose value can be computed quickly by using the method of Liu et al.

(2005a, b) for multiple linear regression, and the method of Liu et al. (2008)

for polynomial regression with any k > 1; and Fk+1,ν(·) in (8) is the cdf of

an F-distribution with k + 1 and ν degrees of freedom.

Using the expression in (7), the value of CLH2(c) can be computed di-

rectly by the following way.

• Step 1: draw N ∼ N(0, I) and σ̂/σ ∼
√
χ2
ν/ν independently;

• Step 2: compute QH2(θ1, . . . , θk) using (9), T = N/(σ̂/σ) and S =

‖T‖QH2(θ1, . . . , θk);
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• Step 3: repeat Steps 1 and 2 for a large number v times to get v values

of S, and use the proportion P̂H2(c) of times that S < c as CLH2(c).

It is well known that P̂H2(c) → CLH2(c) a.s. as v → ∞, and the standard

error of P̂H2(c) is given approximately by s.e.
P̂H2

=

√
P̂H2(c)(1− P̂H2(c))/v.

This method is usually called the hit-and-miss (HM) method (cf. Jones et

al., 2009).

Next we propose a new method of computing CLH2(c) by using the

expression (8) in the following way. In expression 8, CLH2(c) is expressed

as the expectation of a random variable which is a suitable function of

(θ1, . . . , θk); this new method is based on conditional Monte Carlo.

• Step 1: draw N ∼ N(0, I);

• Step 2: computeQH2(θ1, . . . , θk) andM = Fk+1,ν

(
c2/[(k + 1)Q2

H2(θ1, . . . , θk)]
)
;

• Step 3: repeat Steps 1 and 2 for a large number u times to get u values

of M , and use the average of the u values of M , M̂H2, as CLH2(c).

It is clear from the expression in (8) that M̂H2(c)→ CLH2(c) a.s. as u→
∞. The s.e. of M̂H2 is given approximately by s.e.

M̂H2
=
√

1
u(u−1)

∑u
i=1(Mi − M̂H2(c))2.

In fact, the variance of the proposed estimator is not greater than that

produced by the HM method. For convenience, let Var(ĈLH2|θ) denote

the variance of the proposed estimator and Var(ĈLH2) the variance of the

estimator given by the HM method, with θ = (θ1, . . . , θk)
T . It is easy

to prove that Var(ĈLH2|θ) < Var(ĈLH2). Note that Var(ĈLH2|θ) =

E(ĈL
2

H2|θ) −
[
E(ĈLH2|θ)

]2
. Taking expectations of both sides of this

equation with respect to θ gives

E
[
Var(ĈLH2|θ)

]
= E

[
E(ĈL

2

H2|θ)
]
− E

{[
E(ĈLH2|θ)

]2
}

= E(ĈL
2

H2)− E
{[
E(ĈLH2|θ)

]2
}

(10)
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Also, because Var
[
E(ĈLH2|θ)

]
= E

{[
E(ĈLH2|θ)

]2
}
−
{
E
[
E(ĈLH2|θ)

]}2

and E
[
E(ĈLH2|θ)

]
= E(ĈLH2), it follows that we have

Var
[
E(ĈLH2|θ)

]
= E

{[
E(ĈLH2|θ)

]2
}
−
[
E(ĈLH2)

]2
(11)

Upon adding Equations (10) and (11), we obtain the identity Var(ĈLH2) =

E
[
Var(ĈLH2|θ)

]
+Var

[
E(ĈLH2|θ)

]
. Clearly, we have that Var

[
E(ĈLH2|θ)

]
≤

Var(ĈLH2). It indicates that the proposed method has an advantage of re-

ducing the estimator’s variance over the HM method.

3.2 Two-sided constant width confidence bands

The two-sided constant width confidence band from (2) is given by

xTβ ∈ xT β̂ ± cσ̂, x̃ ∈ Θ. (12)

Its confidence level can be expressed as

CLC2 = Prob

{
sup
x̃∈Θ

∣∣∣xT (β̂ − β)/σ̂
∣∣∣ < c

}
= Prob {‖T‖QC2(θ1, . . . , θk) < c} (13)

= Eθ1,...,θk

{
Fk+1,ν

(
c2

(k + 1)Q2
C2(θ1, . . . , θk)

)}
(14)

where QC2(θ1, . . . , θk) in (13) is defined as

QC2(θ1, . . . , θk) = sup
x̃∈Θ

∣∣(Px)TN
∣∣

‖N‖
,

the value of QC2(θ1, . . . , θk) can be computed efficiently by using the meth-

ods in Liu et al. (2010) for either multiple or polynomial regressions.
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The HM and CMC methods for computing CLC2(c) can be developed

in similar ways as for CLH2(c) in sub-section 3.1, and so the details are

omitted.

Now we use two examples to demonstrate that the proposed method has

much greater computational efficiency than the HM method for achieving a

similar s.e.. All the computation in this paper is done on an ordinary Win-

dow’s PC (Intel(R) Core(TM) i7-7820HK CPU @ 2.90GHz, RAM 32.0 GB).

The first example is about the change of conversion of n-Heptane to acety-

lene (%) (y) at different reactor temperatures (◦C) (x1) and different ratios

of H2 to n-Heptane (mole ratio) (x2). The related data were taken from Liu

et al. (2005a). From the data set, the fitted multiple linear regression model

was given by ŷ = −130.69 + 0.134x1 + 0.35x2 with R2 = 0.92.

Table 1: Computation of the confidence levels for the pre-specified c and v = u = 100000.

Regression SCB†
1 or 2
sided

Pre-specified
c

Method CL s.e.
Computational
time (second)

Multiple HB♦ 2 3.1049 HM 0.9509 5.9338×10−3 4.36
3.1049 CMC 0.9501 4.1100×10−5 4.39

1 2.7383 HM 0.9498 7.0943×10−3 2.51
2.7383 CMC 0.9499 1.4322×10−4 2.50

CWB♥ 2 1.7196 HM 0.9516 6.2922×10−3 1.21
1.7196 CMC 0.9500 1.3536×10−4 1.28

1 1.5105 HM 0.9514 6.3686×10−3 1.22
1.5105 CMC 0.9501 2.0597×10−4 1.43

Polynomial HB 2 2.9803 HM 0.9501 7.1156×10−3 32.33
2.9867 CMC 0.9501 1.2066×10−4 32.89

1 2.6924 HM 0.9499 6.6072×10−3 31.58
2.6939 CMC 0.9499 1.9764×10−4 32.22

CWB 2 1.6902 HM 0.9501 6.9029×10−3 24.06
1.6885 CMC 0.9500 2.7181×10−4 23.88

1 1.4562 HM 0.9501 6.2021×10−3 23.29
1.4591 CMC 0.9501 3.3126×10−4 24.15

† SCB denotes the simultaneous confidence band;
♦ HB denotes the hyperbolic confidence band;
♥ CWB denotes the constant width band.

The second example is about the relation between the probabilities of

perinatal death (fetal deaths plus deaths within the first month of life) (p)

and birth weight (BW). The related data were taken from Liu et al. (2008).
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Based on the data, we fitted a fourth-order polynomial regression model

between y = log(−log(p)) and x = BW. The fitted model was given by

ŷ = −2.86 + 4.81x− 2.32x2 + 0.568x3 − 0.054x4 with R2 = 0.99.

For the given critical constants, the confidence levels were computed by

using u = v = 100000 simulations. The results were summarized in Table

1. From the last column of Table 1, we can see that the computational time

used by the two methods are similar.

However, the s.e.’s of the two methods given in the penultimate column

of Table 1 are markedly different. We can see that the s.e.’s of the CMC

method are about 1/20, at least, of those of the HM method. Since the

s.e. of the HM method depends on the number of replications v through

1√
v
, v should be about 400u, in order to achieve a similar s.e. of the CMC

method with u replications. Hence the HM method takes about 400 times of

the CMC computation-time to achieve a similar accuracy of the confidence

level.

4 Computation of the critical constant

In this section, we consider the computation of the critical constant c, so

that the confidence band has the pre-specified confidence level 1−α. Again

we focus only on two-sided hyperbolic confidence bands, while one-sided

hyperbolic confidence bands, one- and two-sided constant width confidence

bands can be treated in a similar way and so the details are omitted.

The currently available method that works for multiple and polynomial

regressions for a general k > 1 (cf. Liu, 2010) utilizes the expression in (7)

to find the critical constant c by solving the equation

1− α = Prob {‖T‖QH2(θ1, . . . , θk) < c} (15)

Note that the critical constant c is the (1−α) quantile of the random variable
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‖T‖QH2, which can be approximated by the (1− α) sample quantile in the

following way (see Liu, 2010, pp 65, and the references therein for more

details).

• Step 1: draw independent N ∼ N(0, I) and σ̂/σ ∼
√
χ2
ν/ν;

• Step 2: compute S = ‖T‖QH2 as before;

• Step 3: repeat Steps 1 and 2 for a large number m times to get

S1, . . . , Sm.

Let 〈(1−α)m〉 denote the integer part of (1−α)m. It is well known that

S〈(1−α)m〉 → c a.s. as m → ∞ and the s.e. of S〈(1−α)m〉 can be computed

approximately by using S1, . . . , Sm (cf. Liu, 2010, pp 243-244).

For convenience, let ĉ = S〈(1−α)m〉. It is known (see e.g., Serfling, 1980)

that, under quite weak conditions, ĉ is asymptotically normal with mean c

and standard error s.e. =
√
α(1− α)/[mG2(c)], where G(c) is the density

function of S evaluated at c. Liu (2010) gave a detailed discussion about

determining the value ofG(c). From these, the 1−α “asymptotic” confidence

bounds (ĉ− zα/2 · s.e., ĉ+ zα/2 · s.e.) can be derived.

Now we introduce a new method for computing c from (16)

1− α = Eθ1,...,θk

{
Fk+1,ν

(
c2

(k + 1)Q2
H2(θ1, . . . , θk)

)}
(16)

by using the efficient CMC method of computing CLH2(c) given in Section

3. Since this probability is monotonically increasing in c, we use a searching

algorithm that solves the equation in (16) to find c.

The bi-section searching algorithm is used in our R code for finding

c. Note that (cf. Liu, 2010) the solution c is contained in the interval

(t
α/2
ν ,

√
(k + 1)fαk+1,ν) where tβν and fβk+1,ν denote the β quantiles of the t-

distribution with ν degrees of freedom and the F-distribution with k + 1
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and ν degrees of freedom, respectively. Furthermore, the 1 − α confidence

bounds of c can be produced by the bootstrap method.

The subtlety in this method is that, when computing CLH2(c) using the

expression (8) for different values of c, the same u values of QH2(θ1, . . . , θk)

are used. Hence, after computing CLH2(c) for one c, the extra compu-

tation for a new c is just to compute u values of the cdf Fk+1,ν(c2/[(k +

1)Q2
H2(θ1, . . . , θk)]) without computing the u values of QH2(θ1, . . . , θk).

To assess the s.e. of the critical constant c computed using this new

CMC method, we compute w values of c using w different random seeds,

and approximate the s.e. by s.e. =
√

1
w−1

∑w
i=1(ci − c) where c =

∑w
i=1 ci.

Table 2: Computation of the critical constant for 1− α = 0.95, m = u = 100000 and w = 100.

Regression SCB
1 or 2
sided

Method c Confidence bounds
Length of

confidence bounds
s.e.

Computational
time (second)

Multiple HB 2 HM 3.0940 (3.0783,3.1097) 0.0314 8.0024×10−3 4.31
CMC 3.1038 (3.1028,3.1047) 0.0019 4.9017×10−4 7.64

1 HM 2.7412 (2.7250,2.7573) 0.0323 8.2460×10−3 2.81
CMC 2.7395 (2.7361,2.7428) 0.0067 1.4870×10−3 6.37

CWB 2 HM 1.7081 (1.6989,1.7174) 0.0185 4.7158×10−3 1.23
CMC 1.7200 (1.7180,1.7219) 0.0038 1.0763×10−3 6.34

1 HM 1.5012 (1.4917,1.5107) 0.0190 4.8445×10−3 1.40
CMC 1.5098 (1.5070,1.513) 0.0058 1.3197×10−3 6.25

Polynomial HB 2 HM 2.9795 (2.9679,2.9911) 0.0232 5.9179×10−3 30.87
CMC 2.9858 (2.9837,2.9879) 0.0043 9.0958×10−4 8.20

1 HM 2.6932 (2.6807,2.7057) 0.0250 6.3825×10−3 30.97
CMC 2.6948 (2.6912,2.6984) 0.0072 1.7962×10−3 7.74

CWB 2 HM 1.6897 (1.6808,1.6986) 0.0178 4.5357×10−3 20.27
CMC 1.6886 (1.6851,1.6920) 0.0069 1.6662×10−3 7.44

1 HM 1.4555 (1.4462,1.4647) 0.0186 4.7379×10−3 20.81
CMC 1.4584 (1.4540,1.4629) 0.0089 2.0044×10−3 7.64

To demonstrate the advantage of the new CMC method over the HM

method, we computed the critical constants and their s.e.’s using the two

methods, respectively, for the same two examples in Section 3. The compu-

tational results were summarized in Table 2.

In search of the critical constant c, we used the resolution 0.001 as a

stop-search condition, that is, if the length of an interval was greater than

0.001, the search on the interval would continue, until its length was less

than 0.001. This guarantees that the searched critical constant would be

accurate, due to searching, to the third decimal place. The entries in the

last two columns of Table 2 can be used to compare the computation times
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of the HM and CMC methods for achieving similar accuracy (i.e., s.e.) of

the critical constant c. Note that the s.e. of the HM method depends on

m through 1/
√
m (cf. Liu, 2010, pp.243), and the computation time of the

CMC method depends on m linearly. Hence from the last two entries in

each of the first two rows of Table 2, for example, to achieve a similar s.e. as

the CMC method, the HM method needs a value of m approximately equal

to (8.0024 × 10−3/4.9017 × 10−4)2 ≈ 266 multiplying the currently used

m − value 100,000. This results in an approximate computation time of

266×4.31 seconds, which is 266×4.31/7.64 ≈ 150 times of the computation

time 7.64 seconds of CMC computation time. For the eight cases given

in Table 4 from top to bottom, the multiples, corresponding to the 150

above, are given respectively by 150, 13, 3, 3, 159, 50 20, 15. Therefore the

HM method requires at least three times of the computation time of the IS

method to achieve similar accuracy. For the hyperbolic bands, the multiples

are 150, 13, 159, 50, which are much more pronounced than for the constant

width bands. Moreover, for the confidence level 1−α = 0.95 , the proposed

method gives narrower confidence intervals and their lengths are at most

half of those given by the HM method. These demonstrate the superiority

of the CMC method over the HM method.

5 Concluding remarks

The proposed method is much more efficient at computing the confidence

level and the critical constant than the currently used HM method, and

therefore we recommend using it.

The R programs for implementing the computation in this manuscript

are available at the website https://ife.sufe.edu.cn/31/47/c3531a78151/

page.htm for downloading.
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