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Normally, the intensity patterns of vortex beams are closed rings, such as Laguerre-Gaussian beams and Bessel-
Gaussian beams. Recent studies showed that the vortex beams with open ring structures, namely, open vortex beams
(OVBs), have non-trivial orbital angular momentum (OAM) spectrums and optical forces, and can be employed in
many applications such as metrology and quantum information. However, the structural stability of OVBs, including
the topological charge (TC) conservation and the intensity invariance, has not been studied yet. Here, we theoretically
propose a generalized model of OVBs, using both geometrical ray-like trajectories and coherent wave-packets, and
the structural stability of OVBs is validated by the geometrical envelope of ray bundles. Moreover, we experimentally
demonstrated that such OVBs can be generated by a partial fork-grating (PFG). Our study reveals the structural char-
acteristics of OVBs, which lays a foundation for the OVB’s potential applications in optical manipulation and optical
metrology, etc.

An optical vortex beam, during its propagation, presents
a phase circulation around the core where the field intensity
vanishes. Ever since vortex beams were discovered to be asso-
ciated with a well-defined intrinsic orbital angular momentum
(OAM)1, extensive studies on generation2,3, detection4,5 and
manipulation6,7 of vortex beams have given possibilities to
various emerging applications, spanning fields as wide as op-
tical communication8, optical imaging9, optical metrology10,
particle manipulation11 and quantum information12,13. In the
past 20 years, the diversity and complexity of the vortex fam-
ily have been extraordinarily expanded14. It was found that
optical vortices are not limited to axially propagating singu-
larities, but can exist and evolve in many forms, such as vortex
knots15, time-varying vortices16, spatiotemporal vortices17,
coherence vortices18 and vector vortices19.

Meanwhile, in classical optics, monochromatic scalar light
fields can be represented by both geometrical ray-like trajec-
tories and coherent wave-packets. The connection between
the ray and wave picture of light is given by the eikonal equa-
tion at the high-frequency limit20. Such a theoretical consis-
tency is sometimes referred to as the ray-wave duality, which
provides useful ideas and techniques for tailoring new types
of structured laser beams, e.g., ray-optical Poincaré spheres
for structured beams21–23, propagation-invariant light with
shaped caustics24, SU(2) geometric modes generated from
cavities25 and holograms26, high-dimensional classically en-
tangled light27, and new interpretations of self-accelerating
beams28,29. Inevitably, vortex beams, as an essential class of
structured light, can be analyzed in the framework of ray-wave
duality. From the wave perspective, the degree of the phase
circulation in the vortex wave field is given by an integer in-
dex called topological charge (TC). In terms of geometrical
optics, a vortex beam is composed of bundles of resemble and
rotational rays, which arise from specific orbits in the trans-
verse plane30.

To date, most studies on vortex beams have focused on

the elucidation of singular beams with cylindrical symme-
try. However, when such symmetric structures are broken,
light beams can present many exceptional physical proper-
ties, which are of interest to practical techniques. An example
of this is the spin-dependent momentum splitting caused by
the spin–orbit interaction in rotational symmetry breaking31.
For another instance, a fractional optical vortex is distorted
due to the phase discontinuity, leading to an external ob-
struction when it induces rotations to microscopic particles32.
Besides, the vortex beam under perturbations, resulting to
an open ring structure, was mentioned several times in both
theoretical works and vortex-beam-related applications33–43.
A vortex beam subjected to the sector aperture changes its
OAM states33,34, enabling measurable quantum correlations
and entanglement35. At the same time, the behaviors of the
vortex beams generated by blocked optical elements were
observed36–38. Recently, the focal and optical trapping of
a radially polarized vortex beam with broken axial symme-
try were realized39, and the OAM spectrum of the trun-
cated vortex beam was used to measure object parameters40.
Morevover, methods for healing and measuring obstructed
vortex beams were also proposed41–43. Despite the numer-
ous optical effects presented above, some fundamental issues
are not discussed in these publications: Is a partial light ring
still a stably existed vortex? If so, how does one characterize
the important properties (e.g., TC and phase profile) of such
vortices?

In this letter, we focus on these unrevealed properties of
open vortex beams (OVBs), i.e., the vortex structure and con-
servation of the TC. We start with the defination of the OVB,
and then use a conceptually simple but effective method to
construct OVBs based on the geometry of rotational light rays.
The structure of a hybrid OVB, consisting of two pure OVBs
with opposite TCs, is examined using the same method. Fur-
ther, a good approximation of the ideal OVB can be gener-
ated via a partial fork-grating (PFG). Output beams at dif-
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FIG. 1. (a): A single ray r with P ,Q being marked as well. (b),(c): The ray model (b) and wave field (c) of a circular vortex beam. (d), (e):
The ray model (d) and wave field (e) of an OVB.The beams in (c),(e) are generated by fork-gratings and focused by a Fourier lens.

ferent diffraction orders are given by sums of hypergeomet-
ric modes. Thus, the OVBs are sketched through comple-
mentary wave and ray descriptions. Experimental corrobo-
rations which use PFGs and directly measure phase structures
of OVBs are also carried out.

When a vortex beam propagates in free space, its structural
stability ( or similarity) includes aspects such as the invariance
of its vortex core, the conservation of the TC, and the resemble
intensity pattern during its propagation. To study these prop-
erties of OVBs, we define an ideal OVB with the initial TC l
as a beam E(ρ,θ) with the transverse distribution of complex
amplitude, which is given by:

E(ρ,θ) = A(ρ,θ)exp(il0θ)rect
(

θ −θ0/2
θ0

)
(1)

where (ρ,θ) are the polar coordinates, A is the complex am-
plitude, l0 is the change rate of the helical phase term, rect is
the rectangle function44, and θ0 denotes the angular range of
the partial ring. The TC of the initial field is calculated using
results from Ref.[45]:

l = l0×
θ0

2π
(2)

This TC can be fractional or be an integer value. However, it
is shown that the field after propagation should have an integer
TC in order to be continuous46,47.

It is feasible to check the stability of an ideal OVB within
the scope of ray optics. A propagating coherent monochro-
matic light field can be expressed as a family of parameter-
ized rays. The stability of a light beam, is then converted into
that of the overall geometrical shape of the rays. For twisted
beams in free space, an element or a single ray r in the beam
is distinguished by two vectors P and Q, which give the ini-
tial transverse location and direction of r, respectively20. The

ray r is expressed as

r = P + τQ (3)

where {
P = ρρ̂;
Q= l0

kρ
θ̂+ ẑ

(4)

with τ being the distance along r and θ̂, ẑ being two of the
base vectors in the cylindrical coordinates (ρ,θ ,z). The ray r
is shown in Fig. 1(a), and a detailed derivation process can be
found in Appendix A(See in supplementary materials).

One can sculpture a vortex beam with multiple arranged
rays r in Eq. (4). For a conventional circular vortex beam, it
is useful to pick up a centered circle ρ = ρ0 in the waist plane
as a representative orbit of rays r, as outlined in Fig. 1(b). The
envelope of rays determines the shape of the vortex beam. The
corresponding wave field of this vortex beam is also shown in
Fig. 1(c). To obtain the desired OVB in this article, we just
need to have a partial orbit with a removed portion. Thus, the
ray and wave picture of the OVB are illustrated in Fig. 1(d)
and Fig. 1(e), respectively. In Fig. 1(d), the projection of all
rays on every transverse plane (x,y) is a geometrically-similar
partial-ring envelope, which indicates that the beam’s inten-
sity shape is unchanged. At the meantime, one can assign a
phase profile with an integer TC l to the rays with an open-
ing, which is color-labeled on Fig. 1(d). Consequently, an
OVB with a selected TC as in Eq. (1) is formed. This col-
ored phase profile is embedded in the configuration of rays.
In each z-axial position, the phase difference of arbitrary two
rays is a constant, so we can state that the phase circulation of
an OVB is stable and the TC in Eq.(2) is conserved throughout
the spreading process.

Also, an azimuthal rotation ∆θ of r can be observed during
the ray’s extension as z increases. Using the relation that the
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projection of this ray onto the waist plane is tangent to the
circular orbit, ∆θ is calculated as

∆θ = arctan

(
l0z
kρ2

)
(5)

When z tends to the infinity, |∆θ | becomes π/2. If l > 0,
∆θ = +π/2; if l < 0, ∆θ = −π/2. In Fig. 1(b), the same
rotation rate is attached to each ray of an intact vortex beam.
After propagation, any ray at an initial position (ρ,θ ,0) is re-
placed by another one from the same orbit, resulting to the
invariance of the intensity. However, for the OVB in (d) and
(e), the cylindrical symmetry breaks down and this sponta-
neous twist is exposed during propagation. Such a behavior
looks like that of the so-called spiral beams48. Nevertheless,
such a rotation does not affect the relative phase and amplitude
distribution, leading to the conservation of TC.

The initial field of the OVB, after the certain optical path
length, is mapped via the rays onto the other plane, which is
analogous to the wave diffraction. To demonstrate this point,
we use an example of hybrid OVBs. Two half-circumference
OVBs with opposite TCs, separately placed in the left and right
half space, produce a partial petal pattern near the Fourier
plane (known as an azimuthal prism effect38 or a mirror-
symmetric OV used in optical manipulation49), as shown in
Fig. 2(a). In the view of geometrical optics, the hybrid beam
can be explained as two bundles of rays with opposite rota-
tion rates, still located at the left and right respectively (Fig.
2(b)). The farther the beam travels, the greater the degree of
the overlap between the two ray bundles, until they completely
coincide and interfere in the far field. Of course, the number
of the petals is an indirect evidence of the local phase distri-
bution of an individual OVB.

In general, there can be two or more rays meeting at a same
point, the amplitude mapping from some Cartesian coordinate
points (x j,y j,0) is then written as in Ref.[50]:

E(r) =C
N

∑
j=1

E(x j,y j,0) exp
(

ik
∫

τ j

0
n2dτ j

)
(6)

where C is a constant relevant to the coordinate transforma-
tion between (x,y,z) and (x j,y j,τ j), N is the total number of

FIG. 2. (a): The simulated evolution of two OVBs (l =±2) residing
at the left (OVB1, l =−2, blue) and right (OVB2, l =+2, red) space.
(b): The equivalent two bundles of rays. (c):An orbit in the transverse
petal pattern. (d): The estimated field intensity onto the orbit (c)
using Eq.(6).

rays at one point, n is the refractive index of the medium, and
j is the indice of rays. Particularly, in a point of Fig. 2(b) at
most two rays may come across. By Eq. (6), we can roughly
estimate the intensity along an orbit (Fig. 2(c)) of the com-
bined OVB from the initial field of Fig. 2(a), as can be seen
in Fig. 2(d).

For an ideal OVB, its stability fully depends on the geomet-
rical structure of rays. Although it is not possible to generate
such an OVB with precisely tailored rays (Fig.1(d)), a favor-
able approximation of it can still be implemented based on
diffraction devices, and this OVB still retains its stability to
a certain extent, as the generated light field does not have in-
tense distortions during its propagation. To demonstrate this,
we have derived a wave-field representation of OVBs gener-
ated by modified fork-holograms.

Here, a partial fork-grating (PFG) is utilized. The trans-
mission function of the PFG in the polar coordinates (r,ϕ) is
defined as:

T (r,ϕ) =
+∞

∑
m=−∞

tm exp
[
im(l0ϕ−β r cosϕ)

]
rect
(

ϕ−ϕ0/2
ϕ0

)
(7)

where tm is the transmission coefficient, β = 2π/D with D
being the period of the grating. As the parameters of the PFG,
l0 is now the singularity index of the grating, and ϕ0 denotes
the angular range that light can pass through. In this case, an
initial TC of l in Eq.(2) is defined in the first-order diffracted
beam.

Now using a Gaussian beam as the incident beam of the
grating, the electric field at z = 0 is written as

E(r,ϕ,0) = exp(− r2

w2 )T (r,ϕ) (8)

Here, w is the waist width of the Gaussian beam. When this
beam illuminates the PFG, two OVBs are formed in the +1
and -1 order of the diffraction pattern with opposite opening
orientations, as outlined in Fig. 3(a). The simulated intensity
and phase profile of the discrete vortex array are outlined in
Fig. 3(b) and 3(c). With the paraxial propagation of the ini-
tial field in Eq. (8), its complex amplitude at distance z can
be decided. A thorough report regarding the propagation of
the output pattern is put in Appendix B(See in supplemen-
tary materials). The OVBs in the Fresnel and Fraunhofer zone
have the same form of expression. In a plane (ρ,θ) offset by
the distance z from the initial plane (r,ϕ), as well as in the far-
field regime, the OVB of the diffraction order m is expressed
as

Em(ρ,θ ,z) =
−ik
2πz

exp(ikz)exp(i
k
2z

ρ
2)

×
+∞

∑
p=−∞

πamp
(kρ

2z

)|p|w|p|+2 Γ( 1
2 |p|+1)

Γ(|p|+1)

× 1F1(
1
2
|p|+1, |p|+1;−k2ρ2w2

4z2 )exp
[
ip(θ ∓ π

2
)
]

(9)

where Γ(x) is the Gamma function, 1F1(a,b;x) is a confluent
hypergeometric function, and p is the indice of hypergeomet-
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FIG. 3. (a) Schematic diagram of the OVB generated using a Gaussian beam diffracted by the PFG. (b)-(c): The output (b) intensity and
(c) phase pattern at the Fourier plane. (d)-(f): PFGs with the parameters: l0 = 4;(d) ϕ0 = π/2, (e) ϕ0 = π , (f) ϕ0 = 3π/2. (g)-(i): Far-field
intensity distributions corresponding to (d)-(f). (j)-(l): Phase profiles corresponding to (g)-(i).

ric (HyG) vortex modes. The coefficients amp are

amp =
exp( i(ml0−p)ϕ0

2 )sin( (ml0−p)ϕ0
2 )

π(ml0− p)
(10)

Meanwhile, the OVB in the near-field regime, has a very
similar formula:

Em(ρm,θm,z) =
−ik
2z

exp(ikz)exp(i
k
2z

ρ
2)

×
+∞

∑
p=−∞

amp
ρ
|p|
m

2|p|
√
(w−2− ik/2z)|p|+2

Γ( 1
2 |p|+1)

Γ(|p|+1)

× 1F1

[
1
2
|p|+1, |p|+1;−ρ

2
m/(4w−2−2ik/z)

]
exp
[
ip(θm)

]
(11)

where{
ρm =

√
m2β 2 + k2ρ2/z2 +2mβkρ cosθ/z

θm =∓arctan
[
cotθ +mβ z/(kρ sinθ)

] (12)

Note that the OVB is represented in both Eq. (9) and (11) as
a sum of HyG modes instead of an entire analytical function,
which indicates inhomogeneities in its cross-section. How-
ever, the same form of Eq. (9) and (11) makes sure that the
overall appearance of the open vortex is similar to the origi-
nal one. Specifically speaking, the total phase circulation of
the beam remains stable, and the final TC is exactly what is
defined by Eq. (2) and constrained by the parameters of the
PFG, which will be shown later.

Also, each mode of Eq. (9) adds a π/2 phase rotation, the
direction of which depends on whether the energy flow of the
OVB circulates in the clockwise or counterclockwise, namely,
the sign of the TC. The open ring structure makes this rota-
tional Gouy phase shift visible in the OVB’s propagation.

An initial fractional charge of the field leads to the dynamic
evolution of the TC and birth of local OVs in different regions
of propagation46,47. For simplicity, we restrain the TC to take
an integer value. Thus, the desired PFGs defined by Eq. (7)

are shown in Fig. 3 (d)-(f). The essential parameters are ϕ0 =
π/2 & π & 3π/2 and l0 = 4. The far-field distributions of the
OVBs generated by these gratings can be numerically fitted
using Eq. (9), as shown in Fig. 3 (g)-(i). The OVBs have a
quarter ring, a half ring and a three-quarter ring respectively.
A stable rotating open ring before the beam’s arrival at the
Fourier plane can also be simulated using Eq. (11) from (As
plotted in Fig. 1(e).).

What we are most concerned about is the stability of the
vortex core: Whether the TC is conserved once the parame-
ters of a PFG is determinate? To answer this, corresponding
phase profiles are also illustrated in Fig. 3 (j)-(l). As can be
seen, in the original angle range that light cannot be transmit-
ted, the phase temporarily changes and then falls back, which
does not contribute to the total phase ramp in a round trip.
However, the local phase variation in the open ring remains
stable. Thus, the vortex structure of the OVB is asymmetric
and nonuniform, and this ultimate TC is the same as the initial
TC l of Eq. (2). This means that the TC is conserved during
the beam’s propagation. If the circumference of the open
ring is picked properly, the phase increment in a cycle can be
a multiple of 2π . The "cut-off" of the phase profiles in (j)-(l)
results to TCs of 1,2 and 3. This indicates that an OVB can
possess an arbitrary TC if l0 and ϕ0 are modulated.

To validate the theory and scheme stated above, we mea-
sure both the intensity and phase patterns diffracted by PFGs
experimentally. The experimental setup used to generate and
measure the OVBs is demonstrated in Fig. 4(a). A helium-
neon laser with the wavelength of 632.8 nm emits a Gaussian
beam. After the beam is collimated and broadened by a tele-
scope system, it is diffracted by a computer-generated holo-
gram (CGH), which is equivalent to a PFG. An iris diaphragm
is employed to select the +1 order diffracted beam, which fi-
nally can be observed in the focal range of a Fourier lens L
( f =75cm).

Applying the above system, the π/2 rotation of the OVB
was probed by adjusting the position of the CCD within the
focal length of L, as illustrated in Fig. 4(b).This rotation was
not obvious when the beam initially passed L, but could be
clearly recognized near the focal plane. The open ring was
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FIG. 4. (a) Schematic of the experimental set-up. NA, neutral at-
tenuator; BE, beam expander; AS, aperture slot; CGH, computer-
generated hologram; CCD, charge-coupled device; L, a lens. (b)
Experimental result of the OVB’s rotation in the conditions of l0 =
4,ϕ0 = π . (c) Experimental result of the OVBs in the condition that
l0 = 3∼ 9 and ϕ0 = 3π/2 (all measured at the focal plane).

ultimately rotated by certain degrees compared with the input.

The intensity profiles recorded on the CCD are also shown
in Fig. 4(c). We can see from the comparison that the experi-
mental results are in high concordance with the fitting results
according to the theory.

To directly measure the wavefront and TC of the OVB, a
Shack-Hartmann wavefront sensor, consisting of a lenslet ar-
ray and a position-sensing detector, was used to record the

phase profile of the beam. The local phase aberration of one
pixel from the OVB’s wavefront is turned into an tilt from the
centroid of the detector. Using data of these discrete tilts of all
pixels, we can reconstruct the complex distributions along the
partial rings. Fig. 5 (a1)-(a4) give four examples of measured
phase distributions with specific grating parameters. Mea-
sured TCs are (a1):2.11; (a2): 3.06; (a3):3.70; (a4):3.85. Par-
ticularly, the cases of Fig. 5(a1) and (a2) are what we have en-
countered in simulations in Fig.2 and Fig.3. The TCs of dif-
ferent OVBs were calculated via phase circulations. For frac-
tional OVBs, the effects of local vortices in the low intensity
are omitted, so the total phase variations of these beams are
not necessarily integers.Therefore, both experimentally and
theoretically, we have confirmed that the actual TC is con-
served once it is decided by the parameter of the PFG, which
is also a straight evidence to the structural stability. With such
a scheme, the relationship between the total phase increment
and the parameters of the PFG were obtained, as manifested in
Fig. 5 (b1)-(b2). We can see that the experimental results are
in good agreement with the theory, which shows that the OVB
can possess both an integer TC and an open ring structure.

In summary, we demonstrated that the reported OVB is a
quasi-stable asymmetric vortex with an arbitrary integer TC,
and its model is given by either the superposition of HyG wave
modes or some tailored ray bundles. Our experimental results
are in high concordance with the theoretical predictions. Our
study provides a theoretical foundation for fundamental and
applications of OVBs. Besides the optical force provided by
the OVBs can be used for the guidance of microscopic par-
ticles with intended rotations and obstructions, the open ring
structures and the phase circulations of OVBs are completely
different from those of integer and fractional vortices, which
is of importance to applications such as optical communica-
tions, optical metrology, and quantum information.

FIG. 5. (a1)-(a4): Experimentally probed wavefronts of OVBs generated using specific grating parameters: (a1) l0 = 4,ϕ0 = π; (a2) l0 =
4,ϕ0 = 3π/2; (a3) l0 = 7,ϕ0 = π; (b) l0 = 5,ϕ0 = 3π/2. (b1)-(b2): The experimental relationship between the TC and the singularity index
of the PFG with (b1)ϕ0 = π , (b2)ϕ0 = 3π/2.

SUPPLEMENTARY MATERIAL

See Supplementary Material for appendix of detailed

derivations of the ray-wave model of OVBs.
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