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Constrained Iterative Learning Control for Linear Time-Varying
Systems with Experimental Validation on a High-Speed Rack Feeder

Bing Chu, Andreas Rauh, Harald Aschemann, Eric Rogers, and David H Owens

Abstract—TIterative learning control (ILC) applies to systems
required to track the desired trajectory of finite duration
repeatedly. This paper considers constrained ILC design for
linear time-varying systems, a problem with limited, in relative
terms, results in the literature but not uncommon in practical
applications. Different design algorithms are developed and their
convergence properties established. An extension of these designs
to point-to-point tracking tasks is given. A high-speed rack
feeder typically used in automated warehouses is considered to
verify the designs. It represents a flexible beam structure subject
to kinematic constraints such as a maximum velocity and a
maximum acceleration with a vertically moving mass causing the
time-varying characteristics. Experimental results demonstrate
the effectiveness of the designs.

Index Terms—iterative learning control, constrained control,
experimental validation.

I. INTRODUCTION

Iterative learning control (ILC) is a high-performance con-
trol design method capable of achieving accurate reference
tracking for systems undertaking the same finite duration
task repeatedly. Each execution is termed a trial (or iteration
or pass) in the literature, and its finite duration is known
as the trial (or iteration or pass) length. Once a trial has
ended, information, e.g., state (if it can be measured or else
estimated), input, and output, generated by the dynamics over
the complete trial length, is available for use in constructing
the control input for the next trial. The aim is to improve
performance from trial-to-trial.

Originating in robotics [1], ILC has found successful ap-
plications in a wide range of areas. One possible starting
point for the literature is the survey papers [2], [3] and
the latest monograph [4]. Recent examples include various
forms of additive manufacturing processes, e.g., [5], [6],
nanopositioning, e.g., [7], path following for center-articulated
industrial vehicles [8]. In the general area of healthcare, ILC
has found applications in, e.g., robotic-assisted upper limb
stroke rehabilitation with clinical trials, e.g. [9], and ventricular
assist devices [10].

Bing Chu and Eric Rogers are with the School of Electronics and Computer
Science, University of Southampton, Southampton SO17 1BJ, UK {b .chu,
etar}@ecs.soton.ac.uk

Andreas Rauh is with Carl von Ossietzky Universitit Old-
enburg, Department of Computing Science, Group: Distributed
Control in Interconnected Systems, 26111 Oldenburg, Germany

andreas.rauh@uni-oldenburg.de

Harald Aschemann is with the Chair of Mechatronics, University of
Rostock, Germany Harald.Aschemann@uni-rostock.de

David H Owens is a Principal Scientist with the Department of Au-
tomation, Zhengzhou University, Zhengzhou, 450001, P. R. China and an
Emeritus Professor at the Department of Automatic Control and Systems
Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD
d.h.owens@shef.ac.uk

These and many other applications have, in the main,
used, after modifications if necessary, model-based linear time-
invariant ILC designs. Examples include inverse-model based
methods, see, e.g., [11], gradient-type ILC, see, e.g., [12],
optimisation based designs, see, e.g., [13] which form the
control input by optimising a performance index. A typical
example in the latter case is norm-optimal ILC (NOILC)
designs (for background see, e.g., [14]), which uses a cost
function that is the sum of a quadratic term in the current trial
error and one in the difference between the control inputs on
two successive trials. There has also been productive research
on robust ILC with supporting experimental validation, see,
e.g., [15]-[17].

The application areas discussed above assume that, for
discrete dynamics, the reference trajectory passes through
all sample instants. In some applications, however, this may
be restrictive or not required. Point-to-point ILC relaxes the
requirement to one where the reference trajectory is specified
only at specified sample instants. This form of ILC has been
developed, based on linear time-invariant dynamics, to the
stage of experimental validation, see, e.g., [18]-[20]. Terminal
ILC is a particular case of point-to-point where only the
starting and final values of the trajectory are specified, for
a recent application with experimental support see [21].

Motivated by practical relevance, ILC design in the presence
of system constraints, e.g., input amplitude limits, has also
seen productive research. In [22] a novel nonlinear controller
for process systems with input constraints was developed.
In [23] an ILC problem with soft constraints was studied where
Lagrange multiplier methods are used. The results in [24] are
based on quadratic optimal design to formulate a constrained
ILC problem and suggest that such a design has the capability
to deal with constraints. Also [25] used a constrained convex
optimization setting and an interior-point-type method to solve
the constrained ILC problem for linear systems with saturation
and rate constraints.

A large majority of the published ILC literature is based on
linear time-invariant (LTI) dynamics. Design for linear time-
varying (LTV) systems, which are not uncommon in practice,
is relatively limited. In [26] a D-type ILC in combination with
a feedback loop and saturation action was considered to deal
with saturation constraints for both input and output for LTV
systems. The results in [24] apply to time-varying systems
though the computation load can be problematic. An NOILC
design was developed in [27] for unconstrained LTV systems
with time varying weighting matrices. In [28] an iterative
learning identification and learning control design (using a
NOILC approach) was developed for time-varying systems in
the absence of system constraints.

This paper develops a general constrained ILC design



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

framework for LTV systems to address the limitations dis-
cussed above. The design problem is formulated in abstract
operator form in Hilbert space, and new constrained ILC
algorithms are then developed using a successive projection
framework, previously applied to LTI systems, see, e.g., [20],
[29], [30]. The algorithms’ convergence properties are estab-
lished rigorously and their implementation procedures devel-
oped. Also the effectiveness of the new designs are validated
experimentally on a high-speed rack-feeder system.

The analysis and results in this paper begin in the next
section where the system dynamics are introduced, the con-
strained ILC design problem is formulated, and the necessary
background on the successive projection framework is given.
In the following sections III and IV, respectively, different
constrained ILC design algorithms for LTV systems are de-
rived, their convergence properties established together with
procedures for their implementation. These algorithms are
further extended to point-to-point ILC design in Section V.
Section VI gives the experimental validation results from the
rack feeder rig. Finally, Section VII provides the conclusions
of this research and discusses possible future research.

II. CONSTRAINED ILC FOR LTV SYSTEMS
A. Representation of the System Dynamics
This paper considers single-input single-output (SISO) sys-
tems with an immediate extension to multiple-input multiple-
output cases. Consider a discrete-time LTV system described
in the ILC setting by the following state-space model

xk(t +1) = Atxk(t) + Biug(t)
ye(t) = Ciae(t) (1

where ¢ is the time index (i.e., sample number), k£ > 0 is the
trial number, wuy(t), z(t), yr (t) are the input, state vector and
output, respectively, of the system on trial k, A;, By, Cy are
(time varying) system matrices with compatible dimensions.
The initial state vector x(0) = xg,k = 1,2,--- is the same
for each trial, and no loss of generality arises from setting
xo = 0. The control task is to track a given reference signal
r(t) defined on a finite interval ¢ € [0, N] where N > 0 is the
trial length. In operation, a trial is completed, the system is
reset and a new trial begins. The ILC design uses information
from previous trial(s) to compute the control input for the next
trial in a manner that improves the tracking performance from
trial-to-trial.

Defining the supervectors for the input and output on each
trial as in the time-invariant case, i.e.,

T
up, = [ up(0) up(1) up(N —1) ]
T
ve = [ u(1) wk(2) ye(N) ], 2)
leads to the lifted representation for the dynamics, i.e.,
yr = Guy 3)
where the system operator matrix G is given by
C1By 0 e 0 0
G = C12141B0 CzBl 0 0
. . 0

CNAN—1---A1By CnBn-1

Also introduce the lifted representation of r(t) as
T
r= [ (1) r(2) r(N) ] )
Then the lifted model representation of the error on trial k is
er =1 — Guy (®)]

where entry i, 1 <4 < N, in e is 7(i) — yr(4).

In the LTI case, G is non-singular (when the system relative
degree is one, i.e., CB # 0) and hence there is a unique
solution to the tracking problem. However, for LTV systems, G
can be singular due to the time-varying nature of the matrices
As, By, and Cy. Consequently, there could be no solution to
the reference tracking problem. To ensure that the control
design problem is feasible, it is assumed in this paper that
the reference signal r lies in the range of the matrix G,
r € range(G), i.e., there exists an input u* such that r = Gu*.
When this condition holds but G is not invertible, there will
be an infinite number of solutions to the reference tracking
problem. Note that the assumption r € range(G) is more
general and less restrictive than assuming G is invertible as
considered in existing literature (e.g., [24]).

B. Constrained ILC Design for LTV Systems

Constraints are often encountered in application areas and
therefore design in the presence of such constraints will be
needed as otherwise there is no a priori guarantee that the
control signal will be applicable to the system dynamics.
Different forms of constraints arise in applications, e.g., on the
input itself, or rate constraints and state or output constraints.
Also constraints can be divided into two classes termed,
respectively, hard and soft. Hard constraints are due to physical
limitations of the system, e.g., those on input magnitude(s)
of actuators at each point in time. Soft constraints are those
related to performance requirement, e.g., constraints on the
total productivity. This paper considers hard input constraints,
but the results extend directly to state and output constraints.

Suppose the input is constrained to be in a set {2, taken as a
closed convex set in a Hilbert space H. In practice, the set €2 is
often of simple structure. For example, the following scenarios
are often encountered, again stated for the SISO case:

« input saturation constraint:
Q={ueH:|ult) <Mt),0<t<N-1}
e input rate constraint:
Q={uveH:|ult)—ut—1)| <A{t), l<t<N-1}
e input sign constraint:
Q={uecH:0<u(t), 0<t<N-1}

e input energy constraint:
N-1
Q={ueH:» u’(t)<M}
t=
where M (t), A(t) and M are some positive scalars defining
the input constraint bounds.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

The constrained ILC design problem can now be formulated
as finding a control law of the following general form

s Uk—q) (6)

such that the output y;, tracks the desired reference r, and that
the generated input sequence satisfies the constraint require-
ments, i.e.,

Uk+1 = f(ek+17"'7ek7—sauk?7”'

ug € Q, Vk>0.

Note that when s > 0 or ¢ > 0, (6) is termed a higher
order updating law. This paper only considers algorithms of
the form wgy1 = f(eg,u). For higher order algorithms,
refer to, e.g., [31] and/or the relevant references in the survey
papers [2], [3].

In what follows, a successive projection framework previ-
ously used to develop a constrained ILC algorithm for LTI
systems is summarized and then will be used in the next
two sections to derive constrained ILC algorithms for LTV
systems.

C. Constrained ILC for LTV Systems using Projection

The successive projection approach was recently used to
develop several constrained ILC algorithms for LTI systems
[20], [29], [30]. The key idea is to consider ILC design
problem as iteratively finding a point in the intersection of two
closed convex sets in some Hilbert spaces, which can then be
solved using the well-known projection method shown in the
theorem below.

Theorem 1. [32], [33] Let S1 and Sy be two closed convex
sets in a Hilbert space X. Define projection operators Ps, (-)
and Pg,(+) as

Ps, () = arg min || — 2| , ()
€S
Ps, (w) = arg min [} —al|% , ®)
£ESy
where || - || is the induced norm in X. Then given the initial

estimate o € X, the sequences {Tp}rp>o0 and {Ti}r>0
generated by

Tpy1 = Ps, (2k), Thy1 = P, (Trt1), >0 )

are uniquely defined for each xo € X and satisfy the following
monotonic convergence condition

ks — Thpallx < NEksr — zals - (10)

If either set is compact or finite dimensional, the sequences
{Zk}r>0 and {zi}r>0 converge to fixed points T* € S and
T* € S2, ie.,

lim Zp =2%, lim x, = 2" 11
k—o0 k—o0
defining the minimum distance between two sets, i.e.,
|3 — 2% =  min_||# — 2|5 (12)
TeS1,zES>2

Furthermore, if S1 N Sy # 0, the following convergence
condition is satisfied

l@ryr — 2% < ok — 5%, Yo e SinSyk>0. (13)

In a similar way to ILC design for LTI systems, constrained
ILC design for LTV systems can be formulated as iteratively
finding a point in the intersection of S; and S5 in the Hilbert
space H = Y x U, where

S = {(e,u) € H:e=1r—Gu,u €}
Sy = {(e,u) € H:e=0} (14)
or the following two sets
S1 = {(e,u) e H:e=r—Gu}
Sy = {(e,u) € H:e=0,ucQ}, (15)

where the Hilbert spaces ) = R and &/ = R" are equipped
with the following inner products and associated induced
norms

y" Qu,
uT Ro,

Yy, x € Y
Yu,v €U

(y,z)q =
(u,v)p =

where () and R are positive definite matrices of compatible
dimensions. Using the above method to solve the constrained
ILC design problem will lead to different algorithms that are
described in the following two sections.

Before developing the constrained ILC algorithms, it is
worth pointing out that when there are no constraints in
the design problem, the succussive projection framework can
also be applied, resulting in the following algorithm (which
recovers the well known NOILC design in [14]):

Algorithm 0. Given any initial input ug with corresponding
error e, the input sequence upy1,k =0,1,2,--- | defined by

uper = argmin { |r = Gully + Ju—wil 3} (16)

solves the unconstrained ILC design problem for LTV systems.

This algorithm guarantees monotonic trial-to-trial error con-
vergence and can be implemented using offline computations
or online using a feedforward and feedback structure based
on solutions of Riccati equations (where the tracking error
e, from previous trial is embedded in the computation by
replacing r by ey, + Guy in (16)). It also has a distinct feature
for LTV systems (compared to LTI systems), as shown in the
following proposition.

Proposition 1. Given any initial input ug and corresponding
error eq, Algorithm O achieves monotonic trial-to-trial con-
vergence to zero, Le.,

lextillQ < llexllq. Yk =0

and

lim e = 0.

k—o0
Moreover, the input converges to the solution of the following
optimization problem

lim ug = v* = argmin{||u — uo|| g, s.t. r = Gu}
k—oo u

Consequently, when ug = 0, the minimum energy solution is
obtained.
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Proof. Monotonic convergence follows directly from Theo-
rem 1 and the minimum energy solution follows a similar
proof as that in [19] and hence the details are omitted. ]

As discussed previously, for LTI systems there is only one
solution for the ILC design problem considered but for LTV
systems there may be infinite number of solutions if G is not
invertible. For such cases, the algorithm above only finds one
solution, which is also the best possible (this is often appealing
in practice).

III. CONSTRAINED ITERATIVE LEARNING CONTROL
ALGORITHM

This section begins the development of the constrained
ILC algorithms for LTV systems, starting from the constraint
formulation (14).

A. Algorithm Description and Convergence Properties

Consider the constrainted problem formulation of (14). Then
application of Theorem 1 gives the following constrained ILC
design algorithm for LTV systems.

Algorithm 1. Given any initial input ug satisfying the con-
straint with corresponding tracking error eq, the input se-
quence ug41,k =0,1,2,--- , defined by
. 2 2
Ugy1 = argmin § ||[r — Gu uU—1u } 17
e =argmin {r = Guly + Ju—wlf} (7
satisfies the constraint and iteratively solves the constrained
ILC design problem for LTV systems.

In the case when perfect tracking of the reference trajectory
is possible, i.e., S1 NSy # (), Algorithm 1 has the desirable
property that the tracking error norm will decrease monoton-
ically to zero, as shown in the following theorem.

Theorem 2. When perfect tracking is possible, Algorithm 1
achieves monotonic trial-to-trial error convergence to zero,
ie.,

lex+1lle < llexllQ, B =0,1,---. (18)
and
lim e; =0, lim wug = u*. (19)
k—oc0 k—o0
Moreover,
lusr —u*llr < llux —wllp, VR =0, (20)

i.e., the input iterates approach the converged solution u*
monotonically in norm.

Proof. Equations (18) and (20) follow from Theorem 1 (and
Theorem 1 in [32]). Strong convergence follows as the Hilbert
space considered is finite dimensional and the set S is closed,
bounded and therefore compact. O

Trial-to-trial error convergence to zero may not be possible
due to the input constraints , i.e., S;1 NSy = @. In such a
case, the algorithm computes a ‘best’ approximation as shown
next.

Theorem 3. In the case when trial-to-trial error convergence
to zero is not possible, Algorithm 1 converges to a solution
of the following optimisation problem

" .

u; = argmin ||r — Gul|g, (21)
ue

i.e., the algorithm converges to the minimum tracking error

norm that can be achieved. Moreover, this convergence is

monotonic in the error norm, i.e.,

||ek+1”Q < Hek”ka =0,1,---. (22)

Proof. By Theorem 1, the algorithm converges strongly to a
fixed point of Pg, Ps,, i.e., a point (0,u¥) € Sy satisfying

(O7ut) = PS2PS1 (07U*)
= Ps,{(e,u) = arg min [r=Gul|j+Ju—u* R} = (0,u).

Hence from this last equation
% .

u, = argmin ||r — Gul|g.

. = argmin | o

Monotonic convergence of the trial-to-trial error norm fol-
lows in a similar manner to the case of Theorem 2 and hence
the details are omitted. O

This algorithm has the monotonic trial-to-trial error conver-
gence property and hence improvement of the error from trial-
to-trial occurs. To realize this property requires an efficient
procedure for solving the constrained optimization problem.
Moreover, the choice of the weighting matrices ) and R
affects the convergence properties of the algorithm. Consider,
for ease of presentation, the SISO case. Then a smaller
weighting R will allow more aggressive input changes and
hence will normally result in a faster error convergence rate.
Conversely, a smaller weighting ) on the error norm will put
more emphasis on the input change during the optimization.
This, in turn, will result in more ‘caution’ in updating the input
signal and hence to slower trial-to-trial error convergence.

B. Implementation of Constrained Algorithm I using Receding
Horizon Approach

Implementation of this algorithm requires the solution of the
constrained quadratic programming (QP) problem (17) after
each trial. This will not be a problem for many applications as
this computation is conducted off line during two consecutive
trials and there are many efficient QP solvers available, see,
e.g., [34], [35]. However, there will also be applications where
the computational load incurred could be problematic, e.g.,
when the dimension of the time series uy is very large due
to a high sampling rate and/or long trial length. In such
cases solving the QP problem will be very computationally
demanding or even unmanageable.

Next, an alternative algorithm is developed using a receding
horizon approach to reduce the computational complexity
and increase robustness against model uncertainty, which also
applies to LTI systems.

Algorithm 2. Given any initial input ug satisfying the con-
straint with associated error e, the input sequence ujy1,k =
0,1,2,---, defined by the following procedure also satisfies
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the constraints and iteratively solves the constrained ILC
design problem.

o Attime t and for the current system state xy11(t) , use the
LTV system model to predict the system output yi11(t)
over a fixed future interval [t + 1,t + N,]

o Solve the following optimal control problem over a fixed
future interval, say [t,t + N, — 1], taking into account
the constraints

t+N,
ue marg, min 3 e Ollg +
t+N,—1
> ks () — (i)lli} ; (23)
i=t
where

T
Upgr,e = [ upg(t) Uppr(E+ Ny —1) 7.

o Apply only the first step input in the resulting optimal
control sequence; measure or estimate the system state
reached at sample instant t + 1.

o Repeat the above steps until t = N — 1, starting from the
(new) current state.

In common with receding horizon control, the selection
of the control and prediction horizons NN, and N,, respec-
tively, can significantly affect the algorithm’s trial-to-trial error
convergence properties. Sufficiently large horizons should be
used to give more accurate solutions and achieve as good
performance as Algorithm 1. In the extreme case when IV,, =
N, = N, Algorithm 2 recovers the Algorithm 1.

Conversely, selecting values for these parameters that are
too small could lead to relatively poorer error convergence or
even non-monotonic error norm convergence. Larger horizons
will require more computational power at each time step. The
balance between the computational power available and the
obtained performance is application/user-specific. A rigorous
analysis of control and prediction horizons’ effect on the algo-
rithm’s performance (e.g., monotonic/asymptotic convergence)
is nontrivial and left as a topic for further research.

IV. AN ALTERNATIVE CONSTRAINED ITERATIVE
LEARNING CONTROL ALGORITHM

Use of the second abstract setting (15), i.e.,

e S1={(e,u) e H:e=r—Gu}

e So={(e,u) € H:e=0,u€N}
is the starting point for the development of the following
alternative constrained ILC design algorithm for LTV system.

A. Algorithm Description and Convergence Properties
Algorithm 3. Given any initial input ug satisfying the con-
straint with associated error e, the input sequence upi1,k =
0,1,2,---, defined by the solution of the input unconstrained
NOILC optimisation problem

iy = argmin { v — Gully + u w7} @49

followed by the simple input projection

g1 = argmin ||u — ax||gr € Q (25)
u€es)

also satisfies the constraint and iteratively solves the con-

strained ILC problem.

The next two results give the convergence properties of this
last algorithm for the cases when, respectively, S; N Sy # ()
and S; NSy = 0.

Theorem 4. When perfect tracking is possible, i.e., S1 NSy #
(), Algorithm 3 solves the constrained ILC problem in the sense
that
lim e, =0, lim ug = u”. (26)
k—o0 k—o0
Moreover, this convergence is monotonic with respect to the

performance index

Je = ||Eexlg + || Ferl 27)
where
E = I-G(G"QG+R) G"Q
F = (G"QG+R)" G"Q. (28)
Additionally,
Juk+1 —u*|lr < [Juk — u*||r, Yk >0, (29)

i.e., the input iterates approach the converged solution u*
monotonically in norm.

Proof. The proof is similar to that for Algorithm 1 and hence
the details are omitted. O

This algorithm first computes the NOILC solution and then
projects it onto the constraint set, which is computationally
much simpler than Algorithm 1. However, this does not come
for free since by Theorem 2, Algorithm 1 achieves monotonic
trial-to-trial error convergence in the tracking error norm
but this latest algorithm can only achieve this convergence
property in the ‘weighted’ tracking error norm as shown in
previous theorem.

When perfect tracking is not possible, i.e., S; NSy = (), an
approximation of the ‘best’ solution (21) can be achieved, as
shown next.

Theorem 5. When perfect tracking is not possible, i.e.,
S1 N Sy = 0, Algorithm 3 converges to a solution u* of the

following optimisation problem,
ug :arggleig{llEell2Q+ | Fell7:} - (30)

Moreover; this convergence is monotonic with respect to the
following performance index,

Ji = || Be||g + || Ferlln 31)
where
E = I-G(G"QG+R) " G"Q
F = (G"QG+R)G"Q. (32)

Proof. The proof is similar to that of Theorem 3 and is hence
omitted here. O
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In common with the first constrained ILC algorithm in this
paper, the choice of weighting parameters in this last algorithm
affects its convergence properties. In particular, the choices
made will affect the converged solution when perfect tracking
is not possible. To illustrate this, consider the simplest case of
scalar weights, i.e, Q = g x I and R = r x I, where ¢,r > 0.
A small weighting, i.e., r — 0 in (30) (in Algorithm 3) results
in convergence to

Une) -

where H,; is a diagonal matrix with the first m diagonal
elements all equal to one and the rest are zero, where m
denotes the rank of G, V' is a unitary matrix in the singular
values decomposition of G (i.e., G = UXV) and u}, = G'r
is the unconstrained ILC minimum energy solution in which
G' denotes the pseudoinverse of G.

If m = N, ie, when G is full rank, the above is just
simple a ‘clipping’ of the unconstrained solution »*, with cor-
responding (possibly) large error. Conversely, if 7 is large, the
convergence may be slow for both algorithms, but Algorithm 3
for r — oo will converge to

= argm1n||HdV( (33)

uy = argmin fef G4
which is the ‘best’ solution that can be obtained. Thus in Algo-
rithm 3, there is a compromise between the convergence rate
and the final converged tracking error norm. This compromise,
however, does not exist for Algorithm 1 which will always
converge to the best solution (34).

B. Implementation of Constrained Algorithm 3

To implement this last algorithm, the first step requires
the solution of the unconstrained NOILC problem discussed
previously in this paper. The second step of Algorithm 3
requires the solution of (25). In practice the input constraint 2
is often point-wise and the solution of (25) is easily computed.

For example, when Q = {u € RY : |u(t)] < M(t)}, the
solution is
M(t)  cag(t) > M(1)
Uk+1 (t) = ’l]k (t) (35)

Iuk()ISM() ;
—M(t) ca(t) <M (2)

for t =0,---,N —1; when Q = {u € RN : " 1 w(t) <

M}, the solution is
ag(t)
N—1 -
1o ()
Note that Algorithm 3 only requires two simple steps, both of
which are easy to complete even for large scale problems.

’U,k+1(t): M, tZO,“-,N—l.

V. EXTENSION TO POINT-TO-POINT TRACKING OF
CONSTRAINED LTV SYSTEMS

In the previous sections, constrained ILC algorithms were
developed for LTV systems with a reference defined over the
whole trial interval. In this section the extension to point to
point tracking problems is developed.

A. Point-to-point tracking

The tracking task considered so far is for the output to track
a reference defined over the whole horizon [0, N]|. However,
there are applications where only the reference tracking at
a subset of the trial interval is of interest. For example, in
robotic pick and place tasks, only tracking at the pick and
place instants is required. This type of tracking is termed point-
to-point. Point-to-point ILC design for LTI systems has been
well-studied, e.g., [19], [20], [30]. Constrained point-to-point
ILC design for LTV systems has not been explored.

To formulate the problem, suppose the system is now
required to track P intermediate point at ¢t = t1,t2,...,tp
with reference r.(t;) respectively. Using the lifted form
representation of discrete ILC dynamics, the system output
at the above time instants can be written as

yz = Geuk
where

T
vi = [ vi(t) yi(t2) viter) 1",
¢ = [ Tret(t1)  Tref(t2) Tret (tP) ]
and G, is constructed by extracting the t;th rows from the

system matrix G. The point-to-point tracking error e® is
defined as

(36)

e® =r®—y°.

The constrained point to point ILC design problem can now
be formulated as finding a control law of the following general
form

uk:+1 = f (ei) uk:)a (37)

such that the output y; tracks desired reference 7, and that
the generated input sequence satisfies the constraint, i.e.,

u € Q, Vk>0.

B. Constrained point-to-point ILC for LTV systems

It turns out that the constrained point to point to ILC design
for LTV systems can also be solved using the projection
method. Following similar procedures as in the previous two
sections gives the following two algorithms and associated
convergence properties. The proofs are omitted here for ease
of presentation.

Algorithm 4. Given any initial input ug satisfying the con-

straint with associated point-to-point tracking error ef, the
input sequence u41,k =0,1,2,--- | defined by

. 2 2
Ukt 1 :argznelg{nre _Geu||Q—|— ||U—UkHR} (38)

also satisfies the constraint and iteratively solves the con-
strained point-to-point ILC design problem.

Algorithm 4 is an extension of Algorithm 1 to the point-to-
point ILC design and has the following properties.

Theorem 6. When perfect tracking is possible, Algorithm 4
achieves monotonic convergence to zero tracking error, i.e.,

lefsille < lleille, & =0,1,-- (39)
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and

lim e, =0, klim up = u’. (40)
—00

k—o0

Moreover,

|uks1 — w*||r < |luk —u”||r, VE >0, 41

i.e., the input iterates approach the converged solution u*
monotonically in norm.

When perfect tracking is not possible, Algorithm 4 converges
to a solution u}; of the following optimisation problem

* : e

uy = argmin ||r® — G.ullg, (42)
ue)

i.e., the algorithm converges to the minimum tracking error

norm that can be achieved. Moreover, this convergence is

monotonic in the tracking error norm, i.e.,

lek+ille < lleklle, k = 0,1,---. (43)

An alternative design algorithm follows as an extension of
Algorithm 3 and is given next.

Algorithm 5. Given any initial input ug satisfying the con-
straint with associated error e, the input sequence U1,k =
0,1,2,---, defined by the solution of the input unconstrained
point-to-point NOILC optimisation problem

i = argmgn{ure — Gl + ||u—uk||?;i} (44)
followed by the simple input projection
Ugt1 = argmeig lu — x|l € Q2 (45)

also satisfies the constraint and iteratively solves the con-
strained point-to-point ILC design problem.

The following result gives the convergence properties of this
last algorithm.

Theorem 7. When perfect tracking is possible, i.e., S1 NSy #
(0, Algorithm 5 solves the point-to-point ILC problem in the
sense that

lim ef =0, klim up = u*. (46)
—00

k—o00
Moreover, this convergence is monotonic with respect to the
following performance index,

Ji = | Begllg + | Feil% 47
where
E = I-G.(GTQG.+R)" GIQ
P o= (GTQC.+R)GIQ. “
Additionally,

|uk+1 — u*[|r < |lup — u*||r, Vk >0, (49)

i.e., the input iterates approach the converged solution u*
monotonically in norm.

When perfect tracking is not possible, i.e., S NSy = (),
Algorithm 5 converges to a solution u} of the following
optimisation problem,

ul :argggg{HEeeHQQ—i—||F66H%}. (50)

Moreover, this convergence is monotonic with respect to the
following performance index,

I = | Begllg + 1Feq % (51)
where
E = I-G.(G'QG.+R)'GIQ
F = (G'QG.+R)"'GTQ. (52)

The implementation details of the above two algorithms are
similar to those explained in the previous two sections and are
omitted here for brevity.

VI. EXPERIMENTAL VALIDATION ON A HIGH-SPEED
RACK FEEDER SYSTEM

In this section, the developed algorithms will be experimen-
tally verified on a high-speed rack feeder system.

A. Control-Oriented Modeling

This subsection describes the control-oriented modeling
of the prototypic high-speed rack feeder system shown in
Figure 1.

M@y 4 x

My, Ok v(xl t)

Xy (1) = k(1)1
P AE gl

drive
e / horizontal
vertical il position
#| encoder

ys(t)

carriage

Fig. 1. The high-speed rack feeder system (left) and its corresponding elastic
multibody model (right).

The setup consists of a carriage that is driven by an electric
DC servo motor via a toothed belt, implementing the basic
control input for the motion in horizontal direction. An elastic
double-beam structure is vertically mounted on this carriage.
On the beam structure, a cage (with variable load mass) can
be moved in the vertical direction. The position of this cage,
described by the coordinates yg (t) in horizontal and x k (t)
in vertical direction, represents the tool center point of the
rack feeder that should track desired trajectories as accurately
as possible with small tracking errors in transient phases and
without remaining oscillations at standstill.

The movable cage is driven by a toothed belt with an electric
DC servo motor in common with the carriage. Measured data
are available from encoders for the actuator angles. Also, the
horizontal carriage position is determined by a magnetostric-
tive transducer. Strain gauges are used to determine the beam
deflection during system operation. The horizontal and vertical
axes can be operated by fast underlying velocity controllers,
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running directly on the current converters. Consequently, the
corresponding velocities are the control inputs.

The ILC algorithms developed in this paper will be em-
ployed to guarantee that predefined limitations on the am-
plitude of the control signal (the desired carriage velocity
in the subsequent model) and constraints on its first time
derivative (constraints on the carriage acceleration) are not
violated. For simplicity, it is assumed that the vertical cage
position zg(t) is known (but time-varying). As described
below, this term leads to a control design problem for time-
varying systems, where the time-varying dynamics arise in the
vertical motion. This latter feature was not considered in [36],
where this preliminary investigation did not consider changes
in the vertical position.

In previous work [37], [38], it is shown that a control-
oriented elastic multibody model can be employed effectively
for the control of the rack feeder system in Figure 1. These
control laws used gain-scheduled feedback control design and
model predictive trajectory control. Next, a brief summary of
the system model is given, with a detailed treatment in [37],
[38]. This previous work has established that this model struc-
ture has sufficient accuracy to achieve both tracking control
of desired trajectories of the cage position in the horizontal
direction and active oscillation damping through the system’s
main drive.

In the control-oriented modeling, the rack feeder is rep-
resented by a multibody model (Figure 1, right) with three
rigid bodies — the carriage with mass mg, the cage (mass
mp, mass moment of inertia O, position zx(t)) movable
vertically on the beam structure, and a point mass mpg at the
tip of the beam — and an elastic Bernoulli beam (density p,
cross-section A, Young’s modulus F, second moment of area
I.p, and length ). In the following, the vertical cage position
is denoted by the dimensionless parameter

() = T
l
The elastic degrees of freedom of the beam with respect to its
bending deflection are represented by the Ritz ansatz

v(xg(t),t) =v(k(t)l,t) =01 (k()]) - v1 (¢)
_ (;’H?(t) - ;Kf”(t)) o (1),

in which only the first bending mode is considered. Here, the
ansatz function for the bending deflection has been evaluated
directly at the vertical cage position xx (t) to obtain a math-
ematical model of the desired system output.

The equations of motion for the rack feeder with the
generalized coordinates ¢ := [ yg(t) vy (t) }T (assuming
that the vertical cage position zx (t) is known) and the input
vector h = [ 1 0 ]T can then be stated as

Mg§ (t)+Dq () +Kq(t) = h-(Fu (t) = Fr (§s (1)) (54)

where F); and Fr denote the motor and friction forces,
respectively,

(53)

Mo — mg + pAl + mg + mEp M2 (55)
r mi2 ma2 ’

is the mass matrix and

3 2(t
mio = gpAl + %() (3 — K',(t)) +mg
and
_ 33 6pl.p = mrri(t) 2
Moo = mpAl + =i + 1 (3 — k(1))

+99K;2(t)(1—n(t)+’i@))+mE

hold. Also the stiffness and damping matrices K and D,
respectively, are given by

0 0 0 0
R TR ™ W
with
3EI, 3
koo = TB - gPAg

 3mggr®(t) (1+

38%(t) 3/@(1?)) LY
i :

20 4 ol

For the experimental control implementation used in the
next section to obtain experimental data, it is assumed that
the electric drive for the horizontal motion is operated in an
underlying velocity control regime, implemented on its current
converter, with the resulting dynamics

Tiyijs (1) + s (1) = vs (1) . (57)

Including the first-order lag dynamics in the overall system
model gives the equations of motion

. 0 1 . 0
T MKk, MDD, | YT MRy, |0
=: Ayzy + byuy,

(58)
with the control input u(t) := vg, the continuous-time state
vector

T, = [ d } (59)
q
and modified mass and damping matrices
Ty
M, = - (60)
Y [ %pAlJrKf(t)(?)—/@(t))erE Moo ]
and
1 0
Dy = |: 0 3kqaFEl. B :| . (61)
13

Note that the above is a linear time-varying model as r(t)
is changing over time. The discrete-time linear time-varying
system model (1) is then obtained numerically by computing
the matrices of the corresponding state-space representation
with the zero-order hold method provided by MATLAB with
piecewise constant control inputs and a sampling time of
50ms. The corresponding system output, namely, the horizon-
tal cage position, corresponds to y(t) = ys(t) + v (xx (t),1).
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B. Simulation study

In this subsection, the performance of the constrained algo-
rithms developed in sections III and IV (i.e., Algorithms 1,2,
and 3) are compared in simulation using the rack feeder model.
The discussion is divided into two parts: inactive constraints
and active constraints. A slightly modified reference signal to
that used in experiments detailed later in this paper is used to
clearly illustrate their performance difference.

In the simulation, the trial duration is 12s with a sampling
time of 0.05s, i.e., trial length N = 240. The weighting
matrices are chosen as Q = [ and R = 0.1 x [ respectively.
Zero initial input, i.e., ug = 0, is used for all the algorithms.
For Algorithm 2, the control and prediction horizons are
chosen as N, = N,, = 40.

1) Inactive constraints: First, the case where the constraints
on the inputs (i.e., input amplitude constraint of 7.5m/s and
input change rate constraint of 30 m/s?) are inactive for the
desired reference signal is considered. In other words, perfect
tracking of the reference is possible under constraints. The
tracking error norm convergence over 30 trials and outputs
on the last trial (together with the reference) for all three
algorithms are given in Figs. 2 and 3 respectively. Note that
the results in the figures are on top of each other and almost
indistinguishable.

120

100 -

Jlell in m

40 |

20|

0 e —
15 20 25 30
number
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Fig. 2. Simulation results: Comparison of the error norm convergence over
30 trials for inactive constraints.

y(t) during last trial

) J u
0.2

0 2 4 6 8 10 12
time ¢ in s

Fig. 3. Simulation results: Comparison of the output signals during the 30th
trial for inactive constraints.

From the figures, it can be seen that all three algorithms
achieve perfect tracking of the reference signal. Furthermore

in this particular set of simulations, their convergence per-
formance are almost identical to each other and not distin-
guishable in these figures. Finally, inspection on the obtained
inputs shows that they all satisfy the constraint requirements,
the results of which are omitted here for space reason.

2) Active constraints: We now consider the case where the
constraints on the inputs (i.e., input amplitude constraint of
1.5m/s and input change rate constraint of 2m/s?) are active
for the desired reference signal, i.e., perfect tracking of the
reference is not possible. The tracking error norm convergence
over 30 trials, outputs on the last trial (together with the
reference), and inputs on the last trial for all three algorithms
are given in Figs. 4, 5 and 6 respectively. Note that the results
for Algorithm 1 and Algorithm 2 in the figures are on top of
each other and almost indistinguishable.

Optimal

Jlel] in m

0 5 10 15 20 25 30
trial number

Fig. 4. Simulation results: Comparison of the error norm convergence over
30 trials for active constraints.
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Algorithm 2
Algorithm 3
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VY v 4
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Fig. 5. Simulation results: Comparison of the output signals during the 30th
trial for active constraints.

From the figures, it can be seen that as expected Algorithm
1 (red line) converges monotonically in the tracking error
norm to the minimum possible value (black line in Fig. 4,
determined by Theorem 3). Algorithm 2, though with signif-
icantly reduced computational load, achieves almost identical
convergence performance as Algorithm 1, which is particularly
appealing for applications with moderate computational re-
sources. Algorithm 3 has the simplest computational structure.
It converges but to a slightly bigger final tracking error norm
(compared to the previous two algorithms). This difference
can also been seen from the output and input signals on the
last trial.
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u(t) during last trial

time ¢ in s

Fig. 6. Simulation results: Comparison of the input signals during the 30th
trial for active constraints.

The above observations shed lights on how to choose a
particular algorithm in practice. Depending on the computa-
tional resource available and the requirements of a particular
practical application, the following guidelines for choosing the
algorithms are given: i) Algorithm 1 should always be the
first choice due to its appealing convergence properties, if the
trial length is sufficiently short, or the resetting time between
two consecutive trials is sufficiently long, or if the available
computation hardware is powerful enough; ii) Algorithm 2
with sufficiently large horizons should be considered as the
second preferable choice if the conditions above are not met,
and finally iii) Algorithm 3 as the last choice for scenarios
where the computation power is limited.

C. Experimental Results

In this subsection, the performance of the constrained ILC
algorithms developed in Section III is verified experimentally
on the high-speed rack feeder test rig. For application, the
algorithms in Section III have better convergence properties
(e.g., monotonic convergence in the tracking error norm),
whereas the one of Section IV has better computational effi-
ciency. The computations for the rack feeder are not intensive,
and hence the focus of the experimental tests is on the
convergence properties of the algorithms in Section III.

1) Algorithm 1: QP based Constrained ILC: This algorithm
has been applied to two different scenarios, firstly, it has
been used for the case where predefined constraints of the
maximum carriage velocity and its maximum acceleration
are activated during tracking of the desired reference signal.
The experimental results obtained are in Figure 7, where the
control signal has been initialized with the value zero at the
beginning of the experiments. Hence, the tracking error signal
coincides with the desired trajectory for k¥ = 0, and this
control algorithm leads to a rapid decrease of the tracking
error after only a few trials. To prevent an increase in the error
as the trial number increased, which can often be detected in
experimentally implemented ILC algorithms, the error signal is
filtered by applying a zero-phase filter before the computation
of the next trial input. This is possible due to the finite trial
length and is undertaken in the time between the end of a
trial and the start of the next. In this application, a fourth-
order Butterworth filter with a cutoff frequency of 5Hz and
no additional real-time constraints are imposed.

(a) Propagation of the system output (b) Propagation of the tracking error
over 20 trials. over 20 trials.

e(t) during last trial

o 2 4 6 8 10 12 o 2 4 6 8 10 12
time tin s time tin s

(c) Tracking error (20th trial). (d) Control signal (20th trial).

Fig. 7. Experimental results for Algorithm 1 with active constraints (max. car-
riage velocity 1.5 m/s, max. acceleration 2.0 m/s2).

In the second scenario, the corresponding limits are set
to values that are not reached during the complete sequence
of experiments. As shown in Fig. 8, the controlled error is
reduced significantly from trial-to-trial in cases when none of
the input and input rate constraints are active. As in the first
scenario, the error is again zero-phased filtered after each trial,
leading to smooth control action with excellent damping of
remaining oscillations at standstill positions of the rack feeder.

(b) Propagation of the tracking error
over 20 trials.

(a) Propagation of the system output
over 20 trials.

L 10° e{t) during last trial u(t) during last trial

o 2 4 6 s 10 12 o 2 4 6 8 10 12
et |

(c) Tracking error (20th trial). (d) Control signal (20th trial).

Fig. 8. Experimental results for Algorithm 1 with inactive constraints.

2) Algorithm 2: Receding Horizon Approach based Con-
strained ILC: Figures 9 and 10 give the results of repeating
the previously described experiments for Algorithm 2. Its com-
putational requirement are less demanding (N, = N, = 23) —
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it only requires the solution of a QP problem with a decision
variable in R?? rather than R?4° as for Algorithm 1 in the
previous subsection. As can been seen in Figure 9 when
the input and input rate constraints are active, both control
algorithms show a very similar behavior in the experimental
validation. Additionally, the choice of the parameters N,, and
N, again leads to suitable damping of the elastic vibrations
at standstill.

(a) Propagation of the system output
over 20 trials.

(b) Propagation of the tracking error
over 20 trials.

e(t) during last trial u(t) during last trial

2 4 6 8 10 12 o 2 4 6 8 10 12
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(c) Tracking error during the 20th
trial.

(d) Control signal during the 20th
trial.

Fig. 9. Experimental results for Algorithm 2 with active constraints (max. car-
riage velocity 1.5 m/s, max. acceleration 2.0 m/s?).

Repeating the experiment with inactive constraints results in
similar performance as those observed for the first algorithm
(as shown in Figure 10).

To compare the performance of the two algorithms, the error
norm convergence of the four experiments and the converged
inputs on the last trial are given in Figures 11 and 12,
respectively, showing that: i) the tracking error norms converge
monotonically for Algorithm 1 (as predicted by the theory),
ii) Algorithm 2 produces similar performance as Algorithm 1
(results in the figures for both algorithms are in very close
agreement and indistinguishable), and that iii) all kinematic
constraints are satisfied and best exploited.

VII. CONCLUSIONS

In this paper, a constrained ILC design framework for linear
time-varying systems has been developed. The analysis is
based on an operator-based description in a Hilbert space
setting. Using this setting, different constrained ILC algorithms
are developed, and their convergence properties established.
These algorithms have very different convergence properties
and computational requirements, and implementation proce-
dures have been developed for all of them. Also, an extension
to the more challenging case of point-to-point tracking tasks
for LTV systems has been developed. Supporting experimental
results are given for the standard case with point-to-point ex-
perimental validation left as an area for future research, where

(a) Propagation of the system output
over 20 trials.

(b) Propagation of the tracking error
over 20 trials.
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(c) Tracking error during the 20th
trial.

(d) Control signal during the 20th
trial.

Fig. 10. Experimental results for Algorithm 2 with inactive constraints.
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Fig. 11. Comparison of the error norm convergence over 20 trials.

these focus on the convergence properties since computational
complexity is not an issue for the rack feeder.

The design approach developed in this paper is very general.
While this paper has addressed discrete-time dynamics, the
results can in theory be extended to continuous-time and time-
delayed dynamics, as well as to directly include the filtering
actions (e.g., zero phase filter used in the experiments) into
the design. In addition, the experimental as well as additional
simulation studies suggest that the new algorithms have a
certain degree of robustness against the inevitable modeling
uncertainties and noise/disturbances. A rigourous theoretical
analysis on this, particularly the level of model uncertainties
and non-repeatable disturbances that can be tolerated (using
possibly the operator theory from [4]), is on the way. Future
research will also consider the development of algorithms for
robust ILC of LTV systems, and experimental validation of the
new constrained point-to-point tracking algorithms for LTV
systems.
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