Geochemical, biological and clumped isotopologue evidence for substantial microbial methane production under carbon limitation in serpentinites of the Samail Ophiolite, Oman

Daniel B. Nothafta,*, Alexis S. Templetona,*, Jeemin H. Rhimb, David T. Wangb,1, Jabrane Labidic, Hannah M. Millera,2, Eric S. Boydd, Juerg M. Mattere, Shuhei Onob, Edward D. Youngc, Sebastian H. Kopfa, Peter B. Kelemenf, Mark E. Conradg, The Oman Drilling Project Science Team

aDepartment of Geological Sciences, University of Colorado, Boulder, CO, USA
bDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
cDepartment of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA
dDepartment of Microbiology & Immunology, Montana State University, Bozeman, MT
eNational Oceanography Centre, University of Southampton, Southampton, UK
fLamont-Doherty Earth Observatory, Columbia University, Palsades, NY, USA
gLawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract

In hyperalkaline (pH > 10) fluids that have participated in low-temperature (< 150°C) serpentinization reactions, the dominant form of C is often methane (CH\textsubscript{4}), but the origin of this CH\textsubscript{4} is uncertain. To assess CH\textsubscript{4} origin in serpentine aquifers within the Samail Ophiolite, Oman, we determined fluid chemical compositions, analyzed taxonomic profiles of fluid-hosted microbial communities, and measured isotopic compositions of hydrocarbon gases. We found that 16S rRNA gene sequences affiliated with methanogens were widespread in the aquifer. We measured clumped isotopologue (13CH\textsubscript{3}D and 12CH\textsubscript{2}D\textsubscript{2}) relative abundances less than equilibrium, consistent with substantial microbial CH\textsubscript{4} production. Further, we observed an inverse relationship between dissolved inorganic C concentrations and δ13C\textsubscript{CH\textsubscript{4}} across fluids bearing microbiological evidence of methanogenic activity, suggesting that the apparent C isotope effect of microbial methanogenesis is modulated by C availability. An additional source of CH\textsubscript{4} is evidenced by the presence of CH\textsubscript{4}-bearing fluid inclusions in the Samail Ophiolite and our measurement of high δ13C values of ethane and propane, which are similar to those reported in studies of CH\textsubscript{4}-rich inclusions in rocks from the oceanic lithosphere. In addition, we observed 16S rRNA gene sequences affiliated with aerobic methanotrophs and, in lower abundance, anaerobic methanotrophs, indicating that microbial consumption of CH\textsubscript{4} in the ophiolite may further enrich CH\textsubscript{4} in 13C. We conclude that substantial microbial CH\textsubscript{4} is produced under varying degrees of C limitation and mixes with abiotic CH\textsubscript{4} released from fluid inclusions. This study lends insight into the functioning of microbial ecosystems supported by water/rock reactions.

Keywords: serpentinization, hydrogen, alkane, methanogenesis, methanotrophy, \textit{Methanobacterium}
Plain Language Summary

Mantle rocks from beneath Earth’s crust can be thrust to the surface, where they are exposed to rain and air containing carbon dioxide (CO$_2$). The groundwaters that become stored in these rocks often contain methane (CH$_4$, a major component of “natural gas”), which can be formed from carbon dioxide in the subsurface. To investigate these methane-forming processes, we sampled water, gas, and suspended particles from groundwaters using wells previously drilled into the rocks. The particles contained microbes with the genetic ability to produce methane. We also precisely measured the amounts of combinations of C and H atoms of different masses (isotopes) in the natural gas to determine how it was formed. The results of these measurements suggest that microbes could actively produce a considerable amount of the methane, which mixes with methane from another source that was formed by non-biological processes, possibly long ago under different conditions than today’s. Rocks like those studied here are widespread in the Solar System, so our finding that microbes live and produce methane in these rocks could help guide the search for life beyond Earth.

Key Points

- 16S rRNA gene sequences affiliated with methanogens and CH$_4$ clumped isotopologue compositions suggest substantial microbial CH$_4$ production.
- A second CH$_4$ source, release of CH$_4$ from fluid inclusions, is indicated by 13C-enriched ethane and propane.
- Scarcity of C substrates (CO$_2$ and formate) may decrease the apparent C isotope effect of microbial methanogenesis.

1. Introduction

At temperatures and pressures near the Earth’s surface ($< 400^\circ$C, < 100 MPa), ultramafic rocks such as peridotite in contact with water are thermodynamically driven to hydrate and oxidize, forming variable amounts of serpentine, magnetite, brucite, hydrogen (H$_2$), and other phases (Evans, 1977; Frost, 1985; McCollom and Bach, 2009; Klein and Bach, 2009; Klein et al., 2009, 2019). This process, often called “serpentinization”, can produce H$_2$ at temperatures at least as low as 55°C (Miller et al., 2017b). The resultant H$_2$ can be thermodynamically favored to reduce carbon dioxide (CO$_2$) to methane (CH$_4$) (Shock, *Corresponding authors

Email addresses: daniel.nothaft@colorado.edu (Daniel B. Nothaft), alexis.templeton@colorado.edu (Alexis S. Templeton)

1Current address: ExxonMobil Upstream Research Company, Spring, TX 77389, USA
2Current address: Itasca Denver, Inc., 143 Union Blvd, Suite 525 Lakewood, CO 80228, USA
The reduction of CO$_2$ by H$_2$ to form CH$_4$ can be catalyzed on mineral surfaces as in the Sabatier
reaction (Etiope and Ionescu, 2015; Klein et al., 2019), or enzymatically through microbial methanogenesis
(Whiticar, 1999).

In continental settings undergoing serpentinization, where fluid-rock reactions typically occur at low
conditions (< 150$^\circ$C), there is disagreement regarding the origin of CH$_4$. Three key potential CH$_4$
sources have been identified in these environments. One potential source is the abiotic reduction of CO$_2$
to CH$_4$ at warmer-than-present temperatures in fluid inclusions within crystals that can store CH$_4$ and
subsequently release it. Another potential source is the abiotic, mineral-catalyzed reduction of CO$_2$ to CH$_4$
at the low temperatures that prevail in the present-day weathering environment. A third potential source
is microbial methanogenesis.

Storage of CH$_4$ produced at temperatures of 270$^\circ$C to 800$^\circ$C in fluid inclusions in minerals such as olivine
and the release of this CH$_4$ through subsequent chemical/physical alteration are the dominant processes
contributing to CH$_4$ fluxes from sediment-poor seafloor hydrothermal vents (Kelley, 1996; Kelley and Früh-
Green, 1999; McDermott et al., 2015; Wang et al., 2018; Labidi et al., 2020). In continental, low-temperature
serpentinizing settings, however, debate continues as to whether fluid inclusions can sustain observed CH$_4$
fluxes (Etiope and Whiticar, 2019; Grozeva et al., 2020).

Abiotic reduction of CO$_2$ to CH$_4$ can occur at temperatures at least as low as 20$^\circ$C when catalyzed by
the transition metal ruthenium (Ru) (Etiope and Ionescu, 2015). Ru is present in considerable abundance
in chromitite bodies in ultramafic rock accumulations (Etiope et al., 2018), but it has only been shown
to catalyze CO$_2$ hydrogenation under conditions where free gas phases exist (Etiope and Ionescu, 2015).
The prevalence of this process, particularly in aquifers whose fluid compositions appear to be dominantly
influenced by aqueous reactions with harzburgite, is another matter of ongoing debate (Etiope, 2017; Miller
et al., 2017a).

Low-temperature CH$_4$ production can also be mediated by microbes called “methanogens”. Microbial
CH$_4$ has traditionally been viewed as a minor/negligible source of CH$_4$ in serpentinizing settings. This is due
in large part to the relatively 13C-enriched composition of CH$_4$ in serpentinizing settings (13C commonly
-20% VPDB to 5% VPDB), which contrasts with the more 13C-depleted composition of CH$_4$ in sedi-
mentary settings dominated by microbial methanogenesis (13C commonly -90% VPDB to -50% VPDB)
(Etiope, 2017; Milkov and Etiope, 2018; Etiope and Whiticar, 2019). However, cultures of methanogens can
produce CH$_4$ with minimal C isotope fractionation in H$_2$-rich, CO$_2$-poor fluids simulating serpentinizing
systems (Miller et al., 2018). In these cultures, it has been inferred that the net C isotope effect of methano-
genesis was attenuated due to microbial conversion of a large proportion of available CO$_2$ to CH$_4$ when
CO$_2$ was the limiting substrate. Such results illustrate that 13C-enriched CH$_4$ in natural serpentinizing
settings does not necessarily derive from non-microbial sources. Still, the quantity and isotopic composition
of microbial CH$_4$ in serpentinizing settings remains uncertain.
In this study, we assessed sources and sinks of CH$_4$ in the Samail Ophiolite of Oman, a site of active, low-temperature serpentinization and carbonation. Fluids and particulates in groundwaters accessed via wells in the Samail Ophiolite have been sampled for biogeochemical studies annually from 2014 through 2018 from January to March. Microbiological and geochemical data from sampling campaigns in 2014 through 2017 and a limited number of C and H bulk stable isotope analyses of CH$_4$ sampled in 2014 have been previously reported (Miller et al., 2016; Rempfert et al., 2017; Kraus et al., 2021; Fones et al., 2019, 2020). Here, we present new geochemical and 16S rRNA gene amplicon sequencing data from samples acquired in 2018. We also present new bulk stable isotope data on CH$_4$, ethane (C$_2$H$_6$), and propane (C$_3$H$_8$) from samples obtained from 2015 through 2018. Further, we report analyses of multiply-substituted “clumped” isotopologues of CH$_4$, 13CH$_3$D and 12CH$_2$D$_2$, for the first time on samples from this ophiolite. Leveraging one of the largest longitudinal data sets on CH$_4$ biogeochemistry in an ophiolite, we have identified robust trends across years and hydrogeologic settings. We observed a wide range of C isotopic compositions of CH$_4$ and short-chain alkanes, intramolecular isotopologue disequilibrium in CH$_4$, and widespread occurrence of gene sequences affiliated with methanogens, which collectively indicate that substantial quantities of microbial CH$_4$ are produced and mix with abiotic CH$_4$ released from fluid inclusions in the Samail Ophiolite. Our finding that microbial methanogenesis proceeds even in hyperalkaline fluids lends insight into the functioning of microbial ecosystems that leverage reactions between water and ultramafic rocks to power metabolic processes on Earth and perhaps on other rocky bodies of the Solar System (Ménez, 2020; Glein and Zolotov, 2020).

2. Geologic Setting

The Samail Ophiolite (Figure 1) consists of pelagic sedimentary rocks (< 0.1 km), volcanic rocks (0.5 km to 2.0 km), sheeted dikes (1 km to 1.5 km), gabbro and igneous peridotite (0.5 km to 6.5 km), residual mantle peridotites, (8 km to 12 km), and a metamorphic sole of greenschist- to granulite-facies metamorphic rocks (< 0.5 km) (Glennie et al., 1973; Coleman and Hopson, 1981; Lippard et al., 1986; Nicolas, 1989; Nicolas et al., 2000). The ophiolite crust formed from 96.12 Ma to 95.50 Ma, and convergence began at about the same time (Rioux et al., 2016), or up to 10 Myr earlier (Guilmette et al., 2018; Soret et al., 2020). Ophiolite emplacement continued until 78 Ma to 71 Ma (Rabu et al., 1993). Part of the ophiolite was subaerially eroded in the Late Cretaceous, then became covered in parts by Maastrictian to Eocene limestones due to subsidence and transgression (Nolan et al., 1990; Skelton et al., 1990).

The mantle section of the ophiolite is mainly composed of highly depleted, residual mantle harzburgites, together with 5% to 15% dunite, which both contain a few percent chromian spinel (Godard et al., 2000; Haaghøj et al., 2010; Boudier and Coleman, 1981; Collier, 2012). The extent of serpentinization is typically 30% to 60%, reaching 100% in some cases (Dewandel et al., 2003; Boudier et al., 2009; Miller et al., 2016; Kelemen et al., 2020). Chromitites are most often found in association with dunites near the crust-mantle.
Methane Origin in Samail Ophiolite

Figure 1: Study area in Samail Ophiolite, Sultanate of Oman. Geologic map data from Nicolas et al. (2000). Inset: overview of Samail Ophiolite (shaded in brown) with study area (larger map) indicated by the red shaded box. A topographic map of the study area is provided in Supporting Information Figure S1.

transition, possibly representing bases of cumulate piles, but are also found dispersed throughout the mantle section (Rollinson, 2005).

Geologic reservoirs of C underlying the ophiolite include Mid Permian to Late Cretaceous shallow marine carbonates, which host oil and gas fields in parts of northern Oman and the United Arab Emirates (Terken,
Methane Origin in Samail Ophiolite

3. Methods

3.1. Fluid sampling and field measurements

Wells were drilled into the Samail Ophiolite by the Ministry of Regional Municipalities and Water Resources of the Sultanate of Oman prior to 2006 (“WAB” and “NSHQ” wells in this study) and by the Oman Drilling Project in 2016 through 2018 (“CMT”) (Parsons International & Co., 2005; Kelemen et al., 2013). Information on well location, construction, and water level are given in Table 1. In sampling campaigns in 2014 and 2015, a 12 V submersible Typhoon® pump (Proactive Env. Products, Bradenton, FL, USA) with typical flow rates of 5 L·min⁻¹ was used. This pump was used in all years of sampling at well NSHQ04 due to partial obstruction of this well. In all other sampling from 2016 onwards, a larger submersible pump (Grundfos SQ 2-85) with typical flow rates of 20 L·min⁻¹ was used. The pumping depths are reported in Tables 1 and 2. For fluids sampled in 2018, temperature, conductivity, and pH were measured using a ColeParmer PC100 Meter, while Eh was measured using a Mettler Toledo SG2 SevenGo meter. The analytical uncertainties for temperature, conductivity, pH, and Eh are 0.5 °C, 1.0% of measured value, 0.01 µS·cm⁻¹, and 1 mV, respectively. Each well was pumped for ≥ 20 min prior to sampling. Sampling commenced once fluid pH and conductivity measurements stabilized.

3.2. Chemical and isotopic analyses of fluids

To analyze aqueous concentrations (c) of non-carbonaceous chemical species, samples were collected by passing groundwater through a 0.2 µm filter into polypropylene conical tubes. Aqueous concentrations of ∑ Na, ∑ Ca, ∑ Mg, ∑ Al, ∑ Fe, and ∑ Si were measured by inductively coupled plasma (ICP) atomic emission spectroscopy on a PerkinElmer Optima 5300 (repeatability as median relative standard deviation of 3%). Aqueous concentrations of Cl⁻, Br⁻, F⁻, and SO₄²⁻ were measured on a Dionex IC25 ion chromatograph with an AS9-HC IonPac column, with the exception of NO₃⁻, which was measured on a Dionex 4500I ion chromatograph with an IonPac AS14 column using EPA method 300.0 (analytical uncertainty of 2%).
The concentration and δ¹³C of dissolved inorganic C (∑ CO₂) were measured by acidification of water samples and transfer of resultant CO₂(g) via a Thermo Fisher GasBench II to a Thermo Delta V Plus isotope ratio mass spectrometer. We optimized the methods of Assayag et al. (2006) for the wide range of observed CO₂ observed in ophiolite groundwaters. Complete methodological details are available at http://dx.doi.org/10.17504/protocols.io.zduf26w. Sample δ¹³C values were converted to the VPDB reference frame using measured δ¹³C values of international reference materials (Harding Iceland Spar and LSVEC). Isotopic reference frame calculations were performed using the Isoverse suite of packages (Kopf et al., 2021) for the statistical programming language, R (R Core Team, 2019) (Section 6).

Water δ¹⁸O and δD were measured on a Picarro L2120-i cavity ring down spectrometer. The instrument analyzed each sample six times, excluding the first three analyses to avoid memory effects. Reported precision is the standard deviation of the last three measurements. Reported accuracy is the mean difference between accepted values and measured values of standards. Mean precision in the run was 0.06‰ for δ¹⁸O and 0.23‰ for δD; mean accuracy was 0.04‰ for δ¹⁸O and 0.47‰ for δD.

Gases dissolved in pumped groundwaters were sampled by injecting water into N₂ purged vials for headspace gas analysis using methods described by Miller et al. (2016) in field campaigns occurring from 2014 to 2017. In addition, the bubble strip method (modified from Kampbell et al., 1998) was used from 2016 to 2018. Details on bubble strip gas sampling are available at http://dx.doi.org/10.17504/protocols.io.2x5gfq6. The gas concentrations reported in this study were determined from bubble strip samples. These concentrations were measured on an SRI 8610C gas chromatograph (GC) with N₂ as the carrier gas. H₂, CO, CH₄, and CO₂ were separated with a 2 mm by 1 mm ID micropacked ShinCarbon ST column, whereas alkanes of 2 to 6 C atoms (“C₂−C₆ short-chain alkanes”) were separated with a PORAPAK Q 6 ft by 0.085 in ID column. Peak intensities were measured concurrently using a thermal conductivity detector (TCD) and a flame ionization detector (FID) and calibrated with standard gas mixes (Supelco Analytical, Bellefonte, PA, USA; accuracy of ±2% of reported concentration). Measurement repeatability expressed as relative standard deviation was 5% over most of the calibrated range. The limit of quantitation was defined as the signal at which the relative standard deviation increased to 20%. In 2018, H₂ and CO were analyzed on a Peak Performer 1 gas chromatograph equipped with a reducing compound photometer (RCP). Due to the high sensitivity of the RCP, the signal at limit of quantitation (Sₚ) for these analyses was defined as $S_{LQ} = S_b + 10 \cdot \sigma_b$, where S_{mb} is the mean signal of blanks prepared in field and σ_b is the population standard deviation of these blanks, in accordance with American Chemical Society guidelines (MacDougall et al., 1980). Gaseous concentrations were converted to aqueous concentrations using gas solubilities (Sander, 2015) and corrected for temperature and volume changes between sampling and analysis.

Prior to 2017, bulk stable isotope analyses of CH₄ were conducted at the Center for Isotope Geochemistry at the Lawrence Berkeley National Laboratory (LBNL) by gas chromatography/combustion/pyrolysis isotope-ratio mass spectrometry (GC/C/Pyr/IRMS) using methods described by Miller et al. (2016). The
measurement repeatability expressed as 1 sample standard deviation (s) for these analyses is ±0.2‰ for δ^{13}C and ±5‰ for δD.

From 2017 onwards, bulk stable isotope analyses of CH₄ and co-occurring alkane gases were conducted at the University of Colorado - Boulder (CUB) by GC/C/Pyr/IRMS using a Trace 1310 GC equipped with an Agilent J & W GS-CarbonPLOT column (30 m length, 0.32 mm ID, 3.0 µm film) coupled to a Thermo Scientific MAT253 IRMS. CH₄ isotope standards purchased from Airgas (uncertainties of ±0.3‰ for δ^{13}C and ±5‰ for δD) were used for calibration. Over the range of peak amplitudes of analyses reported here, the repeatability expressed as s on analyses of standards is ±0.6‰ for δ^{13}C and ±7‰ for δD. The analytical uncertainty (accuracy) expressed as 1 standard error on a 3-point calibration was <0.3‰ for δ^{13}C and <9‰ for δD (Supporting Information Section S1).

The relative abundances of CH₄ isotopologues, including the doubly-substituted isotopologue, ^{13}CH₃D, were measured at the Massachusetts Institute of Technology (MIT) by tunable infrared laser direct absorption spectroscopy following the methods described by Ono et al. (2014). Abundances of CH₄ isotopologues, including both ^{13}CH₃D and ^{12}CH₂D₂, were measured at the University of California, Los Angeles (UCLA) by high-mass-resolution gas-source isotope ratio mass spectrometry following the procedure of Young et al. (2016). The abundance of ^{13}CH₃D relative to a random (stochastic) distribution of isotopes among the isotopologues in a CH₄ sample is described by its Δ^{13}CH₃D value, which is defined as: Δ^{13}CH₃D = ln Q, where Q is the reaction quotient of the isotope exchange reaction:

\[^{13}\text{CH}_4 + ^{12}\text{CH}_3\text{D} \rightleftharpoons ^{12}\text{CH}_4 + ^{13}\text{CH}_3\text{D}. \] (1)

Analogous expressions can be written for doubly-deuterated CH₄, ^{12}CH₂D₂.

3.3. 16S rRNA gene sequencing and analysis

Biomass for DNA extraction was concentrated by pumping 5 L to 20 L of groundwater through Millipore polycarbonate inline filters (0.45 µm pore diameter, 47 mm filter diameter). At well NSHQ04, a 0.22 µm pore diameter polyethersulfone Millipore Sterivex filter was used instead due to the lower-flow pump used at this well (Section 3.1). Filters were placed in cryovials, transported frozen in liquid N₂, and stored in a −70°C freezer until extraction. DNA was extracted from one quarter subsamples of each filter using a Qiagen PowerSoil DNA extraction kit. The V4 hypervariable region of the 16S rRNA gene was amplified by PCR in duplicate reactions using the 515 (Parada) - 806R (Apprill) primer pair modified to include Illumina adapters and the appropriate error-correcting barcodes. Each 25-µL reaction mixture included 12.5 µL of Promega HotStart Mastermix, 10.5 µL of PCR-grade water, 1 µL of PCR primers (combined at 10 M), and 1 µL of purified genomic DNA. PCR consisted of an initial step at 94°C for 3 min followed by 35 cycles of 94°C for 45 s, 50°C for 1 min, and 72°C for 1.5 min. PCR concluded with a final elongation step at 72°C for 10 min. No-template controls and DNA extraction controls were subjected to PCR to
check for potential contamination in our PCR and DNA extraction reagents, respectively. Amplification
was evaluated via electrophoresis in a 2 % agar gel. Amplicons from duplicate reactions were pooled, cleaned,
and their concentrations normalized using a Thermo Fisher SequalPrep normalization plate kit. Amplicons
were sequenced on an Illumina MiSeq at the CUB Next-Generation Sequencing Facility with 2-by-150bp
paired-end chemistry.

Sequences were demultiplexed with idemp (https://github.com/yhwu/idemp). The resultant fastq files
were quality filtered using Figaro v1.1.1 (https://github.com/Zymo-Research/figaro) and the DADA2
v1.16 R package (Callahan et al., 2016). Amplicon sequence variants were assigned taxonomy to the genus
level using the RDP classifier (Wang et al., 2007) trained on the Silva SSU 138 reference database (Quast
et al., 2012) using the DADA2 assignTaxonomy function. Species level assignments were based on exact
matching between amplicon sequence variants and sequenced reference strains using the DADA2 addSpecies
function. Sequences assigned to mitochondria, chloroplast, and Eukaryota, or not assigned at the domain
level (collectively < 1 % of sequences), were removed. After all of the above filtering, 24 000 to 40 000
reads per sample remained for the samples presented here obtained in 2018. In addition, 16S rRNA gene
sequencing data from previous Oman sampling campaigns (2014 through 2017; Miller et al., 2016; Rempfert
et al., 2017; Kraus et al., 2021) were reprocessed in accordance with the methods outlined here to facilitate
comparisons across the data sets. The complete data processing pipeline for samples across all years, from
raw data provided by the sequencing facility through to taxonomic assignment, are available at https://
github.com/danote/Samail_16S_compilation. Additional analyses and plotting can be found in the
Github supplement for this paper (Section 6). For samples presented in this study, demultiplexed fastq
files (without additional processing) are also accessible on the NCBI Short Read Archive under accession
PRJNA655565.

3.4. Thermodynamic calculations

Oxidation-reduction potential, pH, and concentrations of major ions and \(\sum \) CO\(_2\) were used as inputs for
the modeling software PHREEQC (Charlton and Parkhurst, 2011; Parkhurst and Appelo, 2013), with which
fluids were speciated using the LLNL database. Activities of formate and acetate were separately calculated
according to the Debye-Hückel equation. Activities of the aqueous gases were assumed equivalent to their
concentrations, which is reasonable for neutral species in low ionic strength solutions. Standard Gibbs free
energies (\(\Delta G^o_r \)) of the CH\(_4\)-forming reactions were calculated using the program SUPCRTBL (Johnson et al.,
1992; Zimmer et al., 2016) using conditions of 1 bar and 35 °C to approximate in situ conditions. Gibbs
free energies were then calculated as \(\Delta G_r = \Delta G^o_r + RT \ln Q_r \), where \(R \) is the universal gas constant, \(T \) is
temperature, and \(Q_r \) is the reaction quotient. All of the above calculations and software inputs and outputs
can be found in the Github supplement (Section 6).

9
4. Results and discussion

4.1. Controls on groundwater chemistry

To assess the source and reaction histories of Samail Ophiolite groundwaters, we measured their stable isotopic compositions and solute concentrations. Groundwater δD and δ¹⁸O plotted near local and global meteoric water lines (Weyhenmeyer et al., 2002; Terzer et al., 2013), indicating that the groundwaters derive from rain (Table 3; Supporting Information Figure S2; Matter et al., 2006; Miller et al., 2016; Paukert et al., 2012; Rempfert et al., 2017). The increase in pH introduced during subseafloor alteration and/or ophiolite emplacement (Neal and Stanger, 1985; Stanger, 1986; Murad and Krishnamurthy, 2004; Paukert et al., 2012; Rempfert et al., 2017). The increase in pH from Mg²⁺ – HCO₃⁻ waters (pH 8.66 to 9.62) to Ca²⁺ – OH⁻ waters (10.51 to 11.39) was accompanied by a shift to lower fO₂ and Eh (−10⁻⁵¹ bar and −174 mV to −253 mV, respectively, in most Ca²⁺ – OH⁻ waters) (Table 1), indicating reduced conditions in Ca²⁺ – OH⁻ waters.

Concentrations of ∑CO₂ were relatively high in Mg²⁺ – HCO₃⁻ waters and gabbro waters (up to 3490 μmol·L⁻¹), but below the limit of quantitation (< 12 μmol·L⁻¹) in most Ca²⁺ – OH⁻ waters (Table 3). This is consistent with water-harzburgite reaction path modeling that terminates at chrysotile-brucite-dioropsis-calcite equilibrium, corresponding to a c∑CO₂ of 8 μmol·L⁻¹ at 25 °C and 1 bar (Leong and Shock, 2020). Literature values for c∑CO₂ in ophiolitic Ca²⁺ – OH⁻ waters are often higher than those predicted by reaction path modeling, but the lower range of reported values approaches 1 μmol·L⁻¹ (Barnes et al., 1967; Barnes and O’Neil, 1969; Barnes et al., 1978; Neal and Stanger, 1985; Bruni et al., 2002; Cipolli et al., 2004; Paukert et al., 2012; Falk et al., 2016; Brazelton et al., 2017; Canovas III et al., 2017; Crespo-Medina et al., 2017; Rempfert et al., 2017; Fones et al., 2019; Paukert Vankeuren et al., 2019). This spread in the data could reflect groundwater mixing, atmospheric contamination during sampling, differences in reaction temperature and progress, and/or kinetic inhibitions to carbonate mineral precipitation. In Mg²⁺ – HCO₃⁻ waters and waters from gabbroic aquifers, δ¹³C∑CO₂ ranged from −13.54 % VPDB to −10.88 % VPDB (Table 3), which is comparable to δ¹³C∑CO₂ of Mg²⁺ – HCO₃⁻ waters elsewhere in the ophiolite (−15.56 % VPDB to −13.60 % VPDB; Matter et al., 2006; Nothaft et al., 2021).
Variable concentrations of H_2 and CH_4 across wells suggest spatial heterogeneities in sources and sinks of these gases in the ophiolite. In some $Ca^{2+} − OH^−$ waters, c_{H_2} was high (up to $253 \mu mol \cdot L^{-1}$), but c_{H_2} was below limits of quantitation in other $Ca^{2+} − OH^−$ waters (Figure 2; Table 4). In $Mg^{2+} − HCO_3^−$ waters and waters from gabbroic aquifers, c_{H_2} was generally below limits of quantitation. However, up to $0.992 \mu mol \cdot L^{-1}$ H_2 was measured in well WAB188, which is in gabbro near a faulted contact with peridotites that contain $Ca^{2+} − OH^−$ waters (Figure 1; Table 1). This suggests production of H_2 within the gabbro host rock or migration of H_2 from peridotites into gabbros surrounding WAB188. In most $Ca^{2+} − OH^−$ waters, c_{CH_4} was high (up to $483 \mu mol \cdot L^{-1}$; Figure 2, Table 4). However, wells with high c_{CH_4} did not always have high c_{H_2} (Figure 2; Table 4). In $Mg^{2+} − HCO_3^−$ waters and gabbro waters, c_{CH_4} was typically lower ($\leq 0.1 \mu mol \cdot L^{-1}$), although c_{CH_4} reached $1.83 \mu mol \cdot L^{-1}$ in well WAB188, where c_{H_2} was also quantitatable.

4.2. Origin of CH_4 and co-occurring short-chain alkanes in the Samail Ophiolite

We begin our examination of CH_4 origin in the Samail Ophiolite by calculating Gibbs free energies (ΔG_r) of potential CH_4-forming reactions under relevant environmental conditions and discussing these results in light of recent microbiological studies on methanogenesis in the study area. Subsequent discussion focuses on fluid and particulate samples from a subset of wells (NSHQ14, NSHQ04, and WAB188) that yielded...
particularly rich data sets from which we infer key CH$_4$ cycle processes. Discussion of three additional wells (WAB71, WAB56, and CM2A) in Supporting Information Text S1 illustrates that the processes outlined below occur throughout the broader study area with some variation due to local hydrogeologic factors.

4.2.1. Assessing which CH$_4$-forming reactions might occur using thermodynamic and microbiological data

To assess which CH$_4$-forming aqueous reactions might occur within the Samail Ophiolite, ΔG_r’s were calculated for the following reactions:

$$\text{CO}_2(\text{aq}) + 4\text{H}_2(\text{aq}) = \text{CH}_4(\text{aq}) + 2\text{H}_2\text{O}(\text{l}) \text{ (hydrogenotrophic methanogenesis)}$$ (2)

$$\text{CH}_3\text{COO}^- (\text{aq}) + \text{H}^+(\text{aq}) = \text{CH}_4(\text{aq}) + \text{CO}_2(\text{aq}) \text{ (acetoclastic methanogenesis)}$$ (3)

$$4\text{HCOO}^- (\text{aq}) + 4\text{H}^+(\text{aq}) = \text{CH}_4(\text{aq}) + 3\text{CO}_2(\text{aq}) + 2\text{H}_2\text{O}(\text{l}) \text{ (formate disproportionation).}$$ (4)

Gas-phase, abiotic reactions are also possible (Etiope and Ionescu, 2015; Etiope et al., 2018), but measurements of partial pressures of relevant gases in unsaturated zones of the subsurface in the study area are absent. Thus, ΔG_r’s of gas-phase reactions were not calculated. In addition to the common hydrogenotrophic and acetoclastic modes of methanogenesis, formate disproportionation (Equation 4) was considered because formate can be produced abiotically in serpentinizing settings (McCollom and Seewald, 2003; McDermott et al., 2015; Miller et al., 2017b) and has been suggested as an important substrate for microbial metabolism in these settings (Lang et al., 2018), including for methanogenesis (Fones et al., 2020).

Rather than calculate ΔG_r’s of the above reactions for each individual groundwater chemical analysis, we investigate a range of generalized cases to highlight the most important factors controlling ΔG_r’s and to assess energetic states of the system that lay beyond our analytical limits. For instance, ΣCO$_2$ was below the limit of quantitation for the majority of the Ca$_2^+$ – OH$^-$ groundwaters sampled in 2018 (< 12 µmol · L$^{-1}$; Table 3). H$_2$ was also below the limit of quantitation for several Ca$_2^+$ – OH$^-$ and Mg$_2^+$ – HCO$_3^-$ groundwaters (< 0.048 nmol · L$^{-1}$ in 2017 and < 0.598 nmol · L$^{-1}$ in 2018; Table 4). Further, formate and acetate were not measured explicitly for this study, but were measured on groundwaters from the studied wells sampled in 2015 (Rempfert et al., 2017). Thus, while robust constraints on the above parameters are available for the study area, complete sets of these parameters were generally not directly or simultaneously measured.

In light of this, we considered a representative Mg$_2^+$ – HCO$_3^-$ groundwater and a representative Ca$_2^+$ – OH$^-$ groundwater, made informed assumptions when direct concentration measurements were lacking, and evaluated ΔG_r’s for a range of H$_2$ concentrations. Measurements of major inorganic dissolved constituents, pH, and E_h from wells WAB105 and NSHQ14 were used for the model Mg$_2^+$ – HCO$_3^-$ and Ca$_2^+$ – OH$^-$ fluids, respectively (Tables 1 and 3). Since measured ΣCO$_2$ was below the limit of quantitation in the
water sample from NSHQ14, 8 μmol·kg$^{-1}$ was taken as the c_{CO_2} of the representative Ca$^{2+}$−OH$^-$ water, corresponding to the value at chrysotile-brucite-diopside-calcite equilibrium at 25°C and 1 bar obtained from water-harzburgite reaction path modeling (Leong and Shock, 2020). Concentrations of formate and acetate were both assumed to be typical concentrations for these fluids (Table 4, Figure 2). H$_2$ concentrations vary widely between and within fluid types (Table 4, Figure 2), so calculations were performed for multiple H$_2$ concentrations (1 mmol·kg$^{-1}$, 1 μmol·kg$^{-1}$, and 1 mmol·kg$^{-1}$) encompassing the range of concentrations observed in Ca$^{2+}$−OH$^-$ fluids. The 1 mmol·kg$^{-1}$ H$_2$ case was omitted for the Mg$^{2+}$−HCO$_3^-$ fluid, where such high H$_2$ concentrations are not observed. The log activities (a) of all relevant species are tabulated in Table 5.

The calculated ΔG_r’s (Table 5) indicate that all of the CH$_4$-forming reactions considered here can have sufficient chemical potential to sustain microbial life in certain states of the system. That is, $\Delta G_r > \Delta G_{\text{min}}$, where ΔG_{min} (also known as the Biological Energy Quantum) is the minimum free energy that must be available to sustain life in a given environment (thought to be around −9 kJ·mol$^{-1}$ to −20 kJ·mol$^{-1}$; Schink, 1997; Hoehler, 2004; Schink and Stams, 2006). Acetoclastic methanogenesis had the most negative ΔG_r in all conditions tested. Formate disproportionation had more negative ΔG_r than hydrogenotrophic methanogenesis in all Ca$^{2+}$−OH$^-$ conditions tested, but formate disproportionation had less negative ΔG_r than hydrogenotrophic methanogenesis in the Mg$^{2+}$−HCO$_3^-$ case at 1 μmol·kg$^{-1}$ H$_2$. Hydrogenotrophic methanogenesis had sufficient chemical potential to sustain microbial life only when a_{H_2} was high enough, with the threshold a_{H_2} being higher in Ca$^{2+}$−OH$^-$ waters, where $a_{\text{CO}_2(\text{aq})}$ is lower. These calculations are generally consistent with those of Canovas III et al. (2017), who found that hydrogenotrophic methanogenesis had modest potential energy yields in waters from surface seeps in the Samail Ophiolite at pH ranging from 8 to 12.

Several additional factors should be considered when interpreting the ΔG_r results. First, reactions proceeding in environmental systems are often drawn towards equilibrium, and thus a large negative ΔG_r of a given reaction may indicate that that reaction is not actively occurring, but only has the potential to occur. Second, substrate transport into the cell is not addressed in our calculations. A more complete model would account for rates of CO$_2$ diffusion across the cell membrane and/or energy expended to transport charged species such as formate and acetate into the cell (Hoehler, 2004). Third, mixing is not explicitly accounted for in our calculations. Mixing has been suggested as a key factor controlling energetic favorability of various reactions in the Samail Ophiolite. This is especially pertinent to hydrogenotrophic methanogenesis because c_{CO_2} is so much lower in endmember hyperalkaline fluids than in near-surface, atmosphere-influenced fluids (Canovas III et al., 2017; Leong and Shock, 2020). The c_{CO_2} used for the example Ca$^{2+}$−OH$^-$ fluid in our calculations is representative of a minimum value for the system (Leong and Shock, 2020). Mixing would
tend to inject CO₂ into the fluids and increase the energetic favorability of hydrogenotrophic methanogenesis. In addition to energetic considerations, microbiological approaches can help elucidate which CH₄-forming reactions occur. Kraus et al. (2021) found higher transcript abundances of carbonic anhydrase and formate dehydrogenase relative to acetate kinase and phosphate acetyltransferase in hyperalkaline groundwaters from wells in the Samail Ophiolite, suggesting that CO₂/HCO₃⁻ and formate are more actively used substrates for methanogenesis than acetate in these conditions. Further, Fones et al. (2020) identified two lineages of Methanobacterium in Samail Ophiolite groundwaters that were shown by genomic and microcosm-based radiotracer approaches to use different methanogenic pathways. Methanobacterium Type I lineage predominated in circumneutral waters and is capable of using either CO₂ or formate for methanogenesis. Methanobacterium Type II lineage, which was more abundant in hyperalkaline waters and which branched from the Type I lineage, was exclusively capable of formatotrophic methanogenesis. It was postulated that gene loss and acquisition in Type II lineage allowed it to be specially suited to the high-pH and low-∑CO₂ conditions resulting from extensive serpentinization. Thus, microbiological data suggest that hydrogenotrophic or formatotrophic methanogenesis are the most likely pathways for methanogenesis in the Samail Ophiolite and that the relative contributions of each of these pathways to microbial CH₄ production at a given site may depend on local geochemical factors such as aCO₂(aq). This notion is generally supported by our calculations in that formate disproportionation had more negative ∆Gᵣ than hydrogenotrophic methanogenesis in all Ca²⁺ – OH⁻ conditions tested, whereas the reverse was true for the Mg²⁺ – HCO₃⁻ case at 1 µmol · kg⁻¹ H₂.

Remarkably, although acetoclastic methanogenesis had the most negative ∆Gᵣ of the investigated CH₄-forming reactions (Table 5), it has the least microbiological evidence of being a major methanogenic pathway in the Samail Ophiolite. Conversion of isotopically labeled acetate (¹³CH₃OO⁻) to ¹³CH₄, has, however, been documented in cultures from serpentinite springs in the Voltri Massif, Italy (Brazelton et al., 2017), indicating that acetoclastic methanogenesis can operate in some serpentinizing settings. In the aquifers sampled via wells in the Samail Ophiolite, methanogens may be out-competed for acquisition of acetate by other groups of microbes, such as sulfate reducers. Indeed, geochemical evidence of microbial acetate oxidation coupled to sulfate reduction has been reported in alkaline, H₂-rich, crystalline rock aquifers inhabited by microbial communities dominated by sulfate reducing bacteria and methanogens (Moser et al., 2005).

4.2.2. Abiotic, ¹³C-enriched CH₄, C₂H₆, and C₃H₈ mixed with microbial CH₄ produced under C-limited conditions in the Ca²⁺ – OH⁻ waters of well NSHQ14

Well NSHQ14 is situated in a catchment dominated by partially serpentinized harzburgite with meter-scale partially serpentinized dunite bands (Figure 1; Supporting Information Figure S1; Table 1). The well is cased to 5.8 meters below ground level (mbgl) and drilled to 304 mbgl (Table 1). Groundwaters accessed via NSHQ14 had the highest pH (11.39), and lowest Eh (−253 mV) and fO₂ (1.19 · 10⁻⁵¹ bar) among the
wells investigated (Table 1), indicating that fluids sampled from NSHQ14 have extensively participated in
serpentinization. This is also reflected in the c_{H_4} of groundwaters sampled at NSHQ14, which was the
highest among the studied wells (253 μmol · L$^{-1}$ and 131 μmol · L$^{-1}$ in 2017 and 2018, respectively; Table
4; Figure 2). NSHQ14 waters also had high c_{H_4} (106 μmol · L$^{-1}$ and 71.2 μmol · L$^{-1}$ in 2017 and 2018,
respectively).

CH_4 has ranged in $\delta^{13}\text{C}$ from -6.89% VPDB to $+3.7\%$ VPDB in fluid samples from NSHQ14, with a
mean weighted by sample year of -0.8% VPDB (Figure 3a; Table 2). These $\delta^{13}\text{C}$ values are generally higher
than those of CH_4 emanating from sediment-poor seafloor hydrothermal vents, where a dominantly abiotic
origin has been proposed ((Welhan and Craig, 1983; Merlivat et al., 1987; Charlou et al., 1996, 2000, 2002;
Proskurowski et al., 2008; Kumagai et al., 2008; McDermott et al., 2015; Wang et al., 2018); represented by
Mid-Cayman Rise, Lost City, and Ashadze II in Figure 3a), higher than typical mantle values (Deines, 2002),
and similar to marine carbonate (Schidlowski, 2001). CH_4 $\delta^{13}\text{C}$ at NSHQ14 is generally higher than $\delta^{13}\text{C}$
of carbonate veins in NSHQ14 (-7.05% VPDB to -4.69% VPDB; Miller et al., 2016), which is opposite
to that which would be expected at equilibrium (Bottinga, 1969), indicating that CH_4 is not in isotopic
equilibrium with co-existing carbonate minerals.

CH_4 is accompanied by C_2-C_6 alkanes in fluids from NSHQ14 (Table 4). These alkanes had $C_1/(C_2 + C_3)$
ratios of 1240 in 2017 and 881 in 2018, which are similar to fluid samples and rock crushings from other
ophiolites and sediment-poor seafloor hydrothermal vents (Abrajano et al., 1990; Charlou et al., 2010; Mc-
Dermott et al., 2015; Grozeva et al., 2020), but 10^2 times higher than those of Kidd Creek mine, Canada,
for which a low-temperature, abiotic origin of alkanes has been proposed (Sherwood Lollar et al., 2002,
2008; Young et al., 2017) (Figure 3c). Thus, $C_1/(C_2 + C_3)$ ratios could reflect differences in alkane forma-
tion mechanisms or extents of reaction in Precambrian shield sites like Kidd Creek versus ophiolites and
sediment-poor seafloor hydrothermal vents.

C_2H_6 and C_3H_8 at NSHQ14 are strongly ^{13}C-enriched ($\delta^{13}\text{C}$ of -6.0% VPDB and $+3.3\%$ VPDB, re-
spectively; Table 2; Figure 4). The observed $\delta^{13}\text{C}$ values are $\sim 15\%$ higher than those in the most mature
(and therefore most ^{13}C-enriched) thermogenic C_2H_6 and C_3H_8 samples from confined systems (Milkov and
Etiopé, 2018; Fiebig et al., 2019). Increases in $\delta^{13}\text{C}_{\text{C}_3}$ of $\sim 15\%$ have been attributed to microbial oxidation
of short-chain alkanes, which enriches the residual in ^{13}C (Martini et al., 2003). However, short-chain alkane
oxidizing microbial species (Shenman, 2006; Singh et al., 2017; Laso-Pérez et al., 2019) were not detected in
16S rRNA gene sequences of DNA obtained from NSHQ14. Thus, there is not strong evidence to suggest
that $\delta^{13}\text{C}_{\text{C}_3}$ and $\delta^{13}\text{C}_{\text{C}_5}$ at NSHQ14 result from post-genetic microbial alteration. Rather, $\delta^{13}\text{C}_{\text{C}_2}$ and
$\delta^{13}\text{C}_{\text{C}_3}$ should reflect formation conditions and C source(s).

C_2H_6 and C_3H_8 at NSHQ14 are not likely to derive from nearby organic matter. Hydrocarbon-rich
sedimentary formations in northern Oman not only lack a clear structural connection to the ophiolite
aquifer, but also yield oils with $\delta^{13}\text{C}$ values (Terken, 1999) at least 20% lower than those of C_2H_6 and
C$_3$H$_8$ at NSHQ14. Furthermore, total organic C in peridotites exposed to alteration at the seafloor, a proxy for organic C endogenous to the Samail Ophiolite, is also relatively 13C-depleted (approximately -25 ± 5‰ VPDB; Alt et al., 2013, 2012a,b; Delacour et al., 2008). Closed-system thermal cracking of these organic matter sources is unlikely to have produced the comparatively 13C-enriched C$_2$H$_6$ and C$_3$H$_8$ at
Figure 3: Molecular and isotopic compositions of natural gases. (a) Plot of δD_{CH_4} vs. $\delta^{13}C_{\text{CH}_4}$. Shaded fields of typical gas origin after Milkov and Etiope (2018). Abbreviations: PM, primary microbial; SM, secondary microbial; T, thermogenic; A, abiotic. (c) Plot of ratio of methane (C_1) to the sum of ethane (C_2) and propane (C_3) vs. $\delta^{13}C_{\text{CH}_4}$. Only analyses for which C_2 was above limit of quantitation are plotted. If C_3 was below limit of quantitation, its contribution to $C_1/(C_2 + C_3)$ was assumed to be negligible, and therefore C_1/C_2 is plotted. Fields and abbreviations same as in (a). In (a) and (c), uncertainties are smaller than plotted symbols. (b) Plot of $\epsilon_{\text{methane/water}}$ vs. $\Delta^{13}C_{\text{CH}_3}$. X and Y axes are swapped with respect to original publication of this type of plot (Wang et al., 2015) so that (b) is comparable against (d). The data from (b) are plotted in the Wang et al. (2015) orientation in Supporting Information Figure S4. Equilibrium line from Horibe and Craig (1995) and Young et al. (2017). Abbreviations: LTA-KC, low-temperature abiotic (Kidd Creek-type); M, microbial. Green dot-dashed lines in (b) and (d) indicate a range of CH_4 isotopic compositions that have been attributed to either low cell-specific rates of methanogenesis or anaerobic oxidation of methane; that is, they start at isotopic compositions produced by methanogen cultures and end at isotopic equilibrium between 5°C and 70°C, which is the range of temperatures over which anaerobic oxidation of methane has been documented (Wang et al., 2015; Stolper et al., 2015; Young et al., 2017; Ash and Egger, 2019; Giunta et al., 2019). (d) Plot of $\Delta^{13}C_{\text{CH}_4}$ vs. $\Delta^{12}C_{\text{CH}_2}$, after Young et al. (2017). Fields, abbreviations, and temperature axis same as in (b). In (b) and (d), error bars represent 95% confidence interval for analyses performed at MIT, and 1 standard error for analyses performed at UCLA. Contextual data from ophiolites: Oman/UAE (Fritz et al., 1992; Etiope et al., 2015; Boulart et al., 2013; Miller et al., 2016; Vacquand et al., 2018), the Philippines (Abrajano et al., 1990; Grozeva et al., 2020); sediment-poor seafloor hydrothermal vents: Mid-Cayman Rise (McDermott et al., 2015; Wang et al., 2018; Grozeva et al., 2020), Lost City (Proskurowski et al., 2008; Wang et al., 2018; Labidi et al., 2020), Ashadze II (Charlou et al., 2010); Precambrian Shield: Kidd Creek, Canada (Sherwood Lollar et al., 2008; Young et al., 2017); and laboratory Sabatier reaction catalyzed by Ru (Young et al., 2017).

NSHQ14 and previously reported elsewhere in the ophiolite (Figure 4; Fritz et al., 1992).

Thermal cracking of organic matter and open-system degassing can enrich late-produced short-chain alkanes in ^{13}C due to kinetic isotope effects associated with the cleavage of precursor sites in the parent organic matter and the resultant Rayleigh distillation of these sites (Rooney et al., 1995; Fiebig et al., 2019). Thermogenic gas production can proceed slowly at temperatures as low as 60°C, but substantial thermogenic gas production typically occurs at reservoir temperatures above 120°C (Burnham, 1989; Hunt, 1996; Stolper et al., 2018; Cumming et al., 2019; Fiebig et al., 2019). These temperatures are higher than temperatures along groundwater flow paths intersecting the wells in this study. Measured groundwater temperatures in the study area are ~ 35°C (Table 1), and $H_2 - H_2O$ isotope thermometry and $C - O$ clumped isotope thermometry on carbonate veins with significant ^{14}C contents in Samail Ophiolite peridotites both indicate equilibrium ≤ 60°C (Kelemen and Matter, 2008; Kelemen et al., 2011; Mervine et al., 2014; Miller et al., 2016). Geothermal gradients derived from geophysical logs of N^{14}Q are 25°C·km$^{-1}$ (Paukert, 2014; Matter et al., 2017), which is typical of near-surface, continental settings (Lowell et al., 2014). At the low temperatures and ordinary geothermal gradients within the active alteration zone of the Samail Ophiolite, thermal cracking of organic matter is unlikely to proceed at sufficient rates to attain the high extents of reaction progress necessary to explain the observed ^{13}C enrichments in short-chain alkanes at N^{14}Q over relevant timescales.
Alternatively, short-chain alkanes in NSHQ14 fluids may have an abiotic source. Several studies have demonstrated storage of large quantities of CH$_4$ and associated short-chain alkanes in fluid inclusions in ophiolites (Sachan et al., 2007; Klein et al., 2019; Grozeva et al., 2020). However, the findings of these studies disagree with those of Etiope et al. (2018), who measured relatively low concentrations of CH$_4$ stored in serpentinized peridotites from Greek ophiolites. Since the rocks analyzed by Etiope et al. (2018) were sampled from outcrops, it is possible that chemical or physical processes associated with surface exposure resulted in loss of CH$_4$ once stored in peridotite-hosted fluid inclusions prior to analysis. Although further study of the quantity and spatial distribution of CH$_4$ storage in ophiolitic rocks is warranted, the presence of CH$_4$ and associated short-chain alkanes in NSHQ14 and elsewhere in the ophiolite.

A fluid inclusion source of CH$_4$ and short-chain alkanes is compatible with C stable isotopic compositions of these compounds in groundwaters pumped from NSHQ14. CH$_4$, C$_2$H$_6$, and C$_3$H$_8$ δ^{13}C values at NSHQ14 (−6.89‰ VPDB to +3.7‰ VPDB; Table 2) overlap with CH$_4$ and C$_2$H$_6$ δ^{13}C values measured by Grozeva et al. (2020) in rock crushing experiments on CH$_4$-rich fluid inclusion-bearing peridotites and dunites sampled from the Zambales ophiolite in the Philippines (−12.4‰ VPDB to −0.9‰ VPDB; Figure 4), which, in turn, overlap with δ^{13}C values of CH$_4$ from nearby gas seeps at Los Fuegos Eternos and Nagsasa in the Philippines (−7.4‰ VPDB to −5.6‰ VPDB; Abrajano et al., 1990; Vacquand et al., 2018). Grozeva et al. (2020) also crushed CH$_4$-rich fluid inclusion-bearing rocks from the Mid-Cayman Rise. Of the Mid-Cayman Rise samples that yielded sufficient CH$_4$ and C$_2$H$_6$ for precise C isotopic analysis, which were all mafic intrusive rocks, δ^{13}C values ranged from −14.0‰ VPDB to +0.7‰ VPDB. The lower end of Mid-Cayman Rise rock crushing short-chain alkane δ^{13}C values are similar to those measured in Mid-Cayman Rise hydrothermal vent fluids (−15.8‰ VPDB to −9.7‰ VPDB; McDermott et al., 2015), whereas the higher end are similar to those of NSHQ14 (Figure 4). Furthermore, C$_2$H$_6$ and C$_3$H$_8$ δ^{13}C values of NSHQ14 fluids resemble those of fluids discharging from the sediment-poor hydrothermal vents at Ashadze II, Mid-Atlantic Ridge (Figure 4; Charlou et al. 2010). The similarities in short-chain alkane δ^{13}C values between circulating fluids and rock-hosted fluid inclusions in ophiolites and present-day oceanic lithospheric sites suggest that circulating fluids in both environments derive much of their CH$_4$ and short-chain alkanes from fluid inclusions.

Sources of CH$_4$ can also be assessed by measuring H isotopic compositions and clumped isotopologue relative abundances of CH$_4$ and comparing these isotopic compositions to temperature-dependent equilibria. These isotopic equilibria are represented by thick gray lines in Figure 3b and d. Intra-CH$_4$ equilibrium is governed by the increasing relative stability of bonds between two heavy isotopes (more “clumping”) at lower temperatures, which is reflected in higher Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ values. However, isotopic equilibrium will only be expressed if kinetics allow it. In the first study to publish clumped isotopologue (Δ^{13}CH$_3$D)
Figure 4: Plot of $\delta^{13}C$ of CH_4 and co-occurring n-alkanes vs. the number of C atoms per molecule. Error bars represent uncertainties on $\delta^{13}C$ analyses performed at CUB. Only samples for which $\delta^{13}C_{C_2}$ was determined are plotted. Contextual data from ophiolites: Oman/UAE (Fritz et al., 1992), the Philippines (Grozeva et al., 2020); sediment-poor seafloor hydrothermal vents: Mid-Cayman Rise (McDermott et al., 2015; Grozeva et al., 2020), Lost City (Proskurowski et al., 2008), Ashadze II (Charlou et al., 2010); and Precambrian Shield: Kidd Creek, Canada (Sherwood Lollar et al., 2008).

Data on CH$_4$- and H$_2$- rich gases from sediment-poor seafloor hydrothermal vents, Wang et al. (2018) found that these gases yielded apparent CH$_4$ – H$_2$O H isotopic and Δ^{13}CH$_3$D equilibrium temperatures of 270 $^\circ$C to 360 $^\circ$C, despite having a range of effluent fluid temperatures from 96 $^\circ$C to 370 $^\circ$C. This was interpreted as evidence for a closure temperature of 270 $^\circ$C for H isotope exchange in the CH$_4$ – H$_2$O and CH$_4$ – H$_2$ systems in seafloor hydrothermal settings (e.g. Mid-Cayman Rise in Figure 3b and d). However, in a subsequent study that re-analyzed some of the same samples, plus a greater number of samples from low-temperature vents at Lost City (96 $^\circ$C to 64 $^\circ$C), and contributed the first Δ^{12}CH$_2$D$_2$ values from these settings, Labidi et al. (2020) found evidence for re-equilibration of clumped isotopologue and CH$_4$ – H$_2$O H isotopic systems at lower temperatures. Of these isotopic systems, that of 12CH$_2$D$_2$ had the fastest apparent
re-equilibration kinetics (approximately twice as fast as 13CH$_3$D), which was explained by differences in symmetry numbers among the isotopologues. The 12CH$_2$D$_2$-based temperatures of the Lost City samples, which were as low as 69$^{+4}_{-4}$ °C, closely matched their end member vent fluid temperatures. As a result of the apparent faster re-equilibration of 12CH$_2$D$_2$, the Lost City data plot above the 13CH$_3$D – 12CH$_2$D$_2$ equilibrium line (towards higher Δ^{12}CH$_2$D$_2$) in Figure 3d. Therefore, isotopic compositions of CH$_4$ formed in fluid inclusions in the oceanic lithosphere and stored for millions of years at low temperatures may be expected to fall somewhere along a continuum from Δ^{13}CH$_3$D, Δ^{12}CH$_2$D$_2$, and CH$_4$ – H$_2$O isotopic equilibrium at \sim 330 °C to compositions approaching lower temperature (\sim 70 °C or perhaps even lower) equilibrium, with 12CH$_3$D, 13CH$_3$D, CH$_4$ – H$_2$O isotopic re-equilibration proceeding at varying rates. This is not the case for Samail Ophiolite samples, as detailed below.

Across five years of samples from NSHQ14, δD$_{CH_4}$ has ranged from -232 % VSMOW to -311.73 % VSMOW, with a mean weighted by sample year of -275 % VSMOW (Figure 3a; Table 2). This CH$_4$ is D-enriched with respect to coexisting H$_2$ (δD$_{H_2} = -685$ % VSMOW; Miller et al., 2016) and D-depleted with respect to coexisting water (δD$_{H_2O} = +0.2$ % VSMOW in 2018; Table 3). Although H$_2$ and water reflect H isotopic equilibrium at \sim 50 °C (Miller et al., 2016), both H$_2$ and water are in H isotopic disequilibrium with CH$_4$ (Figure 3b). Moreover, NSHQ14 fluids exhibit intra-CH$_4$ disequilibrium, as indicated by Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ values (Table 2) plotting below the equilibrium line in Figure 3d. These non-equilibrium isotopic compositions indicate that post-genetic alteration of CH$_4$ must have occurred or that fluid inclusions are not the only source of CH$_4$ at NSHQ14.

One potential post-genetic alteration mechanism is diffusion. However, CH$_4$ at NSHQ14 cannot be the diffusion residual of CH$_4$ that was originally at intramolecular equilibrium (or with Δ^{12}CH$_2$D$_2$ above the apparent Δ^{13}CH$_3$D equilibrium temperature) because the diffusion slope (change in Δ^{12}CH$_2$D$_2$ over change in Δ^{13}CH$_3$D) is shallower than the equilibrium line slope over the relevant temperature range (Young et al., 2017). Another potential alteration mechanism is microbial CH$_4$ oxidation. Two types of microbial CH$_4$ oxidation have been studied for their effects on CH$_4$ clumped isotopologue relative abundances: anaerobic methane oxidation of the ANME type and aerobic CH$_4$ oxidation. ANME-type anaerobic methane oxidation is suggested to be a highly reversible metabolic pathway (Knittel and Boetius, 2009; Timmers et al., 2017). This reversibility has been proposed to bring Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ towards equilibrium at low temperatures (70 °C to 30 °C) through continuous breaking and reforming of bonds in the CH$_4$ molecule (Young et al., 2017; Ash and Egger, 2019; Giunta et al., 2019). Thus, the comparatively low Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ values observed in samples from NSHQ14 and other wells in this study (Figure 3b and d) do not support a major role for anaerobic methane oxidation in the study area. Aerobic CH$_4$ oxidation is less reversible than ANME-type anaerobic methane oxidation due to differences in the enzymes and electron acceptors used for those respective processes. For this reason, aerobic CH$_4$ oxidation does not bring CH$_4$ into isotopic equilibrium, but rather imparts a normal, classical kinetic isotope effect during CH$_4$ consump-
In a study of the effect of aerobic CH$_4$ oxidation on Δ^{13}CH$_3$D, Wang et al. (2016) found that the fractionation factor for 13CH$_3$D was closely approximated by the product of the fractionation factors for 13CH$_4$ and 12CH$_3$D. Although it has not yet been demonstrated experimentally, it is hypothesized that the fractionation factor for 12CH$_2$D$_2$ during aerobic CH$_4$ oxidation may likewise be approximated by the square of the fractionation factor for 12CH$_3$D (Young, 2020). This “product rule” for isotopic fractionation during aerobic CH$_4$ oxidation results in decreases in Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ with concomitant increases in δ^{13}C and δ^D in residual CH$_4$ (Wang et al., 2016; Young, 2020). Thus, aerobic CH$_4$ oxidation could draw Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ values originally near equilibrium down below the equilibrium line in Figure 3d. However, if CH$_4$ samples from NSHQ14 were originally near H isotope equilibrium with water of SMOW-like isotopic composition, aerobic methane oxidation would push the residual CH$_4$ towards higher δ^D (and $\varepsilon_{\text{methane/water}}$) values (above the equilibrium line in Figure 3b), which is inconsistent with the comparatively low δ^{13}C$_{\text{CH}_4}$ observed at NSHQ14.

For the reasons outlined above, post-genetic alteration of CH$_4$ near CH$_4$ – H$_2$O and intramolecular isotopic equilibrium does not explain the observed isotopic compositions of CH$_4$ sampled from NSHQ14. Therefore, the release of CH$_4$ stored in fluid inclusions cannot account for all of the CH$_4$ at NSHQ14. Alternative processes that do produce CH$_4$ with Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ values lower than equilibrium include microbial methanogenesis and low-temperature ($\leq 90^\circ$C) abiotic reduction of CO$_2$ or CO through Sabatier or Fischer-Tropsch-type reactions. In Figure 3b and d, microbial methanogenesis is represented by samples from cultures (green shaded areas; Wang et al., 2015; Stolper et al., 2015; Young et al., 2017; Gruen et al., 2018; Young, 2020), and low-temperature Sabatier or Fischer-Tropsch-type reactions are represented by field samples from Kidd Creek (gray shaded areas; Young et al., 2017; Sherwood Lollar et al., 2002, 2008) and laboratory experiments with synthetic Ru catalysts (Young et al., 2017; Etiope and Ionescu, 2015).

To independently assess the potential influences of microbial processes on CH$_4$ concentration and isotopic composition, DNA was extracted from biomass in pumped groundwaters and subjected to amplification and sequencing of 16S rRNA genes. 16S rRNA gene sequences of biomass collected in 2018 were searched for matches to known CH$_4$-cycling taxa, as compiled previously by Crespo-Medina et al. (2017). Sequences closely affiliated with both methanogenic and methanotrophic taxa were found to be widespread in the aquifer (Figure 5). Based on phylogenetic inference, the dominant methanogenic taxon was related to the genus Methanobacterium, whose members can produce CH$_4$ from H$_2$ and CO$_2$, CO, or formate (Balch et al., 1979). Methanobacterium comprised a high proportion (24%) of 16S rRNA gene sequences at NSHQ14 in 2018. Relative abundances of Methanobacterium 16S rRNA gene reads were similarly high in 2017 (12%) and 2016 (28%), but lower (< 1%) in 2015 and 2014 (Miller et al., 2016; Rempfert et al., 2017; Kraus et al., 2021). The increase in the relative abundance of 16S rRNA genes affiliated with Methanobacterium in samples collected in 2016 and onwards versus those collected in 2014 and 2015 coincided with a change in sampling methods from smaller, lower-flow pumps (maximum depth 20 m) prior to 2016 to larger, higher-flow
pumps (maximum depth 90 m). The obligate anaerobic nature of this methanogen genus (Boone, 2015) is consistent with its higher relative gene abundances in fluids sampled from greater depths, which presumably receive less input of atmospheric O₂ than do shallower fluids.

Figure 5: 16S rRNA gene read relative abundances of DNA extracted from Samail Ophiolite groundwaters sampled in 2018 affiliated with CH₄-cycling taxa. Read relative abundances are reported as percentages rounded to the ones place. Cases when a taxon was detected in a sample and was < 1% read relative abundance after rounding are labeled “<1”. Cases when no reads of a taxon were detected in a sample are labeled “n.r.” Data shown are from unique field samples. Previous 16S rRNA gene sequencing studies that obtained field samples in triplicate from Samail Ophiolite groundwaters through similar methods to those used here have found typical standard deviations of relative abundances less than or equal to 25% of the mean relative abundance (Kraus et al., 2021).

Consortia capable of anaerobic oxidation of CH₄ coupled to SO₄²⁻ reduction, including ANME, were not detected by 16S rRNA gene sequencing of samples obtained from NSHQ14 in 2018 (Figure 5), 2016, or 2014 (Miller et al., 2016; Rempfert et al., 2017), although sequences affiliated with order ANME-1b were detected in low abundance (< 1% of reads) in samples obtained from NSHQ14 in 2017 and 2015 (Rempfert et al., 2017; Kraus et al., 2021). This scarcity of ANME may result from metabolic inhibition by high eH₂ in groundwaters at NSHQ14 and elsewhere in the Samail Ophiolite. It has been proposed that the thermodynamics of “reverse methanogenesis” require low eH₂ (0.1 nM to 1 nM at Hydrate Ridge, a marine cold seep environment (Boetius et al., 2000), where CH₄ and SO₄²⁻ concentrations can be a factor of 10 or more higher than those typically measured in ophiolitic groundwaters such as in Oman). Indeed,
the bioenergetics of SO_4^{2-}-driven oxidation of CH_4 are less favorable than SO_4^{2-}-driven oxidation of H_2 or non-CH_4 organics, or other metabolisms such as methanogenesis or acetogenesis in the Samail Ophiolite (Canovas III et al., 2017) and in deep continental settings where radiolytic H_2 accumulates (Kieft et al., 2005; Moser et al., 2005; Kieft, 2016).

While 16S rRNA gene sequences affiliated with anaerobic CH_4 oxidizing microbes have only occasionally been detected at NSHQ14, 16S rRNA gene sequences affiliated with the genus *Methylococcus*, which contains aerobic methanotrophs (Hanson and Hanson, 1996), have been detected in all samples from NSHQ14, ranging from 1% to < 1% of reads in samples obtained from 2014 to 2018 (Figure 5; Miller et al., 2016; Rempfert et al., 2017; Kraus et al., 2021). Since the aerobic lifestyle of *Methylococcus* is at odds with that of the obligate anaerobe, *Methanobacterium*, it seems most likely that these two taxa are spatially separated in the aquifer, and that waters containing each of them were mixed during open borehole pumping. Still, the > 10 times higher abundances of *Methanobacterium*-related 16S rRNA genes relative to those of *Methylococcus* at NSHQ14 in samples from 2016 to 2018 suggest that the microbial CH_4 cycle at this well is dominated by CH_4 production, rather than consumption.

16S rRNA gene sequencing of subsurface biomass from NSHQ14 is complemented by other observations that suggest that methanogens are not only prevalent, but active. Genes involved in methanogenesis are actively transcribed in waters sampled from NSHQ14 (Kraus et al., 2021). Transformation of both 14C-labeled $\text{HCO}_3^−$ and 14C-labeled formate to CH_4 have been shown to occur in water samples from NSHQ14 at significantly higher rates than in killed controls, with formatotrophic methanogenesis greatly outpacing hydrogenotrophic methanogenesis (Fones et al., 2019, 2020). Taken together with a cell abundance of 1.15 · 10^5 cells · mL⁻¹ in groundwater at NSHQ14 (Fones et al., 2019), these data suggest that aquifer regions accessed by NSHQ14 host abundant active methanogenic cells (thousands per mL, assuming ~ 24% of cells are methanogens based on 16S rRNA gene data). These active cells could influence CH_4 concentration and isotopic composition.

The genomic and cultivation data of Fones et al. (2020) indicate that formate is the dominant substrate for methanogenesis at NSHQ14. Formate concentrations are 1 µmol · L⁻¹ to 2 µmol · L⁻¹ in the studied wells (Rempfert et al., 2017), which are roughly two orders of magnitude lower than formate concentrations at unsedimented seafloor hydrothermal vents impacted by serpentinization at warmer conditions than present in the Samail Ophiolite (McDermott et al., 2015; Lang et al., 2018). These relatively low formate concentrations in the ophiolite suggest that formate might be the primary limiting substrates for methanogenesis in Ca^{2+}–$\text{OH}^−$ waters, as such at NSHQ14. Coexisting hydrogenotrophic methanogens may produce CH_4 through direct uptake of $\sum \text{CO}_2$ in H_2-rich Ca^{2+}–$\text{OH}^−$ water, where kinetic inhibitions to abiotic $\sum \text{CO}_2$ reduction to CH_4 allow for a modest energy yield for hydrogenotrophic methanogens (Section 5; Leong and Shock, 2020). Methanogens using $\sum \text{CO}_2$ could benefit from greater chemical disequilibrium if they inhabit zones where deeply-sourced, H_2-rich Ca^{2+}–$\text{OH}^−$ water mixes with shallow, Mg^{2+}–$\text{HCO}_3^−$ water (Zwicker et al.,...
In addition to direct uptake of $\sum CO_2$, carbonate minerals may serve as a C source for methanogenesis in carbonated peridotites (Miller et al., 2018). Another potential C source is carbon monoxide (CO). CO has always been below limits of quantitation in Oman wells (< 132 nmol · L$^{-1}$ in 2018; Table 4), but it is unclear whether this indicates minimal CO production or rapid CO turnover.

The microbiological data from NSHQ14 fluids are compatible with δD_{CH_4}, $\Delta^{13}CH_3D$, and $\Delta^{12}CH_2D_2$ values that collectively indicate a substantial addition of microbial CH$_4$ to an otherwise abiotic pool of CH$_4$.

Although the data presented here do not enable us to precisely determine the mole fractions and isotopic compositions of the microbial and abiotic components of CH$_4$ at NSHQ14, the δD_{CH_4} data alone suggest that perhaps the majority of CH$_4$ at NSHQ14 formed through non-equilibrium processes, which include microbial methanogenesis. Thus, the high $\delta^{13}C$ of CH$_4$ at NSHQ14 suggests that the microbial component is more ^{13}C-enriched than microbial CH$_4$ formed in sedimentary environments, which typically ranges from $-90\% VPDB$ to $-50\% VPDB$ (Milkov and Etiope, 2018; Figure 3a).

In cultures of a hydrogenotrophic strain of *Methanobacterium* provided CaCO$_3$ (s) as a C source at pH \sim 9, Miller et al. (2018) observed suppressed apparent isotope effects during methanogenesis ($\alpha_{CO_2/CH_4} = 1.028$). The authors attributed this to the slow kinetics of carbonate dissolution at high pH and the near-total conversion of the resultant CO$_2$ (aq) to CH$_4$ by *Methanobacterium*. If the primary mode of methanogenesis at NSHQ14 is in fact formate disproportionation and abiotic formate production is the rate-limiting step in the overall process through which $\sum CO_2$ is converted to CH$_4$, similar isotopic bottlenecks could apply. Cellular formate uptake and enzymatic conversion processes whose isotope effects remain unknown could be important drivers of the isotopic composition of CH$_4$ in hyperalkaline, serpentinizing settings. In such settings, the suppression of C isotope fractionation during methanogenesis is supported by observations of high $\delta^{13}C$ values (up to $+14\% VPDB$) of lipid biomarkers thought to be produced by methanogens at Chimaera, Turkey (Zwicker et al., 2018) and at Lost City (Bradley et al., 2009). Evaluation of these hypotheses will require further physiological studies of methanogens aimed at understanding substrate selection and limitation systematics in hyperalkaline, low-C conditions and the isotopic implications of these factors.

While the data support substantial microbial CH$_4$ and abiotic, fluid inclusion-derived CH$_4$ in NSHQ14 fluids, we find less evidence for abiotic CH$_4$ production at the low temperatures that pervade the modern weathering horizon in the ophiolite. Below 100°C, access of gas-phase H$_2$ and CO$_2$ or CO to the catalytic metals Ru or Rh is required for CH$_4$ to form at appreciable rates (Thampi et al., 1987; Jacquemin et al., 2010; Etiope and Ionescu, 2015; McCollom, 2016). It has been proposed that the spatial concentration of potentially-catalytic Ru-rich chromites in chromitites is important for catalysis of low-temperature CO$_2$ reduction to CH$_4$ in ophiolites (Etiope and Ionescu, 2015; Etiope et al., 2018). While peridotites in Oman ubiquitously contain a few percent distributed chromite (Hanganj et al., 2010), massive chromitites were not reported in lithologic descriptions of cores or drill cuttings from NSHQ14 or any of the six additional wells ranging from 300 m to 400 m depth that have been drilled in the same catchment by the Oman Drilling
Project (Kelemen et al., 2020). Nor are chromitites notably abundant in outcrop within this catchment. Further, although some flow paths of meteoric water through the ophiolite may result in saturation in H2 and separation of a free gas phase (Canovas III et al., 2017), the depth to water is < 20 m in all wells in the catchment of NSHQ14, suggesting water-saturated conditions in the subsurface. Moreover, if free H2(g) were generated at high extents of reaction progress, co-existing CO2(g) would be extremely scarce due to precipitation of carbonate minerals and high pH (Etiope and Ionescu, 2015; Leong and Shock, 2020).

It has been proposed that CH4 in ophiolites can form through reduction of CO2(g) from non-atmospheric sources such as magma, the mantle, or sedimentary carbonate formations (Etiope and Ionescu, 2015). A magmatic/mantle CO2 source is not supported at NSHQ14 because excess He above air saturation in groundwaters from this well has a dominantly radiogenic isotopic composition that is distinct from mantle-derived He (Paukert Vankeuren et al., 2019). Further, although sedimentary carbonates are present in the vicinity of NSHQ14 and elsewhere in the ophiolite (Boudier and Coleman, 1981; de Obeso and Kelemen, 2018), there is no clear mechanism to liberate CO2(g) from mineral carbonates and transfer that CO2(g) to catalytic sites of reaction on chromites where H2(g) is also present. Thus, the apparent lack of massive chromites and free gaseous potential reactants suggest that the subsurface surrounding NSHQ14 is not conducive to low-temperature abiotic CH4 production. While substantial low-temperature CH4 production in the catchment of NSHQ14 seems unlikely, NSHQ14 groundwaters could be mere carriers of CH4 that was produced elsewhere in the ophiolite under gaseous conditions and that has subsequently migrated into the aquifer. Some studies of CH4 origin in other peridotite bodies have favored such a hypothesis (Etiope et al., 2016; Marques et al., 2018). However, it is not clear how this hypothesis could be tested in the case of the NSHQ14, nor how it addresses the issue of CO2 source.

In summary, isotopic and microbiological data lead us to conclude that the high concentrations of CH4 (10^2 µmol L^-1) in groundwaters accessed by NSHQ14 primarily result from microbial methanogenesis and the release of abiotic CH4 from fluid inclusions. The known presence of CH4-bearing fluid inclusions in the Samail Ophiolite and our finding of high δ13C values of CH4, C2H6, and C3H8 that overlap with values reported from seafloor hydrothermal vents where CH4 formed at > 270 °C in fluid inclusions predominates suggest a similar source in the ophiolite. However, deficits in 12CH3D, 13CH3D, and 12CH2D2 relative to equilibrium indicate the production of additional CH4 at low temperatures. The 13CH3D deficit in particular is more compatible with a microbial origin than a low-temperature abiotic origin. Moreover, numerous lines of microbiological evidence including genomic and cultivation data show that methanogens are abundant and active in aquifers accessed via NSHQ14. Organic geochemical and cultivation data from the literature suggest that C isotope effects of methanogenesis may be suppressed under C-limited conditions in serpentinizing settings. That genes associated with methanogens coexist with a smaller abundance of genes associated with methanotrophs (particularly aerobes) in NSHQ14 groundwaters suggests that some of the CH4 has undergone microbial oxidation, which would further help explain the high δ13C values of CH4 at this well.
4.2.3. Abundant microbial CH$_4$ produced under C-limited conditions and substantial microbial CH$_4$ oxidation in the Ca$^{2+}$ – OH$^-$ waters of well NSHQ04

NSHQ04 is situated in partially serpentinized harzburgite 10 m away from a faulted contact with crustal gabbros (Figure 1; Supporting Information Figure S1). Surface rock exposures surrounding NSHQ04 are dominated by serpentinized harzburgites, with lesser dunites, gabbro lenses, and pyroxenite dikes. NSHQ04 is cased to 5.8 mbgl and drilled to 304 m depth (Table 1). As of 2017, the well is obstructed at 8 m below the casing top, precluding deeper sampling (Section 3.1; Table 1).

Primary differences in fluid composition between NSHQ04 and NSHQ14 include lower pH by ~1 and higher c\sumCa and c\sumSi at NSHQ04 (Tables 1 and 3; Miller et al., 2016; Rempfert et al., 2017; Paukert Vankeuren et al., 2019; Fones et al., 2019). These differences could be related to the scarcity of fresh, near-surface olivine at NSHQ04, which may result in a greater influence of pyroxene serpentinization at NSHQ04 (Miller et al., 2016). Low-temperature pyroxene serpentinization generally continues after olivine is exhausted, and leads to higher c\sumSi and, depending on pyroxene chemical composition, can also lead to higher c\sumCa and lower pH (Bach et al., 2006; Leong and Shock, 2020). The relatively low pH and high c\sumSi could also stem from mixing of Ca$^{2+}$ – OH$^-$ waters with gabbro- or atmosphere-influenced fluids.

Compared to NSHQ14, NSHQ04 has generally had lower cH_2 (detected in 2014, but not in 2018, 2017, 2015, or 2012; Table 4; Figure 2; Miller et al., 2016; Rempfert et al., 2017; Paukert Vankeuren et al., 2019). The relatively low cH_2 measured in waters pumped from NSHQ04 is probably due at least in part to microbial H$_2$ oxidation. Although there are multiple enzymes with which a diversity of microbes oxidize H$_2$ (Peters et al., 2015), aerobic H$_2$ oxidation by bacteria of the genus Hydrogenophaga has been identified as a particularly prevalent process in serpentinizing settings, including the Samail Ophiolite (Suzuki et al., 2014; Rempfert et al., 2017; Marques et al., 2018). Sequences affiliated with Hydrogenophaga accounted for 20% of 16S rRNA gene reads in DNA extracted from biomass in waters pumped from NSHQ04 in 2018, which is similar to previous years of sampling at NSHQ04 (6% to 18% in 2014, 2015, and 2017; inter-annual mean of 12%) and higher than all other studied wells (Supporting Information Figure S3; Rempfert et al., 2017; Miller et al., 2016; Kraus et al., 2021).

While H$_2$ has only been transiently detected at NSHQ04, cCH$_4$ at this well has consistently been the highest among our sample sites (144 μmol·L$^{-1}$ in 2018 and 483 μmol·L$^{-1}$ in 2017. In comparison to NSHQ14, CH$_4$ at NSHQ04 is more 13C- and D-enriched (mean weighted by sample year δ^{13}C = +3.3‰ VPDB, $s = 1.8$‰; δD = −220‰ VSMOW, $s = 11$‰; $n = 4$; Table 2; Figure 3a). Fluids sampled from NSHQ04 are in CH$_4$–H$_2$O–H isotopic disequilibrium and intra–CH$_4$ disequilibrium (Figure 3b and d), which is also true of fluids from NSHQ14. However, CH$_4$ sampled from NSHQ04 has distinctly negative Δ^{12}CH$_2$D$_2$ (−24.502‰) and low Δ^{13}CH$_3$D (mean weighted by sample year of 0.36%, $s = 0.32$‰, $n = 3$; Table 2). As such, CH$_4$ from NSHQ04 plots squarely among methanogen culture samples in Δ^{13}CH$_3$D/Δ^{12}CH$_2$D$_2$ space (Figure 26).
suggesting that CH$_4$ is dominantly microbial at NSHQ04. Moreover, alkane gases dissolved in waters pumped from NSHQ04 exhibited a $C_1/\left(C_2 + C_3\right)$ ratio of 5.4×10^3 in 2018, which is higher than other wells in this study (Table 4; Figure 3c), further supporting a major component of microbial CH$_4$ at NSHQ04.

Microbial CH$_4$ production at NSHQ04 is also indicated by microbiological data. 16S rRNA gene sequences affiliated with *Methanobacterium* have been detected in DNA extracted from biomass filtered from waters pumped from NSHQ04, albeit in low relative abundance ($< 1\%$ of reads in 2018; Figure 5; also detected in $< 1\%$ of reads in 2014, but not detected in 2015 and 2017; Rempfert et al., 2017; Miller et al., 2016; Kraus et al., 2021). The apparent low relative abundance of *Methanobacterium* at NSHQ04 could have resulted from the relatively shallow depth from which samples were collected at NSHQ04 due to well obstruction and the consequential sampling of groundwaters that may have experienced atmospheric O$_2$ infiltration. High relative read abundances of sequences affiliated with aerobes and transient H$_2$ across years of sampling NSHQ04 suggest that zones of the aquifer that are not always anoxic were accessed. These conditions may restrict methanogen abundance to greater depths than were sampled, but not constrain the upward diffusion of the product of their metabolism, CH$_4$. Nevertheless, fluids obtained from NSHQ04 have yielded robust cultures of *Methanobacterium* (Miller et al., 2018). In addition, high relative abundances of 16S rRNA gene reads of DNA extracted from biomass in waters sampled from NSHQ04 were related to an aerobic methanotroph of the genus *Methylococcus* (8\% of reads in 2018; inter-annual mean of 11\%; Figure 5; Miller et al., 2016; Rempfert et al., 2017; Kraus et al., 2021). Greater aerobic methanotrophy at NSHQ04 relative to NSHQ14 may have contributed in part to the lower Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$ and higher δ^{13}C and δD of CH$_4$ sampled from NSHQ04.

Methanotrophic activity at NSHQ04 is consistent with the observed 13C-depletion in \sumCO$_2$ at NSHQ04 ($−29.7\%$ VPDB δ^{13}C; Table 2) relative to the other studied wells because environments of active methanotrophy often have 13C-depleted \sumCO$_2$ (Barker and Fritz, 1981; Michaelis et al., 2002). Indeed, δ^{13}C\sumCO$_2$ at NSHQ04 is compatible with aerobic oxidation of CH$_4$ of $\sim 0\%$ VPDB δ^{13}C (Barker and Fritz, 1981; Feisthauer et al., 2011). Alternatively, 13C-depletion in \sumCO$_2$ could be explained by kinetic isotope fractionation during hydroxylation of atmospheric CO$_2$ upon contact with Ca$^{2+}$ – OH$^-$ water, which has been interpreted as the cause of δ^{13}C as low as $−27.21\%$ VPDB in Ca-rich carbonates from hyperalkaline seeps in the Samail Ophiolite (Clark et al., 1992; Kelemen et al., 2011; Falk et al., 2016). Considering the relatively shallow sampling depth at NSHQ04 in 2018 (Table 1), it is plausible that the sampled groundwaters continuously interact with atmospheric CO$_2$. Although the relative influences of methanotrophy and atmospheric CO$_2$ hydroxylation cannot be determined based on the available data, both processes could affect δ^{13}C\sumCO$_2$ at NSHQ04.

In summary, low Δ^{13}CH$_3$D and Δ^{12}CH$_2$D$_2$, high $C_1/\left(C_2 + C_3\right)$, the presence of *Methanobacterium* that were readily cultured, and high 16S rRNA gene relative abundances of *Methylococcus* lead us to conclude that microbial production and consumption of CH$_4$ are the dominant factors controlling CH$_4$ concentration.
4.2.4. \(\text{H}_2 \)-limited microbial methanogenesis with classic C isotope effect expressed at well WAB188

WAB188 is situated 2 km down-gradient from NSHQ04 and is set in gabbro on the opposite side of a fault from NSHQ04 (Figure 1; Supporting Information Figure S1; Table 1). Fluids pumped from WAB188 have had variable pH (8.72 to 5.75) and oxidation-reduction potential (\(f_{O_2} \) of \(10^{-61} \text{ bar} \) to \(10^{-34} \text{ bar} \) and \(E_h \) of \(-220 \text{ mV} \) to \(+214 \text{ mV} \)) across four years of sampling (Table 1; Rempfert et al., 2017; Fones et al., 2019).

WAB188 has consistently had major ion compositions similar to the gabbro-hosted well WAB103, except that WAB188 has had higher \(\sum \text{Ca} \) (Table 3; Rempfert et al., 2017; Fones et al., 2019). \(\text{H}_2 \) has occasionally been detected in fluids pumped from WAB188 (\(c_{\text{H}_2} = 0.992 \mu \text{mol} \cdot \text{L}^{-1} \) in 2017), and \(\text{CH}_4 \) has consistently been detected at moderate concentrations (\(c_{\text{CH}_4} = 1.83 \mu \text{mol} \cdot \text{L}^{-1} \) in 2017 and 0.917 \(\mu \text{mol} \cdot \text{L}^{-1} \) in 2018) (Table 4; Rempfert et al., 2017; Fones et al., 2019). The high \(\sum \text{Ca} \) and moderate but variable pH, \(E_h \), and \(c_{\text{H}_2} \) in fluids sampled from WAB188 suggest that fluid chemical composition at WAB188 is dominantly controlled by water-rock reaction with gabbro (McCollom, 1999; Hoehler, 2004), but may also be affected by inputs of fresh rainwater and/or \(\text{H}_2 \)-bearing \(\text{Ca}^{2+} - \text{OH}^- \) water flowing from the peridotite aquifer into the gabbro aquifer across a fault at depth. Flows of water from higher-head, lower-permeability peridotite aquifers into gabbro aquifers in the Samail Ophiolite have been proposed on the basis of physical hydrologic data (Dewandel et al., 2005). Instead or in addition, serpentinization of olivine and pyroxene entirely within gabbro might have produced \(\text{H}_2 \) observed in water samples from WAB188.

Microbial methanogenesis at WAB188 is indicated by high relative abundances of 16S rRNA gene reads affiliated with methanogens in pumped groundwaters. Sequences affiliated with \textit{Methanobacterium} accounted for 3\% of 16S rRNA gene reads of DNA extracted from subsurface fluids sampled from WAB188 in 2018, which was second only to NSHQ14 among our sampling sites, and consistent with prior years of sampling at WAB188 (mean 2015 to 2018 of 4\%; Figure 5; Rempfert et al., 2017; Kraus et al., 2021). There was also evidence for methanotrophy. 2\% of 16S rRNA gene reads from WAB188 were affiliated with \textit{Methylococcus} in 2018, which was second only to NSHQ04 among our sampling sites, and consistent with prior years of sampling (Figure 5; Rempfert et al., 2017; Kraus et al., 2021). Further, 16S rRNA gene sequences affiliated with genus \textit{Candidatus} Methylomirabilis, which includes species that mediate anaerobic methane oxidation coupled to nitrite reduction (Ettwig et al., 2010; Luesken et al., 2012; Welte et al., 2016), were detected in samples from WAB188 in 2018 albeit at low relative gene abundance (< 1\%). As a whole, the 16S rRNA gene sequencing data from WAB188 fluids are consistent with microbial production of \(\text{CH}_4 \) and, secondarily, methanotrophy using \(\text{O}_2 \) and/or \(\text{NO}_2^- \). The 16S rRNA data are bolstered by genomic and cultivation data that demonstrate that \textit{Methanobacterium} at WAB188 can produce \(\text{CH}_4 \) from \(\text{CO}_2 \) and/or formate (Fones et al., 2020) and that genes involved in methanogenesis are transcribed in groundwater samples obtained from WAB188 (Kraus et al., 2021).
While subsurface fluids sampled at WAB188, NSHQ14, and NSHQ04 all bear evidence of methanogenic activity, the conditions under which methanogenesis proceeds at WAB188 are fundamentally distinct. In contrast to the Ca$^{2+}$ – OH$^{-}$ fluids from NSHQ14 and NSHQ04, the circumneutral fluids from WAB188 have $\sim 10^2$ to $\sim 10^3$ times higher $c_\Sigma CO_2$ (inter-annual mean of 2910 µmol·L$^{-1}$, $s = 620$ µmol·L$^{-1}$, $n = 3$; Table 3) and $\sim 75\%$ lower $\delta^{13}C_{CH_4}$ (inter-annual mean $\delta^{13}C = -73\%_e$ VPDB, $s = 13\%_e$, $n = 3$; Table 2; Figure S5). Since WAB188 fluids contain relatively 13C-depleted CH$_4$ that is not associated with substantial concentrations of C$_2$ – C$_6$ alkanes (Table 4), a standard interpretation (Bernard et al., 1977; Milkov and Etiøpe, 2018) would be that the source of CH$_4$ at WAB188 is dominantly microbial. Such an interpretation is largely based on data from sedimentary settings, where H$_2$ is typically more scarce than CO$_2$. In this regard, conditions in sedimentary settings are analogous to those at WAB188. Evidence that considerable methanogenesis proceeds through a hydrogenotrophic pathway under H$_2$-limited conditions at WAB188 include microbiological data confirming the capacity of *Methanobacterium* to perform hydrogenotrophic methanogenesis for a fluid with $c_\Sigma CO_2$ and CH$_4$ similar to WAB188 in 2017 (Section 4.2.1; Table 5). Further, the apparent α_{CO_2/CH_4} at WAB188 (based on measured $\delta^{13}C_\Sigma CO_2$ of $-13.52\%_e$ VPDB; Table 3) is compatible with that of *Methanobacterium* cultures grown hydrogenotrophically with excess HCO$^-$_3 (aq), which was greater than the α_{CO_2/CH_4} observed for parallel cultures under CO$_2$-poor conditions (Miller et al., 2018). In sum, the conditions at WAB188 contrast starkly with those that prevail in Ca$^{2+}$ – OH$^{-}$ fluids, where C substrates for methanogenesis are often more scarce than H$_2$. These differences may be reflected in the inverse relationship between $c_\Sigma CO_2$ and $\delta^{13}C_{CH_4}$ across fluids from wells WAB188, NSHQ14, and NSHQ04 (Figure S5), which is consistent with an effect of C availability on the apparent C isotope effect of microbial methanogenesis.

5. Conclusions

Through integration of isotopic, microbiological, and hydrogeochemical data, we conclude that substantial microbial CH$_4$ is produced under varying degrees of C or H$_2$ limitation in subsurface waters of the Samail Ophiolite and mixes with abiotic CH$_4$ released from fluid inclusions (Figure 6). Across subsurface fluids ranging in pH from circumneutral to 11.39, microbial CH$_4$ production is evidenced by 16S rRNA gene sequencing and other microbiological data indicating that methanogens are widespread and active in groundwaters in the ophiolite. We propose that CH$_4$ produced by these microbes constitutes a substantial portion of the total CH$_4$ pool, which is consistent with our finding of 13CH$_3$D and 12CH$_2$D$_2$ relative abundances significantly less than equilibrium. Using a simple thermodynamic model, we find that formotrophic methanogenesis may become more energetically favorable than hydrogenotrophic methanogenesis as Mg$^{2+}$ – HCO$^-$_3 waters transition to Ca$^{2+}$ – OH$^{-}$ waters where CO$_2$(aq) is extremely scarce, despite
relatively low formate concentrations of ~1 µmol·L⁻¹ across fluid types (Rempfert et al., 2017). This lends geochemical support to recent microbiological findings that independently indicate that the activity of formotrophic methanogens increases relative to hydrogenotrophic methanogens as groundwater pH increases in the ophiolite (Fones et al., 2020). In addition, an abiotic, fluid inclusion-derived source of CH₄, C₂H₆, and C₃H₈ is inferred from the widespread occurrence of CH₄ in fluid inclusions in peridotites, including those in Oman, and is supported by the relatively ¹³C-enriched compositions of CH₄, C₂H₆, and C₃H₈ measured in gases exsolved from peridotite-hosted groundwaters in this study. The measured δ¹³C values overlap with those of CH₄, C₂H₆ and C₃H₈ from seafloor hydrothermal vents where fluid inclusions are the dominant source of these alkanes, suggesting similar CH₄ sources across these environments. In contrast, abiotic, low-temperature reduction of CO₂ to CH₄ appears less likely to contribute substantially to the CH₄ pool in the study area due to a scarcity of conditions favorable to catalysis, namely, access of gas-phase H₂ and CO₂/CO to Ru-bearing chromites.

Further, we note an inverse relationship between ΣCO₂ and δ¹³CCH₄ across groundwaters bearing
microbiological evidence of methanogenic activity. This finding supports the hypothesis that the apparent C
isotope fractionation between the C substrate used by methanogens and the CH₄ they produce is suppressed
when the C substrate is limiting. Thus, our finding that δ¹³C(CH₄) varies by 90‰ in the Samail Ophiolite
suggests that, in some settings, δ¹³C(CH₄) may be a powerful indicator of transitions from H₂-limited to
C-limited conditions for microbial methanogenesis, rather than a discriminant between microbial versus
abiotic CH₄. The 16S rRNA gene sequencing data also indicate the presence of microbes capable of CH₄
oxidation, particularly using O₂ as an oxidant. This oxidation may also contribute in part to the ¹³C-
enriched composition of CH₄ in the ophiolite, which is considered unusual for CH₄ with a substantial
microbial component.

This study supports the premise that H₂ produced from water/rock reaction can fuel microbial life,
even under challenging conditions of high pH and low oxidant availability. By identifying where and how
microbial methanogenesis can reasonably be expected to occur in H₂-rich, subsurface environments, this
work complements theoretical models in guiding the search for rock-hosted life, including extraterrestrial
life. For example, our findings substantiate predictions that microbial methanogenesis could occur in the
reduced, alkaline ocean of Saturn’s moon, Enceladus (McKay et al., 2008; Glein et al., 2015; Waite et al.,
2017) and in the Martian subsurface (Kral et al., 2014).

6. Acknowledgements

This research was directly supported by the Rock-Powered Life NASA Astrobiology Institute (NNA15BB02A).
This research also used samples and/or data provided by the Oman Drilling Project. The Oman Drilling
Project (OmanDP) has been possible through co-mingled funds from the International Continental Scientific
Drilling Project (ICDP), the Sloan Foundation – Deep Carbon Observatory (Grant 2014-3-01, Kelemen PI), the National Science Foundation (NSF-EAR-1516300, Kelemen PI), the NASA Astrobiology Institute (NNA15BB02A), the German Research Foundation (DFG), the Japanese Society for the Promotion of Science (JSPS), the European Research Council, the Swiss National Science Foundation, JAMSTEC, the TAMU-JR Science operator, and contributions from the Sultanate of Oman Ministry of Regional Municipalities and Water Resources, the Oman Public Authority of Mining, Sultan Qaboos University, CRNS-Univ. Montpellier II, Columbia University, and the University of Southampton. Work at LBNL was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under Award Number DE-AC02-05CH11231.

We thank the Ministry of Regional Municipalities and Water Resources in the Sultanate of Oman (particularly Said Al Habsi, Rashid Al Abri, Salim Al Khanbashi, and Haider Ahmed Mohammed Alajmi) for allowing access to wells and logistical support, Zaheer Al Sulaimani and Mazin Al Sulaimani from the Oman Water Centre and AZD Engineering for their technical and logistical support, Jude Coggon for coordinating
Oman Drilling Project activities, Benoît Ildefonse for sharing geologic map data, Eric Ellison and Kaitlin Rempfert for their assistance in the field and laboratory, Elizabeth Fones for sharing biomass samples, Emily Kraus for critical discussion of Oman CH$_4$ cycle processes, and Noah Fierer, Jen Reeves, Corinne Walsh, Matthew Gebert, and Angela Oliverio for assisting with DNA sequencing and interpretation.

Data (in Excel format) and source code (in R Markdown format) used to produce the figures, data tables and analyses for this paper (as well as additional data on analytical uncertainties and trace element concentrations) are available online at https://github.com/danote/Oman_CH4_stable_isotopes. Additional DNA sequence data processing codes are available at https://github.com/danote/Samail_16S_compilation. The sequences are accessible on the NCBI Short Read Archive under accession PRJNA655565.

7. References

Nothaft et al. Methane Origin in Samail Ophiolite

doi:10.1093/10.392/29329a0.

doi:10.1038/35036572.

33
Nothaft et al.

Methane Origin in Samail Ophiolite

Kelley, D.S., Früh-Green, G.L.. Abiogenic methane in deep-seated mid-ocean ridge environments: Insights from stable isotope

Kieft, T.L. Microbiology of the Deep Continental Biosphere; Cham: Springer International Publishing. p. 225–249. URL: https://doi.org/10.1007/978-3-319-28071-4_6.

Nothaft et al. Methane Origin in Samail Ophiolite

Nothaft et al. Methane Origin in Samail Ophiolite

021; sI: Fe/S proteins.

Proskurowski, G., Lilley, M.D., Seewald, J.S., Früh-Green, G.L., Olson, E.J., Lupton, J.E., Sylva, S.P., Kelley, D.S.

Shennan, J.L.. Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms. J Appl Chem Biotechn-

Table 1: Well data and field measurements.

<table>
<thead>
<tr>
<th>Well</th>
<th>UTM coordinates</th>
<th>Geologic description</th>
<th>Well depth / mbgl</th>
<th>Screen interval / mbct</th>
<th>Water level / mbct</th>
<th>Pump depth / mbct</th>
<th>Conductivity / µS·cm⁻¹</th>
<th>Temperature / °C</th>
<th>pH</th>
<th>Eh / mV</th>
<th>fO₂ / bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAB103</td>
<td>648 577 2 530 362</td>
<td>Gabbro</td>
<td>101 90</td>
<td>−98 15 70</td>
<td>.1410 34</td>
<td>.98</td>
<td>.51167</td>
<td>.2·10⁻³⁶</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAB188</td>
<td>671 123 2 529 798</td>
<td>Gabbro, near contact with harzburgite</td>
<td>78 34</td>
<td>5 91 5 50</td>
<td>.1120 35</td>
<td>.68</td>
<td>.16214</td>
<td>.2·10⁻³⁴</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAB104</td>
<td>643 099 2 541 124</td>
<td>Harzburgite</td>
<td>120 4 100</td>
<td>−104 40</td>
<td>.50 34</td>
<td>33 78</td>
<td>.99 1·10⁻²³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAB105</td>
<td>644 678 2 536 524</td>
<td>Harzburgite</td>
<td>120 5 110</td>
<td>−117 16</td>
<td>.498 33</td>
<td>.78</td>
<td>.66162</td>
<td>2·10⁻³⁷</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAB55</td>
<td>634 777 2 506 101</td>
<td>Harzburgite with abundant carbonate</td>
<td>102 8 97</td>
<td>7 15 7 17</td>
<td>.269 7</td>
<td>.17 2·10⁻²⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAB56</td>
<td>634 851 2 501 617</td>
<td>Harzburgite</td>
<td>106 7 27</td>
<td>7 1 35 10</td>
<td>.35 6</td>
<td>.61 2·10⁻³⁷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSHQ04</td>
<td>670 971 2 531 699</td>
<td>Harzburgite, near fault with gabbro</td>
<td>304 open > 5.8</td>
<td>7 83 33 50</td>
<td>33 41</td>
<td>.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAB71</td>
<td>670 322 2 533 981</td>
<td>Dunite, near fault with harzburgite</td>
<td>136 5 128</td>
<td>−131 8 70</td>
<td>.1183 9 10</td>
<td>.23 2·10⁻²²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM2A</td>
<td>636 988 2 534 284</td>
<td>Mostly dunite with occasional gabbro</td>
<td>400 open > 23.7</td>
<td>14 75 281 333</td>
<td>5 611 22129</td>
<td>.19 2·10⁻⁵¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSHQ14</td>
<td>675 495 2 529 716</td>
<td>Harzburgite</td>
<td>304 open > 5.8</td>
<td>9 2 85 26</td>
<td>370 36</td>
<td>.17 2·10⁻⁵¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measurements refer to sampling February-March, 2018, unless noted. Well elevations are given in Supporting Information Figure S1. Abreviations: n.d., not determined; mbgl, meters below ground level; mbct, meters below casing top. Casings extend ~1 m above ground level. Well elevations below ground level, where not below casing top, Casings extend ~1 m above ground level. Measurements refer to sampling February-March, 2018, unless noted. Well elevations are given in Supporting Information Figure S1.

Note: Well data and field measurements.
Table 2: Isotopic compositions of CH₄, C₂H₆, and C₃H₈.

<table>
<thead>
<tr>
<th>Well</th>
<th>Sample year</th>
<th>Pump depth / laboratory</th>
<th>δ¹³C CH₄</th>
<th>δD CH₄</th>
<th>Δ¹³C CH₃D</th>
<th>Δ¹²C CH₂D₂</th>
<th>δ¹³C C₂H₆</th>
<th>δ¹³C C₃H₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAB188</td>
<td>2018</td>
<td>50. CUB</td>
<td>−86.7</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>78. CUB</td>
<td>−60.8</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UCLA</td>
<td>4.177</td>
<td>−227.396</td>
<td>0.229 ± 0.288</td>
<td>−24.502 ± 0.944</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>NSHQ01</td>
<td>2017</td>
<td>5.8 CUB</td>
<td>6.8</td>
<td>−225</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIT</td>
<td>3.59</td>
<td>−229.67</td>
<td>0.12 ± 0.17</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>22. LBNL</td>
<td>0.8</td>
<td>−209</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIT</td>
<td>1.60</td>
<td>−230.00</td>
<td>0.72 ± 0.29</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIT</td>
<td>−3.83</td>
<td>−190.32</td>
<td>2.87 ± 0.57</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UCLA</td>
<td>−4.710</td>
<td>−197.73</td>
<td>2.638 ± 0.284</td>
<td>−1.267 ± 0.886</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIT</td>
<td>−5.02</td>
<td>−311.73</td>
<td>0.77 ± 0.44</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UCLA</td>
<td>−3.352</td>
<td>−293.58</td>
<td>2.074 ± 0.298</td>
<td>−0.204 ± 1.358</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>NSHQ14</td>
<td>2017</td>
<td>85. CUB</td>
<td>0.2</td>
<td>−271</td>
<td>n.d.</td>
<td>n.d.</td>
<td>−6.0</td>
<td>+3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIT</td>
<td>−0.08</td>
<td>−268.82</td>
<td>0.69 ± 0.23</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIT</td>
<td>−6.89</td>
<td>−308.52</td>
<td>0.69 ± 0.17</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

All isotopic values reported in ‰ units. δ¹³C and δD reported in the VPDB and VSMOW reference frames, respectively. Data from 2014 previously reported by Miller et al. (2016). Abbreviations: n.d., not determined; mbc, meters below casing top.
No "determined during 2018 sampling; so most recent prior data is reported (2015 to 2017; Rome et al, 2019).

Abbreviations:
- C reported relative to VPDB. Samples obtained in February-March 2018, unless noted.
- D reported relative to VSMOW.
- Indicates the sum of all dissolved species of the element. All values reported in parts per million. O and L mol µ10−36.

<table>
<thead>
<tr>
<th>Well</th>
<th>Sample</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
<th>Al</th>
<th>Fe</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cl</th>
<th>Br</th>
<th>SO4</th>
<th>NO3</th>
<th>HCO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSHQ04</td>
<td>1.7-1.1</td>
<td>2.6</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>NSHQ14</td>
<td>1.3-1.0</td>
<td>1.2</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>WAB71</td>
<td>1.2-1.0</td>
<td>1.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Chemical and isotopic composition of water samples.
Table 4: Aqueous gas concentrations, reported in \(\mu \text{mol} \cdot \text{L}^{-1} \).

| Well | Sample year | \(\text{H}_2 \) | \(\text{CO} \) | \(\text{CH}_4 \) | \(\text{C}_2\text{H}_6 \) | \(\text{C}_3\text{H}_8 \) | \(\text{i-C}_3\text{H}_{10} \) | \(\text{n-C}_3\text{H}_{10} \) | \(\text{i-C}_3\text{H}_{12} \) | \(\text{n-C}_3\text{H}_{12} \) | \(\text{C}_4\text{H}_{10} \)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WAB103</td>
<td>2018</td>
<td>< 5.98 \cdot 10^{-3}</td>
<td>< 1.32 \cdot 10^{-1}</td>
<td>1.45 \cdot 10^{-1}</td>
<td>< 9.88 \cdot 10^{-4}</td>
<td>< 7.60 \cdot 10^{-4}</td>
<td>4.61 \cdot 10^{-4}</td>
<td>6.05 \cdot 10^{-3}</td>
<td>< 3.43 \cdot 10^{-4}</td>
<td>8.73 \cdot 10^{-4}</td>
<td>< 2.81 \cdot 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>< 5.98 \cdot 10^{-3}</td>
<td>< 1.32 \cdot 10^{-1}</td>
<td>9.17 \cdot 10^{-1}</td>
<td>< 9.88 \cdot 10^{-4}</td>
<td>< 7.60 \cdot 10^{-4}</td>
<td>4.61 \cdot 10^{-4}</td>
<td>5.78 \cdot 10^{-4}</td>
<td>< 3.43 \cdot 10^{-4}</td>
<td>3.81 \cdot 10^{-4}</td>
<td>< 2.81 \cdot 10^{-4}</td>
</tr>
<tr>
<td>WAB104</td>
<td>2018</td>
<td>< 5.98 \cdot 10^{-3}</td>
<td>< 1.32 \cdot 10^{-1}</td>
<td>< 1.53 \cdot 10^{-2}</td>
<td>< 9.88 \cdot 10^{-4}</td>
<td>< 7.60 \cdot 10^{-4}</td>
<td>4.82 \cdot 10^{-4}</td>
<td>5.78 \cdot 10^{-4}</td>
<td>7.56 \cdot 10^{-4}</td>
<td>< 3.81 \cdot 10^{-4}</td>
<td>< 2.81 \cdot 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>< 4.80 \cdot 10^{-3}</td>
<td>< 2.97 \cdot 10^{-1}</td>
<td>2.01 \cdot 10^{-2}</td>
<td>< 1.01 \cdot 10^{-3}</td>
<td>< 7.79 \cdot 10^{-4}</td>
<td>4.72 \cdot 10^{-4}</td>
<td>6.01 \cdot 10^{-4}</td>
<td>< 3.50 \cdot 10^{-4}</td>
<td>3.91 \cdot 10^{-4}</td>
<td>< 2.88 \cdot 10^{-4}</td>
</tr>
<tr>
<td>WAB105</td>
<td>2018</td>
<td>< 5.98 \cdot 10^{-3}</td>
<td>< 1.32 \cdot 10^{-1}</td>
<td>< 1.53 \cdot 10^{-2}</td>
<td>< 9.88 \cdot 10^{-4}</td>
<td>< 7.60 \cdot 10^{-4}</td>
<td>3.70 \cdot 10^{-2}</td>
<td>5.78 \cdot 10^{-4}</td>
<td>< 3.43 \cdot 10^{-4}</td>
<td>3.81 \cdot 10^{-4}</td>
<td>< 2.81 \cdot 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>< 4.80 \cdot 10^{-3}</td>
<td>< 2.97 \cdot 10^{-1}</td>
<td>2.01 \cdot 10^{-2}</td>
<td>< 1.01 \cdot 10^{-3}</td>
<td>< 7.79 \cdot 10^{-4}</td>
<td>4.72 \cdot 10^{-4}</td>
<td>6.01 \cdot 10^{-4}</td>
<td>< 3.50 \cdot 10^{-4}</td>
<td>3.91 \cdot 10^{-4}</td>
<td>< 2.88 \cdot 10^{-4}</td>
</tr>
<tr>
<td>WAB53</td>
<td>2018</td>
<td>< 5.98 \cdot 10^{-3}</td>
<td>< 1.32 \cdot 10^{-1}</td>
<td>1.15 \cdot 10^{-1}</td>
<td>1.55 \cdot 10^{-3}</td>
<td>< 7.60 \cdot 10^{-4}</td>
<td>2.25 \cdot 10^{-3}</td>
<td>7.91 \cdot 10^{-4}</td>
<td>< 1.60 \cdot 10^{-3}</td>
<td>< 3.81 \cdot 10^{-4}</td>
<td>5.52 \cdot 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>< 4.80 \cdot 10^{-3}</td>
<td>< 2.97 \cdot 10^{-1}</td>
<td>1.06 \cdot 10^{-1}</td>
<td>< 1.01 \cdot 10^{-3}</td>
<td>< 7.79 \cdot 10^{-4}</td>
<td>4.72 \cdot 10^{-4}</td>
<td>6.01 \cdot 10^{-4}</td>
<td>< 3.50 \cdot 10^{-4}</td>
<td>< 3.91 \cdot 10^{-4}</td>
<td>< 2.88 \cdot 10^{-4}</td>
</tr>
<tr>
<td>WAB56</td>
<td>2017</td>
<td>2.40 \cdot 10^{-1}</td>
<td>< 2.97 \cdot 10^{-1}</td>
<td>1.60 \cdot 10^{-1}</td>
<td>< 1.01 \cdot 10^{-3}</td>
<td>< 7.79 \cdot 10^{-4}</td>
<td>4.72 \cdot 10^{-4}</td>
<td>6.01 \cdot 10^{-4}</td>
<td>< 3.50 \cdot 10^{-4}</td>
<td>< 3.91 \cdot 10^{-4}</td>
<td>< 2.88 \cdot 10^{-4}</td>
</tr>
<tr>
<td>NSHQ04</td>
<td>2018</td>
<td>< 5.98 \cdot 10^{-3}</td>
<td>< 1.32 \cdot 10^{-1}</td>
<td>1.44 \cdot 10^{2}</td>
<td>2.45 \cdot 10^{-2}</td>
<td>2.22 \cdot 10^{-3}</td>
<td>< 4.61 \cdot 10^{-4}</td>
<td>< 5.78 \cdot 10^{-4}</td>
<td>< 3.43 \cdot 10^{-4}</td>
<td>< 3.81 \cdot 10^{-4}</td>
<td>< 2.81 \cdot 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>< 4.80 \cdot 10^{-3}</td>
<td>< 2.97 \cdot 10^{-1}</td>
<td>4.83 \cdot 10^{2}</td>
<td>< 1.01 \cdot 10^{-3}</td>
<td>1.63 \cdot 10^{-3}</td>
<td>< 4.72 \cdot 10^{-4}</td>
<td>< 6.01 \cdot 10^{-4}</td>
<td>< 3.50 \cdot 10^{-4}</td>
<td>< 3.91 \cdot 10^{-4}</td>
<td>< 2.88 \cdot 10^{-4}</td>
</tr>
<tr>
<td>WAB71</td>
<td>2018</td>
<td>< 5.98 \cdot 10^{-3}</td>
<td>< 1.32 \cdot 10^{-1}</td>
<td>7.76</td>
<td>1.00 \cdot 10^{-3}</td>
<td>< 7.60 \cdot 10^{-4}</td>
<td>4.61 \cdot 10^{-4}</td>
<td>< 5.78 \cdot 10^{-4}</td>
<td>< 3.43 \cdot 10^{-4}</td>
<td>< 3.81 \cdot 10^{-4}</td>
<td>< 2.81 \cdot 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>5.92 \cdot 10^{-1}</td>
<td>< 2.97 \cdot 10^{-1}</td>
<td>1.48 \cdot 10^{2}</td>
<td>< 1.01 \cdot 10^{-3}</td>
<td>< 7.79 \cdot 10^{-4}</td>
<td>4.72 \cdot 10^{-4}</td>
<td>1.94 \cdot 10^{-2}</td>
<td>< 3.50 \cdot 10^{-4}</td>
<td>4.79 \cdot 10^{-4}</td>
<td>< 2.88 \cdot 10^{-4}</td>
</tr>
<tr>
<td>CM2A</td>
<td>2018</td>
<td>3.38</td>
<td>< 1.32 \cdot 10^{-1}</td>
<td>1.52 \cdot 10^{2}</td>
<td>4.11 \cdot 10^{-2}</td>
<td>1.75 \cdot 10^{-3}</td>
<td>< 4.61 \cdot 10^{-4}</td>
<td>6.48 \cdot 10^{-3}</td>
<td>< 3.43 \cdot 10^{-4}</td>
<td>< 3.81 \cdot 10^{-4}</td>
<td>< 2.81 \cdot 10^{-4}</td>
</tr>
<tr>
<td>NSHQ14</td>
<td>2018</td>
<td>1.31 \cdot 10^{2}</td>
<td>< 1.32 \cdot 10^{-1}</td>
<td>7.12 \cdot 10^{3}</td>
<td>7.32 \cdot 10^{-2}</td>
<td>7.64 \cdot 10^{-3}</td>
<td>2.26 \cdot 10^{-3}</td>
<td>2.88 \cdot 10^{-3}</td>
<td>1.27 \cdot 10^{-3}</td>
<td>2.23 \cdot 10^{-3}</td>
<td>1.12 \cdot 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>2.53 \cdot 10^{2}</td>
<td>< 2.79 \cdot 10^{-1}</td>
<td>1.06 \cdot 10^{2}</td>
<td>7.98 \cdot 10^{-2}</td>
<td>9.00 \cdot 10^{-3}</td>
<td>1.53 \cdot 10^{-3}</td>
<td>4.77 \cdot 10^{-3}</td>
<td>< 3.50 \cdot 10^{-3}</td>
<td>< 3.91 \cdot 10^{-4}</td>
<td>9.70 \cdot 10^{-4}</td>
</tr>
</tbody>
</table>

a Hexane isomers not chromatographically resolved.

b High \(\text{C}_1/ (\text{C}_2 + \text{C}_3) \) at NSHQ04 resulted in \(\text{CH}_4 \) tailing into and preventing quantitation of the \(\text{C}_2\text{H}_6 \) peak in 2017. Chromatographic improvements were made between analyses of 2017 and 2018 samples.
Table 5: Gibbs free energies of potential CH$_4$-forming reactions and log activities of relevant species. *Abbreviations:* HT, hydrogenotrophic (Equation 2); AC, acetoclastic (Equation 3); FD, formate disproportionation (Equation 4).

<table>
<thead>
<tr>
<th>water type</th>
<th>H$^+$</th>
<th>CO$_2$(aq)</th>
<th>HCOO$^-$</th>
<th>CH$_3$COO$^-$</th>
<th>CH$_4$(aq)</th>
<th>H$_2$(aq)</th>
<th>ΔG$_r$ / [kJ · mol$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca$^{2+}$ – OH$^-$</td>
<td>−9.0</td>
<td>64</td>
<td>−115</td>
<td>−90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg$^{2+}$ – HCO$_3^-$</td>
<td>−3.0</td>
<td>−77</td>
<td>−115</td>
<td>−90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg$^{2+}$ – HCO$_3^-$</td>
<td>−4.0</td>
<td>−6.0</td>
<td>−63</td>
<td>−107</td>
<td>−47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg$^{2+}$ – HCO$_3^-$</td>
<td>−7.0</td>
<td>−6.0</td>
<td>−107</td>
<td>−47</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>