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Abstract: Recently an exact worldsheet description of strings propagating in certain
black hole microstate geometries was constructed in terms of null-gauged WZW models. In
this paper we consider a family of such coset models, in which the currents being gauged
are specified by a set of parameters that a priori take arbitrary values. We show that
consistency of the spectrum of the worldsheet CFT implies a set of quantisation conditions
and parity restrictions on the gauging parameters. We also derive these constraints from an
independent geometrical analysis of smoothness, absence of horizons and absence of closed
timelike curves. This allows us to prove that the complete set of consistent backgrounds in
this class of models is precisely the general family of (NS5-decoupled) non-BPS solutions
known as the JMaRT solutions, together with their various (BPS and non-BPS) limits. We
clarify several aspects of these backgrounds by expressing their six-dimensional solutions
explicitly in terms of five non-negative integers and a single length-scale. Finally we study
non-trivial two-charge limits, and exhibit a novel set of non-BPS supergravity solutions
describing bound states of NS5 branes carrying momentum charge.ar
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1 Introduction

The quantum description of black holes is notably problematic. From the spacetime point
of view it remains unclear how to account for their entropy, resolve their singularities, and
understand their evaporation. String theory provides the leading framework within which
to address such difficult questions of quantum gravity, and in particular to study black
hole microstates. Much progress has been made by constructing supergravity solutions
describing these microstates. However, there is rich physics beyond supergravity that may
prove crucial to understand the most entropic sector of the black hole Hilbert space.
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Bound states of D1 and D5-branes, or of NS5 branes and fundamental strings (F1),
possibly also carrying momentum P in a compact direction, have been a very fruitful arena
in which to study black hole microstates in string theory. Taking the D1-D5 (or NS5-F1)
decoupling limit gives rise to configurations that are asymptotically AdS3×S3×M, where
M is T4 or K3. This is one of the original examples of holographic duality [1].

Configurations that have come to be known as circular supertubes [2, 3] were important
early supergravity solutions describing specific microstates of the two-charge system, in
particular in the D1-D5 or NS5-F1 duality frames. These solutions were generalized by
Lunin and Mathur, and others, to the full class of two-charge microstates [4–8].

An equally important family of three-charge (D1-D5-P or NS5-F1-P) microstate solu-
tions are known as spectral flowed circular supertubes, of which there are both BPS and
non-BPS configurations [9–13]. In the AdS3 decoupling limit, the general holographic de-
scription of these configurations is well understood [13, 14] and involves spectral flow in
the N = (4, 4) superconformal algebra. Moreover, two-charge circular supertubes have
proven to be important seed solutions in the construction of much more general families of
“superstratum” solutions (see e.g. [15–22]).

The non-BPS spectral flowed circular supertubes in the family mentioned above are
known as the JMaRT solutions, after the authors of [12]. These microstates emit ergoregion
radiation, which has been interpreted (via holography) as an enhanced, unitary version of
Hawking radiation [23–25]. The JMaRT solutions also contain the BPS two-charge circular
supertubes and BPS three-charge spectral flowed circular supertubes as (non-trivial) limits.
All of these will be included in our analysis.

Recently a worldsheet description of the JMaRT three-charge NS5-F1-P configurations,
in the NS5-brane decoupling limit, was constructed [26]. This regime corresponds to little
string theory, an example of stringy holography which remains poorly understood. The
models of [26] make use of a well-known supersymmetric WZW theory, combining it with
the null-gauging formalism. More precisely, they involve an auxiliary (10+2)-dimensional
group manifold, which is reduced to the physical (9+1)-dimensional target space by gauging
a pair of null chiral currents. The corresponding spectrum of perturbative strings and D-
branes were studied respectively in [27, 28]. The null-gauging construction was further
extended to encompass more general Lunin-Mathur solutions [29], which correspond to a
larger family of gauged sigma models that are generically not cosets. Other coset models
that describe wrapped and/or intersecting fivebranes have also recently been studied [30].

The underlying microscopic configurations involve bound states of NS5 branes (possibly
with F1 and/or P charge). Generically, the low-energy supergravity description is not
reliable near the fivebrane sources, however the worldsheet theory remains under control.
Indeed, these coset theories are exact in α′, thus extending the description of these families
of black hole microstates beyond the supergravity limit.

The models considered in [26–28] have the following basic structure. The upstairs
theory (i.e. before gauging) involves pure NSNS fluxes and is of the form AdS3 × S3 ×R×
S1×T4, where the R factor is timelike, and where the S1 is separated from the T4 because it
plays a preferred role. Indeed, the gauging does not involve the T4 and we shall mostly work
in six physical spacetime directions downstairs (i.e. after gauging). The non-trivial WZW
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model involved is that of the universal cover of SL(2,R) times SU(2), which constitutes
a rich and well studied example of an exactly solvable model [31–35]. The currents to be
gauged are specific null linear combinations of the Cartan currents of SL(2,R) × SU(2)

and the chiral momenta on R× S1, plus a similar (though generically not identical) linear
combination of their anti-chiral counterparts.

Within this class of models, it is natural to ask what is the general family of well-
behaved backgrounds that can be obtained by considering the most general null linear
combination of the currents just described. This question was not addressed in [26–28].
Developing a systematic method for classifying such backgrounds is important for three
reasons. First, it offers the possibility of finding novel configurations. Second, it can sharpen
our understanding of the general backgrounds and how their parameters are constrained by
different consistency conditions, shedding further light on the interplay between worldsheet
CFT and spacetime geometry. Third, such techniques may then be applied to other similar
classes of gauged models.

In this paper we provide the answer to the above question, by proving that the JMaRT
solutions and their limits represent the complete set of supergravity configurations described
by this family of coset models. We do so from two complementary but independent points
of view, and, in doing so, we clarify several aspects of both the worldsheet models and the
supergravity backgrounds.

First, we consider the most general family of worldsheet coset theories, and derive neces-
sary and sufficient conditions that lead to a consistent physical spectrum. These consistency
conditions are obtained from analysing the gauge orbits, relating different representatives
of the same physical operators, combined with worldsheet spectral flow (not to be confused
with the spacetime/holographic spectral flow discussed above). This includes not only the
spectral flow operation that is an essential part of the SL(2,R) WZW model [33], but also
that of SU(2). While SU(2) spectral flow does not generate new affine representations, it
has proven to be quite useful for string theory applications [27, 29, 36, 37]. As it turns out,
we obtain constraints that take the form of algebraic relations for the a priori continuous
gauging parameters, which imply that they can be written in terms of four integers, k,m, n, p
(of which only three are independent), plus Ry, the continuous modulus corresponding to
the asymptotic proper radius of the S1. Furthermore, we derive restrictions on the parities
of k,m, n, p.

We then show that the same conditions can equally be derived from the analysis of the
set of supergravity backgrounds obtained from the general gauged models. More precisely,
we show that imposing absence of horizons, absence of closed time-like curves (CTCs), and
smoothness up to orbifold singularities in the corresponding classical geometries leads to
an identical quantisation of the gauging parameters.

On the other hand, the JMaRT solutions are usually written in terms of their own set of
seemingly continuous parameters, which however are known to be constrained by regularity
and absence of CTCs to obey their own set of algebraic relations [12]. This parametrisation
is quite awkward to work with, and obscures aspects of the physics.

We find that for the (NS5-decoupled) JMaRT solutions and their limits, one can com-
pletely bypass most of the seemingly continuous parameters. Let n5, n1, np denote respec-
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tively the quantised numbers of NS5 branes, fundamental strings, and units of momentum
along S1 present in the background. We show that, in the NS5-brane decoupling limit,
the six-dimensional metric and the NSNS B-field can be expressed explicitly in terms of
the same set of integers k,m, n, p introduced in the coset models, together with n5 and
Ry. Although this result is strongly inspired by our worldsheet analysis, we have derived it
independently and purely within supergravity, via a non-trivial manipulation of the above-
mentioned algebraic constraints.

For the dilaton, an extra parameter is necessary, which can be taken to be either
n1/V4 or np/V4, where V4 is the volume of the T4. In the three-charge solutions, there is
a constraint that relates n1 and np, meaning that only one can be chosen independently.
We take V4 to be microscopic and fixed, and ignore it when counting parameters, so that
we consider the independent ones to be (m, n, n5, Ry) plus one of either k or p, plus one
of either n1 or np. Without loss of generality, one can restrict the range of the integer
parameters to be non-negative.

The resulting expressions for the supergravity fields are identical to those obtained
from the general coset worldsheet actions, completing the proof that these are the unique
backgrounds that arise in these coset theories. Note that for the latter, n5 defines the level
of the SL(2,R) and SU(2) affine algebras.

The rewriting of these configurations in terms of the integer parametrisation signif-
icantly clarifies the properties of these solutions. In particular, it makes some of their
symmetries and the action of T-duality manifest. It also sheds light on the somewhat deli-
cate limits that lead to the two-charge configurations where either n1 or np is set to zero.
As a result, this allows us to derive a novel and non-trivial two-charge non-BPS NS5-P limit
of the general solutions in a straightforward way.

Finally, we also comment on a potential relation to recent investigations of the so-called
single-trace T T̄ deformation of the (holographic) D1-D5 CFT [38–40]. In the worldsheet
model, this can be described by using a null-gauging procedure similar to the formalism
employed throughout this paper, although in that context the SL(2,R) current involved in
the gauging is not in the Cartan subalgebra.

The structure of this paper is as follows. In Section 2 we introduce the worldsheet
models that we consider in this paper, and write down the most general background metric
and B-field that arise. In Section 3 we review in more detail the SL(2,R) and SU(2)

WZW models, and analyse the consistency of the CFT spectrum in terms of the gauging
parameters. In Section 4 we analyse absence of horizons, absence of CTCs, and smoothness
in the corresponding supergravity backgrounds. In Section 5 we firstly match the resulting
worldsheet models to the general JMaRT solutions. We then discuss in detail their various
limits, including two-charge (non-BPS), BPS, and AdS3 limits. In Section 6 we further
discuss our results.

2 A class of null-gauged WZW models

In this section we review some relevant aspects of the models that we shall study in this
work. We will aim to be brief where possible; the interested reader can find the details in
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the works [26–29].
As discussed in the Introduction, we consider the (10+2)-dimensional upstairs target

AdS3× S3×Rt× S1
y ×T4, where we have introduced coordinates t and y for the timelike R

and spacelike S1 factors respectively. Since the Cartan direction in SL(2,R) is timelike, and
that of SU(2) is spacelike, and the levels are the same, one can form null linear combinations
J3

sl±J3
su in both holomorphic and antiholomorphic sectors of the worldsheet theory. Gauging

such null currents leads [36] to the background sourced by a circular array of NS5 branes
on their Coulomb branch [41–43].

The (10+2)-dimensional models have other null currents that are linear combinations
of J3

sl, J
3
su, ∂t and ∂y. It was recently found that particular linear combinations of these

currents give rise to a family of backgrounds that include NS5-P and NS5-F1 BPS circular
supertubes [2, 3], as well as NS5-F1-P BPS and non-BPS spectral flowed supertubes [10–14].

We now review the basics of these constructions and then consider the most general pair
of such chiral null currents that can be gauged. We derive the corresponding supergravity
fields, written as functions of the general gauging parameters.

2.1 Null-gauged sigma models

We now briefly review the null gauging formalism for general sigma models, before special-
ising to WZW models (see e.g. [44–47]). In this passage we follow the presentation of [29].
We use units in which α′ = 1, and work at tree level in the string coupling gs.

Consider the string worldsheetM2 and an embedding map ϕ into a pseudo-Riemannian
manifold N , namely ϕ : M2 → ϕ(M2) ⊂ N . The target manifold N is endowed with a
metric with components Gij . We wish to gauge a set of Killing vectors ξa generating
isometries of N , where a labels the different Killing vectors (in this paper we will have
a = 1, 2). We introduce a set of independent worldsheet gauge fields Aa, one corresponding
to each Killing vector. Then the kinetic term in the string sigma model action is written
in terms of the covariant derivative

Dϕi = ∂ϕi −Aaξia (2.1)

and takes the form

LK = DϕiGij Dϕj = (∂ϕi −Aaξia)Gij (∂̄ϕj − Āaξja) . (2.2)

To write the gauged Wess-Zumino (WZ) term we introduce target-space one-forms θa (we
follow the notation of [47]), pulled back to the worldsheet. The WZ term can then be
written as

LWZ = Bij∂ϕ
i∂̄ϕj +Aaθa,i∂̄ϕi − Āaθa,i∂ϕi + ξi[aθb],iA

aĀb (2.3)

where θa,i denotes the ith component of the one-form θa. For our null-gauged models, the
target-space one-forms θa are given by

θa = (−1)a+1ξa · dϕ ≡ (−1)a+1ξiaGijdϕ
j , (a = 1, 2) . (2.4)

For a consistent gauging, the following conditions must hold:

ıaH = dθa , ıaθb = −ıbθa , (2.5)
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where H = dB. The expression (2.4) implies that half of the gauge field components
decouple, so that they are naturally chiral. As a result, in our U(1)×U(1) gauged models,
the coefficient of the term quadratic in gauge fields is proportional to the quantity

Σ ≡ −1

2
ξi1Gijξ

j
2 . (2.6)

All together, the terms in the action involving the gauge fields then reduce to

LA = −2A2ξi2Gij ∂̄ϕ
j − 2Ā1ξi1Gij∂ϕ

j − 4A2Ā1Σ , (2.7)

and in the following, we shall denote A ≡ A2, Ā ≡ Ā1.
We define the worldsheet currents J , J̄ to be pull-backs of the target-space one-forms

as follows1

J ≡ −θ1 · ∂ϕ ≡ −θ1,i∂ϕ
i , J̄ ≡ θ2 · ∂̄ϕ ≡ θ2,i ∂̄ϕ

i . (2.8)

By using (2.4), one can then write the gauge terms (2.7) as

LA = 2Aθ2,i ∂̄ϕ
i − 2Āθ1,i∂ϕ

i − 4AĀΣ ≡ 2AJ̄ + 2ĀJ − 4AĀΣ . (2.9)

Upon integrating out the gauge fields, the gauge terms in the action then become

J J̄
Σ

= − 1

Σ

(
θ1 · ∂ϕ

)(
θ2 · ∂̄ϕ

)
=

1

Σ

(
ξ1 · ∂ϕ

)(
ξ2 · ∂̄ϕ

)
, (2.10)

where ξ1 · ∂ϕ ≡ ξi1Gij∂ϕ
j . Thus the overall effect of the null gauging procedure is to add

the term (2.10) to the ungauged sigma model lagrangian.

2.2 Null-gauged WZW models

We now specialise the discussion to the case where the upstairs theory is a WZW model
whose target space is a Lie group G, and thus we replace ϕ with a G-valued function
g : M2 → G. We will shortly consider G to be a direct product of simple and abelian
factors, but for the moment we focus on one of the simple factors. We follow in places the
presentation in [28].

We wish to gauge the action of a subgroup H ⊂ G. Its action on G is defined by the
group homomorphism embeddings

` : H → GL , r : H → GR , (2.11)

where GL × GR is the standard left-right isometry group, and such that we will gauge the
transformations

g 7→ `(h) g r(h)−1 , h ∈ H . (2.12)

The group embeddings ` and r induce corresponding Lie algebra homomorphisms. Since
the meaning will be clear from the context, it is convenient to abuse notation and re-use
the same symbols ` and r for the induced Lie algebra homomorphisms,

` : h→ g , r : h→ g . (2.13)
1Note that J , J̄ are related to the CFT current operators J, J̄ by factors of i, e.g. J = iJ , see Eq. (3.50).
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To write the corresponding Killing vector field, let us denote the left(right)-invariant vector
field corresponding to a generic X ∈ g by XL (XR). Given a basis of h, for each element
Xa there is a corresponding Killing vector field given by (see e.g. [47])

ξa ≡ − `(Xa)
R − r(Xa)

L . (2.14)

Let us write the left and right Maurer-Cartan one-forms as

θL = g−1dg , θR = − dg g−1 . (2.15)

We denote by 〈·, ·〉 the standard inner product on g given by the Killing form. More
explicitly, for matrix groups we use the normalisation 〈A,B〉 = Tr(AB). In terms of these,
the one-forms θa introduced in Eqs. (2.3)–(2.4) take the form

θa = 〈`(Xa), θR〉 − 〈r(Xa), θL〉 . (2.16)

2.3 The models we study

We work in Type II superstring theory, however we suppress worldsheet fermions in this
section for ease of presentation. Worldsheet fermions will be discussed in detail in Section
3 below. We consider the cosets2

G/H × T4 =
SL(2,R)× SU(2)× Rt × U(1)y

U(1)L × U(1)R
× T4 . (2.17)

To define the action of H = U(1)L × U(1)R we must specify the embedding into each of
the four subgroups of the upstairs group G that participate in the gauging. Parametrising
SL(2,R) as SU(1, 1), we introduce coordinates for the upstairs subgroup elements as

g =
(
gsl, gsu, gt, gy

)
=

(
e

i
2

(τ−σ)σ3eρσ1e
i
2

(τ+σ)σ3 , e
i
2

(ψ−φ)σ3eiθσ1e
i
2

(ψ+φ)σ3 , et, e
iy
Ry

)
, (2.18)

where σi denotes the ith Pauli matrix and y ∈ [0, 2πRy). At the level of the algebra,
the chiral embeddings we consider are specified by eight arbitrary real parameters li , ri,
i = 1, 2, 3, 4, as follows (the ordering of subgroups is as in Eq. (2.18)),

`(α) =
(
i l1ασ3, −i l2ασ3, l3α, −i

l4
Ry

α
)
, r(α) = 0 ,

r(β) = −
(
i r1βσ3, −i r2βσ3, r3β, −i

r4

Ry
β
)
, `(β) = 0 ,

(2.19)

where α, β ∈ R and the signs have been chosen for later convenience, in particular for
Eq. (2.27) below. The group action (2.12) being gauged is then

g 7→
(
eil1ασ3 gsl e

ir1βσ3 , e−il2ασ3 gsu e
−ir2βσ3 , el3αgt e

r3β , e
−i l4

Ry
α
gy e

−i r4
Ry

β
)
. (2.20)

2More precisely, the upstairs model involves the universal cover of SL(2, R), and globally we gauge
R× U(1), as we discuss in more detail in Section 3.3; see also [27].
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The general gauge-invariant action for such asymmetric cosets can be found in [48]. We
introduce two (independent) h-valued worldsheet gauge fields (A1, Ā1) and (A2, Ā2). The
gauged WZW action takes the form

S =
∑
j

sgn(κj)
kj
π

( ∫
M2

1

2
Tr
[
g−1∂gg−1∂̄g

]
j
d2z + i

∫
M3

1

3!
Tr
[
g−1dg ∧ g−1dg ∧ g−1dg

]
j

+

∫
M2

Tr

− 2∑
a=1

[
`(Āa)∂gg−1

]
j

+
2∑

a=1

[
r(Aa)g−1∂̄g

]
j
−

2∑
a,b=1

[
g−1`(Āa)g r(Ab)

]
j

 d2z

)
,

(2.21)

where j runs over the Lie algebras, M3 is a three-dimensional auxiliary space such that
M2 = ∂M3, kj are the levels of the Kac-Moody algebras, and sgn(κj) are the signatures of
the respective Killing forms, which in our conventions is positive for SL(2,R) and negative
for (SU(2), Rt, S1

y). Here the embeddings `, r should be understood as corresponding to
each respective Lie subalgebra, i.e. the components of the right-hand sides of Eq. (2.19).

We now recall from the discussion of general gaugings of sigma models in Eqs. (2.1)–
(2.10) that, since the gauge fields are null and chiral, one of their components simply drops
out, such that we can set

A1 = 0 , Ā2 = 0 . (2.22)

The gauge field embeddings are then

`(Ā1) =
(
i l1Ā1σ3, −i l2Ā1σ3, l3 Ā1, −i

l4
Ry
Ā1

)
, `(A2) = 0 ,

r(A2) = −
(
i r1A2σ3, −i r2A2σ3, r3A2, −i

r4

Ry
A2

)
, r(Ā1) = 0 ,

(2.23)

consistently with (2.19). As before, in order to lighten the notation we set A = A2, Ā = Ā1

from now on.
We introduce the currents (our conventions follow [29, App. A])

j3sl = ksl Tr
(
−iσ3

2
∂gsl g

−1
sl

)
, j̄3sl = ksl Tr

(
−iσ3

2
g−1
sl ∂̄gsl

)
, (2.24)

and similarly for SU(2). Their explicit form in our coordinates is

j3sl = n5

(
cosh2 ρ ∂τ + sinh2 ρ ∂σ

)
, j̄3sl = n5

(
cosh2 ρ ∂̄τ − sinh2 ρ ∂̄σ

)
,

j3su = n5

(
cos2 θ ∂ψ − sin2 θ ∂φ

)
, j̄3su = n5

(
cos2 θ ∂̄ψ − sin2 θ ∂̄φ

)
.

(2.25)

We also define

PtL = ∂t , PtR = ∂̄t , PyL = ∂y , PyR = ∂̄y . (2.26)

Note that, as usual, the bosonic subsector of the supersymmetric WZW model has ksl =

n5 − 2 and ksu = n5 + 2 while the full supersymmetric model has ksl = ksu = n5. As
noted above, we are suppressing worldsheet fermions in the present section. The shift in
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the levels is important (see e.g. the discussion in [29]), and we will take care of this in
detail when discussing results in the worldsheet CFT in the next section. When discussing
supergravity solutions we will work in the usual supergravity regime n5 � 1 (and in the
fivebrane decoupling limit gs → 0) and thus for our purposes in this section we can simply
work with ksl = ksu = n5. To have canonical kinetic terms we set the (otherwise irrelevant)
û(1) levels to be kt = 2, ky = 2R2

y .
The group action that we gauge, defined in Eq. (2.19), corresponds to gauging the

currents

J = l1 j
3
sl + l2 j

3
su + l3P

t
L + l4P

y
L ,

J̄ = r1 j̄
3
sl + r2 j̄

3
su + r3P

t
R + r4P

y
R ,

(2.27)

which we require to be null by imposing

n5(l21 − l22) + l23 − l24 = 0 , n5(r2
1 − r2

2) + r2
3 − r2

4 = 0 . (2.28)

One can use these constraints to fix the overall normalization of the gauging parameters.
We assume that l1 = r1 6= 0 and divide through by l21 and r2

1, to work with the ratios

li =
li
l1
, ri =

ri
r1
, i = 2, 3, 4 . (2.29)

In practice this has the same effect as setting l1 = r1 = 1, however we have introduced a
separate notation for later convenience. Of course, one can modify this step accordingly to
deal with models in which l1 = r1 = 0. For later use we record that the ratio parameters
li, ri, i = 2, 3, 4 are subject to the constraints

n5(1− l22) + l23 − l24 = 0 , n5(1− r2
2) + r2

3 − r2
4 = 0 . (2.30)

In the upstairs model, the line element and NSNS three-form flux are given by

ds2 = n5

(
− cosh2 ρdτ2 + dρ2 + sinh2 ρdσ2 + dθ2 + cos2 θdψ2 + sin2 θdφ2

)
− dt2 + dy2,

H = n5

(
sinh 2ρ dρ ∧ dτ ∧ dσ + sin 2θ dθ ∧ dψ ∧ dφ

)
. (2.31)

The Killing vectors associated to the group action (2.12) being gauged are

ξL = (∂τ − ∂σ)− l2(∂ψ − ∂φ) + l3∂t − l4∂y ,
ξR = (∂τ + ∂σ)− r2(∂ψ + ∂φ) + r3∂t − r4∂y ,

(2.32)

and so we obtain the one-forms θa,

θL = −n5

[(
cosh2 ρ dτ + sinh2 ρ dσ

)
+ l2

(
cos2 θ dψ − sin2 θ dφ

)]
− (l3 dt+ l4 dy) ,

θR = n5

[(
cosh2 ρ dτ − sinh2 ρ dσ

)
+ r2

(
cos2 θ dψ + sin2 θ dφ

)]
+ r3 dt+ r4 dy .

(2.33)

The full null-gauged Wess-Zumino-Witten action is then

S = Ssl
0 + Ssl

A + Ssu
0 + Ssu

A + St,y0 + St,yA , (2.34)
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with

Ssl
0 =

n5

π

∫ [
∂ρ∂̄ρ+ sh2ρ ∂σ∂̄σ − ch2ρ ∂τ ∂̄τ − sh2ρ

(
∂σ∂̄τ − ∂τ ∂̄σ

) ]
d2z ,

Ssl
A =

2n5

π

∫ [
Ā
(
sh2ρ ∂σ + ch2ρ ∂τ

)
+A

(
ch2ρ ∂̄τ − sh2 ρ ∂̄σ

)
−AĀ ch(2ρ)

]
d2z ,

Ssu
0 =

n5

π

∫ [
∂θ∂̄θ + c2

θ∂ψ∂̄ψ + s2
θ∂φ∂̄φ+ c2

θ (∂φ∂̄ψ − ∂̄φ∂ψ)
]
d2z ,

Ssu
A =

2n5

π

∫ [
l2Ā

(
c2
θ ∂ψ − s2

θ ∂φ
)

+ r2A
(
c2
θ ∂̄ψ + s2

θ ∂̄φ
)

+ l2r2AĀ cos(2θ)
]
d2z ,

St,y0 =
1

π

∫ [
− ∂t∂̄t+ ∂y∂̄y

]
d2z ,

St,yA =
2

π

∫ [
l3Ā∂t+ r3A∂̄t+ l4Ā∂y + r4A∂̄y − (l3r3 − l4r4)AĀ

]
d2z , (2.35)

where we have used the shorthands cθ = cos θ and sθ = sin θ.
We note that with the Killing vectors (2.32), the quantity Σ defined in (2.6) becomes

Σ =
1

2

(
n5

[
cosh(2ρ)− l2r2 cos(2θ)

]
+ l3r3 − l4r4

)
. (2.36)

For convenience let us define the rescaled quantity

Σ0 =
1

n5
Σ = sinh2ρ − l2r2 cos2 θ +

1 + l2r2

2
+
l3r3 − l4r4

2n5
. (2.37)

2.4 Supergravity fields

By integrating out the gauge fields and choosing the gauge σ = τ = 0, we obtain the
following line element and B-field:

ds2 = − ht
Σ0
dt2 +

hy
Σ0
dy2 +

(l3r4 + l4r3)

n5Σ0
dtdy

+ n5(dθ2 + dρ2) + n5
hφ
Σ0

sin2 θdφ2 + n5
hψ
Σ0

cos2 θdψ2

− 1

Σ0
[(l2r3 − l3r2)dt+ (l2r4 − l4r2)dy] sin2 θdφ

+
1

Σ0
[(l2r3 + l3r2)dt+ (l2r4 + l4r2)dy] cos2 θdψ ,

B =
(l3r4 − l4r3)

2n5Σ0
dt ∧ dy + n5

hφ
Σ0

cos2 θ dφ ∧ dψ

+
1

2Σ0
[(l2r3 + l3r2)dt+ (l2r4 + l4r2)dy] ∧ sin2 θdφ

− 1

2Σ0
[(l2r3 − l3r2)dt+ (l2r4 − l4r2)dy] ∧ cos2 θdψ ,

(2.38)
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where

ht = sinh2ρ − l2r2 cos2 θ +
1 + l2r2

2
− l3r3 + l4r4

2n5
,

hy = sinh2ρ − l2r2 cos2 θ +
1 + l2r2

2
+
l3r3 + l4r4

2n5
,

hφ = sinh2ρ +
1− l2r2

2
+
l3r3 − l4r4

2n5
,

hψ = sinh2ρ +
1 + l2r2

2
+
l3r3 − l4r4

2n5
.

(2.39)

A non-trivial dilaton Φ is generated as usual at one-loop level on the worldsheet. In
the null-gauging formalism, this arises from a change in the measure in the path integral
formulation. The most direct way to compute the dilaton is by considering the usual one-
loop beta function (equivalently the supergravity equations of motion). This fixes e2Φ to
be proportional to

e2Φ ∼ 1

Σ0
. (2.40)

The overall normalization of the dilaton can be fixed by matching to the NS5-brane
decoupling limit of known solutions; we shall discuss this in detail in Section 5. Nevertheless,
let us make some preliminary comments on this in order to highlight the physical meaning
of this constant. The simplest scenario corresponds to the solution sourced by a stack of
n5 coincident fivebranes, which is described by using the harmonic function

H5 = 1 +
n5

r2
, (2.41)

where r is a radial coordinate, and where the dilaton is given by e2Φ = g2
sH5. The fivebrane

decoupling limit corresponds to gs → 0 with fixed r/gs and fixed α′ [49] (recall that we
have set α′ = 1), which can be implemented via a scaling limit gs → ε, r → εr, with ε→ 0.
This brings the dilaton to the form

e2Φ =
n5

r2
. (2.42)

Here we could have kept a fiducial rescaled g̃s (i.e. gs = ε g̃s) as in [26, 27], but since
the asymptotic value of e2Φ is zero this has no precise physical meaning. Next, for an
array of n5 fivebranes in a circular, Zn5 symmetric configuration, the supergravity solution
sees a smeared source and the relevant harmonic function is based on the function Σ̃ =

r2 + a2 cos2 θ, where the scale a parametrises the radius of the circular array (see e.g. [26]
and references within). In this case we take a double scaling limit given by gs → 0 with
fixed r/gs, fixed a/gs and fixed α′ [42, 43], which can be implemented via a scaling limit
gs → ε, r → εr, a → εa with ε → 0. Changing variables to r = a sinh ρ in order to match
the notation used above, we have Σ̃ = a2(sinh2ρ + cos2 θ) ≡ a2Σ̃0. The harmonic function
in (2.41) is replaced by [26, 36, 41]

H5 = 1 +
n5

a2Σ̃0

, (2.43)
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so in the decoupling limit the dilaton takes the form

e2Φ =
n5

a2Σ̃0

. (2.44)

The backgrounds we consider will turn out to be generalisations of the circular array
of fivebranes, such that, as a general expectation, the normalisation constant for the expo-
nentiated dilaton in Eq. (2.40) should be proportional to the number of NS5 branes in the
geometry. When F1 charge is also present this gets divided by n1, giving a factor n5/n1 (or
∼ n5/np in the NS5-P frame). Furthermore, there should also be a factor in the denomi-
nator given by the square of a length scale characterising the distribution of the sources.
There will turn out be two lengthscales a1, a2 generalizing the scale a, and the decoupling
limit involves scaling gs → ε, r → εr, a1 → εa1, a2 → εa2 with ε → 0 [27]. At this point
however, we are working generally, so we do not yet know the details of the underlying
bound state of branes. We postpone the precise computation until Section 5.

Together with the constraints (2.28) on the li, ri parameters, the expressions for the
supergravity fields (2.38), (2.39), (2.40) describe the most general backgrounds that can
be obtained within the class of null-gauged models considered in this paper, under our
assumption l1 6= 0, r1 6= 0. Models in which l1 = 0 or r1 = 0 can easily be treated as a
special case and we shall not consider them further.

As mentioned above, it is known that these models include the JMaRT solutions and
their limits [26, 27]. In this paper we shall prove that these are in fact all consistent solutions
in this class of null-gauged models. Moreover, we will show that this conclusion can be
reached either from consistency of the worldsheet CFT or from asking that the supergravity
fields (2.38), (2.39), (2.40) are free of CTCs, horizonless and smooth up to physical sources
of string theory (in our cases, orbifold singularities or NS5-brane singularities).

3 Consistency of the worldsheet spectrum

In the previous section we introduced a class of null-gauged models from a classical point
of view. Here we discuss the corresponding worldsheet coset CFTs, focusing on the relevant
algebraic considerations and the associated spectrum. We start by briefly reviewing the
construction of superstring theory on AdS3 × S3 × T4 generated by n5 NS5 branes and
n1 fundamental strings. This is a pure NSNS background, which can be treated from the
worldsheet perspective as a WZW model based on the group manifold SL(2,R)×SU(2)×
U(1)4. Then, we introduce the novel ingredients of null-gauged models. We discuss how
the BRST charges are modified and under which conditions the resulting background is
supersymmetric. Finally, we derive a series of constraints leading to a consistent gauge-
invariant spectrum. Spectral flow considerations play a key role in the analysis below.

3.1 Brief review of superstrings in AdS3 × S3 × T4

The SL(2,R) WZW model was studied in detail in [33–35]. Here we will follow the notation
of [50]. The SL(2,R) currents satisfy the OPEs

ja(z)jb(w) ∼ ηabk/2

(z − w)2
+
fabcj

c(w)

z − w
(3.1)
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where k is the level of the affine algebra, while −2η33 = η+− = 2,f+−
3 = −2 and f3+

+ =

−f3−
− = 1. The energy-momentum tensor and the central charge follow from the Sugawara

construction and are given by

Tsl(z) =
1

k − 2
: −j3(z)j3(z) +

1

2

[
j+(z)j−(z) + j−(z)j+(z)

]
:, (3.2)

and
csl =

3k

k − 2
, (3.3)

respectively. Identical expressions hold for the anti-holomorphic sector.
The canonical spectrum of the model is built out of lowest- and highest-weight, and

continuous representations of the zero-mode algebra. A principal discrete series of lowest
weight is built out of the state |j, j〉, annihilated by j−0 by acting with j+

0 , thus spanning

D+
j =

〈
|j,m〉 , m = j, j + 1, j + 2, · · ·

〉
, (3.4)

where j3
0 |j,m〉 = m|j,m〉. This is a unitary representation for any j real and positive. The

corresponding conjugates D−j are highest-weight representations, defined analogously. For
consistency one must restrict to

1

2
< j <

k − 1

2
, (3.5)

as follows from L2(AdS3) normalisation conditions, no-ghost theorems and spectral flow
considerations to be discussed below. On the other hand, principal continuous series are

Cαj =
〈
|j,m, α〉 , 0 ≤ α < 1 , j =

1

2
+ is , s ∈ R , m = α, α± 1, α± 2, · · ·

〉
. (3.6)

All states in (3.4) and (3.6) give rise to primary fields with conformal weights given by

∆ = −j(j − 1)

k − 2
. (3.7)

A spectral flow automorphism of the current algebra is defined as

j±(z)→ j̃±(z) = z±wj±(z) , j3(z)→ j̃3(z) = j3(z)− kω

2
z−1, (3.8)

where the so-called spectral flow charge ω is an integer number. This induces, in turn, an
automorphism of the Virasoro algebra given by

Ln → L̃n = Ln + ωj3
n −

k

4
ω2δn,0, (3.9)

where Ln denotes the modes of (3.2). Analogous formulas hold for the anti-holomorphic
sector. We work with the universal cover of SL(2,R), which further imposes that the left
and right spectral flows must be equal, namely ω̄ = ω.

As it was shown in [33], the action of (3.8) on the canonical affine representations
discussed above defines, in general, inequivalent representations that must be considered
in order to generate a consistent spectrum. An exception occurs, however, given that the
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module obtained by flowing the affine representation D+
j in ω units is identical to that

obtained by flowing D−k/2−j in ω − 1 units. The spectrum is thus constructed solely upon
lowest-weight representations with j restricted to the range (3.5).

Spectrally flowed primary states are not affine primaries. They are, however, Virasoro
primaries with weight

∆ = −j(j − 1)

k − 2
−mω − k

4
ω2, (3.10)

as follows from (3.9).

The supersymmetric affine ̂sl(2,R)n5
algebra is generated by the supercurrents ψa+θJa,

where θ is a formal Grassmann variable. The currents Ja satisfy (3.1) with level n5, and
the OPEs involving the fermions are

Ja(z)ψb(w) ∼
fabcψ

c(w)

(z − w)
, (3.11)

ψa(z)ψb(w) ∼
n5
2 ηab

(z − w)
. (3.12)

One can split the Ja currents into two independent contributions as

Ja = ja − 1

n5
fabcψ

bψc. (3.13)

The bosonic currents ja generate an ̂sl(2,R)k algebra with level k = n5 + 2, commuting
with the free fermion system. In the fermionic sector, the spectral flow automorphisms are
given by

ψ±(z)→ ψ̃±(z) = z±ωψ±(z) , ψ3(z)→ ψ̃3(z) = ψ3(z) (3.14)

while the corresponding maps for the Ja and ja currents are as in (3.8) with the respective
levels.

The bosonic WZW model based on the SU(2) group manifold was studied in [51, 52].
The generators of the current algebra will be denoted ka, and for most quantities we use
primes to distinguish them from their SL(2,R) counterparts. They satisfy the OPEs

ka(z)kb(w) ∼ δabk′/2

(z − w)2
+
f ′abck

c(w)

z − w
, (3.15)

where k′ is the level of the affine Lie algebra, δab is the Killing form and f ′abc are the
corresponding structure constants, namely 2δ33 = δ+− = 2, f ′+−3 = 2, f ′3+

+ = −f ′3−− = 1.
The energy momentum tensor is

Tsu(z) =
1

k′ + 2
: k3(z)k3(z) +

1

2

[
k+(z)k−(z) + k−(z)k+(z)

]
: . (3.16)

This gives the central charge

csu =
3k′

k′ + 2
. (3.17)
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The unitary representations of the zero-mode algebra upon which the SU(2)k′ WZW spec-
trum is constructed are labelled by

j′ ∈ Z/2 , 0 ≤ j′ ≤ k′/2, (3.18)

and they are spanned by

|j′,m′〉 , m′ = −j′,−j′ + 1, . . . , j′ − 1, j′, (3.19)

where m′ is the eigenvalue of k3
0. The associated primary fields have weights

∆′ =
j′(j′ + 1)

k + 2
. (3.20)

Unlike in the SL(2,R) case, for the SU(2) WZW model spectral flow is not necessary
for constructing a consistent spectrum due to the compactness of the underlying manifold.
Indeed, the spectral flow automorphisms merely reshuffle primary and descendant fields,
and they do not introduce new inequivalent representations. Nevertheless, for superstring
theory applications (and in the context of the null-gauged models in particular) it is of
practical use to include it in the discussion3 [27, 29, 36, 37]. In the SU(2)k′ context,
spectral flow is defined as

k±(z)→ k̃±(z) = z∓w
′
k±(z) , k(z)3 → k̃3(z) = k3(z)− k′ω′

2
z−1. (3.21)

The associated shift of the Virasoro modes is

Ln → L̃n = Ln − ω′k3
n +

k′

4
ω′2δn,0. (3.22)

Similar expressions hold for the anti-holomorphic sector. In this case, however, it is possible
to have ω̄′ 6= ω′. As before, spectrally flowed primary fields are Virasoro primaries of weight

∆′ =
j′(j′ + 1)

k′ − 2
+m′ω′ +

k′

4
ω′2 , (3.23)

however they are not affine primaries.

As for the SL(2,R) case, the supersymmetric SU(2)n5 generators are given by χa+θKa,
where the currents Ka satisfy (3.15) with the same level n5, while the rest of the OPEs
take the form

Ka(z)χb(w) ∼
f ′abcχ

c(w)

(z − w)
, (3.24)

χa(z)χb(w) ∼
n5
2 δab

(z − w)
. (3.25)

As before, it is convenient to define

Ka = ka − 1

n5
f ′abcχ

bχc, (3.26)

3For instance, SU(2) spectral flow is a convenient way to describe specific combinations of excitations
such as giant gravitons.
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where now the bosonic currents ka generate an ŝu(2)k′ algebra with level k′ = n5 − 2. The
spectrally flowed fermionic modes are analogous to the SL(2,R) case, i.e.

χ±(z)→ χ̃±(z) = z∓wχ±(z) , χ3(z)→ χ̃3(z) = χ3(z). (3.27)

We can now describe the worldsheet theory for superstrings on AdS3 × S3 × T4. The
energy momentum tensor T and supercurrent G of the full WZW model are given by

T =
1

n5
(jaja − ψa∂ψa + kaka − χa∂χa) +

1

2

(
∂Y i∂Yi − λi∂λj

)
, (3.28)

G =
2

n5

(
ψaja −

1

3n5
fabcψ

aψbψc + χaka −
1

3n5
f ′abcχ

aχbχc
)

+ λi∂Yi, (3.29)

where the flat compact directions are treated as usual by including four canonically nor-
malized free bosons Y i and their fermionic partners λi (i = 6, . . . , 9). The (matter) central
charge is

c =
3(n5 + 2)

n5
+

3

2
+

3(n5 − 2)

n5
+

3

2
+ 6 = 15. (3.30)

In the superstring model this is cancelled out by the contribution coming from the usual bc
and βγ ghost systems. The corresponding BRST charge is given by

Q =

∮
dz : c (T + Tβγ)− γ G+ c(∂c)b− 1

4
bγ2 :, (3.31)

where Tβγ is the energy-momentum tensor of the βγ system.
It is useful to bosonize the latter as

β = e−ϕ∂ξ , γ = ηeϕ, (3.32)

where ϕ is a canonically normalized scalar with background charge 2, and ξ(z)η(w) ∼
(z−w)−1. The rest of the fermions are dealt with similarly by introducing (c.f. [29, 31, 53])
the canonically normalized bosonic fields HI with I = 1, . . . 5 as

i∂H1 = − 2i

n5
ψ1ψ2 =

1

n5
ψ+ψ− , i∂H2 = − 2i

n5
χ1χ2 =

1

n5
χ+χ− ,

i∂H3 =
2

n5
ψ3χ3 , i∂H4 = iλ6λ7 , i∂H5 = iλ8λ9 , (3.33)

where H†I = HI for I 6= 3 and H†3 = −H3. In terms of these, the space-time supercharges
read [31]:

Qε =

∮
dz e−ϕ/2Sε , Sε = exp

(
i

2

5∑
I=1

εIHI

)
, (3.34)

where Sε are the spin fields and εI = ±1. One can show that BRST invariance and mutual
locality of the supercharges respectively impose the conditions

3∏
I=1

εI =

5∏
I=1

εI = 1. (3.35)
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The eight possible sign choices then define the supercharges of the N = 4 superconformal
spacetime algebra.

Notice that, according to Eqs. (3.14) and (3.27), the respective spectral flow operations
in SL(2,R) and SU(2) act on fermion fields as

ψ̃± = ψ±e−iωH1 , χ̃± = χ±eiω
′H2 , (3.36)

while the rest of the fermions remain unchanged.

We now discuss the physical states, focusing on the NSNS sector. We briefly review the
differences between discrete and continuous representations, and also the consequences of
including spectral flow. The unflowed sector was discussed in [54]. Here, the ground state
is tachyonic as it does not survive the GSO projection. On the other hand, for states with
one fermionic excitation one combines bosonic primaries and free fermions into spin j ± 1

and j′±1 representations of the supersymmetric currents. The Virasoro condition for these
states reads

1

2
+

1

2
− j(j − 1)

n5
+
j′(j′ + 1)

n5
= 1, (3.37)

which is solved by setting j′ = j − 1, so that one is restricted to deal with the discrete
representations. By identifying the space-time theory weight and charge, one recognises
chiral multiplets of the holographic CFT.

Spectrally flowed states were constructed for instance in Refs. [55, 56] for generic AdS3×
N models, and also in [37, 57] in the present context. In the supersymmetric theory, the
SL(2,R) contribution to the conformal weight of a spectrally flowed primary takes the form

∆ = −j(j − 1)

n5
−mω − n5

4
ω2. (3.38)

This is indeed the case once the extra factor eiωH1 associated with the shift of the fermionic
modes in (3.14) is included (see Eq. (3.36)). More precisely, the spectral flow operator is
given by

exp

(
−iωH1 + ω

√
n5 + 2

2
φ

)
, (3.39)

where φ bosonizes the current j3. By flowing primaries with no excitations in this way,
we obtain states that are actually consistent with GSO for odd values of ω, and the corre-
sponding Virasoro condition becomes

1

2
− j(j − 1)

n5
−mω − n5

4
ω2 +

j′(j′ + 1)

n5
= 1, (3.40)

while for singly excited states we need ω to be even, and also to add an extra 1/2 on the
LHS of the previous equation. When the unflowed bosonic SL(2,R) primary belongs to the
continuous representation, we have j = 1

2 + is with s ∈ R such that −j(j − 1) = 1
4 + s2,

hence we use (3.40) to solve for m (with s and j′ fixed). The vertex operators obtained in
this way constitute the long string sector, which was recently interpreted in [57] in terms of
a Liouville factor included in the seed theory of the symmetric orbifold holographic CFT.
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In the discrete case,m can only take values ±(j+n) with n ∈ N0, and, as a consequence,
the modified Virasoro condition becomes difficult to solve in general. A simple way out is
to further include spectral flow in the SU(2) sector, generating additional terms as in (3.23)
(again with n5) which can be used to cancel the extra SL(2,R) contributions if ω′ = ω.
More precisely, we use a spectral flow operator of the form

exp

(
−iωH1 + ω

√
n5 + 2

2
φ+ iωH2 + iω

√
n5 − 2

2
φ′

)
, (3.41)

which, moreover, is mutually local with the supercharges (3.34), ensuring that flowed excited
states will also survive the GSO projection. Instead of (3.40), the Virasoro condition for
such spectrally flowed states becomes

1

2
+

1

2
− j(j − 1)

n5
−mω − n5

4
ω2 +

j′(j′ + 1)

n5
+m′ω +

n5

4
ω2 = 1. (3.42)

Once again, we impose j′ = j − 1 and are thus left with the condition m = m′. This is a
highly restrictive condition that only specific highest/lowest-weight operators satisfy. We
also note that the associated values for m and m′ ensure that these flowed states are BRST
invariant [37]. Furthermore, they correspond to additional chiral states of the holographic
CFT.

Of course, at the beginning of the discussion leading to (3.41) we could have chosen
to work with opposite spectral flows on the SU(2) sector, i.e. ω′ = −ω. This alternative
spectral flow operator would lead to m′ = −m instead. As was discussed in [55, 56], this is
purely conventional: the set of operators obtained in this way is equivalent to the one we
have described above.

We note in passing that the requirement of introducing spectral flow in SU(2) has been
recently highlighted in the context of the tensionless string in AdS3 [58]. This corresponds
to the n5 = 1 case, where the usual RNS formalism fails since the level of the bosonic
SU(2) factor k′ = n5 − 2 would be negative. The hybrid formalism used in [58] makes
use of the WZW model for the supergroup PSU(1, 1|2), whose maximal bosonic subgroup
is SL(2,R) × SU(2). In this context, the spectral flow operation is naturally carried out
simultaneously on both factors with identical charges as in (3.41).

Finally, let us recall that all the above considerations concerning the spectrum were
circumscribed to the holomorphic sector. Similar arguments hold for the antiholomorphic
sector as well, thus imposing ω̄′ = ω′ = ω. Consequently, the AdS3×S3×T4 spectrum only
contains states which have the same left and right SU(2) spectral flow charge. However,
we stress that this constraint will be relaxed for the null-gauged models analysed in the
following sections. Indeed, the need for including operators with ω̄′ 6= ω′ was instrumental
in the particular case of NS5 branes on the Coulomb branch studied in [36] (see also [29]).

3.2 Superstring Theory in null-gauged models

We now proceed to analyse the class of gauged WZW models introduced in Section 2. In
this section we work directly at the level of the coset CFT. We will see that a number of
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consistency conditions can be derived, which restrict the possible values of the parameters
li, ri that define the embedding of the abelian subgroups being gauged.

As advertised above, the transformations we gauge are chiral and correspond to g →
hL g h

−1
R , where g ∈ G = SL(2,R) × SU(2) × Rt × U(1)y and hL(R) ∈ HL(R) = U(1)L(R).

Keeping the notation general, we have seen that introducing two independent gauge fields
A, Ā transforming as

A → hLAh−1
L + ∂hLh

−1
L , Ā → hRĀh−1

R + ∂̄hRh
−1
R (3.43)

leads to the gauge-invariant action [59]

S[g,A, Ā] = SWZW(g) +
k

π

∫
d2z Tr

[
Ag−1∂̄g − Ā∂gg−1 − g−1ĀgA

]
. (3.44)

By parametrising the gauge fields as

A = ∂HLH
−1
L , Ā = ∂̄HRH

−1
R , (HL → hLHL , HR → hRHR) (3.45)

and making use of the Polyakov-Wiegmann identity

SWZW(ab) = SWZW(a) + SWZW(b) + sgn(κ)
k

π

∫
d2z Tr

[
a−1∂̄a∂bb−1

]
, (3.46)

we can rewrite the gauged action as

S[g,A, Ā] = SWZW

(
H−1
L gHR

)
− SWZW

(
H−1
L

)
− SWZW (HR) . (3.47)

A crucial simplification occurs when the currents being gauged are null. In this case we
have SWZW

(
H−1
L

)
= SWZW (HR) = 0. Moreover, the Jacobian associated to the change of

variables in Eq. (3.45) can be seen to trivialise for the same reason, except for the appearance
of the usual b̃c̃ system [59]. Finally, one can change variables from g to the gauge-invariant
G-valued quantity g̃ = H−1

L gHR. As a result, the path integral of the gauged theory is
simply interpreted as that of the original upstairs WZW model on G combined with the
ghost contributions. The same holds for the supersymmetric case.

The consequences of the presence of the ghosts signalling the null gaugings can be
understood intuitively as follows. Upon quantisation, we find that, on top of the usual
string theory contributions to the BRST charges Q and Q̄, it becomes necessary to include
new chiral terms of the (schematic) form∮

dz : c̃ J : ,

∮
dz : ¯̃c J̄ : , (3.48)

together with their fermionic counterparts. This ensures that, under the gauging procedure
outlined above, the spectrum of the coset model is built simply out of the vertex operators
of the upstairs theory that are BRST-closed. In other words, physical operators must be
gauge invariant.

We can now make this construction explicit for the models under consideration. These
include black hole microstate solutions with up to three charges, and we view them in the
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NS5-F1-P duality frame, where the relevant fields are the metric, the B-field and the dilaton.
The corresponding geometries were described in Section 2. We know from [26] that these
models include both BPS and non-BPS black hole microstates. Given that all the necessary
ingredients belong to the NSNS sector we expect to have a well-defined solvable worldsheet
model describing strings propagating in these backgrounds. Indeed, as shown in [26, 27]
and reviewed in Section 2 above, the worldsheet theory associated to the propagation of
strings in this context corresponds to a coset CFT of the form

SL(2,R)× SU(2)× Rt × U(1)y
U(1)L × U(1)R

× U(1)4 . (3.49)

Let us first characterise the upstairs twelve-dimensional model. Here we simply add the
extra time direction t and spatial circle y to the matter content employed in the previous
section, together with the corresponding fermionic partners λt and λy. The latter are
bosonized as i∂H6 = λtλy, with H†6 = −H6. They give additional free field contributions
to the matter T and G in (3.28) and (3.29). The null current operators being gauged are
then

J = iJ = J3 + l2K
3 + l3Pt + l4Py,L ,

J̄ = iJ̄ = J̄3 + r2K̄
3 + r3Pt + r4Py,R ,

(3.50)

where Pt = i∂t , Py,L = i∂y , and Py,R = i∂̄y. Together with the extra coordinates we
also include the additional set of ghosts mentioned above, together with their fermionic
partners. Note that it is necessary to take h[c̃] = 0 and h[γ̃] = 1/2, such that the central
charges cb̃c̃ = −2 and cβ̃γ̃ = −1 cancel the additional matter contribution cty = 3. This
also implies that the bosonization

β̃ = e−ϕ̃∂ξ̃ , γ̃ = η̃ eϕ̃ (3.51)

yields a canonically normalized scalar ϕ̃ with no background charge. Consequently, we can
work with ϕ̃-independent vertex operators in the NSNS sector. On the other hand, the
definition of the spin fields and the would-be spacetime supercharges is modified to [29]

Qε =

∮
dz e−(ϕ−ϕ̃)/2Sε , Sε = exp

(
i

2

6∑
I=1

εIHI

)
, (3.52)

where the contributions to the conformal dimension of the integrand in Qε from the ϕ̃
and H6 exponentials cancel exactly. Note that the mutual locality condition now reads∏6
I=1 εI = 1. An analogous formula defines the anti-holomorphic counterpart Q̄ε.
As stressed above, the present procedure can lead to both BPS and non-BPS back-

grounds. This depends on whether the charges Qε turn out to be BRST invariant or not,
according to the precise current we choose to gauge. The left-handed BRST charge takes
the form

Q =

∮
dz :

[
c
(
T + Tβγβ̃γ̃

)
+ γG+ c̃J + γ̃λ + ghosts

]
: , (3.53)
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and similarly for the right-handed one. Here λ and λ̄ are the superpartners of the currents
in Eq. (3.50), that is

λ = ψ3 + l2χ
3 + l3λ

t + l4λ
y , λ̄ = ψ̄3 + r2χ̄

3 + r3λ̄
t + r4λ̄

y. (3.54)

This ensures that only operators satisfying the usual Virasoro and γG-invariance conditions
that are also uncharged under the bosonic currents J, J̄ and annihilated by γ̃λ and ¯̃γλ̄

are physical. In particular, by using the γG-invariance condition ε1ε2ε3 = −1, the Qε
supercharges survive the gauging if and only if [29]

ε1 + ε2l2 = 0 , l4 + ε6 l3 = 0, (3.55)

where the former constraint comes from the bosonic current and the latter arises from the
fermionic one. Actually, only one of these two restrictions is independent due to the null
condition (2.28). Analogously, for the antiholomorphic supercharges one has

ε1 + ε2r2 = 0 , r4 + ε6 r3 = 0, (3.56)

For instance, the cases with (4, 4) and (4, 0) spacetime supersymmetry were considered
recently in [29, App. B]. In the present work we focus mainly on the more general non-
supersymmetric case, in which there is no solution to this set of constraints since l2 6= ±1

and r2 6= ±1.
We pause here to stress that we start from a (10+2)-dimensional model where all op-

erators are taken to be mutually local. This includes the charges Qε, Q̄ε. In particular,
this amounts to imposing the analogue of the GSO projection in the upstairs theory. Con-
sequently, there are no tachyons in the resulting spectrum, nor in that of the coset model
[27, 29]. Indeed, even if no supersymmetry is preserved, the supergravity solutions we are
dealing with are expected to be classically stable. Note that this is consistent with the fact
that we only recover the fivebrane decoupling limit of JMaRT geometries, where there is no
ergoregion [27]. The full solutions with flat asymptotics do exhibit the well-known ergore-
gion instability [14, 60], interpreted as an enhanced version of Hawking radiation [23–25].

3.3 Physical spectrum and consistency conditions

We now consider the physical states in the null-gauged theory. These are given in terms of
vertex operators of the upstairs model that are BRST invariant as defined by the charge
(3.53) and its anti-holomorphic counterpart.

The lightest physical states (with no winding) are given by unflowed operators with a
single fermionic excitation. All such operators must satisfy the Virasoro condition

0 = −j(j − 1)

n5
+
j′(j′ + 1)

n5
− 1

4
E2 +

1

4
P 2
y . (3.57)

These are automatically invariant under the action of λ in (3.54), so that they are BRST-
invariant iff the following null-gauging4 constraints hold:

0 = m+ l2m
′ +

l3
2
E +

l4
2
Py , 0 = m̄+ r2 m̄

′ +
r3

2
E +

r4

2
Py . (3.58)

4The factors of 2 in the free field terms of Eqs. (3.57) and (3.58) arise from the OPEs ∂t(z)∂t(0) ∼ − 1
2

1
z2
,

∂y(z)∂y(0) ∼ 1
2

1
z2

(recall that we work with α′ = 1).
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The simplest states of this sort are the 6D scalars, whose spectrum was shown to coin-
cide with that of minimally coupled massless scalar perturbations on top of the JMaRT
geometries in [27]. There are also the extremal-weight states, which for E = Py = 0 are
half-BPS and were studied in [29] in the context of supertubes. Note that operators with
T4 polarisations can also give BPS states in specific models with non-trivial twisted sectors
[54].

On the other hand, operators with more general projections need to be combined with
polarisations on the extra directions t and y in order to achieve BRST-invariance. The
corresponding coefficients are determined by invariance under λ together with transversality
in the t, y directions. The anti-holomorphic variables must satisfy analogous conditions as
well, together with the gauge invariance conditions (3.58). Consequently, these constraints
restrict the possible polarisations to those expected in the (9+1)-dimensional setting.

Let us now consider spectrally flowed states. A particularly simple case corresponds
to the circular array of fivebranes on the Coulomb branch, which is obtained by choosing
l1 = l2 = r1 = −r2 = 1 and l3 = l4 = r3 = r4 = 0 [26, 36]. From the worldsheet
point of view, this null-gauged model is analogous to the cigar construction used in [42, 43]
provided we replace the extra circle by an S3 and take Jy → K3. Thus, as in that example,
introducing spectral flow with ω = ω′ = ω̄′ does not produce new physical states since it
merely amounts to a large gauge transformation. In a more general context, however, this
is not true anymore, and spectrally flowed sectors contribute non-trivially to the spectrum.
At this point, we also allow for both momentum ny and winding ωy on S1

y, and use the
shorthands

Py,L/R =

(
ny
Ry
± ωyRy

)
, ny, ωy ∈ Z. (3.59)

For generic states with spectral flow charges ω on SL(2,R), (ω′, ω̄′) on SU(2), and winding
ωy on S1

y, the null-gauge constraints (3.58) read

0 = m+
n5

2
ω + l2

(
m′ +

n5

2
ω′
)

+
l3
2
E +

l4
2
Py,L , (3.60a)

0 = m̄+
n5

2
ω + r2

(
m̄′ +

n5

2
ω̄′
)

+
r3

2
E +

r4

2
Py,R, (3.60b)

while the Virasoro constraints take the form

1

2
=
j′(j′ + 1)− j(j − 1)

n5
−mω +m′ω′ +

n5

4

(
ω

′2 − ω2
)
− 1

4

(
E2 − P 2

y,L

)
+N , (3.61a)

1

2
=
j′(j′ + 1)− j(j − 1)

n5
− m̄ω + m̄′ω̄′ +

n5

4

(
ω̄

′2 − ω2
)
− 1

4

(
E2 − P 2

y,R

)
+ N̄. (3.61b)

Here N and N̄ are the excitation numbers, and we have restricted to unflowed states with
no fermion excitations for simplicity.

The discussion so far does not characterise the physical spectrum in a unique way: there
is a residual discrete gauge orbit connecting equivalent representatives of the same physical
state. This fact was noticed in [27], so let us first recall the observations made in that work
before making a set of generalisations. First, spectral flow in the null direction corresponding
to the gauge current is gauge-trivial. Second, the non-compactness of Rt means that there

– 22 –



cannot be independent left and right gauge spectral flow transformations, since these would
shift the zero mode of t differently. Therefore, globally we work with the universal cover of
SL(2,R), in which the left and right spectral flow parameters are constrained to be equal,
ω = ω̄. Moreover, globally we gauge R × U(1), a (1+1)-dimensional cylinder composed
of one compact spacelike direction and one non-compact timelike direction. The gauged
model then has a single non-compact timelike direction.5 Third, the non-compactness of
the time coordinate t moreover imposes

l3 = r3 , (3.62)

or, in terms of the original gauging parameters, l3/l1 = r3/r1. We will re-derive the condition
l3 = r3 from an independent point of view in the following section by imposing smoothness,
absence of horizons, and absence of CTCs in the corresponding geometry.

We now make a more general analysis of this phenomenon in the general models defined
in the previous section. Let us stress that the analysis of such gauge orbits is not simply
about the counting of states. Indeed, being able to identify gauge-equivalent operators in
terms of the quantum numbers of the WZW model is necessary for building a consistent
theory, and we will show that it further constrains the allowed values for the gauging
parameters li, ri.

Given a physical state, let us seek spectral flow transformations that result in the same
operator. By subtracting the two equations in (3.61) we find

0 = ω(m̄−m) +m′ω′ − m̄′ω̄′ + n5

4
(ω

′2 − ω̄′2) + nyωy +N − N̄, (3.63)

which plays the role of the level-matching condition in this context. In order to find solutions
of Eq. (3.63), (ω

′2 − ω̄′2) must be a multiple of 4, so ω′ ± ω̄′ must be even. Note that this
preserves the statistics of the SU(2) part of the state.

Let us consider a shift of the form6

ω → ω + q , q ∈ Z . (3.64)

We shall show that this can be compensated at the level of the null-gauge constraints
(3.60) without altering the weights (3.61) by shifting the remaining quantum numbers
appropriately. We begin with a general shift and show that only the shift in the null gauge
direction achieves this. We allow for arbitrary multiples of q to shift ω′, ω̄′, E, ny and ωy
as well, namely

(ω′, ω̄′, E, Py,L, Py,R)→ (ω′ − a2q, ω̄
′ − b2q, E + a3q, Py,L − a4q, Py,R − b4q). (3.65)

5By contrast, in related models that do not include the Rt factor in the upstairs model, the single cover
of SL(2,R) has been considered [36].

6As in Section 3.1, here we include both the bosonic and the free fermion spectral flows, so that the
shifted charges and weights are written in terms of the supersymmetric level n5 as opposed to the bosonic
levels k = n5 + 2 and k′ = n5 − 2.
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For the weights (3.61) and gauge constraint (3.60) to remain unchanged for arbitrary q, we
must have

0 = m+
n5

2
ω + a2

(
m′ +

n5

2
ω′
)

+
a3

2
E +

a4

2
Py,L,

0 = n5(1− a2
2) + a2

3 − a2
4, (3.66)

0 = n5(1− l2a2) + l3a3 − l4a4,

and the same with a2,4 → b2,4, l2,4 → r2,4, m′ → m̄′, ω′ → ω̄′ and Py,L → Py,R. To satisfy
the first of these three conditions for general states without over-restricting the spectrum,
we must set ai = li and bi = ri. Indeed, in this case the first condition becomes (3.60),
while the last two conditions both reduce to (2.30). The compensating shifts then take the
form

ω′ → ω′ − l2 q , ω̄′ → ω̄′ − r2 q, (3.67)

for the left and right SU(2) spectral flow charges, respectively,

E → E + l3 q = E + r3 q, (3.68)

for the energy, and

ny → ny −
Ry
2

(l4 + r4) q , ωy → ωy −
1

2Ry
(l4 − r4) q, (3.69)

for the S1
y quantum numbers.

For Eqs. (3.64) and (3.67)–(3.69) to make sense in terms of integer spectral flows and
momentum/winding numbers, the gauging parameters must be quantised in a specific way.
On the one hand, taking into account that, as argued above, ω′ ± ω̄′ must be even, for
the SU(2) sector we find l2 ± r2 ∈ 2Z. We can thus write as a first pass (to be refined
momentarily)

l2 = m + n , r2 = −(m− n) , m, n ∈ Z , (3.70)

where the signs are chosen for later convenience. Furthermore, recall that in the SL(2,R)

and SU(2) sectors the spectral flow operations do not act solely on the bosonic sub-algebras.
Indeed, they also shift the fermionic modes as in Eqs. (3.14) and (3.27). At the level of
the vertex operators, this is accounted for by including the H1,2 exponentials introduced in
(3.36), which were taken into account for computing the weights (3.61). However, if as in
the computation above we start from an unflowed state with no fermionic excitations, and
use the shifts (3.64) and (3.67) with, say, q = 1 (or any other odd value), the presence of
these exponentials also indicates that the fermion numbers on the left- and right-handed
components will not be preserved for arbitrary values of m ± n. Thus, we see that it is
necessary to make Eq. (3.70) more precise by restricting to

l2 = m + n ∈ 2Z + 1 , r2 = −(m− n) ∈ 2Z + 1 , m, n ∈ Z . (3.71)

On the other hand, from (3.69) we also must have

1

2Ry
(r4 − l4) = k ∈ Z ,

Ry
2

(l4 + r4) = p ∈ Z , (3.72)
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or equivalently
l4 = −

(
kRy −

p

Ry

)
, r4 = kRy +

p

Ry
. (3.73)

By plugging the expressions (3.71) and (3.73) into the null constraints (2.28), we now solve
for l3, r3 and p. Firstly, we obtain

l3 = r3 = −

√
k2R2

y +
p2

R2
y

+ n5 (m2 + n2 − 1), (3.74)

where we have chosen the negative square root for l3, r3, so that we gauge away the difference
of the upstairs time directions. This fixes the energy shift (3.68) in terms of k,m, n, p. More
interestingly, we also get

k p = n5 mn, (3.75)

which shows that only three of the integers k,m, n, p are actually independent. Moreover,
either k or p (or both) must be even.

We will show below that the integers m and n introduced above control the angular
momenta of the classical configuration along the S3 coordinates φ and ψ, respectively. We
will further argue in the following that the absolute value of the integer k is to be interpreted
as an orbifold parameter. The meaning of the remaining integer p is slightly complicated
to interpret in classical terms. This is due to its stringy nature, and it can be understood
either holographically or in terms of T-duality, as follows.

For k 6= 0, from (3.75) we find that p is n5 times the momentum per strand mn/k in the
holographic description of JMaRT states, as noted in [27]. This must be an integer since the
holographic CFT is a symmetric product orbifold theory (see the discussions in [13, 14]).
On the other hand, it is well known that the worldsheet theory is invariant under T-duality
along a circular direction. In the language of gauged WZW models, T-dual models arise
due to the equivalence of vector and axial gaugings. In the present context, T-duality along
y amounts to l4 → −l4. Together with the usual radius redefinition Ry → 1/Ry, this
exchanges the role of the integers k and p. Thus, depending on the choice of duality frame,
either k or p are interpreted as an orbifold parameter, while the remaining integer is fixed
in terms of n5, m and n, and it controls the momentum charge.

While on the subject of the T-duality, let us also observe that (3.73) has special features
at the self-dual radius, which in α′ = 1 units is at Ry = 1. For instance, the expressions
of the gauging parameters l4, r4 corresponding to the U(1)y component resemble those of
their SU(2) counterparts l2, r2. In addition, we see that it becomes possible to set either
l4 or r4 to zero while keeping the other one non-trivial, which is not possible for generic
values of Ry. Since the self-dual radius is associated with the appearance of new massless
states (in the upstairs theory), this might lead to new solutions. We leave a more detailed
exploration of such configurations for future work.

Note that the values of the gauging parameters (3.71)–(3.74) imply that

Σ0 (ρ = 0, θ = 0) =
1− l2r2

2
+
l3r3 − l4r4

n5
= m2 +

k2R2
y

n5
,

Σ0

(
ρ = 0, θ =

π

2

)
=

1 + l2r2

2
+
l3r3 − l4r4

n5
= n2 +

k2R2
y

n5
.

(3.76)
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The combinations in (3.76) correspond to the minimal values of the quantity Σ0 appearing
in the denominator of various components of the supergravity fields (2.38). We have just
shown that the consistency conditions of the spectrum imply that they are both non-
negative quantities. This will be important when studying the corresponding geometry in
the following section.

Let us summarise our results so far. Starting with a class of generic null gauged models,
the gauged currents are defined in terms of eight parameters, namely li, ri, i = 1, 2, 3, 4.
Since only the direction of the gauging matters, the overall scale becomes irrelevant. This
means that we can work directly with the six ratios li, ri. These must satisfy the two null
conditions (2.30) and also l3 = r3 from the non-compactness of t. Finally, by focusing on
the worldsheet CFT and relating the action of spectral flow in SL(2,R) to that of the gauge
orbits, we have shown that the theory is consistent only if the remaining three parameters
can be written in terms of three integers (in addition to Ry), which we can take to be m, n

and k (when k 6= 0). Moreover, these must be chosen so that p = n5mn/k is also integer-
valued. It is possible that the quantization conditions on k,m, n, p could alternatively be
obtained by analyzing the global consistency of the gauging, see e.g. [61–65]. In the next
section we will instead proceed to analyze the global geometry of the gauged target space.

The set of conditions (3.71)–(3.74) is one of the main results of this paper. It will allow
us to rewrite the general supergravity fields in Eqs. (2.38)–(2.40) in a simple way, making
their main physical features and some of their symmetries manifest. Furthermore, this will
lead to a complete characterisation of the full set of consistent solutions.

4 Analysis of the supergravity backgrounds

In the previous section we have shown that the gauging parameters li, ri, i = 1, 2, 3 can be
defined in terms of k,m, n, p, all of which are integers that have a clear physics meaning. We
now perform an independent supergravity analysis of the metrics introduced in Eq. (2.38),
and show that imposing smoothness and absence of closed timelike curves provides an
alternative derivation and complementary interpretation of the constraints (3.71)–(3.74).

4.1 Eliminating potential closed timelike curves

To investigate potential closed timelike curves we complete the squares successively in the
periodic variables ψ, φ and y, to rewrite the line element (2.38). We obtain

ds2 =− T (ρ)dt2 + Y (ρ) [dy +Ay(ρ; dt)]2 + n5(dρ2 + dθ2)+

+ n5 sin2 θ
hφ
Σ0

[dφ+Aφ(ρ; dt, dy)]2 + n5 cos2 θ
hψ
Σ0

[dψ +Aψ(ρ; dt, dy)]2 , (4.1)

where the functions Σ0, hφ and hψ were defined in (2.36) and (2.39) respectively, Ay,
Aψ, and Aφ are one-forms depending only on the radial variable ρ and with legs in the
appropriate arguments, while T (ρ) will turn out to be a non-negative function whose explicit
expression we will not need. In order to ensure the absence of CTCs we must require the
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functions multiplying the squares in the periodic variables to be non-negative, i.e.

hφ
Σ0
≥ 0 ,

hψ
Σ0
≥ 0 , Y (ρ) ≥ 0. (4.2)

We now show that asking for the inequalities (4.2) to hold everywhere in geometry is
equivalent to imposing

l3 = r3. (4.3)

Let us first see that (4.2) implies (4.3). By combining the first two inequalities we find that
the product hφhψ is non-negative. On the other hand, the explicit expression of Y (ρ; li, ri)

reads

Y (ρ) =
4 sinh2 ρ

(
n5 cosh2 ρ+ l3r3

)
+ (n5 + l3r3)2 − (n5l

2
2 + l24)(n5r

2
2 + r2

4)

4n2
5hφhψ

=
4n5 sinh2 ρ

(
n5 cosh2 ρ+ l3r3

)
− (l3 − r3)2

4n5hφhψ
, (4.4)

where in the second line we have used (2.30). It follows from this last expression that the
third inequality in (4.2) can only be satisfied at the origin ρ = 0 if l3 = r3.

It remains to be seen that the implication holds in the other direction as well. For this,
we note that the minimal value of Σ0 is given by

Σmin
0 =

1

2n5

[
n5(1− |l2r2|) + l3r3 − l4r4

]
. (4.5)

Using l3 = r3 we can rewrite the null conditions (2.30) as

n5

(
l22 − r2

2

)
+ r2

4 − l24 = 0 , l23 + r2
3 = 2l23 = l24 + r2

4 + n5

(
l22 + r2

2 − 2
)
, (4.6)

so that
2
[
n5(1± l2r2) + l3r3 − l4r4

]
= n5(l2 ± r2)2 + (l4 − r4)2 . (4.7)

It follows that Σ0 ≥ 0 everywhere. Given that hφ = Σ0(ρ, θ = 0) and hψ = Σ0(ρ, θ = π/2),
the same holds for these functions and the first two inequalities in (4.2) are thus satisfied.
The third one also holds, as can be checked from (4.4).

This proves that in the asymptotically linear dilaton geometry the necessary and suf-
ficient condition for avoiding CTCs is precisely l3 = r3, Eq. (4.3). This constraint was
also obtained in the worldsheet analysis of Section 3 from the non-compactness of the t
direction, Eq. (3.62). Moreover, once this is imposed we find that, as advertised above,
T (ρ) is non-negative.

4.2 Absence of horizons

Here and in the following subsection we perform an analysis which closely follows that of
[12]. The determinant of the metric (2.38) reads

det g = −
(
n2

5 sin(2θ) sinh(2ρ)

4Σ0

)2

, (4.8)
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where we have used the null-gauge constraints (2.30). Besides the usual zeros at the poles
of the S3, this only vanishes at ρ = 0. Given that the determinant of the induced metric on
surfaces of constant ρ is simply (4.8) divided by n5, we see that ρ = 0 corresponds to either
a horizon or an origin of higher codimension. In order to distinguish between these two
cases, we further compute the determinant of the induced metric on surfaces of constant ρ
and t, and we evaluate it at ρ = 0, giving

lim
ρ→0

det g
∣∣
(y,θ,φ,ψ)

= −
(
n5(l3 − r3) sin(2θ)

4Σ0(0, θ)

)2

. (4.9)

Hence, in order to obtain a horizonless and possibly smooth geometry we again need to
impose l3 = r3, Eq. (4.3), such that (4.9) vanishes. Smoothness will then be achieved if
some circle direction shrinks appropriately when ρ→ 0, as we discuss next.

4.3 Smoothness and quantisation

When the background contains F1 charge, the supergravity solutions must be smooth up
to possible orbifold singularities. In the absence of F1 charge, NS5-brane singularities will
be present. We begin by treating the more general case in which F1 charge is present, and
treat the latter as a special case.

We therefore focus on the periodic directions and consider a generic Killing vector of
the form

ξ = ∂y + α∂ψ − β ∂φ , α, β ∈ R. (4.10)

where the signs have been chosen for later convenience. To find smooth solutions we seek
pairs of coefficients (α, β) such that the norm of ξ vanishes ∀ θ ∈ [0, π2 ] when we approach
ρ = 0. From the metric (2.38) we find that this is indeed the case when

α =
l2r4 + l4r2

2n5Σ0(0, π2 )
, β =

l2r4 − l4r2

2n5Σ0(0, 0)
, (4.11)

since for these values, and upon using the null constraint (3.58), we obtain

lim
ρ→0

gij ξ
i ξj = − (l3 − r3)2

4n5Σ0(0, 0) Σ0(0, π2 )
= 0 , (4.12)

where i, j = y, ψ, φ. In the last step we have used the no-CTC condition (4.3). Then, we
define the following shifted coordinates

ψ̂ = ψ + α y , φ̂ = φ− β y , (4.13)

where the signs are chosen for later convenience. By examining the integral curves of ξ, we
see that the direction that shrinks at ρ = 0 is y at fixed ψ̂, φ̂. We find that near ρ = 0 the
line element at fixed (t, θ, ψ̂, φ̂) is of the form

ds2
ρ→0 ' n5

[
dρ2 + ρ2 d

( y
R

)2
]
, R2 =

[
2n2

5Σ0(0, 0) Σ0(0, π2 )(
n5 + l23

)
(l4 − r4)

]2

, (4.14)
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where we have used (2.28) and (4.3), and assumed l4 6= r4 (for now). Strictly speaking, a
smooth geometry will be obtained only if the radius R coincides with Ry. Given that string
theory is well-defined on orbifold backgrounds, as usual we allow for possible Zk orbifold
singularities, k being the corresponding orbifold parameter. Thus, we relax this condition
and impose R2 = k2R2

y for some positive integer k instead, i.e.

k2R2
y =

[
2n2

5Σ0(0, 0) Σ0(0, π2 )(
n5 + l23

)
(l4 − r4)

]2

. (4.15)

Making use of the intuition developed in Section 3, we further rewrite the values of the
parameters li, ri in terms of new quantities m, n, k and p as in Eqs. (3.70) and (3.72),
namely

l2 = m + n , r2 = −(m− n) ,
1

2
(l4 − r4) = −kRy ,

1

2
(l4 + r4) =

p

Ry
=
n5

Ry

mn

k
. (4.16)

In (4.16) we could a priori have written k′ instead of k. However, if we were to then
substitute (4.16) into (4.15), we would find that k′ = ±k. In other words, within this
parametrisation Eq. (4.15) is trivially satisfied.

Up to this point, the reparametrisation (4.16) does not assume thatm and n are integers.
However, the periodicities of the new angular variables φ̂ and ψ̂ should be consistent with
that of y. The corresponding quantisation conditions read

α (kRy) = m ∈ Z , β (kRy) = n ∈ Z . (4.17)

From the classical point of view, the values of the integers m and n seem otherwise unre-
stricted. However, we know from the discussion around Eq. (3.71) that one of m, n must
be even and the other one must be odd. A geometric argument leading to this restriction
was put forward in [12] in the JMaRT context. This is based on discussing the periodicity
of the fermions along the S1

y circle and the associated spin structure of the target space.
Although it should be possible, we will not attempt to extend these arguments to the case
with general gauging parameters. This is because in the next section we will directly match
the JMaRT solutions to the supergravity fields of our coset models.

Moreover, out of the four parametersm, n, k and p = n5mn/k, a priori only the first three
appear to be required to be integers from the above smoothness analysis, and nothing seems
to prevent p from being a rational (not necessarily integer) number. The stringy nature of
this parameter manifests itself in the fact that T-duality along S1

y, namely l4 → −l4 and
Ry → 1/Ry, maps k↔ p. Since in the T-dual geometries p is an orbifold parameter, it must
also be quantised. Moreover, given that m and n may vanish or be non-vanishing integers
with arbitrary signs, so can p, and consequently, the same applies to k. In due course we
will restrict to non-negative values of k,m, n, p, without loss of generality.

Recall that in the previous passage we assumed l4 6= r4. The case l4 − r4 = 0, which
corresponds to k = 0 in the parametrisation (4.16), needs to be treated separately. When
k = 0, Σ0 goes to zero at ρ = 0 and either θ = 0 or θ = π/2, see e.g. Eq. (3.76). The
metric is singular as Σ0 → 0. We choose conventions in which the zero is at θ = π/2. This
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corresponds to the location of the (smeared) NS5 brane source. As we shall see in the next
section, this is because the F1 charge vanishes and the solutions are two-charge NS5-P (see
Eqs. (5.13) and (5.20)–(5.21) below). Let us analyse the geometry away from the source.
The region of interest is the neighbourhood of ρ = 0 for θ 6= π/2. Note that, assuming
l3 = r3, the null conditions (2.30) imply l2 = ±r2, so that either m = 0 or n = 0. To have
the source at θ 6= π/2, we take l2 = −r2, i.e. n = 0. Then the norm of the Killing vector
(4.10) is always non-vanishing. However, the ψ circle shrinks as ρ → 0. Indeed, in this
neighbourhood the line element at fixed (t, y, θ, φ) reads

ds2
ρ→0 ' n5

[
dρ2 + ρ2 d

(
ψ

m

)2
]
, (4.18)

where we have used the parametrisation (4.16) without imposing the last equality, so that
p is unconstrained. We conclude that for generic values of θ and m = ±1 the geometry is
smooth. As before, we allow for orbifold singularities, so that m is again quantised: any
other non-zero m ∈ Z leads to a Z|m| orbifold structure. Had we chosen l2 = r2 instead, the
source would have been at θ = 0, the φ circle would have been the one shrinking at small
ρ, and the parameter m would have been replaced by n.

4.4 Killing Spinors

Finally, we discuss the relation that the embedding coefficient must satisfy in order to
preserve a certain amount of supersymmetry. For simplicity, we work directly in the AdS3×
S3 limit, which will be shown to exist in all consistent cases. In order to achieve this, we
first consider the Killing spinor in global AdS3, as given in [12]:

ε±L = e±
i
2
φ̃L e−

i
2
yε0 , ε±R = e±

i
2
φ̃R e−

i
2
yε0 , (4.19)

where ε0 is a constant AdS3 spinor. The dependence on the spacetime coordinates was
derived in [66] and, in particular, the y dependence is such that the Killing spinors are
regular near the origin (see also [2] and [67, App. D,E]). By a large gauge transformation
one can induce the S3 angular momenta starting from global AdS3 × S3 which, in terms of
the φ̃L,R coordinates, translates into the following diffeomorphism

φ̃L = φ+ (m + n) y = φ+ l2 y , φ̃R = φ+ (m− n) y = φ− r2 y . (4.20)

This is known as spacetime spectral flow (see e.g. [13, 14]). Focusing on solutions that admit
an asymptotically flat completion, the Killing spinor equations demand that the spinors be
independent of y after performing the above large gauge transformation. This is obtained
by imposing

|l2| = 1 or |r2| = 1. (4.21)

By virtue of the null condition (2.28), the above constraint implies an analogous one for
the remaining embedding coefficients, namely

|l3| = |l4| or |r3| = |r4| . (4.22)
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We thus conclude that the above constraints must be satisfied in order to have non-trivial
Killing spinors in spacetime. This is consistent with the discussion around Eqs. (3.55) and
(3.56) above.

Summarising, we have imposed absence of CTCs, absence of horizons, and smoothness
up to physical sources (corresponding to orbifold singularities or NS5 branes) of the general
background (2.38). These conditions imply a set of constraints on the group-theoretic em-
bedding coefficients li, ri parametrising the space of solutions in which the string propagates
without pathologies. These consistency conditions take exactly the same form as those ob-
tained from the worldsheet CFT analysis in Section 3, Eqs. (3.71)–(3.74). In passing, we
note that recently a similar relation between consistency of the worldsheet theory and a
well-behaved geometry was found in a related context in [68, 69].

5 Matching to JMaRT and two-charge limits

In the previous sections we have shown that the class of null-gauged models defined in
Section 2 in terms of the gauging parameters li, ri are consistent iff the latter can be written
simply in terms of the four integers k,m, n and p. Out of these, only three are independent.
Here we show that the resulting models correspond precisely to the full family of JMaRT
solutions [12] and their various limits. The metric and B-field take a simple form in terms
of these parameters, all of which have a clear physical meaning. Moreover, starting from
the generic three-charge solution, we describe in detail the delicate limits that lead to the
two-charge configurations and exhibit novel non-BPS NS5-P solutions.

5.1 JMaRT metric and B-field

Let us recall the form of the NS5-decoupled limit of the NS5-F1-P JMaRT solutions, that
is, the S-duals of the smooth and horizonless non-supersymmetric D1-D5-P backgrounds
obtained in [12]. Note that we are working in units where α′ = 1, hence Q5 = n5. In our
conventions, these geometries take the form [27]

ds2 =
f

H̃1

(
−dt2 + dy2

)
+
M

H̃1

(cpdt− spdy)2 + n5

(
dρ2 + dθ2

)
+
n5

H̃1

[ (
r2

+ − r2
−
)

cosh2 ρ+ r2
− + a2

2 +Ms2
1

]
sin2 θ dφ2

+
n5

H̃1

[ (
r2

+ − r2
−
)

sinh2 ρ+ r2
+ + a2

1 +Ms2
1

]
cos2 θ dψ2

+
2
√
M n5

H̃1

[
(a2c1cp − a1s1sp) dt+ (a1s1cp − a2c1sp) dy

]
sin2 θ dφ

+
2
√
M n5

H̃1

[
(a1c1cp − a2s1sp) dt+ (a2s1cp − a1c1sp) dy

]
cos2 θ dψ

+ ds2
T4 ,

(5.1)
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B = − Ms1c1

H̃1

dt ∧ dy +
n5 cos2 θ

H̃1

[
(r2

+ − r2
−) sinh2 ρ+ r2

+ + a2
2 +Ms2

1

]
dφ ∧ dψ

+

√
Mn5

H̃1

[
(a1c1cp − a2s1sp)dt+ (a2s1cp − a1c1sp)dy

]
∧ sin2 θ dφ

+

√
Mn5

H̃1

[
(a2c1cp − a1s1sp)dt+ (a1s1cp − a2c1sp)dy

]
∧ cos2 θ dψ,

(5.2)

together with the dilaton
e2Φ = g2

s

n5

H̃1

. (5.3)

Here the charges are given in terms of the boost parameters δ1,p, that is

Qi = Msici , ci = cosh(δi) , si = sinh(δi) , i = 1, p , (5.4)

and

f =
1

2

[
(r2

+ − r2
−) cosh(2ρ) + (a2

2 − a2
1) cos(2θ) + r2

+ + r2
− + a2

1 + a2
2

]
,

H̃1 = f +Ms2
1 =

1

2

[
(r2

+ − r2
−) cosh(2ρ) + (a2

2 − a2
1) cos(2θ) +M2

]
+Ms2

1 , (5.5)

r2
± =

1

2

[
(M − a2

1 − a2
2)±

√
(M − a2

1 − a2
2)2 − 4a2

1a
2
2

]
= −a1a2

(
s1sp
c1cp

)±1

.

In these formulas, parameters such as a1,2 are a priori thought of as continuous. As will be
clear shortly, this is potentially misleading since they are constrained by the smoothness
conditions and the absence of horizons. In this setup, these constraints read

a1a2 =
Q1Q5

k2R2
y

s2
1c

2
1spcp

(c2
1c

2
p − s2

1s
2
p)
,

M = a2
1 + a2

2 + r2
+ + r2

− = a2
1 + a2

2 − a1a2

c2
1c

2
p + s2

1s
2
p

c1cps1sp
,

(5.6)

and

m =

√
M

n5

kRyspcp
(a2s1sp − a1c1cp)

∈ Z , n =

√
M

n5

kRyspcp
(a2c1cp − a1s1sp)

∈ Z. (5.7)

Here the integer numbers m and n again parametrise the angular momenta on S3. Moreover,
these constraints imply the important identity

Qp
Q1

=
n5 mn

k2R2
y

=
p

k

1

R2
y

(5.8)

with k p = n5 mn as before, which relates non-trivially the three charges sourcing the
configuration. We now show that the above set of conditions leads to a further set of
relations which enable us to rewrite the JMaRT solutions in terms of the three integers
k, m and n, together with a single dimensionful scale set by Ry. A related but different
calculation was carried out in [70]. Defining

b2 = r2
+ − r2

− ⇒ f = b2f0 ⇒ H̃1 = b2Σ0 , (5.9)
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the most useful relations are of the following form:

a2
2 − a2

1 = b2(m2 − n2) , f +M s2
p = b2 hy , f −M c2

p = b2 ht , (5.10)

M(c2
1 + s2

1) = b2

(
m2 + n2 − 1 +

2k2R2
y

n5

)
, M(c2

p + s2
p) = b2

(
m2 + n2 − 1 +

2p2

n5R2
y

)
,

a2
1 + r2

+ +Ms2
1 = b2

(
n2 +

k2R2
y

n5

)
, a2

2 + r2
+ +Ms2

1 = b2

(
m2 +

k2R2
y

n5

)
,

√
M n5 (a2c1sp − a1s1cp) = b2

(
m

p

Ry
+ n kRy

)
,
√
M n5 (a2s1sp − a1c1cp) = b2 n∆ ,

√
M n5 (a2s1cp − a1c1sp) = b2

(
n
p

Ry
+ mkRy

)
,
√
M n5 (a2c1cp − a1s1sp) = b2 m∆ ,

where we have defined

Σ0 = sinh2 ρ+ (m2 − n2) cos2 θ + n2 +
k2R2

y

n5
, (5.11)

∆ =

√
n5(m2 + n2 − 1) + k2R2

y +
p2

R2
y

, (5.12)

such that Σ0 is the same quantity as in previous sections. Finally, we have

Q1

b2
=

kRy
n5

∆ ,
Qp
b2

=
p

n5Ry
∆ . (5.13)

We note that for the metric and the B-field we do not need the individual charges Q1 and
Qp, but only the ratios (5.13). By using these formulas, the b2 factor cancels out completely,
and we finally obtain the six-dimensional fields

ds2 =
1

Σ0

[
−
(

sinh2ρ + (m2 − n2) cos2 θ + 1−m2 − p2

n5R2
y

)
dt2 (5.14)

+

(
sinh2ρ + (m2 − n2) cos2 θ + n2 +

p2

n5R2
y

)
dy2 − 2

p

n5Ry
∆ dtdy + n5(dθ2 + dρ2)

+
(
n5 sinh2ρ + n5m

2 + k2R2
y

)
sin2 θ dφ2 +

(
n5 sinh2ρ + n5n

2 + k2R2
y

)
cos2 θ dψ2

+ 2

(
m∆ dt− (m

p

Ry
+ n kRy)dy

)
sin2 θ dφ− 2

(
n∆ dt− (n

p

Ry
+ mkRy)dy

)
cos2 θ dψ

]
,

B =
1

Σ0

[
− kRy

n5
∆ dt ∧ dy + n5

(
n5 sinh2ρ + n5 m

2 + k2R2
y

)
cos2 θ dφ ∧ dψ

+

(
m∆ dt− (m

p

Ry
+ n kRy)dy

)
∧ cos2 θdψ −

(
n∆ dt− (n

p

Ry
+ mkRy)dy

)
∧ sin2 θdφ

]
.

This is exactly the geometry we get from the null-gauge construction studied in the previ-
ous sections when inserting the parametrisation (4.16) for the li, ri gauging parameters in
Eqs. (2.38).
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It is worth discussing some interesting facts about the expressions we have presented
in (5.14). First, we note the trivial symmetry associated to exchanging the two S3 angular
momenta. This corresponds to the re-labelling m ↔ n and φ ↔ −ψ, which must be
accompanied by the shift θ → π/2 − θ. On the other hand, we note that while the usual
JMaRT geometry is obtained by replacing p = n5mn/k in the expressions in (5.14), here we
have chosen a slightly more general form by keeping p explicit. As a result, we easily find a
symmetry that corresponds to exchanging k↔ p and Ry → 1/Ry, which we have identified
above as T-duality. At the classical level, we can now see that this operation is equivalent
the well-known Buscher rules [71], where gyy → 1/gyy, gty → Bty/gyy, etc.

Importantly, by keeping p explicit in (5.14) we have presented expressions that are valid
even for solutions where k = 0. As will be reviewed below, this includes the limit associated
to the BPS and non-BPS two-charge NS5-P configurations.

5.2 The dilaton

As described above, the JMaRT dilaton is of the form (5.3). The only coordinate-dependent
part of this expression corresponds to Σ0 as defined in (5.11), where we have used (5.9). This
matches exactly with the expression obtained in Section 2, see Eq. (2.40), by considering the
supergravity equations of motion, which provide the dilaton up to a multiplicative constant.
The matching with the JMaRT backgrounds thus gives a criteria for choosing this constant
appropriately: it is given by n5/b

2, i.e.

e2Φ =
n5

b2Σ0
. (5.15)

In order to make the expression for the dilaton more transparent we proceed as follows.
First, we introduce the canonical expressions for the charges

Q1 = n1
g2
s

V4
, Qp =

np
R2
y

g2
s

V4
, (5.16)

where V4 is the volume of the internal T4, while n1 is the number of fundamental string
sources and np is the integer momentum charge. We observe that the key property (5.8) is
equivalent to

kRy
Q1

=
p

QpRy
. (5.17)

This ties in nicely with the fact that, as discussed above, T-duality interchanges Q1 ↔ Qp
and kRy ↔ p/Ry. It also justifies referring to p as being related to the momentum charge
as we did in previous sections. We have seen that the parameters m and n are associated
to the angular momenta of the geometry. Here we find in (5.17) that p and k relate to
the momentum and F1 winding charges of the black hole microstate in question along the
asymptotic y-circle.

Furthermore, while the b2 factor is irrelevant for writing down the metric and B-field,
it does appear when computing the dilaton. This means that we need to work with the
individual charges Q1 and Qp as opposed to the ratios. By making use of Eqs. (5.13) we
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obtain two equivalent expressions for the dilaton, namely

e2Φ =
∆

Σ0

kRy
Q1

=
∆

Σ0

p/Ry
Qp

, (5.18)

where ∆ was defined in (5.12). This shows that for the dilaton the Buscher rule Φ →
Φ − 1

2 log gyy is once again equivalent to the simultaneous replacements Q1 ↔ Qp and
kRy ↔ p/Ry since the constant prefactor in front of Σ0 is invariant by itself.

5.3 JMaRT uniqueness

Having rewritten the NS5-decoupled JMaRT solutions in the form given in Eq. (5.14), we
observed that these supergravity fields are exactly those we obtained from the null-gauge
construction studied in the previous sections when inserting the parametrisation (3.71)–
(3.74) for the li, ri gauging parameters in the general solutions in Eq. (2.38).

We have thus shown that we are able to reproduce the full family of supergravity
backgrounds collectively denoted as JMaRT. We now argue that these solutions exhaust
the full set of consistent null-gauged models considered in this paper, by scrutinising the
allowed ranges of the parameters and identifying physically equivalent solutions.

At first sight, by looking at the metric, B-field and dilaton given in Eqs. (5.14) and
(5.18), one would expect that k,m, n and p could take any integer value. Additionally, in
writing these expressions we have fixed an extra degree of freedom by choosing a positive
sign for ∆. However, this parameter space is constrained. In the general case, the parameter
p is fixed in terms of the other three as in Eq. (3.75), though we will see below that in the
limit in which the fundamental string charge Q1 vanishes, its value becomes arbitrary. On
the other hand, choosing the opposite sign for ∆ simply results in an equivalent time-
reversed configuration. This leaves us with arbitrary m, n and k (for negative k, the orbifold
parameter is identified with its absolute value). Changing the sign of m, n or k can be
compensated by choosing the orientation of the circle coordinate y or the S3 angles φ and
ψ, respectively. Therefore we can take all of m, n, k to be non-negative. In addition, due
to the m ↔ n symmetry described below (5.14), we are free to restrict to m ≥ n. Finally,
based on spectral flow considerations we have argued in Section 3 that we must restrict to
angular momenta such that m±n are odd, see the discussion below Eq. (3.70). This clarifies
the discussion about spin structures in [12]. This excludes m = n and so we conclude that
the set of inequivalent configurations is given by

k ≥ 0 , m > n ≥ 0, m± n ∈ 2Z + 1, (5.19)

which is precisely the principal range of values considered in [12]. As we shall discuss
below, for k = 0 we take the limit such that one of the angular momenta vanishes and p is
generically kept non-zero and finite.

5.4 Two-charge limits and novel non-BPS NS5-P solutions

The expressions (5.14) and (5.18) we have obtained for the metric, B-field and dilaton
generated in the classical limit of the null-gauged models match exactly the solutions given
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in [12], which have k > 0 (and where p = n5mn/k). However, and as discussed above, they
are presented in a form that is slightly more general and can be used to access somewhat
delicate limits. In particular, we now examine two-charge limits.

There are two such limits that we can access. The first of these corresponds to NS5-F1
solutions, obtained by setting Qp = 0, which were analysed in [12]. As shown by the identity
(5.17), in order to keep Q1 finite and arbitrary we need to do this carefully. More precisely,
we also need to take the limit p → 0 in such a way that the ratio p/(RyQp) = kRy/Q1 is
finite. An analogous conclusion for taking n → 0 with p/n = n5m/k fixed is obtained by
considering (3.75).

On the other hand, we can now similarly access a different limit leading to novel non-
BPS NS5-P configurations. In this case, we take Q1 = k = n = 0 while keeping the ratios
kRy/Q1 = p/(RyQp) and k/n = n5m/p fixed. This allows Qp to take arbitrary values
as needed. To the best of our knowledge, the metric and B-field for the non-BPS NS5-P
solutions have not been presented in the literature. They take the following form:

ds2 =
1

Σ0

[
−
(

sinh2ρ + m2(cos2 θ − 1) + 1− p2

n5R2
y

)
dt2 − 2

p

n5Ry
∆ dtdy (5.20)

+

(
sinh2ρ + m2 cos2 θ +

p2

n5R2
y

)
dy2 + 2m

(
∆ dt− p

Ry
dy

)
sin2 θ dφ

+ n5

(
sinh2ρ + m2

)
sin2 θ dφ2 + n5 sinh2ρ cos2 θ dψ2 + n5(dθ2 + dρ2)

]
,

B =
n5

4Σ0

[
m2 − 1 + cosh(2ρ)

]
cos(2θ) dφ ∧ dψ +

m

Σ0

(
∆ dt−m

p

Ry
dy

)
∧ cos2 θ dψ ,

with the dilaton given by the second expression in (5.18), and where we now have

Σ0 = sinh2 ρ+ m2 cos2 θ , ∆ =

√
n5(m2 − 1) +

p2

R2
y

. (5.21)

Recall that, as discussed around Eq. (4.18), these solutions involve a fivebrane source at
ρ = 0, θ = π/2 and a Z|m| orbifold singularity at ρ = 0, θ 6= π/2.

Finally, we can restrict to the BPS cases by setting m = 1, as indicated by the su-
persymmetry conditions (3.55) and (3.56). Thus, in this limit we find ∆ = kRy for the
BPS NS5-F1 configuration, and ∆ = p/Ry for the NS5-P one. In the former case, the first
expression for the dilaton in (5.18) then gives

e2Φ|NS5−F1 =
1

Q1

k2R2
y

sinh2 ρ+ cos2 θ + k2R2
y/n5

, (5.22)

which coincides with that of [26], Eq. (4.13), while for the latter the alternative expression
in (5.18) yields

e2Φ|NS5−P =
1

Qp

(p/Ry)
2

sinh2 ρ+ cos2 θ
, (5.23)

which coincides with that of [26], Eq. (4.2). One can check that in both cases the metric
and B-field match as well.
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5.5 AdS3 limit and holography

The AdS limit of the geometries under consideration is obtained by taking the large Ry
limit, while keeping the charge Q1 fixed. This describes the region of small radial distances
(as compared with Q1 and Ry). The energy and momenta ERy and PyRy also stay fixed,
such that the coordinates

t̃ = t/Ry , ỹ = y/Ry (5.24)

are better suited for this region. The six-dimensional metric (5.14) then takes the form of
an orbifolded AdS3 × S3, namely

ds2 = n5

[
− 1

k2
cosh2 ρ dt̃2 +

1

k2
sinh2 ρ dỹ2 + dρ2

+ dθ2 + sin2 θ
(
dφ− n

k
dt̃+

m

k
dỹ
)2

+ cos2 θ
(
dψ +

m

k
dt̃− n

k
dỹ
)2
]
.

(5.25)

The orbifold singularity structure near ỹ = 0 depends on the common divisors between
m, n, k and is described in [12, 14, 27]. By means of the large gauge transformation

ψ̃ = ψ +
m

k
t̃− n

k
ỹ , φ̃ = φ− n

k
t̃+

m

k
ỹ , (5.26)

one can formally re-absorb the contributions from the angular momenta, that is, the terms
depending on m and n. This is related to the general holographic description of such
configurations. They are interpreted as excited states in the holographic symmetric orbifold
CFT which can be constructed by considering n1n5/k identical strands of length k in their
NS vacuum state and performing left-right asymmetric fractional spectral flow [14]. The
spectral flow charges are of the form

2α =
m + n

k
, 2ᾱ =

m− n

k
(5.27)

which matches the intuition derived from (5.26) and provides yet another interpretation for
the gauging parameters l2 and r2. Note that this is distinct from the worldsheet spectral
flow that was used in Section 3. Interestingly, within this description the momentum per
strand is given by mn/k and must be an integer number, which is a slightly more restrictive
condition than the quantisation of p discussed above.

Furthermore, we also note that in this AdS limit there seems to be no particular issues
with the solutions with even m ± n, see the discussion around Eq. (3.71). In particular,
the case m = n = 0 takes us back to the global AdS3 vacuum. The present perspective
shows that the cases that extend consistently to the full linear dilaton geometry, namely
m± n ∈ 2Z + 1, belong to the RR sector (in the covering space) of the holographic CFT,
while those that do not are characterised by having spectral flow charges (5.27) with even
numerators, such that they correspond to NSNS states.

Moreover, in this AdS3 limit the dilaton becomes constant, as can be seen from (5.18)
since ∆ → kRy and Σ0 → k2R2

y/n5. In other words, the rescaled harmonic function
H̃1 associated to the fundamental string charges approaches the constant value Q1, see
Eq. (5.13). In terms of the actual harmonic function H1, this roughly corresponds to the
usual dropping the "1+" term, as is usual in such decoupling limits (see e.g. [19]).
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In terms of the null-gauged description, there is an intuitive way of understanding
this AdS3 × S3 limit. Indeed, the upstairs model already contains an SL(2,R) × SU(2)

factor, complemented by the novel Rt × S1
y factor. For large Ry, the gauging parameters

associated to the former are l1,2 ∼ r1,2 ∼ O(1), while those corresponding to the latter grow
parametrically large as l3,4 ∼ r3,4 ∼ O(Ry). Thus, we are mostly gauging away the extra
directions t and y.

5.6 From AdS back to the linear dilaton background

At this point, it is interesting to go back to the intuition developed within the sigma
model description presented at the beginning of Section 2.1. There, we argued that, after
integrating out the gauge fields, the gauging procedure induces a deformation given by
including an additional term of the form J J̄ /Σ to the action, see Eq. (2.10). We can
simplify the discussion by working in the t = y = 0 gauge, such that the currents J
and J̄ are nothing but linear combinations of the diagonal currents of the SL(2,R) and
SU(2) WZW models. In the AdS limit, we have seen that the coefficient 1/Σ approaches a
constant value, such that the induced contribution becomes J J̄ , giving a simple marginal
deformation of the worldsheet theory.

The situation is to be contrasted with that of [38–40]. There, the authors make use of
the null-gauging formalism to introduce a JJ̄ deformation for the AdS3 worldsheet theory,
the crucial difference being that the current under consideration corresponds to the J−

instead of J3. For related work, see [72]. Based on [32], this procedure is interpreted as the
dual of the so-called single-trace T T̄ irrelevant deformation of the holographic CFT. Such
deformation triggers a controlled flow to the UV, which is realised in the dual geometry by
effectively reinserting the "1+" term in the harmonic function associated to the fundamental
string sources. This produces an asymptotically linear dilaton geometry, i.e. an NS5-
decoupled background, such that the above UV flow is thought of as leading to a realisation
of little string theory.

The parallel to our construction can thus be made more general. As described above,
for large Ry we know that Σ becomes constant, and our J J̄ deformation on the worldsheet
made up of J3 and K3 (together with their antiholomorphic counterparts) has a much less
dramatic effect, as it produces a sort of large gauge transformation which, however, does
not further modify the AdS3 asymptotics, where the dilaton stays constant. On the other
hand, when moving away from the AdS limit by keeping Ry finite one recovers the full non-
trivial coordinate dependence of the function Σ, which sits at the denominator of various
terms in the supergravity fields. This modifies the effect of the J J̄ /Σ, which now does
take us back to the full asymptotically linear dilaton background described by Eqs. (5.14)
and (5.18). This effect has also recently been observed in a larger class of solutions in [29].

6 Discussion

In this paper we have analysed all consistent backgrounds within a general class of null-
gauged WZW models. We showed that the (NS5-decoupled) JMaRT family, and limits
thereof, are the unique supergravity backgrounds that arise in these models. We also showed
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that the metric and B-field can be written explicitly in terms of the integers k,m, n, n5 and
the modulus Ry, while for the dilaton one needs further include the ratio n1/V4 (or np/V4).

Our analysis makes the connection between the worldsheet and geometric descriptions
quite explicit. In the supergravity solutions, imposing absence of CTCs implies l3 = r3,
which excludes horizons. The converse statements are also true: excluding horizons implies
l3 = r3, which excludes CTCs. On the other hand, the condition l3 = r3 is necessary but
not sufficient for smoothness (up to orbifold singularities), which further requires the quan-
tization of k,m, n. This is consistent with the interpretation of the allowed configurations
as a family of black hole microstates.

At the level of the worldsheet CFT, we have shown that a consistent spectrum is
obtained if and only if the gauging parameters are given in terms of three independent
integers k,m, n together with n5 and Ry, as in (3.71)–(3.75). We explicitly rewrote the
JMaRT metric and B-field in terms of these quantities, which enabled us to completely
bypass the usual, somewhat cumbersome, supergravity parametrisation in Eqs. (5.1), (5.2).

Our parametrisation also provides a clear and important physical understanding of the
quantity p = n5mn/k. In the AdS3 decoupling limit, the quantity mn/k has previously
been interpreted as being the momentum per strand in the holographically dual symmetric
product orbifold CFT [14]. We have uncovered the direct role of p in the (asymptotically
linear dilaton) supergravity solutions, as being the quantity that is T-dual to k, where the
T-duality is performed along the y circle.

As we mentioned in the Introduction, one of the motivations of our systematic analysis
was the possibility of finding new backgrounds. Although our uniqueness proof means that
the set of models we analysed does not have more general backgrounds than the JMaRT
family, we have exhibited a novel sub-family of two-charge non-BPS NS5-P backgrounds
that arise from a non-trivial limit, see Eqs. (5.20) and (5.21). We observed that in the core
of the solutions but away from the fivebrane source, the solutions involve a Zm orbifold
singularity. To our knowledge, these solutions have not appeared before in the literature.

We expect that our results will be useful in analysing generalisations of the models
studied here, either by changing the currents being gauged to include non-Cartan generators
of the non-Abelian factors of the upstairs group, or by changing the upstairs group, or both.
Our systematic approach should enable generalisations to be investigated in a similar way.
For instance, there are multi-centre non-BPS generalizations of the JMaRT family [73–75].

Besides this, within the models considered in this work there remain several unanswered
questions. For instance, since we have control over these theories exactly in α′, there are
many interesting correlation functions that can be computed. We intend to report an
analysis of such correlators in the near future.

The results we have obtained, and the possibilities they open up for future work, offer
the prospect of improving our understanding of little string theory and the corresponding
non-AdS holography. Furthermore, it is tempting to wonder about extending some of these
ideas beyond the fivebrane decoupling limit into the full asymptotically flat regime.

Having an exact worldsheet description of heavy pure states, far from the vacuum
of the theory, is rare and valuable. Such models allow us to study aspects of black hole
microstates that are smeared out in supergravity, and so cannot be studied with supergravity
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techniques. This offers the tantalising prospect of obtaining a quantitative understanding
of the microscopic degrees of freedom of black holes.
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