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Abstract. The compact, connected Lie group E6 admits two forms: simply connected
and adjoint type. As we previously established, the Baum-Connes isomorphism relates
the two Langlands dual forms, giving a duality between the equivariant K-theory of
the Weyl group acting on the corresponding maximal tori. Our study of the An case
showed that this duality persists at the level of homotopy, not just homology. In this
paper we compute the extended quotients of maximal tori for the two forms of E6,
showing that the homotopy equivalences of sectors established in the An case also
exist here, leading to a conjecture that the homotopy equivalences always exist for
Langlands dual pairs. In computing these sectors we show that centralisers in the E6

Weyl group decompose as direct products of reflection groups, generalising Springer’s
results for regular elements, and we develop a pairing between the component groups
of fixed sets generalising Reeder’s results. As a further application we compute the
K-theory of the reduced Iwahori-spherical C∗-algebra of the p-adic group E6, which
may be of adjoint type or simply connected.

Introduction

The structure of element centralisers in Weyl groups plays a key role in our under-
standing of the representation theory of reductive groups of p-adic type. For the narrow
class of regular elements Springer showed that the centralisers have the structure of a
complex reflection group inherited directly from the action on the corresponding regular
eigenspace [12]. Building on the work of Springer, Brewer [3] classified the irreducible,
rank n complex reflection groups in a rank 2n real reflection group, exhibiting these as
subgroups of centralisers in the automorphism group of the root graph. In the case of
elliptic elements Reeder studied the centralisers by constructing a symplectic form on
the coinvariant representation [7].

As remarked by Reeder, there is no general theory for the structure of centralisers
in Weyl groups, though the classical cases An, Bn, Cn, Dn are well understood. In this
paper we determine the structure for all the centralisers in the Weyl group of type E6.
We provide a description in terms of generators and relations and give a classification
of each centraliser as a product of reflection groups. In the case of the seven conjugacy
classes of regular elements this recovers Springer’s identification of the centralisers as
complex reflection groups, though our approach is somewhat different to Springer.

Theorem 1. Let W be the Weyl group of type E6. For each w ∈ W the centraliser
ZW (w) decomposes as a product of reflection groups.

1991 Mathematics Subject Classification. Primary: 20G41, 20G07; secondary: 20G05, 20G10.
Key words and phrases. Weyl groups; complex reflection groups; exceptional Lie groups; centralisers;

duality; K-theory.

1



CENTRALISERS, COMPLEX REFLECTION GROUPS AND ACTIONS IN THE WEYL GROUP E6 2

For all the elements of order 1 or 2 in the Weyl group, the centralisers are real reflection
groups. In all but one of the remaining cases they are truly complex reflection groups.
The one exception is the centraliser of the element of type A2. This is the product of the
cyclic group C3 with the group (S3 oC2): the latter of which is not a complex reflection
group. This factor however is a reflection group over the finite field F3. The structure
as reflection groups is outlined in Figure 3.

In the case of an elliptic element w in a Weyl group W , Reeder studied the centraliser
via its actions on the (finite) group of coinvariants Γ/(I − w)Γ where Γ is the root
lattice, see [7]. Reeder defined a pairing on Γ/(I − w)Γ, for an elliptic element w, and
showed that for Γ a self-dual lattice the pairing is non-degenerate. Dual to the action on
coinvariants one may consider the action of W on the invariant part of the Pontryagin
dual of Γ, which is the maximal torus T ∨ in the Langlands dual of the simply connected
form of the Lie group. For non-elliptic elements, the coinvariants and invariants become
infinite, leading us to study the finite component groups of the fixed sets in maximal
tori T and T ∨ of Langlands dual groups. The centraliser of an element w ∈ W can be
represented by automorphisms of these two finite groups, and we show that these groups
and actions are dual.

We will establish this duality in a more general context: let W be a finite group
acting orthogonally on a Euclidean vector space t, preserving a lattice Γ in t. Let Γ∨

denote the dual lattice in t∗ and let T = t/Γ, T ∨ = t∗/Γ∨. The fixed sets T w and
(T ∨)w each consist of a product of a sub-torus with a finite subgroup: T w ∼= T w1 × Fw
and (T ∨)w ∼= (T ∨)w1 × F∨w where T w1 and (T ∨)w1 denote the identity components of the
w-fixed sets in T and T ∨ respectively. (In the case where W is a Weyl group, Γ the root
lattice and w ∈ W an elliptic element, the group F∨w is the fixed set for the action of w
on T ∨ and the Pontryagin dual of F∨w is identified with Reeder’s group of coinvariants.)
We will construct a non-degenerate pairing between Fw, F

∨
w for all elements of the group

W , allowing us to prove:

Theorem 2. Let W be a finite group acting orthogonally on a Euclidean vector space
t, preserving a lattice Γ in t. Then the dual component group F∨w is (canonically) iso-
morphic to the Pontryagin dual of Fw. Therefore F∨w is (non-canonically) isomorphic to
Fw.

Theorem 3. The actions of ZW (w) on Fw and F∨w are dual.

Moreover, by exploiting the relationship between invariants and coinvariants we es-
tablish the following formula for the cardinality of the component group.

Theorem 4. Let w ∈W with w 6= I and let r be the rank of I−w. Let g be the greatest
common divisor of the r× r-minors of the matrix of I −w expressed in coordinates with
respect to a basis for the dual lattice Γ∨. Then

g = |Fw|.

The above results allow us to determine the fixed sets and to show that T w and (T ∨)w

agree:
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Theorem 5. For w ∈ W the fixed sets T w and (T ∨)w are non-canonically isomorphic
as topological groups. In the special case of Weyl groups acting on maximal tori, this
gives an isomorphism between the w-fixed sets for the Langlands dual forms.

For a Weyl group W and maximal torus T = t/Γ, the extended affine Weyl group
is defined to be Γ oW . The W -equivariant K-theory of the maximal torus T ∨ in the
Langlands dual is identified with the K-theory of C∗r (Γ oW ), while the W -equivariant
K-homology of T is identified with KΓoW

∗ (t) (see [5]). Hence the Baum-Connes iso-
morphism for ΓoW corresponds to a pairing between the equivariant K-theory groups
K∗W (T ) and K∗W (T ∨) which we showed in [5] is given by a Poincaré duality. In particular
the pairing makes these two groups isomorphic up to torsion.

Returning to the case of E6, our description of the centralisers and the fixed sets
allows us to compute the action of the Weyl group W on the inertia space (cf. Theorem
8) associated to the action of W on the maximal torus, thereby obtaining a description
of the extended quotient. Using the equivariant Chern character, we compute (up to
torsion) the W -equivariant K-theory for the maximal tori of both the simply connected
and adjoint-type Lie groups of type E6, exhibiting the isomorphism between these K-
theory groups.

The isomorphism between these K-theory groups corresponds to a cohomological
relation between the corresponding extended quotients for the actions of the Weyl group
W on the maximal tori. We refine this in the case of E6 by showing that the isomorphism
in cohomology arises from a homotopy equivalence at the level of sectors.

Theorem 6. Let W be the Weyl group of type E6 and let T and T ∨ denote the corre-
sponding (real) maximal tori. For each w ∈W there is a homotopy equivalence

T w/ZW (w) ∼ (T ∨)w/ZW (w).

This stratification phenomenon was introduced and studied in the case of An in [6],
and we conjecture that this demonstrates a general principle for any compact connected
semisimple Lie group:

Conjecture (Comparison of sectors). For any compact connected semisimple Lie group,
the homeomorphisms between T w, (T ∨)w provided by Theorem 5 descend to homotopy
equivalences

T w/ZW (w) ∼ (T ∨)w/ZW (w).

In Section 5, we provide two main applications. The first is the computation of the
K-theory for the group C∗-algebras of the two extended affine Weyl groups of type E6

showing that these agree. The second is a geometric description of the set of tempered
representations in the Iwahori-spherical block of the p-adic adjoint group E6. For each
of these applications, full use is made of our results in Table 2.

The paper is organised as follows:

1. Component groups of fixed sets 4
2. Elements, conjugacy classes and centralisers 11
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3. Fixed sets and their quotients: the simply connected type 20
4. Fixed sets and their quotients: the group of adjoint type 32
5. Applications 37
6. Power relations between conjugacy classes and reflection structures of

centralisers 39
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1. Component groups of fixed sets

In this section we will consider the general case of a finite group W acting orthogonally
on a Euclidean vector space t of dimension n, preserving a lattice Γ. The action thus
descends to the torus T = t/Γ. Let w be an element of W and T w the fixed set of the
action of w on T . Since the action is by automorphisms of the group T , in each case the
fixed set is a (closed) subgroup of T and is therefore isomorphic to the direct product
of a finite abelian group with the identity component of T w, which we denote T w1 . We
note that T w1 is the image under the exponential map of the 1-eigenspace of w acting on
the Lie algebra t. Let Fw denote the group of components of the w-fixed set, that is

Fw = T w/T w1
so that T w ∼= T w1 × Fw.

We use the inner product to identify t with t∗. Note that this identifies the W -action
on t with the dual action on t∗, preserving the dual lattice

Γ∨ = {x ∈ t : 〈x, y〉 ∈ Z, ∀y ∈ Γ}.

This induces an action of W on the dual torus T ∨ = t/Γ∨. Let F∨w denote the component
group for the action on the dual torus: F∨w = (T ∨)w/(T ∨)w1 .

Theorem 2. Let W be a finite group acting orthogonally on a Euclidean vector space
t, preserving a lattice Γ in t. Then the dual component group F∨w is (canonically) iso-
morphic to the Pontryagin dual of Fw. Therefore F∨w is (non-canonically) isomorphic to
Fw.

To prove the theorem we will construct a T1-valued pairing between the Pontryagin

duals F̂w and F̂∨w thus establishing an isomorphism

F̂w ∼=
̂̂
F∨w
∼= F∨w .
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The Pontryagin dual F̂w is canonically isomorphic to the set of characters on T w
which are trivial on the subgroup T w1 . The group of characters on T is identified with
the lattice Γ∨ via

χx(y + Γ) := e2πi〈x,y〉.

The characters on T w are given by the quotient:

T̂ w = Γ∨/((I − w)Γ∨)

Hence the set of characters on T w vanishing on T w1 is given by

{x ∈ Γ∨ : χx ≡ 1 on T w1 }/((I − w)Γ∨).

Note that χx ≡ 1 on T w1 if and only if x is orthogonal to the fixed set tw, so we obtain
the identification:

F̂w ∼= {x ∈ Γ∨ : x ⊥ tw}/((I − w)Γ∨).

Likewise for the dual F∨w we have

F̂∨w
∼= {y ∈ Γ : y ⊥ tw}/((I − w)Γ).

We introduce the notation

xw = {y ∈ t : y ⊥ tw}
xw(Γ) = xw ∩ Γ

xw(Γ∨) = xw ∩ Γ∨.

Following Reeder, letm denote the minimal polynomial of w and let ṁ(t) =
m(t)−m(1)

t− 1
.

Reeder restricts to the elliptic case, i.e. where m(1) 6= 0. In the non-elliptic case we will

define m̈(t) =
ṁ(t)− ṁ(1)

t− 1
and in general we set

m =

{
ṁ m(1) 6= 0

m̈ m(1) = 0.

Definition 1.1. For x ∈ Γ∨ and y ∈ Γ we define a twisted pairing

〈x, y〉w := 〈x,m(w)y〉.

We will consider this integer valued pairing modulo µ where

µ =

{
m(1) if m(1) 6= 0

ṁ(1) otherwise.

Note that µ is always non-zero since m is the minimal polynomial, and w is a normal
operator.

The following Lemma shows that m(w) provides an inverse in the elliptic case, and a
partial inverse in general, to I − w.

Lemma 1.2. The operator m(w)(I − w) is µpxw where pxw denotes the orthogonal pro-
jection onto xw.



CENTRALISERS, COMPLEX REFLECTION GROUPS AND ACTIONS IN THE WEYL GROUP E6 6

Proof. Clearly m(w)(I −w) = 0 on the fixed set tw which is the orthogonal complement
of xw, so it suffices to show that m(w)(I − w)y = µy for y ∈ xw.

In the elliptic case the result is immediate from the fact that ṁ(t)(1− t) = µ−m(t)
and m(w) = 0.

In the non-elliptic case we have m̈(t)(1− t) = µ− ṁ(t). The operator ṁ(w) satisfies
the equation

ṁ(w)(I − w) = m(1)−m(w) = 0.

The image of I − w is precisely xw since w is a normal operator and tw = ker(I − w)
hence for y ∈ xw

m̈(w)(I − w)y = µy − ṁ(w)y = µy.

�

Lemma 1.3. The twisted pairing 〈−,−〉w descends to a well-defined pairing

F̂w × F̂∨w → Z/µZ.

Proof. Recall that F̂w is identified with xw(Γ∨)/(I − w)Γ∨ and F̂∨w is identified with
xw(Γ)/(I − w)Γ.

Let x ∈ xw(Γ∨) and y ∈ Γ. Then

〈x, (I − w)y〉w = 〈x,m(w)(I − w)y〉
= 〈x, µpxwy〉
= 〈pxwx, µy〉
= µ〈x, y〉 ∈ µZ.

Similarly if x ∈ Γ∨ and y ∈ xw(Γ) then

〈(I − w)x, y〉w = 〈(I − w)x,m(w)y〉
= 〈(w−1 − I)wx,m(w)y〉
= 〈wx, (w − I)m(w)y〉
= 〈wx,−µpxwy〉
= −µ〈wx, y〉 ∈ µZ.

Hence the pairing is well defined on the quotients. �

We note that since xw(Γ) contains (I − w)Γ it spans the space xw = (I − w)t. In
particular xw(Γ) is a lattice in the space xw, and similarly for xw(Γ∨).

We consider the lattices (xw(Γ))∨ = {x ∈ xw : 〈x, xw(Γ)〉 ⊆ Z} and (xw(Γ∨))∨ = {y ∈
xw : 〈xw(Γ∨), y〉 ⊆ Z}. Since xw(Γ∨) lies in Γ∨ it pairs integrally with Γ and hence
xw(Γ∨) ⊆ (xw(Γ))∨. Similarly xw(Γ) ⊆ (xw(Γ∨))∨. Let

tw(Γ) = tw ∩ Γ,

tw(Γ∨) = tw ∩ Γ∨.

Lemma 1.4. The projection pxw gives maps Γ∨ → (xw(Γ))∨ and Γ → (xw(Γ∨))∨ which
induce isomorphisms

Γ∨/tw(Γ∨) ∼= (xw(Γ))∨.

Γ/tw(Γ) ∼= (xw(Γ∨))∨.
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Proof. If x ∈ Γ∨ then 〈x, y〉 ∈ Z for all y ∈ xw(Γ). Now

〈pxwx, y〉 = 〈x, pxwy〉 = 〈x, y〉 ∈ Z

and pxwx ∈ xw so pxwx ∈ (xw(Γ))∨. Clearly this map has kernel tw(Γ∨).
It remains to check surjectivity. Since xw(Γ) is a lattice in xw and is the intersection

of xw with Γ it follows that xw is complemented in Γ. Picking a complement for xw(Γ),
let π : Γ→ xw(Γ) denote the retraction obtained by killing the complement.

Given any x ∈ (xw(Γ))∨ consider the homomorphism from Γ to Z defined by

y 7→ 〈x, π(y)〉.

Since there is a perfect pairing between Γ and Γ∨, there exists x′ ∈ Γ∨ such that
〈x, π(y)〉 = 〈x′, y〉. Now for all y ∈ xw(Γ) we have

〈pxwx′, y〉 = 〈x′, pxwy〉 = 〈x′, y〉 = 〈x, π(y)〉 = 〈x, y〉.

Thus x = pxwx
′ which is in the image.

Exchanging the roles of Γ and Γ∨ gives the dual case. �

Proposition 1.5. The pairing

F̂w × F̂∨w → Z/µZ.

is left and right non-degenerate.

Proof. Let x ∈ xw(Γ∨) and suppose that 〈x, y〉w ∼= 0 mod µ for all y ∈ xw(Γ), that is
〈x, 1

µm(w)y〉 ∈ Z for all y in xw(Γ).

Hence 1
µm(w)∗x pairs integrally with all y in xw(Γ), and lies in the space xw, so

1
µm(w)∗x ∈ (xw(Γ))∨.

By Lemma 1.4 (xw(Γ))∨ = pxwΓ∨ and by Lemma 1.2

µpxw = m(w)(I − w) = (m(w)(I − w))∗

so we have

m(w)∗x ∈ µpxwΓ∨ = m(w)∗(I − w)∗Γ∨

since m(w) and I − w commute.
Now x, (I − w)∗Γ∨ lie in xw and m(w)∗ is injective on this space (again by Lemma

1.2) giving

x ∈ (I − w)∗Γ∨ = (I − w−1)Γ∨ = (w − I)w−1Γ∨ = (I − w)Γ∨.

Thus the pairing is non-degenerate on the left.
Now let y ∈ xw(Γ) and suppose that 〈x, y〉w ∼= 0 mod µ for all x ∈ xw(Γ∨), that is

〈x, 1
µm(w)y〉 ∈ Z for all x in xw(Γ∨).

Hence 1
µm(w)y ∈ (xw(Γ∨))∨ = pxwΓ. Then

m(w)y ∈ µpxwΓ = m(w)(I − w)Γ

and as m(w) is injective on xw we have y ∈ (I − w)Γ. Hence the pairing is also non-
degenerate on the right. �
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Proof of Theorem 2. As noted above it suffices to prove that F̂w is the Pontryagin dual

of F̂∨w .

Define a pairing F̂w × F̂∨w → T1 by

χ(x+ (I − w)Γ∨, y + (I − w)Γ) := e
2πi
µ
〈x,y〉w .

Fixing an element of F̂w this gives a character on F̂∨w , hence we have a homomorphism

from F̂w to the Pontryagin dual of F̂∨w . Left non-degeneracy of the pairing 〈−,−〉w
implies injectivity of this homomorphism.

Likewise fixing an element of F̂∨w gives a character on F̂w, hence we have a homo-

morphism from F̂∨w to the Pontryagin dual of F̂w. Right non-degeneracy again implies
injectivity.

Combining these two maps we deduce that

|F̂w| ≤ |
̂̂
F∨w | = |F̂∨w | ≤ |

̂̂
Fw| = |F̂w|.

Since the cardinalities are equal the injections must be isomorphisms. �

The following result gives a tool for computing the cardinality of these groups, which is
relevant in the computation of K-theory. It may be useful to bear in mind the following
example.

Example 1.6. The conjugacy class representative s0s1s5s3 of type A4
1 is represented by

the matrix

M =


−1 1 0 0 0 −1
0 1 0 0 0 −2
0 1 −1 1 0 −2
0 0 0 1 0 −2
0 0 0 1 −1 −1
0 0 0 0 0 −1


with respect to the lattice Γ and its transpose with respect to the lattice Γ∨. The rank
of I −M is 4 and the greatest common divisors of the 4× 4 minors is easily seen to be
4 for both I −M and I −MT . As we will establish in the next theorem, this computes
the order of the component group of the corresponding fixed set.

This example is simplified by the fact that the operator is self adjoint, ensuring that
the dual matrices over Γ and Γ∨ are transpose. In general, the matrices with respect to
the dual bases are related by the formula (I−M)→ (I−M−1)T , however the argument
given in Theorem 5 below shows that the gcd of the corresponding minors is still the
same in these two matrices.

Theorem 4. Let w ∈W with w 6= I and let r be the rank of I−w. Let g be the greatest
common divisor of the r× r-minors of the matrix of I −w expressed in coordinates with
respect to a basis for the dual lattice Γ∨. Then

g = |Fw|.

Proof. Let i = |Fw| = [xw(Γ∨) : (I − w)Γ∨].
Let v1, . . . , vr be a basis for (I − w)Γ∨, and let w1 . . . , wr be a basis for xw(Γ∨).
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Expressing these vectors in coordinates with respect to a basis for Γ∨, each element
of the basis {vi} lies in the integer column span of I−w, so the greatest common divisor
of the r× r-minors of the matrix (v1| . . . |vr) must be divisible by g. But conversely each
column of I −w can be written in terms of the basis, hence we deduce that g equals the
greatest common divisor of the r × r-minors of the matrix (v1| . . . |vr).

The subgroup xw(Γ∨) = xw∩Γ∨ has a complement Λ in Γ∨ and the index i of (I−w)Γ∨

in the lattice xw(Γ∨) equals the index of (I−w)Γ∨⊕Λ in Γ∨. Let x1 . . . , xn−r be a basis
of Λ, so w1 . . . , wr, x1, . . . xn−r gives a basis for Γ∨ and hence the corresponding n × n
matrix has determinant 1.

The elements v1, . . . , vr, x1, . . . , xn−r form a basis for (I − w)Γ∨ ⊕ Λ which has index
i in Γ∨, hence the corresponding matrix has determinant i. But the determinant can be
built from the minors of (v1| . . . |vr), so must be divisible by g. That is g|i.

Now consider exterior products: The determinants are given by v1 ∧ · · · ∧ vr ∧ x1 ∧
· · · ∧ xn−r and by w1 ∧ · · · ∧ wr ∧ x1 ∧ · · · ∧ xn−r thus

v1 ∧ · · · ∧ vr ∧ x1 ∧ · · · ∧ xn−r = i(w1 ∧ · · · ∧ wr ∧ x1 ∧ · · · ∧ xn−r)
As v1, . . . , vr and w1, . . . , wr span the same r-dimensional subspace of t∗ it follows

that v1 ∧ · · · ∧ vr is a multiple of w1 ∧ · · · ∧wr, and from the above equation we see that
the coefficient is i:

v1 ∧ · · · ∧ vr = i(w1 ∧ · · · ∧ wr).
The coefficients of v1 ∧ · · · ∧ vr in the standard basis {ei1 ∧ · · · ∧ eir} for the exterior

algebra of Γ∨ are precisely the r × r minors. But the above equation tells us that as
w1 ∧ · · · ∧wr has integer coefficients, the coefficients of v1 ∧ · · · ∧ vr must be divisible by
i. Hence i|g.

Therefore i = g as claimed. �

Remark 1.7. We note that since |Fw| = |F∨w | by Theorem 2 we may use the greatest
common divisors of minors of the matrix of I − w with respect to a basis for either the
lattice Γ or the lattice Γ∨ to compute the cardinality of the groups Fw, F

∨
w .

As a consequence of Theorem 2 we have the following:

Theorem 5. For w ∈ W the fixed sets T w and (T ∨)w are non-canonically isomorphic
as topological groups. In the special case of Weyl groups acting on maximal tori, this
gives an isomorphism between the w-fixed sets for the Langlands dual forms.

Proof. The fixed sets are isomorphic to T w1 × Fw, (T ∨1 )w × F∨w and we know that the
component groups are isomorphic by 2 so we only need to show that the identity com-
ponents are isomorphic. This follows from the fact that these are precisely the image of
the fixed sets in t ∼= t∗ under the respective quotient maps. �

We now turn to the actions of the centraliser ZW (w) on the groups Fw and F∨w , induced
by the actions of ZW (w) on the w-fixed sets T w and (T∨)w. Although the groups Fw
and F∨w are isomorphic, there is in general no ZW (w)-equivariant isomorphism between
the component groups. Instead we will show that the actions are dual. Nonetheless
even though these dual actions can be very different we will see (cf. Section 4) that the
numbers of orbits of the centraliser on Fw and F∨w are the same. This is an instance of
our conjecture and can be seen clearly in the dual actions of G25 on F3

3 in case (21) in
Section 3.
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Theorem 3. The actions of ZW (w) on Fw and F∨w are dual.

Proof. For s ∈ Fw, t ∈ F∨w ∼= F̂w denote the corresponding pairing by 〈s, t〉w. We must
show:

〈gs, gt〉w = 〈s, t〉w ∀s ∈ Fw, t ∈ F∨w , g ∈ ZW (w).

Recall that F̂w ∼= xw(Γ∨)/(I−w)Γ∨ and F̂∨w
∼= xw(Γ)/(I−w)Γ. By construction these

isomorphisms are equivariant for the action of ZW (w).

The pairing of F̂w and F̂∨w is defined by

χ(x+ (I − w)Γ∨, y + (I − w)Γ) := e
2πi
µ
〈x,y〉w .

and for g ∈ ZW (w) we have χ(gx+ (I −w)Γ∨, gy + (I −w)Γ) := e2πi〈gx,gy〉w . Now note
that

〈gx, gy〉w = 〈gx,m(w)gy〉 = 〈gx, gm(w)y〉
since g is in the centraliser of w, so as W acts isometrically on t we have 〈gx, gy〉w =
〈x, y〉w.

Now for s ∈ Fw, t ∈ F∨w the pairing of gs with gt is defined to be the pairing of gs
with the image of gt under the composition

F∨w
∼= ̂̂
F∨w
∼= F̂w.

The first isomorphism is tautologically equivariant while the second is equivariant by
the above calculation. Letting ψ denote the image of t under this composition we have

〈gs, gt〉w = 〈gψ, gs〉 = 〈ψ, s〉 = 〈s, t〉w.
�

Bearing in mind the example of E6 we now suppose that Γ∨ refines Γ with quotient
Z = Γ∨/Γ cyclic of prime order. Moreover we assume that the induced action of W on
the quotient Z is trivial. It follows that Z lies in each of the fixed groups T w.

The w-fixed set in the dual torus T ∨ = t/Γ∨ = T /Z contains the image of T w under
the quotient map T → T ∨. In particular (T ∨)w1 is the image of T w1 under the quotient
map, since the identity component of the fixed set is precisely the image of the fixed set
tw under the respective exponential map. Hence the quotient map induces a map from
Fw = T w/T w1 to F∨w = (T ∨)w/(T ∨)w1 .

We have two cases: either Z lies in T w1 or Z ∩ T w1 is trivial. In the former case the
map from Fw to F∨w is injective. It is thus an isomorphism since the groups have the
same cardinality by Theorem 2. Hence in this case the fixed set (T ∨)w is precisely the
image of the fixed set T w under the quotient by Z, that is:

(T ∨)w = (T ∨)w1 × F∨w ∼= T w1 /Z × Fw.
In the latter case the quotient map T w → (T ∨)w gives an isomorphism of the identity

components and takes Fw to a subgroup of F∨w , which, again by Theorem 2, must have
index |Z| in F∨w . Hence in this case the image of T w in (T ∨)w is

T w1 × Fw/Z
which has index |Z| in the fixed set (T ∨)w.
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Remark 1.8. In the case that Z < Fw the ZW (w)-orbits in Fw include |Z| singletons.
In this case, dually the orbits in F∨w are partitioned into |Z| sets. To see this we note

that the inclusion of Z in Fw induces a quotient F̂w → Ẑ. Since F∨w
∼= F̂w we have a

quotient map F∨w → Ẑ, given by the pairing of F∨w with Z. By Theorem 3 the pairing

is equivariant but Z is fixed by ZW (w), hence the map F∨w → Ẑ is invariant under the
action of ZW (w). Each ZW (w)-orbit in F∨w thus lies in a coset of the kernel of the map

F∨w → Ẑ.

2. Elements, conjugacy classes and centralisers

In this section we will provide a list of carefully selected representatives for the conju-
gacy classes in the Weyl group of type E6 together with key properties of these elements.
We will also introduce a number of special elements of the Weyl group that will play a
key role in understanding the centraliser subgroups and their actions.

The elements s1, . . . , s6 denote the standard simple reflections generating the Weyl
group W , with corresponding roots denoted r1, . . . , r6. We define s0 to be the reflection
corresponding to the root

r0 := −r1 − 2r2 − 3r3 − 2r4 − r5 − 2r6

which is the negation of the root of highest weight. This is at 120◦ to the simple root r6,
so the group generated by s0 and s6 is isomorphic to the symmetric group S3. On the
other hand, r0 is orthogonal to the roots r1, . . . , r5, so s0 commutes with the reflections
s1, . . . s5.

These relationships can be summarised in the following extension of the Dynkin dia-
gram for E6. We remark that the reflection s0 is the linear part of the additional simple
reflection in the affine Weyl group Ẽ6, and the extended diagram is isomorphic to the
Dynkin diagram of this group.

Figure 1. Coxeter-Dynkin Diagram of the roots r0, . . . , r6.

This diagram demonstrates additional symmetries of the set of roots for E6, which is
the reason that including r0 is so valuable. In choosing representatives for the conjugacy
classes we also make use of the reflection T = ss2s4s63 corresponding to the root rT :=
−(r2 + r3 + r4 + r6) = 1/2(r0 + r3 + r1 + r5). The name is chosen to reflect the geometry
of the roots r2, r3, r4, r6 in the Dynkin diagram, and the symmetry of this set in the
extended diagram again motivates the inclusion of this element.

The roots r0, r1, r5 and −rT form a Dynkin diagram of type D4 with −rT as the
central vertex, hence the group 〈s0, s1, s5, T 〉 is a Weyl group of type D4. We remark in
passing that his group contains s3 as the reflection with root −2rT + r0 + r1 + r5.



CENTRALISERS, COMPLEX REFLECTION GROUPS AND ACTIONS IN THE WEYL GROUP E6 12

The centralisers will be built from an elementary part along with a small number of
additional elements u1, u2, u3, T, Ts3.

2.1. The special elements. We now define elements u1, u2 in W which generate a
copy of S3 acting (by conjugation) as a dihedral group on the reflections s0, . . . s6 as
illustrated on the following figure.

Figure 2. The action of the special elements ui.

The element u1 is defined as the product of four commuting reflections with roots

{r0, r3, r2 + r3 + r4, r1 + r2 + r3 + r4 + r5}.
It is easy to see that this element negates the roots r0, r3, so su10 = s0 and su13 = s3.
Acting with u1 on the root r6 gives the sum

r6 + r0 + r3 + (r2 + r3 + r4) + (r1 + r2 + r3 + r4 + r5) = −r6

hence su16 = s6. Its action on r2 takes it to

r2 + r3 − (r2 + r3 + r4) = −r4

so u1 conjugates s2 to s4 and vice versa. Finally, acting on the root r1 takes it to

r1 + (r2 + r3 + r4)− (r1 + r2 + r3 + r4 + r5) = −r5,

so conjugation by u1 switches s1 and s5 as illustrated in the diagram. We note in passing
that −u1 is the so-called non-trivial pinned automorphism for E6, as described by Reeder
in [8].

Turning to the element u2, this is defined as the product of the four commuting
reflections with roots

{r5, r3, r6 + r3 + r2, r0 + r6 + r3 + r2 + r1}.
A similar calculation shows that conjugation by this element preserves s5, s4, s3 and
switches the pairs s6, s2 and s0, s1. Since the root representation is faithful we see
that the product u1u2 has order three, and therefore these elements generate a copy of
the dihedral group D3 and the element u3 = u1u2u1 = u2u1u2 is the product of four
commuting reflections with roots
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{r1, r3, r4 + r3 + r6, r5 + r4 + r3 + r6 + r0}.
In many cases we will see that the u1, u2 dihedral group acts on one or more 2-

dimensional subtori of the maximal torus of E6. There are two natural actions of the
dihedral group D3 on a 2-torus: considering D3 as the Weyl group W (A2) we have the
actions on the maximal tori in the Lie groups SU3 and PSU3. The maximal tori are given
respectively by triples (α, β, γ) ∈ T3 such that αβγ = 1, and the quotient of this by the
group C3 = {(ω, ω, ω) : ω3 = 1}. The action of the dihedral group simply permutes the
three coordinates. In both cases the maximal torus can be described as a hexagon with
opposite sides identified, and the two actions correspond to the two conjugacy classes of
D3 in D6. The orbifold quotients are an equilaterial triangle in the SU3 case and a cone
for PSU3.

Given that u1, u2 act by signed permutations on the roots r1 . . . , r6, r0 we will see that
the action of these on the 2-tori are again given by signed permutations:

u1 : (α, β, γ) 7→ (β−1, α−1, γ−1)

u2 : (α, β, γ) 7→ (γ−1, β−1, α−1).

This has the effect of dualising the actions: the signed permutation action on the SU3

torus is equivariantly isomorphic to the standard permutation action on the PSU3 torus,
and similarly the signed permutation action on the PSU3 torus is equivariantly isomor-
phic to the standard permutation action on the SU3 torus.

The two equivariant isomorphisms are both given by the map

(α : β : γ) 7→ (βγ−1, γα−1, αβ−1).

2.2. The elementary part of the centralisers. Our approach is slightly different to
that of Carter, in that we begin with an elementary part of the centraliser that can easily
be read off from the extended Coxeter-Dynkin diagram, and then seek additional ele-
ments to complete the centraliser. Nonetheless our elementary part lies within Carter’s
direct product W1 ×W2 for the conjugacy class representative.

Consider an element w = w1w2 . . . wl ∈ W where w1, . . . wl are root reflections and
l = l(w) is the word length of an element w ∈ W in terms of the generating set of all
root reflections in the Weyl group. Associated to such a word there is a root diagram
(cf. Carter [4]) where roots are connected by an edge when they are not orthogonal
(here we only have single edges as we are in the E6 case). We write our representatives
in such a way that each connected component of the diagram corresponds to a subword.
Such subwords g1, . . . , gk of course commute with the element w (and with one another)
giving a direct product 〈g1〉 × · · · × 〈gk〉 in the centraliser of w.

Any roots which are orthogonal to all roots in the diagram will again give root reflec-
tions in the centraliser. The group these generate is precisely Carter’s group W2. The
elementary part of the centraliser is 〈g1〉 × · · · × 〈gk〉 ×W2.

Carter determined the order of the centraliser subgroups, and for 11 of the conjugacy
classes this shows that the elementary part is the entire centraliser and the structure
is obvious. In the remaining 14 cases we are left to discover additional elements of
the centraliser. In all cases we will show that these additional generators can be found
in the subgroup 〈u1, u2, T, Ts3〉 ∼= D3 × D3, as a consequence of our careful choice of
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representatives. In determining the centralisers and their actions we will also exploit
the fact that the centraliser of an element g is contained in the centraliser of gn, and
have chosen conjugacy class representatives accordingly. This relationship between the
centralisers is summarised in Figure 3. Our choices of conjugacy class representatives are
tabulated below. We list the eigenvalues for each of these representatives for the standard
six dimensional representation: these are distinct, confirming that our representatives
give distinct conjugacy classes and that the conjugacy classes are characterised by their
eigenvalues. We also describe the elementary part of the centraliser, and the index of
this group in the full centraliser where it is not 1.
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Table 1. The conjugacy class representatives and the elementary part of their centralisers

Conjugacy Class centraliser Elementary part of the centraliser
Carter Type Representative Eigenvalues Order Generators Structure Index in full centraliser

∅ e 1, 1, 1, 1, 1, 1 51840 {e} ×W W
A1 s0 1, 1, 1, 1, 1,−1 1440 〈s0〉 × 〈s1, . . . , s5〉 C2 × S6

A2
1 s0s1 1, 1, 1, 1,−1,−1 192 〈s0, s1〉 × 〈s3, . . . , s5〉 C2 × C2 × S4 2

A2 s0s6 1, 1, 1, 1, e
2
3
πi, e

4
3
πi 216 〈s0s6〉 × 〈s1, s2, s4, s5〉 C3 × S3 × S3 2

A3
1 s0s1s5 1, 1, 1,−1,−1,−1 96 〈s0, s1, s5〉 × 〈s3〉 C2 × C2 × C2 × C2 6

A2 ×A1 s0s6s1 1, 1, 1, e
2
3
πi, e

4
3
πi,−1 36 〈s0s6, s1〉 × 〈s4, s5〉 C3 × C2 × S3

A3 s0s6s3 1, 1, 1, i,−1,−i 32 〈s0s6s3〉 × 〈s1, s5〉 C4 × C2 × C2 2
A4

1 s0s1s5s3 1, 1,−1,−1,−1,−1 1152 〈s0, s1, s5, s3〉 C2 × C2 × C2 × C2 72

A2 ×A2
1 s0s6s1s5 1, 1, e

2
3
πi, e

4
3
πi,−1,−1 24 〈s0s6, s1, s5〉 C3 × C2 × C2 2

A2
2 s0s6s1s2 1, 1, e

2
3
πi, e

4
3
πi, e

2
3
πi, e

4
3
πi 108 〈s0s6, s1s2〉 × 〈s4, s5〉 C3 × C3 × S3 2

A3 ×A1 s0s6s3s1 1, 1, i,−1,−i,−1 16 〈s0s6s3, s1〉 × 〈s5〉 C4 × C2 × C2

A4 s0s6s3s4 1, 1, e
2
5
πi, e

4
5
πi, e

6
5
πi, e

8
5
πi 10 〈s0s6s3s4〉 × 〈s1〉 C5 × C2

D4 s0s1s5T 1, 1,−1,−1, e
1
3
πi, e

5
3
πi 36 〈s0s1s5T 〉 C6 6

D4[a1] s1Ts5s
T
0 1, 1, i,−i, i,−i 96 〈s1Ts5s

T
0 〉 C4 24

A2
2 ×A1 s0s6s5s1s2 1, e

2
3
πi, e

4
3
πi,−1, e

2
3
πi, e

4
3
πi 36 〈s0s6, s5, s1s2〉 C3 × C2 × C3 2

A3 ×A2
1 s0s6s3s1s5 1, i,−1,−i,−1,−1 96 〈s0s6s3, s1, s5〉 C4 × C2 × C2 6

A4 ×A1 s0s6s3s4s1 1, e
2
5
πi, e

4
5
πi, e

6
5
πi, e

8
5
πi,−1 10 〈s0s6s3s4, s1〉 C5 × C2

A5 s0s6s3s4s5 1, e
1
3
πi, e

2
3
πi,−1, e

4
3
πi, e

5
3
πi 12 〈s0s6s3s4s5〉 × 〈s1〉 C6 × C2

D5 s0s6s3s4s
s2s4
3 1,−1, e

1
4
πi, e

3
4
πi, e

5
4
πi, e

7
4
πi 8 〈s0s6s3s4s

s2s4
3 〉 C8

D5[a1] s0s6s3s4T 1,−1, i,−i, e
1
3
πi, e

5
3
πi 12 〈s0s6s3s4T 〉 C12

A3
2 s0s6s1s2s5s4 e

2
3
πi, e

4
3
πi, e

2
3
πi, e

4
3
πi, e

2
3
πi, e

4
3
πi 648 〈s0s6, s1s2, s4s5〉 C3 × C3 × C3 24

A5 ×A1 s0s6s3s4s5s1 e
1
3
πi, e

2
3
πi,−1, e

4
3
πi, e

5
3
πi,−1 36 〈s0s6s3s4s5, s1〉 C6 × C2 3

E6 s1s2s3s4s5s6 e
2
3
πi, e

4
3
πi, e

1
6
πi, e

5
6
πi, e

7
6
πi, e

11
6
πi 12 〈s1s2s3s4s5s6〉 C12

E6[a1] s1s2s3s4s5s
s3
6 e

2
9
πi, e

4
9
πi, e

8
9
πi, e

10
9
πi, e

14
9
πi, e

16
9
πi 9 〈s1s2s3s4s5s

s3
6 〉 C9

E6[a2] s6s2s
T
0 s

T
1 s4s3 e

1
3
πi, e

1
3
πi, e

2
3
πi, e

4
3
πi, e

5
3
πi, e

5
3
πi 72 〈s6s2s

T
0 s

T
1 s4s3〉 C6 12
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2.3. The full centralisers. We begin by stating an elementary lemma which will help
to identify elements of the centraliser.

Lemma 2.1. Let A,B be diagonalisable matrices and let V1⊕· · ·⊕Vn be the eigenspace
decomposition for B. If for all but one i, there is an eigenspace of A containing Vi then
A,B commute.

• In the cases ∅, A1, A2 × A1, A3 × A1, A4, A4 × A1, A5, D5, D5[a1], E6, E6[a1] the
entire centraliser is the elementary part described in the previous section.
• In cases A2, A2×A2

1, A3, the representatives are s0s6, s0s6s1s5 and s0s6s3 respec-
tively, which are all centralised by the element u1. In each case the elementary
part of the centraliser has index 2 and it is easy to see that this does not contain
u1. Moreover the action of the u1 on the elementary part gives the structure of
a wreath product as follows:

ZW (s0s6) = 〈s0s6〉 × (〈s1, s2〉 o 〈u1〉) ∼= C3 × (S3 o C2)
ZW (s0s6s1s5) = 〈s0s6〉 × (〈s1〉 o 〈u1)〉 ∼= C3 × (C2 o C2)
ZW (s0s6s3) = 〈s0s6s3〉 × (〈s1〉 o 〈u1〉) ∼= C4 × (C2 o C2)

The factors here are all complex reflection groups with the exception of S3 o C2.
This group is isomorphic to the affine orthogonal group O−2 (F3) n F2

3 which can
be embedded as a reflection group in GL3(F3), dual to the embedding as affine
orthogonal transformations. Note that this group is also isomorphic to O+

4 (F2)
which is unique amongst orthogonal groups as it is not generated by reflections
of F4

2.
• Similarly in cases A2

1, A
2
2, A

2
2 × A1, the representatives s0s1, s0s6s1s2, s0s6s5s1s2

are centralised by u2 and the structures are given by:

ZW (s0s1) = 〈s0〉 o 〈u2〉 × 〈s3, s4, s5〉 ∼= (C2 o C2)× S4

ZW (s0s6s1s2) = (〈s0s6〉 o 〈u2〉)× 〈s4, s5〉 ∼= (C3 o C2)× S3

ZW (s0s6s5s1s2) = (〈s0s6〉 o 〈u2〉)× 〈s5〉 ∼= (C3 o C2)× C2

• In cases A3
1 with representative s0s1s5 andD4 with representative s0s1s5T , the el-

ementary part of the centraliser has index 6. The elements s0, s1, s5 are permuted
and T is fixed by the group 〈u1, u2〉, which therefore lies in both centralisers.

In the first case, since 〈u1, u2〉 also commutes with s3, the elementary part
〈s0〉 × 〈s1〉 × 〈s5〉 × 〈s3〉 is normal, and moreover faithfulness of the 〈u1, u2〉
action implies these two groups have trivial intersection. Therefore

ZW (s0s1s5) = (〈s0〉o3〈u1, u2〉)× 〈s3〉 ∼= (C2o3D3)× C2

where the notation o3D3 indicates the permutation wreath product for the action
of D3 on the three factors.

For the element s0s1s5T the elementary part of the centraliser is simply the
cyclic group 〈s0s1s5T 〉 ∼= C6, so its intersection with 〈u1, u2〉 must be central and
therefore trivial. Hence we obtain the centraliser as

ZW (s0s1s5T ) = 〈s0s1s5T 〉 × 〈u1, u2〉 ∼= C6 × S3.

• In the case A4
1 with representative s0s1s5s3, the elementary part of the centraliser

is the same as it was in the A3
1 case above. The −1 eigenspace is the space

spanned by r0, r1, r5, r3, and in particular it contains rT = 1/2(r0 +r1 +r5,+r3).
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Hence the reflection T lies in the centraliser. As noted in Section 2, the group
〈s0, s1, s5, T 〉 is a Weyl group of type D4, which has index 6 in the centraliser.
The group 〈u1, u2〉 also centralises s0s1s5s3 and normalises 〈s0, s1, s5, T 〉.

It remains to consider the intersection which, since 〈u1, u2〉 centralises T , must
lie in the centraliser ZW (D4)(T ) which has order 16 (see [4]). Explicitly this is

the Weyl group of type A4
1 with roots r0 + r1 − rT , r0 + r5 − rT , r1 + r5 − rT , rT ,

and the first three of these are permuted by 〈u1, u2〉, hence the intersection is
trivial.

We conclude that

ZW (s0s1s5s3) = 〈s0, s1, s5, T 〉o 〈u1, u2〉 ∼= W (D4) o S3.

• Case A3 ×A2
1, representative s0s6s3s1s5: The elementary part of the centraliser

is 〈s0s6s3〉×〈s1〉×〈s5〉 ∼= C4×C2×C2. This can also be written as 〈s0s6s3s1s5〉×
〈s1〉 × 〈s5〉, where the first factor is, tautologically, central in the full centraliser.
Now we consider the−1 eigenspace for our representative, which is 3-dimensional.
It is spanned by the root vectors r1, r5 (the −1 eigenspaces of s1, s5 respectively)
together with the −1 eigenspace for s0s6s3, which is spanned by r0 + r3. While
r0 + r3 is not a root vector, the sum r0 + r3 + r1 + r5 is twice the root vector
rT , hence T belongs to the centraliser. Considering the root system {r1, rT , r5}
se see that the group 〈s1, T, s5〉 ∼= S4 and hence has trivial intersection with
〈s0s6s3s1s5〉. It follows that the centraliser is

ZW (s0s6s3s1s5) = 〈s0s6s3s1s5〉 × 〈s1, T, s5〉 ∼= C4 × S4.

• Case A5×A1, representative s0s6s3s4s5s1: The elementary part of the centraliser
is the same as for the A5 case, 〈s0s6s3s4s5〉× 〈s1〉 ∼= C6×C2, and has index 3 in
the full centraliser. The −1 eigenspace of the representative is 2 dimensional and
is spanned by the −1 eigenvector r0+r3+r5 of s0s6s3s4s5 and the −1 eigenvector
r1 of s1. As in the previous case T is in the centraliser. We note that 〈s1, T 〉 is
a copy of S3 which has trivial intersection with 〈s0s6s3s4s5s1〉 since 〈s1, T 〉 has
trivial centre. Hence we obtain the centraliser subgroup as

ZW (s0s6s3s4s5s1) = 〈s0s6s3s4s5s1〉 × 〈s1, T 〉 ∼= C6 × S3.

The remaining cases are E6[a2], D4[a1] and A3
2. These all correspond to Springer-regular

elements, [12], and we can read off their structures from [12, Table 1] along with the
Shephard-Todd classification of complex reflection groups [11, Table VII] as the groups
G5, G8, G25 respectively.

In order to identify the actions on the fixed sets in the maximal torus, we need to
identify not just the structure of these groups but their elements which we do as follows.

• Case D4[a1], representative s1Ts5s
T
0 : We choose this representative in the sub-

group 〈s0, s1, s5, T 〉 of type D4, so that its square (s1Ts5s
T
0 )2 = s0s1s5s3 is the

representative of the class of type A4
1, and hence its centraliser is a subgroup of

index 12 in the A4
1 centraliser 〈s0, s1, s5, T 〉o 〈u1, u2〉 ∼= W (D4)oS3 (see above).

We consider the standard 4-dimensional representation of W (D4) correspond-
ing to the generators s1, T, s5, s0, with roots

ρ1 := (1,−1, 0, 0), ρT := (0, 1,−1, 0), ρ5 := (0, 0, 1,−1), ρ0 := (0, 0, 1, 1).
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The representative s1Ts5s
T
0 corresponds to the block diagonal matrix Rπ/2 ⊕

Rπ/2 which has π/2 rotations in coordinates 1, 2 and 3, 4. We equip R4 with

the structure of a complex vector space, declaring that the operator s1Ts5s
T
0

is multiplication by i. Hence the elements of W (D4) centralising s1Ts5s
T
0 are

precisely those which are C-linear in this space. Specifically the intersection of
our centraliser with the subgroup W (D4) is the Pauli group P generated by the
matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

These correspond to the elements sT1 s
T
5 , T (s1s5s0)Ts5 and s0s5 respectively.

The group P = ZW (s1Ts5s
T
0 ) ∩W (D4) has index 6 in the full centraliser, hence

as the centraliser is contained in W (D4) o S3 it fits into an extension

1→ P → ZW (s1Ts5s
T
0 )→ S3 → 1.

We now identify lifts of the generators of S3. The conjugation action of u3 cor-
responds to interchanging ρ5, ρ0 and fixing ρ1, ρT . In particular, the conjugation
action of u3 on Rπ/2 ⊕Rπ/2 inverts the second rotation, as does the element s5,

and therefore the element s5u3 is in the centraliser of s1Ts5s
T
0 . It is represented

as a complex 2× 2 matrix it is the diagonal matrix with entries 1, i: we denote
this complex matrix by α.

Now we lift u1, conjugation by which corresponds to exchanging ρ1, ρ5 while
preserving ρT , ρ0. Conjugating Rπ/2 ⊕Rπ/2 by this we obtain the matrix(

0 Rπ/2
Rπ/2 0

)
which can be conjugated back to Rπ/2 ⊕ Rπ/2 by the transposition (24), given

by sT5 . Hence sT5 u1 lies in the centraliser of s1Ts5s
T
0 . This is represented by the

complex matrix

β :=
1

2

(
1− i 1 + i
1 + i 1− i

)
.

To summarise, the centraliser of s1Ts5s
T
0 is generated by the Pauli matrices

σ1, σ2, σ3 along with α, β.
Note that the lifts α and β each have order 4, indeed α2 = σ3 and β2 = σ1.

Moreover ασ1α
−1 = σ2, hence the generators α, β are sufficient. The centraliser

is thus the group

〈s5u3, s
T
5 u1〉

which is faithfully represented as the matrix group 〈α, β〉. These complex reflec-
tions generate the symmetry group of the complex polygon 4(96)4 (see section
1.6 of [10]), identifying ZW (s1Ts5s

T
0 ) with the complex reflection group G8 in

the Shephard-Todd classification.
• Case A3

2, representative s0s6s1s2s5s4: The elementary part of the centraliser is
〈s0s6〉× 〈s1s2〉× 〈s5s4〉 ∼= C3×C3×C3. This has index 24 in the full centraliser,
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and it is evident that the missing elements include 〈u1, u2〉, which permute the di-
rect factors of the elementary part, giving a subgroup of index 4 in the centraliser
isomorphic to C3 o3D3.

Applying Lemma 2.1 we see that Ts3 is in the centraliser. We will show
that 〈s0s6, T s3, s5s4〉 is the complex reflection group G25 and hence is the full
centraliser.

We start with the six dimensional real representation of the Weyl group W (E6)
on the real vector space spanned by the E6 root system. On this space define
the operator

J :=
1√
3

(2s0s6s1s2s5s4 + I) .

Note that

J2 =
1

3

(
4(s0s6s1s2s5s4)2 + 4s0s6s1s2s5s4 + I

)
= −I

since (s0s6s1s2s5s4)2+s0s6s1s2s5s4+I = 0. Hence we can define a complex scalar
multiplication on the Lie algebra using J as multiplication by i. An element of
the Weyl group W (E6) centralises s0s6s1s2s5s4 if and only if it commutes with
J , i.e. is C-linear for this structure.

Moreover the elements s0s6, T s3, s5s4 are complex reflections: taking r0, r1, r5

as a basis of this complex space these elements are given by:

α1 =

 ζ 0 0
0 1 0
0 0 1

 , α2 =
1√
3

 η −η −η
−η η −η
−η −η η

 , α3 =

 1 0 0
0 1 0
0 0 ζ


where η = eπi/6. These generating reflections satisfy the braid relations

α1α2α1 = α2α1α2, α2α3α2 = α3α2α3,

and also α1α3 = α3α1. Since the geometry of the fixed hyperplanes of the
complex reflections is determined by the above relations, the reflection group is
the Shephard-Todd group G25 = 〈s0s6, T s3, s5s4〉.
• Case E6[a2]. The representative s6s2s

T
0 s

T
1 s4s3 squares to the representative

s0s6s1s2s5s4 above, therefore its centraliser is a subgroup of G25. In the above
generators α1, α2, α3 we have

s6s2s
T
0 s

T
1 s4s3 = α2

1α
2
2α3α

2
2α

2
1 =

 0 −ζ 0

−ζ 0 0

0 0 −ζ

 .

This evidently commutes with 〈α2, α3〉 which is which is the binary tetrahe-
dral group SL2(3), that is G4 in the Shephard-Todd classification. Its cen-
tre is a copy of C2 generated by the element (α2

1α
2
2α3α

2
2α

2
1)3 = (α2

3α2)2, hence
〈(α2

1α
2
2α3α

2
2α

2
1)2〉 intersects trivially with 〈α2, α3〉.

The group C3×SL2(3) is the Shephard-Todd group G5, so we have the found
the full centraliser

ZW (s6s2s
T
0 s

T
1 s4s3) = 〈(α2

1α
2
2α3α

2
2α

2
1)2〉 × 〈α2, α3〉 ∼= C3 × SL2(3).
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3. Fixed sets and their quotients: the simply connected type

In this section we will determine the fixed sets of each conjugacy class representative
in the standard maximal torus T in the simply connected form of the Lie group of type
E6. We will analyse in detail the actions of the centralisers on the fixed sets for each
conjugacy class representative. In each case we will see that the quotient, which we refer
to as a sector, has the homotopy type of a finite union of points or a finite union of
circles. These results are summarised in Table 2.

Table 2. Centralisers, Fixed Sets and Quotients

Conjugacy class Centraliser Fixed set Quotient
Type Representative Structure Generators
∅ e W (E6) 〈s1, . . . , s6〉 T6 ∆6

A1 s0 C2 ×W (A5) 〈s0〉 × 〈s1, . . . , s5〉 T5 ∆5

A2
1 s0s1 D4 × S4 (〈s0〉 o 〈u2〉)× 〈s3, s4, s5〉 T4 ∆3×̃S1

A2 s0s6 C3 × (S3 o C2) 〈s0s6〉 × (〈s1, s2〉 o 〈u1〉) T4 SP2(∆2)
A3

1 s0s1s5 (C2 o3 D3)× C2 (〈s0〉 o3 〈u1, u2〉)× 〈s3〉 T3 ∆2 ×∆1

A2 ×A1 s0s6s1 C3 × C2 × S3 〈s0s6, s1〉 × 〈s4, s5〉 T3 T1 ×∆2

A3 s0s6s3 C4 ×D4 〈s0s6s3〉 × (〈s1〉 o 〈u1〉) T3 ∆2×̃S1

A4
1 s0s1s5s3 G28 〈s0, s1, s5, T 〉o 〈u1, u2〉 T2 × V4 ∆2 t∆2

A2 ×A2
1 s0s6s1s5 C3 ×D4 〈s0s6〉 × (〈s1〉 o 〈u1〉) T2 SP2(T1)

A2
2 s0s6s1s2 (C3 o C2)× S3 (〈s0s6〉 o 〈u2〉)× 〈s4, s5〉 T2 ×Z ∆2 ×Z

A3 ×A1 s0s6s3s1 C4 × V4 〈s0s6s3〉 × 〈s1〉 × 〈s5〉 T2 ∆1 × T1

A4 s0s6s3s4 C5 × C2 〈s0s6s3s4〉 × 〈s1〉 T2 SP2(T1)
D4 s0s1s5T C6 ×D3 〈s0s1s5T 〉 × 〈u1, u2〉 T2 ∆2

D4[a1] s1Ts5s
T
0 G8 〈s5u3, s

T
5 u1〉 T2 ∆2

A2
2 ×A1 s0s6s5s1s2 (C3 o C2)× C2 (〈s0s6〉 o 〈u2〉)× 〈s5〉 T1 ×Z ∆1 ×Z

A3 ×A2
1 s0s6s3s1s5 C4 × S4 〈rep〉 × 〈s1, T, s5〉 T1 × V4 T1 t T1

A4 ×A1 s0s6s3s4s1 C5 × C2 〈s0s6s3s4s5s1〉 T1 T1

A5 s0s6s3s4s5 C6 × S2 〈s0s6s3s4s5〉 × 〈s1〉 T1 ×Z ∆1 ×Z
D5 s0s6s3s4s

s2s4
3 C8 〈s0s6s3s4s

s2s4
3 〉 T1 T1

D5[a1] s0s6s3s4T C12 〈s0s6s3s4T 〉 T1 T1

A3
2 s0s6s1s2s5s4 G25 〈s0s6, T s3, s5s4〉 C3 × C3 ×Z Four points

A5 ×A1 s0s6s3s4s5s1 C6 × S3 〈rep〉 × 〈s1, T 〉 V4 ×Z Z t Z
E6 s1s2s3s4s5s6 C12 〈s1s2s3s4s5s6〉 Z Z
E6[a1] s1s2s3s4s5s

s3
6 C9 〈s1s2s3s4s5s

s3
6 〉 Z Z

E6[a2] s6s2s
T
0 s

T
1 s4s3 G5 〈(rep)2, T s3, s5s4〉 Z Z

Notation

• Tm the m-torus
• ∆k the k-simplex (not necessarily equilateral)
• ∆k×̃S1 a twisted bundle over the circle with fibre a k-simplex
• SP 2(X) the 2-fold symmetric product of a space X
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• Cm the cyclic group of order m
• D3 the dihedral group of order 6 generated by the special elements u1, u2

• C2 o3 D3 is the permutation wreath product C3
2 oD3

• D4 a dihedral group of order 8 of the form 〈si〉 o 〈uj〉
• Sm a symmetric group onm letters generated by a subset of the 36 root reflections
• V4 a Klein 4 group.
• G5, G8, G25, G28 exceptional complex reflection groups (cf. [11])
• rep is an abbreviation for the chosen representative of the conjugacy class.
• Z the centre of the simply connected Lie group of type E6.

The fixed sets are identified as topological spaces using Theorem 4 combined with the
following well known lemma. Recall that l(w) denotes the length of the element w with
respect to the generating set of all root reflections.

Lemma 3.1 ([4, Lemma 2]). l(w) is the number of eigenvalues with multiplicity of w
which are not equal to 1.

Using this lemma, for each w ∈ W the torus T w1 has dimension 6− l(w), where l(w)
denotes the word length of w with respect to the generating set consisting of all root
reflections in W .

Combining this with Theorem 5 determines the topology of the fixed sets in both the
simply connected and adjoint forms:

Theorem 7. For each w ∈ W the fixed sets T w and (T ∨)w are both homeomorphic to
the disjoint union of g copies of a 6− l(w)-torus where g is the greatest common divisor
of the r × r-minors of the matrix of I − w and r is the rank of I − w.

We now turn to the actions of centralisers on the corresponding fixed sets.
Since the action of the Weyl group W on the maximal torus T is given by conjugation,

all of the fixed sets contain the centre Z of the Lie group as a pointwise fixed subset.
For example in the 3 elliptic cases of Carter-type E6, E6[a1], E6[a2], the fixed sets, and
hence the quotients are identified with the centre Z.

In cases A4×A1, D5 and D5[a1] the fixed set consists of a single circle containing the
(pointwise fixed) centre so any element of W preserving the circle must fix it pointwise.
In particular the centralisers pointwise fix the circle identifying the quotient with the
fixed set.

3.1. Alternative Coordinate Systems. To understand the actions of centralisers on
the fixed sets it will be helpful to consider alternative coordinate systems on the torus.

(1) su6 coordinates: In many cases the fixed set will lie inside the 5-torus (α, β, γ, δ, ε, 1)
which is the maximal torus corresponding to theA5 root system given by {r1, . . . , r5}.
When considering the An case it is often helpful to use coordinates where the
roots are (1,−1, 0, . . . , 0), (0, 1,−1, 0, . . . , 0) etc. and for which the maximal torus
is correspondingly given by tuples with product 1 (as is the case for the standard
maximal torus in SUn+1). We obtain these coordinates on the above 5-torus by
the change of coordinates:

(α, β, γ, δ, ε, 1) 7→ (α, βα−1, γβ−1, δγ−1, εδ−1, ε−1).
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Under this identification the A5 Weyl group generated by s1, . . . , s5 acts by
permuting the coordinates.

(2) su3
3 coordinates: Another alternative coordinate system is obtained by consid-

ering the roots r1, r2, r5, r4, r0, r6 as a basis for the Lie algebra. The advantage
of this approach is that the dihedral group 〈u1, u2〉 acts by signed permutations
on the pairs (r1, r2), (r5, r4) and (r0, r6). Moreover the actions of s1, s5, s0 will
remain relatively simple in our new coordinates. The omitted root vector r3 can
be obtained from

3r3 = −r0 − 2r6 − r1 − 2r2 − r5 − 2r4

= −r0 + r6 − r1 + r2 − r5 + r4 − 3(r6 + r2 + r4)

hence the root lattice is the refinement of the lattice generated by r1, r2, r5, r4, r0, r6

by the addition of the vector 1
3(−r0 + r6 − r1 + r2 − r5 + r4).

Motivated by this we take the ordered basis r1,−r2, r5,−r4, r0,−r6 for the Lie
algebra, for which coordinates the lattice is Z6 extended by the vector (1

3 , . . . ,
1
3).

The maximal torus is given by T6/C3 where the C3 acts by multiplication by
(ω, . . . , ω) for ω a cube root of unity. We denote these new coordinates (α′ : β′ :
ε′ : δ′ : η′ : ζ ′).

The action of 〈u1, u2〉 on T6/C3 is to permute and invert pairs of coordinates
as follows.

u1 : (α′ : β′ : ε′ : δ′ : η′ : ζ ′) 7→ ((ε′)−1 : (δ′)−1 : (α′)−1 : (β′)−1 : (η′)−1 : (ζ ′)−1)

u2 : (α′ : β′ : ε′ : δ′ : η′ : ζ ′) 7→ ((η′)−1 : (ζ ′)−1 : (ε′)−1 : (δ′)−1 : (α′)−1 : (β′)−1)

u3 : (α′ : β′ : ε′ : δ′ : η′ : ζ ′) 7→ ((α′)−1 : (β′)−1 : (η′)−1 : (ζ ′)−1 : (ε′)−1 : (δ′)−1)

The conversion from these coordinates to the standard r1, . . . , r6 coordinates
is given by the map

(α′ : β′ : ε′ : δ′ : η′ : ζ ′) 7→ (η′(α′)−1, (η′)2β′, (η′)3, (η′)2δ′, η′(ε′)−1, (η′)2ζ ′)

which is well defined on C3-cosets.
Now applying s1 changes the first of these coordinates to

(η′(α′)−1)−1(η′)2β = η′α′β′

while leaving the other coordinates unchanged. Thus in the new coordinates s1

takes (α′ : β′ : ε′ : δ′ : η′ : ζ ′) to ((α′β′)−1 : β′ : ε′ : δ′ : η′ : ζ ′).
Similarly s5 changes ε′ to (ε′δ′)−1 leaving the other coordinates unchanged,

and s0 changes η′ to (η′ζ ′)−1 leaving the other coordinates unchanged.
The action of T in the new coordinates is much simpler than in the original

coordinates. In standard coordinates T is given by the matrix:
1 0 0 0 0 0
1 0 1 −1 1 −1
1 −1 2 −1 1 −1
1 −1 1 0 1 −1
0 0 0 0 1 0
1 −1 1 −1 1 0
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Applying this to (η′(α′)−1, (η′)2β′, (η′)3, (η′)3δ′, η′(ε′)−1, (η′)2ζ), and choosing φ
to be a cube root of (α′β′ε′δ′ζ ′η′)−1 we obtain

(η′(α′)−1, η′(α′ε′δ′ζ ′)−1, (η′)2(α′β′ε′δ′ζ ′)−1, η′(α′β′ε′ζ ′)−1, η′(ε′)−1, η′(α′β′ε′δ′)−1)

= (η′(α′)−1, (η′)2β′φ3, (η′)3φ3, (η′)2δ′φ3, η′(ε′)−1, (η′)2ζ ′φ3)

= ((η′φ)(α′φ)−1, (η′φ)2β′φ, (η′φ)3, (η′φ)2δ′φ, (η′φ)(ε′φ)−1, (η′φ)2ζ ′φ)

whence the action of T in the new coordinates simply multiplies each coordinate
by φ. Since φ was well-defined up to a cube root of unity this makes the action
well-defined on T6/C3.

3.2. The fixed sets and their quotients. We now proceed to compute the fixed sets
and sectors.

(1) Case ∅: The fixed set is T and the centraliser is W (E6), which acts on T with
quotient a 6-simplex.

(2) Case A1: The fixed variety is a single 5-torus (α, β, γ, δ, ε, 1). This is canon-
ically identified with the maximal torus for the Lie group of type A5. The
centraliser of s0 is the direct product of 〈s0〉 acting trivially with the Weyl group
〈s1, s2, s3, s4, s5〉 of type A5 acting on the A5 maximal torus. The quotient of the
fixed set by the centraliser is a 5-simplex.

(3) Case A2
1: The fixed variety is a single 4-torus (α, α2, γ, δ, ε, 1) inside the 5-torus

where ζ = 1, hence we can use su6 coordinates as above.
The fixed set of our element is then identified with the subset of the SU6-torus

(1) {(α, α, γ′′, δ′′, ε′′, ζ ′′) : α, γ′′, δ′′, ε′′, ζ ′′ ∈ T1 and α2γ′′δ′′ε′′ζ ′′ = 1}.

The centraliser is the direct product of 〈s0〉 o 〈u2〉 with the symmetric group
S4 = 〈s3, s4, s5〉, where s0 acts trivially and S4 acts by permutation of the last
four coordinates. First we factor out the action of the S4 which we will do in
logarithmic coordinates (x1, x1, x3, . . . , x6) subject to the constraint x1 + x1 +
x3 + x4 + x5 + x6 = 0. We take x1 to vary from −1/2 to 1/2.

In these coordinates the elements of the S4 factor act by permuting the coor-
dinates x3, . . . , x6, and have fundamental domain D given by

D = {(x1, x1, x3, . . . x6) : x1 ∈ [−1/2, 1/2], 2x1 + x3 + x4 + x5 + x6 = 0,

x3 ≤ x4 ≤ x5 ≤ x6 ≤ x3 + 1}.

See [6, Equation 11] for the details.
As noted in Example 7.2 ibid the quotient of the 4-torus (1) under the action

of this S4 is an orientable twisted 3-simplex bundle over the circle parameterised
by α with monodromy defined by

(−1/2,−1/2, x3, x4, x5, x6) 7→ (1/2, 1/2, x5 − 1, x6 − 1, x3, x4).

Now we consider the action of the element u2. Since this commutes with the
S4 we can act directly on the quotient bundle described above. Recall that u2
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negates r3, r4, r5 and exchanges r0 with −r1 and r2 with −r6, so the action of u2

on the fixed set is:

(α, α2, γ, δ, ε, 1) 7→ (α, α2, α3γ−1, α2δ−1, αε−1, 1).

Changing coordinates as above this becomes

(α, α, γ′′, δ′′, ε′′, ζ ′′) 7→ (α, α, (αγ′′)−1, (αδ′′)−1, (αε′′)−1, (αζ ′′)−1).

In logarithmic coordinates this is

(x1, x1, x3, x4, x5, x6) 7→ (x1, x1,−x1 − x3,−x1 − x4,−x1 − x5,−x1 − x6).

While this does not preserve the fundamental domain D for the S4 action, com-
posing with the permutation that reverses the last 4 coordinates returns us to
D, so we have the map

(x1, x1, x3, x4, x5, x6) 7→ (x1, x1,−x1 − x6,−x1 − x5,−x1 − x4,−x1 − x3).

In the x1 = 0 fibre the vertex set of the simplex is

v0(0) = (0, 0, 0, 0, 0, 0),

v1(0) = (0, 0,−1/4,−1/4,−1/4, 3/4),

v2(0) = (0, 0,−1/2,−1/2, 1/2, 1/2),

v3(0) = (0, 0,−3/4, 1/4, 1/4, 1/4)

and in a general fibre the vertex set {vi(x1)} is given by translating each of these
vectors by (x1, x1,−x1

2 ,−
x1
2 ,−

x1
2 ,−

x1
2 )

In each simplex two of the vertices are fixed by the u2 action, namely v0(x1)
and v2(x1) while the other two are interchanged. We think of the fibres as given
by the join of two 1-simplices corresponding to the edge e0 = [v0(x1), v2(x1)] and
the edge e1 = [v1(x1), v3(x1)].

The action of u2 on the simplex bundle preserves the fibres and moreover
preserves the join structure on each, yielding again a simplex bundle with fibres
given by the join of e0 with the quotient of e1 by inversion.

The quotient of the fixed set by the centraliser is therefore a simplex bundle
over the circle, where the monodromy is given by the reflection of the 3-simplex
which inverts the e0 factor and fixes the e1 factor. This yields a Seifert fibred
4-orbifold: the base space is the quotient of the join of e0 and e1 by the Klein 4
group inverting both of these edges, [9].

(4) Case A2: The fixed variety is the 4-torus (α, β, 1, δ, ε, 1) inside the standard 5-
torus from case 2. We again make use of su6 coordinates. Under this identifica-
tion the A5 Weyl group 〈s1, . . . , s5〉 acts by permuting the coordinates. The fixed
set of our element is then identified with the subset {(α, βα−1, β−1, δ, εδ−1, ε−1) :
α, β, δ, ε ∈ T1}. Since the first three coordinates and the last three coordinates
each multiply to 1 this is naturally a product of two maximal tori of type A2.

The centraliser has the form 〈s0s6〉× (〈s1, s2〉 o 〈u1〉) ∼= C3× (S3 oC2) with the
element s0s6 acting trivially. The subgroups 〈s1, s2〉 and 〈s5, s4〉 = 〈s1, s2〉u1 act
as the Weyl groups on these 2-torus factors so the direct product S3×S3 acts in
the natural way on T2×T2 with quotient a product of two equilateral triangles.



CENTRALISERS, COMPLEX REFLECTION GROUPS AND ACTIONS IN THE WEYL GROUP E6 25

The element u1 acts to swap these, so the quotient is the symmetric product of
two copies of an equilateral triangle.

(5) Case A3
1: The fixed set is a single 3-torus (α, α2, γ, ε2, ε, 1), and is the intersection

of the fixed sets of each of the elements s0, s1, s5. The centraliser is the direct
product of 〈s3〉 with the wreath product 〈s0〉 o 〈u1, u2〉, where the conjugates of
〈s0〉 are 〈s1〉, 〈s5〉. Since these act trivially the centraliser acts as 〈u1, u2〉 × 〈s3〉.

Recall that u1 exchanges r1 with −r5, r2 with −r4 and negates r3, r6, so on
the fixed set the action of u1 exchanges the values of α and ε−1, and inverts γ.
On the other hand u2 is given by

(α, α2, γ, ε2, ε, 1) 7→ (α, α2, α3γ−1, α2ε−2, αε−1, 1),

see A2
1 case. We decompose our 3-torus as the product

T2 × T1 = {(α, α2, αε, ε2, ε, 1)} × {(1, 1, γ, 1, 1, 1)}.
and note that both factors are preserved by the actions of u1, u2. Moreover s3

pointwise fixes the first factor and inverts the second. Since u1, u2 also invert
the second factor, the products u1s3, u2s3 (which also generate a dihedral group)
pointwise fix the second factor, and act on the first as

u1s3 :(α, ε) 7→ (ε−1, α−1)

u2s3 :(α, ε) 7→ (α, αε−1)

which is the standard dihedral action with quotient an equilateral triangle.
Hence the quotient of the fixed set of s0s1s5 by the centraliser is

T2/〈u1s3, u2s3〉 × T1/〈s3〉 = ∆2 × I.

(6) Case A2 × A1: The fixed set is the single 3-torus (α, α2, 1, δ, ε, 1) and the cen-
traliser is 〈s0s6〉 × 〈s1〉 × 〈s4, s5〉 ∼= C3 × C2 × S3. The first two factors act
trivially so we are left with a residual action of S3 = 〈s4, s5〉. These generators

act as the matrices

(
−1 1
0 1

)
,

(
1 0
1 −1

)
on the free parameters (δ, ε), fixing

the parameter α. The non trivial part of the action is therefore the standard
dihedral action on a 2-torus with quotient an equilateral triangle, crossed with
the trivial action on the remaining circle. Hence the quotient is T1 ×∆2.

(7) Case A3: The fixed set is a single 3-torus (α, β, 1, β−1, ε, 1) and the centraliser of
s0s6s3 has the structure 〈s0s6s3〉 × (〈s1〉 o 〈u1〉) ∼= C4 × (C2 o C2), so we need to
compute the quotient by the action of the wreath product 〈s1〉 o 〈u1〉.

We begin by identifying the quotient under the action of s1 and su11 = s5.
The elements s1 and s5 both act trivially on the β factor of the 3-torus, with s1

acting on the α, β subtorus by the matrix

(
−1 1
0 1

)
and s5 acting on the β, ε

subtorus via

(
1 0
−1 −1

)
.

We introduce logarithmic coordinates for β, i.e. set β = e2πix. The 3-torus is
then

{(α, x, ε) : α, ε ∈ T1, x ∈ [0, 1]}/(α, 1, ε) ∼ (α, 0, ε).
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Now introduce coordinates: α′ = αe−πix, and ε′ = εeπix. Under this change of
coordinates (α, 1, ε) goes to (α′, 1, ε′) = (−α, 1,−ε) so in these coordinates the
torus is:

{(α′, x, ε′) : α′, ε′ ∈ T1, x ∈ [0, 1]}/(α′, 1, ε′) ∼ (−α′, 0,−ε′).

The action of s1 fixes β = e2πix and ε, and hence also fixes ε′, while

α 7→ α−1β = (α′eπix)−1e2πix = (α′)−1eπix.

Hence in primed coordinates, s1 takes α′ to (α′)−1eπixe−πix = (α′)−1.
Similarly s5 fixes α′ and x and takes ε to ε−1β−1 = (ε′)−1e−πix. Hence ε′ 7→

(ε′)−1.
Setting I = {φ ∈ T1 : Imφ ≥ 0} which we identify in the natural way as the

quotient of T1 by the map φ 7→ φ−1, the quotient of the torus by 〈s1, s5〉 is given
by

{(α′, x, ε′) : α′, ε′ ∈ I, x ∈ [0, 1]}/(α′, 1, ε′) ∼ ((−α′)−1, 0, (−ε′)−1).

This is a square bundle over the circle, whose monodromy map is rotation by π.
Now the action of u1 preserves β (and hence x), and exchanges α with ε−1.

In primed coordinates

u1 : (α′, x, ε′) 7→ ((ε′)−1, x, (α′)−1)

so descending to the square bundle the action simply exchanges α′ with ε′.
The quotient of each fibre is a right-isosceles triangle, hence the quotient of the

fixed set by the centraliser is a triangle bundle over the circle with monodromy
map reflecting the triangle. This is a Seifert bundle over the (4, 4, 2) triangle,
[9].

(8) Case A4
1: The fixed set is the product of a 2-torus indexed by α, ε with a Klein

4 group generated by independent square-roots of 1 denoted η = γ(ζαε)−1 and
ζ. This gives coordinates (α, ζα2, ηζαε, ζε2, ε, ζ).

The centraliser is

〈s0, s1, s5, T 〉o 〈u1, u2〉 ∼= W (D4) o S3.

We will now change to su3
3 coordinates in which the actions of the generators of

the centraliser are all relatively straightforward.
Recall that the tuple (α′ : β′ : ε′ : δ′ : η′ : ζ ′) in new coordinates corresponds

to (η′(α′)−1, (η′)2β′, (η′)3, (η′)2δ′, η′(ε′)−1, (η′)2ζ ′) in the original coordinates so
in the new coordinates a point of the fixed set must satisfy

(η′)2β′ = ζ(η′(α′)−1)2

(η′)3 = ηζ(η′(α′)−1)(η′(ε′)−1)

(η′)2δ′ = ζ(η′(ε′)−1)2

(η′)2ζ ′ = ζ
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where η, ζ are ±1 giving the element of the Klein 4 group and the other variables
lie in the circle. This simplifies to

β′ = ζ(α′)−2

α′ε′η′ = ζη

δ′ = ζ(ε′)−2

ζ ′ = ζ(η′)−2

so for (η, ζ) in the Klein 4 group V4, the corresponding component of the fixed
set is parametrised as

{(α′, ε′, ζ ′) : α′ε′η′ = ζη}/〈(ω, ω, ω)〉

where ω is a non-trivial cube root of 1.
In these coordinates the subgroup 〈u1, u2〉 simply acts by the signed permu-

tations:

u1 : (α′ : ε′ : ζ ′) 7→ ((ε′)−1 : (α′)−1 : (ζ ′)−1)

u2 : (α′ : ε′ : ζ ′) 7→ ((ζ ′)−1 : (ε′)−1 : (α′)−1)

and preserve η, ζ. As noted in Section 2.1 this action on the PSU3 torus is
equivariantly isomorphic to the permutation action on the SU3 torus, for which
the quotient is an equilateral triangle.

The element T acts by multiplication by φ where φ is a cube root of

(α′ζ(α′)−2ε′ζ(ε′)−2η′ζ(η′)−2)−1 = α′ε′η′ζ = η.

Since η = ±1 the action simply multiplies the projective coordinates α′, ε′, η′ by
η and hence as α′ε′η′ = ζη the coordinate ζ is also multiplied by η.

We now turn to the actions of s1, s5 and s0. It suffices to consider the element
s1 as the group 〈u1, u2〉 conjugates s1, s5 and s0. For a general point we have:

s1 : (α′ : β′ : ε′ : δ′ : η′ : ζ ′)→ ((α′β′)−1 : β′ : ε′ : δ′ : η′ : ζ ′)

so applying this to an element (α′ : ζ(α′)−2 : ε′ : ζ(ε′)−2 : η′ : ζ(η′)−2) we obtain

(ζα′ : ζ(ζα′)−2 : ε′ : ζ(ε′)−2 : η′ : ζ(η′)−2)

Since the product of the coordinates α′ε′ζ ′ changes by a factor of ζ, this means
that η is changed by ζ.

In the identity component η = ζ = 1, so T, s1 (and hence also s5, s0) act
trivially. Hence T w1 /ZW (w) is the quotient of the PSU3 torus

{(α′, ε′, ζ ′) : α′ε′ζ ′ = 1}/C3

by the signed permutation action of 〈u1, u2〉. As noted above this can be identi-
fied with the quotient of the SU3 torus by its Weyl group, giving an equilateral
triangle.

Turning to the components indexed by the non-identity elements of the Klein
4 group we see that these are permuted transitively by 〈s1, T 〉, hence there is
just one more component in the quotient. We obtain this by taking the quotient
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of the (η, ζ) = (1,−1) component by its stabiliser in the centraliser, noting that
this component is fixed pointwise by T . This component is parametrised by

{(α′, ε′, ζ ′) : α′ε′ζ ′ = −1}/C3,

and we now determine its stabiliser.
As noted above the elements u1, u2 preserve all the components so we begin

by considering the action of the subgroup W (D4) on the set of the three non-
identity components. This action gives a map from W (D4) = 〈s1, s5, s0, T 〉 to
the permutation group S3 in which s1, s5, s0 all map to one transposition and T
maps to another. Thus the component stabiliser in W (D4) is generated by T
along with the kernel of this map. Clearly the elements s1s5, s0s5, (s1s5)T and
(s0s5)T lie in the kernel. We note that s1s5(s0s5)T has order 4 (it corresponds
to a pair of rotations by π/2 in the standard representation of W (D4)) hence
〈s1s5, (s0s5)T 〉 is a dihedral group of order 8, and similarly for 〈s0s5, (s1s5)T 〉.
All the other pairs from s1s5, s0s5, (s1s5)T and (s0s5)T have product of order
2 and hence pairwise commute. The intersection of the two dihedral groups is
precisely the centre of each group (which has order 2) and hence together they
generate a group of order 32 which is thus the whole of the kernel.

Hence the component stabiliser in W (D4) is the semidirect product

〈s1s5, s0s5, (s1s5)T , (s0s5)T 〉o 〈T 〉 = 〈s1s5, s0s5, T 〉.

As noted above the action of T on the (η, ζ) = (1,−1) component is trivial. On
the other hand s1s5 acts by (α′ : ε′ : ζ ′) 7→ (−α′ : −ε′ : ζ ′) and similarly s0s5

acts by (α′ : ε′ : ζ ′) 7→ (α′ : −ε′ : −ζ ′). The quotient of the component under
this action can be identified with

{(α′′, ε′′, ζ ′′) : α′′ε′′ζ ′′ = 1}/C3,

via the map (α′ : ε′ : ζ ′) 7→ ((α′)2 : (ε′)2 : (ζ ′)2).
It remains to take the quotient of this by the action of 〈u1, u2〉 which acts

by signed permutation of the coordinates (α′)2, (ε′)2, (ζ ′)2. The result therefore
agrees with the quotient of the identity component (though geometrically one is
4 times the area of the other), giving the quotient T w/ZW (w) as the union of
two equilateral triangles.

(9) CaseA2×A2
1: The fixed set is the single 2-torus with coordinates (α, α2, 1, ε2, ε, 1).

The centraliser is 〈s0s6〉× (〈s1〉 o 〈u1〉) and the elements s0s6, s1 both act trivially
on the fixed set in the Lie algebra, and hence on its fixed torus. This leaves the
action of u1 to consider, which exchanges and inverts α, ε. Replacing the variable
ε by ε′ = ε−1, the quotient is therefore the symmetric product of two copies of
T1, which is a Möbius band.

(10) Case A2
2: The fixed set is a family of three 2-tori indexed by the centre as follows:

{(β−1, β, 1, β−1, β, 1) : β3 = 1} × {(1, 1, 1, δ, ε, 1) : δ, ε ∈ T1}

Since the centre is pointwise fixed by the Weyl group, the quotient is 3 copies of
the quotient of the identity component.
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We write the centraliser as (〈s1s2〉o〈u2〉)×〈s4, s5〉. Note that s1s2 acts trivially
on the fixed set, hence the action is just by the quotient group 〈u2〉 × 〈s4, s5〉 =
〈s4, s5u2〉 ∼= D6.

The element s5u2 takes (1, 1, 1, δ, ε, 1) to (1, 1, 1, δ−1, δ−1ε, 1) while the element
s4 acts as

s4 : (1, 1, 1, δ, ε, 1) 7→ (1, 1, 1, δ−1ε, ε, 1)

Taking a hexagonal fundamental domain for the torus, (dual to the r4, r5

lattice) we have the standard action of the dihedral group D6 yielding a (3, 4, 6)
triangle.

Hence the quotient of the fixed set by the centraliser is three copies of the
triangle.

(11) CaseA3×A1: The fixed set is a single 2-torus with coordinates (α, α2, 1, α−2, ε, 1).
The centraliser is 〈s0s6s3〉 × 〈s1〉 × 〈s5〉, with s0s6s3, s1 acting trivially. The

element s5 takes (α, α2, 1, α−2, ε, 1) to (α, α2, 1, α−2, ε−1α−2, 1). Changing coor-
dinates to α, ε′ where ε′ = αε we see that the action takes ε′ = αε to α(ε−1α−2) =
(ε′)−1, while leaving α unchanged. Hence the quotient is a cylinder.

(12) Case A4: The fixed set is a single 2-torus with coordinates (α, β, 1, β−1, β−2, 1).
The centraliser is 〈s0s6s3s4〉 × 〈s1〉 with the first factor acting trivially. The

action of s1 takes α to α−1β and leaves β unchanged. Setting β′ = α−1β this
action simply exchanges α, β′ hence the quotient is the symmetric product of two
copies of T1 (a Möbius band).

(13) Case D4 : The fixed set is a single 2-torus (α, α2, αε, ε2, ε, 1), which is the ζ = η =
1 component of the fixed set of s0s1s5s3 (case 8). Indeed our representative is
chosen so that its cube equals s0s1s5s3 so of course the fixed sets must be nested.
The centraliser is 〈s0s1s5T 〉× 〈u1, u2〉 with the first factor acting trivially. As in
case 8 the action of 〈u1, u2〉 can be equivariantly identified with the permutation
action of D3 on the SU3 torus yielding the quotient as an equilateral triangle.

(14) Case D4[a1]: The fixed set is the same single 2-torus (α, α2, αε, ε2, ε, 1) as for the
previous case of type D4, and here we note that the square of the representative
yields the element s0s1s5s3. The centraliser is the complex reflection group G8

given by 〈s5u3, s
T
5 u1〉. Again we will use the calculations from case 8, with the

fixed set described as

{(α′, ε′, ζ ′) : α′ε′ζ ′ = 1}/C3.

As noted in that case, the elements s5, T act trivially on this set, hence we again
reduce to the action of the 〈u3, u1〉 = 〈u1, u2〉 giving an equilateral triangle.

(15) Case A2
2×A1: The fixed set consists of 3 circles indexed by a cube root of unity

β with coordinates (β2, β, 1, ε2, ε, 1). Each of these circles contains one of the
elements of the centre, indeed we can write elements of the fixed set in the form

(β2, β, 1, β2, β, 1)(1, 1, 1, (ε′)2, ε′, 1).

The first factor is central, hence fixed by the whole Weyl group, and the second
lies in the identity component of the fixed set, and hence is fixed by s0, s6, s5, s1, s2.
The centraliser is (〈s0s6〉o〈u2〉)×〈s5〉 where only the element u2 acts non-trivially.
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This acts on the second factor by inverting ε′. The quotient is therefore 3 inter-
vals.

(16) Case A3 × A2
1: The fixed set is a family of four circles, indexed by ζ, η with

ζ2 = η2 = 1. We have coordinates (ε−1η, ε−2ζ, ζ, ε2ζ, ε, ζ). We factorise this as

(ε−1η, ε−2, η, ε2, ε, 1)(1, ζ, ηζ, ζ, 1, ζ).

This factorisation is chosen so that for each choice of η, ζ we obtain a circle lying
in the corresponding 2-torus appearing in case 8.

The centraliser is 〈s0s6s3s1s5〉×〈s1, T, s5〉 with the first factor acting trivially.
The second factor lies in the centraliser from case 8, which contains the group
W (D4) = 〈s1, T, s5, s0〉. The subgroup 〈s1, T, s5〉 is sufficient to transitively per-
mute the three non-identity components in case 8 and hence transitively permutes
the circles in this case.

Since the centre lies in the circle ζ = η = 1 it follows that this circle is fixed
by the whole of 〈s0s6s3s1s5〉 × 〈s1, T, s5〉.

For the non-identity components, as in case 8 consider the component (η, ζ) =
(1,−1) which is pointwise fixed by T . This component is stabilised by 〈T, s1s5〉 ∼=
D4 and this must be the whole stabiliser as it has index 3 in 〈s1, T, s5〉 ∼= S4. As
the element T acts trivially it remains to take the quotient by the action of s1s5.
This fixes (ε−1η, ε−2, η, ε2, ε, 1) and takes (1, ζ, ηζ, ζ, 1, ζ) to

(ζ, 1, 1, 1, ζ, 1)(1, ζ, ηζ, ζ, 1, ζ)

hence it has the effect of negating ε. Thus the quotient of the non-identity
components yields a circle.

The quotient of the fixed set by the centraliser is therefore two circles.

(17) CaseA4×A1: The fixed set is a single circle with coordinates (α, α−2, 1, α−2, α−4, 1).
As noted after Theorem 7 this circle contains the centre Z of the Lie group, hence
the action of the centraliser must be trivial.

(18) Case A5: The fixed set is a family of three circles indexed by a choice ε of a
cube root of unity and with coordinates (α, ε, 1, ε2, ε, 1). As in case 15 this can
be written as a product of a circle with the centre so that points of the fixed set
take the form

(ε2, ε, 1, ε2, ε, 1)(αε, 1, 1, 1, 1, 1).

The centraliser is 〈s0s6s3s4s5〉 × 〈s1〉 with the first factor acting trivially. The
second factor inverts αε hence gives a reflection on each of the three circles.

Hence the quotient is three copies of the interval.

(19,20) Cases D5,D5[a1]: In both cases the fixed set is a single circle with coordinates
(δ−2, δ−1, 1, δ, δ2, 1). As in case 17, this must contain the three elements of the
centre so is fixed pointwise, yielding a circle as the quotient.

(21) Case A3
2: The fixed set is the finite group C3×C3×C3 indexed by three choices

of cube roots of 1: β, ε, ζ. In coordinates it is given by: (β2ζ, β, 1, ε2ζ, ε, ζ). We
can split the central points (ε2, ε, 1, ε2, ε, 1) off from this and writing β′ = βε2ζ2

yields a factorisation as a product as follows:

(ε2, ε, 1, ε2, ε, 1)(1, ζ, 1, ζ, 1, ζ)((β′)2, β′, 1, 1, 1, 1).
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The first factor is the centre so fixed by everything. We identify the fixed set as
an F3 vector space V with basis

e1 = (ω2, ω, 1, ω2, ω, 1), e2 = (1, ω, 1, ω, 1, ω), e3 = (ω2, ω, 1, 1, 1, 1)

where ω = e2πi/3. We take the dual basis {e∗1, e∗2, e∗3} for V ∗.
As the first basis vector e1 is fixed by the centraliser we obtain an affine action

of the centraliser on the affine plane A = {v∗ ∈ V ∗ : 〈v∗, e1〉 = 1}.
We now consider the action of the three generators s0s6, T s3, s5s4 on V . Start-

ing with s0s6, this fixes e1 and e3, and takes e2 to e1 + e2 + e3. Similarly s5s4

fixes e1 and e3, and takes e2 to 2e1 + e2 + e3.
The element Ts3 fixes e1, e2, and takes e3 to e3 + 2e2.
In matrix form the generators s0s6, T s3, s5s4 act on V as:1 1 0

0 1 0
0 1 1

 ,

1 2 0
0 1 0
0 1 1

 ,

1 0 0
0 1 2
0 0 1


Dually, the action on V ∗ is given by:1 0 0

1 1 1
0 0 1

 ,

1 0 0
2 1 1
0 0 1

 ,

1 0 0
0 1 0
0 2 1


It is not hard to see that these generate the Hessian group, i.e. the group of all
orientation preserving affine maps on A.

Dualising the action back to V is therefore all orientation preserving linear
maps which fix the vector e1. The quotient is therefore 4 points, corresponding
to the three points on the line spanned by e1 (the centre of the Lie group) and
a single orbit for all the remaining vectors in V .

(22) Case A5 ×A1: In coordinates the fixed set is given by

(ηε2, ζε, ζ, ζε2, ε, ζ) = (ηε2, ε, η, ε2, ε, 1)(1, ζ, ζη, ζ, 1, ζ)

where ε is a cube root of unity and ζ2 = η2 = 1. We choose this factorisation to
the the copy of the Klein group V4 matches with that appearing in cases 8 and
16.

The centraliser is 〈s0s6s3s4s5s1〉 × 〈s1, T 〉 with the first factor acting trivially.
The fixed set lies in the fixed set from case 16, and the group 〈s1, T 〉 is a subgroup
of the centraliser from that case.

The η = ζ = 1 part is the centre of the Lie group and is thus fixed by the
centraliser. As noted in case 16, the three other possible values for (η, ζ) are
transitively permuted by 〈s1, T 〉. The triple with (η, ζ) = (1,−1) is pointwise
fixed by T and its stabiliser in the group 〈s1, T 〉 has index 3 and is thus 〈T 〉.
Hence the 6 points given by (η, ζ) = (1, 1) and (η, ζ) = (1,−1) form a strict
fundamental domain for the action of the centraliser.

The quotient is therefore 6 points.
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(23–25) Cases E6, E6[a1], E6[a2]: In each case the fixed set is the centre of the Lie group
(ε2, ε, 1, ε2, ε, 1) where ε ranges over the cube roots of 1. Each of these three cases
provides three points in the quotient.

4. Fixed sets and their quotients: the group of adjoint type

In this section we consider the case of the E6 Lie group of adjoint type. The maximal
torus in this case is the torus T ∨ = T /Z where Z denotes the centre of the Lie group
of simply connected type. We will determine the quotients (T ∨)w/ZW (w) and thus
establish the following:

Theorem 6. Let W be the Weyl group of type E6 and let T and T ∨ denote the corre-
sponding (real) maximal tori. For each w ∈W there is a homotopy equivalence

T w/ZW (w) ∼ (T ∨)w/ZW (w).

As discussed in Section 1 there are two possibilities for the fixed sets (T ∨)w: either
the centre lies in the identity component T w1 , in which case (T ∨)w = T w/Z, or Z injects
into the component group Fw, in which case (T ∨)w1 = T w1 . The first case we will refer
to as having ramified torus while the latter case has ramified component group.

The component group is ramified in cases A2
2, A

2
2×A1, A5 as well as the elliptic cases

A3
2, A5 ×A1, E6, E6[a1], E6[a2]. In all the other cases the torus is ramified.

4.1. Ramified torus. In this case the fixed set (T ∨)w is given by T w/Z where T w ∼=
T w1 × Fw. Hence (T ∨)w ∼= T w1 /Z × Fw (with Fw = F∨w ).

Since the action of the Weyl group arises from the conjugation action in the Lie group,
this commutes with the action of the centre Z. Hence the quotient (T ∨)w/ZW (w) is the
quotient of T w by the action of the product ZW (w) × Z and indeed we can therefore
compute this as the quotient (T w/ZW (w))/Z. The quotients T w/ZW (w) were evaluated
in Section 3.

Note that these quotients carry a natural metric, inherited from the Lie algebra t.
The action of Z on the quotients is induced from a translation action on t and is thus
isometric. In many cases this is sufficient to determine the quotient up to homotopy.

• Case ∅: The quotient (T ∨)w/ZW (w) is ∆6/Z where the contraction of ∆6 to its
barycentre is equivariant, hence ∆6/Z is contractible.
• Case A1: The same argument shows that the quotient ∆5/Z is also contractible.
• Case A2

1: The quotient T w/ZW (w) in this case is a ∆3 bundle over T1. Writing
∆3 as the join of two edges e0 and e1, the monodromy is given by the map
inverting the edge e0 and fixing e1.

In logarithmic coordinates the ∆3 fibres are described by the sum of the base
fibre with a point (x1, x1,−x1

2 ,−
x1
2 ,−

x1
2 ,−

x1
2 ). The centre acts by translation

by multiples of (2
3 ,

2
3 ,−

1
3 ,−

1
3 ,−

1
3 ,−

1
3) which tautologically preserves the coordi-

nates of the fibre. A fundamental domain is given by x1 ∈ [0, 1
3 ]. The monodromy

in the identification of the fibres at 0, 1
3 is the composition of the trivial identifica-

tion of the 0, 4
3 fibres with the (inverse of the) original monodromy in T w/ZW (w).

Hence the monodromy maps agree and the quotient (T ∨)w/ZW (w) is identified
with T w/ZW (w).
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• Case A2: The quotient T w/ZW (w) is SP2(∆2) = (∆2 × ∆2)/C2, hence the
quotient (T ∨)w/ZW (w) is given by (∆2 × ∆2)/(C2 × Z). The action of C2 ×
Z is isometric and hence preserves the product of the barycentres, giving a
contractible quotient.
• Case A3

1: The quotient is (∆2×∆1)/Z. Since the action is isometric it preserves
the Cartesian product structure. Since Z has order 3 it preserves the ∆1 direction
and the contraction to the barycentre of ∆2 times the interval ∆1 is equivariant.
Hence (∆2 ×∆1)/Z is contractible.
• Case A2×A1: The quotient T w/ZW (w) is T1×T2/S3 giving a product T1×∆2.

The action of Z acts diagonally by rotations on both factors. This action is fixed
point free and yields a solid torus which carries a Seifert fibration over the cone
∆2/Z, [9].
• Case A3: The quotient T w/ZW (w) in this case is a triangle bundle over T1, with

the triangle obtained as the quotient of a square by a diagonal reflection. The
monodromy is obtained from the rotation of the square by π, which yields a
diagonal flip on the triangle. The action of Z is to translate by 1/3 along the
circle while again giving a rotation by π on the square. Note that the cube of this
element agrees with the monodromy of the original bundle as required. Hence
the quotient (T ∨)w/ZW (w) is identified with T w/ZW (w).
• Case A4

1: The action of Z on ∆2 t∆2 must preserve the components fixing the
barycentre of each, and the contraction to the barycentres is equivariant.
• Case A2 × A2

1: The action of Z on the symmetric product SP2(T1) is given by
the diagonal action of Z on the two copies of the circle T1. Since this is a fixed
point free action on the Möbius band, the quotient is again a Möbius band.
• Case A3 × A1: The quotient T w/ZW (w) is T2/C2 = ∆1 × T1. The action of Z

rotates the T1 factor, again yielding a copy of ∆1 × T1.
• Case A4: As in case A2 × A2

1 the centre Z acts diagonally on SP2(T1) giving
quotient a Möbius band.
• Cases D4 and D4[a1]: In these cases the quotient T w/ZW (w) are equal, giving a

copy of ∆2. The group Z acts by rotation on this giving a cone ∆2/Z.
• Case A3×A2

1: The action of Z must preserve the two components T1tT1, acting
isometrically and fixed point freely on each circle, hence the quotient is a disjoint
union T1 t T1.
• Cases A4×A1, D5, D5[a1]: In each of these cases the centre acts fixed-point freely

on T1 and the quotient is again a circle.

4.2. Ramified component groups. We denote elements of the centre Z by zω =
(ω2, ω, 1, ω2, ω, 1) where ω is a cube root of 1.

• Case A2
2:

Recall that w = s0s6s1s2 and T w = T w1 × Z where (in standard coordinates
on T6) the identity component is

T w1 = {(1, 1, 1, δ, ε, 1) : δ, ε ∈ T1}.

For ω a cube root of 1, the action of w takes pω = (1, ω2, 1, 1, 1, ω) to

(ω2, 1, 1, ω2, ω, ω) = zωpω
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so pω is fixed by w up to the action of Z.
When ω 6= 1 the point pω does not lie in T w, hence the image of pω in the

quotient by Z lies in a non-identity component of (T ∨)w. We can therefore index
the components of (T ∨)w by ω.

We then have

(T ∨)w = ({pω : ω3 = 1} × T w)/Z,

and taking a fundamental domain for the action of Z, we can identify (T ∨)w

with

{pω : ω3 = 1} × {(1, 1, 1, δ, ε, 1) : δ, ε ∈ T1}.
The centraliser of the element w is 〈s1s2〉 o 〈u2〉 × 〈s4, s5〉 and we now consider
its action on (T ∨)w.

We first consider the action of the normal subgroup 〈s1s2, s0s6〉 in the cen-
traliser. (Recall that (s1s2)u2 = s0s6.) Since s1s2s0s6 acts trivially it suffices to
consider the action of s1s2. This does not preserve the fundamental domain for
the action of Z, so we act by s1s2 and then by the central element zω. This takes
pω to (1, ω2, 1, ω2, ω, ω) = pω(1, 1, 1, ω2, ω, 1).

Hence the action of s1s2 preserves components of (T∨)w and acts on the com-
ponent indexed by ω by multiplication by (1, 1, 1, ω2, ω, 1) ∈ (T ∨)w1 = T w1 .

Recall that the action of the D6 group 〈u2, s4, s5〉 = 〈s4, u2s5〉 on T w1 is given
by the standard dihedral action by the group of symmetries of the hexagonal
fundamental domain for the torus, which we will denote 7. The element s5 acts
trivially while u2 acts to invert the ε coordinate. For the identity component
(T ∨)1, indexed by ω = 1, the element s1s2 acts trivially, and the quotient by the
centraliser is a (2, 4, 6) triangle as in the case of T w.

When ω is a nontrivial cube root of the element 1, our D6 group still preserves
the component, but s1s2 no longer acts trivially so we first factor out its action,
which we recall is given by multiplication by (1, 1, 1, ω2, ω, 1). This yields the
torus with dual hexagon as fundamental domain and we denote this fundamental
domain by 9. So the quotient of this component by the centraliser is given by
taking the dual action of D6 on the dual hexagon 9. But these actions are
equivalent so we again obtain as quotient a (2, 4, 6) triangle, here with 1/3 the
area of the ω = 1 case, and the quotient (T ∨)w by the centraliser of w is three
(2, 4, 6) triangles.
• Case A2

2 ×A1: Here the representative is w = s0s6s5s1s2. Since s5 acts trivially
on pω, we have w · pω = zωpω using the previous case. We thus have

(T ∨)w = ({pω : ω3 = 1} × T w)/Z.

where T w = T w1 ×Z and T w1 = {(1, 1, 1, ε2, ε, 1) : ε ∈ T1}.
Taking a fundamental domain for the action of Z, we can identify (T ∨)w with

{pω : ω3 = 1} × {(1, 1, 1, ε2, ε, 1) : ε ∈ T1}.

The centraliser is 〈s1s2〉 o 〈u2〉 × 〈s5〉.
As noted in the A2

2 case, for ω a cube root of 1, the action of s1s2 followed by
zω takes pω to (1, ω2, 1, ω2, ω, ω), so in (T ∨)w the element s1s2 has the effect of
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preserving the three components and on each it multiplies the coordinate ε by
ω.

It is easy to see that the generator s5 acts trivially on the above fundamental
domain. The generator u2 also fixes pω because it interchanges r2 and −r6. As
in the case of T w the element u2 acts on the second factor by inverting ε.

Hence the quotient of each component is an interval: the element s1s2 can act
either trivially or by rotation on the circle. For ω = 1 we have the former, just
leaving the action of u2. The latter occurs when ω 6= 1, and we have the dihedral
action of the group (〈s1s2〉 o 〈u2〉)/〈s1s2(s1s2)u2〉 ∼= D3.
• Case A5: Consider the action of the representative w = s0s6s3s4s5 on the point
qω = (1, 1, 1, 1, ω2, ω2) ∈ T , where ω is a cube root of unity. The action of w
translates this by the element zw in the centre, so it represents a fixed point in
the dual torus T ∨. Hence the fixed set under the dual action of w is given by

(T ∨)w = ({qω : ω3 = 1} × T w)/Z.

where T w = T w1 × Z and T w1 = {(α, 1, 1, 1, 1, 1) : α ∈ T1}. As in the previous
case, by taking a fundamental domain for the action of Z, we can identify the
fixed set with the set

{qω : ω3 = 1} × {(α, 1, 1, 1, 1, 1) : α ∈ T1}.

The centraliser is 〈s0s6s3s4s5〉× 〈s1〉 with the first factor acting trivially. The
element s1 preserves the three circles and in each case acts by a reflection taking
α to α−1. The quotient is therefore, again, three copies of the interval.
• Case A3

2: The dual case is considered in detail in the derivation of the action of
the centraliser on T w, so we will not repeat it here. In summary, the dual fixed
set can be identified with a 3-dimensional vector space over F3, equipped with a
quotient to F3. The cosets of the kernel give two affine planes and a linear plane,
and the action of the centraliser is given by the action of the Hessian group by
orientation preserving affine maps on the affine planes, with its linear part on
the linear plane. The quotient is therefore a set of four points.

For the sake of completeness we note that w = s0s6s1s2s5s4 takes pω to
(ω2, 1, 1, ω2, ω, ω) = zωpω. The fixed set T w is

{(1, ζ, 1, ζ, 1, ζ)(β2, β, 1, 1, 1, 1) : ζ3 = β3 = 1} × Z.

The fixed set (T ∨)w1 is therefore identified with a fundamental domain

{(1, ω2, 1, 1, 1, ω)(1, ζ, 1, ζ, 1, ζ)(β2, β, 1, 1, 1, 1) : ω3 = ζ3 = β3 = 1}.

• Case A5×A1: Consider the action of the representative w = s0s6s3s4s5s1 on the
point (1, 1, 1, 1, ω2, ω2) ∈ T , where ω is a cube root of unity. As noted in the A5

case, this element is fixed by s1 and is fixed up to the action of Z by s0s6s3s4s5.
Hence

(T ∨)w = ({qω : ω3 = 1} × T w)/Z.
Here elements of T w have the form (ηε2, ζε, ζ, ζε2, ε, ζ) where ε3 = ζ2 = η2 = 1.
A fundamental domain for the action of Z is given by

{qω : ω3 = 1} × {(η, ζ, ζ, ζ, 1, ζ) : ζ2 = η2 = 1}.
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The centraliser is 〈w, s1, T 〉 where w acts trivially (on the quotient by Z). Clearly
the element s1 fixes the first factor, and T also fixes this because T fixes the vector
r5 + r6. We note that the second factor is obtained by applying the exponential
map to 1

2Zr1 + 1
2ZrT and r1,−rT have inner product −1 (giving the group 〈s1, T 〉

of type A2).
The action of 〈s1, T 〉 on pairs (η, ζ) is thus the standard action s1 : (η, ζ) →

(η−1ζ, ζ) = (ηζ, ζ) and T : (η, ζ)→ (ζ, ζ) = (η, ηζ).
Hence the quotient is 6 points: a fundamental domain is given by ζ = 1.

• Cases E6, E6[a1], E6[a2]. In each of these cases the fixed set in T consists en-
tirely of the centre of the Lie group, and is fixed pointwise. It follows from the
discussion in Section 1, Remark 1.8, that the fixed set in T ∨ can be identified
with the Pontryagin dual of the centre, which is again cyclic of order 3, and that
the centraliser acts on this by the (dual of) the trivial action. All that remains,
for the sake of completeness is to identify the three fixed point groups in these
cases.

In the E6 case the element w = s1s2s3s4s5s6 takes (ω, 1, 1, ω, 1, 1) to (1, ω, 1, 1, ω, 1) =
zω(ω, 1, 1, ω, 1, 1) for ω a cube root of unity, so the fixed set is identified with
{(1, ω, 1, 1, ω, 1) : ω3 = 1}.

For E6[a1], the element w = s1s2s3s4s5s
s3
6 takes (1, ω, 1, ω, 1, ω2) to zω(1, ω, 1, ω, 1, ω2),

giving fixed set {(1, ω, 1, ω, 1, ω2) : ω3 = 1}.
Finally for E6[a2], the element w = s6s2s

T
0 s

T
1 s4s3 takes (1, ω, 1, 1, 1, ω2) to

zω(1, ω, 1, 1, 1, ω2), giving fixed set {(1, ω, 1, 1, 1, ω2) : ω3 = 1}.

Table 3. Fixed sets in T ∨ for ramified component group cases

Conjugacy class Fixed sets in T ∨ lifted to T
A2

2 {(1, 1, 1, δ, ε, 1) : δ, ε ∈ T1} × {(1, ω2, 1, 1, 1, ω) : ω3 = 1}
A2

2 ×A1 {(1, 1, 1, ε2, ε, 1) : ε ∈ T1} × {(1, ω2, 1, 1, 1, ω) : ω3 = 1}
A5 {(α, 1, 1, 1, 1, 1) : α ∈ T1} × {(1, 1, 1, 1, ω2, ω2) : ω3 = 1}
A3

2 {(β2, βζ, 1, ζ, 1, ζ) : ζ3 = β3 = 1} × {(1, ω2, 1, 1, 1, ω) : ω3 = 1}
A5 ×A1 {(η, ζ, ζ, ζ, 1, ζ) : ζ2 = η2 = 1} × {(1, 1, 1, 1, ω2, ω2) : ω3 = 1}
E6 {(1, ω, 1, 1, ω, 1) : ω3 = 1}
E6[a1] {(1, ω, 1, ω, 1, ω2) : ω3 = 1}
E6[a2] {(1, ω, 1, 1, 1, ω2) : ω3 = 1}
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5. Applications

There are two major applications for the results in this article.

5.1. Extended affine Weyl groups of type E6. Our first application is the computa-
tion of the rational K-theory of the group C∗-algebras for extended affine Weyl groups.
From [5] we know that Langlands duality induces an isomorphism in K-theory, and the
computations given here make it possible to exhibit explicit classes and to visualise this
isomorphism.

Theorem 8. Let W ′a be an extended affine Weyl group of one of the two Lie groups of
type E6 (simply connected or adjoint type). Up to torsion, K∗(C

∗
r W

′
a) is

Z47 in dimension 0

Z11 in dimension 1.

Proof. Let G be a compact connected simply-connected semisimple Lie group of type E6,
with centre Z. Let T be a maximal torus in G, and let Γ be the kernel of the exponential
map exp : t→ T , which is simply the root lattice since G is simply connected.

The Langlands dual G∨ = G/Z is the adjoint form and its extended affine Weyl group
is

W ′a(G
∨) := Γ∨ oW

where Γ∨ is the dual lattice. Its group C∗-algebra C∗(W ′a(G
∨)) is isomorphic to C(T )oW

and by the Green-Julg theorem its K-theory is isomorphic to K∗W (T )
Now we apply the equivariant Chern character [2] for the discrete group W :

K∗W (T )⊗Z C ' H∗(T //W ;C)

where the geometric extended quotient T //W is the quotient of the inertia space

T̃ = {(w, x) ∈W × T : wx = x}

by the action g(w, x) = (wg, gx). The quotient is given by the formula

T //W :=
⊔
T w/ZW (w)

with one w chosen in each W -conjugacy class. Putting all this together, we obtain

K∗C
∗(W ′a(G

∨))⊗Z C '
⊕

H∗(T w/ZW (w);C)

The 25 sectors are listed in the right-hand column of Table 2, and the K-theory is readily
computed.

For the extended affine Weyl group W ′a(G) the K-theory is obtained by replacing the
sectors T w/ZW (w) by (T ∨)w/ZW (w) each of which is homotopic to the corresponding
sector for the action of W on T by Theorem 4. �

5.2. p-adic groups of type E6. The Baum-Connes conjecture does not help with
computing the K-theory of p-adic groups since the left hand side is not itself tractable.
The ABPS-framework developed in [1] is designed to fix this, providing a more effective
approach to p-adic groups. Indeed, Conjecture 5, ibid provides a much finer and more
precise formula in K-theory than Baum-Connes alone provides.
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Let G denote a split group of type E6 over a p-adic field; the group may be of adjoint
type or simply connected. Let C∗r (G) denote the reduced C∗-algebra of G. The reduced
C∗-algebra admits the Bernstein decomposition

C∗r (G) =
⊕

s∈B(G)

C∗r (G)s

where B(G) is the Bernstein spectrum of G. Each point s in the Bernstein spectrum is
an equivalence class of cuspidal pairs (M,σ) where M is a Levi subgroup of G and σ is
an irreducible cuspidal representation of M. In particular, we have the Iwahori point i
defined by the pair (Tp, 1) where Tp is a maximal torus of (the p-adic group) G and 1 is
the trivial representation of Tp. We will write

A = C∗r (G)i.

This is called the reduced Iwahori-spherical C∗-algebra. The spectrum of the C∗-algebra
A comprises all irreducible tempered representations of G which admit a nonzero Iwahori-
fixed vector.

Let G∨ denote the (complex) Langlands dual of G, let TC denote a maximal torus in
G∨, and let T denote the maximal compact subgroup of TC.

According to [1, Eqn.(4.9)], we have

Kj(A)⊗Z Q ' Kj
W (T )⊗Z Q

The results in §5.1 now lead immediately to the following answer for the K-theory of
A:

K0(A)⊗Z C = C47, K1(A)⊗Z C = C11.

From the point of view of noncommutative geometry, the C∗-algebra A behaves, at
the level of K-theory (after tensoring by C), as if its spectrum was equal to the extended
quotient T //W .
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6. Power relations between conjugacy classes and reflection structures of centralisers

G5, G6, G8, G25, G28, G(p, q, r) are complex reflection groups as classified by Shephard-Todd.

Order of element

Rami�ed component group Carter Type
Shephard-Todd Classification

Rami�ed torus

Irreducible  re�ection group

Springer’s
regular 
elements

Figure 3. Inclusions among the centralisers induced by power relations of conjugacy class representatives. Layers show the order of the representatives,
indicating the relevant power relation.
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