Comparison of in silico strategies to prioritize rare genomic variants impacting RNA splicing for the diagnosis of genomic disorders
Comparison of in silico strategies to prioritize rare genomic variants impacting RNA splicing for the diagnosis of genomic disorders
The development of computational methods to assess pathogenicity of pre-messenger RNA splicing variants is critical for diagnosis of human disease. We assessed the capability of eight algorithms, and a consensus approach, to prioritize 249 variants of uncertain significance (VUSs) that underwent splicing functional analyses. The capability of algorithms to differentiate VUSs away from the immediate splice site as being ‘pathogenic’ or ‘benign’ is likely to have substantial impact on diagnostic testing. We show that SpliceAI is the best single strategy in this regard, but that combined usage of tools using a weighted approach can increase accuracy further. We incorporated prioritization strategies alongside diagnostic testing for rare disorders. We show that 15% of 2783 referred individuals carry rare variants expected to impact splicing that were not initially identified as ‘pathogenic’ or ‘likely pathogenic’; one in five of these cases could lead to new or refined diagnoses.
Rowlands, Charlie
33e03aa5-fcdd-4f08-ac34-45489338a03c
Thomas, Huw B
f864a38d-d96f-4f5f-9346-0e8f0cfdd36e
Lord, Jenny
e1909780-36cd-4705-b21e-4580038d4ec6
Wai, Htoo
4428517b-33b3-42cb-9818-ca64763ab7bc
Arno, Gavin
40a4d230-9439-492c-92d1-e56ca2e73208
Beaman, Glenda
859d91d0-c4e6-4836-80ed-0b8ca4e8da4d
Sergouniotis, Panagiotis I.
d9e3116d-beff-4259-bbb3-e5ef7539b725
Gomes-Silva, Beatriz
650350a8-42f0-4dfd-aad8-c209694c9b42
Campbell, Christopher
0a9f3040-0db5-44d5-90b6-7d934ef1b169
Gossan, Nicole
ff3b9198-efb1-40c7-950a-604163eb390a
Hardcastle, Claire
ef239e4b-b163-4421-bf35-e47355cbbe6c
Webb, Kevin
d171ebea-551d-48d6-a467-0e14dcba1bdc
O'Callaghan, Christopher
bf20dc41-d143-492d-82cd-31f019db79e7
Hirst, Robert A.
dd5c6665-eac6-402d-9639-571973fdaeaf
Ramsden, Simon
46c93aa3-0e2c-4929-8c04-90a7f5a5a329
Jones, Elizabeth
c905a549-38b6-4698-9b90-0481f0768d86
Clayton-Smith, Jill
df8946ac-9da9-4ef2-b180-f468a5424844
Webster, Andrew R.
f368f0ff-61ea-4d58-8616-89addba40268
Douglas, Andrew
2c789ec4-a222-43bc-a040-522ca64fea42
O'Keefe, Raymond T
12a7a4ec-4f26-4e66-8621-edd44330a2da
Newman, William G.
771e4904-12d6-4b02-8f3f-a0285d95f1a7
Baralle, Diana
faac16e5-7928-4801-9811-8b3a9ea4bb91
Black, Graema CM
d44b1375-9b75-43d0-b139-ef3d01245566
Ellingford, Jamie M.
e84f25d6-9c76-44e8-b764-1ec81825032e
Genomics England Research Consortium
18 October 2021
Rowlands, Charlie
33e03aa5-fcdd-4f08-ac34-45489338a03c
Thomas, Huw B
f864a38d-d96f-4f5f-9346-0e8f0cfdd36e
Lord, Jenny
e1909780-36cd-4705-b21e-4580038d4ec6
Wai, Htoo
4428517b-33b3-42cb-9818-ca64763ab7bc
Arno, Gavin
40a4d230-9439-492c-92d1-e56ca2e73208
Beaman, Glenda
859d91d0-c4e6-4836-80ed-0b8ca4e8da4d
Sergouniotis, Panagiotis I.
d9e3116d-beff-4259-bbb3-e5ef7539b725
Gomes-Silva, Beatriz
650350a8-42f0-4dfd-aad8-c209694c9b42
Campbell, Christopher
0a9f3040-0db5-44d5-90b6-7d934ef1b169
Gossan, Nicole
ff3b9198-efb1-40c7-950a-604163eb390a
Hardcastle, Claire
ef239e4b-b163-4421-bf35-e47355cbbe6c
Webb, Kevin
d171ebea-551d-48d6-a467-0e14dcba1bdc
O'Callaghan, Christopher
bf20dc41-d143-492d-82cd-31f019db79e7
Hirst, Robert A.
dd5c6665-eac6-402d-9639-571973fdaeaf
Ramsden, Simon
46c93aa3-0e2c-4929-8c04-90a7f5a5a329
Jones, Elizabeth
c905a549-38b6-4698-9b90-0481f0768d86
Clayton-Smith, Jill
df8946ac-9da9-4ef2-b180-f468a5424844
Webster, Andrew R.
f368f0ff-61ea-4d58-8616-89addba40268
Douglas, Andrew
2c789ec4-a222-43bc-a040-522ca64fea42
O'Keefe, Raymond T
12a7a4ec-4f26-4e66-8621-edd44330a2da
Newman, William G.
771e4904-12d6-4b02-8f3f-a0285d95f1a7
Baralle, Diana
faac16e5-7928-4801-9811-8b3a9ea4bb91
Black, Graema CM
d44b1375-9b75-43d0-b139-ef3d01245566
Ellingford, Jamie M.
e84f25d6-9c76-44e8-b764-1ec81825032e