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Abstract: DNA methylation (DNAm) patterns over time at 1146 CpGs on coronavirus-related
genes were assessed to understand whether the varying differences in susceptibility, symptoms,
and the outcomes of the SARS-CoV-2 infection in children and young adults could be explained
through epigenetic alterations in a host cell’s transcriptional apparatus to coronaviruses. DNAm
data from the Isle of Wight birth cohort (IOWBC) at birth, 10, 18, and 26 years of age were included.
Linear mixed models with repeated measurements stratified by sex were used to examine temporal
patterns, and cluster analysis was performed to identify CpGs following similar patterns. CpGs on
autosomes and sex chromosomes were analyzed separately. The association of identified CpGs and
expression of their genes were evaluated. Pathway enrichment analyses of the genes was conducted
at FDR = 0.05. DNAm at 635 of the 1146 CpGs on autosomes showed statistically significant time
effects (FDR = 0.05). The 635 CpGs were classified into five clusters with each representing a unique
temporal pattern of DNAm. Of the 29 CpGs on sex chromosomes, DNAm at seven CpGs in males and
eight CpGs in females showed time effects (FDR = 0.05). Sex-specific and non-specific associations
of DNAm with gene expression were found at 24 and 93 CpGs, respectively. Genes which mapped
the 643 CpGs represent 460 biological processes. We suggest that the observed variability in DNAm
with advancing age may partially explain differing susceptibility, disease severity, and mortality of
coronavirus infections among different age groups.

Keywords: coronavirus; DNA methylation; SARS-CoV2; COVID-19; epigenetics; IoW cohort

1. Introduction

Coronaviruses are a group of zoonotic pathogens that were previously considered
to cause relatively benign infections in humans [1]. However, the emergence of severe
acute respiratory syndrome coronavirus (SARS-CoV) in 2002 in China, and the Middle
East respiratory syndrome coronavirus (MERS-CoV) in 2012 in Middle Eastern countries,
proved coronaviruses’ ability to cause severe respiratory disorders [1]. Recently, for the
third time, a novel coronavirus called SARS-CoV-2 crossed the interspecies barrier and
caused a global health crisis [2].

Epidemiological studies have shown a significant difference between adult and pe-
diatric populations in terms of incidence and symptomatology of SARS-CoV-2 infection.
Children seem to be less susceptible to develop the disease and are more likely to present
with milder symptoms if infected, while adult subjects are prone to develop severe forms
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with higher mortality rates [3]. Data from around the world suggests that COVID-19 sus-
ceptibility [4], positivity [4–8], hospitalization [6], and mortality rates [9] increases with age,
i.e., individuals at younger age are at lower risk compared to those at older age. Studies
on SARS and MERS infections also show a similar trend of milder symptoms and lower
mortality rates in children compared to adults [10,11]. Recent studies have identified the
role of host factors at a molecular level to explain the gap. Children and adults have shown
different distribution and functioning of angiotensin-converting enzyme-2 (ACE2), the re-
ceptor coded on the X-chromosome and used by the SARS virus, SARS-CoV-2, and human
coronavirus-NL63 (HCoV-NL63) [12]. In addition, cellular and molecular components, of
both the innate and adaptive immune systems, and their ability to coordinate an effective
immune response deteriorates drastically with age, explaining poorer outcomes in the
elderly [13].

Although an individual’s genetic information is stable, its epigenetics can change
significantly over time. Growing evidence revealed epigenetics, particularly DNA methy-
lation (DNAm) at cytosine-phosphate-guanine (CpG) sites, to be one of the crucial mecha-
nisms underlying the aging process [14]. The importance of epigenetics and DNAm have
been lately emphasized in the pathogenesis of several viral infections, including coron-
aviruses [15–18]. DNAm is an important regulator that alters host expression patterns.
These changes have important implications for the activity of the virus itself since it relies
on the host cell to replicate its genetic material and continue to proliferate [18–20]. Recently,
Corley et al. reported differential DNAm at CpGs associated with ACE2 in distinct age
groups, possibly explaining the gap of SARS-CoV2 infection risk in children and adults [21].
Given the dynamic nature of DNAm during aging and its potential role in coronavirus
infection, we suggest that changes in DNAm over time could explain the differences in
susceptibility, symptoms, and the outcomes of the SARS-CoV-2 infection in children and
young adults. In this study, we assessed DNAm levels of CpGs on candidate genes that
were assigned to be associated with SARS CoV-2 infections from birth to 26 years using
the Isle of Wight (IoW) birth cohort. To differentiate between systematic age-related and
random variation of DNAm, we compared the candidate gene DNAm over the years with
those in housekeeping and other immune-related genes. We also assessed the association of
identified dynamic DNAm with expression of their mapped genes at 26 years. The results
of our study may contribute to a better understanding of the underlying mechanisms of
differences in hosts’ susceptibility and responses to SARS-CoV-2 over time. In addition,
epigenetic targets may be identified for the future preventive and therapeutic measures.

2. Materials and Methods
2.1. Study Population

The Isle of Wight birth cohort (IoWBC) was established to study natural history of
allergic disorders in a semi-rural island near the UK mainland [22]. Children born from 1
January 1989 to 28 February 1990 were included in the cohort. From the 1536 pregnancies
in this period, 1456 parents with live births consented for recruitment and follow-up at 1,
2, 4, 10, 18 and 26 years. Demographic information was obtained using hospital records
at birth and detailed questionnaires provided at each follow-up session. Blood samples
were collected for DNAm measurement at birth (Guthrie cards) and at 10, 18, and 26 years
(peripheral blood).

2.2. Coronavirus-Related Genes and CpGs

Genes potentially related to SARS-CoV-2 pathogenesis were identified from GeneCards
(www.genecards.org/ accessed on 28 March 2020) [23] using the keywords ‘Coronavirus’
and ‘Coronavirus silent sweep’, i.e., genes associated with silent infection of coronavirus
leading to improved immunity resulting in a subclinical disease. The genes were selected
for the study based on the score for each gene obtained from GeneCards, i.e., the number
of times that a gene was shown to be associated with coronavirus in the literature. In
particular, a scree plot of the scores in descending order was implemented and genes with
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scores showing large decreases before flattening out were selected. CpGs on these genes
were identified using the Illumina manifestation file and were included in the analysis
of this study. Additionally, information on the chromosomes that these CpGs are on,
their locations relative to CpG islands, and locations on genes were extracted from the
manifestation file.

2.3. Housekeeping and Immune Genes and Their CpGs

Five housekeeping (HK) genes were randomly identified that are not known to be
related to immunity, coronavirus, or silent sweep infection. Additionally, genes potentially
related to immunity were identified from GeneCards using the keyword ‘immune’, and
five immune genes were randomly selected that are not known to be related to coronavirus
or silent sweep infection. These HK and immune-related genes were selected to compare
their DNAm patterns with patterns seen in coronavirus-related genes.

2.4. DNA Methylation (DNAm)

DNA was extracted from Guthrie cards (blood collected within 5 days of birth) using
a procedure previously described by Beyan et al. [24], and from peripheral blood samples
at 10, 18 and 26 years using a standard salting out procedure [25]. DNA concentration was
determined by PicoGreen dsDNA quantitation (Molecular Probes, INC. Eugene, OR, USA)
or Qubit (Thermofisher, Waltham, MA, USA). For each sample, about 1 µg DNA was treated
with bisulfite to convert cytosine to thymine using the EZ 96-DNAm Kit (Zymo Research,
Irvine, CA, USA). DNAm levels were assessed using the Infinium HumanMethylation450
BeadChips and MethylationEPIC BeadChips (Illumina, Inc., San Diego, CA, USA) using a
standard protocol [26] arrays that were processed with multiple identical control samples
allocated to each bisulfite-converted batch to determine assay variability. A BeadStation
was used to scan the beadchips. DNAm level, i.e., the β value for each queried CpG locus,
was assessed using BeadStudio software (Methylation module).

CPACOR pipeline was used for quality control of the DNAm data [27]. Specifically, the
DNA methylation intensity data were quantile-normalized using the R package, minfi [28],
and ComBat was applied to remove the batch effects [29]. DNAm levels are presented
in β values calculated using proportions of intensity of methylated (M) over the sum
of methylated and unmethylated (U) sites (β = M/[c +M + U], where c is a constant to
prevent division by zero if M + U is too small). Since β values ranged between 0 and 1, a
base-2 logit transformation was applied to β values (denoted as M values) to avoid severe
heteroscedasticity [30]. CpGs with probe-SNPs within ten base pairs and with minor allele
frequency (MAF) greater than 0.007 were excluded as they may influence DNA methylation
measurements. CpGs on the sex chromosomes were analyzed separately from CpGs on
autosomes and were stratified by sex.

Since blood is composed of functionally and developmentally different cell popula-
tions [31], we adjusted the cell type proportions to remove the potential confounding effect
of cell heterogeneity in DNAm measured from blood samples [32]. Cell type proportions
were estimated using the Bioconductor minfi package [22], a method proposed by Jaffe and
Irizarry [27] and adapted from Houseman et al. [28]. We included the estimated cell type
proportions as adjusting factors in the analyses.

2.5. Genome-Wide RNA-Seq Gene Expression Data Generation

Peripheral blood samples obtained at 26 years were used for the assessment of gene
expression levels using paired-end (2 × 75 bp) RNA sequencing with the Illumina Tru-
Seq Stranded mRNA Library Preparation Kit with IDT for Illumina Unique Dual Index
(UDI) barcode primers according to the manufacturer’s instructions. We sequenced all
samples twice using the same protocol and combined the output from both runs. The
quality of the FASTQ files (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
accessed on 8 May 2021) were assessed by running FASTQC. We mapped the reads against
human genome (GRch37 version 75) using HISAT2 (v2.1.0) aligner [33]. The sequence
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alignment map (SAM) format produced the alignment files which were subsequently
converted into the Binary Alignment Map (BAM) format using SAMtools (v1.3.1) [34].
The reads mapped to each gene were counted using HTseq (v0.11.1) in the same reference
genome used for alignment [35]. We used the countToFPKM package (https://github.com/
AAlhendi1707/countToFPKM accessed on 8 May 2021) to calculate the normalized read
count fragments per kilobase of transcript per million mapped reads (FPKM) which were
further log-transformed and used in the data analysis.

2.6. Statistical Analysis

Linear mixed models with repeated measurements were implemented to characterize
trends in CpG sites, such that DNAm levels changed over time from birth to adulthood.
DNAm of CpG sites expressed as M-values at birth, 10, 18, and 26 years were included in
the model as the dependent variable and time (with birth as the reference group) and gender
(with males as the reference group) as predictors. The estimated cell-type proportions of
CD4+ T cells, natural killer cells, neutrophils, B cells, monocytes, and eosinophils were
included in the analyses as adjusting factors. CpGs with statistically significant time effects
were considered as being dynamic CpGs. Multiple testing was corrected on the overall
F tests on time effects by controlling for FDR at 0.05 level. An identical analysis was
performed for CpGs of HK and immune-related genes.

Cluster analysis was performed on the regression coefficients at 10, 18, and 26 years
to identify CpGs showing similar patterns (trajectories) in DNAm over time using proc
fastclus (SAS). Three to ten clusters were assessed, and the highest pseudo-F statistic and
cubic clustering criterion were selected to decide on the number of clusters. The profile
of each cluster was visualized using cluster medians of regression coefficients at birth, 10,
18, and 26 years to display the group patterns. CpGs on sex chromosome were analyzed
separately using the same statistical analysis, stratified by sex. The analysis was performed
in SAS version 9.4.

The biologic significance of the identified dynamic CpGs were assessed by evaluating
the associations between gene expression of their mapped genes and DNAm at 26 years.
Linear regressions were used where gene expression (n = 139) was the outcome, and
DNAm (in M-values) and sex were the exposure variables. An interaction term of DNAm
× sex was included in the model as we previously have found the association between
gene expression and DNAm to be different in both males and females [36]. Statistical
significance of the interaction effects was set at p-value < 0.05. If the interaction was not
statistically significant, the main effects of DNAm were evaluated after adjusting for sex.
For CpGs on sex chromosomes, whose values may vary by the number of X chromosomes,
the analysis was stratified by sex.

2.7. Pathway Enrichment Analyses

Genes annotated to the dynamic CpGs were identified based on the Illumina manifest
file. Pathway enrichment analysis of the genes was conducted using Toppfun (https://
toppgene.cchmc.org/enrichment.jsp accessed on 24 July 2021). Additionally, we performed
two more pathway analysis using candidate genes and non-dynamic candidate genes (i.e.,
genes with CpGs not showing dynamic patterns) to compare biological processes with
dynamic genes with whole genome as a background. Multiple testing was adjusted by
controlling Bonferroni p-value of 0.05.

3. Results

From GeneCards, genes with a score of >2.8 (the top 66 genes) were selected based on
a scree plot for coronavirus and 14 genes for coronavirus silent sweep infection. In total,
1555 CpGs located on these 78 genes were extracted from the Illumina manifestation file. Of
these, four CpGs with ‘ch’ prefix were excluded, and DNAm of the remaining 1551 CpGs at
different time points (i.e., birth, 10, 18, 26 years) were analyzed. Of the 1551 CpGs, 29 CpGs
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were found to be located on sex chromosome on gene ACE2 and CD40LG, and the analysis
was stratified by gender for those CpGs.

Of 1522 CpGs on autosomes, DNAm data was available for 988 CpGs at birth (n = 796),
688 CpGs at 10 years (n = 330), 688 CpGs at 18 years (n = 476), and 677 CpGs at 26 years
(n = 242), in the IoW cohort (in total, 1146 CpGs). Identified through use of linear mixed
models, DNAm at 635 of the 1146 CpGs (55.4%) showed statistically significant time effects
at the FDR = 0.05 level (Table 1 and Supplement Table S1a). We observed both linear and
non-linear time effects on DNAm. The pattern of these CpGs/genes was called dynamic.
For 100 identified CpGs on five randomly selected HK genes, DNAm data was available
for 47 CpGs at birth, 40 CpGs at 10 years, 40 CpGs at 18 years, and 33 CpGs at 26 years
(58 CpGs in total). DNAm at only one of the 58 CpGs showed significant time effects at the
FDR = 0.05 level (1.72%, Supplement Table S1b). For 125 identified CpGs on five randomly
selected immune genes, DNAm data were available for 69 CpGs at birth, 41 CpGs at
10 years, 41 CpGs at 18 years, and 39 CpGs at 26 years (76 CpGs in total). DNAm at 11 of
the 76 CpGs showed significant time effects at the FDR = 0.05 level (14.47%, Supplement
Table S1c, Supplement Figure S1).

Table 1. DNAm for CpGs on autosomes showing significant time effects (dynamic) along with the information on locations
of the identified CpG sites. Only results for top 10 CpGs showing the most statistically significant time effects at FDR = 0.05
level was shown.

CpG Site F Value FDR p-Value Gene Chromosome Number CpG Islands Gene Location

cg04791421 1218.77 4.15 × 10−308 CCL5 17 TSS1500

cg21278129 1176.06 9.26 × 10−303 CLEC4G 19 S_Shore TSS1500

cg11694510 1127.39 1.85 × 10−296 IFITM1 11 S_Shore TSS1500

cg03589230 1031.87 2.2 × 10−283 MYOM2 8 TSS1500

cg21686213 1000.14 7.48 × 10−279 IFITM1 11 N_Shore 3′UTR

cg20545776 972.67 7.67 × 10−275 GPT 8 N_Shore TSS1500

cg12876900 957.15 1.51 × 10−272 IFITM3 11 S_Shore 1st Exon

cg16628205 922.08 3.25 × 10−267 TFR2 7 TSS1500

cg14231966 914.28 4.97 × 10−266 FURIN 15 Island Body

cg03038262 907.51 5.37 × 10−265 IFITM1 11 N_Shore 3′UTR

For each CpG site, results from linear mixed models enabled us to estimate DNAm at
each time point with gender and cell type heterogeneity adjusted. These adjusted DNAm
were then used to cluster the CpG sites to reveal different temporal DNAm patterns. Based
on the pseudo-F statistic and cubic clustering criterion, we grouped the 635 CpG sites
into five clusters (Figure 1). In clusters 2 (317 CpGs) and 5 (34 CpGs), DNAm on average
showed similar patterns over time (increase from birth to 10 years, minimal changes from
10 to 18 years, and slight decrease from 18 to 26 years), but DNAm at CpGs in cluster 5
tends to be higher than that in cluster 2. Average DNAm patterns in clusters 3 (89 CpGs)
and 4 (16 CpGs) also showed similar patterns over time (increase from birth to 10 years,
minimal changes from 10 to 18 years, and an increase from 18 to 26 years) with cluster 3
having a higher DNAm on average. The temporal pattern of average DNAm in the CpG
cluster 1 is unique in that it is stable overall with a slight decrease from 18 to 26 years. In
terms of average DNAm across all the five clusters, DNAm levels were lower on average
for CpGs in clusters 3 and 4 compared to CpGs in clusters 2 and 5, while average DNAm
in cluster 1 was in the middle starting from age 10 but the highest at birth (Figure 1).
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Figure 1. DNA methylation profiles of the five CpG clusters represented by the median of gender and cell type heterogeneity
adjusted DNA methylation at each age.

Of the 29 CpGs on sex chromosome, DNAm data were available for eight CpGs at
birth, 10, 18, and 26 years (n = 506 males, 506 females). In linear mixed models, statistically
significant time effects were observed at seven CpGs in males and eight CpGs in females
after adjusting for multiple testing at the FDR = 0.05 level (Table 2, Figure 2).

The association between the identified dynamic CpGs and expression of their mapped
genes were assessed. Significant effects for the interaction of DNAm and sex were ob-
served at 24 CpGs with 15 genes on autosomes (all p-values < 4.48 × 10−2. Table 3 and
Supplement Table S2a). Of the 24 CpGs, the estimates for both sexes were in opposite
direction at 22 CpGs (i.e., opposite signs of regression coefficients after combing the main
and interaction effects), thereby suggesting a potential gender reversal at these specific CpG
sites. For example, with one unit increase in DNAm levels of cg21657705, the expression of
ACE gene is downregulated by 0.64 units in males while it upregulates ACE expression
by 0.45 units (=1.09–0.64) in females (Table 3 and Supplement Table S2a). At 16 of the
22 CpGs, an increase in DNAm was associated with decreased expression in females while
there were increased gene expression levels in males. Whereas, at 6 of the 22 CpGs, an
increase in DNAm was associated with increased expression in females but decreased
gene expression in males. For CpGs without interaction effects, main effects were assessed
and significant association of 93 CpGs with 31 genes were found after adjusting for sex
(all p-values < 5 × 10−2. Table 4 and Supplement Table S2b). The models evaluating the
association of DNAm and gene expression on sex chromosomes were stratified by sex. An
increase in DNAm at CpG site cg23907260 was associated with increased gene expression
levels of CD40LG in males (estimate: 0.55, p-value: 8.40 × 10−3. Supplement Table S2c).
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Table 2. DNAm for CpGs on sex chromosomes showing significant time effects (dynamic) along
with the information on locations of the identified CpG sites. The analysis was stratified by sex.

CpG Site F Value FDR p-Value Gene Gene Location Sex

cg21598868 63.77 4.64 × 10−35 ACE2 TSS1500 Females

cg05039749 44.64 1.31 × 10−25 ACE2 Body Females

cg23232263 38.77 1.33 × 10−22 ACE2 3′UTR Females

cg18877734 22.13 1.78 × 10−13 ACE2 TSS1500 Females

cg11944101 97.5 1.22 × 10−49 CD40LG Females

cg23907260 91.36 2.56 × 10−47 CD40LG TSS200 Females

cg21302055 77.44 2.53 × 10−41 CD40LG TSS200 Females

cg09226411 18.16 3.01 × 10−11 CD40LG TSS200 Females

cg21598868 22.59 3.78 × 10−13 ACE2 TSS1500 Males

cg05039749 26.73 3.58 × 10−15 ACE2 Body Males

cg23232263 13.81 2.26 × 10−8 ACE2 3′UTR Males

cg18877734 7.99 3.72 × 10−5 ACE2 TSS1500 Males

cg11944101 19.18 2.23 × 10−11 CD40LG Males

cg23907260 11.63 3.53 × 10−7 CD40LG TSS200 Males

cg21302055 8.14 3.52 × 10−5 CD40LG TSS200 Males

cg09226411 1.9 0.13 CD40LG TSS200 Males
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Figure 2. DNA methylation patterns of the available CpGs on sex chromosomes in males and females represented by
cell type adjusted DNA methylation over time. The solid lines represent temporal patterns of CpGs on gene ACE2 and
dash-dotted lines are for CpGs on gene CD40LG.

The 643 identified dynamic CpGs (showing statistically significant time effects) were
mapped to 60 genes (referred to as dynamic genes). To better understand the biological
function of these 643 CpGs, pathway enrichment analyses was conducted for the 60 dy-
namic genes, 78 candidate genes, and 18 (=78–60) non-dynamic candidate genes. Using
these genes in ToppFun, with the whole genome as the background, we identified 460,
524, and 38 biological processes for dynamic, candidate, and non-dynamic candidate
genes, respectively, which were enriched after multiple testing adjusted by controlling for
Bonferroni p-value of 0.05 (Table 5 and Supplement Table S3).
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Table 3. Sex-specific associations of DNAm with expression of their mapped genes. Five CpGs with the most statistically
significant interaction effects of DNAm × sex on gene expression were shown. Males are in the reference group. The
p-values are for interaction effects. The full list of CpGs showing significant interaction effects (24 CpGs mapped to 15
genes) are in Supplement Table S2a.

CpG Gene DNAm Effect Sex × DNAm
Interaction Effect

p-Value (Sex ×
DNAm) Gene Location

cg12455187 CCL5 1.25 −1.38 7.00 × 10−4 TSS1500

cg20559158 MYOM2 1.81 −2.94 8.42 × 10−3 Body

cg00162643 DDX58 −0.68 0.83 7.07 × 10−3 TSS200

cg15096505 IL10 −3.17 2.30 3.11 × 10−3 Body

cg21657705 ACE −0.64 1.09 2.82 × 10−3 Body

Table 4. Sex-unspecific associations of DNAm with expression of their mapped genes. Five CpGs
with the most statistically significant main effects (sex unspecific) of DNAm on gene expression are
shown. Males are in the reference group. The full list of CpGs showing significant interaction effects
(93 CpGs mapped to 31 genes) are in Supplement Table S2b.

CpG Gene DNAm Effect p-Value Gene Location

cg10315334 CCL5 −1.79 2.98 × 10−17 1st Exon, 5′UTR

cg02867514 CCL5 −1.62 6.88 × 10−15 1st Exon, 5′UTR

cg08656816 CCL5 −1.72 6.03 × 10−15 TSS200

cg15055101 SH2D3A −1.31 3.69 × 10−14 5′UTR

cg15353603 DPP4 −0.90 5.01 × 10−10 Body

Table 5. Top 10 most significant biological processes from pathway enrichment analysis of dynamic and non-dynamic
candidate genes.

Dynamic Genes Non-Dynamic Candidate Genes

Biological Processes Bonferroni p-Value Biological Processes Bonferroni p-Value

immune effector process 1.17 × 10−24 response to cytokine 1.85 × 10−5

defense response 1.34 × 10−24 defense response 5.74 × 10−5

response to biotic stimulus 9.40 × 10−24 cell activation 1.66 × 10−4

response to cytokine 1.45 × 10−20 cellular response to cytokine
stimulus 1.81 × 10−4

response to other organism 2.41 × 10−20 entry into host 2.51 × 10−4

response to external biotic stimulus 2.51 × 10−20 response to other organism 2.57 × 10−4

cellular response to cytokine stimulus 4.59 × 10−19 response to external biotic
stimulus 2.60 × 10−4

cytokine-mediated signaling pathway 1.63 × 10−18 response to biotic stimulus 3.22 × 10−4

defense response to other organism 3.82 × 10−18 movement in host
environment 4.83 × 10−4

viral process 9.63 × 10−17 viral life cycle 4.85 × 10−4

Note: Two biological processes in bold font are unique to dynamic genes, i.e., were not obtained in pathways of non-dynamic candidate genes.
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4. Discussion

We examined the development of methylation levels of CpGs potentially associated
with coronavirus infection using four measurements spanning from birth to age 26 years.
DNAm levels at 635 CpGs on autosomes showed significant time effects. For most of the
CpGs on autosomes, increasing age was associated with a rise in DNAm levels from birth
to pre-adolescence period, no change in DNAm levels from pre- to post-adolescence, and a
decrease in DNAm levels from post-adolescence to adulthood. About 55.4% (=635/1146)
of CpGs on coronavirus-related genes were identified as dynamic compared to 1.72%
(=1/58) in random samples of HK genes and 14.47% (=11/76) of immune-related genes. In
addition, the temporal patterns in DNAm were consistent across all the identified dynamic
CpGs on immune-related genes, which were different from the patterns revealed by the
dynamic CpGs on coronavirus-related genes. These findings suggest that the observed
variability in DNAm levels with advancing age may, in part, explain differing susceptibility,
disease severity, and mortality of coronavirus infections among distinct age groups. More
specifically, lower DNAm levels at most of CpGs from birth to pre-adolescence compared
to other ages may provide protection against SARS-CoV-2 infection. An increase in DNAm
levels at pre-adolescence and no change from pre- to post-adolescence might explain the
increase in the number of coronavirus cases from 10 to 18 years compared to earlier ages.
From post-adolescence to adulthood, DNAm levels decrease at some CpGs and increase at
some CpGs, which may explain high susceptibility, morbidity, and mortality among adults
compared to children. The sex chromosome, DNAm, at seven CpGs (four on ACE2 and
three on CD40LG) in males and eight CpGs (four on ACE2 and four on CD40LG) in females
showed significant time effects.

In this study, we observed DNAm levels of CpGs on the ACE2 gene to be higher in
males compared to females, while on CD40LG gene, DNAm levels were higher in females
compared to males from birth to adulthood. It has been shown previously that CD40LG
(CD40 ligand) on the X chromosome is involved in response to infections and escapes X
inactivation in some cells, contributing to gender differences in immune responses [37]. In
addition, the identified CpGs on autosomes and sex chromosomes suggest that there is a
possibility of epigenetic regulation on gene activities, and that the observed sex-specific
associations of gene expression and DNAm at some CpGs may be linked to the observed
gender gap in incidence and mortality of coronaviruses, although in-depth assessment is
certainly needed.

The CCL5 gene on autosome drew most of our attention. One of the CpG site on this
gene showed the most statistically significant change over time (with p-value at the level of
10−308). In addition, DNAm at multiple CpGs on this gene was shown to be associated with
expression of CCL5. In particular, three CpGs (cg10315334, cg02867514, cg08656816) have
the strongest biological relevance among all the CpGs identified, reflected by their largest
effects on gene expression as well as the smallest p-values, regardless of sex. The CCL5
gene has been previously linked to the susceptibility and pathogenesis of SARS-CoV [38,39]
and SARS-CoV-2 [40,41].

Recently, Corley et al. showed DNAm levels of CpGs associated with ACE2 in airway
epithelial cells to be age-dependent, potentially explaining the host differences in children
and adults [21]. Our findings indicated that age-dependency of DNAm at CpGs on this
gene was also present in blood. However, since ACE2 is not expressed in blood [42–45],
we were not able to assess the biological relevance of the identified CpGs.

The pathways identified using dynamic candidate and non-dynamic candidate genes
in the pathway analysis yielded a different number of biological processes. Of the 460
biological processes identified based on dynamic genes, 429 were unique compared to the
processes identified based on non-dynamic genes, indicating different underlying biological
functionalities between these two sets of genes. Pathway enrichment analysis revealed
biological processes involved in host immune function (e.g., immune effector process,
cellular response to cytokine stimulus, cytokine-mediated signaling pathway, response to
biotic stimulus, cytokine, other organism, external biotic stimulus,) and the response to
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viruses (e.g., viral process, defense response to virus and other organism). These biological
processes have been suggested to have critical roles in the pathogenesis of coronavirus
infections [46–48]. Lymph nodes maintain and coordinate new immune responses to control
the viruses, although age-related lymph nodes changes reduce the ability of B and T cells to
proliferate and differentiate in lymph nodes. Because of this reason, new immune responses
are blunted, with significantly less effector cells that are less well prepared by antimicrobial
molecules. It is assumed that this mechanism in older adults renders them less effective
in defending against SARS-CoV-2 infection [13]. Diao. et al. demonstrated a reduction
and functional exhaustion of surviving T cells in COVID-19 patients [49]. Lymphocytes
are significantly reduced in the SARS-CoV-2 infected subjects which is directly affected by
the viral load [50], possibly due to SARS-CoV-2-induced activation of apoptosis [51]. It
was shown that there is an association of COVID-19 pathogenesis and excessive cytokine
release [51]. Issa et al. identified six functional domains (I to VI) in the SARS-CoV-2 3a
protein that were linked to virulence, infectivity, ion channel formation, and virus release
in SARS-CoV-2 [52]. In addition, immune response differences in children compared to
adults includes lower production of proinflammatory cytokines, higher production of
immunomodulatory cytokines, decreased infiltration of neutrophils, and a predominance
of CD4+ T cells [53]. These pathophysiological differences in children and adults are
believed to underlie lower susceptibility of children to coronavirus infections and their
diminished immune mediated lung injury [53].

The strength of this study is the availability of DNAm from birth to 26 years, en-
abling us to examine changes from birth to adulthood for CpGs on autosomes and sex
chromosome separately. To our knowledge, this is the first study to examine the epi-
genetics of genes potentially associated with the coronavirus to explain differences in
susceptibility, morbidity, and mortality among children and adults. Our effort was to try
to explain the susceptibility, morbidity, and mortality through DNAm levels in children
and adults. However, we were unable to directly assess changes in DNAm among subjects
infected with coronavirus due to the lack of COVID-19 data. It would also be preferable
to look at the individual DNAm patterns (trajectories), including older adults; however,
to our knowledge, no cohort currently has DNAm data covering birth, childhood, and
early and late adulthood. In our study, DNA was extracted from peripheral blood cells.
Coronaviruses affect many different cell types, primarily cells of the respiratory tract [54].
In our analysis, we extracted candidate genes from the literature, potentially related to
SARS-CoV-2 infection, and did not have information on tissues or cells which these genes
were identified in. It has been shown that DNAm of blood cells has concordance with
that of the respiratory system cells [55], although some differences exist between the two.
Almost all coronavirus genes included in the study are immune-related genes; however,
not all immune-related genes are coronavirus-related genes. Future studies linking gene
with alterations of methylation are needed to directly assess association of DNAm with
coronavirus infections in older adults and elderly populations. Large cohorts with DNAm
data before and after the recent coronavirus pandemic can be used to (a) estimate risks
related to differences in DNAm of the exposed subjects who did and did not develop
the infection, (b) estimate differences in DNAm of the patients who presented with mild,
moderate, or severe symptoms, and (c) demonstrate the effects of the infection on the
epigenome of the host. Our findings showed that changes in DNAm levels from birth to
adulthood in some genes might explain COVID-19 susceptibility and severity differences
in children and young adults. Thus, our results are informative for the COVID-19 disease
map [56], as it provides details on possible involvement in changing susceptibility to the
coronavirus based on DNAm of various genes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12081198/s1, Table S1a: DNAm for CpGs on autosomes of coronavirus-related genes
showing significant time effects along with the information on locations of the identified CpG sites,
Table S1b: DNAm for CpGs on housekeeping genes showing significant time effects along with the
information on locations of the identified CpG sites, Table S1c: DNAm for CpGs on immune-related
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genes showing significant time effects along with the information on locations of the identified
CpG sites, Table S2a: Association of DNAm at 24 CpGs with their mapped genes’ expression
levels on autosomes that are sex-specific. Only results on CpGs showing statistically significant
interaction effects of DNAm × sex on gene expression were shown. Males are in the reference
group. The p-values are for interaction effects, Table S2b: Association of DNAm at 93 CpGs with
their mapped genes’ expression levels on autosomes that are sex-nonspecific. Only results on CpGs
showing statistically significant DNAm effects on gene expression were shown. Males are in the
reference group, Table S2c: Association of DNAm with their mapped genes’ expression levels on sex
chromosomes, Table S3: Significant GO terms and its biological processes from pathway enrichment
analysis of genes annotated to the dynamic CpGs, Figure S1: DNA methylation (DNAm) levels of the
11 CpGs on immune-related genes at each age demonstrates consistent temporal patterns at all the 11
CpGs (i.e., parallel to each other) except for cg17498272 which remains roughly the same over time.
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