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Abstract—Achieving high channel estimation accuracy and
reducing hardware cost as well as power dissipation constitute
substantial challenges in the design of massive multiple-input
multiple-output (MIMO) systems. To resolve these difficulties,
sophisticated pilot designs have been conceived for the family of
energy-efficient hybrid analog-digital (HAD) beamforming archi-
tecture relying on adaptive-resolution analog-to-digital converters
(RADCs). In this paper, we jointly optimize the pilot sequences,
the number of RADC quantization bits and the hybrid receiver
combiner in the uplink of multiuser massive MIMO systems.
We solve the associated mean square error (MSE) minimization
problem of channel estimation in the context of correlated
Rayleigh fading channels subject to practical constraints. The
associated mixed-integer problem is quite challenging due to
the nonconvex nature of the objective function and of the
constraints. By relying on advanced fractional programming (FP)
techniques, we first recast the original problem into a more
tractable yet equivalent form, which allows the decoupling of
the fractional objective function. We then conceive a pair of
novel algorithms for solving the resultant problems for codebook-
based and codebook-free pilot schemes, respectively. To reduce
the design complexity, we also propose a simplified algorithm for
the codebook-based pilot scheme. Our simulation results confirm
the superiority of the proposed algorithms over the relevant state-
of-the-art benchmark schemes.

Index Terms—Massive MIMO systems, adaptive-resolution
ADCs, channnel estimation, hybrid beamforming, fractional
programming.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems
rely on a large number of base station (BS) antennas for
simultaneously serving a few dozens of users, while striking
an attractive spectral efficiency (SE) vs. energy efficiency
(EE) trade-off [1]–[3]. However, a large number of antennas
inevitably lead to an excessive radio-frequency (RF) hardware
cost and energy consumption. Hence, a hardware-efficient
hybrid analog-digital (HAD) beamforming architecture has
been proposed as an alternative to the fully digital beamformer
for practical implementation. Explicitly, this architecture relies
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on an analog beamformer in the RF domain combined with
a low-dimensional digital beamformer in the baseband, hence
allowing a significant reduction in the number of RF chains
required. This in turn provides increased design flexibility
for striking an attractive performance vs. complexity trade-
off. The receiver’s power dissipation is dominated by that
of the analog-to-digital converters (ADCs), since it increases
exponentially with the number of quantization bits [4], [5].
Hence, low-resolution ADCs (LADCs) have been advocated
for the RF chains of HAD receivers.

A. Related Work

Extensive research efforts have been invested in the design
and performance evaluation of hybrid beamformers [7]–[14].
Basically, the existing hybrid beamforming architectures can
be mainly divided into the static partially-connected structure
[8]–[10], the static fully-connected structure [8], [9], [11],
and the dynamic partially-connected or fully-connected struc-
ture [12]–[14]. The authors of [8] considered a single-user
millimeter wave (mmWave) MIMO system and treated the
hybrid beamforming weight design as a matrix factorization
problem. Efficient alternating optimization algorithms were
developed for both static partially-connected and static fully-
connected structures. As a further exploration, the authors
of [9] proposed heuristic algorithms for the design of static
partially-connected and fully-connected HAD beamformers,
permitting to maximize the overall SE of a broadband orthog-
onal frequency-division multiplexing (OFDM)-based system.
Besides, the proposed algorithm in [9] for the fully-connected
structure can achieve SE close to that of the optimal fully-
digital solution with much less number of RF chains. More-
over, to dynamically adapt to the spatial channel covariance
matrix and improve the system performance, [12]–[14] pro-
posed to design the dynamic-connected HAD beamforming
architecture to realize a flexible analog beamforming matrix.
In [12], a dynamic sub-array approach was considered for
OFDM systems, and a greedy algorithm to optimize the
array partition based on the long-term channel characteristics
was suggested. Different from the partially-adaptive-connected
structure in [12], the authors in [13] proposed to implement
the hybrid precoder with a fully-adaptive-connected structure.
A joint optimization of switch-controlled connections and
the hybrid precoders was formulated as a large-scale mixed-
integer nonconvex problem with high dimensional power con-
straints. By modifying the on-off states of switch-controlled
connections, this fully-adaptive-connected structure can realize
a fully-connected structure or any possible sub-connected
structure. Furthermore, the HAD beamforming strategy has
also been investigated in the context of novel relay-aided
systems [15], [16] and in Terahertz communications [17].
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Since employing LADCs in the massive MIMO regime has
become indispensable for reducing the power consumption and
hardware cost, it has catalyzed substantial interest in the recent
literature. The authors of [18] analyzed the performance for
transmission over flat-fading MIMO channel using single-bit
ADC and derived the capacity upper-bound both at infinite and
finite signal-to-noise ratios (SNR). The impact of the spatial
correlation of antennas on the rate loss caused by the coarse
quantization of LADCs was further studied in [19], where
the authors concluded that LADCs can achieve a sum rate
performance much closer to the case of ideal ADCs under
spatially correlated channels.

On account of the benefits provided by HAD beamformers
and LADCs, a number of studies have been proposed to char-
acterize the performance of massive MIMO systems relying
on the HAD beamforming architecture using LADCs. The
pioneering contribution of [20] proposed a generalized hybrid
architecture using LADCs and verified that the achievable
rate is comparable to that obtained by high-precision ADC
based receivers at low and medium SNRs, which provides
valuable insights for future research. Intensive research efforts
have also been dedicated to analog/digital beamforming de-
sign [21], [22], to SE/EE optimization [23]–[25], to channel
estimation [26] and to signal detection [27].

However, previous research on HAD beamforming using
LADCs has mainly considered uniform quantizers having
a fixed, predetermined number of bits, which limited the
performance of these systems due to coarse quantization. As a
further advance, it was shown that a variable-resolution ADC
or adaptive-resolution ADC (RADC) architecture is prefer-
able [28], [29]. In [28], the authors investigated a mixed-ADC
structure designed for cloud radio access networks (C-RAN).
In particular, they developed an ADC-resolution selection
algorithm for maximizing either the SE or EE based on an
approximation of the generalized mutual information in the
low-SNR regime. In [29], the authors developed a pair of ADC
bit allocation strategies for minimizing the quantization error
effects under a total ADC power constraint, thereby achieving
an improved performance. However, the separate design of
the ADC quantization bit allocation and hybrid beamforming
matrices tends to suffer from performance degradation. Hence,
the authors of [30] jointly optimized both the on/off modes of
the RF processing chains and the number of ADC quantization
bits.

As a further development, the authors of [31] aimed for
jointly optimizing the sampling resolution of ADCs and the
hybrid beamforming matrices, which results in energy efficient
solutions for point-to-point mmWave MIMO systems. In light
of [31], the authors of [32] extended the joint design to mul-
tiuser systems, hence achieving a significantly improved EE
compared to the existing schemes. The potential advantages of
RADCs in the context of various practical systems have also
been reported in [33]–[35]. The authors of [33] focused their
attention on the uplink of mmWave systems using RADCs and
investigated the associated joint resource allocation and user
scheduling problem. In [35] the design of the reconfigurable
intelligent surface (RIS) aided mmWave uplink system relying
on RADCs was investigated, demonstrating that an RIS is
capable of mitigating the performance erosion imposed by

RADCs.
Nevertheless, the aforementioned studies are mainly based

on perfect instantaneous channel state information (CSI),
which is assumed to be known at the BS. In practice, the
acquisition of perfect CSI cannot be achieved in massive
MIMO systems due to the inevitable channel estimation
errors [36]. Therefore, how to efficiently design the pilot
signals for improving the precision of channel estimation
is of paramount importance. In practice a codebook-based
pilot scheme is preferred, where orthogonal pilot sequences
are chosen from a given codebook as a benefit of its low-
complexity implementation and low feedback overhead [37],
[38]. However, allocating mutually orthogonal pilot sequences
to a large number of users for avoiding interference during
channel estimation would require excessive pilot lengths and
their orthogonality would still be destroyed upon convolution
with the dispersive channel impulse response (CIR). For this
reason, the carefully constructed reuse of a limited set of
orthogonal pilot sequences for different users for example is of
paramount importance for high-precision channel estimation.
Further design alternatives were proposed for massive MIMO
systems for example in [38], [39], which dispense with a code-
book, hence they may be termed as codebook-free solutions.
However, they tend to require a higher feedback overhead for
attaining a high channel estimation accuracy.
B. Main Contributions

Despite the above advances, there is a paucity of research
contributions on jointly optimizing the pilot sequences, the
number of ADC quantization bits, and the HAD combiner for
achieving high-precision channel estimation in the uplink of a
multiuser massive MIMO system employing RADCs. Hence
our inspiration is to fill this knowledge-gap. In particular,
both codebook-based and codebook-free pilot schemes are
investigated, where for each scheme, we aim to minimize the
mean square error (MSE) of the channel estimate subject to a
transmit power constraint, to the constant-modulus constraint
imposed on the elements of the analog combining matrix, and
to the additional constraints on the number of quantization
bits. In a nutshell, the main contributions of this paper over
the existing literature lie in the following:

1) We focus on jointly optimizing the pilot sequences, the
HAD combiners and the RADC bit allocation in the
presence of a correlated Rayleigh fading channel model.
The channel estimation mean square error (MSE) mini-
mization problem is formulated, which only requires the
knowledge of channel statistics under practical operating
conditions.

2) We first transform the highly nonconvex optimization
problem into an equivalent but more tractable form by
introducing auxiliary variables and employing fraction-
al programming (FP) techniques. Then, we develop a
new block coordinate descent (BCD) based algorithm
for a codebook-free channel estimation scheme and a
penalty dual decomposition (PDD) based algorithm for
a codebook-based channel estimation scheme. Both of
these iterative algorithms ensure convergence to the set
of stationary solutions of the original optimization prob-
lem. Furthermore, the computational complexity of the
proposed algorithms is analyzed.
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Fig. 1. A multiuser massive MIMO uplink system adopting hybrid combiners with adaptive-resolution ADCs.

3) A simplified low-complexity algorithm is also present-
ed for the codebook-based channel estimation scheme,
which solves the MSE minimization problem suboptimal-
ly but efficiently.

4) To characterize the benefits of our proposed algorithms,
we provide exhaustive simulation results in terms of the
MSE, sum rate and feedback overhead for a range of
pertinent system settings. We demonstrate that through
the coordinated allocation of bits to the RADCs, the
proposed algorithms can beneficially exploit the knowl-
edge of channel statistics to accomplish the pilot design,
while minimizing interference and improving the channel
estimation accuracy.

C. Organization and Notation
This paper is organized as follows. In Section II and III,

we introduce the investigated system model and formulate the
optimization problem for the constrained channel estimation,
respectively. In Section IV and V, we propose efficient algo-
rithms by solving the formulated problems for the codebook-
free and codebook-based pilot schemes, respectively. Section
VI provides simulation results to appraise the performance of
the proposed algorithms. The paper is concluded in Section
VII, whilst proofs and detailed derivations appear in the
Appendices.

Notations: For a matrix M, (M)T , (M)∗, (M)H , and
vec(M) denote its transpose, conjugate, conjugate transpose
and vectorization, respectively. M(i, j) denotes the element at
the intersection of row i and column j. For a square matrix
M, Tr(M), M−1, and ∥M∥F represents its trace, inverse
and Frobenius norm, respectively. diag(M) denotes a diagonal
matrix consisting of the diagonal elements of M. I denotes an
identity matrix. For a vector m, diag(m) denotes a diagonal
matrix with m along its main diagonal and ∥m∥ denotes
the Euclidean norm of vector m. The symbol ⊗ denotes the
Kronecker product. ℜ{·} and | · | respectively denote the real
and magnitude parts of a complex number. ⌊x⌋ denotes the
largest integer less than or equal to x and ⌈x⌉ denotes the
smallest integer greater than or equal to x. We let Cm×n

(Rm×n) denote m× n complex (real) space. E[·] denotes the

expectation and CN (0, σ2) denotes the circularly symmetric
complex Gaussian distribution with mean 0 and variance σ2.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a multiuser massive MIMO
uplink system that adopts a static fully-connected hybrid AD
combining structure with RADCs at the BS. The BS which is
equipped with M > 1 antennas and N ≪ M RF chains, serves
K single-antenna users simultaneously. The baseband output
of each RF chain is fed to a dedicated RADC that employs
variable bit resolution to quantize the real and imaginary parts
of each analog signal. Moreover, we assume that the BS and
users are fully time-synchronized.

A. Channel Model

Without loss of generality, we consider a narrowband cor-
related channel model. Let hk ∈ CM×1 represent the uplink
channel from user k ∈ K , {1, . . . ,K} to the BS. Then, the
channel vector hk can be expressed as

hk = R
1
2

k gk, (1)

where gk ∈ CM×1 is a vector with independent and identically
distributed (i.i.d.) elements distributed as CN (0, 1), and Rk =
E[hkh

H
k ] denotes the channel covariance matrix for user k. Rk

describes the spatial correlation properties of the channel due
to macroscopic effects of propagation, including path-loss and
shadowing. When the users are quasi-stationary, the path-loss
and shadowing can be readily obtained based on the distance
between the BS and user k and stored at the BS as a priori
[40], [41].

B. Pilot Sequences

In this work, we focus on two types of pilot sequences,
i.e., the codebook-free and codebook-based pilots. For ease
of exposition, we denote as sk ∈ Cτ×1 as the pilot sequence
transmitted by user k ∈ K, where τ < K is the length of the
pilot sequence during each coherence interval. It is noteworthy
that τ is predetermined based on the coherence budget.
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vec(yk) =(sk ⊗ vkQαU)hk +

K∑
i ̸=k

(si ⊗ vkQαU)hi+(Iτ ⊗ vkQαU)vec(Z)+(Iτ ⊗ vk)vec(Zq). (9)

1) Codebook-free pilots: As in previous works [38], [42], we
assume that each pilot sequence sk can be arbitrarily selected
from the τ -dimensional space under the power constraint:

sk ∈ Cτ×1 with ∥sk∥2 ≤ Pmax
k , (2)

where Pmax
k denotes the transmit power budget for user k.

2) Codebook-based pilots: We denote the available code-
book as Υ = {υ1,υ2, · · · ,υτ}, where υι ∈ Cτ×1 denotes
the ι-th (ι ∈ T , {1, . . . , τ}) potential pilot sequence. It is
assumed that the different pilot sequences meet the orthonor-
mality conditions, i.e., υH

ι υι′ = 0, ∀ι ̸= ι′ and ∥υι∥2 = 1, ∀ι.
Then, the pilot sequence of user k is constructed as

sk =
√
pkϱk with ∥sk∥2 ≤ Pmax

k , (3)

where pk denotes the transmit power of user k and ϱk ∈ Υ
denotes the codebook sequence allocated to user k.

C. Uplink Training

In the uplink training phase, the BS estimates the uplink
channels based on the pilot sequences simultaneously trans-
mitted from the users. Focusing on the k-th user, the received
pilot signal at the BS can be expressed as

Y = hks
T
k +

K∑
i ̸=k

his
T
i + Z, (4)

where the first term represents the desired contribution from
user k, the second term represents multiuser interference, and
Z ∈ CM×τ denotes the additive complex Gaussian noise
matrix with i.i.d. entries following the distribution CN (0, σ2).

An analog combining matrix U ∈ CN×M is employed to
process the received signal Y at the BS with the goal of
suppressing interference from the other users. In the HAD
architecture, the analog combiner is typically implemented
using phase shifters [9], which imposes constant-modulus
constraints on the elements of the matrix U. The output of
the analog combiner is given by

Ȳ = U(hks
T
k +

K∑
i ̸=k

his
T
i + Z). (5)

We employ RADCs to quantize Ȳ as shown in Fig. 1, which
enables flexible quantization bit allocation for each baseband
channel according to the radio propagation characteristics.
Such a refined design can efficiently mitigate the quantiza-
tion errors and greatly improve the system performance with
reduced hardware cost and power consumption. Let integer bn
denote the number of available quantization bits of RADC n.
Assuming that the gain of automatic gain control is appropri-
ately set, the additive quantization noise model (AQNM) can
be employed to reformulate the quantized signal [29]. Then,
based on the AQNM, the quantized output is specialized to

Yq = F(Ȳ) = QαȲ + Zq, (6)

where F(·) is the element-wise quantization function, Qα =
diag(α1, · · · , αN ) ∈ RN×N is a diagonal gain matrix. Here,
the quantization gain αn is a function of the number of
quantization bit bn and defined as αn = 1 − βn, where βn

is a normalized quantization error. For bn ≤ 5, βn can be
expressed exactly in terms of bn [29], while for bn > 5,
they can be approximated by βn ≈ π

√
3

2 2−2bn . Zq is the
additive quantization noise which is independent of Ȳ. To
facilitate analytical derivations, we vectorize Yq and obtain
vec(Yq) = (Iτ ⊗Qα)vec(Ȳ) + vec(Zq). vec(Zq) obeys the
complex Gaussian distribution with zero mean and covariance
matrix

Rqq = E[vec(Zq)vec(Zq)
H ] (7)

= (Iτ ⊗Qα)(Iτ ⊗Qβ)diag(E[vec(Ȳ)vec(Ȳ)H ]),

where Qβ = diag(β1, · · · , βN ) ∈ RN×N and
E[vec(Ȳ)vec(Ȳ)H ] =

∑
i(si ⊗ U)Ri(si ⊗ U)H + σ2Iτ ⊗

UUH.
Finally, we leverage the digital processing techniques for

quantization loss mitigation and interference cancellation.
Specifically, the retrieved signal of user k at the output of
the digital combiner vk ∈ C1×N is expressed as

yk = vkQαU(hks
T
k +

K∑
i ̸=k

his
T
i + Z) + vkZq. (8)

III. PROBLEM STATEMENT

In this section, we first introduce the minimum MSE
(MMSE)-based estimator and then formulate the problem
under investigation.

A. MMSE Channel Estimation

The BS aims to estimate the channel hk based on the
received pilot signal yk. To facilitate analytical derivations
and achieve the estimation of the desired channel hk using
the MMSE estimator [42], we vectorize yk in (8) and obtain
vec(yk) shown at the top of this page.

Defining ĥk as the MMSE estimate of the channel hk, we
have

ĥk = AH
k B−1

k vec(yk), (10)

where we define xk , vkQαU, Q , QαQβ , Ak ,
skxkRk and Bk ,

∑
i sixkRix

H
k sHi + σ2xkx

H
k Iτ + (Iτ ⊗

vkQ)diag
(∑

i(si ⊗U)Ri(si ⊗U)H + σ2Iτ ⊗UUH
)
(Iτ ⊗

vH
k ). We note that matrix Bk is positive definite and therefore

invertible. The corresponding MSE of user k is given by

MSEk , E[∥ĥk − hk∥2] = tr(Rk −AH
k B−1

k Ak). (11)

The detailed derivations of ĥk and MSEk are shown in
Appendix A. Then, the total MSE for the estimation of all
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the user channels can be expressed as

MSE =

K∑
k=1

MSEk =

K∑
k=1

tr(Rk −AH
k B−1

k Ak). (12)

B. Problem Formulation
We note that the effectiveness of hybrid beamforming

mainly depends on the accuracy of CSI. In this work, we
concentrate on the joint design of the pilot sequence, HAD
combiner, and the allocation of ADC quantization bits, aiming
to minimize the total MSE (12) for the given system model. To
simplify notations, we introduce S , [s1, · · · , sK ] ∈ Cτ×K ,
V , [vT

1 , · · · ,vT
k ]

T ∈ CK×N , and b , [b1, · · · , bN ]T ∈
RN×1. Since the matrices Rk in (12) do not depend on the
optimization variables b,U,V, and S, minimizing the MSE
is equivalent to maximizing

∑K
k=1 tr(A

H
k B−1

k Ak). Hence, we
consider the following optimization problem

max
b,U,V,S

f(b,U,V,S) ,
K∑

k=1

tr(AH
k B−1

k Ak) (13a)

s.t. ∥sk∥2 ≤ Pmax
k , ∀k, (13b)

|U(n,m)| = 1√
M

, ∀n,m, (13c)

b̌n ≤ bn ≤ b̂n, ∀n, (13d)
N∑

n=1

bn ≤ Nb̄, (13e)

where b̌n and b̂n respectively denote the minimum and max-
imum number of quantization bits (b̌n ≤ b̂n), b̄ denotes the
average number of quantization bits and Nb̄ is provided as the
total budget of quantization bits at the BS. Constraint (13c)
is imposed to enforce constant-modulus on the elements of
analog combining matrix U. Constraint (13d) limits the range
of the quantization bits for each RADC, while constraint (13e)
gives a threshold on the total ADC quantization bits at the BS.

It should be emphasized that problem (13) is extremely
difficult to solve due to the constant-modulus constraints, the
nonconvex mixed-integer feasible set, and the highly noncon-
vex objective function with matrix ratio term AH

k B−1
k Ak. To

be specific, in the matrix fractional structure of the objective
function, continuous variables S,U,V and discrete variable
b appear in both the denominator and the numerator, which
makes the problem intractable.

IV. PROPOSED BCD-BASED ALGORITHM FOR THE
CODEBOOK-FREE PILOT SCHEME

In this section, we focus on the codebook-free channel
estimation where the pilot sequences sk meet condition (2).
We first convert problem (13) into an equivalent and math-
ematically tractable one based on the FP method. Then, an
efficient BCD-based joint design algorithm is proposed to
solve the resulting problem, where a series of subproblems
can be tackled via alternating optimization.

A. Problem Transformation
With the aid of the advanced matrix FP techniques [43], we

employ the ratio-decoupling approach to transform problem

(13) into a more tractable yet equivalent form. To this end,
we first introduce the auxiliary variable Γk for each ratio
term AH

k B−1
k Ak. Then problem (13) can be converted into

the equivalent problem
max

b,U,V,S,{Γk}
f0(b,U,V,S, {Γk})

,
K∑

k=1

tr(2ℜ{AH
k Γk}−ΓH

k BkΓk) (14a)

s.t. (13b)− (13e), (14b)

Γk ∈ Cτ×M , ∀k. (14c)
It is observed that the constraint regarding to Γk in problem
(14) are separable with respect to the other variables, i.e.,
S,U,V,b.1 When these variables are fixed, each auxiliary
variable Γk can be optimally determined as follows:

Γ⋆
k = B−1

k Ak. (15)
The detailed proofs of the equivalence between problem (13)
and problem (14), as well as of the optimal solution (15) for
Γk are deferred to Appendix B. Using the matrix quadratic
transformation, where the cost function in (13a) is replaced
by that in (14a), we effectively decouple the numerator and
denominator in each term AH

k B−1
k Ak and avoid the difficul-

ties posed by the nonconvex fractional objective function.
In light of (15), it remains to optimize the other variables,

i.e., S,U,V,b , of the converted problem (14). In the next
subsection, we will specify how to obtain optimal solutions
for these variables.

B. Proposed BCD-Based Algorithm
Note that the constraints (13b)-(13e) in problem (14) are

uncoupled with respect to the variables b,U,V,S, i.e., each
one of the constraints involve only one of these variables
at a time. Hence, to reach a solution, we can decompose
(14) into several independent subproblems each involving a
single variable and solve problem (14) by means of the BCD
algorithm. The corresponding developments are elaborated in
further details below.

1) Optimization of b: In order to cope with the difficulties
posed by the discrete integer variables bn, we first relax bn
into a continuous value b̃n, solve the resulting problem for
b̃n, and finally round each optimal continuous value b̃⋆n to the
nearest integer [32]. To determine the best integer quantization
bits and efficiently control quantization error, we employ the
following criterion for ∀n:

b⋆n =

{
⌊b̃⋆n⌋, if b̃⋆n − ⌊b̃⋆n⌋ ≤ ϵ (0 ≤ ϵ ≤ 1),

⌈b̃⋆n⌉, otherwise,
(16)

where ϵ ∈ [0, 1] is properly chosen so that
∑N

n=1 b
⋆
n ≤ Nb̄

is satisfied. Notice that simple rounding to ⌊b̃⋆n⌋ with ϵ = 1
can always satisfy constraint (13e) and reduce the power con-
sumption while increasing the MSE and quantization errors.
On the other hand, rounding to ⌈b̃⋆n⌉ with ϵ = 0 may violate
the constraint (13e), i.e.,

∑N
n=1 b

⋆
n ≥ Nb̄. Hence, considering

(16), we apply the bisection method to find the optimal value
of ϵ [44] and consequently, determine the optimal allocation of
the quantization bits, which greatly achieves the quantization
error control.

1Actually, matrix V is not involved in the constraints.
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We denote as b̃ = [b̃1, · · · , b̃N ]T ∈ RN×1 the vector of
continuous variables after relaxation, to be used in (14) in
place of b. With the remaining variables being fixed, the
subproblem for b̃ is formulated as

max
b̃

f1(b̃,U,V,S, {Γk}) (17a)

s.t. b̌n ≤ b̃n ≤ b̂n, ∀n, (17b)
N∑

n=1

b̃n ≤ Nb̄, (17c)

where the objective function is expressed as

f1(b̃,U,V,S, {Γk})

=
∑
k

(
tr(2ℜ{Rkx

H
k sHk Γk})−

∑
i

tr(ΓH
k sixkRix

H
k sHi Γk)

−
∑
i

tr(diag(sks
H
k )ΓkΓ

H
k )vkQdiag(URiU

H)vH
k

−σ2tr(ΓkΓ
H
k )(vkQdiag(UUH)vH

k +xkx
H
k )

)
. (18)

It is rather challenging to globally solve a nonconcave
optimization problem such as (17), due to the nature of the
objective function. To address this difficulty, we therefore
resort to successively solving a sequence of strongly concave
approximate problems. Specifically, by virtue of the successive
concave approximation (SCA) method [33], we construct a
concave surrogate function in lieu of the objective function
(18) at each iteration. The surrogate function used at iteration
t takes the form

f̄ t(b̃)=f1(b̃
t)+∇T

b̃
f1(b̃

t)(b̃−b̃t)−ζ∥b̃−b̃t∥2, (19)

where ∇b̃f1(b̃
t) is the gradient of f1(b̃) with respect to b̃ at

the current point b̃t (which is calculated based on the chain
rule), ζ is a positive constant, and the term ζ∥b̃ − b̃t∥2 is
used to ensure the strong concavity of f̄ t(b̃). Therefore, at
the t-th iteration of the SCA algorithm, we need to solve the
following linearly constrained quadratic surrogate problem to
update b̃t+1:

b̃t+1 =argmax
b̃

f̄ t(b̃) (20a)

s.t. (17b), (17c), (20b)

whose solution can be efficiently obtained using the off-the-
shelf CVX solver [45]. Accordingly, we can find the optimal
b̃⋆ in an iterative fashion, and finally apply the procedure in
(16) to obtain the desired integer solution b⋆.

2) Optimization of U: By keeping the other variables
fixed, the subproblem for U becomes a quadratic optimization
problem with constant-modulus constraints, which is given by

max
U

f1(b̃,U,V,S, {Γk}) (21a)

s.t. |U(n,m)| = 1√
M

, ∀n,m. (21b)

To handle the nontrivial constant-modulus constraints resulting
from the analog combiner, we use the one-iteration BCD-type
algorithm [46] to recursively solve problem (21). The detailed
derivation is shown in Appendix C.

3) Optimization of V: Similarly, the corresponding uncon-
strained subproblem for V is given by

max
V

f1(b̃,U,V,S, {Γk}) =
∑
k

f1k(b̃,U,V,S, {Γk}),

(22)
where each term in the sum only involve the corresponding
vector vk. Therefore, problem (22) can be further decomposed
into a sequence of simple per-user cases, each one being
a quadratic optimization problem. These per-user subprob-
lems can be efficiently solved by the first order condition
∂f1k/∂vk = 0. Specifically, the optimal value of vk can be
derived as

v⋆
k =sHk ΓkRkU

HQα

(∑
i

sHi ΓkΓ
H
k siRiU

HQα

+ σ2tr(ΓkΓ
H
k )(QαUUHQα+Qdiag(UUH))

+
∑
i

tr(diag(sks
H
k )ΓkΓ

H
k )Qdiag(URiU

H)

)−1

.

(23)

4) Optimization of S: We now turn to the optimization of the
pilot matrix S while fixing the other variables U,V, b̃, {Γk}.
In this case, the key step is to rewrite the objective function
(14a) in a quadratic form with respect to sk, which results into

f2(b̃,U,V,S, {Γk})
=
∑
k

tr(2ℜ{ΓkRkx
H
k sHk })−

∑
k

sHk Tksk

−
∑
k

∑
i

tr(ΓH
i skxiRkx

H
i sHk Γi) + c, (24)

where

Tk =
N∑
r=1

crkd
r
11 · · · crkd

r
1τ

...
. . .

...
crkd

r
τ1 · · · crkd

r
ττ

 (25)

with crk being the rth row vector of the matrix Ck =
URkU

H , and dr
lj being the lth N ×1 vector on the [r+(j−

1)N ] column of D =
∑

i diag((Iτ ⊗ vH
i )ΓiΓ

H
i (Iτ ⊗ viQ)),

and c is a constant term independent of variable S. Therefore,
the subproblem for the codebook-free pilot matrix S is given
by

max
S

f2(b̃,U,V,S, {Γk})

s.t. (13b), (26)

which can be solved by the Lagrange multiplier method. By
associating the Lagrange multiplier λk to the corresponding
power budget constraint ∥sk∥2 ≤ Pmax

k , the Lagrange function
for (26) is given by

L(S,λ) = f2(b̃,U,V,S, {Γk})−
∑
k

λk(∥sk∥2 − Pmax
k ).

(27)
By examing the first order optimality condition for L(S,λ),
the optimal value of sk can be derived as
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Algorithm 1: Proposed BCD-Based Algorithm (RADC
Codebook-Free Scheme)

1 Initialization: Set all the variables to feasible values and
define the tolerance of accuracy ε1 > 0;

2 repeat
3 Update the auxiliary variable Γk’s according to (15);
4 Update variable b̃ by solving (17);
5 Update variable U by solving (21);
6 Update variable vk’s (i.e., V) according to (23);
7 Update variable sk’s (i.e., S) according to (28) along

with the Lagrangian multiplier λk’s in (29);
8 until the increment on the value of the objective function

in (13a) is less than ε1 > 0;
9 Rounding: Round each optimal continuous value b̃⋆n

according to (16) and obtain the optimal b⋆.

s⋆k =

(∑
i

xiRkx
H
i ΓiΓ

H
i +Tk + λkIτ

)−1

ΓkRkx
H
k ,

(28)
where λk ≥ 0 should be optimally determined as

λ⋆
k =

{
0, if ∥sk∥2 ≤ Pmax

k ,

λk > 0 with ∥sk∥2 = Pmax
k , otherwise,

∀k. (29)

Note that (28) and (29) can be readily solved via the
bisection search; ultimately, we substitute the optimal λ⋆

k into
(28) and obtain the optimal s⋆k.

The corresponding BCD-based algorithm is summarized in
Algorithm 1.

C. Convergence Analysis and Computational Complexity

This subsection establishes the local convergence of Al-
gorithm 1 to stationary solutions and presents its detailed
computational complexity analysis. First, we introduce a key
lemma, which can be readily proved according to [43].

Lemma 1: The objective functions f(·) (13a) and f0(·)
(14a) satisfy

f(b,U,V,S) ≥ f0(b,U,V,S, {Γk}), (30)
with equality if and only if Γk satisfies (15).

By invoking Lemma 1, the convergence of Algorithm 1 can
be demonstrated. This property is summarized as Theorem 1
below, and its proof can be found in Appendix D.

Theorem 1: Algorithm 1 is guaranteed to converge, with
the objective function f(b,U,V,S) monotonically nonde-
creasing after each iteration. The solution after convergence
is a stationary point of problem (13).

In the following, we analyze the computational complexity
of Algorithm 1. We use the number of multiplications as
a measure of complexity and assume that M ≫ N ≥
K. Updating the auxiliary variables Γk in (15) involves
the calculation of Ak, Bk and the inverse of Bk based
on Gauss-Jordan elimination with an overall complexity
O(M2K2Nτ +MK2N2τ2). According to the proposed one-
iteration BCD type algorithm [46], updating all the entries
of U once has a complexity of O(M2N2). Furthermore,
the overall computational complexity of V is on the order

of O(M2K2N + MK2N2). The computational complexity
of optimizing b is dominated by computing the Jacobian
matrix of

∑
k ∇b̃f1k(b̃

t) with respect to b̃. Thus, the com-
plexity for updating b is O(Ib(M

2KN + MKN2)), where
Ib denotes the number of iterations of the SCA method.
As for the pilot matrix S, using the bisection method to
search each Lagrangian parameter λk requires log2(

ϑ0

ϑs
) iter-

ations to achieve a desired accuracy, where ϑ0 is the initial
interval size and ϑs is the tolerance. Hence, the overall
computational complexity of updating S over all the users is
O(Kτ log2(

ϑ0

ϑs
)+M2NK+MK2τ2). By retaining dominant

terms, the overall complexity of the proposed Algorithm 1 is
O(I1(M

2(N2+K2Nτ)+MK2N2τ2+Kτ log2(
ϑ0

ϑs
))), where

I1 denotes the number of iterations.

V. PROPOSED PDD-BASED ALGORITHM FOR THE
CODEBOOK-BASED PILOT SCHEME

In this section, we focus on the codebook-based channel es-
timation where pilot sequences are chosen from the codebook
Υ. Under this setup, we first recast the corresponding problem
(14) from Section IV into a resource allocation problem with
discrete binary codeword indicator variables. Subsequently, we
introduce a set of auxiliary variables and propose an innovative
PDD-based algorithm to solve the optimization problem.

A. Proposed PDD-Based Algorithm

Since sk is herein structured as sk =
√
pkϱk where ϱk

is chosen from the codebook Υ, the codebook-based pilot
design can be regarded as a pilot resource allocation problem.
Consequently, how to allocate the limited orthogonal pilot
in Υ to the different users to reduce the channel estimation
error is of great importance. We introduce ηkι ∈ {0, 1} as
the allocation indicator, where ηkι = 1 signifies that the best
orthogonal pilot υι is assigned to user k; otherwise, we have
ηkι = 0. Hence, using ηkι we can write ϱk =

∑τ
ι=1 ηkιυι and

sk =
√
pk
∑τ

ι=1 ηkιυι.
With each sk expressed in terms of (pk, ηkι), problem (14)

can be equivalently converted to the following problem:

max
Z,{ηkι}

f3(Z, {ηkι})=f0(b,U,V,S, {Γk}) |sk=√
pk

∑τ
ι=1 ηkιυι

(31a)
s.t. (13b)− (13e), (14c), (31b)

τ∑
ι=1

ηkι = 1, ∀k, (31c)

ηkι ∈ {0, 1}, ∀k, ι, (31d)

where Z , {U,V,b,p, {Γk}} with p = [p1, . . . , pK ]T

represents the search variables, and constraint (31c) guarantees
that each user is associated with a single pilot sequence.

To address the difficulty posed by discrete binary constraints
(31c) and (31d), we introduce the auxiliary variables {η̂kι}, in
terms of which these constraints can be equivalently expressed
as

0 ≤ η̂kι ≤ 1, (32)
τ∑

ι=1

ηT
ι ek = 1, ηT

ι ek = η̂kι, ηT
ι ek(η̂kι − 1) = 0, (33)
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max
ηι

∑
k

(
√
pke

T
k ηιtr(2ℜ{ΓkRkx

H
k υH

ι })−pkη
T
ι eke

T
k ηιυ

H
ι Tkυι − pke

T
k ηι(υ

H
ι Tka+ aHTkυι)

−
∑
i

pkη
T
ι eke

T
k ηιtr(Γ

H
i υιxiRkx

H
i υH

ι Γi)−
∑
i

pke
T
k ηιtr(2ℜ{ΓH

i υιxiRkx
H
i aHΓi})

− 1

2ρ

(
|ηT

ι ek − η̂kι + ρλ̃kι|2 + |ηT
ι ek(η̂kι − 1) + ρλ̄kι|2 + |

∑
ι

ηT
ι ek − 1 + ρλ̂k|2

))
, (36)

η⋆
ι =

(∑
k

(
2ρ
∑
i

pktr(Γ
H
i υιxiRkx

H
i υH

ι Γi) + 2ρpkυ
H
ι Tkυι + (η̂kι − 1)2 + 2

)
eke

T
k

)−1

×
(∑

k

(
ρ
√
pktr(2ℜ{ΓkRkx

H
k υH

ι })− ρ(λ̃kι + λ̄kιη̂kι − λ̄kι + λ̂k)−
∑
ι′ ̸=ι

ηT
ι′ek

+ η̂kι + 1− ρ
∑
i

pktr(2ℜ{ΓH
i υιxiRkx

H
i aHΓi})− ρpk(υ

H
ι Tka+ aHTkυι)

)
ek

)
. (37)

where ηι , [η1ι, · · · , ηKι]
T and ek is the k-th column of

identity matric IK . Then problem (31) is then equivalent to

max
Z,{ηkι},{η̂kι}

f3(Z, {ηkι}) (34a)

s.t. (13b)− (13e), (14c), (32), (33), (34b)

where importantly, the variables ηkι are no longer limited to
binary values. To solve problem (34), we next introduce the
proposed PDD-based algorithm which exhibits a double-loop
structure to solve problem (34). Based on the PDD framework
[47], [48], we first add a penalized version of the equality
constraints in (33) to the objective function (34a), thereby
obtaining the following augmented Lagrangian (AL) problem

max
Z,{ηkι},{η̂kι}

f3(Z, {ηkι})−
1

2ρ

K∑
k=1

τ∑
ι=1

|ηT
ι ek − η̂kι + ρλ̃kι|2

− 1

2ρ

K∑
k=1

τ∑
ι=1

|ηT
ι ek(η̂kι − 1) + ρλ̄kι|2

− 1

2ρ

K∑
k=1

|
τ∑

ι=1

ηT
ι ek − 1 + ρλ̂k|2 (35a)

s.t. (13b)− (13e), (14c), (32), (35b)

where {λ̃kι}, {λ̄kι}, {λ̂k}, k ∈ K, ι ∈ T denote the Lagrange
multipliers and ρ ∈ R+ denotes the penalty coefficient. We
note that problems (34) and (35) are equivalent in the limit
ρ → 0, which is at the hearth of the PDD method. Specifically,
in the PDD-based algorithm, the inner loop solves the AL
problem with fixed AL multipliers and penalty coefficient,
while the outer loop aims to update the dual variables while
reducing the penalty coefficient in light of the constraint
violation.

Since the constraints in problem (35) are separable, we can
address the AL problem (35) in the inner loop with the BCD
method. Particularly, the subproblems for b, U and V are the
same as problems (17), (21) and (22) discussed in Section IV-
B, respectively, and can therefore be solved using the same
methods. The optimization of the remaining variables in the

inner loop, i.e. {ηι}, {η̂kι}, and p, is explained in further detail
below.

1) Optimization of {ηι}: We optimize {ηι} in parallel for
ι = 1, ..., τ , with the remaining variables being fixed. The
subproblem of optimizing ηι can be simplified as the uncon-
strained problem in (36) shown at the top of this page, where
a ,

∑
ι′ ̸=ι η

T
ι′ekυι′ . By examining the first-order optimality

condition of (36), we derive the closed-form solution of ηι

shown in (37) at the top of this page. Finally, we use the
one-iteration BCD method to update {ηι} based on (37).

2) Optimization of {η̂kι}: We optimize {η̂kι} in parallel with
the other variables fixed. The corresponding subproblem for
η̂kι can be expressed as

min
η̂kι

1

2ρ
(|ηT

ι ek − η̂kι + ρλ̃kι|2 + |ηT
ι ek(η̂kι − 1) + ρλ̄kι|2)

s.t. (32). (38)

Problem (38) features a scalar quadratic objective function
of η̂kι, for which we can directly obtain the unconstrained
minimizer as

η̂
′

kι =
ρλ̃kι + ηkι − ρηkιλ̄kι + η2kι

1 + η2kι
. (39)

According to constraint (32), η̂kι must satisfy 0 ≤ η̂kι ≤ 1,
we can obtain the optimal solution of the constrained problem
(38) as follows:

η̂⋆kι =


0, η̂

′

kι ≤ 0,

η̂
′

kι, 0 < η̂
′

kι < 1,

1, η̂
′

kι ≥ 1,

∀k, ι. (40)

3) Optimization of p: By fixing the other variables, the
corresponding subproblem for variable pk can be expressed
as

max
pk

fpk
=
√
pktr(2ℜ{ΓkRkx

H
k ϱH

k })

−pk
∑
i

tr(ΓH
i ϱkxiRkx

H
i ϱH

k Γi)−pkϱ
H
k Tkϱk

s.t. ∥√pk∥2 ≤ Pmax
k , (41)
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where ϱk =
∑τ

ι=1 ηkιυι. The variable pk can be determined
uniquely by solving the first-order equation ∂fpk

/∂pk = 0,
which yields

p⋆k=min

{
Pmax
k ,

(
tr(ℜ{ΓkRkx

H
k ϱH

k })∑
itr(Γ

H
i ϱkxiRkxH

i ϱH
k Γi)+ϱH

k Tkϱk

)2
}
.

(42)
In the outer iteration of the PDD-based algorithm, the dual

variables {λ̃kι}, {λ̄kι}, {λ̂k}, ∀k ∈ K, ι ∈ T , can be updated
according to

λ̃r+1
kι = λ̃r

kι + (ηT
ι ek − η̂kι)/ρ

r, (43a)

λ̄r+1
kι = λ̄r

kι + (ηT
ι ek(η̂kι − 1))/ρr, (43b)

λ̂r+1
k = λ̂r

k + (

τ∑
ι=1

ηT
ι ek − 1)/ρr, (43c)

where superscript r refers to the iteration number of the
outer loop. As for the penalty parameter ρ, it is decremented
according to ρr+1 = aρr+1, where 0 < a < 1. To measure the
violation of the equality constraints, we adopt the constraint
violation indicator δ , which is defined as

δ = max
k,ι

{
|ηT

ι ek − η̂kι|, |ηT
ι ek(η̂kι − 1)|, |

τ∑
ι=1

ηT
ι ek − 1|

}
.

(44)
When δ ≤ ε2, where ε2 denotes the tolerance on the constraint
violation, the algorithm terminates. The corresponding PDD-
based algorithm is summarized in Algorithm 2.

Algorithm 2: Proposed PDD-Based Algorithm (RADC
Codebook-Based Scheme)

1 Initialization: Dual variables {λ̃kι, λ̄kι, λ̂k}0, primal
variables {U,V,b,p, {ηkι}, {η̂kι}, {Γk}}0, tolerances
ε2 > 0 and ε3 > 0, penalty factor ρ0 > 0, 0 < a < 1,
ε̂0 > 0, r = 0 ;

2 repeat
3 repeat
4 Update the auxiliary variable Γk’s according to

(15);
5 Update variable b̃ by solving (17);
6 Update variable U by solving (21);
7 Update variable vk’s (i.e., V) according to (23);
8 Update variable ηι’s according to (37);
9 Update variable η̂kι’s according to (40);

10 Update variable p according to (42);
11 until the increment on the value of the objective

function in (35a) is less than ε3;
12 Calculate the constraint violation δ according to (44);
13 if δ ≤ ε̂r then
14 Update dual variables according to (43);
15 else
16 Set ρr+1 = aρr;
17 end
18 Set ε̂r+1 = aδ, and r = r + 1;
19 until the termination criterion is met: δ ≤ ε2;
20 Rounding: Round each optimal continuous value b̃⋆n

according to (16) and obtain the optimal b⋆.

B. Convergence Analysis and Computational Complexity

Based on the discussion of [47], [48], the proposed PDD-
based Algorithm 2 is guaranteed to converge to a stationary
point of problem (34). Since there is no relaxation or approxi-
mation during the transformation from the original problem in
(31) to problem (34), problem (31) and problem (34) share the
same stationary solution. Therefore, Algorithm 2 is guaranteed
to converge to the stationary point of problem (31).

As for the computational complexity of Algorithm 2, the
inner loop procedure is similar to Algorithm 1 except for
the optimization of pilot sequences. The complexity of op-
timizing {ηι}, {η̂kι} and p in Algorithm 2 is O((M2N +
MN)Kτ +K3). Thus, the overall computational complexity
of the proposed Algorithm 2 is O(I2I3(M

2(N2 +K2Nτ) +
MK2N2τ2)), where I2 and I3 are the numbers of iterations
in the outer and inner loops, respectively.

Algorithm 3: Proposed Simplified Algorithm (Simplified
Scheme)

1 Initialization: Set all the variables to feasible values and
define the tolerance of accuracy ε4 > 0;

2 Apply the SGPA method to achieve codebook-based
pilot allocation [37];

3 repeat
4 Update the auxiliary variable Γk’s according to (15);
5 Update variable b̃ by solving (17);
6 Update variable U by solving (21);
7 Update variable vk’s (i.e., V) according to (23);
8 Update variable p according to (42);
9 until the increment on the value of the objective function

in (45a) is less than ε4 > 0;
10 Rounding: Round each optimal continuous value b̃⋆n

according to (16) and obtain the optimal b⋆.

VI. SIMPLIFIED ALGORITHM FOR THE CODEBOOK-BASED
PILOT SCHEME

To reduce the computational complexity, we propose a
simplified algorithm based on the statistical greedy pilot
allocation (SGPA) method [37] for the codebook-based chan-
nel estimation. The main idea of the SGPA method is that
the channel covariance matrices of the users who reuse the
pilots should be as orthogonal as possible. We define the
orthogonality between two channel covariance matrices as
π =

tr(RH
k Rk′ )

∥Rk∥F ∥Rk′∥F
∈ [0, 1], where π = 0 indicates that these

two channel covariance matrices are orthogonal. Smaller π
means stronger orthogonality and weaker similarity. The SGPA
process can be divided into two steps: 1) we first assign τ
orthogonal pilots of the available codebook Υ to τ users with
similar channel covariance matrices; 2) we then allocate the
best pilot to each of the remained K − τ users so that the
channel covariance matrices of the users who reuse the pilots
are as orthogonal as possible. Additional details about SGPA
method can be found in [37, Algorithm 1]. Hence, we firstly
employ the SGPA method to allocate pilot sequences among
users to achieve pilot reuse. Then, with the allocated pilot
ϱk, ∀k, the original problem reduces to the following problem:
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max
Z

f4(Z) = f0(b,U,V,S, {Γk}) |sk=√
pkϱk

(45a)

s.t. (13b)− (13e), (14c). (45b)
We can solve this problem using the BCD approach with
guaranteed convergence, and the updates of U,V,b,p, {Γk}
are obtained using the same method shown in the PDD-based
algorithm in Section V-A.

Overall, the simplified algorithm is presented in Algorithm
3 with a complexity order of O(I4(M

2N2 + M2K2Nτ +
MK2N2τ2)+M2K3), where I4 denotes the number of iter-
ations. It is worth noting that the complexity of the simplified
algorithm is much lower than that of the proposed PDD-
based algorithm, since it only has one loop. However, its
performance is not as good as the performance of the PDD-
based algorithm, which will be verified by simulation results.
Consequently, our proposed PDD-based algorithm for the
codebook-based pilot scheme therefore offers a practical trade-
off between complexity and performance, while the simplified
algorithm for the codebook-based pilot scheme solves problem
(14) suboptimally but with reduced complexity.

VII. SIMULATION RESULTS

In this section, simulations are conducted to validate the
effectiveness of our proposed algorithms. We consider a single
cell scenario with a cell radius rd = 300 m. The BS, which
is located in the center of the cell, is equipped with M = 64
antennas and N = 12 RF chains. A total of K = 12 users are
uniformly distributed within the cell area. The pathloss of user
k is calculated as 30.6+ 36.7 log10(dk) in dB [49], where dk
is the distance in meters between that user and the BS. The
log-normal shadow fading, i.e., the corresponding loss in dB,
follows a Gaussian distribution with zero mean and variance
σ2
s = 8 dB. We set the maximum transmit power level Pmax

k

as 20 dBm and the system bandwidth as 10 MHz. The back-
ground noise power spectral density is set as −169 dBm/Hz
[50]. We adopt a geometry-based spatially correlated channel
model with a half-wavelength space uniform linear array for
simulations [24]. Specifically, the channel vector between the
BS and user k is modeled as hk =

∑Lp

i=1 γk,ia(θk,i), where
Lp = 5 is the number of channel paths for each user, a(θ)
is the array response vector with generic expression given by
a(θ) = 1√

M
[1, ejπ sin θ, . . . , ejπ(N−1) sin θ], θk,i are the angles

of arrival, independently generated with a Laplace distribution
with an angle spread σAS = 10, and γk,i are the complex
path gains following the CN (0, σ2

k,i) distribution. The σ2
k,i

are randomly generated from an exponential distribution and
normalized such that

∑Lp

i=1 σ
2
k,i = Gk, where Gk is the desired

average channel gain. For simplicity, we set b̌n = b̌ = 1,
b̂n = b̂ = 8, and b̄ = 3 [32].

We utilize the normalized MSE (NMSE) to evaluate the
channel estimation performance of the proposed schemes [51].
Specifically, we define NMSEk = 1

N

∑N
n=1

∥ĥn
k−hn

k∥
2

∥hn
k∥2 , where

ĥn
k is the MMSE estimate of the k-th user’s channel hn

k ob-
tained in the n-th Monte Carlo trial and N = 1000 is the total
number of such trials, and we let NMSE =

∑K
k=1 NMSEk.

For comparison, the following three benchmarks are also
considered in the simulations:

10 20 30 40 50 60
Number of iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
M

SE

RADC codebook-free scheme

Fig. 2. NMSE versus number of iterations for the proposed BCD-based
algorithm (M = 64, K = 12, τ = 8, and b̄ = 3).

• Random pilot (RP) scheme [38]: The pilot sequences
are generated independently and randomly, with entries
following the complex Gaussian distribution under the
maximum power constraint.

• Random allocation (RA) scheme [38]: A subset of τ users
are randomly selected and assigned mutually orthogonal
pilots, while the remaining users are randomly allocated
pilots in the codebook Υ.

• Uniform quantization (UQ) schemes [24]: For both the
codebook-free and codebook-based cases, LADCs with
fixed and identical number of quantization bits are imple-
mented at the BS (marked as ‘UQ codebook-free scheme’
and ‘UQ codebook-based scheme’). These schemes serve
as benchmarks to investigate how the RADCs influence
the system performance.

Let us commence by examining the convergence behavior
of the proposed algorithms. The NMSE performance versus
number of iterations for the proposed BCD-based algorithm
and PDD-based algorithm are presented in Fig. 2 and Fig.
3(a); in addition, Fig. 3(b) shows the constraint violation for
the proposed PDD-based algorithm. It is observed that for both
proposed algorithms, the NMSE converges fast within a few
iterations. In particular, it indicates that the penalty terms in
the PDD-based algorithm decrease to a value below 10−8 after
50 iterations in Fig. 3(b). These results verify the ability of
the proposed algorithms to effectively handle problem (13).

In Fig. 4, we take a closer look at the cumulative distribution
function (CDF) of the NMSE for different schemes. Remark-
ably, the proposed RADC codebook-free scheme outperforms
that of the other competing schemes at any percentile, while
the transition of its CDF from 0 to 1 occurs over a smaller
range. The results also illustrate that the RADC codebook-
based scheme and the simplified scheme yield better NMSE
performance than the UQ codebook-based scheme. However,
the simplified scheme achieves a suboptimal performance
compared to the RADC codebook-based scheme, due to the
fact that the pilots are heuristically allocated in advance in the
simplified algorithm.

Fig. 5 compares the NMSE of the proposed RADC schemes
and the UQ schemes (which fundamentally differ in their bit
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Fig. 3. NMSE (a) and constraint violation (b) versus number of outer
iterations for the proposed PDD-based algorithm (M = 64, K = 12, τ = 8,
and b̄ = 3).
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Fig. 4. Cumulative distribution function of the NMSE (M = 64, K = 12,
τ = 10, and b̄ = 3).

allocation strategy) as the average number of quantization
bits b̄ increases. It can be seen for both codebook-free and
codebook-based cases, the NMSE of the two schemes coin-
cides for small and large values of b̄. However, when b̄ (i.e.,
3 ≤ b̄ ≤ 5) is moderate, our proposed schemes significantly
outperform their corresponding UQ scheme. This fact can be
explained as follows: 1) For small values of b̄, there is no
additional freedom for adapting the allocation of quantization
bits to various users’ propagation conditions; 2) For intermedi-
ate values of b̄, thanks to adaptive quantization bit allocation,
the proposed RADC schemes offer added flexibility to select
different resolutions to improve channel estimation accuracy;
3) As b̄ becomes sufficiently large, the quantization errors
caused by the ADCs become less important, and no longer
represent the main performance bottleneck of our proposed
system.

The effect of the length of pilot sequences τ on the NMSE
performance of different schemes is illustrated in Fig. 6. It can
be seen that our proposed RADC codebook-free design yields
the best performance among the competing schemes when
τ ∈ [7, 11], while the RADC codebook-based scheme and the
simplified scheme provide the lowest NMSE (almost identical)
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Fig. 5. NMSE performance versus the average number of quantization bits
b̄ (M = 64, K = 12, and τ = 10).
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Fig. 6. NMSE performance versus the length of pilot sequence τ (M = 64,
K = 12, and b̄ = 3).

when τ = 12. This result is expected because in this case, there
are orthogonal pilots to allocate among all the K = 12 users,
which allows significantly better channel estimation accuracy.
In general, as the pilot length increases, a noticeable decrease
of the channel estimation error can be observed in both RADC
schemes. However, the RADC codebook-free scheme holds
distinct advantages when short pilots are used, which is of
crucial importance for applications with stringent constraints
on pilot length.

Fig. 7 presents the NMSE performance of different schemes
versus the maximum transmit power Pmax. We observe that the
NMSE achieved by all schemes is monotonically decreasing
with the maximum transmit power. In particular, thanks to
the RADC architecture, our proposed RADC codebook-free
scheme outperforms its UQ counterpart by a significant margin
as the maximum transmit power increases. Furthermore, from
the figure, the superiority of the proposed RADC codebook-
based and simplified schemes are demonstrated once again.
These results validate the effectiveness of the proposed design
approach based on the channel estimation minimization.

In Fig. 8, we investigate the sum rate (bits/s/Hz) perfor-
mance of the various schemes, which is evaluated with the
aid of the celebrated precoding algorithm in [52]. As shown
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Fig. 7. NMSE performance versus the maximum transmit power Pmax (M =
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11 12 13 14 15 16
Number of users K

60

65

70

75

80

85

90

95

100

105

Su
m

 r
at

e 
(b

its
/s

/H
z)

RADC codebook-based scheme
RADC codebook-free scheme
UQ codebook-free scheme
UQ codebook-based scheme
Simplified scheme
RA scheme
RP scheme

Fig. 8. Sum rate performance versus the number users (M = 64, τ = 10,
and b̄ = 3).

in this figure, our proposed RADC codebook-free scheme
outperforms the other schemes significantly, which confirms
its superiority in serving multiple users. Besides, the RADC
codebook-based scheme achieves better performance in trans-
mission than the simplified scheme and the conventional RA
scheme, showing that it can strike a better trade-off between
transmission rate and complexity.

Fig. 9 further shows the NMSE of the channel estimation
versus the number of BS antennas M . While the NMSE
value of all the schemes decreases as the number of BS
antennas increases, it is clear that the best performance is
achieved by the RADC codebook-free scheme. Moreover, the
performance gap between the proposed RADC codebook-
based and codebook-free schemes shrinks dramatically as
more antennas are being added at the BS. Hence, the proposed
joint algorithms for pilot sequence design, bit allocation and
hybrid combiner optimization are especially suitable for use in
massive MIMO systems with a large number of antennas M .
The reason is that our proposed scheme can provide significant
flexibility over the ADCs with different channel gains and the
joint design framework can exploit the difference in channel
quality among links for mitigating the multiuser interference
as M increases, thereby supporting more favorable uplink
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Fig. 9. NMSE performance versus the number of antennas at BS (K = 12,
τ = 10, and b̄ = 3).
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Fig. 10. The number of signalling bits versus the length of pilot sequence
τ (K = 24).

training and channel estimation in a cost-effective manner.
Next, we compare the number of required signalling bits for

the feedback of the optimal pilot sequences, for the proposed
RADC codebook-based and codebook-free schemes. Let B
denotes the number of quantization bits for each element
of the codebook-free pilot matrix and of the power vector
in the codebook-based pilot scheme. Thus, the number of
signalling bits of the RADC codebook-free scheme is given
by 2BKτ and that of the RADC codebook-based scheme
is (⌈log2 τ⌉ + B)K, where ⌈log2 τ⌉ denotes the number of
signalling bits required for the codebook feedback of each
user. Fig. 10 illustrates the number of signalling bits versus the
length τ of the pilot sequences, where we employ B = 8 and
K = 24. We can see that the proposed RADC codebook-based
scheme can significantly reduce the system feedback overhead
compared to the RADC codebook-free scheme. In particular,
signalling overhead gap between these two schemes enlarges
with the increase of pilot length.

The average mutual coherence of different users’ pilot
sequences obtained in the RADC codebook-free and UQ
codebook-free schemes is shown in Table I. We use the factor
ck,i , |sHk si|

|sk||si| as a measure of the mutual coherence, which
reveals the degree of orthogonality among pilot sequences of
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TABLE I
COMPARISON OF AVERAGE MUTUAL COHERENCE OF THE OPTIMAL PILOT SEQUENCES IN CODEBOOK-FREE SCHEMES.

User 1 2 3 4 5 6 7 8 9 10 11 12
RADC Scheme 0.1327 0.2018 0.2151 0.3563 0.4029 0.5501 0.5322 0.6041 0.6866 0.6736 0.6898 0.6905

UQ Scheme 0.2731 0.5068 0.5626 0.5906 0.6538 0.6282 0.7356 0.7514 0.7673 0.7765 0.7814 0.7818

different users. We label the users based on the strength of
channel pathloss, specifically: user 1 encounters the largest
pathloss and user 12 encounters the smallest one. It is ob-
served from Table I that both the RADC codebook-free and
UQ codebook-free schemes tend to allocate more orthogonal
pilots to the users with large pathloss, while assigning less
orthogonal pilots to the users with small pathloss. This is
reasonable since users with weak channel gain are more easily
affected by interference. These results show that codebook-free
schemes can take advantage of the knowledge of statistical CSI
to in online pilot design in order to enhance the accuracy of
channel estimation.

VIII. CONCLUSIONS

In this paper, we investigated the problem of channel estima-
tion in the uplink massive MIMO systems using RADCs at the
BS. We aimed for minimizing the MSE of the Rayleigh fading
channel estimates by jointly optimizing the pilot sequences,
HAD combiners, and the allocation of ADC quantization
bits under practical constraints. To solve such a challenging
nonconvex problem, we harnessed the FP technique and intro-
duced some auxiliary variables for transforming the original
problem into an equivalent but more manageable form. Then,
we developed new BCD-based and PDD-based algorithms for
solving the resultant equivalent problem for codebook-free
and codebook-based pilot schemes, respectively. Furthermore,
we proposed a simplified algorithm for the codebook-based
pilot scheme with much reduced complexity. Our simulation
results demonstrated the efficiency of the proposed algorithms
and their superiority in terms of the MSE and sum rate
over the benchmark schemes. It was shown that the RADC
codebook-free scheme generally provides better performance
than the RADC codebook-based scheme, although the latter
entails lower feedback overhead. Hence, the RADC codebook-
based scheme is particularly suitable for application scenarios
associated with low overhead requirement, while the RADC
codebook-free scheme is recommended for applications requir-
ing support for large-scale user access, high channel estimation
accuracy and relaxed overhead requirements.

APPENDIX

A. Computation of ĥk in (10) and MSEk in (11)

The estimate ĥk of the original channel hk is obtained
by means of the MMSE estimation method based on the
observation of yk. Hence, it follows from the standard result
in estimation theory [53] that:

ĥk = E[hkvec(yk)
H ](E[vec(yk)vec(yk)

H ])−1vec(yk).
(46)

Substituting (9) into (46), and after some mathematical manip-
ulations, we obtain ĥk in (10). Denoting the channel estimation
error at the BS as ϖk = ĥk−hk, the corresponding MSEk is

given by MSEk = E[∥ϖk∥2] = E[∥ĥk − hk∥2]. Thus, using
(9), (10) and after some mathematical manipulations, one can
obtain

MSEk = tr(Rk −AH
k B−1

k Ak), (47)

where Ak = skxkRk, and Bk =
∑

i sixkRix
H
k sHi +

σ2xkx
H
k Iτ + (Iτ ⊗ vkQ)diag

(∑
i(si ⊗ U)Ri(si ⊗ U)H +

σ2Iτ ⊗UUH
)
(Iτ ⊗ vH

k ) ≻ 0.

B. Proof of the equivalence between problems (13) and (14)
and of the solution Γ⋆

k in (15)

To prove the equivalence between problem (13) and problem
(14), we first introduce
f0k(b,U,V,S,Γk) =tr(2ℜ{AH

k Γk}−ΓH
k BkΓk). With fixed

b,U,V,S (that is, fixed Ak,Bk), f0k is concave over the
auxiliary variable Γk and is also a quadratic function of Γk. By
applying the first order optimality condition, we can obtain the
closed-form solution of problem (14), written as Γ⋆

k=B−1
k Ak.

Upon substitution of Γ⋆
k into (14), we arrive at the equivalence

of problem (13) and problem (14).

C. Quadratic optimization problem with constant-modulus
constraints for U

We provide an iterative algorithm to solve the following
constant-modulus constrained quadratic optimization problem

max
U

f1(b̃,U,V,S, {Γk}). (48a)

s.t. |U(n,m)| = 1√
M

,∀n,m. (48b)

By introducing M = diag(vH
k ), the cost function

f1(b̃,U,V,S, {Γk}) can be rewritten as

f1(b̃,U,V,S, {Γk})

=
∑
k

(
tr(2ℜ{Rkx

H
k sHk Γk})−

∑
i

tr(ΓH
k sixkRix

H
k sHi Γk)

−
∑
i

tr(diag(sks
H
k )ΓkΓ

H
k )tr(QURiU

HMMH)

− σ2tr(ΓkΓ
H
k )(tr(QUUHMMH) + xkx

H
k )

)
. (49)

We utilize the BCD-type algorithm to tackle problem (48),
which is guaranteed to converge to a stationary solution [54].
Specifically, we update each entry of U once at a time, while
keeping the other entries fixed in each step. The function
f1(b̃,U,V,S, {Γk}) restricted to a particular entry U(n,m)
can be represented as a quadratic function of U(n,m) in the
form of f̂(U(n,m)) = 2ℜ{φ∗

nmU(n,m)}−µnm|U(n,m)|2,
for some complex number φnm and real number µnm. Then,
the problem of maximizing f̂(U(n,m)) with respect to
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µnmÛ(n,m)=
∑
k

(
(Ψ̄(n, n)+Ψ̂(n, n))Û(n,m)+

∑
i

(Ψ̃(n, n)+Ψi(n, n))Û(n,m)Ri(m,m)

)
. (54)

φnm=
∑
k

(
(Ψ̄(n, n)+Ψ̂(n, n))Û(n,m)+

∑
i

(Ψ̃(n, n)+Ψi(n, n))Û(n,m)Ri(m,m)

)
+Φ(n,m). (55)

U(n,m) subject to the constant-modulus constraint is given
by

max
|U(n,m)|= 1√

M

f̂(U(n,m)). (50)

Considering that |U(n,m)| = 1/
√
M , problem (50) reduces

to
max

|U(n,m)|= 1√
M

ℜ{φ∗
nmU(n,m)}. (51)

It follows that the optimal solution of U(n,m) is given by
φnm/

√
M |φnm|. Apparently, we only need to know the value

of φnm when updating U(n,m); below, we show how to
obtain φnm. On the one hand, we have [55]

∂f̂(U(n,m))

∂U∗(n,m)

∣∣∣∣∣
U(n,m)=Û(n,m)

= φnm − µnmÛ(n,m). (52)

On the other hand, let us introduce the following matrix [55]

Φ =
∂f1(b̃,U,V,S, {Γk})

∂U∗

∣∣∣∣∣
U=Û

=
∑
k

(
Qαv

H
k sHk ΓkRk

)
−
∑
k

(
(Ψ̄+Ψ̂)Û+

∑
i

(Ψ̃+Ψi)ÛRi

)
,

(53)

where Ψ̄ , σ2tr(ΓkΓ
H
k )Qαv

H
k vkQα, Ψ̂ ,

σ2tr(ΓkΓ
H
k )MMHQ, Ψ̃ , tr(diag(sks

H
k )ΓkΓ

H
k )MMHQ,

and Ψi , Qαv
H
k sHi ΓkΓ

H
k sivkQα. Combining (52) and (53),

we obtain Φ(n,m) = φnm − µnmÛ(n,m). By expanding
[(Ψ̄+ Ψ̂)Û+

∑
i(Ψ̃ + Ψi)ÛRi](n,m) and examining the

coefficient of Û(n,m), we find (54) displayed at the top of
this page. Therefore, the value of φnm is determined as (55),
shown at the top of this page.

D. Proof of Theorem 1

We focus on the proof of Theorem 1, i.e., the convergence
of Algorithm 1. It is seen that each subproblem in the proposed
BCD-based Algorithm 1 is guaranteed to converge to its
stationary point. Specifically, the subproblem with respect to
U, V and S can be globally solved, respectively, and the solu-
tions satisfy the optimality conditions. As for the subproblem
for b̃ (the relaxation variable of b), we leverage the SCA
method and construct the concave surrogate function f̄ t(b̃) to
approximate the nonconcave objective function f1(b̃). Then,
the complex nonconcave optimization subproblem (17) is
transformed into a concave subproblem (20) with guaranteed
convergence. The valid surrogate function f̄ t(b̃) and f1(b̃)
have the same value and gradient at point b̃t which follows
from the SCA theory [56]. Consequently, subproblem (17) and
subproblem (20) will share the same stationary point.

With objective function value of each subproblem nonde-
creasing and guaranteed to converge to its stationary point
and according to Proposition 2.7.1 (Convergence of BCD) in
[54], Algorithm 1 is guaranteed to converge to a stationary
point of problem (14). Furthermore, based on Lemma 1,
problem (13) and problem (14) can share the same stationary
points. Therefore, Algorithm 1 is guaranteed to converge to a
stationary point of problem (13).
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