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Abstract7

Optimizing ship operational performance has generated considerable research interest recently to reduce8

fuel consumption and its associated cost and emissions. One of the key factors to optimize ship design9

and operation is an accurate prediction of ship speed due to its signi�cant in�uence on the ship operational10

e�ciency. Traditional methods of ship speed estimation include theoretical calculations, numerical modeling,11

simulation, or experimental work which can be expensive, time-consuming, have limitations and uncertainties,12

or it can't be applied to ships under di�erent operational conditions. Therefore, in this study, a data-driven13

machine learning approach is investigated for ship speed prediction through regression utilizing a high-quality14

publicly-accessible ship operational dataset of the 'M/S Smyril' ferry. Employed regression algorithms15

include linear regression, regression trees with di�erent sizes, regression trees ensembles, Gaussian process16

regression, and support vector machines using di�erent covariance functions implemented in MATLAB and17

compared in terms of speed prediction accuracy. A comprehensive data preprocessing pipeline of operational18

features selection, extraction, engineering and scaling is also proposed. Moreover, cross validation, sensitivity19

analyses, correlation analyses, and numerical simulations are performed. It has been demonstrated that the20

proposed approach can provide accurate prediction of ship speed under real operational conditions and help21

in optimizing ship operational parameters.22
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1. Introduction24

With more than 80% of the world trade handled by shipping, more stringent regulations are introduced25

by the International Maritime Organization (IMO) to improve ships operational e�ciency and reduce its26

greenhouse gas (GHG) emissions. However, in spite of implementing stricter regulations, the total GHG27

emissions from ships as well as the shipping share percentage to the global emissions have increased by28

9.6% and 4.7% respectively between 2012 and 2018 according to the latest IMO GHG study (Faber et al.,29

2020). Therefore, in order to control and reduce these emissions, IMO has adopted mandatory operational30

and technical measures which include the Energy E�ciency Design Index (EEDI) for new ship design and31

the Ship Energy E�ciency Management Plan (SEEMP) for all ships. The EEDI targets a minimum CO232

emissions per cargo carried for newly built ships through implementing design-based solutions. Meanwhile,33

the SEEMP seeks to improve the operational energy e�ciency of ships using operational strategies and34

practices of ship management (Rehmatulla et al., 2017; Bazari and Longva, 2011).35

Among the various EEDI and SEEMP measures available, the speed based measures are increasing in36

popularity for improving ships energy e�ciency and reducing GHG emissions (Capezza et al., 2019). This is37

mainly due to the fact that, a small speed adjustment can result in a signi�cant improvement to the ship fuel38
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consumption and energy e�ciency (Smith et al., 2011). Moreover, applying speed based EEDI and SEEMP39

measures such as speed optimization, voyage execution, or speed reduction for new and existing ships does40

not require an upfront capital or investment costs and payback periods. However, it should be noted that41

altering ship speed can impact the voyage duration and associated costs which a�ects the ship productivity42

and total income (Capezza et al., 2019; Smith et al., 2011). Therefore, predicting ship speed in design stage43

and during operation is an essential element in evaluating the e�ciency of EEDI and SEEMP measures.44

Ship speed prediction is of signi�cant importance in the decision making processes and has many45

implementations in the maritime industry. For example, for more accurate fuel consumption and emissions46

calculations, ship speed is the most principal operational parameter to be determined Bialystocki and47

Konovessis (2016). In addition, it has been shown that ship operating speed is a trend key driver of48

emissions and its growth rate (Faber et al., 2020). Moreover, in ship routing and voyage planning problems,49

an accurate ship speed prediction is essential to estimate the ship expected time of arrival (ETA) and satisfy50

the calling ports time windows constrains (Zis et al., 2020). Also, ship speed is a key factor in developing51

and operating ship trajectory planning and collision avoidance strategies for safer navigation especially in52

narrow channels or heavy tra�c areas (Cockcroft and Lameijer, 2003).53

The overall concept of the ship energy system can be explained as the fuel energy is converted into54

useful thrust by the propeller through the propulsive machinery to overcome the ship total resistance at55

a speci�c ship speed. Therefore, ship speed prediction and calculation depend on the characteristics of56

the ship hull, propulsion machinery, propeller, and the surrounding environment (Molland et al., 2011;57

Journée, 1976). This issue can be approached in di�erent ways; experimentally using ship model tests or full58

scale ship speed trails (ITTC, 2014a,b), numerically by modeling the �ow �eld around the ship hull using59

various computational �uid dynamic (CFD) techniques (Choi et al., 2009), from in-service propeller shaft60

measurements (Dalheim and Steen, 2021), or statistically using for example regression based methods to61

learn and estimate the relations between ship speed/power and other hull, operational, and environmental62

parameters. Measurements of these parameters can be obtained from model and full scale tests as in Holtrop63

work (Holtrop, 1984) or recorded during normal ship operation over a period of time using measuring64

instruments (Mao et al., 2016).65

The recent advancement in sensor technologies, data acquisitions and storage systems enables the66

monitoring of ship operational performance to be more e�cient and reliable owing to the higher data67

quality and integrity (Shenoi et al., 2015). The proper processing and analysis of this data can provide a68

deeper insight into the ship operational performance, extract valuable information from it, and uncover the69

correlation and patterns between the measured data. For these purposes, machine learning and statistical70

approaches have gained substantial momentum in shipping industry in the recent decades (Petersen et al.,71

2012a; Soner et al., 2019). This is because statistical and data-driven models can deal with high-dimensional72

and non-linear data such as the ship operational data without a priori knowledge of the ship underlying basic73

physics (Coraddu et al., 2017, 2015). Also, due to their nature, statistical and machine learning approaches74

have more prediction robustness and easier information extraction from sensor data compared to theoretical75

and parametric approaches (Coraddu et al., 2015; Soner et al., 2019).76

The literature review in the area of ship operational performance monitoring through data analysis is77

dominated by modeling, predicting, and optimizing of the ship fuel consumption for economic as well as78

environmental reasons (Soner et al., 2018; Gkerekos et al., 2019; Uyan�k et al., 2020; Parkes et al., 2018);79

however, there have been a few studies that investigated ship speed prediction based on available ship80

operational data. For monitoring and analyzing the operational performance of a ferry in terms of ship speed81

and fuel consumption, Gaussian Processes (GP) and neural network models were compared in (Petersen82

et al., 2012a). Based on the same dataset, the Ridge and LASSO regression models were also compared in83

(Soner et al., 2019). Moreover, tree based regression models were proposed in (Soner et al., 2018) for the84

same ship showing a comparable performance with the aforementioned models. Meanwhile, the operational85

performance of a containership was modeled in terms of ship speed and and engine power using GP model in86

(Yoo and Kim, 2019). In another study for speed prediction of a container ship, a preliminary investigation of87

the linear regression, autoregressive and the mixed e�ects models was conducted in (Mao et al., 2016) using88

a limited amount of operational data. Linear regression was also compared to the generalized additive and89

projection pursuit regression models for speed prediction in (Brandsæter and Vanem, 2018). Furthermore,90
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speed prediction through regression was proposed for weather routing optimization study in (Krata and91

Szlapczynska, 2018), for modeling ship maneuverability in (Wang et al., 2015), and for navigation safety92

and collision avoidance of ice class ships in (Similä and Lensu, 2018).93

From the above, it can be seen that ship speed prediction is of great concern for di�erent purposes with94

di�erent approaches being considered. Although ship speed can be predicted mathematically during design95

stage or be measured directly during operation using satellite based technologies such as global positioning96

or automatic identi�cation systems, the purpose of this work is to predict ship speed based on measured97

real ship operational data as inputs to a machine learning model. This can be extended to provide deeper98

insights into the relation between ship speed and other ship operational parameters which is essential for99

operational optimization and decision support purposes. As a result, helping decisions makers and shipping100

companies to move towards more e�cient operation environmentally and economically.101

Much of the current literature utilizes di�erent ship types and datasets, with di�erent data acquisition102

systems, processing techniques, and data scaling methods. Therefore, due to this inconsistency, it is103

inconclusive which model is more accurate in terms of ship speed prediction. To remedy this gap, the104

aim of this work is to train and validate various conventional regression models to examine and compare105

their prediction accuracy of ship speed using a high quality ship operational dataset. The studied machine106

learning regression models include Multiple Linear Regression (MLR), Regression trees with di�erent sizes,107

Ensembles of trees using both bagging and boosting techniques, Gaussian Process Regression (GPR), and108

Support Vector Machine (SVM) models using di�erent covariance functions and kernels. These algorithms109

are the most commonly used and they are chosen for their robustness, e�ciency, power, and accuracy. Also,110

sensitivity analysis of di�erent data preprocessing methods (Data scaling) as well as di�erent number of111

data splits for cross validation are performed to assess its e�ect on the statistical performance of di�erent112

regression models. Furthermore, a correlation analysis and computational experiments are conducted to113

study and examine the relation between ship speed and other ship operational parameters.114

The paper is organized as follow; Section 2 introduces the examined ship and dataset preprocessing.115

Section 3 describes the used methodology, the studied regression models, and their validation and evaluation.116

Meanwhile, Section 4 shows the results and discussion. Finally, Section 5 presents the work conclusions,117

recommendation, and future work.118

2. Ship & data description119

This work utilizes the existing publicly available sensor data from the domestic ferry the 'M/S Smyril'120

operating around the Faroe Islands. The ferry's speci�cation is provided in Table 1. An automated on-board121

data acquisition system recorded for the ferry's two or three trips per day over a period of nearly two months122

from February 16th to April 21th 2010 completing, approximately 250 trips (Propulsion modelling, 2021;123

Petersen et al., 2012b). To improve the quality and representation of the collected dataset, the following124

data preprocessing has been undertaken as part of this study.125

Table 1: Speci�cations of the M/S Smyril ferry

Parameter Value
Length 123 m
Breadth 22.7 m
Draft 5.6 m
Passenger capacity 975
Car capacity 970 m / 200 cars
Service speed 21 kn
Main engines 4 * MAN B&W 7L32/40
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2.1. Data preprocessing126

2.1.1. Feature selection & extraction127

One of the most commonly used data preprocessing technique is feature selection which is used to128

identify the important variables within the dataset and remove the unnecessary features. This, consequently,129

results in reducing the data dimensionality and the modeling computational cost, and improving the model130

performance. Therefore, a correlation analysis is performed to show the interrelation between the ship speed131

as the independent variable and other operational variables as presented in Table 2. Linear correlation is132

usually used to express the relationship between variables as in (Uyan�k et al., 2020; Gkerekos et al., 2019;133

Brandsæter and Vanem, 2018). However, a nonlinear relationship may exist and not be captured. Therefore,134

distance correlation is also deployed to test the nonlinear correlation between various variables. The linear135

coe�cient value ranges between 1 and -1, while distance correlation coe�cient ranges from 0 to 1. For both136

coe�cients, a value of 0 indicates no correlation between variables and a value close to 1 implies a strong137

relationship. Meanwhile, the linear correlation sign indicates the direction of the correlation trend.138

Table 2: Correlation of ship speed to other operational variables

Variables Linear correlation Distance correlation
Port propeller pitch 0.9067 0.8832
Starboard propeller pitch 0.8862 0.8632
Port rudder angle 0.6689 0.7212
Headwind 0.1370 0.1904
Crosswind -0.0003 0.0921
Starboard rudder angle -0.2020 0.6099
Trim angle -0.2392 0.3108
Draft -0.4609 0.4011

According to Table 2, the port and starboard propeller pitch as well as the port and starboard rudder139

angle have signi�cant e�ect on the ship operational speed. This is due to the fact that varying the propeller140

pitch varies the provided propeller thrust and ship speed while the altering the rudder angle a�ects the ship141

resistance and, accordingly, the ship speed. As can be noticed in Table 2, the dependence power between142

the ship speed and starboard rudder angle is detected by the distance correlation more than the linear143

correlation due to its nonlinearity nature. Moreover, the ship trim angle and draft have a high impact on144

the ship speed since it can a�ect the ship resistance and consequently the ship operational performance.145

Therefore, a trim optimization at di�erent draft conditions can be conducted to further improve the ship146

operational e�ciency. Likewise, for reducing the load on the engine bearings and shafting system, the impact147

of optimizing the propeller controllable pitch on the ship speed can be examined for decision support. On148

the contrary, headwind and crosswind variables show insigni�cant correlation, which is mostly due to the149

fact that the utilized dataset covers about two months of operation alternating within a narrow range.150

Measurements of the selected operational variables, which are used to train the ship speed prediction151

models, were carried out as follows: the ship speed measured using a Doppler speed log, trim angle measured152

using an inclinometer, port and starboard water level measurements measured using two radars placed on the153

ship sides, port and starboard propeller pitch, port and starboard rudder angle, wind angle and direction154

as presented in Table 3. These variables have the most signi�cant e�ect on ship speed and operational155

performance (Soner et al., 2018; Yoo and Kim, 2019).156

The selected parameters were �rstly extracted from the raw data and arranged into separate voyages.157

Then, due to the di�erent sampling frequencies of the measurements as shown in Table 3, the extracted158

data was resampled at an average frequency of 1 Hz and averaged over 10 minutes windows or intervals159

as suggested in (Pedersen and Larsen, 2009; Leifsson et al., 2008). The resulted total data size is 2654160

observations of each feature for the given dataset.161
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Table 3: Selected parameters and measurement frequency (Propulsion modelling, 2021)

Feature Unit Measurement
frequency (Hz)

Ship speed Kn 1
Trim angle degree 3
Port water level measurement m 3
Starboard water level measurement m 3
Port propeller pitch V olt 1
Starboard propeller pitch V olt 1
Port rudder angle V olt 1
Starboard rudder angle V olt 1
Wind angle degree 0.5
Wind speed m/s 0.5

2.1.2. Feature engineering162

In order to improve the performance of machine learning algorithms, new features can be engineered163

from the raw data to better represent the ship operational data. For example, the port and starboard water164

level measurements were transformed into draft amidships as a function of the radars heights, angles, and165

distance from the midship. Also, the inclinometer readings were corrected to have the real ship trim angle.166

Moreover, the wind speed Vwind and angle θwind measurements were transformed into two new features called167

the headwind Vhw and crosswind Vcw to eliminate the circular discontinuity issue of the wind direction when168

it passes between 0◦ and 360◦ using Equations 1.169

Vhw = Vwind. cos(θwind)

Vcw = Vwind. sin(θwind)
(1)

Figure 1 shows the processed data after features selection, extraction and engineering against ship speed.170

As expected and reported in the literature, there are nonlinear relationships between ship speed and other171

ship operational parameters. It can, however, be noted that ship speed is proportional to the propeller pitch.172

As shown in Figure 1, the ship draft is spread between 5 and 6m while the trim angle corresponds to a173

trim between -1.5 to 1.25m (Petersen et al., 2012a; Soner et al., 2019). Regarding the ship speed, its average174

value varies mostly between 15 and 20Kn as shown in Figure 2. This is due to the fact that the ship slows175

only at dock while loading and unloading. Also, the wind speed tends to increase with the ship speed as176

shown in Figure 3 with an average headwind speed of 11m/s.177

2.1.3. Feature scaling178

Since di�erent ship operational parameters have di�erent ranges and units, features scaling is an important179

preprocessing step. Hence, di�erent features can be comparable to each other and contribute equally to the180

machine learning objective functions. Standardization and normalization are two common scaling methods181

and both are introduced into this study to test their impact on di�erent regression models. Standardization182

scales the features data to unit variance and removes its mean according to Equation 2. Meanwhile,183

normalization scales the features data between 0 and 1 using min-max scaling as in Equation 3.184

xs =
x− µ

σ
(2)

xm =
x− xmin

xmax − xmin
(3)

where xs and xm are the dimensionless standardized and normalized values of the actual variable x respectively.185

µ is the mean value of the variable x entire data, σ is its standard deviation, xmin and xmax are the minimum186

and maximum values of the variable x respectively. The processed data is then used to train and validate187

di�erent predictions models as will be discussed in the following sections.188
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Figure 1: Scatter plots of ship speed versus processed ship operational parameter

Figure 2: Average ship speed for each trip

3. Prediction models189

In reality, ship speed is in�uenced by many factors including ship operational conditions (e.g. draft, trim)190

as well as environmental conditions which makes it di�cult to be modeled using conventional approaches.191
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Therefore, machine learning regression techniques are applied in this research to predict ship speed as a192

function of measured ship operational parameters and surrounding environment conditions. These parameters193

are used to train regression models to construct a mapping function from input variables to infer the output194

ship speed variable, and then make prediction for new data. In the following sections, a diverse set of195

common regression models are described which vary in their level of complexity and accuracy. These models196

are then employed and compared for ship speed prediction.197

3.1. Multiple linear regression (MLR) model198

MLR is an extension of linear regression that assumes a linear relationship between the response variable199

(yi) and the predictor variables (xi1 to xip) as shown in Equation 11.200

yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + ϵ (4)

where (β0) is the constant term in the model, (β1 to βp) are the corresponding coe�cients of the predictor201

variables (xip), and (ϵ) is the error term of the model. Due to its advantages of simplicity and ease of202

interpretation, MLR is one of the most popular parametric models and it is normally used as a reference to203

compare other models performance (Gkerekos et al., 2019).204

3.2. Regression trees205

Tree-based regression model is one of the advanced and accurate non-parametric statistical model which is206

suitable for non-linear parameters such as ship operational datasets (Soner et al., 2018). Building a regression207

tree for prediction involves two main steps; dividing the predictor variables into distinct non-overlapping208

regions (R1 to Rj). Then, predictions are made from the mean response values of the training observations209

for every observation in di�erent regions R(1..j) (James et al., 2013). Meanwhile, the main goal is to �nd210

the regions that minimizes the Residual Sum of Square (RSS) shown in Equation 5.211

RSS =

J∑
j=1

∑
iϵRj

(yi − ŷRj )
2 (5)

where ŷRj is the training observations mean response within the jth region and j = 1, 2, .., p and p212

represents the number of regions or leaves of the tree. The number of these regions or leaves de�nes the213

regression tree size and its level of accuracy, �exibility, and robustness. Whilst a �ne regression tree can214

produce more accurate results, the over�tting risk increases. In contrast, a coarse regression tree has lower215

training accuracy but it is more robust with lower variance (James et al., 2013). Consequently, choosing216

the regression tree size is essential to have balance between the model complexity, speed, accuracy, and217

over�tting risk.218

3.3. Ensembles of trees219

Despite the advantages of regression tree models, they can su�er from high variance, bias and over�tting.220

Therefore, multiple regression trees can be combined to build an ensemble of trees to improve the predictive221

performance of the model (James et al., 2013). Two of the most popular ensemble techniques to aggregate222

many regression trees are bagging and boosting. Bagging or bootstrap aggregating uses multiple separate223

training sets from the original training dataset randomly with replacement to train di�erent regression224

trees. The predictions of di�erent trees (f̂∗1(x) to f̂∗B(x)) are then calculated and averaged as follows225

which reduces the variance compared to a single regression tree (James et al., 2013).226

f̂bag(x) =
1

B

B∑
b=1

f̂∗b(x) (6)

where f̂bag(x) is the average prediction of all the regression trees and B is the number of the separate227

training sets and trees. On the other hand, boosting technique grows the number of trees B sequentially228

where each tree utilizes a modi�ed version of the whole dataset using information from the previously grown229
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tree (James et al., 2013). The learning process improves the prediction performance of each tree from f̂1(x)230

to f̂B(x) by updating the observations' weights of the training dataset without bootstrap sampling and the231

boosted model output f̂boost(x) is given as follows:232

f̂boost(x) =

B∑
b=1

λf̂ b(x) (7)

where λ is the shrinkage parameter which controls the rate of the boosting learning process. The shrinkage233

parameter and theB number of trees for both bagging and boosting methods are determined by cross-validation234

as explained later.235

3.4. Gaussian process regression (GPR) models236

Implementing a Gaussian process (GP) for regression purposes has been proposed considerably due to237

its power, e�ciency, and accuracy. Also, GP-based regression models can describe the uncertainty and238

non-linearity between the dataset parameters through a nonparametric approach (Rasmussen and Williams,239

2006). Therefore, GPR models are proposed for ship operational data analysis and ship speed prediction240

(Yoo and Kim, 2019; Petersen et al., 2012a).241

A GP is a collection of random variables where any �nite collection of which are described by a joint242

Gaussian probability distribution. Whereas in GPR, the function of variables f(x) is assumed to be243

distributed as a GP which is de�ned by its mean function m(x) and covariance function k(x, x′) as follows.244

f(x) ∼ GP (m(x), k(x, x′)) (8)

One of the most popular covariance function and commonly used is the squared exponential (SE) or245

the radial basis function (RBF) (Rasmussen and Williams, 2006; Yuan and Nian, 2018). This covariance246

function kSE(r) or kSE(x, x
′) is very smooth due to its in�nitely di�erentiable nature and it can be written247

as follows.248

kSE(r) = exp(− r2

2l2
) = exp(−|x− x′|2

2l2
) (9)

where x and x′ are the training and testing points pairs respectively and l de�nes the characteristic249

length-scale for the input values. It should, however, be noted that the assumed SE smoothness may not be250

realistic to model some physical systems. Therefore, the Matérn class of Gaussian process is recommended251

because it includes a parameter (ν) that can control the learned function smoothness (Rasmussen and252

Williams, 2006; Stein, 1999). One type of the Matérn class functions is the exponential covariance function253

obtained when ν = 1/2 which is a continuous but not di�erentiable function as the SE function and it can254

be de�ned as follows:255

kν=1/2(r) = exp(− r

l
) (10)

Both functions, the exponential and squared exponential, are common and widely used and they are256

implemented in this study to be compared in terms of their accuracy of ship speed prediction.257

3.5. Support vector machine (SVM) models258

Due to its robustness, accuracy, power, and generalization ability, SVM is one of the most attractive259

supervised learning model proposed for many �elds which can be used for classi�cation and regression260

(Uyan�k et al., 2020; Awad and Khanna, 2015). In regression problems, SVMs are built as regressors which261

try to �t a hyperplane or a function that predicts a continuous target value within a tolerance margin or262

a decision boundary based on the training samples. The objectives of adjusting this margin is to minimize263

the prediction error and balance it with the model complexity and robustness.264

SVM is also a kernel based technique which extends its functionality by using di�erent kernel functions265

depending on the data type. Therefore, SVM can be a parametric model using a linear kernel or a266
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non-parametric model using an RBF kernel. Popular kernel functions include: linear kernel in Equation 11,267

polynomial kernel in Equation 12, and Gaussian kernel in Equation 14.268

k(x, x′) = xTx′ (11)

k(x, x′) = (1 + xTx′)d (12)

k(x, x′) = exp(−γ||x− x′||2) (13)

where d is the polynomial degree of kernel and γ is the Gaussian kernel scale hyperparameters which can be269

adjusted to enhance the SVM model performance. Therefore, di�erent polynomial degrees and kernel scales270

are investigated in this study to �nd the optimal model con�guration.271

3.6. Prediction performance evaluation272

In order to examine the predictive accuracy of the employed models and measure its e�ectiveness,273

prediction performance indices can be used. However, training the prediction models and testing its274

performance using the same dataset can give overoptimistic results (Arlot et al., 2010). Therefore, a275

validation scheme is implemented to split the dataset into a training dataset to train the prediction models,276

and a test dataset to validate its performance after training. Then, a number of performance measures can277

be used to compare all the models performance as explained in the following subsections.278

3.6.1. Cross validation279

Validation reduces the risk of over�tting and ensures the generalization capabilities of the trained280

prediction models and the robustness of its hyperparameters' values. However, partitioning the available281

data into training and test datasets reduces the available data for training as well as for validating the282

models. To address this issue, cross validation is applied in the form of K-folding which is widely used and283

preferred in the literature (Uyan�k et al., 2020; Gkerekos et al., 2019).284

In K-fold cross validation method, the dataset is split into k subsets or folds where K-1 subsets are285

combined and used to train the prediction models and the remaining subset is used for validation. This286

process is repeated for K times where each time, one of the K folds is used as a validation subset. Finally,287

the average validation error of all the K runs are obtained. By using this technique, most of the data is used288

for training as well as for validation which reduces the bias and variance and gives a good estimation of the289

predictive accuracy of the studied models. Nevertheless, di�erent suitable values of K are reported in the290

literature including 4 in (Uyan�k et al., 2020; Leifsson et al., 2008), 5 in (Yan et al., 2020; Hu et al., 2019),291

10 in (Soner et al., 2018, 2019), 20, 30, and 50 in (Brandsæter and Vanem, 2018; Coraddu et al., 2017).292

Therefore, a sensitivity analysis of di�erent K values is made in this study.293

3.6.2. Coe�cient of determination R2
294

The coe�cient of determination R2 explains the variation of the measured response variable yi as a295

function of the response variable prediction made by the trained model ŷi and the average value of the296

response variable ȳi as follows297

R2 = 1−
∑n

i=1(yi − ŷi)∑n
i=1(yi − ȳi)

(14)

where n is the number of samples. R2 value varies normally from 0 to 1 where a higher value means a better298

�t of the trained model to the data.299
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3.6.3. Mean squared error (MSE)300

This index measures the mean of the square of all errors between the predicted and the measured values301

of the response variable as shown in the following equation.302

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (15)

By squaring the errors, MSE is always positive and it gives more weight to high errors. The lower the303

MSE, the better the prediction model performance.304

3.6.4. Root mean square error (RMSE)305

RMSE is the most commonly used and easily interpreted statistic, as it has the same unit of the studied306

variable that better re�ects the prediction models performance. It is calculated by taking the square root307

of the MSE as shown in the following equation.308

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (16)

3.6.5. Mean absolute error (MAE)309

This criterion is similar to the RMSE. However, it is more robust and less sensitive to data outliers310

compared to the MSE. MAE corresponds to the average of all the absolute errors and can be calculated as311

follows.312

MAE =
1

n

n∑
i=1

|yi − ŷi| (17)

3.6.6. Methodology implementation & parameters313

The discussed prediction models as well as the examined ferry dataset are modeled mathematically and314

implemented in MATLAB environment in order to compare the performance of these models in terms of315

its accuracy of predicting the ship speed. First, the dataset collected from the ferry 'M/S Smyril' is loaded316

into the MATLAB workspace, the selected parameters are extracted, resampled, averaged, and engineered317

as explained in 2. Regarding the data scaling, a quantitative analysis is performed to study the sensitivity318

of various prediction models to di�erent scaling techniques. Therefore, the examined regression models are319

trained with the raw, standardized, and normalized versions of the ferry dataset to show its impact on the320

performance and results of di�erent models. These datasets are then split into training and testing datasets321

to validate the prediction models according to the K-fold cross validation method where K values of 5, 10, 30,322

and 50 are used to study the e�ect of this parameter on the the performance of di�erent models. Moreover,323

to get more consistent results, models training is repeated 10 times as suggested in (Gkerekos et al., 2019)324

and results are averaged. Finally, the performance metrics are computed to evaluate and compare di�erent325

models in terms of prediction accuracy of ship speed.326

For the tree-based regression model, three di�erent regression tree sizes are studied to investigate the327

trade-o� between the tree model accuracy and complexity. A minimum leaf size, that indicates the number328

of variable observations in a tree leaf, of 4, 12, and 36 are used which corresponds to �ne, medium, and329

coarse regression trees respectively as suggested in (MATLAB, 2021). For the ensembles of trees model,330

the two most popular techniques of aggregating regression trees, which are bagging and boosting, are331

investigated with a shrinkage parameter or learning rate of 0.1 and a minimum leaf size of 8 as recommended332

in (MATLAB, 2021). Regarding the SVM regression model hyperparameters, the polynomial kernel degree333

d is set to 2 and 3 for the quadratic and the cubic SVM models respectively which are compared to the334

linear SVM model. For the SVM Gaussian kernel scale, γ is set to
√
P/4,

√
P , and 4

√
P which correspond335

to �ne, medium, and coarse Gaussian SVM models respectively where P is the number of the trained model336

predictors (MATLAB, 2021). The aforementioned models are integrated in the 'Regression Learner App' of337
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MATLAB's Statistics and machine learning toolbox. In this study, MATLAB R2019b is used on a desktop338

computer (Intel Core i7, 3.4 GHz, Memory 16 GB).339

4. Results & analysis340

As shown in Table 4, the GPR model with the the Matérn class or exponential kernel yields the best341

results with an R2 of 0.91 and RMSE of 0.91 kn utilizing the raw dataset. This indicates that controlling342

the smoothness behavior of the stochastic processes realization as in the Matérn class can be bene�cial for343

modeling realistic physical systems. The GPR model with the squared exponential kernel and the bagged344

trees ensemble model provide accurate results with an R2 of 0.88. On the other hand, the SVM model345

using a �ne Gaussian kernel performs the lowest estimation with an R2 of 0.51 due to its small-scale kernel346

function. It follows that a rapid variations in the SVM response function which causes the model to over�t347

and doesn't perform accurately in the low ship speed region as illustrated in Figure 3. By increasing348

the Gaussian kernel scale value γ, a less complicated SVM model can be obtained with better prediction349

performance as demonstrated by the medium Gaussian SVM model. However, the prediction errors start350

to increase again for large γ value which results in a rigid SVM response function with higher probability of351

under�tting as shown in Table 4 and Figure 3 for the coarse Gaussian SVM model.352

Table 4: Performance measures for di�erent machine learning approaches using 5-fold cross validation

Raw data Standardized data Normalized data

RMSE R2 MSE MAE RMSE R2 MSE MAE RMSE R2 MSE MAE

Linear 1.17 0.86 1.37 0.92 0.38 0.86 0.142 0.295 0.052 0.86 0.0027 0.0406

Regression trees:

Fine tree 1.19 0.86 1.41 0.87 0.39 0.85 0.154 0.291 0.053 0.85 0.0028 0.0396
Medium tree 1.14 0.87 1.29 0.84 0.37 0.86 0.138 0.278 0.051 0.86 0.0026 0.0383
Coarse tree 1.16 0.86 1.35 0.87 0.38 0.86 0.142 0.285 0.052 0.86 0.0027 0.0395

Trees Ensemble:

Boosted trees 1.31 0.82 1.72 1.04 0.34 0.89 0.115 0.259 0.057 0.83 0.0033 0.0448
Bagged trees 1.06 0.88 1.12 0.78 0.34 0.88 0.117 0.252 0.047 0.86 0.0022 0.0348

GPR:

SE 1.06 0.88 1.11 0.80 0.34 0.89 0.114 0.257 0.046 0.89 0.0022 0.0353
Exponential 0.91 0.91 0.84 0.68 0.29 0.91 0.086 0.220 0.041 0.91 0.0017 0.0305

SVM:

Linear 1.18 0.86 1.38 0.91 0.38 0.86 0.143 0.294 0.052 0.86 0.0027 0.0405
Quadratic 1.14 0.87 1.30 0.85 0.37 0.86 0.136 0.276 0.051 0.86 0.0026 0.0379
Cubic 1.54 0.76 2.37 0.86 0.40 0.84 0.159 0.274 0.061 0.80 0.0037 0.0380
Fine Gaussian 2.17 0.51 4.71 1.25 0.70 0.51 0.492 0.406 0.097 0.51 0.0093 0.0560
Medium Gaussian 1.11 0.87 1.23 0.80 0.36 0.87 0.126 0.256 0.049 0.87 0.0024 0.0354
Coarse Gaussian 1.13 0.87 1.28 0.87 0.36 0.87 0.132 0.280 0.050 0.87 0.0025 0.0386

In the same way, the medium regression tree model performs better than the �ne and coarse tree models353

as shown in Table 4. This is due to the fact that there is a trade-o� between the regression tree size and354

the model performance. Therefore, a coarse regression tree with fewer large leaves results in spreading the355

speed predictions over fewer large regions compared to the medium and �ne tree models as shown in Figure356

3. Meanwhile, a very leafy �ne tree can result in over�tting and lower its generalization capability. It should357

be also mentioned that the studied prediction models also perform similarly to Figure 3 when utilizing the358

standardized and normalized versions of the dataset.359

Regarding the ensemble of trees models, the bagging technique provides better results than the boosting360

technique using the raw and normalized datasets as detailed in Table 4. Meanwhile, by standardizing361

the dataset before training, the boosted trees model performance gets better and provides comparable362

performance to the bagged trees model. This can be explained by the fact that data standardization363

improves the data consistency which enhances the sequential learning process of the boosted trees model.364
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Figure 3: Predicted ship speed versus actual ship speed measurements for di�erent machine learning approaches using raw
data and 5-fold cross validation

Therefore, this indicates that the boosted trees model is more sensitive to the dataset variables range and365

feature scaling than the bagged trees model.366

In order to study the sensitivity of other regression models to the dataset scale and appropriately compare367

their performance, the RMSE value index is calculated for di�erent models using the raw, standardized, and368

normalized versions of the dataset. The value index number is calculated as a percentage of the RMSE of369

di�erent models compared to the lowest RMSE as a base value as shown in Figure 4.370

Since the exponential GPR model achieves the lowest RMSE, it is used as a baseline with a value index371
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Figure 4: RMSE index value percentage of di�erent machine learning approaches change from the base value using 5-fold cross
validation

of 100%. As can be found in Figure 4, algorithms such as the boosted trees and the SVM model with cubic372

kernel are more sensitive to the range of their input values than other models. Accordingly, standardizing373

the dataset before training the boosted tree instead of using the raw dataset can reduce the RMSE value374

index by 20%. Meanwhile, normalizing the dataset before training the cubic kernel SVM can reduce the375

RMSE value index by 8% compared with using the raw dataset as well. Regarding other models, a slight376

accuracy improvement can be achieved by suitably processing the dataset before training the regression377

models.378

The statistical performance of regression models can also be a�ected by the size of the training and test379

dataset which is decided by the k-fold cross validation. Therefore, di�erent values of K is used to split the380

dataset into K folds to train and validate di�erent regression models to study the impact of this parameter381

on their accuracy in terms of RMSE as shown in Figure 5.382

Figure 5: RMSE of di�erent machine learning approaches using the standardized data with K values of 5, 10, 30, and 50

As indicated in Figure 5, increasing the number of folds K reduces the calculated RMSE of di�erent383
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machine learning approaches. This is because, as explained earlier, using higher values of K increases the384

size of the training dataset which improves the models statistical performance. However, this improvement385

is more signi�cant for the cubic and �ne Gaussian SVM models which their RMSE are reduced by 11%386

and 3% respectively by increasing K from 5 to 50. For other approaches, increasing the number of folds K387

results in a RMSE reduction of less than 3%. Nonetheless, longer training time and higher computational388

cost are required by hard interpretability models such as GPR, quadratic and cubic SVM models as a result389

of increasing the number of data splits as detailed in Table 5. Therefore, a K value of 10 can be considered in390

further studies to manage the trade-o� between the models predictive quality and computational complexity.391

Table 5: Required training time for di�erent machine learning approaches with K values of 5, 10, 30, and 50

Training time (minute)

K=5 K=10 K=30 K=50

Linear <1 <1 <1 <1

Regression trees
Fine tree <1 <1 <1 <1
Medium tree <1 <1 <1 <1
Coarse tree <1 <1 <1 <1

Trees Ensemble
Boosted trees <1 <1 <1 <1
Bagged trees <1 <1 <1 <1

GPR
SE 1.3 2.4 6.4 9.7
Exponential 1.8 3.3 8.7 12.9

SVM
Linear <1 <1 <1 <1
Quadratic <1 <1 1.2 1.9
Cubic 2.8 5.2 16.6 27
Fine Gaussian <1 <1 <1 <1
Medium Gaussian <1 <1 <1 <1
Coarse Gaussian <1 <1 <1 <1

4.1. Computational experiments392

In order to demonstrate the functionality of the proposed methodology in the optimization and decision-making393

processes, di�erent computational experiments are conducted to estimate the impacts of changing signi�cant394

operational parameters on the ship speed. Operational parameters such as the propellers pitch and ship395

drafts are used as inputs to the trained exponential GPR model, due to their signi�cant e�ect on the ship396

speed, and the results are compared with the model predicted speed using the real ship operational data397

and the real measured ship speed.398

In the �rst case, two propellers pitch values of 95% and 70% are used instead of the real propellers pitch399

values while using other real operational data of trim, draft, rudders angles, and environmental conditions.400

As shown in Figure 6, increasing the propellers pitch value results in higher ship speed. However, the401

propeller and engine rotational speeds should be taken into consideration while selecting the propeller pitch402

for higher operational e�ciency of the ship propellers and engines.403

In the second case, two di�erent values of ship draft of 5m and 6.5m are simulated while using other404

real ship operational data of trim, propellers pitch, rudders angle, and environmental conditions. As shown405

in Figure 7, increasing the ship draft reduces the ship speed as a result of increasing the ship resistance,406

and correspondingly higher ship speed are obtained at relatively small ship draft of 5m. On the other hand,407

lighter ship drafts may increase ship resistance at inappropriate trim angles. Therefore, optimization of ship408

draft/trim combination should be made for more e�cient ship operation.409

Another case to further test the generalization capability of the developed ship speed prediction model410

is conducted by adapting a new unseen test case where multiple operational parameters are changed. It411
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Figure 6: Real vs predicted ship speed at di�erent values of propellers pitch using the exponential GPR model with 5-fold cross
validation

Figure 7: Real vs predicted ship speed at di�erent values of ship draft using the exponential GPR model with 5-fold cross
validation

is assumed that the ship is loaded to a draft of 6m sailing in a headwind of 20 m/s with an average trim412

angle of 0.05 degree aft. As a result, a reduced propellers pitch of 75% is selected for more e�cient shipping413

operation by properly loading the main engines without having to increase its speed or heavily running the414

propellers. Then, it is assumed that the wind speed is changed during sailing to 5 m/s headwind which415

allows the propellers pitch to be increased to 90% gradually to avoid any operational delays. The predicted416

ship speed for this case is presented in Figure 8 using the exponential GPR model with the propellers pitch417

change given in the top plot. However, no real data is available to validate this scenario. Therefore, the418

exponential GPR model performance is validated with respect to the prediction of one accurate model of419

each regression algorithm type as illustrated in Figure 8 which also shows the response of di�erent models420

to the input signals of propeller pitch, wind speed, and rudder angle.421

According to the obtained results, the developed methodology can help ship operators and decision422

makers with evaluating the e�ect of changing the operational parameters on the ship speed. Consequently,423

it can help in creating more advanced models of voyage tracking and monitoring or optimization of di�erent424
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Figure 8: Predicted ship speed for the test case using the exponential GPR model with 5-fold cross validation compared to
other regression models

ship operational parameters.425

5. Conclusions426

In recent years there has been a growing interest in monitoring and optimizing ship operation for better427

sustainability and pro�tability which requires accurate speed prediction. Among di�erent approaches of ship428

speed prediction, machine learning and statistical methods have gained substantial momentum in shipping429

industry driven by the advances in computer power and the increasing operational data availability. This430

allows data-driven models based on machine learning to raise its responsiveness, analytical and prediction431

capabilities with more accuracy by extracting hidden information from the collected datasets.432

A performance comparison of the most commonly used machine learning regression algorithms in terms433

of their prediction accuracy of ship speed in real operational conditions utilizing a high quality operational434

dataset of a ferry has been presented in this paper. For this, a framework for data preprocessing is provided435

which includes the selection and extraction of the operational features having signi�cant in�uence on the436

ship speed. Moreover, new features have been engineered as well for better statistical performance of the437

studied models. Features transformation and scaling have been also made before training the machine438

learning regression algorithms. Then, cross validation has been made to avoid over�tting and assess the439

models generalization capability to new data. This paper also provides useful insights into the e�ect of440

di�erent data scaling techniques on the prediction accuracy of the regression models. Also, a sensitivity441

analysis of di�erent folds number and data splits for the cross validation has been made. Furthermore, the442

e�ect of changing di�erent operational parameters on the ship speed is investigated through a correlation443

analysis using di�erent techniques. The main �ndings can be summarized as follows:444

� The studied regression models can accurately predict the ship speed with good accuracy except for445

the SVM with �ne Gaussian kernel which had only R2 of 0.51.446

� The GPR method with the Matérn kernel function outperformed all other models in predicting ship447

speed with an R2 of 0.91 but with more required training time.448

16

Ameen
Highlight



� Multiple linear regression which is a considerably simpler algorithm has provided comparable accurate449

results.450

� Regression trees and trees ensemble models have yielded accurate ship speed prediction with lower451

computational time. It should, however, be noted that the ensemble boosted trees was sensitive to the452

data scaling technique which a�ected its prediction accuracy.453

� The performed sensitivity analysis showed that the SVM algorithms can be sensitive to the data scaling454

technique as well as the cross validation number of folds depending on the used covariance function.455

An accuracy increase of 11% and 3% has been achieved in the RMSE of the cubic and �ne Gaussian456

SVM models respectively by increasing the cross validation fold number from 5 to 50.457

� Other model performance hasn't improved noticeably by changing the fold number. Therefore, a458

10-fold cross validation can be recommended for computationally e�cient model performance in terms459

of prediction accuracy and complexity.460

� Computational experiments have been conducted using the proposed methodology to manage the ship461

operational parameters and evaluate its e�ect on the ship speed where the simulation results were462

rational.463

By accurately predicting ship speed, the outcomes of this paper can help ship management companies in464

creating further advanced models for the purposes of route optimization, ship tracking, voyage planning, etc.465

Also, the proposed methodology can be applied without di�culty to any ship type at di�erent operational466

conditions or to predict or optimize other important operational parameters such as ship trim or propeller467

controllable pitch which can be part of the future work. Performance comparison with arti�cial neural468

networks should be also made in future studies considering the suitable network architecture, number of469

layers, neurons, etc.470
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