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Abstract 

We present a sequence-to-sequence machine learning model for predicting the IUPAC name of a chemical from 
its standard International Chemical Identifier (InChI). The model uses two stacks of transformers in an encoder-
decoder architecture, a setup similar to the neural networks used in state-of-the-art machine translation. Unlike neural 
machine translation, which usually tokenizes input and output into words or sub-words, our model processes the 
InChI and predicts the IUPAC name character by character. The model was trained on a dataset of 10 million InChI/
IUPAC name pairs freely downloaded from the National Library of Medicine’s online PubChem service. Training took 
seven days on a Tesla K80 GPU, and the model achieved a test set accuracy of 91%. The model performed particularly 
well on organics, with the exception of macrocycles, and was comparable to commercial IUPAC name generation 
software. The predictions were less accurate for inorganic and organometallic compounds. This can be explained by 
inherent limitations of standard InChI for representing inorganics, as well as low coverage in the training data.
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Introduction
The International Union of Pure and Applied Chemistry 
(IUPAC) define nomenclature for both organic chem-
istry [1] and inorganic chemistry [2]. Their rules are 
comprehensive, but are difficult to apply to complicated 
molecules. Although there are numerous commercial 
software packages [3–6] that can generate IUPAC names 
from a chemical structure, these are all closed source 
and their methodology is unknown to the general pub-
lic. Correctly generating IUPAC names is therefore an 
open problem, and in particular is an issue faced by syn-
thetic chemists who want to give a standard name to a 
new compound. Although canonical SMILES [7] and 
InChI [8] can be used as identifiers, they are not designed 

to be human-readable, so the IUPAC name can be more 
informative identifier.

Neural networks excel at making general predictions 
from a large set of training data. They have shown great 
success in natural language processing, and have been 
deployed by Google on their online translation service 
[9]. Compared to earlier efforts that needed human-
designed linguistic features, modern machine transla-
tion learns these features directly from matched sentence 
pairs in the source and target language. This is done with 
a sequence-to-sequence (seq2seq) neural network, made 
up of an encoder, which projects the input sentence into 
a latent state, and a decoder, which predicts the correct 
translation from the latent state.

A number of previous studies have applied sequence-
based neural networks to cheminformatics. Schwaller 
[10] used a seq2seq recurrent neural network to predict 
the outcomes of chemical reactions, and other studies 
have presented generative models for automatic chemical 
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design [11–14]. Two variants of SMILES have been pro-
posed for use in machine learning [15, 16].

We present a seq2seq neural network that predicts 
the IUPAC name of a chemical from its unique InChI 
identifier. To our knowledge, there are two published 
machine learning models that predict IUPAC names 
from a SMILES string [17, 18], confirming our general 
methodology. However, we believe that our approach is 
more appropriate for deploying as a service, due to the 
ubiquitous use of InChI in online chemical databases. All 
standard InChI representations are generated with the 
official software from the InChI Trust [8], and although 
a normalized SMILES representation exists [19], it is not 
common in online databases. For practical applications, 
this means that a SMILES-based algorithm needs to be 
able to cope with the numerous equivalent SMILES rep-
resentation for each molecule, but there is very little dis-
cussion of this point in the aforementioned studies.

Methods
Data collection
A dataset of 100 million SMILES-IUPAC pairs was 
obtained from PubChem [20], and the SMILES were 
converted to InChI with OpenBabel [21]. The average 
character length of the InChI identifiers was 134 ± 60, 
and 103 ± 43 for the IUPAC names. To simplify training, 
compounds were removed from the dataset if their InChI 
was longer than 200 characters, or their IUPAC name 
was longer than 150 characters. The resulting dataset of 
94 million compounds was split into training data (90% 
of the data), with the remainder reserved for the valida-
tion and test sets. As IUPAC names of small molecules 
are usually easy to generate from procedural rules, vali-
dation and test sets were limited to compounds with an 
InChI length of 50 characters or greater. Due to the large 
volume of data available, the training set was reduced to 
a random sample of 10 million compounds. For the same 
reason, 10,000 samples were chosen for the validation 
set, and 200,000 were chosen for the test set.

Experimental setup
All experiments were carried out with the PyTorch ver-
sion of OpenNMT [22].  The final training script is 
included with the manuscript (Additional file  2), as are 
the InChI and IUPAC alphabets required for training 
(Additional files 3, 4). The neural network had a trans-
former encoder-decoder architecture [23], with six layers 
in both the encoder and decoder (Fig. 1). Each attention 
sub-layer had eight heads, and the feed-forward sub-lay-
ers had a hidden state size of 2048. Model weights were 
initialized with Glorot’s method [24].

The input (InChI) and target (IUPAC name) were 
tokenized into characters on-the-fly with OpenNMT’s 

pyonmttok module, with each character represented by 
a trainable embedding vector of length 512. Spaces were 
treated as separate tokens to enable detokenization of 
predicted names. The word vectors were augmented with 
positional encoding, to indicate the position of each char-
acter in the word. Character vocabulary was generated 
separately for InChI (66 characters) and IUPAC name (70 
characters), using the whole training set. Both vocabular-
ies included an out-of-vocabulary token.

The batch size was optimized for throughput: the opti-
mal batch size was 4096 tokens which is equivalent to an 
average batch size of 30 compounds. Differing sample 
lengths within a batch were addressed by padding sam-
ples to a uniform length, and ignoring pad tokens when 
calculating model loss.

The model was regularized with a dropout rate of 0.1 
applied to both dense layers and attentional layers [25]. 
This value was determined experimentally: increasing it 
above 0.1 reduced the test accuracy by ten percentage 
points, and training without dropout reduced the accu-
racy by one percentage point. The decoder output was 
regularized with label smoothing with magnitude 0.1 
[26]. The model was optimized with the ADAM variant 

Fig. 1 The encoder passes a numerical representation of the InChI to 
the decoder. The decoder is seeded with a start token, and its output 
is recursively re-input until it predicts an end token
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[27] of stochastic gradient descent, with beta_1 = 0.9 and 
beta_2 = 0.998. The learning rate was increased linearly 
to 0.0005 over 8000 warmup steps, then decayed with the 
reciprocal square root of the iteration number [23]. Gra-
dients were accumulated over 4 batches before updating 
parameters.

The loss function to be minimized was the standard 
cross-entropy loss averaged over all tokens in the batch, 
defined as

where N is the number of tokens in the batch, p(ci) is the 
ground-truth probability that token c is the ith charac-
ter in the alphabet (regularized with label smoothing as 
described above), and q(ci) is the corresponding prob-
ability predicted by the model. We report this as perplex-
ity, defined as

which can be interpreted as the predicted token distribu-
tion being, on average, as unreliable as a uniform distri-
bution with ℘ branches.

During training, the model was validated every 3200 
batches on a validation set of 10,000 samples, as this size 
was found to be large enough to be representative. All 
models were trained until the validation accuracy stalled 
for three consecutive periods. Both training and valida-
tion used teacher forcing to improve convergence: rather 
than feeding predictions recursively into the decoder, 
each output character was predicted based on the ground 
truth from previous timesteps [28]. Training took seven 
days on a Tesla K80 GPU, with throughputs of 6000 
tokens/second (InChI) and 3800 tokens/second (IUPAC 
name).
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We performed limited training on a subset of 1 million 
samples to determine appropriate model parameters, and 
trialed an LSTM architecture [28] before settling on the 
transformer architecture described above. We also tested 
byte-pair encoding [29] and unigram language mod-
els [30] for tokenizing the InChI and IUPAC names into 
common clusters of characters, but the resulting accu-
racy was far lower than achieved using character-level 
tokenization. We also found that we could train an accu-
rate model to translate SMILES to the IUPAC name, but 
such a model did not generalize to alternative (but equiv-
alent) SMILES representations.

Results
Training on 10 million samples converged with a vali-
dation perplexity of 1.09 (Fig.  2). We also found token 
accuracy to be a useful metric during training, defined as 
the proportion of correctly predicted characters over all 
IUPAC names in the training or validation set. At conver-
gence, the validation token accuracy was 99.7%.

We evaluated the trained model on a test set of 200,000 
samples. The most probable IUPAC name was found 
with a beam search (width 10) and a length regularizer 
of strength 1.0 [9]. To evaluate our test predictions, we 
report whole-name accuracy, which is the percentage of 
IUPAC names predicted without error. To quantify error 
in incorrect predictions, we use Damerau and Leven-
shtein’s [31–34] normalized edit distance, which meas-
ures distance (on a scale from 0 to 1) between two strings 
of characters, taking into account insertions, deletions 
and substitutions of a single character, as well as trans-
position of adjacent characters (Table 1). Although other 
authors [17] have used BLEU scores [35] for this purpose, 
we find this metric hard to interpret, as it has been para-
metrized specifically for natural language translation and 
scores vary greatly on reparametrization [36].

Fig. 2 Perplexity and token accuracy during training of the InChI to IUPAC model
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Our model performs well on many classes of organic 
compound, with the exception of macrocycles and those 
with an isotopic substitution (Fig. 3). Edit distances sug-
gest that, at least for organics, our predicted names are 
very similar to the ground truth even when incorrect. 
Our model is not appropriate for predicting the name of 
any compound with an inorganic constituent.

Discussion
The encoder-decoder architecture works by projecting 
the input InChI into a latent vector, and then predicting 
each character in the IUPAC name sequentially (condi-
tioned on the previous predictions), until it predicts a 
stop token (Fig.  1). The attentional layer in the decoder 
essentially calculates a similarity between characters in 
the input to characters in the predicted IUPAC name. 
Visualizing these attention coefficients shows which parts 

of the input were important for predicting the output 
(Fig. 4).

All InChIs have three main layers with the chemical 
formula, connectivity, and hydrogen positions (in that 
order). When predicting the IUPAC name ‘propane’, no 
particular part of its InChI stands out in the attentional 
plot, but when predicting the suffix in ‘propanal’, the 
model pays attention to the oxygen element in the for-
mula layer. Similarly, when predicting the ‘-1-ol’ suffix 
in propan-1-ol, the model pays particular attention to 
the oxygen atom (in the formula layer), and the fact that 
atom 4 (oxygen) has only one hydrogen (in the hydrogen 
layer).

We probed the model further by selectively setting 
characters in the InChI to the out-of-vocabulary token. 
As one might expect, mutating the ‘O’ in propan-1-ol 
changes the predicted IUPAC name to propane. But the 
model makes a correct prediction when all of the formula 
apart from the ‘O’ is mutated, presumably because the 
connectivity and hydrogen layers still make ‘propan-1-ol’ 
the most likely candidate (Table 2).

Isomers
The InChI format specifies stereoisomerism with an 
optional layer. Our InChI to IUPAC model can success-
fully label enantiomers and diastereomers, even when 
their InChI differs by a single character (Table 3).

However, there are issues with predicting isomer-
ism that are related to limitations in the InChI standard. 
InChI does not recognize optical activity in molecules 
with Nitrogen in a bridgehead position in a polycyclic 

Table 1 Evaluation of the trained model on a test set of 200,000 
molecules

a Average over subset, with dispersion indicated by mean absolute deviation
b Defined as having an explicit carbon–metal bond

Subset Accuracy (whole name) Normalized 
edit  distancea

All 0.91 0.02 ± 0.03

Organic 0.91 0.02 ± 0.03

Inorganic 0.14 0.32 ± 0.20

Organometallicb 0.20 0.37 ± 0.24

Other organic–inorganic    
  mixture

0.50 0.15 ± 0.18

Fig. 3 Accuracy of our model’s predictions on different subsets of organic molecules (left), and average normalized edit distances for the same 
subsets (right). Error bars indicate mean absolute deviation
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system [37], such as Tröger’s base, and as such the model 
cannot assign isomerism in these cases. Tröger’s  base 
also highlights the inability of our model to predict for-
matting such as superscripts.

Charges, radicals and isotopes
The test set accuracy for charged molecules was 79%, 
and our model is able to predict the names of common 
charged organic species. However, due to low training 
set coverage, the model performs poorly when predicting 
the names of molecules with radicals or isotopic substi-
tutions (Table 4). Although InChI encodes point isotopic 
substitutions with an extra layer at the end, our model 
tends to ignore this information and predict the name of 
the non-substituted compound. Similarly, our model pre-
dicts the names of molecules with a radical as if the radi-
cal were not present.

Tautomers
Standard InChI can recognize certain tautomers [38], but 
when it does so, it encodes a general representation. This 
is powerful, but it does mean that information on the 

Fig. 4 Attention coefficients from second to last layer of decoder, averaged over all heads, when predicting the names three similar molecules

Table 2 Model predictions when mutating the InChI of propan-
1-ol with an out-of-vocabulary token

a Out-of-vocabulary token depicted with #

InChIa Predicted IUPAC name

InChI = 1S/C3H8O/c1-2–3-4/h4H,2-3H2,1H3 Propan-1-ol

InChI = 1S/C3H8#/c1-2–3-4/h4H,2-3H2,1H3 Propane

InChI = 1S/####O/c1-2–3-4/h4H,2-3H2,1H3 Propan-1-ol

InChI = 1S/C3H8O/c1-2–3-4/####2-3H2,1H3 Propan-1-one

InChI = 1S/C3H8O/c1-2–3-4/h4H,######### Prop-1-en-1-ol

#########C3H8O/c1-2–3-4/h4H,2-3H2,1H3 Propan-1-ol
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specific tautomer can be lost. We found that InChI does 
not standardize keto-enol tautomers or enamine-imine 
tautomers, and that our model can correctly predict 

the IUPAC name of specific tautomers in these cases 
(Table 5).

Table 3 Prediction of the IUPAC name of isomers not present in the training set

a ( ±)-Tröger’s base

InChI IUPAC name Predicted IUPAC name

InChI = 1S/C15H13Cl3O4S/c16-10–1-4–13(5–2-
10)23(20,21)9–12(19)8–22-15–6-3–11(17)7–
14(15)18/h1-7,12,19H,8-9H2/t12-/m1/s1

(2R)-1-(4-chlorophenyl)sulfonyl-3-(2,4-dichloro  
  phenoxy)propan-2-ol

(2R)-1-(4-chlorophenyl)sulfonyl-3-(2,4-dichloro  
  phenoxy)propan-2-ol

InChI = 1S/C15H13Cl3O4S/c16-10–1-4–13(5–2-
10)23(20,21)9–12(19)8–22-15–6-3–11(17)7–
14(15)18/h1-7,12,19H,8-9H2/t12-/m0/s1

(2S)-1-(4-chlorophenyl)sulfonyl-3-(2,4-dichloro 
  phenoxy)propan-2-ol

(2S)-1-(4-chlorophenyl)sulfonyl-3-(2,4-dichloro 
  phenoxy)propan-2-ol

InChI = 1S/C20H18N2O/c1-23–20-15–9-8–10-
17(20)16–21-22(18–11-4–2-5–12-18)19–13-6–3-
7–14-19/h2-16H,1H3/b21-16+ 

N-[(E)-(2-methoxyphenyl)methylideneamino]- 
  N-phenylaniline

N-[(E)-(2-methoxyphenyl)methylideneamino]-N- 
  phenylaniline

InChI = 1S/C20H18N2O/c1-23–20-15–9-8–10-
17(20)16–21-22(18–11-4–2-5–12-18)19–13-6–3-
7–14-19/h2-16H,1H3/b21-16-

N-[(Z)-(2-methoxyphenyl)methylideneamino]- 
  N-phenylaniline

N-[(Z)-(2-methoxyphenyl)methylideneamino]-N- 
  phenylaniline

InChI = 1S/C17H18N2/c1-12–3-5–16-14(7–
12)9–18-11–19(16)10–15-8–13(2)4–6-17(15)18/
h3-8H,9-11H2,1-2H3

(1S,9S)- / (1R,9R)-5,13-dimethyl-1,9-di 
  azatetracyclo[7.7.1.02,7.010,15]heptadeca-   
  2(7),3,5,10(15),11,13-hexaenea

5,13-dimethyl-1,9-diazatetracy 
  clo[7.7.1.02,7.010,15]heptadeca- 
  2(7),3,5,10(15),11,13-hexaene

Table 4 Prediction of the IUPAC name of charged species, radicals, and molecules with isotopic substitutions

Common name IUPAC name Predicted IUPAC name

Phenolate Phenolate Phenolate

Ammonium Azanium Azanium

Trimethylammonium Trimethylazanium Trimethylazanium

Naphthalen-1-ylazanium Naphthalen-1-ylazanium Naphthalen-1-ylazanium

Methyl carbene radical Methylene Methane

Phenyl radical Phenyl Cyclohexatriene

Phenoxy radical Phenyloxidanyl Cyclohexa-2,4-dien-1-one

Heavy water (2H2)Water Deuteriooxydiazene

Tritiated water (3H2)Water Tritiooxytin

Deuterated benzene (2H6)benzene 1,2,3,4,5,6-hexadeuteriobenzene

3-chloroalanine-Cl37 (37Cl)2-amino-2-chloroacetic acid 2-amino-2-chloroacetic acid

Table 5 Prediction of the IUPAC name of tautomers

a Alternative resonance structure specified with fixed H layer

Common names IUPAC name Predicted IUPAC name

Cyanamide (enamine-imine) Cyanamide/methanediimine Cyanamide /
methanediimine

Glucic acid (keto-enol) 2-hydroxypropanedial /
2,3-dihydroxyprop-2-enal

2-hydroxypropanedial /
2,3-dihydroxyprop-2-enal

γ-Lactam (lactam-lactim) pyrrolidin-2-one /
3,4-dihydro-2H-pyrrol-5-ol

pyrrolidin-2-one

Guanine 2-amino-1,7-dihydropurin-6-one 2-amino-1,7-dihydropurin-6-one

Guaninea N/A 2-amino-1,7-dihydropurin-6-one

Oxazolium (mobile proton) 4,5-dihydro-1,3-oxazol-3-ium 4,5-dihydro-1,3-oxazol-3-ium
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However, for simple proton shifts, InChI encodes the 
structure in the general form. For γ-lactam/γ-lactim 
tautomers, our model predicted the name of the lactam 
form. A similar effect can be seen with resonance forms 
of the five-membered ring in guanine. While it is possible 
to specify the resonance form with a non-standard fixed 
hydrogen layer [8], there were no such examples in our 
training set. Our model tends to ignore any fixed hydro-
gen layer: for example, it predicts the standard IUPAC 
name for guanine even when an alternative tautomer is 
specified. The same can be seen on charged species with 
a mobile proton: the oxazolium ion can have a proto-
nated oxygen or nitrogen, but standard InChI does not 
specify the charge center and standardizes the location of 
the proton.

Overall, our model performed well on the limited range 
of tautomers we tested, considering the limitations of 
standard InChI.

Inorganic and organometallic compounds
Our model performed poorly on inorganics, organome-
tallics, and inorganic–organic mixtures (Table 1). This is 
partly because less than 2% of the training data fit in these 
categories, but also because standard InChI is inherently 
limited in representing complexes and organometallics. 
InChI was designed to provide a unique identifier, not a 
lossless structural representation, and the standard InChI 
ignores connectivity between carbon and metal bonds 
[38]. While it is possible to add a reconnected layer to 
represent organometallic bonds [8], this layer is not part 
of the standard specification, and is rarely used in online 
databases.

Furthermore, coordination complexes are difficult to 
represent accurately with commonly used chemical data 
formats. Neither InChI, SMILES nor the ubiquitous 
MOL v2000 structure format [39] is able to represent 
dative bonds, which means that even rules-based soft-
ware packages struggle to predict correct IUPAC names. 

An extension to SMILES [40] and the MOL v3000 for-
mat [39] do allow such bonds to be specified, but are not 
widely used in public-access databases, making it difficult 
to build an appropriate training set.

We also found that many of the IUPAC names of inor-
ganic and organometallic compounds in the PubChem 
database were inaccurate, with metal atoms disconnected 
(suggesting that the names had been generated from 
InChI). The result is that our model fails to predict the 
correct IUPAC name of many common inorganic and 
organometallic compounds (Table 6).

Comparison with commercial software
To our knowledge, there are four major commercial soft-
ware packages that can generate IUPAC names from 
a structure [3–6] by procedurally applying the IUPAC 
rules. However, as the rules can be applied in different 
ways, there are multiple valid IUPAC names for the same 
substance [42]. Although the latest IUPAC nomenclature 
for organic chemistry [1] describes a method for choos-
ing a preferred IUPAC name, it is incomplete and difficult 
to apply algorithmically. As a result, the names generated 
by commercial packages are often in disagreement [43].

PubChem generates its IUPAC names with OpenEye’s 
Lexichem, so we additionally compared our model to 
Advanced Chemical Development’s ACD/I-Labs, Che-
mAxon’s Marvin, and Mestrelab’s Mnova. As some of 
these packages do not support batch conversion, we 
restricted our comparison to a test set of 100 mole-
cules (Additional file 1).

We found that almost none of the names predicted by 
the commercial software were in agreement, and we cal-
culated an average edit distance of 16–21% between the 
packages (Fig. 5). Many of the differences were due to dif-
fering conventions over the use of parentheses, but some 
names were substantially different (see supplementary 
information). Our predictions were close to the IUPAC 
names from PubChem, and although our model did not 

Table 6 Prediction of the IUPAC name of inorganic and organometallic compounds

a From ChemSpider [41] as PubChem names were not accurate
b With non-standard reconnected InChI layer

Common name IUPAC  namea Predicted IUPAC name

Ferrocene Bis[(1,2,3,4,5-η)-cyclopentadienyl]iron Cyclopenta-1,3-diene;iron(2 +)

Ferroceneb Bis[(1,2,3,4,5-η)-cyclopentadienyl]iron Cyclopenta-1,3-diene;1,2,3,4- 
  tetrafluorocyclopenta[b]pyrrol- 
  4-ide;iron(2 +)

Hexaamminecobalt(III) chloride Hexaamminecobalt(III) chloride Azane;trichlorocobalt

Cobalt tricarbonyl nitrosyl Tricarbonylnitrosylcobalt Carbon monoxide;nitroxyl anion;cobalt

Methylmagnesium bromide Bromo(methyl)magnesium Magnesium;carbanide;bromide

n-butyllithium Butyllithium Lithium;butane
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predict identical names to the three commercial pack-
ages, we found an average edit distance of 15% to 23%, 
similar to the variation between the software packages.

Comparison with other machine learning models
Two similar machine learning models that predict IUPAC 
names from SMILES have emerged recently [17, 18]. We 
considered training our model on SMILES instead of 
InChI, but a disadvantage of using SMILES is the lack of 
a universal canonicalization scheme. Unless the model is 
trained to recognize equivalent SMILES strings, it must 
rely on a particular software package (often a particular 
version of that package) to standardize the SMILES. In 
comparison, InChIs are generated with official software 
from the InChI Trust [8], and there are no alternative 
implementations. The format was designed to provide a 
unique, consistent designation for each compound—in 
the most recent version of the software, the InChIs gen-
erated for the PubChem database had 99.99% agreement 
with those generated by the previous version [44].

Our model achieved a test set accuracy of 91%, while 
Rajan achieved an accuracy of 72% with a gated recur-
rent network trained on 60 million samples [17]. Krasnov 
reports an accuracy of close to 99% for their SMILES to 
IUPAC transformer network [18], however they only saw 
such high accuracy on SMILES strings of length 50 and 
lower. Our test set was limited to InChI strings of length 
50 and greater to reflect the intended use of the model, 
and we do not have full access to Krasnov’s model to per-
form a fairer comparison.

Qualitatively, Krasnov’s model makes predictions that 
are similar to ours as it was also trained on data from 
PubChem. However, we are unable to make a detailed 
comparison beyond the examples in Table  7, as their 
full model has not been released. Rajan’s model is com-
parable to our model for medium-sized molecules, but 
has a tendency to get stuck in a repetitive cycle for more 
complicated molecules (Table 7). Furthermore, it is una-
ble to predict stereochemistry as it relies on Chemistry 
Development Kit’s [45] canonical SMILES format, which 
removes stereochemistry markers. Interestingly, neither 
Krasnov’s nor Rajan’s model were able to predict the 
names of the most simple molecules, presumably because 
SMILES treats hydrogens implicitly, and the neural net-
works are unable to cope with such a short input.

As Rajan’s model is freely available for download, we 
were able to make predictions on a SMILES version of 
our 200,000 molecule test set, with inorganics removed 
(as their model was trained on organics only). We found 
that just 11% of Rajan’s predictions matched ours exactly, 
although this low number is to be expected as their 
model was trained on IUPAC names from ChemAxon, 
not PubChem. The average edit distance was 32%, which 
is nine percentage points higher than the corresponding 
distance between our model’s predictions and the names 
generated directly with ChemAxon that were discussed 
in the previous section.

Fig. 5 Comparison of IUPAC names from our model, PubChem, and commercial software packages, generated from a 100 molecule test set
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Conclusions
This work reinforces the recent interest in develop-
ing a machine learning based method for generating 
IUPAC names from a structure or a common chemical 
identifier. Our InChI to IUPAC model works very well 
for organics, but has some clear shortfalls, mainly due 
to known limitations of InChI and the composition of 
our training data. It is suitably robust to be deployed 
as a service, as long as predictions are constrained to 
organics. Our model will be integrated into ProperSea 
(https:// psds. ac. uk/ prope rsea), a physical properties 
platform that is be part of the United Kingdom’s Physi-
cal Sciences Data-science Service.

The strength of our model is that it translates InChI—
a standardized identifier that is ubiquitous in open 
access chemical databases—to the IUPAC name. This 
simplifies the problem substantially, as there is no need 
to train the model to recognize different but equiva-
lent representations of the same molecule, or rely on 
additional software to convert to a canonical repre-
sentation. One downside is that there are limitations 
to standard InChI, meaning our model cannot predict 
accurate names for molecules with an inorganic com-
ponent. It may be possible to address this issue by using 
a training set of non-standard InChIs with a recon-
nected metal layer.

Our comparison with commercial packages was incon-
clusive. The IUPAC rules for nomenclature are essen-
tially an informally-specified algorithm that is inherently 
underdetermined, as the rules can be applied in different 
ways. It is therefore unsurprising that each commercial 
software package predicts different IUPAC names, but it 
is beyond the scope of this paper to explore this incon-
sistency in detail. Suffice to say that the discrepancy 
between our model and the commercial packages was 
similar to the discrepancy between the packages, and 
that these packages share many of the same limitations 
on generating names of inorganic compounds. IUPAC 
are still developing their nomenclature, and there is still 
work to be done to translate it into a procedural algo-
rithm that can reliably generate the preferred name.
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