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Four components of the axisymmetric Einstein equations in 2+1 dimensions with negative cosmo-
logical constant can be written as ∇aM = . . . and ∇aJ = . . . , where the dots stand for stress-energy
terms, and M and J are scalars. In vacuum, they reduce to the constant mass and angular momen-
tum parameters of the BTZ solution of the same name. The integrability conditions for the Einstein
equations give rise to two conserved stress-energy currents ∇aj

a
(M) = 0 and ∇aj

a
(J) = 0. The angular

momentum current is just the Noether current due to axisymmetry, but the mass current is unex-
pected in the presence of rotation. The conserved quantity M exists in all dimensions in spherical
symmetry, known as the Misner-Sharp, Hawking or Kodama mass, but in 2+1 dimensions M exists
also in axisymmetry, even with rotation. We use M and J to give a fully constrained formulation of
the axisymmetric Einstein equations in 2 + 1 dimensions, where the Einstein equations are solved
by explicit integration from the center along time slices. We use the two conserved matter currents
in the construction of a high-resolution shock-capturing formulation of the Einstein-perfect fluid
system, in which M and J momentum are then exactly conserved by construction. We demonstrate
convergence of the code in the test cases of generic dispersion and collapse and stable and unstable
rotating stars.

CONTENTS

I. Introduction 1

II. Geometric description of the model 2
A. Axisymmetry in 2 + 1 spacetime

dimensions 2
B. Rotating perfect fluid matter 3

III. Description in polar-radial coordinates 4
A. Metric and Einstein equations 4
B. Balance laws 5
C. Characteristic velocities 6

IV. Numerical method 7
A. Fluid evolution 7
B. Recovery of primitive variables 8
C. Einstein equations, fluxes and

sources 8
D. Imposition of a floor on small

quantities 10
E. Overall time step and initial data 10
F. Formation of apparent horizon and

computation of critical quantities 11

V. Numerical tests 11
A. Convergence testing 11
B. Dispersion and collapse 12
C. Stable and unstable stars 13

VI. Conclusions 20

Acknowledgments 22

References 23

I. INTRODUCTION

We present a formulation of the Einstein
equations with matter and a negative cosmo-
logical constant in 2 + 1 dimensions, restricted
to axisymmetry, that is fully constrained, in the
sense that the Einstein equations can be solved
by explicit radial integration along time slices
to find the metric on that time slice.

We also present a numerical implementation
of this formulation where the matter is a perfect
fluid with the linear (ultrarelativistic) equation
of state P = κρ. We demonstrate convergence
of this scheme in a number of test cases with
κ = 1/2: rotating collapse, rotating strong field
noncollapse, and the time evolution of both
stable and unstable rotating stars, perturbed
slightly.

In a companion paper, we shall use this code
to investigate critical phenomena at the thresh-
old of prompt collapse in this system.

Our numerical implementation could be gen-
eralized straightforwardly to any barotropic or
hot perfect fluid equation of state, and our nu-
merical implementation of the Einstein equa-
tions to any other matter.

As the starting point for our formulation,
we carry out a reduction of the covariant Ein-
stein equations under the axisymmetry, with
barred quantities referring here and later to
the reduced 2-dimensional spacetime. In ax-
isymmetry in 2 + 1 dimensions, there are six
independent components of the Einstein equa-
tions. Four of these can be written as ∇̄aM =
ε̄abj̄

b
(M) and ∇̄aJ = ε̄abj̄

b
(J), where ε̄ab is the 2-
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dimensional volume form. The left-hand sides
are defined in terms of the Killing vector ξa of
axisymmetry and the “area radius” R defined
by the length of the closed symmetry orbits.
The right-hand sides are the contraction of the
stress-energy tensor with two vectors also made
from ξa and R.

This tells us two things: j̄a(M) and j̄a(J)

are conserved matter currents, and M and J
are nontrivial quasilocal (local in the reduced
spacetime) metric invariants that are constant
in vacuum. (They reduce to the constant mass
and angular momentum parameters of the same
name in the Bãnados-Teitelboim-Zanelli (BTZ
family of axistationary metrics [1].)

To stress how unexpected this rich geometri-
cal structure of axisymmetry in 2+1 dimensions
is, we remind the reader what parts of it are
known in other situations. The local mass M
exists, and is linked to a conserved matter cur-
rent ja(M), in spherical symmetry in any dimen-

sion, and is then known as the Kodama [2] or
generalized Misner-Sharp [3] mass. The current
arises as the contraction of the stress-energy
tensor with a certain vector field, but this is
not a Killing vector field. The conserved an-
gular momentum matter current ja(J) = T abξb
exists in axisymmetry, also in any dimension.
However, the local angular momentum J exists
only in 2 + 1 dimensions. Moreover, in 2 + 1
dimensions only, M and its current exist in ax-
isymmetry even with rotation.

The structure of the paper is as follows. In
Sec. II we derive the quantities M and J and
their underlying currents in the reduction ap-
proach. We use these two conservation laws,
plus a balance law for radial momentum, to for-
mulate the fluid evolution equations. (To gen-
eralize from a barotropic to a hot equation of
state, we would only need to add the rest mass
conservation law.)

In Sec. III we then introduce specific coordi-
nates on the reduced spacetime, namely a radial
coordinate r linked in a fixed way to the area
radius R, and a time coordinate t that is nor-
mal to R (polar time slices). The full metric
on a time slice can then be obtained from suit-
able fluid variables on that slice by integration
over r (starting from a regular center). In this
form, the Einstein equations look quite similar
to those in polar-radial coordinates in spherical
symmetry (in any dimension).

Section IV describes our numerical imple-
mentation in detail. In particular, we discretize
the integration of the currents to obtain M and
J so that the latter are conserved exactly. This
is particularly important where M ' 0 but
its sign matters because black holes can form

only for M > 0 (we use the BTZ convention
where its value in vacuum adS3 is −1). Simi-
larly, for rapidly rotating collapse it will mat-
ter if J is larger or smaller than M . For the
fluid evolution, we use an evolve-reconstruct-
limit approach with a simple approximate Rie-
mann solver. In several details, we follow meth-
ods of [5] for ultrarelativistic fluid collapse in
spherical symmetry in 3+1 dimensions.

Section V describes numerical tests. To allow
black holes to exist in 2 + 1 dimensions, we as-
sume a negative cosmological constant through-
out. We show that, at least for sufficiently
short times and away from the numerical outer
boundary, all variables converge pointwise to
second order. In some situations, the rate of
convergence goes down to first order after nu-
merical error from our “copy” numerical outer
boundary condition dominates the error bud-
get. We use five different tests: generic ro-
tating initial data that disperse and collapse
respectively, and slightly perturbed stable and
unstable rotating stars, the latter perturbed so
that they either collapse or begin highly non-
linear oscillations. All regular axistationary so-
lutions with finite M and J (“rotating stars”)
in 2 + 1 dimensions with negative cosmological
constants, and for arbitrary barotropic equa-
tion of state, and P = κρ in particular, were
classified in [6], building on earlier work in [7].
Here we give numerical evidence for a conjec-
ture made there, that where there are two stars
with the same M and J , the more compact one
is unstable and the less compact one stable.

Section VI contains our conclusions.

II. GEOMETRIC DESCRIPTION OF
THE MODEL

A. Axisymmetry in 2 + 1 spacetime
dimensions

We consider axisymmetric solutions of the
Einstein equations in 2+1 dimensions with neg-
ative cosmological constant Λ =: −1/`2,

Gab + Λgab = 8πTab. (1)

We set c = G = 1 throughout. Let ξa be the
Killing vector defining the axisymmetry. Its
length defines the area radius

ξaξa =: R2 (2)

as a scalar. We define a local angular momen-
tum J geometrically as the twist (a scalar in
2 + 1 dimensions) of the Killing vector,

J := εabcξa∇bξc, (3)



3

where εabc is the volume form implied by the
metric gab. We define a local mass function M
in terms of J and R as

M :=
R2

`2
+

J2

4R2
− (∇aR)(∇aR). (4)

Following Geroch, we define the metric in the
reduced 1 + 1-dimensional spacetime of orbits

ḡab := gab −R−2ξaξb, (5)

so that ḡabξ
b = 0, the corresponding volume

form

ε̄ab := R−1εabcξ
c, (6)

and the corresponding covariant derivative op-
erator ∇̄a by

∇̄a :=⊥ ∇a ⊥ (7)

where ⊥ stands for contraction with ḡa
b on all

indices.
Four linear combinations of components of

the Einstein equations can then be written as

∇̄aJ = −16πR ε̄ab j
b
(Z), (8)

∇̄aM = −16πR ε̄ab j
b
(Ω) (9)

Clearly the currents ja(Z) and ja(Ω) are conserved

in the sense that

∇̄a(Rja(Z)) = 0, (10)

∇̄a(Rja(Ω)) = 0, (11)

or equivalently

∇aja(Z) = 0, (12)

∇aja(Ω) = 0. (13)

The angular momentum and mass currents
introduced above are given by

jb(Z) := V(Z)aT
ab, (14)

jb(Ω) := V(Ω)aT
ab, (15)

where

V a(Z) := ξa (16)

and

V a(Ω) := V a(X) +
J

2R2
V a(Z), (17)

with

V a(X) := ε̄ab∇bR, (18)

or equivalently

V a(Ω) = R−2

(
εabcξd +

1

2
ξaεbcd

)
ξb∇cξd. (19)

The conservation law (12) follows directly
from the fact that V a(Z) := ξa is a Killing vector,

but (13) is less obvious. In spherical symmetry,
ja(Ω) and M are known generalizations of the

Kodama conserved current and mass [2] from
3+1 to arbitrary dimensions [3].

While this paper was under review, a paper
has appeared [4] that independently identifies
the same generalised Kodama vector. It is given
there in the form

V a(Ω) = −1

2
εabc∇bξc. (20)

We had not spotted this simpler form, which is
equal to our expression (19).

B. Rotating perfect fluid matter

The stress-energy tensor for a perfect fluid is

Tab = (ρ+ P )uaub + Pgab, (21)

where ua is tangential to the fluid worldlines,
with uaua = −1, and P and ρ are the pres-
sure and total energy density measured in the
fluid frame. In the following, we assume the 1-
parameter family of ultrarelativistic fluid equa-
tions of state P = κρ, where 0 < κ < 1. In
particular, κ = 1/2 represents a 2-dimensional
gas of massless (or ultrarelativistic) particles
in thermal equilibrium, where the stress-energy
tensor is trace-free. The sound speed is cs =√
κ. There is no conserved rest mass density.
Following the Valencia formulation [8, 9], we

parameterize the 3-velocity ua in terms of the
2-velocity va with respect to a time slicing t as

ua := Γ(na + va), (22)

Γ := −naua, (23)

vana := 0, (24)

where na is the future-pointing unit normal on
the time slices. The normalization uaua = −1
relates the Lorentz factor Γ to the 2-velocity as

Γ−2 = 1− vava. (25)

Following standard practice in fluid dynamics
in curved spacetime, we write the stress-energy
conservation equation ∇aT ab = 0 as a set of
three balance laws

∇a
(
Vb(i)T

ab
)

= T ab∇(aVb)(i), (26)

or

∇aja(i) = s(i), (27)



4

specified by a choice of three vector fields V a(i).

We have already defined the vector fields V a(Z)

and V a(Ω), which give rise to conservation laws

(balance laws with zero source term), and so
are natural choices.

For the radial momentum (force) balance law
we choose

V a(Y ) := ∇a(lnR). (28)

This is the only choice where the resulting bal-
ance law is “well-balanced” for a fluid of con-
stant density at rest in Minkowski spacetime, in
the sense that the flux term is constant and the
source term vanishes. By contrast, a balance-
law based on any other choice of V a(Y ) requires

an explicit cancellation of the flux and source
terms, which may lead to large and unneces-
sary numerical error. An equivalent choice for
the radial momentum balance law was made in
[10] for spherical polar coordinates in 3 + 1 di-
mensions (without restriction to spherical sym-
metry).

III. DESCRIPTION IN
POLAR-RADIAL COORDINATES

A. Metric and Einstein equations

We now introduce a specific coordinate sys-
tem, namely the generalized polar-radial coor-
dinates (t, r, θ), in terms of which the axisym-
metric metric takes the form

ds2 = −α2(t, r) dt2 + a2(t, r)R′2(r) dr2

+R2(r)[dθ + β(t, r) dt]2. (29)

Note that our choice grr = a2R′2 makes a in-
variant under a redefinition r → r̃(r) of the
radial coordinate. The volume forms are given
by

εtrθ = αaR′R, ε̄tr = αaR′, (30)

where we have made a choice of overall sign.
We assume that the spacetime has a regular

central world line R = 0, and there we impose
the gauge conditions, α(t, 0) = 1, β(t, 0) = 0,
and the regularity condition a(t, 0) = 1. The
gauge is fully specified only after also specify-
ing the strictly increasing function R(r), but we
shall always assume that R(r) is an odd ana-
lytic function with R(0) = 0, R′(0) = 1. The
Killing vector is

ξa =

(
∂

∂θ

)a
(31)

and R is its length, as above. We define the
auxiliary quantity

γ := β,r, (32)

anticipating that β will not appear undifferen-
tiated in the Einstein or fluid equations, but
only in the form of γ and its derivatives, since
the form (29) of the metric is invariant under
the change of angular variable θ → θ + f(t).

Polar-radial coordinates have been used suc-
cessfully in studying critical collapse in spheri-
cal symmetry in 3 + 1 spacetime dimensions,
starting with [11]. Their main advantage is
that they allow a fully constrained formula-
tion of the Einstein equations, where at t = 0
and each subsequent timestep we solve differ-
ential equations for a, α and β that contain
only r-derivatives. Their main disadvantage
is that they are apparent-horizon avoiding: in
spacetime regions where an apparent horizon is
about to form, the lapse α collapses near the
center compared to its value far out so that the
time slicing stops advancing near the center and
never reaches the apparent horizon. This means
that we cannot look very far into black holes.

In our coordinates, J and M are given by

J(t, r) =
R3γ

R′aα
, (33)

M(t, r) =
R2

`2
+

J2

4R2
− 1

a2
. (34)

In an axistationary vacuum ansatz, M and J
are constant in space and time with value equal
to the BTZ parameters of the same name. The
BTZ 2-parameter family of metrics [1] takes the
form

α2 = −M +
R2

`2
+

J2

4R2
, (35)

a2 =
1

α2
, (36)

β = − J

2R2
, (37)

in all BTZ solutions. The anti-de Sitter solu-
tion (from now, adS3) in particular is given by
M = −1 and J = 0. Note that αa = 1 in the
BTZ solutions.

In contrast to higher dimensions, stationar-
ity actually follows from vacuum axisymmetry
locally, intuitively because there are no gravita-
tional waves in 2 + 1 dimensions. The situation
in 2 + 1 axisymmetry is therefore rather more
similar to spherical symmetry in higher dimen-
sions, where the vacuum solutions are static
and characterized by only a mass parameter.

Each BTZ solution is in fact locally, although
not globally, isometric to the adS3 solution [12].
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However, this additional symmetry will not be
apparent in what follows.

The matter and Einstein equations are sim-
plest in the standard polar-radial coordinates
defined by R(r) = r. However, in these coordi-
nates the coordinate speed of ingoing and out-
going radial light rays is dr/dt = ±λc, where
λc := α/(aR′). This increases rapidly with
radius in the BTZ solution, even in adS3. A
necessary stability condition for any numerical
method for evolving ultrarelativistic fluid mat-
ter is the Courant-Friedrichs-Levy (from now
on, CFL) condition that the numerical grid be
wider than the light cones, that is ∆r/∆t ≥
λc, everywhere in spacetime. As we require
Rmax � ` in situations of physical interest, this
makes for a wastefully small ∆t.

This problem is easily fixed if we introduce
compactified polar-radial coordinates [13]

R(r) = ` tan(r/`), (38)

where the radial coordinate now has the range
0 ≤ r < `π/2. In a vacuum region ρ = 0, where
the metric is BTZ, the light speed then takes
the form

λc = 1−
(

1 +M − J2

4R2

)
cos2 r/`. (39)

In particular, the light speed is always bounded
above and below. In the adS solution, we have
λc = 1, and the CFL condition is uniform. Sim-
ilarly, the coordinate light speed will remain
bounded in asymptotically adS3 solutions. In
our numerical simulations we use the compact-
ified coordinates (38), with different values of
the cosmological scale `, but for clarity we will
write R and R′ rather than the explicit expres-
sions.

Of the six algebraically independent compo-
nents of the Einstein equations in generalized
polar-radial coordinates, five can be solved for
γ,r, γ,t, a,r, a,t and α,r. The undifferentiated
shift β does not appear in the Einstein equa-
tions or in our formulation of the matter equa-
tions. The sixth Einstein equation is a combi-
nation of first derivatives of the other ones, and
so is redundant modulo stress-energy conserva-
tion.

To write the first four Einstein equations
(8,9) in coordinates, we define the current com-
ponents

Z :=
√
−g jt(Z), (40)

f(Z) :=
√
−g jr(Z), (41)

Ω :=
√
−g jt(Ω), (42)

f(Ω) :=
√
−g jr(Ω), (43)

and obtain

J,r = 16πZ, (44)

J,t = −16πf(Z), (45)

M,r = 16πΩ, (46)

M,t = −16πf(Ω). (47)

The resulting conservation laws (12,13) take the
form

Z,t + f(Z),r = 0, (48)

Ω,t + f(Ω),r = 0. (49)

A useful choice for the fifth independent Ein-
stein equation, which must contain α,r in order
to be independent of (44-47), is

(lnαa),r = 8πa2RR′(1 + v2)σ, (50)

as the right-hand side vanishes in vacuum. The
matter quantities v and σ in the right-hand side
of this equation will be defined below.

The Einstein equations (44-47) and (50) are
all linear combinations of components of the
Einstein equations, and so contain the fluid
density, pressure and velocity undifferentiated.
We have not used the contracted Bianchi iden-
tities (stress energy conservation), two of which
are separately given as (48-49).

B. Balance laws

Rather than working directly with the coor-
dinate components vr and vθ of the 2-velocity,
we use its frame components in the radial and
tangential directions,

v := aR′vr, w := Rvθ. (51)

We define the 2-velocity to be analytic if in the
Cartesian coordinates x := R cos θ and y :=
R sin θ, its Cartesian components vx and vy are
analytic functions of x and y. This is the case in
axisymmetry if and only if v and w are analytic
odd functions of R, and hence of r (as we choose
R(r) to be analytic and odd).

In terms of v and w, and with nµ =
(−α, 0, 0), the 3-velocity (22) of the fluid is

uµ = {ut, ur, uθ} = Γ

{
1

α
,
v

aR′
,
w

R
− β

α

}
,

(52)
or equivalently

uµ = Γ {−α+Rwβ, aR′v,Rw} , (53)

where the Lorentz factor (25) is

Γ−2 = 1− gijvivj = 1− (v2 + w2). (54)
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In coordinates, the balance laws take the
form(√
−g Vµ(i)T

tµ
)
,t

+
(√
−g Vµ(i)T

rµ
)
,r

=
√
−gs(i).

(55)
We abbreviate this as

q,t + f,r = S. (56)

Note that the factor
√
−g = αaR′R is included

in our definitions of the conserved quantities q,
fluxes f and sources S, and hence they depend
on the choice of coordinates, while the currents
ja(i) and sources s(i) in (27) are defined covari-

antly by (26).
The coordinate components of the three vec-

tor fields are

V µ(Z) = {0, 0, 1}, (57)

V(X)µ = {α
a
, 0, 0}, (58)

V(Y )µ = {0, R
′

R
, 0}. (59)

Note these do not all have the index in the same
position — we have chosen the simplest form.
The corresponding three balance laws have the
conserved quantities

q := {Ω, Y, Z} (60)

given by

X = R′Rτ, (61)

Y = R′vσ, (62)

Z = aR2R′wσ, (63)

Ω = X +
JZ

2R2
, (64)

with the corresponding fluxes f given by

f(X) =
α

a
Rvσ, (65)

f(Y ) =
α

a
(P + v2σ), (66)

f(Z) = αR2vwσ, (67)

f(Ω) = f(X) +
Jf(Z)

2R2
, (68)

and the corresponding sources S by

S(X) =
1

a

[
−Rvσα(ln aα),r

+R2vwσγ −RR′(1 + v2)σa,t

]
(69)

=
1

a
R2vwσγ =

R′

R3
Jf(Z), (70)

S(Y ) =
1

a

[
(w2 − v2)σα

R′

R
− τα,r

−(P + v2σ)α(ln a),r

+Rwσγ − 2vσR′a,t

]
, (71)

S(Z) = 0, (72)

S(Ω) = 0, (73)

where we have defined the shorthands

σ := Γ2(1 + κ)ρ, (74)

P := κρ, (75)

τ := σ − P. (76)

Note that in flat spacetime S(X) vanishes and
only the first term in S(Y ) is present.

The specific metric derivatives appearing in
S(X) and S(Y ) are given by the Einstein equa-
tions as

(lnα),r = a2RR′
(

8π(P + v2σ)− J2

4R4
+

1

`2

)
,

(77)

(ln a),r = a2RR′
(

8πτ +
J2

4R4
− 1

`2

)
, (78)

a,t = −8παa2Rvσ. (79)

In (70), we have used (50) [which itself fol-
lows from (77) and (78)] and (79) to simplify
S(X) to something that is proportional to J and
so vanishes in spherical symmetry. In (73), we
have used the Einstein equations (44,45) as well
as the conservation laws for X and Z. By con-
trast, there is no particular simplification when
the Einstein equations are used to express the
metric derivatives in S(Y ) in terms of the stress-
energy.

C. Characteristic velocities

The coordinate characteristic velocities λ =
dr/dt of the matter are the eigenvalues of the
3×3 matrix ∂f/∂q. It is useful to write the lat-
ter as (∂q/∂u)−1(∂f/∂u), where as our primi-
tive variables we choose

u := {ρ, v, w}. (80)

We find the coordinate characteristic velocities

λ0,± =
α

aR′

{
v,

v(1− κ)Γ2

(1− κ)Γ2 + κ

±
√
κ(1− κ)(1− v2)Γ2 + κ2

(1− κ)Γ2 + κ

}
(81)

These represent the radial fluid velocity and the
velocity of outgoing and ingoing sound waves
(in axisymmetry in 2 + 1 dimensions, there are
only radial sound waves). In the (unphysical)
limit κ = 1, the two sound velocities λ± re-
duce to±λc, the coordinate speed of radial light
rays. However, the fluid motion will in general
become relativistic even for cs =

√
κ � 1, and

so v will approach ±1 arbitrarily closely, which
then means that one of λ+ approaches λc or λ−
approaches −λc.
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IV. NUMERICAL METHOD

A. Fluid evolution

We use standard finite-volume methods for
the time evolution of the fluid variables. We
initially discretize only in r. Time will be dis-
cretized at the end, an approach sometimes
called the method of lines. We use standard no-
tation where ri denotes cell centers and ri+1/2

denotes cell faces. In principle, each cell is al-
lowed to have a different width, but we always
have

ri :=
1

2
(ri−1/2 + ri+1/2). (82)

We define the shorthand

∆i(r) := ri+ 1
2
− ri− 1

2
, (83)

and similarly for other grid functions.
The numerical values of the conserved vari-

ables represent cell averages (denoted by an
overbar), that is

q̄i(t) :=
1

∆i(r)

∫ r
i+1

2

r
i− 1

2

q(t, r) dr (84)

in terms of notional continuum functions
q(t, r). They are updated by notional fluxes
through cell faces plus notional cell averages of
the source terms, that is

dq̄i
dt

=
1

∆i(r)

(
fi− 1

2
− fi+ 1

2

)
+ s̄i. (85)

This update is conservative by construction
when the source terms vanish, simply because
the fluxes from adjacent cells cancel in the time
derivative of

∫
q dr.

In the numerical code, where array indices
must be integers, we label cell i by array index
i (obviously) and cell-face ri+1/2 by i, so each
cell face is labeled by the cell to its left. The
physical cells are labeled i = 1, . . . N and their
boundaries i = 0, . . . N , with r1/2 := 0 labeled
as cell face 0.

To find the numerical fluxes, we first recon-
struct the fluid variables in each cell in order to
find left and right values at the cell faces. In
the reconstruction we use a slope limiter such
as centered, minmod or van Leer’s MC limiter
[14]. This takes as its input the cell average of
the conserved quantity, as well as some slope
information.

For these and other standard reconstruction
methods to work well, the functions w we re-
construct should be “generic” in the sense that
if we only have the cell average our best guess

for the reconstructed function should be con-
stant over the cell (with value equal to the
cell average). However, none of our conserved
quantities and not all of our primitive variables
are generic in this sense, as they are expected
to vary as some power of R near the symme-
try boundary R = 0. In particular, v and w
are odd functions of R (or r). By contrast, the
functions we reconstruct are chosen to be even
functions of R (or of r) that generically do not
vanish at R = 0 (or r = 0), namely

w := (ω, η, ζ) :=

{
Ω

R′R
,
Y

R′R
,

Z

R′R3

}
(86)

=

{
τ +

J

2

awσ

R
,
vσ

R
,
awσ

R

}
. (87)

We now approximate ω, η and ζ as constant in
each cell to find their notional cell center val-
ues wi from the cell averages of the q. For such
functions, w(r) ' wi ' w̄i is the best approxi-
mation to make inside the ith cell whereas for a
function that behaves like a power of R at the
center it would not be. For example, from (86)
we have

ω d

(
R2

2

)
= Ω dr. (88)

Approximating ω(r) = ωi and integrating over
the ith cell, and similarly for η and ζ, we obtain

ωi =
2∆i(r)

∆i(R2)
Ω̄i, (89)

ηi =
2∆i(r)

∆i(R2)
Ȳi, (90)

ζi =
4∆i(r)

∆i(R4)
Z̄i. (91)

We use these cell center values wi together with
notional slopes to reconstruct w(r) to the cell
faces and, independently, the wi (only) to com-
pute the source terms at the cell centers.

To find the numerical fluxes fi+1/2, we ap-
proximate the reconstruction as constant on
each side of a cell face and then solve the re-
sulting Riemann problem. Note that to find
the flux through the cell face we do not need
the complete solution of the Riemann problem
but only the value q(ri+1/2) at the cell face.
As the solution of the Riemann problem is self-
similar,

q(t, r) = q̃

(
r − ri+1/2

t− tn

)
, (92)

q(t, ri+1/2) is time-independent, and so there-
fore is fi+1/2 := f [q̃(0)].

In practice, we do not solve the Riemann
problem exactly but use an approximate Rie-
mann solver. We use the very simplest one, the
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HLL approximate Riemann solver ([15]). This
approximates the solution as a two-shock solu-
tion with shock speeds given a priori as ±λHLL.
Conservation then forces the middle state to be
the average of the left and right state, and the
resulting HLL flux is given by

fi− 1
2

=
f(qRi−1) + f(qLi ) + λHLL

(
qRi−1 − qLi

)
2

,

(93)
where qRi−1 and qLi are the right and left recon-
structions in the (i−1)th and ith cells. λHLL is
an estimate of the absolute value of the largest
coordinate characteristic speed. We use the co-
ordinate speed λc of radial light rays, which is
a (sharp) upper limit for the matter character-
istic speeds.

We impose regularity boundary conditions at
the center by using ghost points and the fact
that all our grid functions are either even or
odd in r. We fill the outer ghost cells by ex-
trapolating the u, q̄ or w as constant functions
(copy boundary conditions).

We found some obstacles in extending the nu-
merical outer boundary to infinity. The HLL
flux limiter is not positivity preserving, which
can lead to unphysical values for the density
during the evolution. This is offset by im-
posing a numerical floor (typically ∼ 10−14).
When extending the numerical grid to infinity,
the outer boundary is typically a region of near
vacuum, where the density is then set to this
floor value. During the RK steps, the numer-
ical flux continuously attempts to reduce the
density below the floor value. The density is
then replenished back to the floor value, thus
continually adding mass to the system. It is
possible to circumvent this problem by not im-
posing a floor on the density. In parallel, one
can modify the numerical flux to be positivity
preserving by “interpolating” between the HLL
flux with some other positivity-preserving flux
(such as Lax-Friedrichs) [16]. Doing so how-
ever generates shocks near the boundary that
quickly grow and travel inwards. We have not
attempted to further investigate this issue.

B. Recovery of primitive variables

To recover the primitive variables u from the
conserved variables q at one point, we first con-
vert the q to the w. We then compute

τ = ω − Jζ

2
. (94)

Inverting (74-76,86), we compute

ρ =
τ

[Γ2(1 + κ)− κ]
, (95)

v =
Rη

Γ2(1 + κ)ρ
, (96)

w =
Rζ

aΓ2(1 + κ)ρ
. (97)

The Lorentz factor Γ can be written in terms
of w, by plugging (96,97) into (54) and solving
for Γ. We find

Γ2 =
1− 2κ(1 + κ)U +

√
1− 4κU

2 (1− (1 + κ)2U)
, (98)

where we defined

U :=
R2(η2 + ζ2

a2 )

(1 + κ)2τ2
(99)

=
Γ2
(
Γ2 − 1

)
[Γ2(1 + κ)− κ]

2 . (100)

Note that the w must obey the constraint

R2

(
η2 +

ζ2

a2

)
< τ2 (101)

for the fluid velocity to be physical (timelike).
Numerical error may lead to this condition be-
ing violated, in which case (98) fails.

C. Einstein equations, fluxes and sources

We need to already have the metric coeffi-
cients J and a (as well as the given functions
R and R′) to recover the primitive variables
from the conserved variables, and in addition
we need α to compute the fluxes and sources.
Moreover, variables can be represented numer-
ically as cell-center values, cell-face values, or
cell averages. Taking all this into account, in
our fully constrained evolution scheme we in-
terleave the solution of the Einstein equations
at constant t with the recovery of the primitive
variables in the following order, see also Table I
for a summary.

0) We start with the cell averages q̄i :=
(Ω̄i, Ȳi, Z̄i) at some moment of time.

1) We find the cell-center values wi :=
(ωi, ηi, ζi) using (89-91).

2) We now come to the first of two blocks of
metric calculations. We find J and M at the
cell faces by integrating out from J = 0 and
M = −1 at the cell face r = 0, using

∆i(J) = 16πZ̄i∆ir, (102)

∆i(M) = 16πΩ̄i∆ir. (103)
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These integrals are exact as Ω̄i and Z̄i represent
cell averages. As Ω and Z are conserved exactly
by our numerical scheme this discretization also
gives us exact conservation of J and M . From
J , M and R at the cell faces we find a at the
cell faces using (34).
a is a generic even function, so using the av-

erage of the values at the two cell faces is a rea-
sonable approximation to its value at the cell
center,

ai =
1

2
(ai−1/2 + ai+1/2). (104)

At the same time, we determine τ at the cell
centers. This is more subtle, as it involves Z
and J , which scale as Z ∼ R3 and hence J ∼ R4

near the center and so are not generic even func-
tions. We first approximate Z in cell i by as-
suming that ζ, which is a generic even function,
is constant in the cell (at the cell-center value
ζi, which we found from the cell average Z̄i).
This gives the approximation

Zi '
4∆i(r)Z̄i
∆i(R4)

R3
iR
′
i. (105)

We also have the exact relation

J(ri) = Ji−1/2 + 16π

∫ ri

ri−1/2

Z(r̃) dr̃ (106)

and an equivalent expression integrating from
ri+1/2. Inserting the approximation (105), car-
rying out the integration, and averaging the two
resulting expressions for J(ri), we find the ap-
proximation

Ji '
Σi(J)

2
+ 8π∆i(r)Z̄i

2R4
i − Σi(R

4)

∆i(R4)
, (107)

where

Σi(J) := Ji−1/2 + Ji+1/2 (108)

and similarly for other grid functions.
We evaluate the approximation (107) at the

cell centers to obtain Ji, and hence τi.
3) We now have τi, ηi and ζi and the metric

coefficient ai at the cell centers, and recover the
primitive variables ui := (ρi, vi, wi) at the cell
centers as described in Sec. IV B.

4) We now come to a second block of metric
calculations. We integrate the remaining Ein-
stein equation (50) in the approximation

∆i (ln(αa)) ' 4πa2
i (1 + v2

i )σi∆i(R
2) (109)

to obtain aα and hence α at the cell faces, start-
ing from the gauge condition α(t, 0) = 1.

TABLE I. Overview of how dq/dt is calculated.
Steps 2 and 4 are not required if the metric is fixed.
“+ floor” means that we impose a floor on small
quantities at this point.

0) q̄i := (Ω̄i, Ȳi, Z̄i) + floor (61-64)

1) wi := (ωi, ηi, ζi) + floor (86)

2) Ji+1/2, Mi+1/2, ai+1/2 (44,46,34)

ai average

Ji, τi (107,94)

3) ui := (ρi, vi, wi) + floor (99,98,95-97)

4) αi+1/2 (109)

αi average

γi, γi+1/2 (33)

βi+1/2 (32)

βi average

5) S̄(Y )i via S(Y )i (71,110)

6) fi−1/2 via wL
i , wR

i−1, uL
i uR

i−1 (65-68,93)

7) dq̄i/dt (85)

We interpolate α to the cell centers, as we did
for a. From J , a and α we compute γ at the cell
faces and cell centers using (33). As a diagnos-
tic only, we find β at the cell faces by integra-
tion using the trapezoid rule, and then interpo-
late β to the cell centers. We start the integra-
tion of β from the gauge condition β(t, 0) = 0.

5) We evaluate (77-79), and hence (71) at
the cell centers to find the source term S(Y )i

at the cell centers. As S(Y ) ∼ RR′f , where f
is a generic even function near the center, we
integrate the approximation fi = f̄i over the
i-cell to find

S̄(Y )i =
S(Y )i

RiR′i

∆i(R
2)

2∆i(r)
. (110)

6) We use a standard slope-limited method
to reconstruct the w to the cell faces, denoting
the value immediately to the left of the cell face
at ri−1/2 by wR

i−1 and the value immediately to

the right by wL
i . We already have values of J

and a at the cell faces (continuous across the
cell face). We find τ at both sides of each cell
face using (94), U from (99), then Γ and finally
the u. Finally, we use an approximate Riemann
solver to find the numerical fluxes f through the
cell faces from the u on each side.

7) We then have dq̄i/dt from (85).
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D. Imposition of a floor on small
quantities

Recall that the generic variables need to
satisfy the constraint (101) everywhere at all
times. Failure for this condition to be satisfied
results in an unphysical value of (99) and thus
of Γ2. A primary concern is to ensure that this
inequality is satisfied in near-vacuum regions,
since in those regions all three of the variables
τ, η, ζ are small. We choose to impose a floor
on the generic variables at each physical cell,

τi −Ri

√
η2
i +

ζ2
i

a2
i

≥ δf. (111)

If the above condition is not satisfied at any cell
i, we proceed as follows: First, τi is set to be at
least the floor value,

τi, new = max (δf, τi) . (112)

Then we split the density and momentum
variables into an ingoing and an outgoing com-
bination (defined in the spirit of characteris-
tic variables), and impose a floor on each sepa-
rately,

c± := max

(
τi ±Ri

√
η2
i +

ζ2
i

a2
i

, δf

)
. (113)

Note that necessarily c− = δf. The variables
τ, η are then updated as,

τi,new :=
c+ + c−

2
, (114)

η2
i,new :=

(c+ − c−)2

4R2
i

− ζ2
i

a2
i

. (115)

The sign of ηi,new is chosen so that it has the
same sign as ηi. It is possible due to numerical
errors that the rhs of (115) is negative. In this
case, we set

ηi,new = 0 (116)

and solve (115) for ζi → ζi,new. The updated
value ζi,new can be written explicitly as

ζi,new = 0 (117)

if c+ = c− and

|ζ|i,new = a
∣∣∣2(τi − δf)±

√
(τi − δf)2 + 3R2

i η
2
i

3Ri

∣∣∣,
(118)

if c+ > c−. We select the root that minimizes
||ζ|i − |ζ|i,new| and again we choose the sign of
ζi,new to coincide with the sign of ζi.

By construction, the updated values then
satisfy (111). The floor δf itself is computed as
the maximum between a relative and absolute
floor,

δf := max

(
δabs, δrel

(
τi +Ri

√
η2
i +

ζ2
i

a2
i

))
.

(119)
The addition of this second relative floor is due
to the fact that it is possible to encounter a
situation for which c− < δf, c+ > δf and also
c+ � c−. In this case, within numerical preci-
sion, the update of the generic variables do not
register. The second term in (119) ensures that
the floor is never “too small” compared to the
data and that the update is therefore always
properly applied. Typical values we choose are
δabs = δrel = 10−12. The floor is applied to
the generic variables each time they are com-
puted from the conserved variables. Further-
more, within each Runge-Kutta step, the floor
is imposed on the newly computed conserved
variables. This is done by first converting q̄i

into wi using (89)-(91), imposing the floor on
them as discussed above and then converting
back to q̄i by inverting (89)-(91). We note that
each time the floor is applied, the value of τ
increases, resulting in the associated conserved
variables Ω̄i to also increase. Thus, due to the
floor, Ω̄i is not exactly conserved during the
evolution.

E. Overall time step and initial data

Starting from the conserved quantities q̄i at
one moment in time we have now recovered the
metric and primitive variables, and the time
derivative dq̄i/dt. We implement (85) in a
fourth order Runge-Kutta scheme in t. Note
that for high-resolution limiters such as MC or
minmod limiters, this scheme will also be total-
variation-diminishing [17]. Each time we eval-
uate dq̄i/dt in the substeps of that scheme we
also recalculate the metric.

We impose symmetry boundary conditions at
r = 0, based on the fact that all variables are
either even or odd in r. As we start each time
step, and each Runge-Kutta timestep, assum-
ing that only the q̄i are known, we impose the
symmetry boundary conditions on them after
each Runge-Kutta substep.

Any initial data in general relativity consist
of a part that is freely specified and a part that
is obtained by solving the constraints (and per-
haps gauge conditions). As we have a fully con-
strained scheme for solving the Einstein equa-
tions, it is natural to prescribe the “matter”
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and use the Einstein equations to find the met-
ric coefficients, but the meaning of matter is
necessarily ambivalent. We specify the generic
variables wi at the cell centers as our free ini-
tial data, from which we can immediately com-
pute the averaged conserved quantities q̄i from
(89)-(91). From q̄i, we can then follow the nu-
merical scheme outlined in Table I to compute
all the other quantities at the initial time step
in a consistent way. Note that specifying the
w, or equivalently the q, means that we know
M and J a priori. This would not be the case
if we specified the primitive variables u.

F. Formation of apparent horizon and
computation of critical quantities

Since we are not using a horizon penetrating
foliation, one cannot observe the formation of
an apparent horizon. We instead make use of
two simple criteria to determine if a given initial
data will collapse or disperse. For our intended
application to critical collapse, it is important
that this decision can be reliably automated.

First, if during the evolution, the timestep ∆t
is smaller than some minimum timestep ∆tmin,
then formation of apparent horizon is deemed
to be imminent and unavoidable and the cor-
responding initial data will be judged as being
supercritical. The rationale behind this is that
the time steps are computed so that the CFL
condition is also satisfied,

∆t = cCFL min
i

(∆ir) min
i,i− 1

2

(
aR′

α

)
, (120)

where the last minimum is computed from both
the cell centers and faces and 0 < cCFL < 1. It
is well known that in spherical symmetry, the
formation of an apparent horizon is easily iden-
tified with the vanishing of (∇R)2 = 1/a2 = 0
at some radius R = RAH . From the above
and (77)-(78), it follows that the time step
∆t → 0 outside the horizon. A typical value
is ∆tmin = 10−11.

There are also two other criteria that effec-
tively act as fail-safes: if the maximum den-
sity ρmax is larger than some threshold den-
sity at any point in time, then this will also be
deemed as supercritical data. A typical value is
ρthreshold = 1030. This criteria is usually never
triggered since the time step dt becomes suffi-
ciently small before this happens.

The second criterium is the value of (∇R)2 it-
self. Since on the onset of apparent horizon for-
mation, (∇R)2 → 0, numerical error can con-
spire to produce unphysical values of (∇R)2,
namely, (∇R)2 . 0. This will also be a sign

that collapse is unavoidable. If a given time
evolution does not satisfy any of these criteria
and the evolution has run for a sufficiently long
time, the initial data will be deemed to be sub-
critical.

There is a subtlety in the notion of “suffi-
ciently long,” in that the negative cosmological
constant effectively confines the matter. For
perfect fluid matter, this is due to an inward
cosmological acceleration. One may conjecture
that, given enough time, any initial data with
total mass M > 0 will form a black hole, and
this is well established numerically for scalar
field matter [13]. As we impose an unphysical
numerical boundary condition at finite R, we
are unable to investigate this, and so our crite-
ria are, in some sense, for prompt collapse.

To investigate scaling at the threshold of
(prompt) collapse, we need to record the max-
imum of the density ρmax and the mass and
spin of the apparent horizon MAH, JAH respec-
tively. The latter are computed using the for-
mulas (33) and (34) evaluated at the apparent
horizon RAH. This is found from the minimum
value of (∇R)2, (∇R)2

min := mini,n(∇R)2
i (tn)

from which we then consider the two neighbor-
ing points of (∇R)2

min and make a polynomial
interpolation. The variables needed in the com-
putation ofMAH, JAH are then evaluated by lin-
ear interpolation from RAH.

V. NUMERICAL TESTS

A. Convergence testing

In this section, we investigate the pointwise
convergence as well as convergence with re-
spect to a norm of our numerical code for dif-
ferent scenarios. Specifically, we examine six
cases. First, we consider initial data “far”
from the black hole threshold which disperses
and collapses. For each of these two cases, we
will consider a “slowly” and “rapidly” rotating
case. Finally, we also consider initial data cor-
responding to rotating stars that are presumed
stable and unstable.

Let f refer to any quantity of interest. In the
following, we will mostly be interested in the
conserved variables q̄, as they are used to evolve
the data at the next timestep. It should still be
emphasized that the primitive and generic vari-
ables still indirectly play a role in the evolution,
notably during the floor imposition and when
computing the fluxes at the cell faces, see Ta-
ble I. In our numerical code, we consider an ap-
proximation to the exact function f(t, r). This
approximation depends on the grid resolution
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∆i(r) and since we always choose a uniform grid
spacing in the simulations we may simplify the
notation by defining h := ∆i(r). The approxi-
mation of the exact solution f(t, r) will then be
denoted by Fh(t, r). The function Fh(t, r) con-
verges pointwise to the exact solution f(t, r) if
at all points we have

Fh(t, r) = f(t, r)+C(t, r)hk+O(hk+1), (121)

where C(t, r) is a smooth function which de-
pends on the continuum solution f(t, r) and k
is the order of convergence. Typically, the ex-
act solution f is unknown, but this problem
can be circumvented by considering instead the
difference between two resolutions,

δFh(t, r) := Fh(t, r)− Fh
2
(t, r). (122)

It follows that our scheme converges to order k
if

δFh(t, r) = 2kδFh
2
(t, r) (1 +O(h)) . (123)

Besides investigating pointwise convergence,
we will also be interested in the convergence in
a norm. Consider the `2 norm, defined at any
fixed time t by

||F ||22(t;h, p) =
h

2

N−p∑
i=1

(
Fh(t, ri−1/2)2

+Fh(t, ri+1/2)2
)
.

(124)

Note that we use the cell faces instead of the cell
centers, because the former align exactly when
we double the resolution. If F corresponds to
fluid variables, such as u, q̄ or w, the cell faces
values are computed from the cell centers by
linear interpolation.

Recall that the center is located at r1/2 =
0, while the outer boundary corresponds to
rN+1/2 =: rmax. Note that in the definition
of the norm, we also allow the truncation of
the last p grid points for reasons that will be
explained shortly.

Applying this norm to (123), we then find
that

NF (t;h, p) := log2

(
||δF ||2(t;h, p)

||δF ||2(t; h2 , p)

)
= k+O(h).

(125)
By construction, one expects second-order con-
vergence everywhere, except at and near the
outer boundary due to the copy boundary con-
ditions. On the other hand, the boundary con-
ditions at the center are expected to not spoil
the second-order convergence since they pre-
serve the even/oddness of the functions they
are applied to.

In the following, we investigate the following
points: First, the correct implementation of the
code, which should imply second-order conver-
gence at least at short times everywhere, ex-
cept possibly near the outer boundary. Second,
we wish to investigate how the error that orig-
inates from the boundary affects the inside of
the numerical grid. This is particularly impor-
tant for the stationary configurations, since the
conserved quantities do not vanish at infinity
and so one would a priori expect the numer-
ical outer boundary conditions to play a cru-
cial role. Pointwise convergence is useful as it
can highlight small numerical instabilities that
would otherwise be hidden when looking at the
convergence in a norm. On the other hand, con-
vergence in a norm will be used to formalize the
idea that the code converges to order k “almost
everywhere.” Specifically, it is possible that we
find that some variables do not converge at all
at the boundary, but that these instabilities do
not travel inside the numerical grid, or if they
do, they do it very slowly. In this case, we then
would expect NF (h, 0) � k, while for some
small p, we would recover NF (h, p) ' k.

In what follows, we always consider the ra-
diation fluid equation of state κ = 1/2. The
numerical grid is equally spaced in the com-
pactified coordinate r, as defined in (38) and
the Courant factor of (120) is set to cCFL = 0.5.
The cosmological constant is set to Λ = −π2/4,
which sets the boundary of adS in compactified
coordinates to r∞ = 1.

B. Dispersion and collapse

For both dispersion and collapse, we consider
the evolution of five different grid resolutions,
with 100× 2n points for n from 1 to 5, so that
for the lowest resolution, h ' 0.0035. The nu-
merical outer boundary is set at rmax = 0.7,
corresponding to Rmax = ` tan(rmax/`) ' 1.25,
and the copy boundary conditions will be im-
posed on the conserved variables.

For slowly rotating dispersion and col-
lapse, we will choose the monotonized central-
difference limiter (MC limiter) introduced by
van Leer [14], while for the rapidly rotating
cases, we instead switch to a centered limiter,
as the latter is empirically found to be slightly
more robust against numerical instabilities. In-
dependently, for rapidly rotating collapse the
convergence drops significantly at the onset of
collapse. We found that this can be partly off-
set by imposing no mass to enter the numerical
domain from the outer boundary by setting the
HLL flux of Ω to be zero if it is negative.
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For dispersion, the simulation is stopped
when most of the energy has left the numeri-
cal domain, while for the case of collapse, we
stop at the onset of black hole formation, see
Sec. IV F. We choose to initialize the generic
fluid variables w as double Gaussians in the
area radius R,

ω(0, R) =
pω
2

(
e−(R−Rω

σω
)
2

+ e−(R+Rω
σω

)
2)
,

(126)

η(0, R) =
pη
2

(
e
−
(
R−Rη
ση

)2

+ e
−
(
R+Rη
ση

)2
)
,

(127)

ζ(0, R) =
pζ
2

(
e
−
(
R−Rζ
σζ

)2

+ e
−
(
R+Rζ
σζ

)2)
,

(128)

where pω, pη, pζ are the magnitudes, Rω, Rη, Rζ
the displacements from the center and
σω, ση, σζ the widths of the Gaussians. For
all four cases, we set the widths to σω = 0.2,
σζ = ση = 0.15, and the displacements to
Rω = Rη = Rζ = 0.4. The slowly rotating
initial data have pζ = 0.01, with pω = 0.2
for dispersion and pω = 0.5 for collapse. The
rapidly rotating data have pω = 0.3, pζ = 0.5,
and pω = 0.5 and pζ = 0.7 for dispersion
and collapse respectively. In the “slowly”
and “rapidly” rotating data that collapse, the
black hole mass and spin parameter satisfy
JAH/(MAH`) ' 0.012 and 0.9 respectively. For
all four test cases presented above, the initial
data satisfy the inequality (101) everywhere.

In Fig. 1, we plot 4nδq̄ h
2n

(left, middle and

right columns for Ω, Y and Z, respectively)
at four different resolutions n = 1, 2, 3, 4 for
initial data that disperses with small angular
momentum. The profiles are plotted at three
different times (top, middle and bottom rows)
t = 0.04, 0.36 and 0.9. These snapshots rep-
resent respectively, the evolution of the error
near the initial time, when the energy density
reaches a maximum (near the center), and when
the matter finally disperses and most of the
density is about to leave the numerical domain.
During the evolution, the conserved variables
remain smooth.

According to (123), the approximate align-
ment of these plots shows that the code con-
verges to second order. One can, however, spot
some instabilities at isolated points inside the
numerical grid. Their frequency increases with
resolution, but their amplitudes do not grow
with time and in fact converge away rather
quickly with increased resolution. These in-
stabilities are a consequence of our choice of
limiter as we observed that these instabilities

vanish with a centered limiter.
On the other hand, the convergence is mostly

unaffected by the choice of imposing copy
boundary conditions on the conserved variables
instead of the primitive or generic variables. Fi-
nally, as anticipated, we lose second-order con-
vergence at and near the outer boundary. The
error propagates very slowly inside the numeri-
cal domain and so does not spoil the second-
order convergence for most of the numerical
grid for the period of time the simulation is run.

To illustrate this, in Fig. 2 we plot
Nq̄(t; h

2n , 0) and Nq̄(t; h
2n , 8), for n = 1, 2, 3.

For the former, untruncated case, we find that
the order of convergence is typically less than
second order. On the other hand, we recover
the expected second-order accuracy once the
last 8 grid points are ignored in the calcula-
tion of the norm. The drop in convergence that
can be seen at around t ' 1.0 corresponds to
the energy leaving the numerical grid, see the
last row of Fig. 1.

In Figs. 3 and 4, we demonstrate second-
order convergence pointwise and with respect
to the `2 norm for the highly rotating dispers-
ing initial data. As for the slowly rotating case,
the conserved variables remain smooth during
the evolution.

Turning our attention now to the collapse
case, in Fig. 5 we show 4nδq̄ h

2n
at four different

resolutions n = 1, 2, 3, 4 at times t = 0.01, 0.051
and 0.096. We find the same qualitative behav-
ior as for the dispersion case, except that the
outer boundary behaves much better.

As a consequence, in Fig. 6, we only plot
Nq̄(t; h

2n , 0) as we have good second-order con-
vergence without the need to truncate the grid.
As for dispersion, the choice of limiter and
which variables the outer boundary conditions
are applied to do not produce any qualita-
tive differences, except for the centered limiter
which removes the instabilities already noted in
the dispersion case, see Fig. 5.

Finally, in Figs. 7 and 8, we demonstrate
second-order convergence for the case of rapidly
rotating collapsing data. As one would expect,
the presence of angular momentum delays the
time of collapse. Near the onset of collapse the
convergence drops to first-order near the region
where the horizon forms.

C. Stable and unstable stars

In [6], we analysed in detail the family of
stationary solutions parametrized by two di-
mensionless constants, (Ω0, µ) or equivalently

(J̃ ,M), where we defined the dimensionless
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FIG. 1. Dispersion with slow rotation: Plots of 4nδq̄ h
2n

against r, at four resolutions n = 1, 2, 3, 4. From

the left, the columns represent Ω, Y and Z, respectively, while the rows represent the times t = 0.04, 0.47
and 0.90, from the top. In each plot, the curves representing different resolutions approximately align,
demonstrating pointwise second-order convergence. The unsmooth but convergent features of the error
are artifacts of the MC limiter, and do not correspond to any visible unsmoothness of the solution itself.
They are absent with the centered limiter.
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FIG. 2. Dispersion with slow rotation: Plots of the convergence rates in the `2-norm, Nq̄(t; h
2n
, 0) (upper

row, all grid points used) and Nq̄(t; h
n
, 8) (bottom row, last 8 grid points omitted in the norm), for

n = 1, 2, 3. As in the previous figure the three columns represent Ω, Y and Z, respectively. The dashed
horizontal line corresponds to second-order convergence, N = 2. When the full grid is taken into account
in the computation of the norm, we typically observe less than second-order convergence. On the other
hand, second-order convergence is recovered once the last 8 grid points are neglected in the computation
of the norm.
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FIG. 3. Dispersion with rapid rotation: Note that the instabilities in Fig. 2 at time t = 0.04 are not present
here due to choosing a centered limiter instead of the MC limiter. Otherwise as in Fig. 1.
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FIG. 5. Collapse with slow rotation: Times are now t = 0.010, 0.051 and 0.096 (rows, from top to
bottom), otherwise as in Fig. 1.
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FIG. 6. Collapse with slow rotation: Plots of Nq̄(t; h
2n
, 0), for n = 1, 2, 3. As always, the columns

correspond to Ω, Y and Z from left to right. Due to the prompt collapse, second-order convergence is
maintained throughout the evolution.

spin

J̃ :=
J

`
. (129)

In the parameter space (Ω0, µ), it was shown
that the set of parameters which result in a so-
lution that is regular everywhere and asymp-
totes to a BTZ solution with J̃ ≤ M is dou-
bly covered for each admissible pair of values
(J̃ ,M). Both regions are separated by a curve

on which solutions have a zero mode, i.e. a
static linear perturbation that corresponds to
an infinitesimal change in (Ω0, µ) that leaves

(J̃ ,M) invariant to linear order.

Such a double cover is familiar in 3+1 dimen-
sions, where the less dense star is stable and the
more dense star unstable. Analogously, it was
conjectured that the solution with the smaller µ
associated to a given (J̃ ,M) is unstable, while
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FIG. 7. Collapse with rapid rotation: Times are now t = 0.010, 0.130 and 0.264, otherwise as in Fig. 5.
Note that we lose second-order convergence at the onset of collapse and near the region of black hole
formation.
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FIG. 8. Collapse with rapid rotation: Otherwise as in Fig. 6. Second-order convergence is lost near the
onset of collapse, as seen also in the last row (time) of Fig. 7.

the one with the larger µ is stable. We use
this opportunity to provide some numerical ev-
idence for this claim. Specifically, consider the
pair of solutions with total mass and angu-
lar momentum given by J̃ = 0.24,M = 0.38,
corresponding to (Ω0, µ) ' (0.154, 0.242) and
(0.153, 0.392). These correspond to the black
and orange dots in Fig. 1 in [6] and therefore
to the unstable and stable solutions associated
to the above conserved quantities J̃ ,M .

For both the stable and unstable configura-
tion, we add a small Gaussian perturbation,
with plus or minus sign. The Gaussian pertur-
bation is of the form (126)-(128), with |pω| =
0.001, pη = pζ = 0, Rω = 0.4, σω = 0.2. We
set rmax = 0.9 and consider again five differ-
ent resolutions, with the lowest resolution now
800 grid points, or h ' 0.00015. We choose
a larger value of rmax because that the sta-
tionary initial data under consideration do not
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have a surface at some finite area radius. Con-
sequently, one needs to choose a larger value
of rmax to fit “most” of the energy density in-
side the numerical grid. We find that a MC or
minmod limiter produces large instabilities in
the evolution and that these are mostly tamed
with a centered limiter. Furthermore, it is es-
sential to use the primitive variables for the
copy boundary conditions. Using the conserved
variable instead causes the star to disperse al-
most immediately due to a perturbation orig-
inating from the outer boundary, while using
the generic variables produces noticeably larger
errors during the evolution. We will therefore
restrict to this choice in what follows. Lastly,
due to the nonvanishing of the conserved vari-
ables at the boundary, it is necessary to im-
pose, as for the highly rotating collapse case,
that the flux of Ω be non-negative at the nu-
merical outer boundary. For the stable station-
ary initial data, we also impose the flux of Z
to be positive at the numerical outer boundary.
(Note that by construction, Z is non-negative
everywhere initially).

Let us first consider the stable stationary
solution. In Fig. 9, we plot 2nδq̄ h

2n
at four

different resolutions n = 1, 2, 3, 4. These are
again plotted at three different times (rows),
t ' 0.04, 1.2, 4.2. We only show the case
pω = −0.001 as the case where pω = 0.001 is
qualitatively similar. Note the different power
of h from the dispersion/collapse case, due to
the fact that we typically get less than second-
order convergence. The cause of this is an in-
stability originating from the outer boundary
propagating inwards. At the time t ' 4.2, this
instability has moved to and from the bound-
ary twice. Equivalently, the time for the error
originating from the numerical outer boundary
to reach the center is ∆t ' 1.0. As a conse-
quence, the simulation losses its second-order
accuracy everywhere. There is also an instabil-
ity at and near the outer boundary that does
not converge at all, but rather is roughly equal
at different resolutions. Nevertheless, as in the
case of dispersion, this instability propagates
into the numerical grid very slowly and its size
shrinks with increased resolution.

In Fig. 10, we plot the convergence in the
norm. Due to the combination of the error
originating from the outer boundary and the
error near the boundary not converging at all,
we find Nq̄(t; h

2n , 0) ' 1. Once the region near
the outer boundary is neglected by removing
the last 100 grid points, we recover approximate
second-order convergence Nq̄(t; h

2n , 100) ' 2.

In Fig. 11, we plot the oscillations in the cen-
tral density, δρ0(t) := ρ0(t) − ρ0(0) for both

signs of the perturbation, pω = ±0.001. The
simulation is run with 3200 grid points, for suf-
ficiently long time so that the central density
displays approximately 30 cycles. These oscil-
lations maintain constant small amplitude, pro-
portional to the initial perturbations, and we
conjecture that they are essentially linear oscil-
lations with constant frequency, as one would
expect in a stable star. The central density os-
cillates about an average that is offset from the
unperturbed star, because our perturbation of
the initial data changes the total mass of the
star. Our unphysical copy outer boundary con-
dition does not seem to destroy this contin-
uum property. Note that when checking con-
vergence, we only evolve the initial data up to
at most t = 4. The reason is that for conver-
gence testing, we consider much higher resolu-
tion than we do in Fig. 11. Compare for exam-
ple the highest resolution run (n = 5, equiva-
lent to 25600 gridpoints) when testing conver-
gence, with the much lower resolution used to
produce Fig. 11 (n = 2, equivalent to 3200 grid-
points).

Let us now turn to the unstable stationary so-
lution. The convergence tests for both cases are
summarized in Figs. 12 and 13 (pω = −0.001)
and Figs. 15 and 16 (pω = 0.001).

Recall that for the unstable configuration, we
have not imposed the positivity of the HLL flux
for Z at the outer boundary, as we heuristically
find that otherwise a small shock forms during
the evolution, which prevents the simulation to
converge to the desired order in the norm. On
the other hand, lifting this constraint on the
flux of Z causes a first-order error originating
from the outer boundary to propagate inwards.
The time for this error to reach the center (for
both signs of pω) is ∆t ' 0.9. The simulation
is only about first-order accurate.

As for the stable configuration, there is also
an instability at and near the outer boundary
which does not converge at all, but rather is
roughly equal at different resolutions. Never-
theless, this instability propagates into the nu-
merical grid very slowly and its size shrinks
with increased resolution. Such a behavior can
also be noted for the stable configuration dis-
cussed above if the constraint on the positivity
of the HLL flux of Z is removed there. In par-
ticular, a more careful treatment of the bound-
ary conditions at the numerical outer boundary
will be needed to accurately evolve the station-
ary solutions.

For a positive sign of the initial density per-
turbation, the star promptly collapses into a
black hole, see Fig. 17. On the other hand,
for a negative sign, the star does not collapse.
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FIG. 9. Stable stationary star: Times are now t = 0.04, 1.2 and 4 (rows, from top to bottom). We find
1 < N < 2 inside the numerical grid. The numerical error is dominated by the outer boundary. This error
does not converge, but travels inward very slowly and its width shrinks with increased resolution.
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FIG. 10. Stable stationary star: Plots of Nq̄(t; h
2n
, 0) (upper row) and Nq̄(t; h

2n
, 100) (bottom row), for

n = 1, 2, 3. The dashed horizontal line corresponds to first-order convergence N = 1. When the full grid is
taken into account in the computation of the norm, we typically observe first-order convergence. On the
other hand, by neglecting the last 100 grid points in the computation of the norm, we observe convergence
of about N ' 1.5 for Ω and Y and N ' 2 for Z.

Instead, it breathes, i.e. the central density os-
cillates periodically with very large amplitude,
down to about half of the stationary value. This
can be seen in Fig. 14, where we plot the central
density perturbation δρ0(t) at sufficiently long
times for 30 cycles. The simulation is run with
3200 grid points as well. The local maxima stay

approximately constant throughout the simula-
tion, and the central density is approximately
periodic.

It should be again emphasized that due to
the fluctuating numerical convergence for the
stable and oscillating unstable cases (see again
Figs. 10 and 13), it is uncertain how much of
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FIG. 11. Stable stationary star: Central density perturbation against time for approximately 30 oscillation
periods. Red curve corresponds to the stationary initial data with pω = 0.001 and blue curve with
pω = −0.001.
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FIG. 12. Unstable stationary star with negative density perturbation: A first-order error originating from
the outer boundary travels inward, causing the evolution to converge only to first-order. Otherwise as in
Fig. 9.

Fig. 11 and Fig. 14 is physical or a numeri-
cal effect. Nonetheless, we can already observe
qualitative differences in the evolution between
the stable and unstable stationary initial data
even at short times.

VI. CONCLUSIONS

In this paper, we have presented a new code
to simulate the Einstein-fluid equations in ax-
isymmetry in 2 + 1 dimensions. We have fo-
cused on the ultrarelativistic equation of state
p = κρ. However it should be straightforward

to adapt the code to an arbitrary barotropic or
hot equation of state.

In the case of generic initial data that dis-
perse or collapse both with small and large an-
gular momenta, we have demonstrated that the
code converges to second order in resolution
both pointwise and in the `2 norm, except at
and near the numerical outer boundary, and
near the onset of black hole collapse for highly
rotating configurations.

We have also evolved stable and unstable ro-
tating stationary stars. For these, the code con-
verges only to first order. Nevertheless, we can
clearly distinguish stable and unstable stars,
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FIG. 13. Unstable stationary star with negative density perturbation: Plots of Nq̄(t; h
2n
, 0) (upper row)

and Nq̄( h
2n
, 100) (bottom row), for n = 1, 2, 3. The dashed horizontal line corresponds to first-order

convergence, N = 1. We find first-order convergence once the last 100 grid points are neglected.

FIG. 14. Unstable stationary star with negative density perturbation: Central density perturbation against
time. The star breathes nonlinearly without collapsing. Compare with blue curve in Fig. 11.

even at short times. The former remain ap-
proximately stationary, with only small oscil-
lations, while the latter show two distinct evo-
lutions depending on the sign of the perturba-
tion that we apply it to, either collapse or very
large (but still periodic) oscillations. This pro-
vides some evidence in favor of our claim in [6],
where it was suggested that the family of sta-
tionary stars with |J | ≤M` is divided into two
families of stable and unstable solutions.

A fundamental strength of our approach is
that we make full use of the existence of two
conserved matter currents (unexpectedly, for
energy as well as, expectedly, for angular mo-
mentum) and related local expressions for the

mass M and angular momentum J . As a conse-
quence the metric evolution is fully constrained,
and M and J are exactly conserved.

A well-known disadvantage of polar-radial
coordinates is that our code stops as an appar-
ent horizon is approached. However, one could
in principle make equal use of the two conserved
currents and conserved quantities in other co-
ordinates.

The main weakness of our code as presented
here is that we have not found a way of extend-
ing the outer boundary all the way to the time-
like infinity of any asymptotically BTZ space-
time, in a way that is stable and accurate [16].
This means that we have to impose an unphys-
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FIG. 15. Unstable stationary star with positive density perturbation: We observe qualitatively similar
behavior as for Fig. 12.
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FIG. 16. Unstable stationary star with positive density perturbation: Plots of Nq̄(t; h
2n
, 0) (upper row)

and Nq̄(t; h
2n
, 100) (bottom row), for n = 1, 2, 3. The dashed horizontal line corresponds to first-order

convergence. We find here fairly constant convergence of Nq̄(t; h
2n
, 100) ' 1.2 up until the onset of collapse.

ical “copy” boundary condition at finite radius
R. Fortunately, it turns out that, with some
fine-tuning, this does not prevent us from carry-
ing out long-term (many sound-crossing times)
evolutions of stars. Moreover, it also does not
seem to be an obstacle in the investigation of
critical phenomena at the threshold of (prompt)

collapse, which we will report on in a compan-
ion paper.
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FIG. 17. Unstable stationary star with positive density perturbation: We plot the metric coefficient a(ti, r)
(left) at different times ti, ranging from the initial time to the onset of collapse, as well as the central density
against time (right). For this (positive) sign of the initial density perturbation, the star promptly collapses.
Black-hole formation is triggered due to the timestep becoming small (∆t ∼ 10−10).
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