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A B S T R A C T   

The neonatal Fc receptor (FcRn) is an MHC class I–like molecule that is widely distributed in mammalian organs, 
tissues, and cells. FcRn is critical to maintaining immunoglobulin G (IgG) and albumin levels through rescuing 
these molecules from lysosomal degradation. IgG autoantibodies are associated with many autoimmune diseases, 
including myasthenia gravis (MG), a rare neuromuscular autoimmune disease that causes debilitating and, in its 
generalized form (gMG), potentially life-threatening muscle weakness. IgG autoantibodies are directly patho-
genic in MG and target neuromuscular junction proteins, causing neuromuscular transmission failure. Treatment 
approaches that reduce autoantibody levels, such as therapeutic plasma exchange and intravenous immuno-
globulin, have been shown to be effective for gMG patients but are not indicated as ongoing maintenance 
therapies and can be associated with burdensome side effects. Agents that block FcRn-mediated recycling of IgG 
represent a rational and promising approach for the treatment of gMG. Blocking FcRn allows targeted reduction 
of all IgG subtypes without decreasing concentrations of other Ig isotypes; therefore, FcRn blocking could be a 
safe and effective treatment strategy for a broad population of gMG patients. Several FcRn-blocking antibodies 
and one antibody Fc fragment have been developed and are currently in various stages of clinical development. 
This article describes the mechanism of FcRn blockade as a novel approach for IgG-mediated disease therapy and 
reviews promising clinical data using such FcRn blockers for the treatment of gMG.   

1. History and physiology of the neonatal Fc receptor 

1.1. Neonatal Fc receptor structure and function 

The neonatal Fc receptor (FcRn) is an MHC class I–like molecule that 
is a heterodimer of an alpha chain non-covalently bound to β2-micro-
globulin [1–3]. FcRn was originally isolated from the epithelial cells of 
neonatal rats, where it mediates the transport of immunoglobulin G 
(IgG) from mother's milk to suckling neonates [4,5]. During gestation in 
humans, FcRn transfers IgG from mother to fetus across the placenta, 
providing newborns with humoral immunity [2,6,7]. Although FcRn 
was initially isolated from neonatal intestinal tissue, it plays an impor-
tant role in the homeostasis of IgG throughout life [8,9]. It is widely 

distributed in various mammalian organs, tissues, and cells, where it 
regulates IgG transport within and across cells [10–13]. FcRn is most 
highly expressed in hematopoietic cells, intestinal epithelia, and in the 
vascular endothelium, with the expression per gram of tissue greatest in 
the spleen, lymph nodes, liver, and lung [8,10–15]. 

1.2. Regulation of IgG and albumin levels by FcRn 

FcRn has a critical role in maintaining both IgG and albumin levels 
through rescuing these molecules from lysosomal degradation within 
cells [16–18]. The interaction of FcRn with IgG is highly pH-dependent, 
with binding at acidic pH that becomes negligible as near-neutral pH is 
approached [4,5,19]. Consequently, for most cell types, uptake of IgG 
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occurs through fluid phase, rather than receptor-mediated, processes 
(Fig. 1A) [20,21]. Following cellular uptake, FcRn binds IgG in the 
acidic environment (pH <6.5) of the early (or sorting) endosome. Bound 
IgG is then rescued from lysosomal degradation by endosomal sorting 
into the recycling pathway [16,20,21]. FcRn can also transport IgG 
across polarized cells, such as epithelial barriers in a process called 
transcytosis [22,23]. Following recycling (or transcytosis), IgG mole-
cules are released from FcRn and returned to the extracellular space 
[24,25]. This recycling of IgG by FcRn results in longer half-life of IgG 
(t1/2 ≈ 23 days) compared with other immunoglobulins, such as IgA (t1/ 

2 ≈ 5.8 days) and IgM (t1/2 ≈ 5.1 days) [26,27]. Studies have also shown 
that FcRn expression in hematopoietic cells protects circulating immune 
complexes comprising IgG and antigen from being eliminated from the 
blood and promotes the transport of immune complexes into the intra-
cellular compartments involved in antigen presentation to CD4+ and 
CD8+ T cells [28,29]. 

Following cellular uptake, some IgG molecules may not bind to FcRn, 
possibly due to the saturation of FcRn interaction sites, or IgG 
mutations/post-translational modifications (e.g. methionine oxidation, 
which is associated with antibody aging) that ablate FcRn binding 
[30–33]. These unbound IgG molecules, as well as other unbound 
plasma proteins, undergo degradation in the lysosome [16,20,21,31]. 
Albumin is also salvaged from lysosomal degradation by FcRn via a pH- 
dependent interaction, albeit through interacting with a distinct binding 
site on FcRn. Importantly, these two ligands bind FcRn non- 
competitively and this can occur concurrently [18,34–38]. 

1.3. Pathogenic properties of IgG in autoimmune diseases 

Many autoimmune diseases are mediated by IgG autoantibodies, 
including myasthenia gravis (MG), subtypes of chronic inflammatory 
demyelinating polyradiculoneuropathy (CIDP), pemphigus, and pri-
mary immune thrombocytopenia [39–42]. Specifically, the pathogenic 
actions of IgG autoantibodies in MG are very well-described, causing 

failure of neuromuscular signal transduction by targeting receptors and 
proteins of the neuromuscular junction [43,44]. 

The most common autoantibody target in generalized MG (gMG) is 
the skeletal muscle nicotinic acetylcholine receptor (AChR), with anti-
bodies to this receptor found in ~85% of patients [43]. Autoantibodies 
against other targets have been identified, including muscle-specific 
tyrosine kinase (MuSK, found in ~5% of patients) and low-density li-
poprotein related protein-4 (LRP4, found in ~1% of patients) [43]. 

Anti-AChR autoantibodies, which are almost exclusively of the IgG1 
and IgG3 subtypes, impair neurotransmission through three mecha-
nisms (Fig. 2) [43,44]. Autoantibody binding to the acetylcholine 
interaction site of the AChR creates a functional blockade of the AChR 
[44]. Anti-AChR autoantibodies also cross-link the AChR molecules, 
accelerating their endocytosis and degradation [45]. Finally, anti-AChR 
autoantibodies may activate complement, resulting in damage to the 
neuromuscular membrane [46]. These actions ultimately reduce the 
function and number of AChRs and diminish the structural integrity of 
the neuromuscular junction, leading to failure of neuronal transmission 
[44]. 

Anti-MuSK autoantibodies are mostly of the IgG4 subtype and do not 
activate complement [44]. Instead, these autoantibodies block the 
LRP4-MuSK interaction, a mechanism that disrupts the structure of the 
synapse, compromising synaptic transmission [47]. Antibodies against 
LRP4 are of the IgG1 and IgG2 subtypes and similarly disrupt the protein 
complex regulating AChR clustering, resulting in disorganization of 
AChR at the neuromuscular junction [48]. 

In some patients, IgG autoantibodies cannot be identified; in these 
cases, it is possible that the disease is not antibody mediated or that they 
recognize epitopes not detected by the assay or bind unknown targets 
[49]. Additionally, antibodies may be present in low concentrations in 
plasma that are below the detection limits of the assay; however, they 
may be enriched at their biologic binding site. Notably, a recent study 
showed similar response rates to treatment with therapeutic plasma 
exchange (TPE) in gMG patients with and without detectable 

Fig. 1. IgG Recycling by FcRn Under Normal Conditionsa (A) and With an FcRn Antagonistb (B) [114]. 
aUnder steady state, IgG is taken up by pinocytosis, bound by FcRn in acidic vesicles, and recycled. Only a fraction is not recycled and degraded in lysosomes. 
bCatabolism of IgG in enhanced in the presence of FcRn-blocking molecules. 
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autoantibodies [50]. These results suggest that all gMG may be 
autoantibody-mediated, even when IgG autoantibodies cannot be 
identified [50]. Additionally, up to one-third of infants born to mothers 
with MG develop transient symptoms, further supporting the pathogenic 
role of IgG autoantibodies in MG, as no other Ig isotypes (such as IgM 
and IgA) or immune cells are transferred from mother to fetus [51]. 

2. Established therapeutic approaches that reduce pathogenic 
IgG 

Many first-line treatments for gMG, including corticosteroids, 
acetylcholinesterase inhibitors, and non-steroidal immunosuppressive 
drugs, target inhibition of acetylcholine breakdown or T-cell function 
[52]. The treatments are non-specific and are associated with side effects 
such as glucose intolerance, weight gain, osteoporosis, gastrointestinal 
issues, bradycardia, hepatotoxicity, and renal dysfunction [52]. 

Considering the direct pathogenicity of IgG in gMG, therapies that 
reduce concentrations of pathogenic IgG, such as TPE and intravenous 
immunoglobulin (IVIG), are accepted, guideline-recommended prac-
tices [53]. TPE provides proof of concept that IgG reduction is a viable 
therapeutic option, as gMG patients receiving TPE experience 
improvement in symptoms that correlates with reductions in the con-
centrations of all IgG subtypes [52,53] Additionally, the depletion of 
non-IgG components, such as complement proteins, may also help to 
relieve gMG symptoms [54]. Despite the beneficial effects of TPE, the 
removal of other non-IgG components can cause unwanted side effects, 
such as coagulation abnormalities and infection of indwelling catheters, 
which can lead to sepsis [54,55]. Immunoadsorption (IA) is a special 
type of TPE that can more selectively remove IgG while preserving other 
plasma proteins [56]. Although IA reduces some unwanted side effects 
of TPE associated with the removal of non-IgG components in plasma, IA 
is also associated with catheter line sepsis, is invasive and burdensome 
for the patient, and is not available in all clinical settings due to the 
specialized instrumentation and monitoring required [57,58]. 

IgG therapies involve administering a large volume of exogeneous 
IgG to a patient, either intravenously (IVIG) or subcutaneously (SCIG) 
[58]. The proposed mechanism of action of IV/SC IG involves interfer-
ence of autoantibody binding to the AChR [59,60]. The large quantity of 
IgG is also reported to competitively saturate the FcRn recycling 
pathway, leading to the degradation of endogenous IgG, and ultimately 
shortening the serum half-life of IgG (including IgG autoantibodies), 
thereby improving gMG symptoms [59,60]. However, these therapies 
require a mixed pool of hundreds to thousands of individual donors, 
making this a supply-sensitive, precarious, and expensive treatment 

option that requires rigorous quality control to ensure the absence of 
viral and other contaminents [52]. 

3. FcRn blocking as a potential treatment for gMG 

FcRn blocking reduces IgG concentrations, targeting the core of MG 
pathophysiology [39]. More specifically, reduction in IgG leads to 
diminution in anti-AChR autoantibodies, which limits interference with 
AChR activation, prevents AChR downmodulation, and averts down-
stream complement activation [39,61]. Thus, by acting early in the 
pathogenic pathway compared to complement inhibitors such as eculi-
zumab, FcRn blockade could potentially inhibit all 3 mechanisms 
associated with anti-AChR pathogenicity, a characteristic that has 
prompted investigation of FcRn blockade as a promising therapeutic 
strategy for patients with gMG [39,62]. 

Blocking FcRn also allows targeted reduction of all IgG subtypes, 
including pathogenic autoantibodies. This reduction of all IgG subtypes 
could potentially allow for application to a broad population of gMG 
patients, including patients with IgG1 and IgG3 AChR autoantibodies, 
IgG4 MuSK autoantibodies, IgG1 and IgG2 LRP4 autoantibodies, and 
any other IgG autoantibodies with currently unidentified antigens [43]. 
Studies have also shown that FcRn blocking effectively reduces IgG 
levels without decreasing concentrations of other Ig's, which may 
contribute to sustained and general protection against infectious dis-
eases [28,63,64]. Additionally, ~20–30% of normal IgG levels are 
maintained during treatment, and IgG concentrations return to baseline 
when treatment ceases due to IgG production not being impaired by 
blocking FcRn [63]. Therefore, it is anticipated that patients can still 
mount an immune response while receiving agents that block FcRn. 
Indeed, studies in cynomolgus monkeys confirmed that treatment with a 
FcRn blocker does not interfere with IgM responses to foreign antigens, 
although IgG titers are lowered [65]. Moreover, studies in mice lacking 
β2-microglobulin or FcRn α-chain genes resulted in immune responses 
with normal numbers of antibody-secreting plasma cells, whilst IgG 
hypercatabolism led to reduced levels of (antigen-specific) IgG [66,67]. 
Importantly, in β2-microglobulin-deficient mice, the IgG levels were 
sufficient to protect against vaccinia virus infection [68]. Similarly, 
although β2-microglobulin deficient humans have lower IgG levels, with 
IgA and IgM levels in the normal range, immune responses against 
rubella, tetanus toxoid and other vaccines are still observed [69,70]. 

The maintenance of antibody production during FcRn blockade is 
expected to result in a much less severe and lower infection risk with 
FcRn inhibitor treatment compared to conditions that lead to a defi-
ciency in antibody production such as B cell depletion. In addition, the 

Fig. 2. Inhibition of Neuromuscular Junction Activity by Anti-AChR Autoantibodies in gMG [49].  
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targeted mode of action of FcRn inhibition is less likely to pose an 
increased infection risk compared to other immunomodulators such as 
general immunosuppressants. Importantly, preliminary studies using 
FcRn blockers have demonstrated that these treatments are generally 
well-tolerated with no evidence of increased infection risk being 
observed to date; however, given the short timeframes of these studies 
and the role of IgG in host defense, the risk of infection should be 
investigated in long-term studies [28,63,71,72]. 

4. Therapies in clinical development for IgG reduction through 
FcRn blocking 

4.1. Monoclonal antibodies directed against FcRn 

Proof-of-concept studies for the use of monoclonal antibodies that 
bind FcRn through their Fab arms to prevent the binding of wild type 
IgG were first described in rodent models [73,74]. These antibodies bind 
with high affinity to FcRn in a pH-independent fashion [39]. Following 
several successful studies in rodents, human and humanized antibodies 
have been developed for therapeutic use in patients with gMG (Table 1) 
[28,65,75–77]. 

4.2. Engineering the Fc fragment to target FcRn 

The binding site for FcRn on the Fc fragment of IgG can be engi-
neered to bind FcRn with increased affinity [75]. The only engineered Fc 
fragment currently in development, efgartigimod, is a human IgG1- 
derived Fc fragment [63]. Efgartigimod retains the pH-dependent 
binding (i.e. higher affinity at pH 6.0 than at near-neutral pH) that is 
observed for its parent, wild-type Fc, but has substantially increased 
affinity for FcRn at both physiological and acidic pH, thereby acting as a 
competitive inhibitor of wild type IgG-FcRn interactions (Fig. 1B) [63]. 
The pH-dependent binding displayed by efgartigimod allows it to 
dissociate from FcRn during the recycling process, leading to a serum 
half-life of 4.89 days when dosed at 10 mg/kg [78]. This is a relatively 
long half-life compared with that of full-length monoclonal antibodies 
targeting FcRn, which have half-lives ≤1 day [28,64,65]. Given that 
FcRn mediated transcytosis bears similarities to recycling, the lower 
affinity of efgartigmod for FcRn at neutral pH also potentially allows for 
more efficient transport into the tissues. This would provide the poten-
tial to locally inhibit FcRn which could add to its therapeutic efficacy 
[37,79] (Table 1). 

4.3. Peptide or affibody-based inhibitors directed against FcRn 

Several peptides have been identified that act as ligands for FcRn and 
inhibit the FcRn-IgG interaction. These peptides are limited by exceed-
ingly short half-lives in the circulation [80]. Recent studies have 
investigated coupling an affibody (6–7 kDa) with FcRn binding activity 
to an albumin binding domain to increase in vivo half-life, but no such 
agents are currently in development [81]. 

5. Monoclonal antibodies against FcRn 

5.1. Nipocalimab 

Nipocalimab is a fully human, aglycosylated monoclonal IgG1 FcRn 
antibody with no effector function that inhibits FcRn-mediated IgG 
recycling [64]. Nipocalimab binds with picomolar affinity to FcRn at 
both endosomal pH 6.0 and extracellular pH 7.3 to 7.4, occupying FcRn 
throughout the recycling pathway [64]. A first-in-human, two-part, 
ascending-dose Phase 1 study of nipocalimab in 50 healthy volunteers 
investigated single ascending IV doses up to 60 mg/kg and multiple 
weekly doses of 15 or 30 mg/kg [64]. This study demonstrated that four 
weekly doses of 15 or 30 mg/kg administered as an IV infusion achieved 
mean IgG reductions of approximately 85% from baseline and 

maintained IgG reductions of ≥75% for up to 24 days [64]. Decreases in 
serum concentrations were consistent across IgG subclasses, and no ef-
fect was observed on of other Ig's levels [64]. During this study, the 
incidence of treatment-emergent adverse events (TEAEs) related to the 
study drug was similar in the nipocalimab and placebo groups (66.7% vs 
75.0%, respectively), and most TEAEs were mild [64]. Transient re-
ductions in total protein and albumin (up to 22%) were observed in 
participants receiving a single dose of 60 mg/kg or multiple doses of 15 
and 30 mg/kg [64]. 

A subsequent Phase 2 clinical trial evaluated the safety, tolerability, 
efficacy, pharmacokinetics and pharmacodynamics of nipocalimab in 
adults with gMG [82]. This study included 68 participants, and consisted 
of an 8-week treatment period with four active arms (5 mg/kg IV every 
4 weeks [Q4W], 30 mg/kg IV Q4W, 60 mg/kg IV every 2 weeks [Q2W], 
and a 60 mg/kg IV single dose) and a placebo arm [82]. Topline data 
from this study revealed that 52% of patients who received nipocalimab 
had at least a 2-point reduction from baseline in MG activities of daily 
living (MG-ADL) scores for at least 4 consecutive weeks across all four 
dosing arms, versus 15% of placebo-treated patients (p = 0.017). There 
was a significant relationship between IgG reduction and clinical benefit 
[82]. No severe or serious adverse events related to nipocalimab were 
reported, and most adverse events were characterized as mild [82]. 
Reported reductions in albumin levels were observed, with the largest 
reductions seen in patients receiving 60 mg/kg Q2W, including one 
patient in this group who had an asymptomatic Grade 2 hypo-
albuminemia [83]. As FcRn inhibitors are expected to inhibit transport 
of IgG across the placenta [84,85], nipocalimab is also being evaluated 
in pregnant women at high risk for early onset severe hemolytic disease 
of the fetus/newborn (Phase 2 trial actively recruiting) and for the 
treatment of warm autoimmune hemolytic anemia (Phase 2/3 trial 
recruiting) [86,87]. Although this approach has the potential to be 
effective, it may also subject neonates to infectious diseases due to the 
expected lowered maternal IgG levels at birth. This is particularly rele-
vant during pregnancy, as neonates do not acquire IgA and IgM through 
placental transfer, and IgA is the primary isotype that is acquired 
through mothers' milk. A possible solution could be treatment of the 
neonates with IVIg [88,89]. 

5.2. Rozanolixizumab 

Rozanolixizumab is a humanized, high-affinity, anti-human FcRn 
IgG4P-monoclonal antibody (S241P mutation to prevent Fab-arm ex-
change), which is an IgG isotype with very low, if any, binding to Fcγ 
receptors [72,90]. Rozanolixizumab is administered via SC infusion and 
is currently being evaluated for the treatment of gMG [71,72]. A Phase 1 
study with 49 participants investigated rozanolixizumab administered 
IV (1, 4, or 7 mg/kg) and SC (1, 4, or 7 mg/kg) [72]. This study showed 
that rozanolixizumab reduced IgG concentrations by up to 50% 
compared with baseline, with maximal reductions achieved 7 to 10 days 
after administration; Serum (or plasma) IgG levels gradually returned to 
baseline by Day 57 [72]. The maximal reductions in IgG concentrations 
were similar with either IV or SC administration [72]. Rozanolixizumab 
selectively reduced IgG concentrations with no significant effect on the 
levels of other Ig's, complement, or other immune-related biomarkers 
[72]. There was a modest decrease in mean albumin concentration over 
time after both IV and SC administration (at Day 10, − 0.5 g/L for the 7 
mg/kg IV group and − 2.0 g/L for the 7 mg/kg SC group) [72]. Severe 
TEAEs of headache (n = 3) and back pain (n = 1) were reported by 
participants in the 7 mg/kg IV group but did not lead to discontinuation 
[72]. Participants in the SC group had fewer and less severe adverse 
events compared to those in the IV group, and future trials focused on 
pump infusion SC administration [72]. 

A Phase 2 proof-of-concept study of SC-infused rozanolixizumab (7 
mg/kg or placebo in the first period, then rerandomized to 4 mg/kg or 7 
mg/kg in the second period) in patients with gMG showed that treat-
ment resulted in clinically meaningful improvement in multiple disease- 
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Table 1 
FcRn blockers under investigation for the treatment of gMG.  

Compound Manufacturer Type Admin. 
Route 

Clinical 
Development 
Phase 

Tested dosing Efficacy in gMG Adverse events Other indications 

Nipocalimab Momenta 
Pharma 

Fully human, 
monoclonal 
IgG1 anti- 
FcRn antibody 
[64] 

IV Phase 3 
(recruiting) 
[82]  

• Phase 2:  
◦ 5 mg/kg 

every 4 weeks 
for 8 weeks 
[82]  

◦ 30 mg/kg 
every 4 weeks 
for 8 weeks 
[82]  

◦ 60 mg/kg 
every 2 weeks 
for 8 weeks 
[82]  

◦ 60 mg/kg 
single dose 
[82]  

• Phase 2 topline 
data:  

• 52% had ≥2- 
point reduction 
in MG-ADL for 
≥4 consecutive 
weeks with 
nipocalimab vs 
15% with pla-
cebo (p = 0.017) 
[82]  

• Phase 2 topline 
data:  

◦ No serious 
adverse events 
[82]  

◦ Non-clinically 
relevant 
reductions in 
albumin observed 
[83]  

• Early onset severe 
hemolytic disease of the 
fetus and newborn [86]  

• Warm autoimmune 
hemolytic anemia [87] 

Rozanolixizumab UCB Humanized, 
anti-human 
FcRn IgG4P 
monoclonal 
antibody [72] 

IV or SC Phase 3 
(recruiting) 
[112]  

• Phase 2:  
◦ First 

treatment 
period: 3 
weekly, SC- 
infusions of 7 
mg/kg or pla-
cebo [71]  

◦ Second 
treatment 
period: 3, 
weekly, SC- 
infusions of 7 
mg/kg or 4 
mg/kg [71]  

• Phase 2:  
◦ Statistically 

significant 
improvement in 
in MG-ADL [71]  

◦ ~68% mean 
reduction of 
total IgG and 
anti-AChR anti-
body titers [71]  

• Phase 2:  
◦ Headache was 

more frequent 
with 
rozanolixizumab 
(57.1%) vs 
placebo (13.6%) 
(Period-1) [71]  

• Chronic primary immune 
thrombocytopenia  

• Chronic inflammatory 
demyelinating 
polyradiculoneuropathy 
[93] 

IMVT-1401 
(RVT-1401) 

Immunovant Fully human 
IgG1 
monoclonal 
antibody [95] 

IV or SC Phase 2 [113]  • Phase 2:  
◦ Weekly SC 

doses of 
IMVT-1401 
(340 or 680 
mg) or pla-
cebo for 6 
weeks [96]  

• Phase 2:  
◦ IMVT-1401 at 

340 mg or 680 
mg resulted in 
mean IgG 
reductions of 
59% and 76%, 
respectively, at 
Day 42 [96]  

◦ Statistically 
significant 
improvements 
in MG-ADL and 
MGC [96]  

• Phase 2:  
◦ No SAEs were 

reported [96]  

• Graves' ophthalmopathy 
[97]  

• Warm autoimmune 
hemolytic anemia [98] 

Orilanolimab 
(ALXN1830) 

Alexion 
Pharmaceuticals 

Humanized, 
affinity- 
matured, 
deimmunized 
IgG4 
monoclonal 
antibody [28] 

IV Phase 2 [28]  • In Phase 2:  
◦ Single IV dose 

of 1, 3, 10, or 
30 mg/kg 
[28]  

• In Phase 2:  
◦ Median 

decreases 
observed were 
− 68.3% for 
IgG3, − 51.6% 
for IgG1, 
− 36.9% for 
IgG2, 
and–42.9% for 
IgG4 [28]  

• In Phase 2:  
◦ The most 

common TEAE 
was headache 
[28]  

• Warm autoimmune 
hemolytic anemia [101] 

Efgartigimod argenx Human IgG1 
antibody Fc- 
fragment [75] 

IV Phase 3 
(ongoing) 
[102]  

• Phase 3:  
◦ Four weekly 

IV (10 mg/kg) 
infusions over 
4 weeks 
[102,103]  

◦ Subsequent 
treatment 
cycles 
administered 
according to 
clinical 
evaluation 
[102,103]  

• Phase 3 topline 
data:  

◦ Met the primary 
endpoint: 
67.7% achieved 
≥2-point MG- 
ADL improve-
ment for ≥4 
consecutive 
weeks with 
efgartigimod vs 
29.7% with 
placebo (p <
0.0001) 
[102,103]  

• Phase 3 topline 
data:  

◦ Efgartigimod was 
well-tolerated 
[102]  

◦ Headache was the 
most common 
TEAE in the Phase 
2 trial (28.6% 
with efgartigimod 
and 27.7% with 
placebo) [78,103]  

• Immune 
thrombocytopenia [104]  

• Pemphigus [105]  
• Chronic inflammatory 

demyelinating 
polyneuropathy [106]  
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related endpoints with statistical significance for the MG-ADL scores 
[71]. Additionally, rozanolixizumab resulted in an approximately 68% 
mean reduction of total IgG and anti-AChR antibody titers [71]. The 
incidence of headache was greater in the rozanolixizumab group 
compared with placebo (57.1% vs 13.6%, respectively) and three pa-
tients were withdrawn due to headache [71]. Rozanolixizumab is also 
being evaluated in patients with CIDP (ongoing Phase 2 trial) and 
chronic primary immune thrombocytopenia (Phase 3 trial actively 
recruiting) [91–93]. Despite the ongoing phase 2 trial, rozanolixizumab 
will not be further evaluated in a phase 3 trial for CIDP after its 
completion as development is being focused on autoantibody mediated 
neuro-inflammation [94]. 

5.3. IMVT-1401 (RVT-1401) 

IMVT-1401 is a fully human aglycosylated IgG1 monoclonal anti-
body that is being investigated for the treatment of gMG [95]. Studies in 
healthy participants have demonstrated that a single SC dose of 765 mg 
of IMVT-1401 resulted in average IgG reduction of 47% from baseline, 
with weekly SC injections affording maximum reductions >75% [95]. 
Dose-dependent and reversible albumin reductions of up to 31% from 
baseline were observed in the single and multiple ascending dose co-
horts [95]. A Phase 2 trial assessing the efficacy and safety of IMVT-1401 
in patients with gMG was recently completed [96]. This study contained 
15 patients who were randomized to placebo, 340 mg IMVT-1401 SC, or 
680 mg IMVT-1401 SC weekly for 6 weeks [96]. Topline data from this 
trial showed that weekly dosing of IMVT-1401 at 340 mg or 680 mg 
resulted in mean IgG reductions from baseline of 59% and 76%, 
respectively, at Day 42 [96]. IMVT-1401 also resulted in statistically 
significant and clinically meaningful improvements in MG-ADL and 
MGC [96]. The mean albumin reduction from baseline was 16% and 
26% in the 340 mg and 680 mg dose groups, respectively [96]. No SAEs 
were reported [96]. IMVT-1401 is also being assessed for the treatment 
of Graves' ophthalmopathy (Phase 2 trial actively recruiting) and warm 
autoimmune hemolytic anemia (Phase 2 trial not yet recruiting) 
[97,98]. Clinical dosing of IMVT-1401 was voluntarily paused in 
February 2021 due to elevated total and low density lipoprotein (LDL) 
cholesterol levels, that appear to be driven by reductions in albumin 
[99]. Clinical development is planned to resume in late 2021 or early 
2022 [99]. 

5.4. Orilanolimab (ALXN1830) 

Orilanolimab is a humanized, affinity-matured, deimmunized IgG4 
monoclonal antibody containing a S241P mutation that binds FcRn at 
neutral and acidic pH and has been investigated for the treatment of 
gMG [28]. A single-center, double-blind, randomized, single ascending 
dose, first-in-human study assessed the safety, pharmacokinetic, and 
pharmacodynamic effects of IV-administered orilanolimab in 31 healthy 
participants [28]. This study showed no evidence of dose-limiting 
adverse reactions with orilanolimab up to a maximum dose of 30 mg/ 
kg [28]. Reductions across all four IgG subtypes were observed in 
response to orilanolimab, with the 30 mg/kg dose group displaying the 
lowest levels [28]. The greatest median decreases were observed for 
IgG3, with lesser reductions of IgG1, IgG2, and IgG4 [28]. Serum (or 
plasma) IgG levels returned to within 25% of baseline by Day 28 in all 
dose groups [28]. No significant changes were observed in the levels of 
albumin, IgA, and IgM [28]. Orilanolimab also resulted in a dose- 
dependent decrease in IgG circulating immune complexes, with the 
greatest reductions observed in the 30 mg/kg dose group [28]. The most 
common TEAE observed in this study was headache, which was most 
frequent in the 30 mg/kg dose group (n = 5, 100%). While most head-
aches were mild, one individual in the 10 mg/kg dose group reported a 
moderate severity headache [28]. No significant changes in albumin 
levels were observed [100]. Orilanolimab is also being investigated for 
the treatment of warm autoimmune hemolytic anemia (Phase 2 trial 

temporarily paused) [101]. 

6. Antibody Fc Fragment Against FcRn 

6.1. Efgartigimod 

A Phase 1, randomized, double-blind, placebo-controlled, first-in- 
human study of efgartigimod was conducted in 62 healthy volunteers 
to explore single and multiple ascending IV doses (up to 50 mg/kg) [63]. 
Results from this study revealed that a single administration of efgarti-
gimod reduced baseline IgG levels by approximately 50% from baseline, 
whereas multiple (i.e. 4 weekly) administrations further lowered 
circulating IgG levels by an average of 75%, with 10 mg/kg identified as 
the ideal dose [63]. Efgartigimod did not alter the homeostasis of al-
bumin, other Ig's, and no serious adverse events related to efgartigimod 
infusion were observed [63]. 

A randomized, double-blind, placebo-controlled, multicenter Phase 
2 study evaluated the safety and efficacy of four weekly 10 mg/kg IV- 
administered doses of efgartigimod in 24 patients with AChR 
antibody-positive gMG [78]. Eligible participants were required to be on 
a stable dose of an existing gMG therapy prior to randomization and 
were not required to have previously received or failed pre-specified 
gMG treatments [78]. Patients receiving efgartigimod demonstrated a 
maximum mean total IgG reduction of 71% (Fig. 3A) and a significant 
reduction of anti-AChR antibody levels [78]. Clinical improvement, 
assessed through MG-ADL score, was noted as early as 7 days after the 
first infusion, with a maximal reduction of 4.4 points (55% reduction) 
occurring within 2 weeks of the last infusion (Fig. 3B) [78]. Treatment 
with efgartigimod also resulted in clinically meaningful and sustained 
improvements in clinical symptoms, which were consistent across 4 MG 
scales [78]. Specifically, 75% of efgartigimod-treated patients had a 
sustained, clinically meaningful improvement in MG-ADL score for a 
period of at least 6 consecutive weeks versus 25% of patients who 
received placebo (p = 0.039) [78]. Although serum IgG levels 
approached baseline by the end of the study (8 weeks after the last dose), 
patients continued to show sustained improvements 78 days after the 
first infusion in MG-ADL, quantitative myasthenia gravis (QMG), and 
myasthenia gravis composite (MGC) scores [78]. The most common 
TEAE was headache, which occurred in 33.3% of patients in the efgar-
tigimod group compared with 25.0% in the placebo group; headaches 
were all mild in severity, except for one patient in the placebo group 
who experienced a moderate headache [78]. Efgartigimod did not 
reduce IgM, IgA, or albumin concentrations [78]. 

A randomized, double-blind, placebo-controlled, multicenter Phase 
3 trial (ADAPT) evaluated efgartigimod in 167 patients with AChR 
antibody-positive or AChR antibody-seronegative gMG [102]. Patients 
were not required to have received or failed pre-specified gMG treat-
ments to be eligible for this trial, and participants continued existing 
gMG therapy during the study [102]. Participants were treated with 4 IV 
infusions of 10 mg/kg efgartigimod at weekly intervals, with subsequent 
treatment cycles administered according to clinical response, based on 
MG-ADL score [102]. Topline data from the ADAPT trial showed that 
more efgartigimod treated patients met the primary endpoint of the 
trial, defined as the percentage of participants achieving ≥2-point 
improvement on the MG-ADL score for ≥4 consecutive weeks, than 
placebo treated patients [103]. Efgartigimod was demonstrated to be 
safe overall, with a profile of TEAEs and discontinuations due to TEAEs 
similar to placebo, including a similar rate of headaches among patients 
in both treatment groups [103]. No reductions in albumin levels, nor 
increases in total or LDL cholesterol levels were observed during the trial 
[103]. 

In addition to the trials investigating efgartigimod for the treatment 
of gMG, a Phase 3 trial in patients with immune thrombocytopenia is 
actively recruiting [104]. Two Phase 2 clinical trials investigating the 
use of efgartigimod in patients with pemphigus and chronic inflamma-
tory demyelinating polyneuropathy are also ongoing [105,106]. 
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7. Conclusion 

FcRn plays a critical role for IgG and albumin homeostasis by 
rescuing these molecules from lysosomal degradation. Because IgG au-
toantibodies are associated with many autoimmune diseases, including 
gMG, reducing serum IgG levels is an attractive treatment strategy for 
these diseases. However, current treatment options for reducing path-
ogenic IgG concentration are accompanied by serious side effects and 
limitations, creating a significant unmet need in this therapeutic area 
[52]. 

Agents that selectively block FcRn-mediated recycling of IgG could 
reduce all IgG subtypes without decreasing concentrations of other Ig 
isotypes, allowing these therapies to potentially treat a broad patient 
population with reduced side effects. Several FcRn-blocking antibodies 
and one antibody Fc fragment are currently in various phases of clinical 
development. Further evaluation of these various approaches to block-
ing FcRn will be vital in determining the complete efficacy and safety 
profile of each therapy. 

Clinical data and studies to date of FcRn-blocking agents have shown 
that these therapies are generally well-tolerated and have not been 
associated with an increased risk of infection. As impact on infection 
rate is potentially the primary area of risk for FcRn inhibitors, additional 
and longer term analyses continue to be necessary and of critical 
importance. Notably, these therapies have been demonstrated to spe-
cifically reduce IgG concentrations without affecting levels of other Ig 
isotypes [28,63,64,78,103]. Due to the selective reduction of IgG and 
lack of impairment of antibody production [107], FcRn inhibition is not 
currently expected to compromise the induction of immune responses 
against vaccines. Although lower IgG levels due to IgG hypercatabolism 
during treatment are expected, IgG levels return to normal following 
treatment with FcRn blockers [79,103,108,109]. Studies in FcRn or β2- 
microglobulin knockout mice demonstrated that protective responses 
can still be elicited against ocular herpes simplex virus type 1 and 
vaccinia virus, respectively [68,110]. However, given the dual functions 
of FcRn in maintaining IgG levels and in antigen presentation pathways 
involving immune complexes [28,29], the extent of protection under 
conditions of FcRn blockade is likely to depend on the pathways of 
immune-mediated clearance of specific pathogens. Consequently, 
additional data regarding vaccinations in patients being treated with 
FcRn inhibitors will be of critical importance as these therapies become 
more prevalent in clinical settings. The decrease in albumin concen-
trations associated with some of the FcRn-targeting monoclonal anti-
bodies is of interest as these agents do not interact with the site of 

albumin binding on FcRn, perhaps suggesting an effect on FcRn- 
stoichiometry or levels that affect albumin recycling and requires 
further investigation. A signal for headache is more often observed with 
IgG4 monoclonal antibodies than with aglycosylated IgG1 monoclonal 
antibodies or Fc fragment. Since the latter lack affinity for Fcγ receptors 
due to the absence of the N-linked carbohydrate, and IgG4 has been 
shown to interact with Fcγ receptors (as was demonstrated to be the 
cause of the cytokine release syndrome for the superagonistic anti-CD28 
antibody TGN1412), the headaches observed with IgG4 monoclonal 
antibodies can be hypothesized to be associated with immune effector 
functions [111]. In addition to this favorable safety profile, clinical data 
from studies of FcRn-blocking agents have also demonstrated the effi-
cacy these therapies have for treating the clinical symptoms of gMG. 
Taken together, these data establish the promise of FcRn-blocking 
agents in the treatment of gMG and other IgG-mediated human diseases. 
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