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1 INTRODUCTION
In this article we study the knowledge acquired by agents while interacting with each other.

For example, consider a situation in which nurses n1 and n2 are in charge of patients p1 and p2,
respectively, during a deadly virus epidemic. The nurses are being supervised by a doctor d . It is
known that each patient will die the next day unless the patient is given a medicine that can cure

the disease. The situation is complicated by the fact that there are several different strains of the

virus against which there are three different drugs a, b, and c . If a wrong drug is given, the patient

dies the next day. To keep our example simple, we assume that each nurse must administer exactly

one drug.

We capture this setting through the game depicted in Figure 1. This game has three “initial” states:

q1, q2, and q3 and four “final states”: q4, q5, q6, and q7. Variables va , vb , and vc represent the drugs
effective in the initial states. Variables alive1 and alive2 show which of the two patients is alive

in which of the final states. The directed edges on the diagram represent the possible transitions

between states. For example, if in state q1 drug a (which is effective in this state) is given to the

first patient and drug b is given to the second patient, then the system transitions into state q4 in
which the first patient is alive and the second is not. This is captured by variable va being true in

state q1, by label ab on the directed edge from state q1 to state q4, and by variable alive1 being true

in state q4. In this example we assume that the doctor’s action does not influence the outcome.

Note that if in state q1 nurse n1 uses drug a, then patient p1 will be alive the next day no matter

what the action of the nurse n2 is. We write this as q1 ⊩ [(n1,a)]alive1. If both nurses use drug a in

state q1, then both patients will be alive: q1 ⊩ [(n1,a), (n2,a)](alive1 ∧ alive2).
In addition to explicit strategy modality [s]φ that states that statement φ will be true after strategy

s is executed, we also consider modality [s]−1φ that states that φ was true before the execution of s .
For example, q4 ⊩ [(n1,a)]

−1va means that if nurse n1 used drug a during the transition to state q4,
then variable va was true in the previous state. Note that [s]−1φ is not the same as dual modality

¬[s]¬φ. Modality [s]−1φ refers to the past state, while modality ¬[s]¬φ refers to the future state.
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Fig. 1. Epidemic Game.

Imagine now that in state q1 nurse n1 uses drug b and nurse n2 uses drug c . The next day both

patients die and, thus, the system transitions from stateq1 to stateq7. Since the state isq7 and the first
nurse gave drugb, thenb could not have been the right drug to use:q7 ⊩ [(n1,b)]

−1¬vb . Furthermore,

under the same assumption that one of the drugs a and c is the cure: q7 ⊩ [(n1,b)]
−1(va ∨ vc ).

However, since state q7 could be reached by giving the first patient drug b from either of the

two states: q1 and q3, there is not enough evidence to conclude that a is the right drug: q7 ⊩
¬[(n1,b)]

−1va . At the same time, if one specifies which drugs were given to both patients, then

in state q7 one might claim that drug a was the correct one: q7 ⊩ [(n1,b)(n2, c)]
−1va . Not only

is statement [(n1,b)(n2, c)]
−1va true in state q7, but this statement is also known to the doctor

who examined the patient and, thus, can distinguish state q7 from the other outcome states:

q7 ⊩ Kd [(n1,b)(n2, c)]−1va . In fact, the doctor also knows that any of the two patients will be alive

if given drug a:

q7 ⊩ Kd [(n1,b), (n2, c)]−1
∧
i≤2

[(ni ,a)]alivei . (1)

We assume that a priori the doctor did not know which drug is the correct one. In Figure 1, dashed

lines labeled with d,n1, and n2 between initial states q1, q2, and q3 show that doctor d and nurses

n1 and n2 cannot distinguish these states. Thus,

q1 ⊩ ¬Kd
∧
i≤2

[(ni ,a)]alivei . (2)

Together, formula (1) and formula (2) state that the doctor learned how the patients could have been

saved.

Note that statement (1) is not true in state q4, where the first patient is alive. However, if the
same drugs are given to the patients and the system transitions to state q4, then the doctor learns
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that the initial state was q2 and, thus, that drug b is the cure:

q4 ⊩ Kd [(n1,b), (n2, c)]−1
∧
i≤2

[(ni ,b)]alivei .

In fact, if the patients are given drugs b and c , then the doctor learns, in either of the outcomes,

which drug is the cure:

qj ⊩
∨

z∈{a,b,c }

Kd [(n1,b), (n2, c)]−1
∧
i≤2

[(ni , z)]alivei ,

where 4 ≤ j ≤ 7. Thus, if the patients are given drugs b and c in any of the states q1, q2, and q3,
then the doctor will learn how to cure the patients:

qj ⊩ [(n1,b), (n2, c)]
∨

z∈{a,b,c }

Kd [(n1,b), (n2, c)]−1
∧
i≤2

[(ni , z)]alivei ,

where 1 ≤ j ≤ 3. Although the doctor cannot distinguish initial states q1, q2, and q3, the doctor
knows that she will learn this because the above statement is true in all of the three indistinguishable

initial states. Hence,

q1 ⊩ Kd [(n1,b), (n2, c)]
∨

z∈{a,b,c }

Kd [(n1,b), (n2, c)]−1
∧
i≤2

[(ni , z)]alivei . (3)

Of course, there is nothing special about drugs b and c . The same is true if any two different drugs

are given to the patients and the doctor knows this:

q1 ⊩ Kd
∧

x,y∈{a,b,c }

[(n1,x), (n2,y)]
∨

z∈{a,b,c }

Kd [(n1,x), (n2,y)]−1
∧
i≤2

[(ni , z)]alivei .

In other words, the doctor knows how to learn how she could save future patients from this deadly

epidemic.

As we have seen from the above examples, the combination of modalities K, [s], and [s]−1, could
be used to reason about agents and coalitions abilities not only to know how they can achieve a

certain result, but also to reason about their ability to learn how from a specific experience. In this

article we give a sound and complete axiomatic system describing the interplay of these three

modalities.

The rest of this article is structured as follows. In the next section we review the related literature.

Section 3 introduces the syntax and the formal semantics of our logical system. Section 4 proves

that strategic knowledge acquisition cannot be expressed in the language without modality [s]−1.
Section 5 lists and discusses the axioms and the inference rules of our system. In Section 6 and

Section 7 we prove, respectively, the soundness and the strong completeness completeness of

our system. Section 8 considers the class of games that can only have actions that are explicitly

mentioned in the language. It is shown that no strongly sound logical system can be strongly

complete with respect to this class. Section 9 concludes.

2 RELATED LITERATURE
Harel, Kozen, and Tiuryn distinguish two main approaches to modal logics of programs (or, in

our case, strategies): exogenous and endogenous [24, p.157]. Under the exogenous approach the

programs are an explicit part of the logical syntax. Under the endogenous one the programs are

only implicitly referred to by the syntax. The logical system proposed in this article follows the

exogenous approach.

The best known example of the exogenous approach is the dynamic logic [24, 37] and its precursor

Hoare logic [25]. The completeness theorem for the dynamic logic is proven in [35]. The dynamic
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logic uses modality [s]φ, where label s is a program that specifies how the machine will navigate

through a sequence of states. De Giacomo and Lenzerini extended dynamic logic with converse

modality that, just like our modality [s]−1, refers to past transitions [18]. Another example of

exogenous approach is Joint Action logic [2]. This logic axiomatizes properties of a joint action

modality, which is very similar to our modality [s]. Unlike the logic proposed in the current article,

Joint Action logic includes neither knowledge modality KC nor past action modality [s]−1.
Half-way between the exogenous and the endogenous approaches is the strategy logic [17, 30].

This logic combines quantifiers over strategies and temporal modalities. For example, formula

∃s (a, s)Xφ in the strategy logic states that there is a strategy s that could be used by agent a to

achieve φ on the next step. Belardinelli [8] proposed to extend the syntax of the logic with the

individual knowledge modality Ka . For example, formula ∃s Ka(a, s)Xφ means that agent a knows

a strategy that she can use to achieve φ on the next step. The literature on the strategy logic covers

model checking [10, 13], synthesis [16], decidability [29, 39], and bisimulation [9]. Aminof et al.

proposed a probabilistic strategy logic [6]. Note that modality [(a1, s1), . . . , (an , sn)]φ in our logical

system corresponds to (a1, s1) . . . (an , sn)Xφ in the strategy logic. Thus, the logical system proposed

in this article could be viewed as a partial universal fragment of the strategy logic extended with

modalities KC and [s]−1. There are no known complete axiomatizations for any of the strategy

logics.

An endogenous logical system for reasoning about strategic abilities was proposed by Marc

Pauly [36]. It uses modality SCφ that stands for “there is a strategy of coalitionC that guarantees φ”.
His approach has been widely studied by others [4, 21, 22]. Alur, Henzinger, and Kupferman intro-

duced Alternating-Time Temporal Logic (ATL) that combines temporal and coalition modalities [5].

Van der Hoek and Wooldridge proposed to combine ATL with the epistemic modality to form

Alternating-Time Temporal Epistemic Logic [38]. Goranko and van Drimmelen gave a complete

axiomatization of ATL [23]. Walther, van der Hoek, and Wooldridge combined the exogenous and

endogenous approaches in what they called ATL with explicit strategies and gave its complete

axiomatization [40]. They system, just like ATL, can express properties of computations paths,

while the system in the current article cannot. At the same time, [40] is missing knowledge modality

and ability to refer to the past, which are present in our logic. Decidability and model checking

problems for ATL-like systems has also been widely studied [7, 12, 13]. An alternative approach to

expressing the power to achieve a goal in a temporal setting is the STIT logic [11, 26, 27, 34, 42].

Modality “past” in the context of STIT logic is briefly discussed in [28]. Broersen, Herzig, and

Troquard have shown that coalition logic can be embedded into a variation of STIT logic [14].

Ågotnes and Alechina [1] proposed a complete logical system for modalities SC and KC .
Note that in case of endogenous logical systems, there is a difference between having a strat-

egy and knowing the strategy. This difference has been explored in recent works on know-how

strategies [3, 20, 31–33, 41]. The difference does not exist in exogenous logical systems because the

strategy is explicitly mentioned in the modality.

3 SYNTAX AND SEMANTICS
In this article we assume a fixed set of agents A, a fixed set of actions ∆0, and a fixed set of

propositional variables. By a coalition we mean an arbitrary subset of A.

Definition 1. Language Φ is defined by grammar

φ := p | ¬φ | φ → φ | KCφ | [s]φ | [s]−1φ,

where C ranges over coalitions and s over all possible functional relations such that s ⊆ A × ∆0.
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Strategic Knowledge Acquisition 5

We read KCφ as “coalition C distributively knows φ”, [s]φ as “statement φ will be true after

strategy s is executed”, and [s]−1φ as “statement φ was true before the execution of s”.
We think that distributed knowledge is an important form of knowledge to consider in the

strategic context. For example, if an agent wants to achieve a goal in secrecy from group C ,
whose members might potentially communicate with each other, then the agent wants to prevent

“distributed” learning by groupC of the fact that the goal is achieved. The individual knowledge (each

member of a group C knows φ) is expressible through distributed knowledge as

∧
a∈C K{a }φ. The

other well-known form of group knowledge, common knowledge, has fewer interesting strategy-

related properties than distributed knowledge. For example, if coalition C distributively knows a

strategy to achieve φ and a disjoint coalition D distributively knows a strategy to achieveψ , then
coalition C ∪ D distributively knows a strategy to achieve φ ∧ψ . The same is not true for common

knowledge.

For any two sets X and Y , let XY
denote the set of all functional relations (functions) from set Y

to set X .

Definition 2. A game is a tuple (W , {∼a}a∈A ,∆,M,π ) such that
(1) W is a set of “states”,
(2) ∼a is an “indistinguishability” equivalence relation on setW for each agent a ∈ A,
(3) ∆ is a set, called “domain of actions”, where ∆0 ⊆ ∆,
(4) M ⊆W × ∆A ×W is a “mechanism” relation,
(5) π (p) ⊆W for each propositional variable p.

By a complete action profile we mean an arbitrary (total) functional relation from set ∆A
. In

Section 8 we discuss the reason for distinguishing the set of actions ∆0 available in the language

from the set of actions ∆ available in the game.

In our introductory example, see Figure 1, there are three agents: n1, n2, and d . The setW consists

of states q1, q2, q3, q4, q5, q6, and q7. None of the agents can distinguish the “initial" states q1, q2,
and q3. The set of actions ∆ consists of the three drugs: a, b, and c .

Recall that in our introductory example the action of the doctor d does not influence the outcome.

As a result, we denote the complete actions profiles by pairs of actions: aa, ab, etc. In general, a

complete action profile is a functional relation between agents and actions. Thus, for example, profile

ab is the relation {(n1,a), (n2,b), (d,x)} where x is an element of the set {a,b, c}. The mechanism

M is represented in the figure by labeled directed edges. For example, label ab on directed edge

from state q1 to state q4 means that (q1, {(n1,a), (n2,b), (d,x)},q4) ∈ M . Note that we define the

mechanism as a relation, not a function. Thus, the mechanism can be non-deterministic. It is also

possible that for some combination of a state and a complete action profile there might be no next

state. Informally, we interpret this as the ability of the players to halt the game.

As described, the epidemic game has explicit initial and final states, but Definition 2 does not

distinguish between different types of states. In general, we assume that once the system transitions

into a new state, the agents will take actions to transition to yet another state. For example, in

the setting of our example, suppose that drug a is the cure and nurse n1 is expected to get a new

patient p3 the next day. Thus, if nurse n1 administers drug a to patient p1 today, then she will know

tomorrow that drug a will cure patient p3 the day after tomorrow:

[(n1,a)]Kn1
[(n1,a)]alive3.

We conclude this section with the key definition of this article. It specifies the meaning of

modalities KC , [s], and [s]−1. We writew ∼C u ifw ∼a u for each agent a ∈ C . In particular,w ∼∅ u
is true for any two statesw and u.
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6 Kaya Deuser and Pavel Naumov

Definition 3. For any game (W , {∼a}a∈A ,∆,M,π ), any state w ∈W , and any formula φ ∈ Φ,
satisfaction relationw ⊩ φ is defined as follows:

(1) w ⊩ p ifw ∈ π (p), where p is a propositional variable,
(2) w ⊩ ¬φ ifw ⊮ φ,
(3) w ⊩ φ → ψ ifw ⊮ φ orw ⊩ ψ ,
(4) w ⊩ KCφ if u ⊩ φ for each u ∈W such thatw ∼C u,
(5) w ⊩ [s]φ if u ⊩ φ for each state u ∈ W and each profile δ ∈ ∆A such that s ⊆ δ and

(w,δ ,u) ∈ M ,
(6) w ⊩ [s]−1φ if u ⊩ φ for each u ∈W and each profile δ ∈ ∆A such that s ⊆ δ and (u,δ ,w) ∈ M .

4 UNDEFINABILITY OF STRATEGIC KNOWLEDGE ACQUISITIONWITHOUT
MODALITY []−1

As we have seen in Section 1, language Φ is suitable for expressing various statements about

strategic knowledge acquisition. In this section we show that the presence of modality [s]−1 in
language Φ is crucial. Namely, we give an example of a statement about strategic knowledge

acquisition which is expressible in language Φ but is not expressible in language Φ−
:

φ := p | ¬φ | φ → φ | KCφ | [s]φ,

obtained from language Φ by removing modality [s]−1. Note that because modality [s]−1 is the
only part of our syntax that refers to the previous states, it is relatively easy to show that this

modality itself cannot be expressed in language Φ−
. This is not what we do in this section. Instead,

we construct such formula ζ not expressible in language Φ−
, that meaning of statement w ⊩ ζ

depends only on the states of the model reachable from statew and not on the states from which state
w is reachable. Furthermore, formula ζ is a modified version of statement (3) from the introduction:

ζ = Kn[(n,a)]
∨

x ∈{b,c }

Kn[(n,a)]−1[(n,x)]p.

Informally, this formula states that nurse n knows that by administering drug a she will find out

which of drugs b and c achieves condition p. Without loss of generality, in this section we assume

that set A contains only agent n, set ∆0 contains only actions a, b, and c , and that the set of

propositional variables contains only p.

c

n

u1 u3

u2

a

p

b

b
u5

a

c u4

n

c

n

w1 w3

w2w6 a
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Fig. 2. Homomorphism h between two games is shown using dotted arrows.
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We now show that formula ζ is not expressible in language Φ−
. To do this, we consider two

single-agent games depicted in Figure 2. We refer to them as the left and the right games. In both of

these games agent n has three actions: a, b, and c that transition the games between states as shown

in the diagram. In the left game nurse n cannot distinguish statew1 fromw2 and statew3 fromw4,

while in the right game she cannot distinguish state u1 from u2 and state u3 from u4. Propositional
variable p is satisfied only in statew3 of the left model and state u3 of the right model. We refer to

the satisfaction relations for the left game and the right game as ⊩l and ⊩r respectively. Similarly,

by ∼ln and ∼r
n we mean the indistinguishability relation of agent n in the left and the right games,

respectively. Finally, byMl andMr we mean the mechanisms of the left and the right games.

We define homomorphism h of these two models as following

h(wi ) =

{
ui , if i , 6,

u5, if i = 6.

Homomorphism h is shown in the diagram using dotted lines. We prove the undefinability of

formula ζ in language Φ−
in three steps. First, in Lemma 4 we show that these two models are

not distinguishable in language Φ−
. Then, in Lemma 5 and Lemma 6 we prove that formula ζ is

satisfied in one of the states of the left model, but is not satisfied in the corresponding state of the

right model. Together, these three lemmas imply undefinability of formula ζ in language Φ−
. We

formally state this result as Theorem 1.

We start the proof with two technical lemmas that we use in the proof of Lemma 4. The statements

of both lemmas follows from the definition of the two models, see Figure 2.

Lemma 1. (w,δ ,w ′) ∈ Ml iff (h(w),δ ,h(w ′)) ∈ Mr for any states w,w ′ of the left game and any
action profile δ . □

Lemma 2. Ifw ∼ln w ′, then h(w) ∼r
n h(w ′), for any statesw,w ′ of the left game. □

Lemma 3. If h(w) ∼r
n h(w ′), then w ∼ln w ′, for any states w,w ′ of the left game such that

w < {w5,w6}. □

Lemma 4. w ⊩l φ iff h(w) ⊩r φ for statew of the left model and any formula φ ∈ Φ−.

Proof. We prove this lemma by induction on structural complexity of formula φ. Recall that
propositional variable p is satisfied only in state w3 of the left game and state u3 = h(w3) of the

right model. Thus,w ⊩l p if and only if h(w) ⊩r p.
If formula φ is a negation or an implication, then required follows from items (2) and (3) of

Definition 3 and the induction hypothesis in the standard way.

Suppose that formula φ has the form [s]ψ .

(⇒) : If h(w) ⊮r [s]ψ , then, by item (5) of Definition 3, there is a state u and an action profile δ such

that s ⊆ δ , (h(w),δ ,u) ∈ M , and u ⊮r ψ . Note that u = h(w ′) for some state w ′
of the left model

because function h is a surjection, see Figure 2. Thus, (w,δ ,w ′) ∈ M , andw ′ ⊮ ψ , respectively by

Lemma 1 and the induction hypothesis. Therefore,w ⊮l [s]ψ by item (5) of Definition 3.

(⇐) : The proof in this direction is similar to the one above except that it does not use the fact that
function h is a surjection.

Finally, assume that formula φ has the form Knψ .

(⇒) : If h(w) ⊮r Knψ , then, by item (4) of Definition 3, there is a state u of the right game such

that h(w) ∼r
n u and u ⊮r ψ . We consider the following two cases separately:

Case I: w ∈ {w5,w6}. Thus, h(w) = u5, see Figure 2. Also, u = u5 because u5 = h(w) ∼r
n u see

Figure 2. Hence, u = h(w). Then, h(w) ⊮r ψ by the assumption u ⊮r ψ . Thus, w ⊮l ψ by the

induction hypothesis. Therefore,w ⊮l Knψ by item (4) of Definition 3.
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8 Kaya Deuser and Pavel Naumov

Case II:w < {w5,w6}. Note that u = h(w
′) for some statew ′

of the left model because function h
is a surjection, see Figure 2. Thus,w ∼ln w ′

by Lemma 3 and the assumptionw < {w5,w6} of the

case. Also,w ′ ⊮ ψ by the induction hypothesis. Therefore,w ⊮ Knψ by item (4) of Definition 3.

(⇐) : If w ⊮r Knψ , then, by item (4) of Definition 3, there is a state w ′
of the left game such

that w ∼ln w ′
and w ⊮l ψ . Thus, h(w) ∼r

n h(w ′) and h(w) ⊮r ψ by Lemma 2 and the induction

hypothesis, respectively. Therefore, h(w) ⊮r Knψ by item (4) of Definition 3. □

Lemma 5. w1 ⊩l ζ .

Proof. Suppose thatw1 ⊮l Kn[(n,a)]
∨

x ∈{b,c } Kn[(n,a)]
−1[(n,x)]p. Thus, by item (4) of Defini-

tion 3, there is a statew ′
of the left model such thatw1 ∼

l
n w ′

and

w ′ ⊮ [(n,a)]
∨

x ∈{b,c }

Kn[(n,a)]−1[(n,x)]p.

Note that statement w1 ∼
l
n w ′

implies that either w ′ = w1 or w
′ = w2, see Figure 2. We consider

these two cases separately:

Case I: w1 ⊮ [(n,a)]
∨

x ∈{b,c } Kn[(n,a)]
−1[(n,x)]p. Thus, by item (5) of Definition 3, there is a

statew ′
1
of the left game such that (w1, {(n,a)},w

′
1
) ∈ Ml andw

′
1
⊮l

∨
x ∈{b,c } Kn[(n,a)]

−1[(n,x)]p.
Statement (w1, {(n,a)},w

′
1
) ∈ Ml implies thatw ′

1
= w5, see Figure 2. Hence,

w5 ⊮l

∨
x ∈{b,c }

Kn[(n,a)]−1[(n,x)]p.

Then,w5 ⊮l Kn[(n,a)]−1[(n, c)]p. Thus, by item (4) of Definition 3, there is a statew ′
5
of the left game

such that w5 ∼k w ′
5
and w ′

5
⊮l [(n,a)]

−1[(n, c)]p. Statement w5 ∼k w ′
5
implies that w ′

5
= w5, see

Figure 2. Hence,w5 ⊮l [(n,a)]
−1[(n, c)]p. Then, by item (6) of Definition 3, there is a statew ′′

5
in the

left game such that (w ′′
5
, {(n,a)},w5) ∈ Ml and w

′′
5
⊮l [(n, c)]p. Statement (w ′′

5
, {(n,a)},w5) ∈ Ml

implies that w ′′
5
= w1, see Figure 2. Thus, w1 ⊮l [(n, c)]p. Hence, by item (5) of Definition 3,

there is a state w ′′
1
of the left game such that (w1, {(n, c)},w

′′
1
) ∈ Ml and w ′′

1
⊮l p. Assumption

(w1, {(n, c)},w
′′
1
) ∈ Ml implies thatw ′′

1
= w3, see Figure 2. Therefore,w3 ⊮l p, which contradicts

the definition of the left game, see Figure 2.

Case II: w2 ⊮ [(n,a)]
∨

x ∈{b,c } Kn[(n,a)]
−1[(n,x)]p. The proof of this case is similar to the one

above, except that it uses action b instead of action c and statew6 instead of statew5. □

Lemma 6. h(w1) ⊮r ζ .

Proof. Note that h(w1) = u1, see Figure 2. Suppose that

u1 ⊩ Kn[(n,a)]
∨

x ∈{b,c }

Kn[(n,a)]−1[(n,x)]p.

Thus,

u1 ⊩ [(n,a)]
∨

x ∈{b,c }

Kn[(n,a)]−1[(n,x)]p

by item (4) of Definition 3. Note that (u1, {(n,a)},u5) ∈ Mr , see Figure 2. Hence,

u5 ⊩
∨

x ∈{b,c }

Kn[(n,a)]−1[(n,x)]p

by item (5) of Definition 3. Then, either u5 ⊩ Kn[(n,a)]−1[(n,b)]p or u5 ⊩ Kn[(n,a)]−1[(n, c)]p. We

consider these two cases separately.

Case I: u5 ⊩ Kn[(n,a)]
−1[(n,b)]p. Thus, u5 ⊩ [(n,a)]−1[(n,b)]p by item (4) of Definition 3. Note

that (u1, {(n,a)},u5) ∈ Mr , see Figure 2. Hence, u1 ⊩ [(n,b)]p by item (6) of Definition 3. Finally,
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observe that (u1, {(n,b)},u4) ∈ Mr . Then, u4 ⊩ p by item (5) of Definition 3, which contradicts the

definition of the right game, see Figure 2.

Case II: u5 ⊩ Kn[(n,a)]
−1[(n, c)]p. Thus, u5 ⊩ [(n,a)]−1[(n, c)]p by item (4) of Definition 3. Note

that (u2, {(n,a)},u5) ∈ Mr , see Figure 2. Hence, u2 ⊩ [(n, c)]p by item (6) of Definition 3. Finally,

observe that (u2, {(n, c)},u4) ∈ Mr . Then,u4 ⊩ p by item (5) of Definition 3, which again contradicts

to the definition of the right game, see Figure 2. □

The next theorem follows from Lemma 4, Lemma 5, and Lemma 6.

Theorem 1. Formula ζ is not definable in language Φ−. □

5 AXIOMS
In this section we propose a sound and complete logical system that describes the interplay between

modalities KC , [s], and [s]−1. In addition to the propositional tautologies in language Φ, our system
consists of the following axioms:

(1) Truth: KCφ → φ,
(2) Negative Introspection: ¬KCφ → KC¬KCφ,
(3) Distributivity: □(φ → ψ ) → (□φ → □ψ ), where □ ∈ {KC , [s], [s]−1},
(4) Monotonicity: KCφ → KDφ, [s]φ → [t]φ, and [s]−1φ → [t]−1φ, where C ⊆ D and s ⊆ t ,
(5) Empty Set: K∅φ → □φ, where □ ∈ {[s], [s]−1},
(6) Future-Past: ¬φ → [s]¬[s]−1φ,
(7) Past-Future: ¬φ → [s]−1¬[s]φ.

The Truth, the Negative Introspection, the Distributivity, and the Monotonicity axioms for

modality KC are the axioms of the epistemic logic S5 for distributed knowledge.

The Distributivity axiom for modality [s] says that if strategy s guarantees φ → ψ and also

guarantees φ, then it guaranteesψ . This axiom is true for the modality [s] with an explicit strategy
s . However, is not true in Marc Pauly’s endogenous logic of coalition power, where it is replaced

with the Cooperation axiom: SC (φ → ψ ) → (SDφ → SC∪Dψ ), for disjoint sets C and D only. The

Distributivity axiom for modality [s]−1 says that if statement φ → ψ and statement φ have been

true prior to any possible execution of strategy s , then statementψ also has been true before an

execution of strategy s .
The Monotonicity axiom for modality [s] states that if strategy s guarantees φ, then so does

any extension of this strategy to a larger coalition. The same axiom for modality [s]−1 says that if
statement φ has been true prior to any possible execution of strategy s (no matter what actions

are taken by the agents not mentioned in s), then φ has also been true prior to any execution of

strategy s accompanied by some additional actions.

The Empty Set axiom says that if condition φ is satisfied in each state of the game, then condition

φ was satisfied in the past and is guaranteed to be satisfied in the future.

The Future-Past axiom states that if statement φ is not true now, then no matter what actions s
are taken, statement [s]−1φ will not be true in the next state. Informally, it says that in the future

one will not be able to change the present.

Finally, the Past-Future axiom says that ifφ is not true after actions s are taken, then taking actions
s could not have guaranteed φ. Informally, this axioms captures the famous saying “insanity is doing

the same thing over and over again and expecting different results”, which is often misattributed to

Albert Einstein [15].

We write ⊢ φ if formulaφ is provable in our system using the Modus Ponens and the Necessitation

inference rules:

φ, φ → ψ

ψ

φ

KCφ
.
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10 Kaya Deuser and Pavel Naumov

We write X ⊢ φ if formula φ is provable from the theorems of our logical system and an additional

set of axioms X using only the Modus Ponens inference rule. The set X is consistent if there is no

formula φ ∈ Φ such that X ⊢ φ and X ⊢ ¬φ. We conclude this section with several lemmas about

our logical system that will be used later in the proof of the completeness.

Lemma 7. Inference rules
φ

[s]φ
and

φ

[s]−1φ
are derivable.

Proof. Formulae [s]φ and [s]−1φ are derivable from formula φ through a combination of the

Necessitation inference rule, the Empty Set axiom, and the Modus Ponens rule. □

In the next two lemmas we give examples of formal derivations in our logical system. In these

examples, we assume that the Boolean constant ⊥ is defined in our language in the standard way.

Recall from the Section 3 that some combinations of actions might not lead to a next state. Similarly,

some of the states in our games might have no previous states. Informally, the first lemma roughly

states “if there is no past in the future, then there is no tomorrow”.

Lemma 8. ⊢ [s][s]−1⊥ → [s]⊥.

Proof. We start by proving the first statement. Formula ¬[s]−1⊥ → ([s]−1⊥ → ⊥) is a proposi-

tional tautology. Thus, ⊢ [s](¬[s]−1⊥ → ([s]−1⊥ → ⊥)) by Lemma 7. Hence, by the Distributivity

axiom and the Modus Ponens inference rule, ⊢ [s]¬[s]−1⊥ → [s]([s]−1⊥ → ⊥). At the same time,

formula ¬⊥ → [s]¬[s]−1⊥ is an instance of the Future-Past axiom. The last two formulae by the

propositional reasoning imply that ⊢ [s]([s]−1⊥ → ⊥). Therefore, by the Distributivity axiom and

the Modus Ponens rule, ⊢ [s][s]−1⊥ → [s]⊥. □

Informally, the second lemma states “if there was no future yesterday, then there was no yester-

day”. Its proof is dual to the first one in the sense that it replaces modality [s] with [s]−1, modality

[s]−1 with [s], and the Future-Past axiom with the Past-Future axiom.

Lemma 9. ⊢ [s]−1[s]⊥ → [s]−1⊥. □

The next two lemmas are well-known in modal logic. We reproduce their proofs here to keep

the article self-contained.

Lemma 10. If φ1, . . . ,φn ⊢ ψ and □ is one of the modalities KC , [s], and [s]−1, then □φ1, . . . ,□φn ⊢

□ψ .

Proof. The deduction lemma for propositional logic appliedn times to assumptionφ1, . . . ,φn ⊢ ψ
implies that ⊢ φ1 → (· · · → (φn → ψ ) . . . ). Thus, ⊢ □(φ1 → (· · · → (φn → ψ ) . . . )), by the

Necessitation inference rule (if □ = KC ) or by Lemma 7 (if □ = [s] or □ = [s]−1). Hence, by the

Distributivity axiom and the Modus Ponens inference rule,

⊢ □φ1 → □(φ2 · · · → (φn → ψ ) . . . ).

Then, □φ1 ⊢ □(φ2 · · · → (φn → ψ ) . . . ) by the Modus Ponens inference rule. Thus, again by the

Distributivity axiom and theModus Ponens inference rule,□φ1 ⊢ □φ2 → □(φ3 · · · → (φn → ψ ) . . . ).
Therefore, □φ1, . . . ,□φn ⊢ □ψ , by repeating the last two steps n − 2 times. □

The next lemma states a well-known principle in the epistemic logic.

Lemma 11 (positive introspection). ⊢ KCφ → KCKCφ. □

ACM Trans. Comput. Logic, Vol. 1, No. 1, Article . Publication date: April 2018.



Strategic Knowledge Acquisition 11

6 SOUNDNESS
Soundness of the Truth, the Negative Introspection, the Distributivity, and the Monotonicity (for

distributed knowledge modality KC ) axioms is well-known [19]. The soundness of the Distributivity

and the Monotonicity axioms for modalities [s] and [s]−1 immediately follows from Definition 3.

Below we prove the soundness of the remaining three axioms for an arbitrary statew ∈W of an

arbitrary game (W , {∼a}a∈A ,∆,M,π ).

Lemma 12. Ifw ⊩ K∅φ, thenw ⊩ [s]φ andw ⊩ [s]−1φ .

Proof. By Definition 3, assumption w ⊩ K∅φ implies that u ⊩ φ for each state u ∈W of the

game. Therefore,w ⊩ [s]φ andw ⊩ [s]−1φ by Definition 3. □

Lemma 13. Ifw ⊮ φ, thenw ⊩ [s]¬[s]−1φ.

Proof. Consider any complete action profile δ ∈ ∆A
and any state u ∈W such that s ⊆ δ and

(w,δ ,u) ∈ M . By Definition 3, it suffices to show thatu ⊮ [s]−1φ, which is true again by Definition 3

and the assumptionw ⊮ φ. □

Lemma 14. Ifw ⊮ φ, thenw ⊩ [s]−1¬[s]φ.

Proof. Suppose that w ⊮ [s]−1¬[s]φ. Thus, by Definition 3, there is a state u ∈ W and a

complete action profile δ ∈ ∆A
such that s ⊆ δ , (u,δ ,w) ∈ M , and u ⊩ [s]φ. Therefore,w ⊩ φ by

Definition 3. □

7 COMPLETENESS
The standard proof of the completeness for the epistemic logic of individual knowledge defines

states as maximal consistent sets of formulae. It then proceeds to definew1 ∼a w2 if setsw1 and

w2 contain the same Ka-formulae. This construction does not work for the distributed knowledge

modality because if two sets contain the same Ka- and Kb -formulae, then they do not necessarily

contain the same K{a,b }-formulae. This issue can be solved using the tree construction below. The

same construction has been previously used, for example, in [33].

For any maximal consistent setX0, we define the canonical gameG(X0) = (W , {∼a}a∈A ,∆,M,π ).

Definition 4. Set of statesW consists of all sequences X0,C1,X1, . . . ,Cn ,Xn where n ≥ 0 such
that
(1) Xi is a maximal consistent subset of Φ, for each i ≥ 1,
(2) Ci ⊆ A is a coalition, for each i ≥ 1,
(3) {φ ∈ Φ | KCiφ ∈ Xi−1} ⊆ Xi , for each i ≥ 1.

If x is a sequence x1, . . . ,xn and y is an arbitrary element, then by x :: y and hd(x) we mean

sequence x1, . . . ,xn ,y and element xn respectively. For any states w,u ∈ W , if u = w :: C :: X
for some coalition C and some set X , then we say that statesw and u are adjacent. The adjacency
relation forms a tree structure on setW . We refer to the undirected edge connecting outcomesw
and u as an edge labeled with each agent from set C , see Figure 3.

Definition 5. For all statesw1,w2 ∈W and any agent a ∈ A, letw1 ∼a w2 if each edge along the
unique path connecting nodesw1 andw2 is labeled with agent a.

Lemma 15. KCφ ∈ hd(w1) iff KCφ ∈ hd(w2) for each formula φ ∈ Φ, all coalitions C , and all
outcomesw1,w2 ∈W such thatw1 ∼C w2.

Proof. Assumption w1 ∼C w2 by Definition 5, implies that each edge along the unique path

between nodes w1 and w2 is labeled with all agents in coalition C . Thus, it suffices to show that
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X0

X1 X2

X3
X4 X5

C1 C2

C3 C5C4

Fig. 3. A Fragment of the Tree of States.

KCφ ∈ hd(w1) iff KCφ ∈ hd(w2) for any two adjacent nodes along this path. Without loss of

generality, let

w1 = X0,C1,X1, . . . ,Cn−1,Xn−1

w2 = X0,C1,X1, . . . ,Cn−1,Xn−1,Cn ,Xn .

The assumption that the edge betweenw1 andw2 is labeled with all agents in coalition C implies

that C ⊆ Cn . We show next that KCφ ∈ hd(w1) iff KCφ ∈ hd(w2).

(⇒) : Suppose that KCφ ∈ hd(w1) = Xn−1. Thus, Xn−1 ⊢ KCKCφ by Lemma 11 and the Modus

Ponens inference rule. Hence, Xn−1 ⊢ KCnKCφ by the Monotonicity axiom and the Modus Ponens

inference rule because C ⊆ Cn . Then, KCnKCφ ∈ Xn−1 because set Xn−1 is maximal. Therefore,

KCφ ∈ Xn = hd(w2) by Definition 4.

(⇐) : Suppose that KCφ < hd(w1) = Xn−1. Thus, ¬KCφ ∈ Xn−1 because set Xn−1 is maximal. Hence,

Xn−1 ⊢ KC¬KCφ by the Negative Introspection axiom and the Modus Ponens inference rule. Then,

Xn−1 ⊢ KCn¬KCφ by the Monotonicity axiom and the Modus Ponens inference rule becauseC ⊆ Cn .

Thus, KCn¬KCφ ∈ Xn−1 because setXn−1 is maximal. Hence, ¬KCφ ∈ Xn by Definition 4. Therefore,

KCφ < Xn = hd(w2) because Xn is consistent. □

We define the domain of actions ∆ to be the extension of the set of actions ∆0 by a single new

action d0. Note that action d0 is not a part of the syntax of our logical system. Thus, no maximal

consistent set contains a formula that uses action d0. Informally, action d0 means “abstain”.

Definition 6. Let ∆ = ∆0 ∪ {d0} for some d0 < ∆0.

The definition of the canonical mechanism M closely resembles item 6 of Definition 3. It is

interesting to note that although the mechanism is also referred to in item 5 of the same definition,

modality [s]−1 is not used to specify mechanismM .

Definition 7. Mechanism M is the set of triples (w,δ ,u) inW × ∆A ×W such that for each
formula [s]φ ∈ hd(w) if s ⊆ δ , then φ ∈ hd(u).

Definition 8. π (p) = {w ∈W | p ∈ hd(w)}.

This concludes the definition of the canonical game G(X0). The next key step in the proof of the

completeness is a “truth” lemma, which in our case is Lemma 20. Before proving this lemma we

need to prove several auxiliary lemmas that will be used in the proof of Lemma 20.

Lemma 16. For any formula KCφ < hd(w) there is a state u ∈W such thatw ∼C u and φ < hd(u).

Proof. Let X be the set {¬φ} ∪ {ψ | KCψ ∈ hd(w)}.

Claim 1. Set X is consistent.
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Proof of Claim. Suppose the opposite. Thus, there are such formulae

KCψ1, . . . ,KCψn ∈ hd(w), (4)

thatψ1, . . . ,ψm ⊢ φ. Hence, KCψ1, . . . ,KCψm ⊢ KCφ by Lemma 10. Then, hd(w) ⊢ KCφ because of

statement (4). Therefore, KCφ ∈ hd(w) due to the maximality of set hd(w), which contradicts the

assumption of the lemma. □

To finish the proof of the lemma, let X ′
be any maximal consistent extension of set X and u be

the sequence w :: C :: X ′
. Note that u ∈ W by Definition 4 and the choice of set X , set X ′

, and

sequence u. Finally, ¬φ ∈ X ⊆ X ′ = hd(u) also by the choice of X , X ′
, and u. Therefore, φ < hd(u)

because set hd(u) is consistent. □

Lemma 17. For any statew ∈W and any formula [s]φ < hd(w) there is a complete action profile
δ ∈ ∆A and a state u ∈W such that s ⊆ δ , (w,δ ,u) ∈ M , and φ < hd(u).

Proof. Let X be the set of formulae

{¬φ} ∪ {ψ | [t]ψ ∈ hd(w), t ⊆ s} ∪ {χ | K∅χ ∈ hd(w)}.

Claim 2. Set X is consistent.

Proof of Claim. Suppose the opposite. Hence, there are such formulae

[t1]ψ1, . . . , [tm]ψm ,K∅χ1, . . . ,K∅χn ∈ hd(w), (5)

that t1, . . . , tm ⊆ s andψ1, . . . ,ψm , χ1, . . . , χn ⊢ φ. Thus, by Lemma 10,

[s]ψ1, . . . , [s]ψm , [s]χ1, . . . , [s]χn ⊢ [s]φ.

Then, by the Monotonicity axiom and the Modus Ponens inference rule,

[t1]ψ1, . . . , [tm]ψm , [s]χ1, . . . , [s]χn ⊢ [s]φ.

Hence, by the Empty Set axiom,

[t1]ψ1, . . . , [tm]ψm ,K∅χ1, . . . ,K∅χn ⊢ [s]φ.

Thus, hd(w) ⊢ [s]φ by statement (5). Therefore, [s]φ ∈ hd(w) due to the maximality of set hd(w),

which contradicts the assumption of the lemma. □

Let X ′
be any maximal consistent extension of set X and u be the sequence w :: ∅ :: X ′

. Note

that u ∈W by Definition 4, and the choice of set X , set X ′
, and sequence u.

Also, let function δ be the functional relation s ∪ {(a,d0) | a ∈ A \ Dom(s)}, where Dom(s) is
the domain of the functional relation s .

Claim 3. (w,δ ,u) ∈ M .

Proof of Claim. Consider any formula [t]ψ ∈ hd(w) such that t ⊆ δ . By Definition 7, it suffices to

show thatψ ∈ hd(u).
First, we show that t ⊆ s . Indeed, suppose there is a pair (a,d) ∈ t such that (a,d) < s . Assumption

(a,d) ∈ t implies that d ∈ ∆0 by Definition 1 because [t]ψ ∈ Φ. The same assumption (a,d) ∈ t also
implies that (a,d) ∈ δ because t ⊆ δ . Statements (a,d) ∈ δ and (a,d) < s imply that d = d0 by the

definition of profile δ . Thus, d0 = d ∈ ∆0, which contradicts Definition 6. Therefore, t ⊆ s .
Statement t ⊆ s and assumption [t]ψ ∈ hd(w) implyψ ∈ X ⊆ X ′ = hd(u) by the choice of set X ,

set X ′
, and sequence u. □

To finish the proof of the lemma, note that ¬φ ∈ X ⊆ X ′ = hd(u) by the choice of X , X ′
, and u.

Therefore, φ < hd(u) by the consistency of set hd(u). □

Lemma 18. For any (w,δ ,u) ∈ M and any formula [s]−1φ ∈ hd(u), if s ⊆ δ , then φ ∈ hd(w).
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Proof. Suppose φ < hd(w). Thus, ¬φ ∈ hd(w) by the maximality of set hd(w). Hence, by the

Future-Past axiom and the Modus Ponens inference rule, hd(w) ⊢ [s]¬[s]−1φ. Then, [s]¬[s]−1φ ∈

hd(w) by the maximality of set hd(w). Thus, ¬[s]−1φ ∈ hd(u) by Definition 7 and the assumption

that s ⊆ δ and the assumption (w,δ ,u) ∈ M of the lemma. Therefore, [s]−1φ < hd(u) because set
hd(u) is consistent. □

Lemma 19. For any state u ∈ W and any formula [s]−1φ < hd(u), there is a state w ∈ W and a
profile δ ∈ ∆A such that s ⊆ δ , (w,δ ,u) ∈ M , and φ < hd(w).

Proof. Let X be the set of formulae

{¬φ} ∪ {ψ | [t]−1ψ ∈ hd(u), t ⊆ s} ∪ {χ | K∅χ ∈ hd(u)}.

Claim 4. Set X is consistent.

Proof of Claim. Suppose the opposite. Thus, there are such formulae

[t1]
−1ψ1, . . . , [tm]

−1ψm ,K∅χ1, . . . ,K∅χn ∈ hd(u), (6)

that t1, . . . , tm ⊆ s andψ1, . . . ,ψm , χ1, . . . , χn ⊢ φ. Then, by Lemma 10,

[s]−1ψ1, . . . , [s]
−1ψm , [s]

−1χ1, . . . , [s]
−1χn ⊢ [s]−1φ.

Hence, by the assumption t1, . . . , tm ⊆ s and the Monotonicity axiom,

[t1]
−1ψ1, . . . , [tm]

−1ψm , [s]
−1χ1, . . . , [s]

−1χn ⊢ [s]−1φ.

Thus, by the Empty Set axiom,

[t1]
−1ψ1, . . . , [tm]

−1ψm ,K∅χ1, . . . ,K∅χn ⊢ [s]−1φ.

Then, hd(u) ⊢ [s]−1φ because of statement (6). Hence, [s]−1φ ∈ hd(u) due to the maximality of set

hd(u), which contradicts the assumption of the lemma. Therefore, set X is consistent. □

Let X ′
be any maximal consistent extension of set X and w be the sequence u :: ∅ :: X ′

. Note

that w ∈ W by Definition 4, and the choice of set X , set X ′
, and sequence w . Also, let us define

function δ to be the functional relation s ∪ {(a,d0) | a ∈ A \Dom(s)}, where Dom(s) is the domain

of the functional relation s .

Claim 5. If [t]σ ∈ hd(w) and t ⊆ s , then σ ∈ hd(u).

Proof of Claim. Suppose that σ < hd(u). Thus, ¬σ ∈ hd(u) because set hd(u) is maximal. Hence,

hd(u) ⊢ [t]−1¬[t]σ by the Past-Future axiom and the Modus Ponens rule. Then, [t]−1¬[t]σ ∈ hd(u)
because set hd(u) is maximal. Thus, ¬[t]σ ∈ X ⊆ X ′ = hd(w) by the choice of set X , set X ′

,

and sequence w . Therefore, [t]σ < hd(w) because set hd(w) is consistent, which contradicts the

assumption of the claim. □

Claim 6. (w,δ ,u) ∈ M .

Proof of Claim. Consider a formula [t]σ ∈ hd(w) such that t ⊆ δ . By Definition 7, it suffices to

show that σ ∈ hd(u). We consider the following two cases separately.

Case I: t ⊆ s . Thus, the assumption [t]σ ∈ hd(w) implies that σ ∈ hd(u) by Claim 5.

Case II: There is a pair (a,d) ∈ t \ s . Thus, d ∈ ∆0 by Definition 7 and the assumption [t]σ ∈ hd(w).

At the same time, t ⊆ δ by the choice of formula [t]σ and δ = s ∪ {(a,d0) | a ∈ A \ Dom(s)} by
the choice of δ . Hence, d = d0 because (a,d) < s . Recall that d ∈ ∆0. Therefore, d0 ∈ ∆0 which

contradicts Definition 6. □

To finish the proof of the lemma, note that ¬φ ∈ X ⊆ X ′ = hd(w) by the choice of set X , set X ′
,

and sequencew . Therefore, φ < hd(w) due to the consistency of set hd(w). □
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Lemma 20. φ ∈ hd(w) iffw ⊩ φ, for any statew ∈W and any formula φ ∈ Φ.

Proof. We prove the statement of the lemma by structural induction on formula φ. If formula φ
is a propositional variable, then the required follows from Definition 8 and Definition 3. The cases

when formula φ is a negation or an implication follow from Definition 3 and the maximality and

the consistency of formula φ in the standard way.

Suppose that formula φ has the form KCψ .
(⇒) Assume KCψ ∈ hd(w) and consider any state u ∈ W such that w ∼C u. By Definition 3, it

suffices to show that ψ ∈ hd(u). Indeed, by Lemma 15, assumption KCψ ∈ hd(w) implies that

KCψ ∈ hd(u). Thus, hd(u) ⊢ ψ by the Truth axiom. Hence,ψ ∈ hd(u) because set hd(u) is maximal.

Therefore, h ⊩ ψ by the induction hypothesis.

(⇐) Assume KCψ < hd(w). Then, by Lemma 16, there is a state u ∈ W such that w ∼C u and

ψ < hd(u). Hence, u ⊮ ψ by the induction hypothesis. Therefore,w ⊮ KCψ by Definition 3.

Suppose that formula φ has the form [s]ψ .
(⇒) Assume [s]ψ ∈ hd(w) and consider any profile δ ∈ ∆A

and any state u ∈W such that s ⊆ δ
and (w,δ ,u) ∈ M . By Definition 3, it suffices to show thatψ ∈ hd(u), which is true by Definition 7.

(⇐) Assume [s]ψ < hd(w). Thus, by Lemma 17, there is a profile δ ∈ ∆A
and a state u ∈W such

that s ⊆ δ , (w,δ ,u) ∈ M , and ψ < hd(u). Hence, u ⊮ ψ by the induction hypothesis. Therefore,

w ⊮ [s]ψ by Definition 3.

Finally, suppose that formula φ has the form [s]−1ψ .
(⇒) Assume [s]−1ψ ∈ hd(w) and consider any state u ∈W and any profile δ ∈ ∆A

such that s ⊆ δ
and (u,δ ,w) ∈ M . By Definition 3, it suffices to show that u ⊩ ψ , which is true by Lemma 18 and

the induction hypothesis.

(⇐) Assume [s]−1ψ < hd(w). Thus, by Lemma 19, there is a state u ∈ W and a complete action

profile δ ∈ ∆A
such that s ⊆ δ , (u,δ ,w) ∈ M , and ψ < hd(u). Hence, u ⊮ ψ by the induction

hypothesis. Therefore,w ⊮ [s]−1ψ by Definition 3. □

Theorem 2 (strong completeness). If X ⊬ φ, then there is a game (W , {∼a}a∈A ,∆,M,π ) and a
statew ∈W such thatw ⊩ χ for all formulae χ ∈ X andw ⊮ φ.

Proof. Suppose X ⊬ φ. Consider any maximal consistent set X0 such that {¬φ} ∪ X ⊆ X0. By

Definition 4, the single element sequence X0 is a state of the canonical game G(X0). Also, φ < X0

because ¬φ ∈ X ⊆ X0 and set X0 is consistent. Thus, X0 ⊮ φ by Lemma 20. Furthermore, X0 ⊮ χ
for each χ ∈ X also by Lemma 20 and because X ⊆ X0. □

8 STRONG INCOMPLETENESS
Our results in the previous sections are based on the assumption of item (3) of Definition 2 that the

set of actions ∆0 of the language of our logical system does not have to include all actions from the

set of actions ∆ of a given game. In this section we consider the setting in which condition ∆0 ⊆ ∆
in item (3) of Definition 2 is replaced with condition ∆0 = ∆. In Theorem 3 below, we show that

in such a setting, not only is our system not strongly complete, but neither is any other strongly

sound logical system. We start with the definitions of strongly sound and strongly complete logical

systems.

Definition 9. A logical system L is strongly sound when for any set of formulae X ⊆ Φ, any
formulae φ ∈ Φ such that X ⊢L φ, and any statew ∈W of a game (W , {∼a}a∈A ,∆0,M,π ), ifw ⊩ χ
for each χ ∈ X , thenw ⊩ φ.

Definition 10. A logical system is strongly complete when X ⊢L φ for any set of formulae X ⊆ Φ
and any formula φ ∈ Φ such that for each state w ∈ W of each game (W , {∼a}a∈A ,∆0,M,π ), if
w ⊩ χ for each χ ∈ X , thenw ⊩ φ.
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Theorem 3. If set ∆0 is infinite, set of agents A is not empty, and the language Φ includes at least
one propositional variable, then any strongly sound logical system is not strongly complete.

Proof. Let a0 be any agent from nonempty set A and p be any propositional variable. Suppose

that there is a strongly sound and strongly complete logical system L. Consider the set of formulae

X = {[(a0,d)]p | d ∈ ∆0}. (7)

Claim 7. X ⊬L [∅]p.

Proof of Claim. Suppose that X ⊢L [∅]p. Thus, there is a finite list of actions d1, . . . ,dn ∈ ∆0

such that

[(a0,d1)]p, . . . , [(a0,dn)]p ⊢L [∅]p. (8)

w

v

Δ0 \ {d1,d2,…,dn}

u

d1,d2,…,dn

p

Fig. 4. A Game.

Consider game (W , {∼a}a∈A ,∆0,M,π ) depicted in Figure 4. This game has three states: w , u,
and v . Only actions of agent a0 affect the transitions of the game from one state to another. Namely,

if in statew agent a0 uses one of the actions d1, . . . ,dn , then the game transitions into state u. If
in statew agent a0 uses any other action, then the game transitions into state v . The game never

transitions from state u and v . Propositional variable p is only satisfied in state u.
Note thatw ⊩ [(a0,di )]p for each i ≤ n by item 5 of Definition 3. Thus,

w ⊩ [∅]p (9)

by Definition 10, strong soundness of system L, and statement (8). Recall that set ∆0 is infinite

by the assumption of the theorem. Let d ′ ∈ ∆0 \ {d1, . . . ,dn}. Consider any action profile δ such

that δ (a0) = d
′
. Then, (w,δ ,v) ∈ M , see Figure 4. Therefore, v ⊩ p by statement (9) and item (5) of

Definition 3, which contradicts to the definition of the game, see Figure 4. □

By Definition 10, Claim 7 and the assumption that logical system L is strongly complete imply

that there is a statew ∈W of a game (W , {∼a}a∈A ,∆0,M,π ) such that,

w ⊩ χ , for each formula χ ∈ X (10)

andw ⊮ [∅]p. By item (5) of Definition 3, the latter statement implies that there is a state u ∈W
and a profile δ ∈ ∆A

0
such that (w,δ ,u) ∈ M and u ⊮ p. Note that [(a,δ (a))]p ∈ X by equation (7).

Also,w ⊮ [(a,δ (a))]p by the same item (5) of Definition 3. Therefore, there is a formula χ ∈ X such

thatw ⊮ χ , which contradicts to statement (10). □

Finally, note that if set ∆0 is finite and we consider only games such that ∆ = ∆0, then our

logical system is still not complete. For example, if ∆0 = {d1,d2} and a ∈ A, then formula

[(a,d1)]φ → ([(a,d2)]φ → [∅]φ) is true in all states of each game in which ∆ = ∆0. It is easy to

show that this formula is not true in games that have at least one more action in addition to d1 and
d2. Therefore, the formula is not provable in our logical system because our system is sound.
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9 CONCLUSION
Most logical systems for reasoning about actions, strategies, and coalition power focus on possible

future outcomes or “look ahead”. In this article we developed a symmetric system that also allows

to make statements about the past based on the current state and the past actions or to “look back”.

Such an extension, in combination with the knowledge modality, allows to capture many new

properties of actions. Among such properties the most interesting is the ability of coalitions to learn

from past experiences. Our main technical contribution is a sound and complete logical system

capturing the interplay between “look ahead”, “look back”, and distributed knowledge modalities.

We also show that the ability to learn from past experiences cannot be expressed without “look back”

modality. Finally, we considered the class of games that can only have actions that are explicitly

mentioned in the language and proved that no strongly sound logical system can be strongly

complete with respect to this class.
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