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Abstract—Faster-than-Nyquist (FTN) signaling aided non-
orthogonal multiple access (NOMA) is conceived and its achiev-
able rate is quantified in the presence of random link delays
of the different users. We reveal that exploiting the link delays
may potentially lead to a signal-to-interference-plus-noise ratio
(SINR) gain, while transmitting the data symbols at FTN rates
has the potential of increasing the degree-of-freedom (DoF). We
then unveil the fundamental trade-off between the SINR and
DoF. In particular, at a sufficiently high symbol rate, the SINR
gain vanishes while the DoF gain achieves its maximum, where
the achievable rate is almost (1 + β) times higher than that of
the conventional synchronous NOMA transmission in the high
signal-to-noise ratio (SNR) regime, with β being the roll-off
factor of the signaling pulse. Our simulation results verify our
analysis and demonstrate considerable rate improvements over
the conventional power-domain NOMA scheme.

Index Terms—NOMA, asynchronous transmission, achievable
rate, faster-than-Nyquist signaling

I. INTRODUCTION

The escalating number of wireless devices and sensors
has inspired exploring efficient multiple access solutions for
future Internet-of-Things (IoT) networks. In particular, non-
orthogonal multiple access (NOMA) has been extensively
studied as a promising radio access scheme due to its superi-
ority in handling massive connectivity [2], which is a crucial
requirement for IoT networks. In contrast to conventional
orthogonal multiple access (OMA) schemes, NOMA allows
more than one user to transmit their information via the same
time-frequency resource block, hence enjoying an improved
spectral efficiency via exploiting their channel disparities [3].
However, future beyond fifth-generation (B5G) wireless net-
works are expected to attain even higher spectral efficiency
than the 5G networks [4]. Therefore, the existing NOMA
schemes have to be improved in order to meet the ultra-high
data rate requirement of B5G wireless networks.

Hence, diverse advanced transmission schemes have been
proposed in the literature [5]–[12]. For example, a NOMA-
based system design by considering minimum error probability
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was conceived in [5], where the effect of realistic imperfect
successive interference cancellation (SIC) was also taken into
account for the system design. The simulation results showed
that a superior error performance can be obtained based on
the proposed design compared to the conventional power-
domain NOMA. Furthermore, the rate-splitting multiple access
(RSMA) was considered in [6], where each user partially
decoded the interference and treated the rest of the interference
as noise. In this way, RSMA has been shown, by Clerckx et.
al., to achieve both an improved spectral efficiency and an
enhanced robustness against imperfect channel state informa-
tion at the transmitter [7]. Besides, an intelligent reflecting
surface (IRS) -assisted NOMA scheme was designed in [8]
by Ding et. al., where the IRSs are used for beneficially
aligning the cell-edge users’ effective channel vectors with the
predetermined spatial directions in order to improve the overall
performance of NOMA transmissions. Moreover, the sparse
code multiple access (SCMA) transmission allows more users
to transmit their information among a less number of resource
blocks using an appropriately designed codebook [9]. By
relying on a carefully constructed codebook, it has been shown
that SCMA can achieves a better error performance than
conventional power-domain NOMA [9]. On the other hand,
asynchronous NOMA (aNOMA) transmissions have also been
shown to offer an extended achievable rate region compared
to conventional synchronous NOMA transmissions [1], [10],
[11]. Specifically, Haci et. al. [10] conceived the aNOMA
concept based on orthogonal frequency-division multiplexing
(OFDM) and showed that the aNOMA scheme outperforms
both the conventional synchronous NOMA scheme and the
classic orthogonal frequency-division multiple access (OFD-
MA) arrangement in terms of both its bit error rate (BER)
and capacity. Furthermore, time domain (TD) aNOMA trans-
mission was evaluated by Zou et. al. [11], where the authors
considered a fixed link delay introduced by each user and the
data was conveyed by finite-duration signaling pulses. Similar
to the frequency domain (FD) aNOMA transmission, the TD
aNOMA technique has also shown advantages in terms of its
achievable rate [11]. Moreover, NOMA transmission based on
faster-than-Nyquist (FTN) signaling was also considered in
the literature [12]. Indeed, FTN signaling is a classic non-
orthogonal signaling scheme exhibiting an enhanced spectral
efficiency [13]–[16], where data is transmitted at a symbol
rate higher than the Nyquist intersymbol interference (ISI)-
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free rate1 [19]. Although FTN-based NOMA (FTN-NOMA)
transmission is expected to have an increased achievable rate,
its theoretical rate analysis has not been disseminated in the
open literature.

As an extension of the state-of-the-art, we improve the
conventional power-domain NOMA scheme for bandlimited u-
plink transmissions from two different perspectives, namely, its
signal-to-interference-plus-noise ratio (SINR) and its degree-
of-freedom (DoF). In particular, we show that an SINR gain
can be achieved by exploiting the link delay difference between
different users, while a DoF gain is attained by FTN signaling.
However, interestingly enough, there is a fundamental trade-off
between the SINR gain and DoF gain. In fact, the potential of
both the SINR and DoF improvements arise from the spectral
aliasing of signal transmissions under a practical bandwidth
constraint. Apart from the practical benefits of an enhanced
throughput, the proposed NOMA scheme also provides theo-
retical insights. It is widely recognized that spectral aliasing
occurs when the signal bandwidth is higher than half the
sampling frequency. We reveal two ways of mitigating the
effect of spectral aliasing. The first one is by imposing phase
rotations on the signal spectrum (corresponding to imposing
delay for the TD signal), so that the power spectral density
(PSD) at the aliased FD components generally has a reduced
value due to the superposition of adjacent spectra (caused by
spectral aliasing). The second one is to transmit signals at
an FTN symbol rate2. These two solutions lead to potential
SINR and DoF gains, and we will show that there is a trade-
off between these gains.

To further clarify the above arguments, we conceive more
complex but practical uplink transmission scenarios in this
paper, where each user experiences a random link delay. This
is in contrast to the majority of the literature, e.g., [2], [21]
and the references therein, which assumed perfectly time-
synchronous transmission among NOMA users. However, the
perfect synchronization assumption is often unrealistic in
practical uplink transmissions, due to the use of different
clock generators adopted at geographically distributed uplink
users and owing to the distance-dependent propagation delays.
As a consequence, the signals from multiple users cannot be
synchronously superimposed at the BS as commonly assumed
in the literature3 [2], [3], [21]. Given practical considerations,
we study the achievable rates of both the asynchronous FTN-
NOMA (aFTN-NOMA) scheme and the aNOMA scheme
(aFTN-NOMA scheme using Nyquist symbol rate). We also
compare them to the achievable rates of the conventional
synchronous power-domain NOMA schemes under the same
channel conditions. In summary, our work is motivated by
the following facts: 1) Although FTN-NOMA transmission
has been proposed in the literature, its transmission with

1It should be noted that the idea of transmitting symbols faster is not limited
to the TD. For example, it has been shown that transmitting symbols faster
in the FD also enjoys advantages [17], [18].

2It should be noted that the potential DoF gain is not due to the oversam-
pling but owing to the increased symbol rate at the transmitter side. More
details on this argument can be found in [20].

3Although the conception of the 2G system’s adaptive time-frame align-
ment has been used, in the face of mobility, non-negligible time-of-arrival
differences are experienced at the uplink receiver.

TABLE I
SUMMARY OF RELATED WORKS

Related works [1] [10] [11] [12] This work
Asynchronous transmission X X X % X

Arbitrary link delay X % % % X

FTN signaling % % % X X

Achievable rate analysis X X X % X

arbitrary link delay has not been considered, even though it is
of great practical interest; 2) The theoretical rate analysis of
FTN-NOMA is absent in the literature and the potential rate
improvement attained by asynchronous transmissions due to
arbitrary link delays is still not well-understood; 3) The fun-
damental relationships between the symbol rate, asynchronous
transmission, and spectrum aliasing has not been unveiled
previously. Furthermore, their effects on the achievable rate
has not been documented. For a better understanding of our
motivations and the novelty of this work, we have summarized
the major contributions of the related literature in Table I in
comparison to this work. Corresponding to the motivations of
this work, the main contributions of this paper are summarized
as follows:

• We derive the closed-form expression of the mutual
information for aFTN-NOMA schemes at various symbol
rates using SIC detection and specific link delays for each
user.

• In order to characterize the effect of link delays, we
propose to apply bounding techniques to the mutual
information derived for each user. Specifically, we show
that the link delay may potentially affect the achievable
rate via changing the discrete-time Fourier transform
(DTFT) of the transmitted signal. Therefore, we derive
both the upper- and lower-bounds of the signal DTFTs
that are independent from the link delays.

• Based on the DTFT bounds derived, we invoke Szegö’s
Theorem [22] for characterizing the mutual information
of the aFTN-NOMA schemes at various symbol rates
and derive the corresponding upper- and lower-bounds
of the achievable rates. Based on the bounds derived, the
influence of the link delay and symbol rate on the signal
spectrum (DTFT) is unveiled. In particular, we also reveal
the relationships between the effect of spectral aliasing
and the link delay as well as the symbol rate.

• We show that exploiting the link delay actually results in
an SINR gain, while increasing the symbol rate may lead
to a DoF gain, but there is a trade-off between them.
Explicitly, at a sufficiently high symbol rate, the SINR
gain vanishes, while the DoF gain attains its maximum.
In this case, the achievable rate is essentially the capacity
associated with the specific signaling pulse. Explicitly,
this is about 1 + β times higher than the conventional
synchronous NOMA scheme in the high signal-to-noise
ratio (SNR) regime, with 0 ≤ β ≤ 1 being the FD roll-off
factor of the signaling pulse.

• Simulation results confirm the accuracy of our analysis,
and demonstrate a significant improvement in terms of
the rate attained by the aFTN-NOMA scheme compared



3

to the perfectly synchronous NOMA scheme.
Notations: max {·} and min {·} denote the maximization

and minimization operations, respectively; ⊗ denotes the con-
volution operation; I (·; ·) and h (·) denote the mutual informa-
tion and the differential entropy, respectively; δ(·) denotes the
Dirac delta function; IN×N denotes the identity matrix of size
N×N ; the notations (·)T, (·)∗ represent the transpose and the
conjugate operations for a matrix, respectively; the blackboard
bold letter E [·], and C denote the expectation operator and the
complex number field, respectively.

II. SYSTEM MODEL

Let us consider a pair of single-carrier asynchronous NO-
MA uplink schemes transmitting over block-fading chan-
nels. Specifically, we assume that there are K users and
each user transmits N information symbols, i.e., xk =
[xk [0] , xk [1] , . . . , xk [N − 1]]

T, for 1 ≤ k ≤ K. To model
the asynchronous transmissions, we assume a random link
delay τ [k] , 1 ≤ k ≤ K, for each user. We adopt the
common block-fading channel model of NOMA systems. Let
dk denote the distance between the k-th user and the base
station (BS) and α represent the path loss factor. Then, the
channel coefficient hk ∈ C, 1 ≤ k ≤ K, of the k-th user
is assumed to be complex-valued Gaussian distributed with
a zero mean and variance of 1

1+dαk
[3], [23]. Let T denote

the Nyquist symbol duration. Without loss of generality, we
consider the root raised cosine (RRC) pulse having an FD
roll-off factor 0 ≤ β ≤ 1 as our signaling pulse p(t), which is
bandlimited, real-valued, and T -orthogonal with a normalized
energy, i.e.,

∫∞
−∞ |p (t)|2dt = 1. The Fourier transform of p(t)

is denoted by Hp (f), which is strictly bandlimited within the
frequency interval of f ∈ [−W,W ], with W ∆

= 1+β
2T denoting

the baseband bandwidth. In what follows, we will present
the system models of both NOMA schemes considered. For
the ease of presentation, we will slightly abuse the related
notations without causing ambiguity.

A. Asynchronous NOMA Scheme

For the aNOMA scheme, the k-th user’s transmitted signal
is of the following form [1]:

sk (t) =
√
Es [k]

N−1∑
n=0

xk [n] p (t− nT ), (1)

where Es [k] is the average symbol energy of the k-th user.
Then, the signal r (t) received by the BS is given by

r (t) =

K∑
k=1

hksk (t− τ [k]) + w (t)

=

K∑
k=1

N−1∑
n=0

hk
√
Es [k]xk [n] p (t− nT − τ [k]) + w (t) ,

(2)

where w (t) ∈ C is the additive white Gaussian noise (AWGN)
at the BS with zero mean and one-sided PSD N0. For illustrat-
ing the asynchronous transmission, we provide a brief diagram
in Fig. 1(a), where we consider the uplink transmission of
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(b) Diagram of aFTN-NOMA transmissions, where K = 3 users are
considered and their link delays are 0, 2
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(c) Diagram of NOMA transmissions, where K = 3 users are considered.

Fig. 1. The uplink transmission diagram of considered scheme, where K = 3
users are considered.

3 users having the specific link delays of 0, 2
5T , and 6

5T ,
respectively.

Observe from the diagram that there is no ISI between
the information symbols of a given user due to the T -
orthogonal property, while each information symbol of the
k-th user is interfered with all the information symbols of
the other users due to the asynchronous transmission. This is
the ubiquitous multi-user interference (MUI). By performing
matched-filtering and Nyquist rate sampling for r (t), the n-th
element of the received symbol vector corresponding to the
k-th user yk = [yk [0] , yk [1] , . . . , yk [N − 1]]

T is given by

yk [n]=

∞∫
−∞

r (t) p∗ (t− nT − τ [k])dt

=

K∑
l=1

N−1∑
m=0

hl
√
Es [l]xl [m] g [m−n, τ [l]−τ [k]]+ηk [n] .

(3)

In (3), the term g [m− n, τ [l]− τ [k]] represents the MUI
between different users for the aNOMA scheme, which is
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Gl,k =


g [0, τ [l]− τ [k]] g [1, τ [l]− τ [k]] · · · g [N − 1, τ [l]− τ [k]]
g [−1, τ [l]− τ [k]] g [0, τ [l]− τ [k]] · · · g [N − 2, τ [l]− τ [k]]

...
. . .

...
g [1−N, τ [l]− τ [k]] g [2−N, τ [l]− τ [k]] · · · g [0, τ [l]− τ [k]]

 . (6)

G̃l,k =


g̃ζ [0, τ [l]− τ [k]] g̃ζ [1, τ [l]− τ [k]] · · · g̃ζ [N − 1, τ [l]− τ [k]]
g̃ζ [−1, τ [l]− τ [k]] g̃ζ [0, τ [l]− τ [k]] · · · g̃ζ [N − 2, τ [l]− τ [k]]

...
. . .

...
g̃ζ [1−N, τ [l]− τ [k]] g̃ζ [2−N, τ [l]− τ [k]] · · · g̃ζ [0, τ [l]− τ [k]]

 . (12)

given by

g [∆k,∆τ ]
∆
=

∞∫
−∞

p (t) p∗ (t+ ∆kT + ∆τ)dt

=

∞∫
−∞

|Hp (f)|2 exp (j2πf (∆kT + ∆τ))df, (4)

where the second equation is due to the Parseval’s Theorem.
The term ηk [n] in (3) denotes the corresponding colored noise
sample, where E {ηk [n] η∗l [m]} = N0g [m− n, τ [l]− τ [k]].
For the ease of presentation, (3) can be equivalently expressed
in the matrix form of

yk =

K∑
l=1

hl
√
Es [l]Gl,kxl + ηk, (5)

where Gl,k is the MUI channel matrix of the aNOMA scheme,
characterizing the MUI inflicted by the l-th user upon the k-th
user, as shown in (6) at the top of this page. It can be shown
that Gl,k is a Toeplitz matrix and we have Gk,k = IN×N
for 1 ≤ k ≤ K. Meanwhile, the noise vector ηk is given by
ηk = [ηk [0] , ηk [1] , ..., ηk [N − 1]]

T, for 1 ≤ k ≤ K, and it
can be shown that E {ηk [m] η∗k [n]} = N0, for 1 ≤ k ≤ K
and 0 ≤ n,m ≤ N − 1.

B. Asynchronous FTN-NOMA Scheme
For the aFTN-NOMA scheme, the k-th user’s transmitted

signal is given by

s̃k (t) =
√
Es [k]

N−1∑
n=0

xk [n] p (t− nζT ), (7)

where ζ ∈ [0, 1] denotes the TD compression factor and the
symbol period of the aFTN-NOMA scheme is ζT [24], [25].
Similar to the previous subsection, the signal r̃ (t) received by
the BS is given by

r̃ (t) =

K∑
k=1

hks̃k (t− τ [k]) + w (t)

=

K∑
k=1

N−1∑
n=0

hk
√
Es [k]xk [n] p (t− nζT − τ [k]) + w (t) .

(8)

The transmission diagram of the aFTN-NOMA scheme
having ζ = 0.5 is shown in Fig. 1(b), where 3 users having
specific link delays 0, 2

5T , and 6
5T are considered. In contrast

to Fig. 1(a), each information symbol is interfered by all the
other information symbols among all users owing to both
the FTN symbol rate and the asynchronous transmission. For
matched-filtering and FTN-rate sampling, the n-th element of
the received symbol vector corresponding to the k-th user
yk = [yk [0] , yk [1] , . . . , yk [N − 1]]

T is given by

yk [n] =

∞∫
−∞

r̃ (t) p∗ (t− nζT − τ [k])dt

=

K∑
l=1

N−1∑
m=0

hl
√
Es [l]xl [m] g̃ζ [m− n, τ [l]− τ [k]]

+ η̃k [n] . (9)

In (9), the term g̃ζ [∆k,∆τ ] represents the MUI between
different information symbols given by

g̃ζ [∆k,∆τ ]
∆
=

∞∫
−∞

p (t) p∗ (t+ ∆kζT + ∆τ)dt

=

∞∫
−∞

|Hp (f)|2 exp (j2πf (∆kζT + ∆τ))df.

(10)

The term η̃k [n] in (9) denotes the corresponding colored noise
sample, where E {η̃k [n] η̃∗l [m]} = N0g̃ζ [m− n, τ [l]− τ [k]].
Similar to the previous subsection, we consider the equivalent
matrix expression of (9), i.e.,

yk =

K∑
l=1

hl
√
Es [l]G̃l,kxl + η̃k, (11)

where G̃l,k is the MUI channel matrix for the aFTN-NOMA
scheme, characterizing the interference inflicted by the l-th
user on the k-th user, as shown in (12) at the top of this
page. Again, G̃l,k is a Toeplitz matrix and the noise vector
η̃k is given by η̃k = [η̃k [0] , η̃k [1] , ..., η̃k [N − 1]]

T, where
E
{
η̃kη̃

H
k

}
= N0G̃k,k.
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Ih,τ ,ζ (yk;xk|x1, . . . ,xk−1)

=
1

2
log2 det

IN×N +
|hk|2Es [k] G̃k,kG̃

T
k,k

N0

G̃k,k +

K∑
l=k+1

|hl|2Es [l]

N0
G̃l,kG̃

T
l,k


−1
 . (14)

C. Connections to the Conventional Synchronous NOMA
Scheme

Conventionally, the impact of link delay difference is as-
sumed to be perfectly eliminated by adaptive time frame
alignment schemes at the BS [3], [26] for synchronous NO-
MA transmission. Consequently, the signals transmitted from
different users are perfectly aligned with each other at the BS,
as shown in Fig. 1(c). By comparing aNOMA, aFTN-NOMA,
and conventional synchronous NOMA schemes, it is plausible
that the aFTN-NOMA scheme is the most general scheme.
More specifically, when the compression factor is ζ = 1, the
aFTN-NOMA scheme degenerates to the aNOMA scheme.
When there is no link delay difference among the users, the
aNOMA scheme degenerates to the conventional synchronous
NOMA scheme.

On the other hand, we notice that both the aNOMA and
aFTN-NOMA schemes have at most KN received symbols
at the BS, while the conventional synchronous NOMA only
has N received symbols. Furthermore, we also notice that the
aNOMA, aFTN-NOMA and conventional synchronous NO-
MA schemes generally occupy different time resources. Let
τmax = max {τ [1], τ [2], ..., τ [K]} be the maximum link delay,
which is usually negligible compared to the frame duration
of the signals transmitted in practical systems [26], [27]. To
support each user transmitting N information symbols, the
conventional synchronous NOMA scheme roughly requires
NT seconds for its transmission, aNOMA scheme requires
NT + τmax seconds, while the aFTN-NOMA scheme only
requires NζT + τmax [28], [29].

In the following, we investigate the achievable rates of both
the aNOMA and aFTN-NOMA schemes based on (5) and (11).

III. ACHIEVABLE RATE ANALYSIS

In this section, we focus our attention on the achievable
rates of both the aNOMA and aFTN-NOMA schemes. We
will first derive the closed-form expression of the mutual
information for the uplink transmission and then apply Szegö’s
Theorem [22], [30] to obtain further important insights. Par-
ticularly, Szegö’s Theorem is closely related to the DTFT of
the underlying Toeplitz coefficients. Therefore, we will also
investigate the characteristics of the DTFT with respect to
the link delay and symbol rate. For the ease of derivation,
we assume that the elements in the transmitted symbol vector
xk are independent and identically distributed (i.i.d.) complex
Gaussian variables with average symbol energy Es[k], for ∀k,
1 ≤ k ≤ K. Since the aNOMA scheme can be viewed as a
special case of the aFTN-NOMA scheme with ζ = 1, we will
commence with the analysis of the aFTN-NOMA scheme.

Without loss of generality, let us assume that the channel co-
efficients are sorted in descending order, i.e., |h1|2 ≥ |h2|2 ≥
... ≥ |hK |2. Conventionally, SIC detection is applied at the BS
for general NOMA systems4 [3]. To analyze the achievable
rates, it is commonly assumed that the MUI introduced by
users 1, 2, . . . , k − 1 is perfectly cancelled for the detection
of the k-th user [3]. Therefore, the asymptotic instantaneous
achievable rate for the k-th user under SIC detection is given
by

Rkh,τ ,ζ
∆
= lim
N→∞

1

N
Ih,τ ,ζ (yk;xk|x1, . . . ,xk−1)

bits per channel use. (13)

In particular, the closed-form expression of
Ih,τ ,ζ (yk;xk|x1, . . . ,xk−1) is formulated in the following
lemma.

Lemma 1 (Conditional Mutual Information for SIC Detec-
tion): For SIC detection, the conditional mutual information
Ih,τ ,ζ (yk;xk|x1, . . . ,xk−1) of the aFTN-NOMA scheme is
given in (14) at the top of this page.

Proof : The proof is given in Appendix A.
The above equation is essentially the mutual information

calculation over the channel with colored Gaussian noise,
where the covariance matrix of the noise samples plus the

interference is given by N0G̃k,k +
K∑

l=k+1

|hl|2Es [l]G̃l,kG̃
T
l,k.

It can be observed from Lemma 1 that due to the link delay and
the symbol rate of each user, the corresponding interference
term of the aFTN-NOMA systems for the k-th user is different
from that of the conventional synchronous NOMA systems.
With the help of Lemma 1, we now proceed to analyze the
asymptotic instantaneous achievable rate Rkh,τ ,ζ by invoking
Szegö’s Theorem in order to obtain further important insights.
For reference, Szegö’s Theorem is stated as follows.

Lemma 2 (Szegö’s Theorem [22], [30]): Let V denote a
size N ×N positive definite Toeplitz matrix V, i.e.,

V =


v0 v1 · · · vN−1

v−1 v0 · · · vN−2

...
. . .

...
v1−N v2−N · · · v0

 , (15)

whose eigenvalues are given by {λ0, λ1, . . . λN−1}. Then, for
an arbitrary continuous function fc(·), we have

lim
N→∞

1

N

N−1∑
n=0

fc (λn) =
1

2π

∫ π

−π
fc (V (ω)) dω, (16)

4We note that some lattice-coding-based approaches can be applied to
replace the SIC detection [31], [32].
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|Hp (f)|2 =


T, |f | < (1− β) / (2T ) ,

T cos2
(
πT
2β

(
|f | − 1−β

2T

))
, (1− β) / (2T ) ≤ |f | ≤ (1 + β) / (2T ) ,

0, |f | > (1 + β) / (2T ) .

(22)

where V (ω) is the corresponding DTFT of the Toeplitz
coefficients {. . . , v−2, v−1, v0, v1, v2, . . .}, and it is given by

V (ω) =

∞∑
k=−∞

vke
−jkω. (17)

Szegö’s Theorem is a classic tool eminently suitable for
analyzing the determinant of Toeplitz matrices, which is rooted
in the FD characteristics of the Toeplitz coefficients, i.e., the
DTFT. In particular, DTFT analysis has been widely applied
in the research of signal sampling, which describes the FD
representation of the underlying samples. Let us define Tl,k

∆
=

G̃l,kG̃
T
l,k and

Pk
∆
= IN×N+

|hk|2Es [k]Tk,k

N0G̃k,k +

K∑
l=k+1

|hl|2Es [l]

N0
Tl,k


−1

. (18)

To apply Szegö’s Theorem, we first have to verify that Pk is
a positive definite Toeplitz matrix in the asymptotic regime,
i.e., N → ∞, for any 1 ≤ k ≤ K. Specifically, we have the
following lemma.

Lemma 3 (Positive Definiteness of the Asymptotical Toeplitz
Matrix): As N → ∞, both G̃l,k and Tl,k are asymptotically
positive definite Toeplitz matrices for any 1 ≤ k ≤ K.
Furthermore, Pk is also an asymptotically positive definite
Toeplitz matrix for 1 ≤ k ≤ K as N →∞.

Proof : The proof is given in Appendix B.
Next, we apply Szegö’s Theorem to (14). The application

of Szegö’s Theorem requires the derivation of the DTFT of
the Toeplitz coefficients. As shown in (14), there are two types
of Toeplitz matrices, namely, G̃l,k and Tl,k. In particular, the
Toeplitz coefficients of G̃l,k are given by {g̃ζ [n, τ [l]− τ [k]]}.
On the other hand, it can be shown that in the asymptotic
regime, the Toeplitz coefficients {tl,k [n]} of the asymptotical
Toeplitz matrix Tl,k are given by

tl,k [n] =

∞∑
m=−∞

g̃ζ [m, τ [l]− τ [k]] g̃ζ [m− n, τ [l]− τ [k]].

(19)
Correspondingly, the DTFTs of the Toeplitz coefficients
{g̃ζ [n, τ [l]− τ [k]]} and {tl,k [n]} are given by

G̃l,k (2πfζT ) =

∞∑
n=−∞

g̃ζ [n, τ [l]− τ [k]] e−j2πnζTf , (20)

and

T̃l,k (2πfζT ) =

∞∑
n=−∞

∞∑
m=−∞

g̃ζ [m, τ [l]− τ [k]]

g̃ζ [m− n, τ [l]− τ [k]] e−j2πnζTf , (21)

respectively, where ω ∆
= 2πfζT . We note that (20) and (21)

depend on both the difference between the link delays of
each user and the compression factor ζ. However, the link
delays’ difference is time-variant and it is therefore generally
intractable. As an alternative, we apply bounding techniques to
the DTFTs to facilitate the achievable rate analysis. In particu-
lar, the bounds of DTFT depend on the corresponding spectra
of the signaling pulse adopted. Specifically, the spectrum of
the RRC pulse with a roll-off factor 0 ≤ β ≤ 1 is given
in (22) at the top of this page. As a building block for our
rate analysis, we consider three FD signals related to |Hp (f)|2
and the symbol rate 1/ζT .

Definition 1 (Folded-Spectrum): Given the symbol rate
1/ζT and the underlying signaling pulse spectrum |Hp (f)|2,
the folded-spectrum is defined by

|Hfo (f)|2 ∆
=

∞∑
k=−∞

∣∣∣∣Hp

(
f − k

ζT

)∣∣∣∣2, (23)

for f ∈
[
− 1

2ζT ,
1

2ζT

]
and zero otherwise.

Definition 2 (Twisted Folded-Spectrum): Given the sym-
bol rate 1/ζT and the underlying signaling pulse spectrum
|Hp (f)|2, the twisted folded-spectrum is defined by

|Htfo (f)|2 ∆
= |Hp (f)|2 −

∞∑
k=−∞
k 6=0

∣∣∣∣Hp

(
f − k

ζT

)∣∣∣∣2, (24)

for f ∈
[
− 1

2ζT ,
1

2ζT

]
and zero otherwise.

Definition 3 (Interference-Reducing-Spectrum): Given the
symbol rate ζT and the underlying signaling pulse spectrum
|Hp (f)|2, the interference-reducing-spectrum is defined by

ρ (f)
∆
=
|Htfo (f)|2

|Hfo (f)|2
, (25)

for f ∈
[
− 1

2ζT ,
1

2ζT

]
and zero otherwise.

Indeed, the folded-spectrum is commonly considered in
the literature of faster-than-Nyquist signaling [33], [34] for
the associated capacity analysis. The folded-spectrum in-
dicates that the frequency components outside the interval[
− 1

2ζT ,
1

2ζT

]
are “folded-in” the interval to form an equivalent

FD representation of the transmitted signal. In particular, we
refer to this folding effect as “spectral aliasing”. Spectral
aliasing occurs, when the symbol rate is lower than twice the
bandwidth of the signaling pulse, i.e., 1

2ζT < W . On the other
hand, the twisted folded-spectrum can be viewed as a phase-
rotated version of the folded-spectrum, which is useful for
characterizing the FD phase rotation corresponding to the time
delay. Furthermore, the interference-reducing-spectrum is the
ratio between the aforementioned two spectra, which can be
viewed as an indicator of how substantially the interference
power is reduced due to the phase-rotation. Noticing that the
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RRC pulse is strictly bandlimited within the frequency interval
of f ∈ [−W,W ], it can be shown that |Hfo (f)|2 becomes
the spectrum of the sinc pulse |Hsinc (f)|2, i.e., the RRC
pulse associated with β = 0, when ζ = 1. On the other
hand, both |Hfo (f)|2 and |Htfo (f)|2 become the exact RRC
spectrum |Hp (f)|2, when ζ ≤ 1/(1 + β). For reference, the
plots of the folded-spectrum and twisted folded-spectrum for
β = 0.5, ζ = 1 and β = 0.5, ζ < 2/3 are provided in
Fig. 2(a) and Fig. 2(b), respectively. Furthermore, it may be
readily seen that upon reducing ζ, the value of the interference-
reducing-spectrum ρ (f) tends to 1 for f ∈

[
− 1

2ζT ,
1

2ζT

]
. In

particular, we have ρ (f) = 1 for f ∈
[
− 1

2ζT ,
1

2ζT

]
, when

ζ ≤ 1/(1 + β). This interesting fact actually indicates that
when the symbol rate is sufficiently high, the impact of link
delay tends to vanish as will be discussed in Section III-B.
We note that the folded-spectrum, the twisted folded-spectrum
and the interference-reducing-spectrum are important for our
analysis, because they are related to the signaling pulse, but
they are affected differently with respected to the symbol
rate 1

ζT . In the following lemma, we will unveil the intricate
relationship between the inverse Fourier series corresponding
to |Hp (f)|2 and the aforementioned spectra.

Lemma 4 (Bounds on the Infinite Fourier Series): Let
γ be an arbitrary constant number. Then, within the fre-
quency interval f ∈

[
− 1

2ζT ,
1

2ζT

]
, the infinite series

∞∑
k=−∞

∣∣∣Hp

(
f − k

ζT

)∣∣∣2e−j2πγk can be upper-bounded and

lower-bounded by

|Htfo (f)|2 ≤
∞∑

k=−∞

∣∣∣∣Hp

(
f − k

ζT

)∣∣∣∣2e−j2πγk ≤ |Hfo (f)|2,

(26)
where the bounds in (26) become exact if β = 0, i.e., p (t) is
the sinc pulse, or ζ ≤ 1

1+β . Meanwhile, the upper-bound also
becomes exact if γ = 0.

Proof : The proof is given in Appendix C.
Lemma 4 characterizes the effect of phase-rotation on the

folded-spectrum, showing that the phase-rotation may poten-
tially change the shape of the spectrum. Observe that the effect
of spectral aliasing vanishes for β = 0 or ζ ≤ 1

1+β . Therefore,
Lemma 4 implies that the change due to the phase-rotation
will no longer exist, when there is no spectral aliasing. This
is not unexpected, because when the spectra are sufficiently
separated in the FD, only the spectrum corresponding to
k = 0, i.e., |Hp(f)|2, has non-zero values in the frequency
interval f ∈

[
− 1

2ζT ,
1

2ζT

]
. In this case, the infinite series

∞∑
k=−∞

∣∣∣Hp

(
f − k

ζT

)∣∣∣2e−j2πγk reduces to |Hp (f)|2, which

is independent of the phase-rotation. Therefore, introducing
phase-rotations (link delay) can no longer affect the value of
the folded-spectrum, if there is no spectral aliasing. Given
Lemma 4, the DTFTs with respect to (20) and (21) can be
upper- and lower-bounded for our analysis, as shown in the
following theorems.

Theorem 1 (Bounds on DTFT G̃l,k (2πfζT )): Given an
arbitrary link delay difference ∆τ

∆
= τ [l] − τ [k], the DTFT

f (Hz)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

|H
(f

)|
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|Hfo(f)|2 = |Hsinc(f)|2, ζ=1

|Hfo(f)|2 = |Hp(f)|2,ζ ≤ 2/3

(a) |Hfo (f)|2 for β = 0.5, ζ = 1 and β = 0.5, ζ ≤ 2/3.

f (Hz)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

|H
(f

)|
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|Htfo(f)|2, ζ = 1

|Htfo(f)|2 = |Hp(f)|2,ζ ≤ 2/3

(b) |Htfo (f)|2 for β = 0.5, ζ = 1 and β = 0.5, ζ ≤ 2/3.

Fig. 2. Folded-spectrum and twisted folded-spectrum for β = 0.5, ζ = 1
and β = 0.5, ζ < 2/3, where T = 1.

G̃l,k (2πfζT ) of the form (20) can be upper- and lower-
bounded by

1

ζT
|Htfo (f)|2 ≤ G̃l,k (2πfζT ) ≤ 1

ζT
|Hfo (f)|2, (27)

where the bounds in (27) become exact if β = 0, i.e., when
p (t) is the sinc pulse, or ζ ≤ 1

1+β . Meanwhile, the upper-
bound also becomes exact if ∆τ = 0, e.g., l = k.

Proof : The proof is given in Appendix D.
Theorem 2 (Bounds on DTFT T̃l,k (2πfζT )): Given an

arbitrary link delay difference ∆τ
∆
= τ [l] − τ [k], the DTFT

T̃l,k (2πfζT ) of the form (21) can be upper- and lower-
bounded by(

1

ζT
|Htfo (f)|2

)2

≤ T̃l,k (2πfζT ) ≤
(

1

ζT
|Hfo (f)|2

)2

,

(28)
where the bounds in (27) become exact if β = 0, i.e., if p (t)
is the sinc pulse, or ζ ≤ 1

1+β . Meanwhile, the upper-bound
also becomes exact if ∆τ = 0, e.g., l = k.
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Proof : The proof is given in Appendix E.
Based on the bounds on the DTFTs of the Toeplitz coeffi-

cients, we are ready to derive the bounds for the achievable
rates. In particular, the main result is given in the following
theorem.

Theorem 3 (Bounds on the Achievable Rates of aFTN-
NOMA Scheme): Let Pk

∆
= Es[k]

ζT denote the transmit power of
the k-th user. Then, the asymptotic instantaneous achievable
rate of aFTN-NOMA for the k-th user Rkh,τ ,ζ under SIC
detection is lower-bounded by

Rkh,τ ,ζ

≥ 1

2W

∫ 1
2ζT

− 1
2ζT

log2

1 +
|hk|2Pk|Hfo (f)|2

N0 +
K∑

l=k+1

|hl|2Pl|Hfo (f)|2

df

bits/s/Hz, (29)

and upper-bounded by

Rkh,τ ,ζ

≤ 1

2W

∫ 1
2ζT

− 1
2ζT

log2

1+
|hk|2Pk|Hfo (f)|2

N0+
K∑

l=k+1

|hl|2Pl|Htfo (f)|2ρ (f)

df

bits/s/Hz. (30)

Proof : The proof is given in Appendix F.
With the help of Theorem 3, we now investigate the achiev-

able rates of both the aNOMA and aFTN-NOMA schemes.

A. Achievable Rates of Asynchronous NOMA Schemes

For the aNOMA scheme, we have ζ = 1, where the folded-
spectrum satisfies |Hfo (f)|2 = T within the frequency interval
f ∈

[
− 1

2T ,
1

2T

]
. Based on Theorem 3, the following corollary

summarizes the bounds of the achievable rate for aNOMA
schemes.

Corollary 1 (Bounds on the Normalized Achievable Rates
of aNOMA Scheme): The normalized asymptotic instantaneous
achievable rate Rkh,τ ,ζ=1 of the aNOMA scheme for the k-th
user under SIC detection is lower-bounded by

Rkh,τ ,ζ=1 ≥
1

2WT
log2

1 +
|hk|2PkT

N0 +
K∑

l=k+1

|hl|2PlT


bits/s/Hz, (31)

and upper-bounded by

Rkh,τ ,ζ=1

≤ 1

2W

∫ 1
2T

− 1
2T

log2

1+
|hk|2PkT

N0+
K∑

l=k+1

|hl|2Pl|Htfo (f)|2ρ (f)

df

bits/s/Hz. (32)

Proof : The corollary is a straightforward extension of
Theorem 3 and thus the proof is omitted here. �

According to Corollary 1, some interesting observations and
insights can be revealed.

• Recalling Lemma 4, we observe that both the upper-
bound and the lower-bound in Corollary 1 are achievable.
Theoretically, the upper-bound can be achieved if the
signaling pulse’s FD roll-off factor is β = 0, i.e., the
sinc pulse, while the lower-bound can be achieved, if all
the users share the same link delay, corresponding to the
conventional synchronous NOMA system.

• For practical RRC pulses, i.e., β 6= 0, the asynchronous
transmission leads to an improved achievable rate region
compared to that of the conventional synchronous NOMA
systems. Moreover, the upper-bound indicates that the
potential data rate improvement of aNOMA systems
is due to its reduced MUI energy, yielding an SINR
improvement, which is the result of different link delays.
An intuitive explanation of this observation is that the
aNOMA system naturally avoids the full superposition of
maximum MUI owing to the diverse link delays. Hence,
aNOMA system is unlikely to suffer from the peak
interference energy at each sampling instant, which is
consistent with the observations in Fig. 1(a). However, for
the sinc pulse, i.e., β = 0, the asynchronous transmission
does not provide any rate improvement. This is because
the symbol rate is consistent with the bandwidth of
the sinc pulse. Hence, no spectral aliasing occurs and
thus the introduction of phase-rotations cannot improve
the achievable rate. This observation indicates that com-
pared to conventional synchronous NOMA systems, the
aNOMA system suffers from less severe MUI caused
by the different link delays and offers the potential of
achieving higher rates.

• The instantaneous achievable rate region of the aNOMA
system is directly determined by both the folded-spectrum
and the twisted folded-spectrum. In particular, the achiev-
able rate improvement due to the asynchronous trans-
mission increases upon increasing β, since the corre-
sponding twisted folded-spectrum has a low energy in the
frequency interval f ∈

[
− 1

2T ,
1

2T

]
. However, compared

to the zero excess bandwidth of β = 0, the normalized
achievable rates of both the aNOMA scheme and the
conventional synchronous NOMA scheme are reduced
upon increasing of β due to the normalization.

B. Achievable Rates of Asynchronous FTN-NOMA Schemes

We have already formulated the achievable rates of the
aFTN-NOMA schemes in Theorem 3. In particular, for ζ < 1,
we observe that the aFTN-NOMA scheme enjoys both an
SINR gain granted by the asynchronous transmissions (cor-
responding to the interference-reducing-spectrum) and a DoF
gain introduced by the FTN transmission (corresponding to
the integral range). To further explain advantages of aFTN-
NOMA, let use formally define the SINR gain and DoF gain
of aFTN-NOMA schemes as follows.
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Definition 4 (SINR Gain over Synchronous Transmission):
The SINR gain of aFTN-NOMA schemes over the syn-
chronous schemes having the same symbol rate is defined by

GainSINR
∆
=

∫ 1
2ζT

− 1
2ζT

|hk|2Pk|Hfo(f)|2

N0+
K∑

l=k+1

|hl|2Pl|Htfo(f)|2ρ(f)

df

∫ 1
2ζT

− 1
2ζT

|hk|2Pk|Hfo(f)|2

N0+
K∑

l=k+1

|hl|2Pl|Hfo(f)|2
df

=

∫ 1
2ζT

− 1
2ζT

N0|Hfo (f)|2+
K∑

l=k+1

|hl|2Pl|Hfo (f)|4

N0|Hfo (f)|2+
K∑

l=k+1

|hl|2Pl|Htfo (f)|4
df.

(33)

Definition 5 (DoF Gain over Conventional NOMA): Let us
define the effective bandwidth BWeff

(
1
ζT

)
with respect to

the symbol rate 1
ζT as the frequency interval, where both the

folded-spectrum and the twisted folded-spectrum have non-
zero values, i.e., BWeff

(
1
ζT

)
∆
= min

{
1
ζT , 2W

}
. Then, the

DoF gain of the aFTN-NOMA scheme over the conventional
NOMA scheme is defined by the ratio between the effective
bandwidths of the two schemes, i.e.,

GainDoF
∆
=

BWeff

(
1
ζT

)
BWeff

(
1
T

) = T ×min

{
1

ζT
, 2W

}
. (34)

Observe that with the reduction of ζ, the SINR gain vanishes
according to the properties of |Hfo (f)|2 and |Htfo (f)|2, i.e.,
|Hfo (f)|2 − |Htfo (f)|2 is a non-increasing function in the
range of 0 ≤ ζ ≤ 1. Furthermore, we can also observe that
the DoF gain increases upon reducing ζ. Therefore, we can
see that there exists an intriguing trade-off between the SINR
gain and DoF gain of the aFTN-NOMA schemes with respect
to the symbol rate (compression factor).

Proposition 1 (Trade-off Between SINR Gain and DoF
Gain): Upon increasing the symbol rate from ζ = 1 to
ζ = 1/(1 + β), the SINR gain of the aFTN-NOMA scheme
decreases, while the DoF gain increases, and vice versa.

Particularly, it can be shown that the SINR gain achieves
its maximum value when ζ = 1, i.e., for the aNOMA scheme,
where there is no DoF gain. Furthermore, the DoF gain
achieves its maximum when ζ ≤ 1/(1 + β), where there is
no SINR gain. Specifically, Definition 1 and Definition 2 have
shown that both the folded-spectrum and the twisted folded-
spectrum become exactly the same as the RRC spectrum
within the frequency interval of f ∈

[
− 1

2ζT ,
1

2ζT

]
for ζ ≤

1/(1+β), in which case the upper- and lower-bounds in The-
orem 3 are merged together and the corresponding maximum
DoF gain is of value 2WT . Consequently, Rkh,τ ,ζ≤1/(1+β) of
the aFTN-NOMA schemes associated with ζ ≤ 1/(1 + β) is

given by

Rkh,τ ,ζ≤ 1
1+β

=
1

2W

∫ W

−W
log2

1 +
|hk|2Pk|Hp (f)|2

N0 +
K∑

l=k+1

|hl|2Pl|Hp (f)|2

df

bits/s/Hz. (35)

Given (35), we can characterize the rate improvement of
the aFTN-NOMA scheme over the conventional synchronous
NOMA scheme in the high-SNR regime by the following
corollary.

Corollary 3 (Achievable Rate Improvement of aFTN-NOMA
Schemes): Given a sufficiently high SNR, the asymptotic
instantaneous achievable rate of aFTN-NOMA schemes is
1 + β times higher than that of the conventional synchronous
NOMA scheme.

Proof : Considering the asymptotic instantaneous achievable
rate of the conventional synchronous NOMA scheme given
in (31), we have

lim
N0→0

T
1+β

∫ 1+β
2T

− 1+β
2T

log2

1 +
|hk|2Pk|Hp(f)|2

N0+
K∑

l=k+1

|hl|2Pl|Hp(f)|2

df

1
2WT log2

1 + |hk|2PkT

N0+
K∑

l=k+1

|hl|2PlT



=

log2

1 + |hk|2Pk
K∑

l=k+1

|hl|2Pl


1

2WT log2

1 + |hk|2Pk
K∑

l=k+1

|hl|2Pl

 = 1 + β. (36)

This completes the proof of Corollary 3.
According to the conclusions from Theorem 3, Proposition

1 and Corollary 3, some important insights can be revealed
for the family of aFTN-NOMA schemes.

• Similar to the aNOMA scheme, the achievable rate
improvement of aFTN-NOMA schemes stems from the
excess bandwidth of the signaling pulse, where both
the upper-bound and the lower-bound in Theorem 3 are
achievable according to Lemma 4. Given a sufficiently
high symbol rate, the upper- and lower-bounds in Theo-
rem 3 are merged together, as suggested in (35).

• Proposition 1 has demonstrated the trade-off between the
SINR gain and DoF gain. The physical interpretation
of this trade-off is as follows. Given a higher symbol
rate, the effect of spectral aliasing is mitigated, in which
case the change of the folded-spectrum due to the phase-
rotation is limited. In particular, when ζ ≤ 1/(1+β), the
spectral aliasing no longer exists and thus the SINR gain
vanishes.

• Compared to the SINR gain, the DoF gain essentially
leads to a higher achievable rate in the high-SNR regime,
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as shown in Corollary 3. In fact, the rate in (35) is essen-
tially the ultimate achievable rate for a given signaling
pulse and an SINR [20]. This is because the symbol rate
is no lower than the bandwidth of the signaling pulse
and therefore both the folded-spectrum and the twisted
folded-spectrum become exactly the same as the under-
lying RRC spectrum, yielding the maximum capacity
promised by the signaling pulse. However, for the sinc
pulse, i.e., β = 0, a higher symbol rate does not provide
any improvement in terms of achievable rates, since the
Nyquist symbol rate is simply twice the bandwidth of
the signaling pulse, i.e., there is no spectral aliasing. In
contrast to the aNOMA scheme and to the conventional
synchronous NOMA scheme, the normalized achievable
rate of the aFTN-NOMA scheme attained at a sufficiently
high symbol rate only exhibits a constant gap to with
respect to the β = 0 case in the high-SNR regime.
This is because the FTN transmission successes in fully
exploiting the DoF promised by the siganling pulse [20].

C. Implementations, Comparisons, and Extensions of the Con-
sidered Schemes

We have shown the advantages of aFTN-NOMA and
aNOMA over the conventional synchronous NOMA scheme in
terms of their achievable rate. However, it should be noted that
both aFTN-NOMA and aNOMA suffer from ISI and therefore,
they tend to impose an increased detection complexity [12]. A
promising detector design could be based on the combination
of both the MUI and ISI detections. In particular, the MUI
can be efficiently dealt with by the SIC technique, given
the channel disparities [3], while the ISI arising from both
FTN and asynchronous transmissions can be mitigated by
various mature detection methods conceived for ISI channels,
e.g., [16], [35]. Although the related research on the detection
issue is at its early stage, several potent detectors are available
in the literature. We refer the interested readers to [12] and [36]
for more details.

Note that our previous analysis in this section is pure-
ly based on baseband signaling, where we show that both
aNOMA and aFTN-NOMA are superior to the convention-
al synchronous NOMA in terms of their achievable rates
with arbitrarily given channel coefficients. Therefore, it is
expected that both aFTN-NOMA and aNOMA will outperform
conventional NOMA with any given distribution of channel
coefficients. For a better understanding of aNOMA and aFTN-
NOMA, we briefly compare them to similar MA schemes as
follows.
• aFTN-NOMA vs. OMA with FTN signaling: According

to the previous analysis in this section, the achievable
rate improvements attained by asynchronous transmission
and FTN signaling accrue from the excess bandwidth of
the signaling pulse, which is independent from the gain
of NOMA gleaned from exploiting power discrepancies
among different users. Furthermore, NOMA allows the
information from different users to be transmitted in a
time-sharing manner, which can be shown to have a
higher achievable rate region than OMA [37]. Therefore,

aFTN-NOMA generally has a better performance than
OMA with FTN signaling in terms of achievable rates,
because OMA cannot exploit the power discrepancies and
does not allow time-sharing among different users.

• aNOMA/aFTN-NOMA vs. RSMA: The success of RS-
MA lies in the rate-splitting, where the message of each
user is divided into two parts, namely, a common part
and a private part [38]. As the common part is supposed
to be decoded by all the users, RSMA generally enjoys
a reduced MUI compared to the conventional power-
domain NOMA [38]. Compared to RSMA, both aNOMA
and aFTN-NOMA reduce the MUI by relying on asyn-
chronous transmission, which is different from the princi-
ple of RSMA. However, it is generally not fair or practical
to directly compare whether aNOMA/aFTN-NOMA or
RSMA has inflicts lower MUI, because they both rely
on the channel conditions, including the distributions
of the channel coefficients and link delays. It is also
worth mentioning that the advantages of both aNOMA
and aFTN-NOMA become more pronounced for a higher
excess bandwidth of the shaping pulse, while RSMA
cannot make use of the excess bandwidth. An interesting
discussion at this point may be the combination of asyn-
chronous transmission and FTN signaling with RSMA.
As RSMA and aNOMA/aFTN-NOMA enjoy advantages
over NOMA from a range of different perspectives, their
combination might lead to further rate improvements,
which will be considered in our future work.

Now, we briefly discuss the potential extensions of the
analysis in the previous subsections to more practical systems,
including multi-carrier, multi-antenna, and multi-cell systems.

• Extension to multi-carrier systems: In multi-carrier
systems, the signaling pulse is usually time-limited in-
stead of being bandlimited. Thus, the schemes considered
may be extended to multi-carrier systems by allowing
asynchronous transmission and FTN signaling in the
FD instead of the TD, which is essentially a type of
spectrally efficient frequency domain multiplexing (FD-
M) signals [17], [18] with asynchronous transmissions.
Our previous analysis could be extended to this case by
interchanging the corresponding analysis between the FD
and the TD.

• Extension to multi-antenna systems: Assume that the
BS is equipped with multiple receive antennas, while the
user has only a single transmit antenna. In this case,
the BS may receive multiple copies of the transmitted
signal (2) or (8) of each user at different link delays and
channel coefficients. Naturally, SIC detection could be
applied at the receiver for multiuser signal detection. The
achievable rate analysis of such a system may also rely
on the Toeplitz structure of the corresponding channel
matrix after suitable combining of the signals received
from different antennas.

• Extension to multi-cell systems: In multi-cell systems,
the transmitted signals could be received by multiple cell-
s. Then, depending on whether the cooperation between
different cells is allowed, the inter-cell interference could
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be either exploited by cooperation or simply treated as
noise for low-complexity processing. It should be noted
that the signals transmitted by different users cannot be
received by more than two BSs with perfect synchro-
nization in practice, hence the considered asynchronous
transmissions are permanently suitable for cooperative
multi-cell systems. The achievable rate analysis of multi-
cell systems may also rely on the analysis of single-
cell settings. However, how the extra channel diversity
gleaned from the potential multi-cell cooperations will
improve the achievable rate may require further investi-
gations.

Unfortunately, we have to leave the above interesting issues
for our future works due to the page limitation.

IV. NUMERICAL RESULTS

In this section, we compare the normalized achievable rates
of the aNOMA scheme and the aFTN-NOMA scheme to
that of the conventional synchronous NOMA scheme, where
the actual achievable rate of the considered schemes are
obtained based on (14) via the classic Monte Carlo method.
In particular, we compare both the instantaneous rates and the
ergodic rates relying on the randomly generated link delay for
each user, where the link delay is assumed to follow a uniform
distribution within the interval [0, 2T ] for each Monte Carlo
realization. In order to verify our previous discussions, the
instantaneous rates are calculated based on a typical NOMA
transmission supporting K = 2 and K = 3 users, and
the number of transmitted symbols for each user is set to
N = 100. On the other hand, the ergodic rates are calculated
based on a typical single-cell settings from [3]. Without loss
of generality, we adopt the equal power allocation for the
different users for all the related simulations, i.e., Pk = P ,
for k = 1, 2, ...K.

A. Normalized Instantaneous Achievable Rates for the Two-
User Case

We consider a specific channel realization, where the chan-
nel coefficients for the two users are given by |h1|2 = 0.5 and
|h2|2 = 0.5 and we have |h1|2P1

N0
= |h2|2P2

N0
= 10 dB. In order

to obtain a general conclusion, we assume that each user has
a random link delay. Given the channel coefficients, we adopt
the Monte Carlo method to average the achievable rate with
different link delays.

The achievable rate regions of the conventional synchronous
NOMA, the aNOMA, and the aFTN-NOMA schemes are
compared in Fig. 3, where the signaling pulse is the RRC
pulse using β = 0.3 and the compression factor for the aFTN-
NOMA scheme is ζ = 0.75. As shown in the figure, the
conventional synchronous NOMA has the smallest achievable
rate region among all the three schemes, while the aNOMA
scheme only shows a marginal improvement. On the other
hand, the aFTN-NOMA scheme can considerably improve the
achievable rate as shown in Fig. 3, which is consistent with
our previous analysis.
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Fig. 3. The achievable rate regions of the conventional synchronous NOMA,
the aNOMA, and the aFTN-NOMA schemes for K = 2 users, where
|h1|2P1

N0
=

|h2|2P2
N0

= 10 dB. The signaling pulse is the RRC pulse with
β = 0.3.
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Fig. 4. The instantaneous achievable rate of aFTN-NOMA scheme for
ζ = 0.95, where three users with equal power allocation are considered.
The channel coefficients are given by |h1|2 = 0.5, |h2|2 = 0.4, and
|h3|2 = 0.1, respectively. The red dash-dotted lines and the green dashed
lines are the upper- and lower-bounds derived, while the blue solid line is the
actual achievable rate. The signaling pulse is the RRC pulse with β = 0.3.

B. Normalized Instantaneous Achievable Rates for the Three-
User Case

Similar to the previous subsection, we consider a specific
channel realization, where the channel coefficients of the three
users are given by |h1|2 = 0.5, |h2|2 = 0.4, and |h3|2 = 0.1,
respectively. We are interested in the achievable rate vs. the
received SNR at the BS, which is defined by

∑K
k=1 |hk|

2Pk
N0

=
P
N0

.
Fig. 4 shows the achievable rates of each user for the

aFTN-NOMA scheme with ζ = 0.95, and β = 0.3. As
shown in the figure, the achievable rates of the aFTN-NOMA
scheme are perfectly bounded by the upper- and lower-bounds
derived. On the other hand, we observe that asynchronous FTN
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Fig. 5. An illustration of the trade-off between the SINR gain and the DoF
gain for aFTN-NOMA schemes with different values of ζ, where three users
with equal power allocation are considered. The channel coefficients are given
by |h1|2 = 0.5, |h2|2 = 0.4, and |h3|2 = 0.1, respectively. The signaling
pulse is the RRC pulse with β = 0.5.

transmission indeed attains rate improvements. Specifically,
there is a 1.3 dB gain for the aFTN-NOMA scheme with
ζ = 0.95 compared to the conventional synchronous NOMA
scheme at a rate of 5 bits/s/Hz.

Let us demonstrate the SINR vs. DoF trade-off with β =
0.5 in Fig. 5, where we show the sum-rates of the aFTN-
NOMA scheme, the aNOMA scheme, and the conventional
synchronous NOMA scheme. For comparison, we also pro-
vide the corresponding synchronous rates without link delays.
Specifically, we consider three cases at different symbol rates,
i.e., ζ = 1, ζ = 0.8, and ζ = 2/3, respectively. As indicated
in Proposition 1, the SINR gain reduces with the reduction of
ζ from ζ = 1 to ζ = 1

1+β = 2
3 , while the DoF gain increases.

As observed from the figure, the SINR gain indeed decreases
(corresponding to the shift along the x-axis) for a smaller
ζ, while the DoF gain (corresponding to the slope of the
curves) increases. In particular, we notice that with ζ = 2/3,
the curves of the aFTN-NOMA schemes operating with or
without link delay are almost overlapped, which indicates that
the SINR gain due to the link delay vanishes in this case.
The observations confirm the accuracy of our derivations in
Section III.

C. Normalized Ergodic Achievable Rates for Single-Cell Se-
tups

In this subsection, we focus our attention on the ergodic
achievable rates of both aFTN-NOMA and aNOMA, and com-
pare them to that of the conventional power-domain NOMA in
a single-cell system. In particular, we adopt the system settings
from [3] for our simulations, where we assume that the cell is
modeled by a pair of concentric ring-shaped discs. The inner
radius D0 is introduced to model the minimum propagation
path loss [3], while the outer radius D1 represents the cell
size. Furthermore, we assume that the BS is located at the
center of the cell and all the users are uniformly scattered

TABLE II
RELATED PARAMETERS FOR SIMULATIONS

Packet length N 100
Nyquist symbol period T 1
Maximum value of link delay 2T
Inner cell radius D0 50 m
Outer cell radius D1 [75, 100, 200, 300, 400, 500] m
Number of users [2, 4, 8, 16, 32, 64, 128]
Path loss exponent α 3.76
Noise PSD N0 −80 dBm

within the two concentric ring-shaped discs. To characterize
the system’s SNR, we adopt the definitions from [3], where
the total average received SNR of all the users at the BS is
defined by

SNRsum
∆
=
Pmax

N0
|h|2. (37)

In (37), |h|2 denotes the average channel power gain with
respect to the cell size and path loss model and it is calculated
based on Equation (12) of [3]. The term Pmax in (37) denotes
the total transmit power of the BS, which is adjusted adaptively
for different cell sizes to provide the required SNRsum.
Meanwhile, the noise PSD in (37) is set to be N0 = −80
dBm. For reference, we summarize the related parameters in
Table II.

We show the ergodic sum-rates of both aFTN-NOMA and
aNOMA in comparison to that of NOMA in Fig. 6(a) versus
SNRsum and the numbers of users, where β = 0.3, τ = 0.75,
and D1 = 75. As observed from Fig. 6(a), the ergodic sum-
rates of both aFTN-NOMA and aNOMA are higher than the
synchronous NOMA benchmark for various system SNRs,
where the sum-rate improvements increase with SNRsum.
Indeed, both the DoF and the MUI are dominant factors in
determining the achievable rates in the high-SNR regime.
Therefore, FTN signaling and asynchronous transmission lead
to beneficial rate improvements due to the exploitations of
DoF and the mitigation of MUI. On the other hand, we also
observe from Fig. 6(a) that aNOMA achieves a higher sum-
rate improvement for more users, while the sum-rate gap
between aFTN-NOMA and NOMA is relatively constant for
more than 8 users. This is because the rate improvement
of aNOMA arises from the MUI mitigation, while the rate
improvement of aFTN-NOMA comes from its DoF gain. As
the MUI increases with more users in the cell, the MUI
mitigation leads to an increased rate improvement. However,
as the DoF gain of aFTN-NOMA comes from the excess
bandwidth of the signaling pulse, which does not change with
the number of users in the cell, the rate improvement remains
relatively constant for different number of users.

We portray the performance comparisons among NOMA,
aNOMA, and aFTN-NOMA in terms of the cell size in
Fig. 6(b), where β = 0.3, τ = 0.75, K = 128, and
SNRsum = 20 dB. As indicated in Fig. 6(b), the sum-rate
gap between aFTN-NOMA and NOMA is relatively constant,
while the sum-rate improvement of aNOMA is reduced for
large cells. This observation is not unexpected because the
DoF gain of aFTN-NOMA does not change with the channel
characteristics. However, with the transmitted power fixed, the
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Fig. 6. Ergodic sum-rate analysis for the considered schemes, where the
related simulation parameters are given in Table II.

MUI generally reduces for larger cells and therefore, the rate
improvement of aNOMA also reduces.

The sum-rate performances versus roll-off factors are
demonstrated in Fig. 7(a), where K = 16, D1 = 75, and
SNRsum = 40 dB. In particular, we set τ = 0.5 for aFTN-
NOMA system as it is sufficient to obtain the full DoF
gains for β ∈ [0, 1]. We observe that the sum-rate of all
three schemes decreases for a larger β due to the bandwidth
normalization. However, the sum-rates of both NOMA and
aNOMA reduce significantly compared to that of the aFTN-
NOMA. This is because aFTN-NOMA efficiently exploits the
DoF gain based on the excess bandwidth, which is consistent
with our analysis in Section III-B. On the other hand, the
sum-rate gap between NOMA and aNOMA increases for a
larger roll-off factor. This is due to the fact that a larger excess
bandwidth offers a stronger interference mitigation capability
for aNOMA, which is also consistent with our discussions in
Section III-A.
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Fig. 7. Achievable rate analysis for the considered schemes, where the related
simulation parameters are given in Table II.

functions (CCDFs) of different users is given in Fig. 7(b),
where K = 8, β = 0.3, τ = 0.75, D1 = 500, and
SNRsum = 20 dB. Specifically, we show the CCDFs of
the strongest user, a moderate-power user, and the weakest
user in the schemes considered. As indicated from the figure,
the CCDFs of both aNOMA and aFTN-NOMA show better
performance than that of NOMA for both the strongest user
and moderate-power user. However, the CCDFs of the weakest
users are almost the same for the three schemes. This is
because the weakest user generally has low received SNR
while the MUI is eliminated thanks to the SIC detection.
In this case, neither the MUI mitigation, nor the DoF gain
may be able to offer large rate improvements. Consequently,
the performances of aFTN-NOMA, aNOMA, and NOMA are
similar.

V. CONCLUSIONS

In this paper, we investigated the aNOMA and aFTN-
NOMA schemes with the objective of improving the achiev-
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Ih,τ ,ζ (yk;xk|x1, . . . ,xk−1)

=
1

2
log2 det

( K∑
l=k

|hl|2Es [l] G̃l,kG̃
T
l,k +N0G̃k,k

)(
K∑

l=k+1

|hl|2Es [l] G̃l,kG̃
T
l,k +N0G̃k,k

)−1


=
1

2
log2 det

IN×N +
|hk|2Es [k] G̃k,kG̃

T
k,k

N0

G̃k,k +

K∑
l=k+1

|hl|2Es [l]

N0
G̃l,kG̃

T
l,k


−1
 . (39)

able rate of conventional NOMA transmissions. Specifically,
we derived the corresponding achievable rate upper- and
lower-bounds by invoking Szegö’s Theorem. We showed that
asynchronous transmissions result in an SINR gain, while
increasing the symbol rate may potentially lead to a DoF
gain. More importantly, we unveiled that the associated SINR
vs. DoF gain trade-off. In particular, we also showed that the
SINR or DoF gains are related to the potential spectral aliasing
and discussed the connections between the effect of spectral
aliasing and the link delay as well as the symbol rate. Our
simulation results agreed with our analysis and demonstrated
a significant achievable rate gain compared to the conventional
NOMA transmission.

APPENDIX A
PROOF OF LEMMA 1

According to the chain rule and the calculation of the
entropy of a multivariate normal distribution [37], we have

Ih,τ ,ζ (yk;xk|x1, . . . ,xk−1)

=hh,τ ,ζ (yk |x1, . . . ,xk−1 )− hh,τ ,ζ (yk |x1, . . . ,xk )

=
1

2
log2 (2πe)

N
det

(
K∑
l=k

|hl|2Es [l] G̃l,kG̃
T
l,k +N0G̃k,k

)

− 1

2
log2 (2πe)

N
det

(
K∑

l=k+1

|hl|2Es [l] G̃l,kG̃
T
l,k+N0G̃k,k

)
.

(38)

Furthermore, according to the property of the matrix deter-
minant, we have (39) as shown at the top of this page. This
completes the proof of Lemma 1.

APPENDIX B
PROOF OF LEMMA 3

According to the definition of Tl,k, to verify the posi-
tive definiteness of Tl,k is equivalent to verify that G̃l,k

has a positive determinant. It can be observed from (12)
that G̃l,k is a Gram matrix of nonzero energy functions
p (t+ nζT + τ [l]− τ [k]), for n = 0, . . . , N − 1, where
the element of the i-th row and j-th column is giv-
en by the inner product of p (t+ iζT + τ [l]− τ [k]) and
p (t+ jζT + τ [l]− τ [k]). Note that the determinant of G̃l,k

is non-negative [39]. Therefore, we only have to verify
that G̃l,k has a nonzero determinant. Gram’s criterion [39]

indicates that for a set of strictly bandlimited functions
p (t+ nζT + τ [l]− τ [k]) having a finite energy in their fre-
quency interval, the corresponding Gram matrix G̃l,k has
a nonzero determinant if and only if the set of functions
p (t+ nζT + τ [l]− τ [k]), for n = 0, . . . , N − 1 are linearly
independent. In order to prove the linear independence, we
consider Proposition 5.1.1 of [40], which indicates that a suf-
ficient condition for the function set to be linearly independent
is that

lim
n→∞

g̃ [n, τ [l]− τ [k]] = 0, (40)

for any 1 ≤ l, k ≤ K [33]. Upon recalling (10), to prove (40),
we have to verify

lim
n→∞

∞∫
−∞

|Hp (f)|2 exp (j2πf (nζT + τ [l]− τ [k]))df = 0.

(41)

Note that τ [l]− τ [k] is constant for any given l and k. There-
fore, (41) holds due to the Riemann-Lebesgue Lemma [41].
Furthermore, since G̃l,k is a Toeplitz matrix, Tl,k is asymp-
totically a Toeplitz matrix, due to the fact that the product of
two Toeplitz matrices is also asymptotically Toeplitz [22]. On
the other hand, it can be shown that the summation of two
Toeplitz matrices is also a Toeplitz matrix, while the inverse
of a Toeplitz matrix is asymptotically a Toeplitz matrix [22].
Therefore, it can be shown that Pk is asymptotically a Toeplitz
matrix. Meanwhile, we have verified that G̃l,k is a positive
definite Toeplitz matrix. Then, it can be shown that Pk is
also positive definite, because the product of positive definite
matrices is also positive definite. This completes the proof of
Lemma 3.

APPENDIX C
PROOF OF LEMMA 4

As we know that the spectrum of RRC pulse is |Hp (f)|2
strictly non-negative, we have

∞∑
k=−∞

∣∣∣∣Hp

(
f − k

ζT

)∣∣∣∣2e−j2πγk
≤

∞∑
k=−∞

∣∣∣∣Hp

(
f − k

ζT

)∣∣∣∣2∣∣e−j2πγk∣∣ = |Hfo (f)|2, (42)

where the bound becomes exact if γ = 0. On the other
hand, notice that |Hp (f)|2 is strictly bandlimited within the
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frequency interval |f | ≤ 1+β
2T . Thus, for f ∈

[
− 1

2ζT ,
1

2ζT

]
,

we have
∞∑

k=−∞

∣∣∣∣Hp

(
f − k

ζT

)∣∣∣∣2e−j2πγk
=|Hp (f)|2+

∣∣∣∣Hp

(
f− 1

ζT

)∣∣∣∣2e−j2πγ+

∣∣∣∣Hp

(
f+

1

ζT

)∣∣∣∣2ej2πγ
≥|Hp (f)|2 −

∣∣∣∣Hp

(
f − 1

ζT

)∣∣∣∣2 − ∣∣∣∣Hp

(
f +

1

ζT

)∣∣∣∣2,
=|Htfo (f)|2. (43)

Next, we discuss the achievability of the derived bounds.
For β = 0, it is not hard to notice that both |Htfo (f)|2 and
|Hfo (f)|2 become the same as the sinc spectrum |Hsinc (f)|2.
In this case, both the upper-bound of (42) and the lower-bound
of (43) are achieved. Furthermore, we note that both |Hfo (f)|2
and |Htfo (f)|2 become the exact RRC spectrum |Hp (f)|2,
when ζ ≤ 1/(1 + β). Thus, both the upper-bound of (42) and
the lower-bound of (43) are also achieved in this case. This
completes the proof of Lemma 4.

APPENDIX D
PROOF OF THEOREM 1

Upon recalling (10), we have

G̃l,k (2πfζT ) =

∞∑
n=−∞

g̃ζ [n,∆τ ] e−j2πnζTf

=

∫ ∞
−∞
|Hp (λ)|2ej2πλ∆τ

∞∑
n=−∞

ej2πnζT (λ−f)dλ.

(44)

Substituting the Poisson summation formula, i.e.,∑∞
k=−∞ ej2πkx =

∑∞
k=−∞ δ (x+ k), into (44) yields

G̃l,k (2πfζT )

=

∫ ∞
−∞
|Hp (λ)|2ej2πλ∆τ

∞∑
n=−∞

δ (ζT (λ− f) + n) dλ

=
1

ζT

∫ ∞
−∞
|Hp (λ)|2ej2πλ∆τ

∞∑
n=−∞

δ

(
λ−

(
f − n

ζT

))
dλ

(45)

=
1

ζT

∞∑
n=−∞

∣∣∣∣Hp

(
f − n

ζT

)∣∣∣∣2ej2π(f− n
ζT )∆τ , (46)

where (45) is due to the property of the Dirac delta function.
Therefore, by considering Lemma 4, (46) can be bounded by

1

ζT
|Htfo (f)|2 ≤ G̃l,k (2πfζT ) ≤ 1

ζT
|Hfo (f)|2. (47)

It should be noted that the bounds derived are based on the
conclusions from Lemma 4. Therefore, those bounds become
exact when the conditions stated in Lemma 4 are satisfied.
This completes the proof of Theorem 1.

APPENDIX E
PROOF OF THEOREM 2

Similar to the proof of Theorem 1, we substitute (10)
into (21) and obtain

T̃l,k (2πfζT )

=

∞∑
n=−∞

∞∑
m=−∞

g̃ζ [m,∆τ ] g̃ζ [m− n,∆τ ]e−j2πnζTf

=

∞∑
m=−∞

g̃ζ [m,∆τ ]

∫ ∞
−∞
|Hp (λ)|2ej2πλ(mζT+∆τ)

∞∑
n=−∞

e−j2πnζT (λ+f)dλ. (48)

Upon considering the Poisson summation formula, we have

T̃l,k (2πfζT )

=

∞∑
m=−∞

g̃ζ [m,∆τ ]

∫ ∞
−∞
|Hp (λ)|2ej2πλ(mζT+∆τ)

∞∑
n=−∞

δ (n− ζT (λ+ f))dλ

=
1

ζT

∞∑
m=−∞

g̃ζ [m,∆τ ]ej2πf(mζT+∆τ)

∞∑
n=−∞

∣∣∣∣Hp

(
f − n

ζT

)∣∣∣∣2e−j2πmn−n∆τ
ζT . (49)

Upon recalling Lemma 4, (49) can be upper-bounded by

T̃l,k (2πfζT )≤ 1

ζT
|Hfo (f)|2

∞∑
m=−∞

g̃ζ [m,∆τ ]ej2πf(mζT+∆τ).

(50)

Moreover, by considering Theorem 1, (50) can be further
upper-bounded by

T̃l,k (2πfζT ) ≤
(

1

ζT
|Hfo (f)|2

)2

. (51)

On the other hand, (49) can be lower-bounded according to
Lemma 4 by

T̃l,k (2πfζT )≥ 1

ζT
|Htfo (f)|2

∞∑
m=−∞

g̃ζ [m,∆τ ]ej2πf(mζT+∆τ).

(52)

Again, by considering Theorem 1, (50) can be further lower-
bounded by

T̃l,k (2πfζT ) ≥
(

1

ζT
|Htfo (f)|2

)2

. (53)

It should be noted that the bounds derived are based on the
conclusions from Lemma 4. Therefore, those bounds become
exact when the conditions stated in Lemma 4 are met. This
completes the proof of Theorem 2.
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Rkh,τ ,ζ
∆
= lim
N→∞

1

N
Ih,τ,ζ=1 (yk;xk|x1, . . . ,xk−1)

=
1

4π

∫ π

−π
log2

1 +
|hk|2Es [k] T̃k,k (ω)

N0

G̃k,k (ω) +

K∑
l=k+1

|hl|2Es [l] T̃l,k (ω)

N0


−1
dω

=
ζT

2

∫ 1
2ζT

− 1
2ζT

log2

1 +
|hk|2Es [k] T̃k,k (2πζTf)

N0G̃k,k (2πζTf) +
K∑

l=k+1

|hl|2Es [l] T̃l,k (2πζTf)

df. (54)

Rkh,τ ,ζ ≥
ζT

2

∫ 1
2ζT

− 1
2ζT

log2

1 +
|hk|2Es [k]

(
|Hfo(f)|2

ζT

)2

N0
|Hfo(f)|2

ζT +
K∑

l=k+1

|hl|2Es [l]
(
|Hfo(f)|2

ζT

)2

df

=
ζT

2

∫ 1
2ζT

− 1
2ζT

log2

1 +
|hk|2Pk|Hfo (f)|2

N0 +
K∑

l=k+1

|hl|2Pl|Hfo (f)|2

df. (57)

APPENDIX F
PROOF OF THEOREM 3

We apply Szegö’s Theorem to (14), yielding (54) as shown
at the top this page. Note that the integral range in (54) is
within the frequency interval f ∈

[
− 1

2ζT ,
1

2ζT

]
. Therefore,

the bounds in Theorem 1 and Theorem 2 can be applied for
analysis. By observing that G̃k,k (2πζTf) = 1

ζT |Hfo (f)|2 and

T̃k,k (2πζTf) =
(

1
ζT |Hfo (f)|2

)2

, we have

Rkh,τ ,ζ

≤ζT
2

∫ 1
2ζT

− 1
2ζT

log2

1+
|hk|2Es [k]

(
|Hfo(f)|2

ζT

)2

N0|Hfo(f)|2
ζT +

K∑
l=k+1

|hl|2Es[l]
(
|Htfo(f)|2

ζT

)2

df,

(55)

which can be further simplified as

Rkh,τ ,ζ

≤ζT
2

∫ 1
2ζT

− 1
2ζT

log2

1+
|hk|2Pk|Hfo (f)|2

N0+
K∑

l=k+1

|hl|2Pl|Htfo (f)|2ρ (f)

df.

(56)

On the other hand, we obtain (57) as shown at the top of this
page. Furthermore, by considering the symbol rate 1

ζT , the
signal dimension, and the signal bandwidth 2W , the bounds
in (56) and (57) can be normalized as shown in (29) and (30).
Finally, it can be shown that the bounds derived become

exact when the conditions stated in Lemma 4 are met. This
completes the proof of Theorem 3.
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