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Appendix: Guiding Labelling Effort for Efficient
Learning With Georeferenced Images

F

APPENDIX A
SEAFLOOR IMAGERY DATASET

Camera equipped Autonomous Underwater Vehicles
(AUVs) are routinely used in seafloor environmental mon-
itoring applications. These mobile robotic platforms typi-
cally gather tens of thousands of seafloor images during
their deployments and can observe several 10,000 m2/h of
seafloor [1]. Even though the cost of gathering data has
been massively reduced through their introduction, anno-
tating images for environmental monitoring applications is
typically a manual task that requires significant expertise.
Here we describe domain specific characteristics of seafloor
imagery and describe the Seafloor dataset used in this study.

A.1 Characteristics of Seafloor Imagery

Subsea imaging surveys typically use Red Green Blue (RGB)
colour or greyscale images, making their format compatible
with modern CNNs. However, these datasets have proper-
ties that are not common in other domains:

Colour and Geometry Distortion
Different wavelengths of light attenuate at dif-
ferent rates in water, causing underwater images
to look blue-green compared to the true colour
of observed targets. The relatively low imaging
altitudes (typically less than 10 m) and wide
angle lenses often used to maximise area cover
result in large relative range differences within
an image due to terrain profiles and between
images due to vehicle dynamics, which change
the hue of images. Between datasets and plat-
forms there are additional sources of variabil-
ity, including different water column properties
that affect the wavelength dependence of light
attenuation, and the use of artificial light sources
with different wavelength profiles. In addition
to colour degradation, the variable range causes
spatial inconsistencies that distort the shape and
size of observed targets. There have been many
studies investigating computational and phys-
ically grounded principles to compensate for
these artefacts [3], [4].

Small Footprint
Light rapidly attenuates in water, and so pow-
erful artificial light sources are needed to obtain
visual images in most applications. The range

at which images can be obtained is limited to
approximately 10 m for most setups, which con-
strains the footprint of a single frame to edge
lengths of a similar magnitude. Since many pat-
terns of interest (e.g. substrates, habitats, infras-
tructure) exist on far larger spatial scales, multi-
ple images need to be taken along trajectories to
capture these broader scale patterns.

Georeferencing
Most images of the seafloor are gathered
by robotic platforms or fixed observatories
and georeference information is typically avail-
able. Since Global Navigation Satellite Systems
(GNSS) cannot be used underwater, most mo-
bile robotic platforms have navigational suites
that fuse data from an AHRS, DVL and depth
sensor with acoustic positioning systems such
as a USBL. Georeferencing is typically achieved
with a relative accuracy of approximately 1 % of
distance travelled, and absolute accuracy of ap-
proximately 1 % of depth [5]. Stationary systems
have similar absolute position accuracy.

Imbalanced Class Distribution
Seafloor substrates and habitats can change over
spatial scales larger than the extents observed
during most robotic imaging surveys. Further-
more, many types of benthic communities, ge-
ological features and infrastructure are sparsely
distributed, making seafloor datasets susceptible
to skewed class membership [6], [7].

Imbalanced class distributions, colour and geometry distor-
tions can degrade learning performance [8], [9]. The prob-
lem of small footprints can potentially be solved if pixel-
order accurate georeferencing can be achieved, as artefact-
free photomosaics can be generated and cropped to form
image patches for processing. However, for seafloor imag-
ing applications position estimates contain non-negligible
uncertainty compared to the resolution and footprint of ob-
tained imagery. Although techniques such as simultaneous
localisation and mapping are available [10], the need for
artificial strobes and the limited energy available on robotic
platforms limits the relative overlap that can be achieved
between images. This makes generating pixel order accurate
photomosaics more challenging to obtain than with satellite
and aerial drone imagery, which typically have lower res-
olution, larger image footprints with greater overlap and
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(a) Mosaiced imagery of the Seafloor dataset (b) Ground truth classes for the Seafloor dataset

Fig. A1: Seafloor dataset consisting of ∼63k image patches and ∼19k ground truth annotations. The data covers
approximately 12 ha and has an average depth of 780 m. The lines formed by ‘Artificial Object’ show the routing of exposed
cables connecting various bits of observatory infrastructure. The light green ‘Bacterial Mats’ form discrete patches around
active methane gas venting from the seafloor and are sparsely distributed around the site. These are often surrounded by
‘Shell Fragments’ and ‘Carbonates’, which are distributed over background substrates of ‘Sediments’ and ‘Rocks’. Examples
of representative images in each class can be found in [2].

TABLE A1: Description of the Seafloor Dataset

No. of Image Patches 62,875
No. of Annotations 18,740

Resolution [mm/pixel] 10
Imaged Area [m2] 118,000

No. of Classes 6
Latitude [◦N] 44.5683 to 44.5715

Longitude [◦W] 125.1455 to 125.1506
Lat. × Lon. Edge Lengths [m] 360× 410

Seafloor Depth [m] 765 - 785
Location Southern Hydrate Ridge

accurate position information. These points favour the use
of single image frames for automated interpretation of un-
derwater imagery since these contain fewer artefacts.

A.2 Dataset Description
The Seafloor dataset analysed in this work is of the Southern
Hydrate Ridge, a gas hydrate field that is also the site of a
seafloor cabled observatory [11] located 100 km offshore of
Oregon, USA at a depth of ∼780 m. Dataset characteristics
are given in TABLE A1 and a mosaic generated from the
data is given in Fig. A1. The dataset consists of 12,575
images that were collected using the SeaXerocks mapping
system [1] mounted on the AUV AE2000f of the Institute
of Industrial Science, University of Tokyo, Japan, during
the Schmidt Ocean Institute’s FK180731 #Adaptive Robotics
campaign in August 2018 [2]. The georeferenced position
where each image was captured is determined using vehicle
navigation data, which consists of an Attitude and Heading
Reference System (AHRS), a Doppler Velocity Log (DVL), a
depth sensor and an Ultra-Short BaseLine (USBL) acoustic
positioning system [5]. These are processed together with
the seafloor images using a visual Simultaneous Localisa-

tion and Mapping (SLAM) pipeline [10], with an estimated
relative position error of less than 1 m. The images are
colour-corrected, undistorted and resampled to a constant
spatial resolution of 10 mm/pixel to minimise the impact of
altitude variation between observations. Five 224× 224 pix-
els regions are cropped from each image (four corners and
centre, partially overlapping) to form 62,875 images patches,
which includes 18,740 patches that are annotated by human
experts [2]. The unsupervised learning step of Fig. 1 in the
main text uses all available image patches since annotations
are not needed for LGA training. This workflow matches
real seafloor survey scenarios, where a set of completely
unknown images are collected during each deployment. The
annotated patches randomly sample approximately 30 %
of the entire dataset, which is sufficient to consider the
distribution of class annotations as representative of the full
dataset’s distribution.

The Seafloor datasets can be accessed via SQUIDLE+
(http://soi.squidle.org) as (Campaign: fk180731[ID:53],
deployment: 20180804 093404 20180804 143258 20180805
123456 20180809 083837 ae2000f sx3[ID:711]). The
expert annotations for the images can be accessed at
SHR AE2000 3000samples[ID:80] and SHR AE2000
1000samples[ID:74] in uos-oplab-fk180731[ID:9] datasets.
The colour correction and undistortion methods used
to pre-process images in this work can be found on
https://github.com/ocean-perception/oplab pipeline/
tree/master/correct images.

APPENDIX B
AERIAL IMAGERY DATASET

Experiments are performed for land cover classification of
three different aerial image datasets to assess the versatility
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TABLE B1: Description of Aerial Imagery Dataset

Mountain Island Urban
No. of Image Patches 46,200 15,128 47,961
Resolution [m/pixel] 2.0 2.0 1.0
Imaged Area [km2] 9,520 3,120 2,470

No. of Classes 6 4 6
Latitude [◦N] 65.01 to 66.09 56.91 to 58.00 59.14 to 59.60

Longitude [◦E] 14.79 to 16.53 17.96 to 19.35 17.45 to 18.36
Lat. × Lon. Edge Lengths [km] 120× 80 150× 84 50× 50

Location Vindelfjällen Gotland Stockholm

of the proposed method across environmental monitoring
application domains.

B.1 Dataset Description
Aerial image datasets from three different regions (Moun-
tain, Island and Urban) of Sweden are used to test the
versatility of our method. TABLE B1 shows details of each
datasets. The Mountain dataset consists of images of the
area surrounding the Vindelfjällen Nature Reserve, which is
one of the largest protected areas in Europe (see Fig. B1).
Six classes are observed in this area, where ‘Wetland’ and
‘Other Non-vegetated’ (corresponding to alpine peaks) are
unique to this dataset in our experiments. The region also
has areas of ‘Water’. The Island dataset is of Gotland island,
which consists of four classes, including large regions of
farmland (‘Arable’ class), as shown in Fig. B2. The Urban
dataset consists of images around the city of Stockholm
(see Fig. B3). This dataset consists of six classes, where the
‘Artificial’ class is used to describe the city and other built
up areas, where this class is unique to this dataset in our
experiments. The dataset also contains some ‘Arable’ and
‘Water’ regions. All datasets have ‘Coniferous’, ‘Deciduous’
and ‘Other Vegetated’ areas, although their appearances and
distribution patterns differ between the datasets.

The dataset images are cropped from ESRI World Im-
agery. Each image is rescaled and cropped to 227 × 227
pixels patches. The datasets have different spatial resolu-
tions, 2.0 m/pixel for Mountain and Island and 1.0 m/pixel
for Urban, where it is often the case that higher resolution
data is available near populated areas. The physical sizes of
the image patches are 454 × 454 m (Mountain and Island)
and 227 × 227 m (Urban), respectively.

The ground truth annotations used are based on the
National Land Cover Database (NMD) published by the
Swedish Environmental Protection Agency, which assigns
land cover classes to every 10 × 10 m region of the country.
In our experiments, we use the majority land cover class
in each image patch as the ground truth class, and some
detailed classes are merged as they cannot be distinguished
using only RGB colour channels (e.g. six types of coniferous
forest classes in NMD are dealt with as a single ‘Coniferous’
class in this experiment).
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(a) Mosaiced aerial imagery of the Mountain dataset (b) Ground truth classes for the Mountain dataset

Fig. B1: Mountain dataset showing the area surrounding the Vindelfjällen Nature Reserve in Sweden. Six classes are
observed in this area, where ‘Wetland’ and ‘Other Non-vegetated’ (corresponding to alpine peaks) are unique to this
dataset in our experiments. The dataset also has ‘Water’, ‘Coniferous’, ‘Deciduous’ and ‘Other Vegetated’ regions, where
these classes are shared across the different datasets studied in this work. The figure shows that the spatial distributions of
the shared classes are different to their distributions in the Island (Fig. B2) and Urban (see Fig. B3) datasets.

(a) Mosaiced aerial imagery of the Island dataset (b) Ground truth classes of the Island dataset

Fig. B2: Island dataset showing Gotland island in Sweden, which consists of four classes, including large regions of
farmland (‘Arable’ class) that dominate the open areas. The dataset also has ‘Coniferous’, ‘Deciduous’ and ‘Other Vegetated’
regions, where these classes are shared across the different datasets studied in this work. The figure shows that the spatial
distributions of the shared classes are different to their distributions in the Mountain (Fig. B1) and Urban (see Fig. B3)
datasets.
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(a) Mosaiced aerial imagery of the Urban dataset (b) Ground truth classes of the Urban dataset

Fig. B3: Urban dataset showing the area surrounding Stockholm in Sweden. The ‘Artificial’ class is used to describe the
city and other built up areas, where this class is unique to this dataset in our experiments. The dataset also has ‘Arable’,
‘Water’, ‘Coniferous’, ‘Deciduous’ and ‘Other Vegetated’ regions, where these classes are shared across the different datasets
studied in this work. The figure shows that the spatial distributions of shared classes are different to their distributions in
the Mountain (Fig. B1) and Island (see Fig. B2) datasets.


