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ABSTRACT
Active galactic nucleus (AGN) emission is dominated by stochastic, aperiodic variability which overwhelms any periodic/quasi-
periodic signal (QPO) if one is present. The Auto Correlation Function (ACF) and Phase Dispersion Minimization (PDM)
techniques have been used previously to claim detections of QPOs in AGN light curves. In this paper we perform Monte Carlo
simulations to empirically test QPO detection feasibility in the presence of red noise. Given the community’s access to large
databases of monitoring light curves via large-area monitoring programmes, our goal is to provide guidance to those searching
for QPOs via data trawls. We simulate evenly-sampled pure red noise light curves to estimate false alarm probabilities; false
positives in both tools tend to occur towards timescales longer than (very roughly) one-third of the light curve duration. We
simulate QPOs mixed with pure red noise and determine the true-positive detection sensitivity; in both tools, it depends strongly
on the relative strength of the QPO against the red noise and on the steepness of the red noise PSD slope. We find that extremely
large values of peak QPO power relative to red noise (typically ∼ 104−5) are needed for a 99.7 per cent true-positive detection
rate. Given that the true-positive detections using the ACF or PDM are generally rare to obtain, we conclude that period searches
based on the ACF or PDM must be treated with extreme caution when the data quality is not good. We consider the feasibility
of QPO detection in the context of highly-inclined, periodically self-lensing supermassive black hole binaries.
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1 INTRODUCTION

Active galactic nuclei (AGN), driven by matter accreting onto su-
permassive black holes (SMBHs), are among the most powerful and
steady sources of luminosity in the Universe. AGNs are luminous
across the electromagnetic spectrum (EM) — bolometric luminosi-
ties can span typically 1040 – 1047 erg s−1—particularly in the opti-
cal/UV regime. In many cases, emission in the radio and gamma-ray
bands due to collimated jets is also observed. Since their discovery,
AGNs have featured in a range of both theoretical and observational
insights: Correlations between SMBH masses and both the stellar
velocity dispersions and luminosities of host galaxy bulges suggest
co-evolution of SMBHs and their host galaxies (Magorrian et al.
1998; Ferrarese & Merritt 2000). AGNs likely provide galaxy-scale
radiative and mechanical feedback (e.g. McNamara & Nulsen 2007).
Additionally, AGNs could serve as excellent testing grounds for gen-
eral relativity through the investigation of dynamical accretion flows,
and supermassive binary black hole systems might potentially reveal
a wealth of information via multi-messenger signals.
AGN continuum emission can be strongly variable on timescales

from ks to years; study of this continuum variability can elucidate
characteristic timescales that provide insight into accretion flow or
jet physics. Variability mechanisms are likely linked to system pa-
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rameters such as black hole mass 𝑀BH, luminosity, accretion rate
relative to Eddington, etc. For example, the characteristic timescales
measured in broadband X-ray power spectral density (PSD) func-
tions (“breaks” in the continuum power-law slope; Edelson&Nandra
1999; Uttley et al. 2002; Markowitz et al. 2003) scale with both 𝑀BH
and luminosity, as empirically quantified by McHardy et al. (2006).
The extrapolation of this relation to stellar-mass black hole X-ray
Binaries (BHXRBs) — along with X-ray/radio luminosity relations
(Edelson & Nandra 1999) — supports the notion of identical accre-
tionmechanisms in both classes of objects, and leads to the interesting
possibility that variablity components present in one class of object
may be present in the other. The X-ray PSDs of several actively-
accreting BHXRBs also reveal quasi-periodic oscillations (QPOs;
e.g. Wĳnands et al. 1999; Casella et al. 2004; Motta et al. 2015). The
so-called low-frequency QPOs typically observed near frequencies 𝑓
∼ 1–30 Hz, evolve in frequency as source luminosity and inner disk
size evolve and may be associated with Lense-Thirring precession
in the inner disk (e.g. Ingram & Done 2012). High-frequency QPOs
usually occur at 40 – 450 Hz; the frequencies scale as the inverse of
𝑀BH, and thus may be an imprint of 𝑀BH and spin (Remillard et al.
1999; Abramowicz & Kluźniak 2001).
The efforts to locate periodic signals (either strictly- or quasi-

periodic) in both Seyfert AGN and blazars have involved studies
using light curves spanning the EM spectrum. Some interpretations
posit a “hot spot” in the innermost accretion disk, yielding inferred
constraints on the size of the inner disk or on 𝑀BH (e.g. Gupta et al.
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2009). Some periodicities reported in blazars are interpreted as due
to jets’ precessing in and out along the line of sight (e.g. Villata
& Raiteri 1999; Li et al. 2009a; Sandrinelli et al. 2016) including
modulation associated with the blazar being part of a gravitationally-
bound SMBH binary system (e.g. Lehto & Valtonen 1996; Valtonen
et al. 2006). Additional recent claimed periods for quasars have also
been interpreted as support for binary SMBH systems; luminosity
variations are ascribed to modulations in the mass accretion rate
caused by the binary’s orbital motion (e.g. Liu et al. 2015; Graham
et al. 2015; Charisi et al. 2016).
However, statistically robust detections of strictly-periodic oscil-

lations (SPOs) or QPOs remain a challenge. Limited data quality
for AGN can pose a challenge. For example, searches for QPOs in
the broadband X-ray PSDs or periodograms1 of Seyferts is ham-
pered by poor frequency resolution, particularly in comparison to
the higher-quality X-ray timing data for BHXRBs in which QPOs
are typically detected (Vaughan & Uttley 2005). Hence, so far there
have been only a few robust X-ray-based claims, such as the QPO
observed in RE J1034+396, which persists at a timescale of ∼ 1 hr
across observations spanning years (Gierliński et al. 2008; Alston
et al. 2014) a ∼ 2 hr QPO detected in MS 2254.9−3712 (Alston et al.
2015) and a ∼ 24 minute QPO in IRAS 13224−3809 (Alston et al.
2019); for additional detections see Ashton & Middleton (2021).
However, the behavior of the PSD — e.g. distribution and scatter
of periodogram points; biases — under a variety of noise processes
(white, red, etc.) and in astrophysical contexts is nowwell-understood
(e.g. Fisher 1929; Leahy et al. 1983; Papadakis & Lawrence 1993).
Particularly when data quality is high, meaning data sampling is
relatively continuous (few major gaps) and close to even spacing,
the periodogram or PSD is straightforward to use for detections of
QPOs (e.g. Vaughan 2005). Otherwise alternate statistical methods
are generally employed for the detection of periodic/QPO signals in
AGNwith sparsely sampled data points, such as theAuto-Correlation
Function (ACF), Phase Dispersion Minimization (PDM), wavelet
analysis, sinusoidal fitting, etc. Generally, QPOs claimed in AGN
using these alternate methods are non-repeatable in additional ob-
servations, are based on improper usage of statistical tools, such as
simply identifying the highest-amplitude points in a periodogram as
outliers (e.g. Webb et al. 1988; Smith & Nair 1995; Pihajoki et al.
2013; Ackermann et al. 2015), or improper calibration of the “false
alarm probability.” In particular, the presence of stochastic, aperiodic
“red noise” is seen at all wavebands and dominates theAGN emission
and which tends to bury any possible periodic/quasi-periodic signal,
if any present. In addition, pure stochastic red noise processes (no
QPO present) are seen to spuriously mimic few-cycle sinusoid-like
periods (Kozłowski et al. 2010; Vaughan et al. 2016), which can be
misinterpreted as an intrinsic periodic signal. Hence, it is crucial to
account for the amount and form of the red noise which can impact
the calculation of statistical significances of detection of periods and
calibration of false alarm probability while using any statistical tool.
Many claims of AGN periodicities in the literature simply made no
attempt to account for this red noise “background.” In addition, many
claims of AGN periodicities in the literature are few-cycle (e.g. Ack-
ermann et al. 2015; Bon et al. 2016). In either of these scenarios, it is
likely the claimed periodicity does not exist, and is merely an artifact
of red noise. Finally, the accumulated publications of periods in AGN
do not yet exhibit any obvious trend between timescale and system
parameters such as 𝑀BH or accretion rate relative to Eddington. In
contrast, the continuum break timescales in X-ray PSDs and the char-

1 The periodogram is an estimator of the PSD.

acteristic frequencies of low-frequency QPOs and broad Lorentzian
components in BHXRBs are observed to robustly depend on 𝑀BH
and/or accretion rate.
We are in the era of “Big Data”, with the ground-based observing

programmes such as PanSTARRS, the Palomar Transient Factory,
and LOw Frequency ARray (LOFAR) and near-future programmes
such as the Vera C. Rubin Large Synoptic Survey Telescope (LSST),
Zwicky Transient Factory (ZTF), and SquareKilometer Array (SKA)
now monitor or will monitor large fractions of the sky. The resulting
light curve databases are likely to enable period searches over 103 to
106 AGN simultaneously, and examples of period searches resulting
from such database trawls already exist (e.g. Graham et al. 2015;
Charisi et al. 2016). If false alarm probabilities for given statistical
tests are not properly calibrated, then tests run on a statistically large
sample can potentially yield false detection rates. Our goal is to
provide guidance for AGN QPO searches and publications, so in this
work, we formulate guidelines on the proper use of two commonly-
used statistical methods— the Auto-Correlation Function (ACF) and
Phase Dispersion Minimization (PDM) — in red noise-dominated
AGN light curves. We test their efficacy in robustly distinguishing
between a pure stochastic red noise process (no QPOs) and a mixture
of red noise and a high-quality QPO signal.
This paper is arranged as follows: In §2, we review our methodol-

ogy for light curve simulations. In §3 and §4, we present results for
the ACF and PDM, respectively, for both pure red-noise processes
and mixtures of red noise plus QPOs, for an evenly-sampled light
curve. In §5, we explore the effects of gaps and irregular sampling
patterns in the light curve while using the PDM. We review results
in light of interpretation and application to physical systems in §6. A
summary of our main results is presented in §7.

2 METHODOLOGY: LIGHT CURVE SIMULATION AND
INPUT PSD MODELS

Our method is to assume certain forms for the underlying PSD (con-
tinuum shape, presence/lack of QPOs), simulate light curves, run
the ACF or PDM on these light curves, and accumulate statistics
on whether QPOs are detected. With regards to PSD model shape,
we can consider that radio-quiet AGN have highly similar accretion
processes to those occurring in BHXRBs, and that variability pro-
cesses in both object classes are likely to be identical. In the X-ray
PSDs of BHXRBs, broadband continuum shapes and narrow-band
QPOs are frequently modeled with cut-off powerlaw models and/or
broad or narrow Lorentzian components (e.g. Nowak 2000; Belloni
et al. 2002; Pottschmidt et al. 2003; Axelsson et al. 2005; Grinberg
et al. 2014; De Marco et al. 2015). However, in both Seyfert (disk
emission dominates) and blazar (jet emission dominates) AGN, data
quality for PSD measurement at all wavelengths is generally more
poor compared to those for BHXRB X-ray PSDs. For Seyferts, mod-
eling of broadband X-ray PSDs generally suffices to use unbroken
power laws or broken or slowly-bending power laws; an exception is
the X-ray PSD of the Seyfert 1 Ark∼564, which is fitted with two
broad Lorentzians (McHardy et al. 2007). For blazars, broadband
PSDs at multiple wavelengths have been measured to roughly follow
power-laws (e.g. Goyal et al. 2017; Goyal et al. 2018; Goyal 2019)
or bending power-laws (Chatterjee et al. 2018). In this paper, we
perform all analyses assuming that the red noise PSD continuum
can be modeled as a simple power law or occasionally as a broken
power law, as is typical for most AGN data, and/or as is suitable for
relatively limited dynamic ranges in temporal frequency. However,
we advise readers to explore specific PSD continuum shapes and
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ACF and PDM for period searching in AGN 3

perform their own Monte Carlo simulations, if needed. We simulate
time series similar to AGN light curves by using the algorithm devel-
oped by Timmer &Koenig (1995). In this method, non-deterministic
linear time series are produced by randomizing both the phase and
amplitude of the Fourier transform of the input data of an arbitrarily
chosen PSD shape. The method of Timmer & Koenig (1995) pro-
duces light curves adhering to a Gaussian flux distribution; readers
are referred to Emmanoulopoulos et al. (2013) for simulating light
curve corresponding to arbitrary (non-Gaussian) flux distributions.
For all input PSD models, we adopt the “RMS2/Hz” normalization
of Miyamoto et al. (1991) and van der Klis (1997).
For both the ACF and PDM, we first consider an “ideal case” of

a QPO only, in the absence of any broadband noise, to indicate the
signatures that one can pursue when searching for a QPO. We thus
consider as our model input a narrow Lorentzian component whose
PSD is given by

𝑃Lor =
2𝑅2𝑄 𝑓𝐿

𝜋( 𝑓 2
𝐿
+ 4𝑄2 ( 𝑓 − 𝑓𝐿)2)

(1)

where 𝑓L is the centroid frequency, and 𝑅 is the fractional RMS
amplitude (absolute RMS/mean). 𝑄 is the “quality factor” for quan-
tifying the width of the Lorentzian, where a relatively higher value
of 𝑄 means a more narrow-peaked Lorentzian (𝑄 ∼ 𝑓L/FWHM). A
strictly-sinusoidal, perfectly coherent oscillation has 𝑄 = ∞.
We also simulate light curves corresponding to pure red noise only,

as modeled with a simple unbroken power-law PSD:

𝑃PL = 𝐴 ( 𝑓 /(10−6Hz))−𝛽 (2)

𝐴 is the amplitude in units of Hz−1 at an arbitrary frequency of
10−6 Hz; in the X-ray PSDs of Seyferts, power is typically of order
103−4 Hz−1; we adopt 𝐴 = 1.5 ×104 Hz−1, 𝛽 is the red noise power-
law slope, where more positive values correspond to steeper slopes.
We search for signatures in the ACF or PDM that could be mistaken
for a QPO. That is, by testing a range of PSD power-law slopes
𝛽, such simulations enable us to explore the false alarm probability
associated with Type I errors (false positive detection of a QPO using
ACF/PDM) for a range of pure stochastic processes.
Finally, we consider mixtures of red noise and QPO processes: We

model variability whose PSD is described by the sum of a broadband
power-law continuum plus a narrow Lorentzian for a range of power-
law slopes and Lorentzian RMS strength.
Many signals claimed in literature e.g., for claims of QPO from

SMBH binaries lack estimates of the quality factor Q and are fre-
quently assumed to be strict periods for simplicity. For example, in
self-lensing SMBH binaries, the variations in the light curves could
be strictly periodic though not with consistent wave amplitude due
to variations in the accretion disk continuum luminosity. However,
possible effects such as additional variability modes associated with
the binary orbital motional/tidal interactions or the effects of periodic
streams ofmatter impacting the diskmay contribute to quasi-periodic
components in the observed emission. In the case of precessing jets
of blazars, some papers (e.g. Abraham 2000; Britzen et al. 2018)
describes that the precession yields strictly periodic behavior in the
resultant light curves due to periodic beaming assuming a constant in-
put (pre-beaming) flux. But it is easy to envision how non-sinusoidal
behavior can occur: the flux that gets amplified could depend on how
many individual knots are being ejected at certain phases of preces-
sion, and there can be divergence in the fluxes and ballistic behavior
of individual jet knots.
Since it is not possible to explore all the types of QPO signals

having different widths, for our study we have chosen a relatively
high quality factor,𝑄 = 30, to model something close to high quality

periodic signals. We refer below to 𝑃rat, defined as the ratio of the
𝑃Lor( 𝑓L), the power of the Lorentzian at 𝑓L, to 𝑃PL( 𝑓L), the power
in the power-law continuum at that frequency:

𝑃rat = 𝑃Lor/𝑃PL =
2𝑅2𝑄

𝜋 𝑓𝐿𝐴

(
𝑓𝐿

1.0×10−6
)−𝛽 (3)

Below, we test QPO detection thresholds for values of log(𝑃rat) span-
ning −1 to 5.
It is impossible to consider all possible light curve sampling pat-

terns. For our initial tests in §3, §4 and §5, we assume what we refer
to as our “baseline” sampling: evenly-sampled light curves with a
duration of 250 days and having one point per day, corresponding to
one representative ground-based optical observing season between
115-day yearly sun gaps. In lieu of testing potential QPOs at all fre-
quencies between 1/(250 days) and the Nyquest frequency of 1/(2
days), we choose three representative test frequencies 𝑓L: 2.0, 8.0,
and 32.0 ×10−7 Hz, corresponding to timescales of 57.9, 14.5, and
3.6 days, and spanning 4.3, 17.2, and 69.0 cycles, respectively; we
refer to them low-, medium- and high-frequency (LF, MF, and HF)
QPOs (not to be confused with the LF and HF QPOs routinely iden-
tified in the X-ray PSDs of BHXRBs near typically 0.1 – 30 Hz and
40–450 Hz, respectively).
Finally, we neglect the effect of Poisson noise, the measurement

uncertainty associated with photon counting. In the power spectrum,
this noise term is a constant level of power impacting all frequencies.
In the presence of red noise, its presence likely impacts only the
highest frequencies, but the exact range of course depends on both
red noise slope and the level of power due to Poisson noise. As this
power is another source of continuum noise, the effect would be to
reduce the true-positive detection likelihood for a given value of 𝑃rat,
which is defined relative to the level of red noise at that frequency.
Our results can thus be considered as a "best case" scenario for true-
positive detections in this regard. Given that each observation has a
different level of Poisson noise, different red noise PSD shape, etc.,
testing all such scenarios is not feasible for the current paper, but we
strongly encourge readers to perform their own simulations taking
into account the true PSD continuum shape as it is affected by the
power due to Poisson noise.

As we are testing only a few “representative” sampling patterns,
we leave it to users to run their own Monte Carlo simulations (MCS)
of both pure red noise processes (for a range of continuum red noise
model shapes, e.g., testing unbroken and broken/bending power-law
models as necessary) and mixtures of red noise+QPOs, following our
paper as a guide, and testing their own sampling patterns, candidi-
ate QPO frequencies, and signal-to-noise values. More specifically,
users are advised to test suitable ranges of red noise shapes (both
in power-law continuum slopes and normalizations), QPO test fre-
quencies, and values of log(𝑃rat).

3 ACF ANALYSIS FOR PERIOD SEARCHING

The Cross Correlation Function is used for estimating the correlation
coefficient of two light curves, which gives an estimate of the mea-
sure of the strength of the correlation as a function of shift in time.
A positive peak implies a correlation while a negative peak implies
an anti-correlation. When we use the same data set to determine the
correlation function it is called an Auto-Correlation Function. There
is a peak at zero lag and successive peaks at different time lag indi-
cates the time at which the signal is correlated with itself and can be
interpretated as the period of the underlying periodic/quasi-periodic
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Centroid Frequency 𝜏1 [d] 𝜏2 [d]
𝑓𝐿 (10−7 Hz) Mean (`) S.D (𝜎) Mean (`) S.D (𝜎)

2.0 (LF QPO) 57.84 3.37 116.30 7.83
8.0 (MF QPO) 14.37 0.48 28.93 0.61
32.0 (HF QPO) 3.99 0.045 7.00 0.00

Table 1. The mean and dispersion of the time values of the fundamental peak
(𝜏1) and the second peak (𝜏2) for pure Lorentzians for 1000 MCS having
𝑄 = 30 at the three test frequencies for the ACF.

signal if it exists. For a pure sinusoidal input signal, the resulting ACF
is a simple cosine, with the first peak and the higher-order harmonics
indicating the period. However, the two light curves are required to
be evenly sampled for computing the CCF. The Discrete Correlation
Function method introduced by Edelson & Krolik (1988) is suit-
able for light curves with uneven sampling. The unbinned discrete
correlation function is determined using:

𝑈𝐷𝐶𝐹𝑖 𝑗 =
(𝑎𝑖 − �̄�) (𝑏 𝑗 − �̄�)

𝜎𝑎𝜎𝑏
(4)

where 𝑎𝑖 and 𝑏 𝑗 , are the two data sets for which we want to
calculate the correlation, �̄� and �̄� are themean values of the respective
data set,𝜎𝑎 and𝜎𝑏 are their respective standard deviations. TheDCF
is determined by binning the above equation in time for each time
lag 𝜏:

𝐷𝐶𝐹 (𝜏) = 1
𝑀

∑︁
𝑈𝐷𝐶𝐹𝑖 𝑗 (𝜏) (5)

where 𝑀 is the total number of pairs.
The 𝑧-discrete correlation function (ZDCF) (Alexander 2013) is

a new method to compute the CCF when the data sets are very
sparsely and irregularly sampled. It uses equal population binning
and Fisher’s 𝑧-transform to compute a more accurate estimate of the
CCF: the resulting bias is more moderate and tends to zero as the
number of points increases. We use the ZDCF for all the tests below.
The Interpolated Correlated Function and its associated bootstrap

error (ICF; White & Peterson 1994; Peterson et al. 1998) is also
used for unevenly-sampled data. It linearly interpolates between data
points and resamples to achieve an evenly-sampled light curve. The
risk, as described by White & Peterson (1994), is that results can
be misleading if the interpolation does not correctly approximate
the intrinsic red-noise behavior. Given that we test a wide range of
red-noise power-law slopes, including slopes as steep as 𝛽 = 3, we
adhere to using the ZDCF.

3.1 The behavior of the ACF for pure Lorentzian processes

In the “ideal” case of strictly periodic sinusoidal oscillations without
the addition of any red noise variability, the ACF is a cosine, with
correlation coefficient rcorr = 1, at time lags corresponding exactly
to the period and successive harmonics of the strictly periodic signal.
In Lorentzian profiles, when the quality factor 𝑄 is reasonably high
(𝑄 & 3), there are still quasi-regularly spaced peaks occurring near
the expected time lags for subsequent corresponding harmonics. To
quantify the dispersion in peak time lag 𝜏 and rcorr, we simulate
1000 light curves (which is sufficient to probe the 99.7% confidence
limit) for the pure Lorentzians spanning a range of quality factors
from 1 to 120. We define the first peak as the maximum value of
the ACF after the first negative-to-positive crossing and before the

0.4 0.5 0.6 0.7 0.8 0.9 1.0
rcorr1

13.5

14.0

14.5

15.0

1 [
d]

MF first harmonic = 14.46d

Q = 5 Q = 10 Q = 30 Q = 90

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
rcorr2

27
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31

2 [
d]

MF second harmonic = 28.92d

Figure 1. The mean and dispersion of the times of the fundamental peak
(𝜏1) & the second peak (𝜏2) plotted against their corresponding correlation
coefficient values for the MF Lorentzian signal obtained for 1000 MCS for
few selected Lorentzian widths for the ACF.

second positive-to-negative crossing. We determine the 99.9 per cent
confidence range of 𝜏1, 𝜏2, rcorr1 and rcorr2 where the subscripts 1
and 2 correspond to the fundamental peak and the second peak
(second harmonic) respectively. For values of𝑄 larger than ∼ 20, the
dispersion in 𝜏1 remains approximately constant as shown in Fig. 1.
Hence, we use a high value of 𝑄 = 30 for all the following tests for
our study. The dispersions of 𝜏1 & 𝜏2 for the LF, MF & HF QPOs are
given in Table 1. We see that the 99.9 per cent limits in 𝜏1 & 𝜏2 are
within ±20 per cent, ±10 per cent and ±4 per cent of the input value
of 𝑓L for the LF, MF&HF cases respectively. We later use these 99.9
percent confidence contours as the limits within to search for the first
and second harmonics when we search for QPOs mixed with broad-
band red noise using the ACF at each different test frequencies. We
note that the 99.9 per cent limits of rcorr1 range from 0.1 – 1.0 in the
LF case, while they are more constrained to values > 0.45 in the MF
& HF cases. The limits of rcorr2 range from 0.1–1.0 in the LF and
MF cases, while they are constrained to values > 0.4 in the HF case.

3.2 The behavior of the ACF for pure red noise power-law
processes

3.2.1 Unbroken power law model

We generate pure red noise light curves using an unbroken power-law
PSDmodel for a wide range of slopes 𝛽 (0.4–3.0), in steps of Δ𝛽=0.2
for 1000 realizations at each step.
In Fig. 2(a), we display the ACFs of a few selected light curves

generated with the same power-lawmodel, 𝛽 = 2.2, but with different
random number seeds. We note the appearance of spurious broad
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Figure 2. The ACFs of pure red-noise light curves generated with (a) an
underlying unbroken power-law PSD that has a power-law slope of 𝛽 = 2.2,
and with different random number seeds. Such a pure random stochastic red
noise process causes broad bumps and wiggles in the ACFs. For example,
consider the green line: the first peak occurs at time lag of ∼55 days, with
successive peaks near 110 and 165 days. Such a signature is similar to that
expected from a quasi-periodic signal and thus can possibly misintepreted as
a period, (b) for an input PSD with a broken power-law model, with slope
𝛽 = 2 above a temporal frequency of 5.62 × 10−7 Hz breaking to 𝛾 = 1
below it. Again, broad bumps and wiggles are common.

bumps and wiggles in some ACFs; some of the peaks after the zero
lag can attain values of rcorr as high as 0.8 or 0.98. For one particular
realization, the green curve in Fig. 2(a), the ACF has three broad
bumps wherein the second and third peaks correspond to time lags
roughly 2 and 3 times the delay of the first peak. This signature
is similar to that expected for a quasi-periodic signal, but it was
generated by a purely stochastic process.
As a preliminary exploration of false positives and the timescales

over which they can occur, we adopt the following criteria for false
positives: only the ACF that crosses zero level at rcorr = 0.0 and
rises up to a non-zero value will register a positive detection at the
time lag (𝜏1) with maximum value of correlation coefficient (rcorr1).
In this way, we have the false positives determined as a function
of time lag. Again, to register a second peak, the rcorr should drop
from the maximum value corresponding to rcorr1, cross zero and rise
up again to peak at a non-zero value. That will register a second
positive peak at the corresponding time lag 𝜏2 at the second maxi-
mum correlation coefficient rcorr2 after the zero lag. For illustration,
in Fig. 2(a), the green lines will register false positive detection at
time lags corresponding to three peaks, while the orange and blue
line will show false positives at time lags corresponding to the first
and second peak after crossing zero. The ACF in red will not reg-
ister any false positives at any time lag since it never crosses zero.

Because the ACF and PDM points are very highly self-correlated
in the presence of red noise, determining the effective number of
independednt timescales is not straightforward (in contrast to, say,
an evenly-sampled periodogram). Consequently, we emphasize that
our false-alarm rate tests are conducted with the goal of detecting
whether or not a pure red noise process can generate *at least one*
false signal *at any frequency*. This means that our derived false-
alarm probabilities are conservative in the sense that the likelihood
of one single signal at one given frequency being real is even lower.
In Fig. 3, we plot the distribution of false-positive peaks as a

function of timescale 𝜏 for four selected values of 𝛽. We note that
the 99.9 per cent confidence distributions of rcorr1 & rcorr2 of the
first and second peak become wider with increasing slope: they have
rcorr1,2 < 0.45 for 𝛽 . 0.8,0.6 and as the slope increases, it can range
anywhere from 0 to as high as 0.9 or greater for 𝛽 & 1.6. This figure
can be used to provide an estimate of the region of (𝜏1, rcorr1) space
where it is statistically likely or unlikely to encounter a false-positive
peak. For a candidate peak at 𝜏1, say, roughly 83 d = 1/3 of the
duration, if 𝛽 = 1.0 (2.0), then only if rcorr1 is greater than roughly
0.7 (0.8) will there be a strong likelihood (> 99.7 per cent) that the
signal is genuine. By 𝜏1 = 125d, 1/2 of the duration, minimum values
of rcorr1 needed to confidently claim a genuine signal rise to ∼0.85
for 𝛽 = 2.0.
Note that in Fig. 3, for slopes 2.0 and steeper (green and blue

points), the majority of the false positive peaks (𝜏1) occur at
timescales longer than very roughly 1/3 duration of the light curve:
For 𝛽 = 1.0, 2.0, and 3.0, the fractions of false peaks residing
at timescales of > 1/3 duration are 261/1000 = 26.1 per cent,
790/857 = 92.2 per cent, and 316/319 = 99.1 per cent, respec-
tively. That is, simply excluding all peaks occurring at timescales
longer than very roughly 1/3 duration is a simple and effective way
to reduce the total number of false-positive detections for relatively
steep red-noise slopes. When considering timescales shorter than
∼ 1/3 of the duration, false positive signals can also be minimized
by excluding signal whose values of rcorr1 and rcorr2 are less than
∼0.55 and 0.45, respectively.
We also try to look for peaks without the zero crossings, i.e., the

ACF which crosses any non-zero level say at rcorr = 0.2/0.3/0.4 and
rises up to a maximum value (i.e., rcorr1 > 0.2/0.3/0.4 respectively)
is registered as a positive detection at the corresponding time lag
(𝜏1). We find that even on choosing a non-zero crossing level, the
red noise light curves produces significantly high percentage of false
positives. For example, it shows false positives greater than 99.7 per
cent (99 per cent) at 𝛽 & 1.2 (1.0) for the crossing level of rcorr = 0.2
(0.3).

3.2.2 Broken power-law model

We generate pure red noise light curves considering broken power-
law models for 1000 realizations. We study it for just few selected
values of high frequency spectral index slopes 𝛽 (1.0,2.0,3.0) break-
ing belowa temporalmid-frequency of 5.6×10−7Hz to lower spectral
index slopes of 𝛾 (0.0,1.0,2.0).
In Fig. 2(b), we plot the ACFs of a few selected light curves shown

for a high frequency slope of 𝛽 = 2.0, breaking to low frequency
slope of 𝛾 = 1.0. Similar to the unbroken PL model, we see various
bumps and wiggles in the ACF of broken PL model as well. The
99.9 per cent confidence distributions of rcorr1 become wider with
increasing slopes of 𝛽 and 𝛾 independently: for 𝛽 = 1.0, 2.0 breaking
to 𝛾 = 0.0, has the upper confidence limit of rcorr1 to be 0.35 and
0.45 respectively. When 𝛽 = 3.0, breaking to 𝛾 = 1.0, 2.0, it has the
rcorr range from 0 to 0.98.
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Figure 3. The distribution of the time scales of the first peak after the zero lag against the corresponding correlation coefficient of false positives detected in
ACF for 1000 simulations of pure red noise signals of (left) unbroken PL PSD model for few selected spectral index slopes (right) broken PL PSD model for
𝛽 = 2.0 breaking to few selected low frequency slope (𝛾) below a temporal break frequency of 5.6 × 10−7 Hz.
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Figure 4. The rate of false positives detected in pure red noise light curves
having unbroken power law PSD model at different spectral index slopes for
the first & second peaks in the ACF while considering the full duration and
then while considering just one-third of the total duration.

In Fig. 3, we plot the distribution of false positives of the first peak
after zero lag for the case of 𝛽 = 2.0 breaking to 𝛾 = 0.0 and 𝛾 = 1.0.
We see that for the case of 𝛽 = 2.0 breaking to a flatter spectrum,
the majority fraction (99.2 per cent) of the candidate peaks (𝜏1) at
timescales < 83 d (1/3 duration) and with rcorr1 < 0.4, while for
breaking to a more steeper spectral slope of 𝛾 = 1.0, while it still has
themany of the candidate peaks (55.9 per cent) below 1/3 duration, it
can still have false postives at longer timescales with high correlation
coefficient values of rcorr1 & 0.8. Hence, we conclude that excluding
peaks at timescales longer than very roughly 1/3 duration of the

light curve serves well in reducing the false-positive detections for
broken-power law PSD models as well.

3.2.3 False Alarm Probabilities

In all discussions on errors, we consider the null hypothesis, H0, to
be pure red noise variability, while the alternate hypothesis, H1, is a
mixture of a QPO and red noise.

Type I Error (false positive): Expanding upon the discussion from
above, we calculate how often H1 is incorrectly inferred true when H0
is intrinsically true in the ACF of 1000 MCS of pure red noise light
curves by using the selection criteria for false positive detections as
described in §3.2.1.We determine the probability of false positives of
first and second peaks in the ACF across the time lag independently.
In Fig. 4, for the unbroken-PL model: When considering the full

light curve duration, we notice that false positives of the first and
second peak are detected with & 0.3 per cent probability at all the
tested values of pure red noise slope with the unbroken-PL model.
For 𝛽 . 1.4, for example, an extremely high fraction— roughly 99.6
per cent—of all simulated light curves yield atleast one false positive
signal. We also note that at relatively steeper slopes of 𝛽 & 2.0, the
fractions of the ACF crossing zero and producing a peak becomes
much lower: the ACFs of the steepest slope red noise light curves are
more wide, and most of the time they never cross zero to register a
false positive based on our selection criteria. Hence, the probability
of finding a second peak after the zero lag also becomes smaller
towards the steeper spectral index slopes.
As noted above in the preliminary findings, when we restrict our-

selves to timescales less than one-third of the duration, the rate of
false positives of the first and second peak after the zero lag in the
ACFs of unbroken-PL model is & 0.3 per cent only at 𝛽 & 2.6, 1.8
respectively. But now, we see that less than 0.3% of the simulations
at all the spectral index slopes have correlation values corresponding
to 𝜏1 and 𝜏2 greater than 0.45–0.5 .
In the case of broken-PL PSD model: We tested for (i) 𝛽 = 3.0
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Figure 5. Top panel: The probability of detecting the first harmonics of the periodic signal in the expected frequency range, Middle panel: The probability of
detecting the first harmonics of the quasi-periodic signal in the wrong frequency range, Bottom panel: The probability of detecting false negative of the first
harmonics of the quasi-periodic signal all as a function of power ratio log(𝑃rat) and red noise PSD power-law slope 𝛽 for the MF & HF QPO mixed with
broad-band red noise signals on using the ACF.

breaking to three values of 𝛾 = 0.0, 1.0, 2.0; (ii) 𝛽 = 2.0 breaking to
two values of 𝛾 = 0.0, 1.0 and (iii) 𝛽 = 1.0 breaking to 𝛾 = 0.0, below
a temporal mid-frequency of 5.6 × 10−7 Hz. When considering the
full duration of the light curve in the ACF, we see that the probability
of false positive of the first and second peak is > 0.3 per cent for all
the three cases. In fact greater than 99.7 per cent of the time, it is
probable to get atleast a single peak at some time lag for the cases
of 𝛽 = 1.0, 2.0, 3.0 breaking to 𝛾 = 0.0, 1.0. When we restrict to
timescales < 1/3 duration in the ACF, we still have the false positives
of the first and second peak > 0.3 per cent, but the corresponding
correlation values are now restricted to rcorr1,2 < 0.55 for all the
three cases. We note that particularly in the case of 𝛽 = 1.0 breaking
to 𝛾 = 0.0, it reaches > 99.7 per cent probability of false detection
for the 1000 simulations even after considering just one-third of the
duration, but the maximum value of correlation coefficient that can
be reached is rcorr1 < 0.35.

Therefore, from the above tests we conclude that by restricting

to searching for peaks in the ACF at lags less than one-third of the
lightcurve duration and considering the first peak after the zero lag to
have the correlation coefficient greater than 0.45–0.5, one can avoid
the detection of false-positives and have the false positive rates of the
period of the signal to be significantly low (< 0.3%) across all the
spectral index slopes.

3.3 ACFs for QPOs mixed with red noise

We perform MCS for the sum of a 𝑄 = 30 Lorentzian and an unbro-
ken power-law red noise continuum, with slopes spanning 0.4–3.0 in
steps of Δ𝛽 = 0.2, and power ratios log(𝑃rat) ranging from −1 to +5
in steps of Δlog(𝑃rat) = 1 for 𝑁 = 1000 light curves at each step.

True-positive detections: The criteria for true positive detections
are as follows: we register true positive detections for the first or
second harmonics of the QPO independently only when they fall
in their respective expected ranges of time lags as derived from the
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Figure 6. Two selected ACFs for light curves corresponding to power spectra
of MF QPO signal of log(𝑃rat) = 2 against the red noise continuum having
𝛽 = 1.8. Mild features of quasi-periodicity are evident in the ACFs, but these
ACF peaks do not satisfy our true positive detection criteria and would thus
lead to false negative (red) and detection inaccuracy error (blue).

“ideal” case of a 𝑄 = 30 Lorentzian (no red noise) and consider just
one-third of the duration in the ACF while searching for the peaks.
The corresponding correlation coefficient of the first peak also needs
to have rcorr1 > 0.45, since we need to check for the 99.7 per cent
significance level to claim a true detection and to simply rule out the
possibility of the peaks being due to the red noise continuum having
a broken power-law model form.
We note that we do not perform the test for the LF QPO signal

mixed with red noise since the distribution of rcorr1 even for true
lorentzian ranges from 0.1–1. It is too low in order to statistically
eliminate the possibility of true positive detection from false positives
(e.g, red noisewith broken power lawmodel), sincewe cannot restrict
it along the correlation coefficient values.
The detection rate of true positives for both the first and second

harmonics decreases as log(𝑃rat) decreases and/or as the power-law
slope 𝛽 increases; this behavior holds across MF, and HF QPOs,
as illustrated in Fig. 5. In order to ensure a 99.7 per cent or higher
reliability for detection of a QPO, one typically requires a very high
power ratio. To register true positives of 𝜏1 with 99.7 per cent sig-
nificance having rcorr1 > 0.45: in the MF case, log(𝑃rat) must be 5,
or 4 for values of 𝛽 . 2.4, or ∼ 1.8 respectively. In the HF case,
log(𝑃rat) must be 5, 4, or 3 for values of 𝛽 . 2.2, ∼ 1.6, or ∼ 1.2
respectively. To register true positives of 𝜏2 having rcorr2 > 0: for
MF case, log(𝑃rat) must be 5, or 4 for values of 𝛽 . 2.4, or ∼ 1.6
respectively (where rcorr2 is always greater than 0.2). In the HF case,
log(𝑃rat) must be 5, 4, or 3 for values of 𝛽 . 2.0, ∼ 1.6, or ∼ 1.0
respectively (where rcorr2 is always greater than 0.4).

3.3.1 False negatives and detection inaccuracy errors

Type II Error (false negative):H1 is inferred false incorrectly when
a QPO is present.

We determine the number of times the first and second harmonics
are never triggered positive (at any timescale) in the ACF of the light
curves determined independently across the time lag on using the
true-positive detection criteria.
In a light curve containing a QPOmixed with red noise, to account

for false negatives of the first peak, we determine the number of times
not even a single peak is detected after the zero lag in the ACF (i.e, it

never crosses rcorr = 0 and then rises above it) of 1000 simulations;
to determine the false negatives of the second peak, we determine
the number of times the ACF never crosses rcorr = 0 and rises
above it after the first peak at 𝜏1 of 1000 simulations determined
independently of the time-scale of the first lag. For illustration, in
Fig. 6, we plot two selected ACFs for light curves corresponding to
power spectra with MF QPO signal of log(𝑃rat) = 2 against the red
noise continuum having 𝛽 = 1.8. Mild features of quasi-periodicity
are evident in the ACFs. The ACF shown in red in Fig. 6 has no peaks
after crossing rcorr = 0. It does not satisfy our positive detection
criteria and would thus lead to a false negative.
Particularly for the steepest power-law slopes — 𝛽 > 2 — the

probability of obtaining a false negative is quite high for all but the
largest values of 𝑃rat. Even for such large values of log(𝑃rat) and large
values of 𝛽, the dominating red noise causes the ACF central peak
to simply not reach zero and completely overwhelms the cosine-like
behavior from the QPO.
For the MF QPO case, negligible false negative probabilities (<

0.3 per cent) for the first and second harmonic are obtained only
for values of log(𝑃rat) ∼ 2, 3, 4, and 5 at 𝛽 . 0.6, 1.2, 1.8, and
2.4, respectively. By the time one reaches log(𝑃rat) ∼ 1, a significant
percentage (∼ 99.7 per cent) of simulations yield false negatives for
the first (second) harmonic at 𝛽 & 2.8 (2.4). For the HF case, it is a
similar story: negligible false negative probabilities for the first and
second harmonic are obtained only for values of log(𝑃rat) ∼ 2, 3,
4, and 5 at 𝛽 . 0.8, 1.2, 1.6, and 2.2, respectively. False negative
probabilities for the MF and HF cases are plotted in Fig. 5.

Detection inaccuracy error (Error 3): H1 is intrinsically true and
also registered as true, but the QPO do not satisfy the true positive
detection criteria.

We define a detection inaccuracy error as follows: when a light curve
containing aQPOmixedwith red noise, produces a positive detection
in the ACF, but (i) when it has the first (second) harmonic not within
the ranges of time lags as derived from the “ideal” case of a 𝑄 = 30
Lorentzian (no red noise) or (ii) when the correlation coefficient of
the first harmonic within the expected time lag has rcorr1 < 0.45.
For example, in Fig. 6, the ACF in blue, which corresponds to light
curve having a MF QPO signal of log(𝑃rat) = 2 against the red noise
continuum having 𝛽 = 1.8, has the first peak outside the frequency
range expected for the MF QPO and hence will be registered as Error
3.
The probability of detecting a QPO at the wrong timescale in-

creases with decreasing 𝑃rat. However, with increasing power-law
slope 𝛽, the probability of successfully detecting a QPO at any
timescale (within the correct range or outside of it) decreases (espe-
cially for log(𝑃rat) . 3), hence the probability of detecting a QPO at
the wrong timescale also decreases.
In general, we find that the probability of detecting the QPO (first

peak) at the wrong timescale is very low (. 0.3 per cent) only for
values of log(𝑃rat) & 4–5 and only when avoiding the steepest values
of 𝛽 tested. When log(𝑃rat) ∼5, detection inaccuracy probabilities
are < ∼ 0.3 per cent for nearly all values of 𝛽 tested: the probabil-
ities exceed ∼ 0.3 per cent only for 𝛽 ∼ 3.0, and & 2.4 (MF, and
HF, respectively). However, when log(𝑃rat) ∼4, detection inaccuracy
probabilities are < ∼ 0.3 per cent only when 𝛽 is . 1.8, and 1.6
(MF, and HF, respectively). When log(𝑃rat) ∼3, detection inaccu-
racy probabilities are < ∼ 0.3 per cent only when 𝛽 is . 1.2 for the
HF case.
The probabilities of obtaining a detection inaccuracy error for the

MF and HF cases are plotted in Fig. 5.
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upper limit on \min
(99.9%)

Range of a\min [d
−1]

(99.9%)

LF QPO 0.684 0.0096–0.0216

MF QPO 0.805 0.0608–0.0754

HF QPO 0.883 0.262–0.293

Table 2. The 99.9 per cent contour limits of \min and trial frequency a\min
for the Lorentzians at the three test frequencies.

4 PDM ANALYSIS FOR PERIOD SEARCHING

The Phase Dispersion Minimization (PDM) method is a widely-used
numerical technique for searching for periodic pulsations in the fluxes
of various astronomical objects (Stellingwerf 1978). The method is
suitable especially when the waveforms are non-sinusoidal. Consider
a time series of 𝑁 observational points represented as (𝑥𝑖 , 𝑡𝑖), where
𝑥𝑖 is the value of the flux or count rate at time 𝑡𝑖 . The variance of the
flux is given by

𝜎2 =

∑(𝑥𝑖 − 𝑥)2
𝑁 − 1 , (𝑖 = 1, ..., 𝑁) (6)

where 𝑥 is the mean of the fluxes. The light curve is divided into
a series of 𝑀 phase bins according to the trial period 𝜙 and each
contains 𝑛 𝑗 data points that are similar in phase. The variance of
amplitude in each bin is computed, defined by

𝑠2𝑗 =

∑(𝑥𝑘 𝑗 − 𝑥 𝑗 )2

𝑛 𝑗 − 1
, ( 𝑗 = 1, ..., 𝑀) (7)

where 𝑥𝑘 𝑗 represents the 𝑘th data point in the 𝑗 th phase bin. The
overall variance for all the phase bins is computed by

𝑠2 =

∑(𝑛 𝑗 − 1)𝑠2𝑗∑
𝑛 𝑗 − 𝑀

, ( 𝑗 = 1, ..., 𝑀) (8)

One measures the ratio of the sample variance to the overall vari-
ance of the lightcurve, defined as the periodogram statistic \, given
by \ = 𝑠2/𝜎2. It gives the measure of scatter of the sample variance
about the mean of the light curve. For a true period, the scatter of
the sample variance about the mean will be small, and hence we
expect \ to approach zero at that frequency. For frequencies that do
not correspond to a true period, the scatter of the sample variance
about the mean will be large where 𝑠2 ≈ 𝜎2 and the test statistic \
approaches 1. One can plot the test statistic \ at each trial frequency
and determine the local minimum value \min, which indicates the
frequency corresponding to the least scatter about the mean light
curve. It was demonstrated that the test statistic \ actually follows
a beta distribution (Schwarzenberg-Czerny 1997) from which the
significance of any detected pulsation can be obtained.
However, applications in astronomy have been primarily limited to

situations where the underlying noise is Poisson (i.e., white noise).
The performance of the PDM has not yet been empirically tested
for situations where stochastic red noise backgrounds exist — it
is not clear that simply identifying the local minimum value \min
automatically indicates that a strictly/quasi-periodic signal exists at
that frequency.

4.1 PDM test for Lorentzian profile:

We first consider the “ideal” case of QPOs, as represented by sim-
ple Lorentzians centered at each of our three test frequencies and
spanning a range of values of quality factor 𝑄.
For each values of 𝑄, we simulated 1000 light curves, again using

our “baseline” sampling pattern, measure their PDMs, and plot the
test statistic \ determined at each trial period versus the frequency;
sample PDMs for the LF, MF, and HF are plotted in Fig. 7. Each
show a characteristic dip (\min) at the expected frequency (a\min ),
plus harmonics; relatively higher values of𝑄 yield narrower dips and
lower values of \min. We plot the distributions of \min and a\min for
LF, MF and HF QPO in Fig. 7.
The standard deviation of a\min decreases as 𝑄 increases. Ex-

tremely coherent signals — values of 𝑄 of order 10–20 — are typi-
cally needed to attain values of \min below ∼ 0.3 for the LF and MF
cases; for the HF case, values of 𝑄 closer to 90 are required.
Henceforth, we consider Lorentzians with values of 𝑄 = 30. To

delineate the region of frequency–\ space where the “ideal” signal
occurs, we determine the 99.9 per cent confidence regions from the
MCS denoting the distributions of \min (upper limits) and a\min ;
those upper limits/ranges are listed in Table 2.
We will later use these confidence ranges as the limits within

which to search for signatures of QPOs when we consider mixtures
of a QPO and red noise while using the PDM.

4.2 The behavior of the PDM for pure red noise processes

4.2.1 Unbroken and broken power-law models

We again generate pure red noise light curves using an unbroken
power-law PSDmodel for a wide range of slopes 𝛽 (0.4–3.0), in steps
of Δ𝛽=0.2, simulating 1000 light curves at each step, and measuring
their PDMs.
Wedetermine the periodogram statistic \ across all the possible test

frequency for each light curve. The resulting 99.9 per cent confidence
lower limits on \ at each trial frequency are plotted in Fig. 8 for the
different spectral index slopes. For all power-law slopes, \ is typically
>0.9 across a wide range of frequencies, and even >0.8 down to
∼0.02 d−1 (i.e., the scatter variance is generally large above this
frequency). At the lowest frequency bins however (at frequencies
corresponding to timescales longer than ∼ 1/3 of the duration), \
plunges to 0.6 or lower, with relatively steeper PSD slopes reaching
values of \ well below 0.2 and these local minimum due to pure red
noise can be misintepreted as quasi-periodic signals. In fact, we note
that the fraction of pure red noise-only trials that can attain a value of
\min < 0.6 is greater than 99.7 per cent at 𝛽 ≥ 2.6 and it is less than
0.3 per cent at 𝛽 ≤ 0.8. However, after excluding the frequencies
towards the lowest bin (at about 1/3 of the duration), we see that the
fraction of pure red noise-only trials that can obtain a \min < 0.6 is
less than 0.3 per cent almost across all the tested beta values.
We repeat the test for pure red noise light curves considering

broken power-law models for 1000 realisations. We study it for just
few selected values of high frequency spectral index slopes 𝛽 (1.0,
2.0, 3.0) breaking below a temporal mid-frequency of 5.6 × 10−7
Hz to lower spectral index slopes of 𝛾 (0.0, 1.0, 2.0). Similar to the
unbroken power-lawmodels, we see that towards the lower frequency
bins \ gets minimized to < 0.6. The fractions of red noise light
curves that could reach \min < 0.6 is less than 1 per cent when any
value of 𝛽 breaks to flatter slope of 𝛾 = 0.0, but the fractions get
higher as 𝛽 increases (> 40 per cent) on breaking to 𝛾 = 1.0 or 2.0.
After excluding the lowest bin frequencies (corresponding to ∼ 1/3
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Figure 7. Top panel: The PDM periodogram showing the characteristic dip at the expected frequency for one realization for different widths of Lorentzian profile
at the three test frequencies, Middle panel: The histogram of the frequency a\min [d−1] corresponding to the minimum statistic value \min, Bottom panel: The
histogram of minimum statistic value \min for different widths of Lorentzian profile at the three test frequencies for 1000 MCS when using the PDM.

duration), we see that the fraction of pure red noise-only trials that
can obtain a value of \min < 0.6 is less than 1 per cent for all the
combinations of broken power-law PSD model.

It is very clear that low values of \ in a given PDM do not au-
tomatically mean that a QPO is present, since red noise can also
generate such low values of \. In particular, however, one must take
into account the frequency regime where the minimum occurs before
attempting to decide if a given minimum corresponds to a genuine
QPO. For example, in Fig. 8, we see that at timescales ∼ 1/7–1/12th
of the total duration, the 99.9 per cent lower limit of \min due to pure
red noise ranges between 0.8–0.88, which are below the 99.9 per cent
upper limit of \min that can be reached by the HF pure Lorentzian
signals but they do not occur within their expected frequency range.
In fact, we note that the 99.9 per cent lower limit of \min caused
due to pure red noise never intersects with the 99.9 per cent search
contour limits obtained for the MF & HF pure Lorentzian signals
because it is always greater than 0.89 around those frequency bins.
On the other hand, the pure red noise light curves (e.g., 𝛽 < 1.2) can
get \ . 0.6 within the 99.9 per cent contour limits of a\min expected
for a pure LF Lorentzian signals. Hence, we will not to be able to sta-

tistically distinguish a LF QPO signal mixed with red noise causing
the minimized \ value.

4.2.2 False Alarm Probabilities

Type I error (false positive): We calculate how often H1 is incorrectly
inferred true when H0 is intrinsically true from the 1000 MCS of
pure red noise light curves generated for a range of spectral indices.
We determine the rate at which a pure red noise light curve can
minimize the test statistic to low values at ANY frequency, with at
least one occurence per realization and can be falsely registered as
an QPO signal.
We register the number of times \min for a given PDMdrops below

the 99.9 per cent upper confidence limit of \min obtained from the
“ideal” (Lorentzian-only) case of HF QPO having the highest value
of 0.88, for each realization of the red noise light curves, to determine
the probability of the false positives. In the case of unbroken power-
law model as shown in Fig. 9, we see that the rate of false positives
is > 0.3 per cent at all the tested 𝛽 values. When we neglect the
lower frequency bins corresponding to timescale > 1/3 duration,
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Figure 9. The rate of false positives detected in pure red noise light curves
having unbroken power lawPSDmodel at different spectral index slopeswhile
using the PDM tested for all the trial frequency bins and then neglecting the
lower frequency bins corresponding to timescales > 1/3 duration.

even though the rate of false positive is still > 0.3 per cent at all
slopes, we see that there is a decrease in the rate of false positives
especially towards the higher spectral index slopes. We also see a
slight increase in the rate of false positives at spectral index slopes
0.6 . 𝛽 . 1.4 because around these spectral index slope values, the
red noise has 0.65 < \min < 0.8 at frequency bins corresponding
to timescales ∼ 1/3–1/9 duration. In the case of broken power-
law model, the rate of false positives is > 0.3 per cent for all the
tested combinations of 𝛽 = 1.0, 2.0, 3.0 breaking to 𝛾 = 0.0, 1.0,
2.0 towards the lower frequency after the break at the mid-temporal
frequency before and after excluding the lower frequency bins.
It is important to note that after neglecting the lower bins, less than

0.3 per cent fractions of red noise simulations having unbroken and
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Figure 10. The PDM statistic \ measured at each trial frequency bin for
light curves having a MF QPO signal mixed with red noise having unbroken
power-law model of slope 𝛽 = 2.6 of log(𝑃rat) = 2, on using the PDM
while neglecting the lower frequency bins corresponding to ∼ 1/3 duration.
The black points represent the lowest minimum (\min) for a given PDM
periodogram and the green shaded region is the 99.9 per cent contour limits
of the “ideal signal” in the \–frequency space expected for the MF QPO
signal.

broken power-law model can attain a value of \min . 0.65 and 0.5
on using the PDM for all the tested values of slopes respectively.

4.3 The behavior of PDM for QPOs mixed with red noise

Once again, we performMCS for the sum of a𝑄 = 30Lorentzian and
an unbroken power-law red noise continuum, with slopes spanning
0.4–3.0 in steps of Δ𝛽 = 0.2, and power ratios log(𝑃rat) ranging from
−1 to +5 in steps of Δlog(𝑃rat) = 1.

True-positive detections:We register true positive detections when
\min falls into the 99.9 per cent confidence range in \–frequency
space as determined from the “ideal” (Lorentzian-only) scenarios
above. For example, in Fig. 10, we plot the PDM periodogram for
few realizations of lightcurve having a MF QPO signal mixed with
red noise of 𝛽 = 2.6. The black points are the lowest minimum (\min)
for a given PDMperiodogram and the green shaded region is the 99.9
per cent contour limits of the “ideal signal” in the \–frequency space
expected for the MF QPO signal. Hence, only those points which
falls into this region will be registered as true positives.
We find that in order to ensure that the probability of correctly

registering true positives with ∼99.7 per cent, one always requires an
extremely high value of log(𝑃rat): typically > 5 or more. We see that
in the case of MF QPO, the signal is not detectable with the 99.7 per
cent significance. As shown in Fig. 11 for the MF QPO, values of
log(𝑃rat) ∼ 4, 5 only approach reliable detections of about 99 per cent
when 𝛽 . 1.8, 2.4 respectively of which >85–90 per cent fraction
of the simulations has \min < 0.65. Finally, for the HF QPO, values
of log(𝑃rat) ∼ 4, 5 has 99.7 per cent significance detections when
𝛽 . 1.6, 2.0 respectively and log(𝑃rat) ∼ 3 only approach reliable
detections of about 99 per cent when 𝛽 . 1.0. In the case of HF
QPO signals mixed with red noise > 30–40 per cent fraction of the
simulations with reliable detections has \min < 0.65.
The above analysis was performed considering values of \min oc-

curring at any frequency while excluding all frequencies less than a
frequency of ∼ 0.012 d−1, which corresponds to one-third of the du-
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Figure 11. Top panel: The probability of detecting the first harmonics of the periodic signal in the expected frequency range, Middle panel: The probability of
detecting the first harmonics of the quasi-periodic signal in the wrong frequency range, Bottom panel: The probability of detecting false negative of the first
harmonics of the quasi-periodic signal all as a function of power ratio 𝑃rat and red noise PSD power-law slope 𝛽 for the MF & HF QPO using PDM.

ration. We also repeated the analysis including the lowest-frequency
bins, but this action did not yield significant changes to the results of
significant detection of the period. In fact, excluding the lowest bins
helps only in reducing the detection inaccuracy error of registering
\min at the wrong frequency (i.e, towards the lower bins) which will
be explained in §4.3.1.

4.3.1 False negatives and detection inaccuracy errors

Type II Error (false negative): H1 is inferred false incorrectly when
a QPO is intrinsically present.

When the value of \min does not fall below the upper limit thresh-
old determined from the “ideal” case (regardless of frequency), we
register that trial as a false negative. For example, in Fig. 10, some
of the black points which represent the lowest minimum (\min) for a
given PDM periodogram obtained for light curves having MF QPO
mixed with red noise, lies above the upper limit on \ (0.805) below

which MF QPO signals are expected. Hence, they will be registered
as false negative.

As shown in Fig. 11, for the MF QPO, the type II error rate is
below ∼ 0.3 per cent for values of log(𝑃rat) ∼ 5, or 4 when 𝛽 . 2.4,
or 2.0 respectively and for the HF QPO, the false negative rate is
. 0.3 per cent for values of log(𝑃rat) ∼ 5, 4, 3 when 𝛽 . 2.0, 1.6, 1.0
respectively. We see that with decreasing log(𝑃rat) and/or increasing
steepness 𝛽, the rate of the false negatives increases. We note that at
log(𝑃rat) . 2, the rate of false negatives increases towards the lower
spectral slopes of 𝛽 . 1.4. This is because at the lower power values
of QPO against the red noise, the probability of finding a minimum
\ at the expected contours for the MF & HF signals decreases which
in turn increases the rate of false negatives around these region.
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Detection inaccuracy error (Error 3): H1 is intrinsically true and
also registered as true, but the QPO is detected at the wrong
frequency.

We register detection inaccuracy errors when \min falls below the
upper limits derived in the “ideal” case, but also falls outside the
expected frequency bounds. For example, in Fig. 10, the black points
which are the lowest minimum (\min) for a given PDM periodogram
obtained for light curves having MF QPO mixed with red noise,
lies below the upper limit on \ (0.805), but does not lie within the
expected frequency range for MF QPO. Therefore, when we have
\min of the PDM periodogram occuring in the yellow shaded region,
then it is registered as Error 3.
When one blindly searches for \min across all frequencies, in-

cluding in particular the lowest-frequency bins, the probability of
encountering a detection inaccuracy error is generally very high,
and it increases towards higher values of 𝛽 and/or lower values of
log(𝑃rat). Now, when we neglect these lower frequency bins, the rate
of finding the \min at the wrong frequency bins decreases both along
the log(𝑃rat) and the spectral index slope values. In Fig. 11, we see
that even though the rate of detection inaccuracy error is > 0.3 per
cent, it is still significantly low (. 1 per cent) at log(𝑃rat) ∼ 4–5, for
𝛽 . 2.6 for both the MF & HF QPO.

5 REALISTIC UNEVEN SAMPLING PATTERNS

The AGN light curves that we get from observations are usually
unevenly sampled, and typically contain data gaps and/or irregular
sampling. It is thus important to explore the effects of sampling
patterns when using the ACF and PDM for searching for periodic
signals. It is impossible to explore all types of potential sampling pat-
terns, so here we choose representative sampling patterns that could
plausibly be observed by ground-based optical large-area surveys
such as LSST, PanSTARRS, ATLAS, etc. — continuous monitoring
quasi-regularly, but interrupted by yearly sun-gaps of a few months
— or ground-based radio surveys such as OVRO—continuous mon-
itoring usually year-round, with no major gaps, but with somewhat
irregular sampling. We check how irregular sampling and the pres-
ence of regular gaps such as yearly sun gaps impact the signatures of
pure red noise processes and impact detectability of a QPO when it
is mixed with red noise.
We conduct Monte carlo simulations of 10 year long light curves

similar to a generic optical survey such as LSST or ATLAS, first
with evenly sampled data with and without different yearly sun gaps,
and then we test different irregular sampling patterns, again with
and without the yearly sun gaps. We perform this analysis only for a
subset of the parameters explored above, as this section is intended
as an exploration of the effects of only basic facets of irregular
data sampling. Particularly for more complex data sampling patterns,
readers are strongly encouraged to conduct their own simulations
following our work as an example.

5.1 PDM test for Lorentzian profile

We repeat the analysis as in §4, where we first consider the ideal
case of QPOs only, represented by simple Lorentzians of quality
factor 𝑄 = 30. We start with evenly sampled data, assuming 10-
year long light curves having a sampling rate of one point every
day. In lieu of testing potential QPOs across all frequencies between
1/(3650 days) and the Nyquest frequency of 1/(2 days), We choose
three representative test frequencies 𝑓L: 1.3, 5.77, and 22.04 ×10−8

Hz, corresponding to timescales of 2.3, 0.55, and 0.144 years, and
spanning 4.3, 18.2, and 69.5 cycles, respectively; we refer to them
low-, medium- and high-frequency (LF, MF, and HF) QPOs.
Wefirst simulate light curves to determine the region of frequency–

\ space where the “ideal” signal occurs. We determine the 99.9 per
cent confidence limits on \min (upper limits) : 0.705, 0.769, and
0.864 for the LF, MF and HF QPOs respectively; a\min (lower, upper
bounds) are (0.0005, 0.0014), (0.0045, 0.0055), and (0.0181, 0.0204)
for the LF, MF and HF QPO respectively. These values delineate
the ranges within which to search for signatures of QPOs when we
consider mixtures of a QPO and red noise.
Similarly, we determine the 99.9 per cent confidence limits on

\min and a\min first for the unevenly sampled data having different
average sampling rates of 2 – 10 days in steps on 2 days, 20 & 30
days; and then for evenly sampled data & irregularly sampled data
(avg. sampling rate of 8 days) having sun gaps of different values
(36.5 d, 0.5 – 4.5 yrs in steps of 0.5 yrs): We see that the the range
of frequency–\ limits are about the same— with only ∼4–6 per cent
deviation — as the values for evenly sampled data.

5.2 The behavior of the PDM for pure red noise processes

We perform MCS for each of the different sampling patterns of red
noise process of unbroken power law PSD model and see the effect
in the PDM compared to the evenly sampled data.

Even sampling pattern: We again generate pure red noise light
curves using an unbroken power-law PSD model for a wide range of
slopes 𝛽 (0.2–3.0), in steps of Δ𝛽=0.2, simulating 1000 light curves
at each step for the evenly sampled data for 10 years duration having
one point per day, and measure their PDMs.
The resulting 99.9 per cent confidence lower limits on \ at each trial

frequency are plotted in Fig. 12. In the figure, we see that the PDM
looks similar for the evenly sampled data as in §4.2.1 where \ reaches
very low values. We notice that at time scales about 1/3rd–1/4th of
the duration of the light curve, there is a turnover in the values of
the statistic minimum value where it starts to get below 0.85–0.8 and
with increasing time scale. The statistic minimum can reach lower
than 0.5 at much longer timescales (. one-half the duration) and can
get even as low as 0.2 when PSD slopes are & 1.8.

Even sampling with yearly sun gaps: Now we test the effects of
yearly sun gaps in the evenly sampled light curves in the PDM. So we
produce 1000 light curves of unbroken power-law PSDmodel having
slope of 𝛽 = 2.0 for each different range of gaps from 1 per cent of the
duration corresponding to 0.1 yrs and slowly increasing the amount
of gap in steps of 5 per cent of the duration corresponding to a range
of 0.5–4.5 years of gap in the 10 year long data for demonstration on
the effects of sun gaps. In Fig. 12, we plot the 99.9 per cent confidence
lower limits on \ at each trial frequency for each different gaps. We
see that as the amount of gap in the data increases, it produces an
extra feature, where there is a sudden dip in the \min which can get
lower than 0.7 at frequency ∼ 1/(365d), when the gaps are greater
than 35 per cent of your complete data apart from the deep minimum
observed towards the lowest frequencies (. 1/3 of the duration),
which are not significantly affected by the sun gaps.
Again, to see the effect of different slopes of red noise with data

gap in the PDM, we produce red noise light curves using an unbroken
power-law PSDmodel for a wide range of slopes 𝛽 (0.4–3.0), in steps
of Δ𝛽=0.2, having 45 per cent gap in the data, simulating 100 light
curves at each step and find the 99.9 per cent confidence lower limits
on \ at each trial frequency for the different spectral slopes. The dip
at a frequency of 1/(365d) becomes stronger for relatively steeper
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Figure 12. The distribution of the 99.9 per cent lower limit of the PDM statistic value \ at each test frequency of pure red noise 10 year long LSST type light
curve for (a) Evenly sampled data at different spectral index slopes, (b) Evenly sampled data with yearly sun gaps of 45 per cent data gap for 𝛽 = 2.0, (c)
Irregularly sampled data having different average sampling rate for red noise slope 𝛽 = 2.0.

PSD slopes, including falling below ∼0.8 for values of 𝛽 steeper than
∼ 1.2.

We thus recommend to avoid the frequency space corresponding
to lower than roughly 1/3–1/4 of the duration of the lightcurve, as
well as other obvious timescales range corresponding to the period of
the gaps, as these timescales can see spurious deepminimum features
in the PDM.

Irregular sampling: Here we test the effects of irregular sampling
without any large data gaps. We again simulate 10-year long light
curves with daily sampling, but we resample by randomly selecting
points every ΔT days, where we explore average values of 〈ΔT〉 = 2,
4, 6, 8, 10, 20, and 30 days.We assume 𝛽 = 2.0, andwe again produce
100 light curves and determine the 99.9 per cent confidence lower
limits on \ at each trial frequency; the results are plotted in Fig. 12.
Here, it is the relatively higher temporal frequencies that are affected:
particulary for 〈ΔT〉 ∼ 20–30 days, \min consistently departs from
just under unity to roughly 0.95–0.87 for frequencies corresponding
to timescales shorter than roughly 1/20 of the duration. However, no
narrow-band artefacts are induced.

Irregular sampling with yearly sun gaps:We test the effects in the
PDM for the combination of irregular sampling and yearly data gaps.
For an input unbroken power-law PSD model 𝛽 = 2.0, we determine
the 99.9 per cent confidence lower limits on \ at each trial frequency
for each of the different avaerage sampling rate having 10 per cent
wide data gaps and then 45 per cent wide data gaps (the latter is not
uncommon for many ground-based optical programmes for targets
near the equator). As shown in Fig. 13, for the 10 per cent wide gap
case with irregular sampling there is not much difference in the PDM
compared to when there are no data gaps. For 45 per cent wide data
gaps, we again see the spurious dip near timescales of 1/(365d) as
before.
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Figure 13. The distribution of the 99.9 per cent lower limit of the PDM
statistic value \ at each test frequency for a randomly sampled pure red noise
light curve having spectral index slope 𝛽 ∼ 2.0 with (a) 10 per cent yearly
gap and (b) 45 per cent yearly gap for different average sampling rates.
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Figure 14. A sample light curve corresponding to power spectra of MF QPO
signal of log(𝑃rat) = 2 against the red noise continuum having 𝛽 = 1.8,
where mild features of quasi-periodicity are visually evident in the light
curve. However, such a light curve would very likely ( likelihood) yield no
detection with an ACF or PDM.

5.3 The behavior of PDMs for QPOs mixed with red noise

We perform MCS for the sum of a 𝑄 = 30 Lorentzian and an unbro-
ken power-law red noise continuum, with slopes spanning 0.4–3.0 in
steps of Δ𝛽 = 0.2, and power ratios log(𝑃rat) ranging from −1 to +5
in steps of Δlog(𝑃rat) = 1, now for the 10 year long light curves for
each of the different sampling patterns. For brevity we test only the
MF QPO, though results were qualitatively similar for the HF QPOs.
We test for evenly sampled data for the 10 year long light curve

having one point per day to check for the detection probability along
the different spectral index slopes and along the different power
ratios. We find that the MFQPO has a detection sensitivity range of
significant detection of 99.7 per cent only at log(𝑃rat) & 5.
We repeat the test for different uneven sampling patters (a) Even

sampling with yearly sun gaps of 40 per cent, (b) Random sampling
pattern having an average sampling rate of 8 days and (c) Random
sampling having an average sampling rate of 8 days with yearly sun
gaps of 40 per cent for the 10 year long light curve to check for the
detection probability along the different spectral index slopes and
along the different power ratios. We see that the detection sensitivity
for the different sampling patterns to be the same as when it was
evenly sampled and thus we conclude that for the PDM, sampling
artefacts do not play a signifcant role in true-positive QPO detection
densitivity.

6 DISCUSSION

Through extensive Monte Carlo simulations of quasi-periodic pro-
cesses and mixtures of quasi-periodic and red noise processes, we
empirically explored the regions of parameter space where a (true
positive) detection of a QPO with the ACF or PDM is statistically
robust.
We also empirically explored the signatures produced by pure red

noise processes when using the ACF and the PDM, and quantified
the regions of parameter space where false positives are likely to be
encountered.
The light curve sampling patterns we explored are admittedly

limited in number but relevant to long-term (multi-year) observing
programs with sustained monitoring, and with sampling patterns

relatively poorer than that required for a DFT. With these sampling
patterns, we generally find that:

• In studying the effect of pure-red noise processes in the ACF,
assuming an unbroken power-law PSD model and evenly sampled
data, we see that pure red noise can produce false positives deter-
mined across the time lag at a rate more than 0.3 per cent for all
tested values of the spectral index slope, which is significantly high
to be neglected. In fact, correlation coefficients of the first peak can
easily reach above 0.5–0.7 at 𝛽 & 1.4, and can reach even higher
values (∼ 0.9) at steeper slopes of 𝛽 & 2.2. The second peak after the
zero lag determined across the time lags independently can also have
a correlation value ∼ 0.7 at 𝛽 & 1.0 and are easily misintepreted as
an QPO signal at these corresponding time lags.
One can robustly avoid peaks with correlation coefficients above

0.45–0.5 caused by pure red noise by restricting oneself to lags less
than roughly 1/3 of the light curve duration and thus have the false
positive rate across the time lags to be < 0.3% while searching for
a QPO signal mixed with red noise. A broken power-law input PSD
(e.g., breaking from slopes from 𝛽 = 2.0 to 𝛾 = 1.0 or to 0.0) yield
qualitiatively similar results.

• In the analysis of pure red noise processes in the PDM, assuming
an unbroken power-law PSD model and evenly sampled data, we see
that towards the lower frequency bins— corresponding to timescales
longer than roughly one-third of the duration— \ consistently dips
below 0.8–0.85. In fact, about 99.7 per cent of the pure red noise
simulations with PSD slope of 𝛽 & 2.4 can yield values of \min
below 0.6. Therefore, it is to be noted that low values of \ in a given
PDM do not automatically mean that a QPO is present e.g., at low
frequencies.
After excluding the lowest bin frequencies (corresponding to

longer than 1/3 of the duration), we see that the fraction of pure
red noise-only trials that can attain a value of \min < 0.6 is less
than 1 per cent for all the tested combinations of broken and un-
broken power-law PSD models. Hence, merely neglecting the lower
frequency bins in the PDM is a straightforward way to minimize false
postitive detections.

• We considered mixtures of red noise processes and a 𝑄 = 30
QPO, and explored detection sensitivity ranges in both the ACF and
PDM for a range of red noise slopes and QPO strengths relative to
the red noise (quantified by log(𝑃rat)), neglecting timescales > 1/3
duration, we find:

– Detection of the period with statistical significance (&
99.7%) depends strongly on both the strength of the QPO against
the red noise and the steepness of the red noise PSD slope. In
general, the probability of detection of the signal at the correct
period gets lower with increasing steepness of the red noise slope
and decreasing power of the QPO against the red noise.
– Particularly for relatively steep PSD slopes, extremely large

values of log(𝑃rat) are required for robust detections of a QPO in
both the ACF and PDM.
– For illustration, In Fig. 14, we have the light curve corre-

sponding to power spectra of MF QPO signal of log(𝑃rat) = 2
against the red noise continuum having 𝛽 = 1.8. Even if mild
features of quasi-periodicity are evident in the light curves, these
power values of QPO would likely not register a true positive
detection in either the ACF (52.3 per cent likelihood of not regis-
tering a true positive detection) or PDM (86 per cent likelihood of
not registering a true positive detection) at any time scale.
– With the ACF, we generally find that QPOs are detected ro-

bustly only when log(𝑃rat) & 5 for 𝛽 & 2.4/2.2 for aMF/HFQPO,
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respectively. Detections at values of log(Prat) ∼ 3 are attainable
only at lower spectral index slopes, 𝛽 . 1.2.
– For the PDM, we require log(Prat) ∼ 4, 5 for 𝛽 . 1.8, 2.4

even for a 99 per cent detection for MF QPO. Detections at values
of log(Prat) ∼ 4, 5 are possible for 𝛽 . 1.6, 2.0 for the HF QPO.

• We explore the effects of regular data gaps and irregular sam-
pling in the PDM. Irregular data sampling causes \min to become low
(∼0.95) across broad swaths of frequencies, but true-positive detec-
tion rates for mixtures of QPOs with red noise are not significantly
impacted. When a regular data gap such as a yearly sun gap are in-
cluded, it produces a relatively narrow-band feature that is confined
to e.g. 1/(365d).

When there is a claim of a QPO signal from AGN in the literature,
then one should be able to not just articulate its frequency & RMS,
but also the form of the underlying red noise continuum and the
uncertainities related to these parameters. In the case of ACF/PDM,
it is not easy to determine the underlying PSD shape. We conclude
that since the ACF/PDM tend to produce false alarm rates greater
than 0.3% and given the general quality of AGN data gathered so
far, it is advisable that the community should be cautious and refrain
frompublishing claims ofQPOusing theACF/PDM(until they have a
reliable and significant detection considering proper null hypothesis),
since the detection rate is generally low and not significant until one
reaches very high values of power of QPO against the red noise
continuum.
In §6.1, we briefly discuss some of the main problems affecting

many of the claims of periodicities in the literature in AGN. In
short, they include 1) sampling too few cycles of a “signal”, as
red noise can produce spurious sinusoid-like trends on the longest
timescales, and/or 2)mistreatment of the null hypothesis:white noise,
or red noise with insufficiently steep power-law slope, is assumed;
the likelihood of false positives tends to increase towards steeper
PSD slopes.
Another issue regarding claims in the literature, though, is that

there is rarely any mention of the inferred RMS or RMS/mean (here-
after referred to simply asRMS for simplicity) of the claimed periodic
signal. While the value of the period of course encodes physical info
about the variability mechanism, so does the RMS of the QPO; if
parameter constraints from other analyses are known, a consistency
check can further help test if the claimed QPO is real. We discuss
this topic further, with a couple brief applications, in §6.2.

6.1 Some of the claims in the literature and basic pitfalls
regarding ACF and PDM usage

One major caveat in searching for QPOs against a red-noise back-
ground, as pointed out by e.g. Vaughan et al. (2016), is that pure red
noise processes, particularly those with relatively steep PSD slopes
(𝛽 >∼ 2), can produce quasi-sinusoid-like, “W-shaped” segments of
light curves for three or four “cycles.”
For observations of a finite length of a red noise process, the dom-

inant trends on timescales longer than (very roughly) one-third of the
full duration may be quasi-sinusoidal. These trends can potentially
“trick” any period-searching method — ACF, PDM, fitting sinu-
soidal functions to light curves — into falsely identifying a period,
without a proper calibration against a null hypothesis in place (e.g.
Press 1978).
In this paper, we empirically quantify how pure red noise pro-

cesses can produce false signatures in both the ACF and the PDM
reminiscent of those produced by a pure Lorentzian signal — strong

correlation peaks in the ACF, and dips in \min in the PDM— partic-
ularly on timescales longer than roughly one third of the light curve
duration.
The problem of observing too-few cycles can potentially be re-

solved by extending observations. For example, Graham et al. (2015)
claimed a period of ∼1900 days in an optical light curve of the quasar
PG 1302–102 by sinusoidal fitting of a∼10-year light curve; Vaughan
et al. (2016) demonstrated the light curve’s consistency with pure red
noise. Moreover, an additional five years’ monitoring reported by Liu
et al. (2018) failed to confirm this period.
A second major caveat is that developing and testing a proper

null hypothesis (pure red noise, no QPO) is critical for testing the
statistical significance of a candidate period (especially in the absence
of having the luxury of being able to extend monitoring). Testing
against a null hypothesis consisting of Poisson (instrumental) noise
only is clearly insufficient; some papers such as Li et al. (2009b)
do not attempt any such significance test. We empirically see that
with both the ACF and PDM, the likelihood of encountering a false
positive from a pure red noise process is extremely sensitive to the
value of the underlying power-law PSD slope, and false positives can
be significant in number particularly for 𝛽 >∼ 2. We recognize that it
can be difficult to measure a periodogram and obtain an unbiased fit
when data sampling is poor, but having at least a roughly accurate idea
of 𝛽 is thus critical for being able to form a proper null hypothesis.
Below we briefly discuss these warnings in the context of using

the ACF and PDM, and point out some examples in the literature
of misinterpretation. Our intention is not to single out individual
authors; our intention is to simply focus on discussing common mis-
takes, citing a few select examples in the literature only. A caveat
is that data sampling in these cited publications are always not ex-
actly the same as in our simulations in terms of dynamic range of
frequencies explored, frequency resolution, number and size of data
gaps, and the irregularity of data sampling. In addition, estimates of
power-law slope 𝛽 are usually difficult to know reliably, sometimes
because data were too sparse for a reliable periodogram fit. However,
we believe that differences in sampling should not significantly im-
pact our qualitative conclusions about these works. Moreover, these
works each have data sampling such that the ratios of maximum
to minimum temporal frequencies probed is usually of order a few
hundred, roughly similar to what we explored in this paper.

6.1.1 General issues with ACF, with a few select examples:

One basic problem with attempting to use the ACF for period-
searching, as demonstrated in §3.2, is that pure red noise processes
can produce spurious bumps and wiggles at all timescales (particu-
larly relatively longer timescales and when 𝛽 >∼ 1.5) which might
be mistaken for a QPO signature.
ACFs in citations claiming a QPO frequently do not show the clear

cosine-like behavior expected when a QPO dominates; both Li et al.
(2009b) and Fan et al. (2002), for instance, simply identify multiple
local peaks in their ACFs as candidate signals, but these are likely
artefacts of red noise, e.g. with 𝛽 ∼ 1 − 2.
Raiteri et al. (2001), Liu et al. (2011) and Raiteri et al. (2021)

each claim QPO signatures in peaks occuring at timescales > 1/3 –
∼ 1/2 of the light curve durations, with values of 𝑟corr peaking at ∼
0.5–0.7. However, we demonstrated that for both unbroken power-
law PSDs with 𝛽 > 1.4 and broken power-law PSDs, 𝑟corr can
frequently peak above 0.7 (and 𝑟corr can even frequently peak above
0.9 when 𝛽 >∼ 2.2 very easily, especially at timescales > 1/3 of the
duration. For Liu et al. (2011), the fundamental issue is that their
light curve samples 2.5 cycles of a sinusoid-like trend ("W-shape")
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and is consistent with red noise likely corresponding to a very steep
PSD slope, probably 𝛽 ∼ 2 or 3.

6.1.2 General issues with PDM, with a few select examples:

One basic issue with attempting to use the PDM for period searching
was demonstrated in §4.2: pure red-noise processes yield spuriously
low values of \min at relatively low frequencies / long timescales e.g.
>∼ 1/3 of the light curve duration. For example, even in the limit of
perfect data sampling, red noise processes across all range of 𝛽 tested
can cause \min to drop to below values of typically e.g. ∼0.80–0.85
below a frequency corresponding to ∼ 30 per cent of the duration for
the sampling patterns and red noise slopes simulated in this paper.
In the literature, claims of periods hinge on observed localized

minima in the PDM, but these minima tend to occur towards long
timescales, > ∼ 1/3–1/4 of the duration: Fan et al. (2002), Liu et al.
(2011), and Peñil et al. (2020).
Note that Liu et al. (2011) and Fan et al. (2002) have used the

Jurkevich (1971) method, which is numerically related to the PDM:
both calculate the sample variance within each test phase bin and
consider the sumof those variances.However, the PDM is normalized
by the overall variance in the light curve.Meanwhile, Fan et al. (2002)
and Li et al. (2009b) used a renormalized Jurkevich parameter 𝑉2m
following Kidger et al. (1992), defining a fraction 𝑓 ≡ (1−𝑉2m)/𝑉2m,
but it does not take into account the number of degrees of freedom;
the expectation value in the absence of any periodicity consequently
can differ significantly from 1. In this paper, we do not simulate the
Jurkevich method specifically, and a direct comparison of our values
of \min to values of 𝑉2m as a function of timescale is not immediately
straightforward. Nonetheless, given the characteristics of pure red
noise processes, claims of periods occurring at long timescales using
either method should be relatively suspect.

6.2 Application to detection of periods for selected physical
situations

When there exists a periodic signal mixed with red noise in the emis-
sion from a source, and if the red noise power spectral characteristics
can be estimated, then, for a given sampling pattern and a given test
frequency, the threshold values of power ratio required for a success-
ful detection of a periodic signal with statistical significance using
PDM or ACF can be translated into threshold values of RMS for the
periodic component.
Such threshold values can be used to define the regions of pa-

rameter space for a given physical system where a periodic signal
can be detected with the PDM or ACF. Alternately, for a given input
set of parameters for a periodically-induced signal, one can estimate
the RMS and then power ratio of the signal against the red noise
continuum, and compare to threshold values of log(𝑃rat) that can be
detected with the PDM or ACF. Moreover, given the high minimum
values of log(𝑃rat) needed for detection as demonstrated by this pa-
per, when one claims detection of a periodic signal using the ACF
or PDM, they are implicitly claiming a minimum value for log(𝑃rat)
and thus RMS — and these values have implications for the physical
parmaeters of a given system.
Here, we briefly discuss the application to periodically self-lensing

SMBH binaries in highly-inclined systems on using the results from
ACF & PDM.

6.2.1 Highly-inclined self-lensing SMBH binaries

We consider highly-inclined super massive black hole (SMBH) bi-
nary systems following the framework of D’Orazio & Di Stefano
(2018); hereafter DD18. Emission from the accretion disk around
the primary black hole is periodically gravitationally lensed and
magnified by the secondary. For simplicity, we assume that our sim-
ulations results, derived assuming QPOs with a very high quality
factor, are applicable to such strictly-periodic systems. SMBH binary
systems could additionally have quasi-periodic emission, potentially.
Hydrodynamic simulations of accretion onto SMBH binaries from
circumbinary disks can yield quasi-periodic fluctuations in accretion
rate through the circumbinary disk (e.g. Farris et al. 2014; Farris et al.
2015). If such variations in accretion rate directly yield variations in
luminosity when that material accretes onto the black holes, then
quasi-periodic components contributing to observed emission might
be expected.
However, tests incorporating mixtures of QPOs and red noise (in-

cluding that generated in the two accretion mini-disks) would be
difficult, because predicting the degree and PSD shape of the con-
taminating red noise is quite challenging: there could be additional
modes of variability not present in stable/ more persistently-accreting
disks; one would need to know the radii over which those variability
mechanisms are triggered, taking into account e.g. tidal truncation of
the outer disks (e.g. Paczynski 1977; Nguyen & Bogdanović 2016).
Consequently consideration of red noise (frommini-disks) with QPO
mixtures in this context is beyond the scope of our paper.
We consider just the optical and UV emission from the inner ac-

cretion disk. We use Breedt (2009), their Fig. 5.3, as an empirical
guide for optical PSD slopes and normalization. Breedt (2009) pub-
lish V-band unbroken power-law PSDs for seven Seyferts; we take
the average value of slope (𝛽 = 2.3) and normalization (20 Hz−1 at
10−6 Hz).
We note that any possible evolution with black hole mass (𝑀𝐵𝐻 )

or accretion rate relative to Eddington 𝐿Bol/𝐿Edd (as is known for
broadband X-ray PSDs of nearby Seyferts, e.g. McHardy et al. 2006)
is not accounted for here. Any given SMBH binary system may
very likely host black holes with differing values of black hole
masses and if both the black holes in the binary system are accreting,
then 𝐿Bol/𝐿Edd might also differ and yield different individual PSD
shapes and/or normalizations, and the sum of their variability char-
acteristics will be reflected on the single optical PSD shape that we
measure. Hence, for extreme simplicity, we neglect such effects and
assume that the single PSD shape represents the level of red noise
emission from both systems.
We adopt from DD18 magnification factors for binary systems

having mass ratios 𝑞 = 0.05 and 𝑞 = 0.5, and having the accretion
disks that are nearly edge-on, with inclination 𝐽 = 0.2 rad with
respect to the line of sight. We consider each of the NUV and V
bands separately; the former represents a more “optimistic” case in
terms of the magnification. We adopt the waveforms in Fig. 3 of
DD18 to estimate the RMS/mean for each of four binary orbital
inclinations to the line of sight in units of the number of Einstein
radii, 𝑁𝐸 , which quantifies the angular separation of source and lens
at closest approach, corresponding to 𝑁𝐸 = 0.05, 0.1, 0.5, and 1.0.
A magnification factor is not the same as a change in flux, since
the input flux from the accretion disk, which is stochastic, will vary
with time. For simplicity, though, we ignore this effect. Values of
RMS/mean are listed in Table 3.
We simulate 250-day long continuous monitoring light curves that

are evenly sampled, assuming a 𝑄 = 30 QPO at the MF frequency
used in Sections 3–5, 8 × 10−7 Hz, and considering each of the
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Mass ratio 𝑞 = 0.05 Mass ratio 𝑞 = 0.5
𝑁E NUV V NUV V

0.05 0.752 (5.67) 0.471 (5.27) 0.784 (5.70) 0.504 (5.33)
0.1 0.471 (5.27) 0.281 (4.82) 0.504 (5.33) 0.307 (4.89)
0.5 0.095 (3.87) 0.074 (3.66) 0.105 (3.96) 0.082 (3.75)
1.0 0.030 (2.88) 0.030 (2.88) 0.033 (2.96) 0.033 (2.96)

Table 3. The values of RMS/mean estimated from the light curves of highly-inclined SMBH binary systems, based on the flare emission profiles in DD18.
Listed here are values for two selected values of mass ratio, four selected values of 𝑁E, the fraction of an Einstein radius separating the lens and the source at
closest approach, and two wavebands, NUV and V. Also listed, in parentheses, are estimates of log(𝑃rat) assuming a mixture of a 𝑄 = 30 QPO at the MF QPO
frequency, 8.0 × 10−7 Hz, and a continuum PSD with 𝛽 = 2.3 and a normalization of 20 Hz−1 at 10−6 Hz.

values of RMS/mean for each inclination/waveband/mass ratio com-
bination, mixed with a 𝛽 = 2.3 continuum PSD as per the parameters
listed above. For simplicity, we assume the same continuum PSD
parameters for both the V and NUV bands. The resulting values of
log(𝑃rat) are listed in Table 3; they span from roughly 2.9 for the
𝑁E = 1.0 cases up to 5.7 for the 𝑁E = 0.05 cases.
Recall, however, from §4, Fig. 11 that when using the PDM, for

𝛽 = 2.3, values of log(𝑃rat) of 5 were required for robust true positive
detections at ∼ 99 per cent confidence for the MF QPO. For the
ACF, values of log(𝑃rat) of 5 were required for robust true positive
detections at & 99.7 per cent confidence; the 𝑁E = 0.05 and 0.1 cases
would thus likely be detected. (Note: we choose to be approximate in
our conclusions here given the large uncertainties and assumptions
regarding the form of the continuum PSD as discussed above.)
Note that we are commenting on the possibility of detections in

individual systems only; determining the frequency of occurrence of
such systems whose orbital parameters satisfy these requirements is
beyond the scope of this paper.

7 CONCLUSIONS

In this paper, we have presented results from an empirical investi-
gation of the behavior of two statistical tools — the ACF and the
PDM— when used for detecting a QPO in light curves that contain
broadband stochastic red noise variability.
These tools have been used to claim the presence of periodic sig-

nals in AGN light curves; however, pure red-noise processes can eas-
ilymimic features that could falsely be intepreted as aQPO.Guidance
in both preventing false-positive QPO claims and in supporting true-
positive detections is needed, particularly given that the astronomi-
cal community now has, or will have access to databases containing
large numbers of monitoring light curves courtesy of current and
near-future large-area ground-based monitoring programmes such
as LSST.
This paper is intended to provide guidance both to those examin-

ing individual light curves for QPOs and to those performing data
trawls in large databases. Our overarching goal is to help reduce the
appearance of false claims of periodocities (features consistent with
the null hypothesis of simple red noise) in the literature.
We perform Monte Carlo simulations covering a range of red

noise power-law PSD slopes and QPO strengths for a few select
light curve sampling patterns. We empirically investigate both true-
positive detections of QPOs when mixtures of broadband red noise
and a narrow-band QPO are present and false positive detections
when no QPO is present, only red noise (the null hypothesis model).
We determine that pure red noise light curves tested for a broad

range of power-law slopes were able to produce false positive signals
in the ACF more than 0.3 per cent of the time at all slopes tested,

considering the full timescale range. False-positive peaks routinely
reach correlation coefficients of 0.5 and higher. When we restrict
ourselves to lags less than one-third of the full duration, the rate of
false positives still remains ≥ 0.3 per cent at power-law slopes 𝛽 &
2.6, though maximum correlation coefficients remain below 0.55.
We conclude that if one observes a peak with correlation coefficient
>0.5 and while restricting oneself to lags less than roughly 1/3 of the
duration, and given even data sampling, then the signal is probably
real.
In the case of the PDM, pure red-noise processes cause a dips in

the value of the PDM test statistic \ (e.g., \ <∼ 0.6), particulary
at frequencies corresponding to timescales greater than roughly one
third of the duration. The rate of false positives is greater than 0.3 per
cent across all the tested slopes, and at much steeper slopes 𝛽 & 1.4,
false positives occur almost 99.9 per cent of the time. However,
when we simply neglect the lowest frequencies (timescales greater
than roughly one third of the duration), the rate of false positives is
still greater than 0.3 per cent for all the slopes, but having the PDM
statistic \ below 0.65 is < 0.3 per cent. Hence, neglecting the lower
frequency bins in the PDM is a straightforward way to minimize false
postitive detections.
These results are an empirical demonstration that, when using the

ACF or PDM, and when variability due to a pure red noise process
with an unbroken power-law PSD shape, the ad-hoc action of sim-
ply disregarding timescales greater than ∼1/3 of the full duration is
an effective way to reduce false positives (we strongly caution, how-
ever, that this one-third benchmark is meant to be highly approximate
only, and can depend on e.g., steepness of power-law slope, data sam-
pling, etc.). They also suggest that features occurring at the longest
timescales/lowest frequencies in previously-published ACFs/PDMs
may have been consistent with pure red noise instead of being due to
QPOs, as claimed.
When there areQPOsmixedwith pure red noise in evenly-sampled

data, the true-positive detection sensitivity in both the ACF and
PDM naturally depends strongly on not just the relative strengths
of the QPO and the red noise (log(𝑃rat)) but also sensitively on the
steepness of the red noise PSD slope. We find that extremely large
values of log(𝑃rat) typically 4–5 without the pre-filtering technique
introduced in §3.3 & §4.3 — are typically required for a 99.7 per
cent true-positive detection rate, at PSD slope — 𝛽 typically < ∼2.
The reader is reminded that we did not add Poisson noise to our

simulated light curves; this would likely make a true-positive detec-
tion even more difficult, so our results are effectively lower limits to
values of log(𝑃rat).
We re-iterate that any claim of a QPO detection using the ACF

or PDM implies detection of a signal with such a high power ratio.
Depending on the model applied for intepretation, it is possible that
the high values of log(𝑃rat) and RMS imply extreme regions ofmodel

MNRAS 000, 1–20 (2020)



ACF and PDM for period searching in AGN 19

parameter space. For example, in the specific case of periodically
self-lensing black holes in gravitationally-closed binary systems on
a highly-inclined orbit that we considered in §6.2, values of log(𝑃rat)
& 5 (assuming no light curve filtering) in optical/UV emission from
the inner disk require the source and lens to be separated by only
𝑁𝐸 ∼ 0.05 at closest approach (DD18).
We also examined a small range of different sampling patterns,

including yearly sun gaps as is common to ground-based optical
observing programs, and irregular but sustained sampling, and their
effect on true- and false-positive detection rates in the PDM; True-
positive detection rates for a given values of log(𝑃rat) and 𝛽 are not
significantly impacted.
If readers who are searching for QPOs have light curves with sam-

pling patterns identical to those we simulated, then we encourage
those readers to use our simulations and plots as guides to determin-
ing whether features in their own ACFs/PDMs are indicative of any
QPO or are consistent with a single pure red noise process.
If readers have light curveswith different sampling patterns, and/or

want to test a null hypothesis model more complex than a simple
unbroken power-law, then we recommend that they perform their
own simulations, including testing the range of behavior that can be
exhibited under the appropriate null hypothesis model, depending on
the slope of the underlying red noise process (and its uncertainty). If
the slope is not known specifically, then readers should test a wide
range of slopes in order to be conservative. As a final reminder, we
did not consider the effects of Poisson noise in our simulations here,
and readers should take that into account in their own simulations.
It is worth considering whether or not a periodogram is more

efficient at cleanly separating broadband continuum noise from a
narrow-bandQPOcompared to theACFor PDMfor a given sampling
pattern. For evenly-sampling data, the method of Vaughan (2005) is
applicable for QPO detection in a periodogram, and the behavior
of the periodogram (probability distribution of powers, biases, the
extent to which adjacent temporal frequencies are independent, etc.)
has been well understood (see references in e.g. Vaughan 2005).
However, for a given RMS strength, the value of log(𝑃rat) needed to
register a detection of a QPOwill depend on factors such as temporal
frequency spacing and the quality factor 𝑄. For unevenly-sampled
data, other factors come into play for all methods, such as the impact
of aliasing at high temporal frequencies, which depends on spectral
slope and data sampling. Such detailed discussions are beyond the
scope and intent of the present paper, but we encourge readers who
have a specific sampling pattern in mind to perform simulations
for all methods to help gauge detection rates of both true and false
positives. We would like to warn users of the ACF and PDM that it
is not possible to use these tools to reliably seperate a narrow-band
signal and the red noise continuum and quantify the form of that
continuum, since the presence of red noise causes the ACF and PDM
values to become highly self-correlated.
We would thus encourage the community to consider testing of

additional methods, including Bayesian fits (e.g. CARMA; Zhu &
Thrane 2020), and development of automatic light curve classifiers
(e.g. Sánchez-Sáez et al. 2021) that could potentially quantify devia-
tions from pure-red noise behavior. However, comparison testing of
how the various methods — be they classical such as ACF, PDM,
periodogram, or modern — perform in maximizing true positive de-
tections and minimizing false detections is beyond the scope of the
current paper.
Finally, we strongly encourage readers to report the implied value

of the RMS (or equivalently, RMS/mean) of the QPO, in addition
to timescale, in any future QPO claims they publish, regardless of
the statistical method used. The RMS encodes additional information

about the physical parameters of the periodic process and/or variabil-
ity mechanism (e.g., observer viewing angles; jet angle parameters;
energy dependence of a variability mechanism), yet such information
is regularly neglected in published QPO claims. Hopefully, physi-
cal parameters implied by the QPO strength will be consistent with
physical information obtained from other avenues methods (imaging,
spectroscopy), if available.
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PARAMETER SPACE for significant detection on using the ACF

Centroid Frequency TRUE POSITIVES TYPE II ERROR ERROR 3
𝑓𝐿 (10−7 Hz) (99.7%) (. 0.3%) (. 0.3%)

8.0 (MF QPO) log(𝑃rat) ∼ 5/4 at 𝛽 . 2.4/1.8 log(𝑃rat) ∼ 5/4 at 𝛽 . 2.4/1.8 log(𝑃rat) ∼ 5/4 at 𝛽 . 3.0/1.8

32.0 (HF QPO) log(𝑃rat) ∼ 5/4/3 at 𝛽 . 2.2/1.6/1.2 log(𝑃rat) ∼ 5/4/3 at 𝛽 . 2.2/1.6/1.2 log(𝑃rat) ∼ 5/4/3 at 𝛽 . 2.4/1.6/1.2

Table 4. The parameter space for significant detection of the period of the MF & HF QPO signals mixed with red noise of unbroken PL model on using the
ACF tested for evenly sampled light curves in §3.

PARAMETER SPACE for significant detection on using the PDM

Centroid Frequency TRUE POSITIVES TYPE II ERROR ERROR 3
𝑓𝐿 (10−7 Hz)

8.0 (MF QPO) log(𝑃rat) ∼ 5/4 at 𝛽 . 2.4/1.8 (99%) log(𝑃rat) ∼ 5/4 at 𝛽 . 2.4/2.0 (. 0.3%) log(𝑃rat) ∼ 5/4 at 𝛽 . 2.6 (. 1%)

32.0 (HF QPO) log(𝑃rat) ∼ 5/4/3 at 𝛽 . 2.0/1.6/1.0 (99.7%) log(𝑃rat) ∼ 5/4/3 at 𝛽 . 2.0/1.6/1.0 (. 0.3%) log(𝑃rat) ∼ 5/4 at 𝛽 . 2.6 (. 1%)

Table 5. The parameter space for significant detection of the period of the MF & HF QPO signals mixed with red noise of unbroken PL model on using the
PDM tested for evenly sampled light curves in §4.
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