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Abstract

Aims Children presenting with hypertrophic cardiomyopathy (HCM) in infancy are reported to have a poor prognosis, but
this heterogeneous group has not been systematically characterized. This study aimed to describe the aetiology, phenotype,
and outcomes of infantile HCM in a well-characterized multicentre European cohort.
Methods and results Of 301 children diagnosed with infantile HCM between 1987 and 2019 presenting to 17 European cen-
tres [male n = 187 (62.1%)], underlying aetiology was non-syndromic (n = 138, 45.6%), RASopathy (n = 101, 33.6%), or inborn
error of metabolism (IEM) (n = 49, 16.3%). The most common reasons for presentation were symptoms (n = 77, 29.3%), which
were more prevalent in those with syndromic disease (n = 62, 61.4%, P < 0.001), and an isolated murmur (n = 75, 28.5%). One
hundred and sixty-one (53.5%) had one or more co-morbidities. Genetic testing was performed in 163 (54.2%) patients, with a
disease-causing variant identified in 115 (70.6%). Over median follow-up of 4.1 years, 50 (16.6%) underwent one or more sur-
gical interventions; 15 (5.0%) had an arrhythmic event (6 in the first year of life); and 48 (15.9%) died, with an overall 5 year
survival of 85%. Predictors of all-cause mortality were an underlying diagnosis of IEM [hazard ratio (HR) 4.4, P = 0.070], cardiac
symptoms (HR 3.2, P = 0.005), and impaired left ventricular systolic function (HR 3.0, P = 0.028).
Conclusions This large, multicentre study of infantile HCM describes a complex cohort of patients with a diverse phenotypic
spectrum and clinical course. Although overall outcomes were poor, this was largely related to underlying aetiology emphasiz-
ing the importance of comprehensive aetiological investigations, including genetic testing, in infantile HCM.
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Introduction

Hypertrophic cardiomyopathy (HCM) presenting in childhood
has an estimated annual incidence of 0.24–0.47 per
100 000.1–3 Nearly one quarter of paediatric HCM cases pres-
ent in the first year of life,4 where the reported annual inci-
dence is 0.51–3.2 per 100 000.1–3 The underlying aetiology
in infant-onset disease is more heterogeneous than that seen
in later childhood, with a higher proportion of syndromic (e.g.
RASopathy syndrome) or metabolic disease reported.4–6 His-
torically, sarcomeric disease has been considered to be very
rare infancy due to variable and age-related incomplete pen-
etrance. However, more recent publications have challenged
this assumption and suggested that sarcomeric disease can
present in the very young.7,8 Patients with infant-onset
HCM are recognized to have a particularly poor long-term
prognosis,4,6,9–14 with mortality largely attributed to heart
failure.4,6,9 However, no study to date has systematically de-
scribed the aetiology, clinical features, and long-term out-
comes of infantile HCM. Understanding the spectrum and
progression of disease along with an improved ability to pre-
dict long-term outcomes would allow a more individualized
approach to patient care, with important implications for
clinical management. The aim of this study was to describe
the aetiology, disease phenotype, and outcomes of infantile
HCM in a well-characterized multicentre European cohort.

Methods

Patient cohort

A retrospective, multicentre European cohort of children di-
agnosed with HCM in infancy between 1987 and 2019 was
formed. Data were collected in 301 children from 17 Euro-
pean paediatric cardiac centres and included 159 patients in-
cluded in previous reports.4,15 The diagnosis of HCM was
made if maximal left ventricular wall thickness (MLVWT) in
any single segment was greater than two standard deviations
above the body surface area-corrected mean (Z score ≥ 2)
and not explained by abnormal loading conditions.16 The
diagnosis of an underlying RASopathy syndrome, inborn
error of metabolism (IEM), or neuromuscular disease (HCM
phenocopies) was made by the local principal investigator
following systematic assessment of phenotype, biochemical,
and genetic testing. In the absence of an underlying
diagnosis, the aetiology was classified as non-syndromic, in
line with previous publications.4 Patients with confirmed
disease-causing sarcomeric variants were classified as non-
syndromic, but a separate analysis of their baseline character-
istics and long-term outcomes was performed. Eligible pa-
tients were identified by the principal investigator at each
collaborating site.

Data collection

Anonymized, non-invasive clinical data were collected from
baseline evaluation, during follow-up, and at last clinical
review, including demographics; aetiology; co-morbidities
(cardiac or extra-cardiac); symptoms; medication; family
history; genetic testing; resting and ambulatory 12 lead elec-
trocardiograms (ECG); 2D echocardiography; and surgical
or catheter interventions. Heart failure symptoms were
assessed using the Ross criteria (for symptom assessment
below 5 years of age)17 or the New York Heart Association
(NYHA) functional classification (for those over 5 years of
age).17 Echocardiographic measurements were made accord-
ing to current guidelines.16,18 Left ventricular outflow tract
(LVOT) obstruction was defined as a peak instantaneous
gradient ≥ 30 mmHg.16 Right ventricular outflow tract
(RVOT) obstruction was defined as a peak instantaneous
gradient ≥ 36 mmHg.18 Impaired left ventricular (LV) systolic
function was defined as a fractional shortening (FS) ≤ 28%
or ejection fraction ≤ 55%.18 Data were collected and verified
by the principal investigator at each collaborating site.

Outcomes

The primary patient outcomes, taken from the last clinical
encounter, were all-cause mortality [congestive cardiac fail-
ure (CCF), sudden cardiac death (SCD), other cardiovascular
(CV) death, and non-CV death] or cardiac transplantation.
Secondary outcomes included major arrhythmic cardiac
events (MACE), defined as SCD or an equivalent event [appro-
priate implantable cardioverter defibrillator (ICD) therapy,
aborted cardiac arrest, or sustained ventricular tachycardia
(VT) with haemodynamic compromise]16; atrial arrhythmias;
and surgical/catheter-based interventions. Outcomes were
determined by the treating cardiologist at each site.
Patients were classified as lost to follow-up if last clinical
review was more than 3 years from the end of study period
(December 2019).

Genetics

Genetic testing was performed at the treating clinician’s dis-
cretion. Data were collected from patients in whom genetic
testing had been performed, including date of testing; size
of gene panel; and variants identified (gene and protein
change). Genetic testing use across different eras was investi-
gated: pre-2000; 2000–2004; 2005–2009; 2010–2014; and
2015 onwards. The pathogenicity of reported variants was
reclassified by the authors according to the American College
of Medical Genetics and Genomics (ACMG) classification.19
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Statistics

Body surface area was calculated from weight.20 MLVWT and
left atrial (LA) diameter measurements are expressed in
millimetres and as body surface area-corrected z scores.21,22

Continuous variables are described as mean (± standard devi-
ation) or median [interquartile range (IQR)], with three group
comparisons conducted using analysis of variance (ANOVA)
or Kruskal–Wallis tests, respectively. The distribution of cate-
gorical variables was compared using the χ2 test or Fisher’s
exact test. A significance level of 0.05 was used for all
comparisons.

Estimates of survival were obtained using the Kaplan–
Meier product limit method. The association of clinical
variables with the outcome of interest was assessed in a uni-
variate Cox proportional hazard model. A P value of <0.1 was
used to select variables for inclusion in a multivariable Cox
proportional hazards regression model. Backwards selection
techniques were used to identify variables that remained sig-
nificant at 0.05 level. All statistical analyses were performed
with STATA (Stata statistical software release 14; StataCorp
LP, College Station, TX).

Ethics

This study complies with the Declaration of Helsinki. Local
ethical approval was obtained at each participating site with
waver of informed consent for retrospective, anonymized
data. The data underlying this article cannot be shared publi-
cally as consent for dissemination of patient data was not
obtained.

Results

Demographics and presentation

Three hundred and one patients with infant-onset HCM were
identified, of whom 187 (62.1%) were male. One hundred
and thirty-eight (45.8%) had non-syndromic HCM, 101
(33.6%) had a RASopathy, and 49 (16.3%) had an IEM. Data
on aetiology and reason for presentation are shown in Table 1
and Supporting Information, Table S1. One hundred and
sixty-one patients (53.5%) had one or more co-morbidities,
which were more common in patients with a RASopathy
(n = 76, 75.3%) or IEM (n = 35, 71.4%) (Supporting Informa-
tion, Figure S1). The most common co-morbidities varied by
underlying diagnosis (Supporting Information, Table S2).
Seventy-seven (27.9%) had an additional cardiac lesion, most
commonly an atrial or ventricular septal defect (n = 35) or
valvar pulmonary stenosis (n = 22). Additional cardiac lesions

were more common in those with a RASopathy syndrome
(n = 42/101, 41.6%).

Initial clinical phenotype

Data on initial clinical assessment are shown in Table 1. Car-
diac medication was started in 146 (54.7%): beta-blockers
(n = 137, 51.3%); diuretics (n = 39, 14.6%); heart failure
therapy including angiotensin-converting enzyme inhibitors
(ACE-I) and diuretics (n = 9, 3.4%); anti-arrhythmics (n = 3,
1.1%); disopyramide (n = 2, 0.7%); and calcium channel
blockers (n = 1, 0.4%). Five patients required cardioactive
inotropic support at presentation, of which four had an IEM.

Genetics

Genetic testing strategy by era and aetiology is summarized
in Figure 1 and Supporting Information, Table S3. Genetic
testing was performed in 163 (54.2%) patients, with a
disease-causing variant identified in 115 (70.6%) (Supporting
Information, Table S4). Patients with a RASopathy were more
likely to undergo genetic testing (RASopathy n = 72, 71.3% vs.
IEM n = 24, 49.0% vs. non-syndromic n = 67, 48.6%, P value
0.001), but there was no difference in the overall prevalence
of genetic testing over time (Figure 1, Supporting Informa-
tion, Table S3, P value 0.244).

Of patients classified as non-syndromic, those who
underwent genetic testing were more likely to have a family
history of HCM (n = 33, 49.3% vs. n = 15, 24.6%, P value
0.004) and an asymmetric pattern of hypertrophy (n = 53,
82.8% vs. n = 27, 46.6%, P value < 0.001), but did not differ
by the prevalence of co-morbidities (n = 22, 32.8% vs.
n = 28, 39.4%, P value 0.420). Of variants previously classified
as pathogenic (P)/likely pathogenic (LP), after ACMG reclassi-
fication (n = 30), 20 variants remained pathogenic/likely path-
ogenic (MYBPC3 n = 7, MYH7 n = 9, KRAS n = 1, LZRT1 n = 1,
MYBPC3 + MYBPC3 = 1) and 10 were reclassified as a VUS
(MYBPC3 n = 1, MYH7 n = 2, RAF1 n = 1, TPM1 n = 1, ACTN
n = 2, MYOM1 n = 1, PRKAG2 n = 1, PKP2 n = 1). Three pa-
tients had more than one variant identified [MYBPC3
(P) + MYBPC3 (LP); MYH7 (LP) + PRKAG2 (LP); MYH7
(LP) + PKP2 (VUS)]. Baseline demographics for those with
and without a disease-causing sarcomeric variant identified
on genetic testing is described in Supporting Information,
Table S5.

For patients with a RASopathy following ACMG reclassifi-
cation (n = 43), 33 patients had a single pathogenic/likely
pathogenic variant (RAF1 n = 5, PTPN11 n = 17, RIT1 n = 6,
HRAS n = 4, BRAF n = 1) and 5 had more than one variant
[PTPNP11 (P) + MYH7 (VUS), LZRT1 (VUS) + MYH7 (VUS);
PTPN11 (P) + MYH7 (LP); LZRT1 (LP) + HRAS (VUS); DSC2
(VUS) + SCN5A (VUS)].
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Figure 1 Use of genetic testing in infantile hypertrophic cardiomyopathy. (A) By era (P value 0.244). (B) By underlying aetiology and result. (+) repre-
sents identification of a centre-reported variant of unknown significance or disease-causing variant. (�) represents a negative genetic test. IEM, inborn
error of metabolism.

Table 2 Interventions (catheter and surgical) during follow-up

Intervention N

ICD Primary 6
Secondary 3
Unknown indication 1

Pacemaker Sinoatrial disease 2
AV block 3

Surgery RVOT relief 18
RVOT Patch 11
Valvotomy 4
Suprapulmonary PS relief (patch) 1
RVOT conduit 1
Unknown 1

Myectomy 28
With MV repair 6

Aortic valvotomy 3
Other cardiac surgery ASD closure 3

PDA ligation 4
Coarctation repair 2
LVAD 2
Sympathectomy 1

Multiple surgical procedures Myectomy 2 (n = 3), 3 (n = 1)
Mitral valve replacement 2 (previous MV plasty + myectomy;

previous MV repair + RVOT relief)
RVOT relief followed by myectomy 2

Catheter interventions Balloon pulmonary valvuloplasty 9 (7 of whom required subsequent
surgical intervention)

PDA closure 1
EPS Ablation 5 (symptomatic SVT n = 4, WPW n = 1)

ASD, atrial septal defect; AV, atrioventricular; EPS, electrophysiology study; ICD, implantable cardioverter defibrillator; LVAD, left ventric-
ular assist device; MV, myectomy; PDA, patent ductus arteriosus; PS, pulmonary stenosis; RVOT, right ventricular outflow tract; SVT, sup-
raventricular tachycardia; WPW, Wolff–Parkinson–White syndrome.
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Clinical follow-up

Median length of follow-up was 4.1 years (IQR 1.3–8.1, range
0–30.9 years). Eighty-nine patients were followed up for
10 years or longer [non-syndromic HCM n = 43 (48.3%);
RASopathy n = 41 (46.1%); IEM n = 5 (5.6%)].

Interventions

Table 2 describes surgical and interventional procedures. An
LV septal myectomy was performed in 28 patients (9.3%)
(non-syndromic n = 10, RASopathy n = 17, IEM n = 1) at me-
dian age 4.8 years (IQR 1.0–6.5, range 0–13.2), with concom-
itant mitral valve repair in 6. Twenty-two patients (7.3%)
(RASopathy n = 20, IEM n = 2) underwent RVOT obstruction
relief (balloon pulmonary valvulopasty n = 9, surgical relief

n = 18) at median age 7.3 months (IQR 4.1–10.8, range 0.8–
112.3). Eight patients required more than one surgical proce-
dure. Ten patients (3.3%) had an ICD inserted for primary
(n = 6) or secondary (n = 3) prevention, at a median (range)
age of 13.4 years (6.5–12.1) and 8.4 years (2.5–11.3), respec-
tively, of which two had appropriate ICD therapies
(Supporting Information, Table S6).

Arrhythmias

Fifteen patients (4.9%) [non-syndromic (n = 7, 5.1%); IEM
(n = 5, 10.2%); RASopathy (n = 3, 3%)] had one or more MACE
(sustained VT with haemodynamic compromise in eight; SCD
in six; resuscitated cardiac arrest in four; and appropriate ICD
therapy in two) during follow-up (Supporting Information,
Table S6), with an overall annual incidence rate of 0.88

Figure 2 Long-term survival of infantile hypertrophic cardiomyopathy. (A) Kaplan–Meier curves of transplant free survival by underlying aetiology. (B)
Age at death by aetiology. (C) Cause of death by aetiology. CV, cardiovascular; SCD, sudden cardiac death.
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[95% confidence interval (CI) 0.527–1.451]. Six MACE (43%)
occurred during infancy; the remaining occurred at a mean
age of 9.2 years (range 1.4–14.9). Eleven (3.7%) had supra-
ventricular arrhythmias detected during follow-up.

Mortality

A total of 253 patients (84.1%) were alive at last clinical fol-
low-up, including 6 (2.0%) who had undergone cardiac trans-
plantation. Forty-eight patients (15.9%) died: non-CV 20
(6.6%) (infection n = 8, respiratory n = 3, metabolic acidosis
n = 3, neurological insult n = 2, gastrointestinal bleed n = 1,
not described n = 3); CCF 14 (4.7%); SCD 8 (2.7%); other CV
4 (1.3%); and unknown 2 (0.7%). Six patients (2%) were lost
to clinical follow-up. Figure 2 shows the cause and age at
time of death by aetiology. Thirty-two (66.7%) deaths oc-
curred in infancy (IEM n = 15/23, 75.0%; RASopathy n = 10/
16, 62.5%; non-syndromic n = 7/11, 63.6%) most commonly
secondary to non-CV causes (IEM n = 9, 60%; RASopathy
n = 4, 10%; non-syndromic n = 1, 14.3%) or CCF (IEM n = 4,
26.7%; RASopathy n = 3, 30.0%; non-syndromic n = 5,
71.4%). Of deaths occurring after early childhood
(>5 years), four (80%) were sudden and one (20%) was heart
failure related. Overall survival free from all-cause mortality
or transplant was 86.2% (81.7–89.7%) at 1 year and 83.1%
(95% CI 78.2–87.0) at 5 years. Survival varied by aetiology
(Table 1, Figure 2C). Predictors of all-cause mortality at base-
line on multivariable analysis were an underlying diagnosis of
an IEM [hazard ratio (HR) 4.40 (1.95–9.66), P = 0.070], cardiac
symptoms [HR 3.26 (95% CI 1.42–7.48), P = 0.005], and im-
paired LV systolic function [HR 2.97 (95% CI 1.12–7.87),
P = 0.028]. Of those with impaired systolic function at base-
line, 6 (50%) died; cause of death was SCD (n = 1), CCF
(n = 1), and non-CV death (sepsis n = 3, metabolic acidosis
n = 1). Predictors of CV mortality or transplantation on
multivariable analysis were cardiac symptoms at diagnosis
[HR 19.1 (95% CI 4.22–86.70), P < 0.001] and higher MLVWT
[HR 1.19 per mm increase (95% CI 1.07–1.34), P = 0.002]
(Table 3).

Discussion

This multicentre study of infantile HCM is, to our knowledge,
the first systematic description of infant-onset HCM and de-
scribes a complex and varied cohort of patients with a diverse
phenotypic spectrum, clinical course, and outcome. Overall
prognosis was poor, but was largely dependent on underlying
aetiology, which emphasizes the importance of making an ac-
curate diagnosis in these patients. Genetic testing identified a
disease-causing variant in up to 70% and should be consid-
ered for all patients with infant-onset HCM.

Aetiology of infantile hypertrophic
cardiomyopathy

The aetiology of childhood HCM is more varied than that
seen in adulthood, driven by a higher proportion of IEMs
and RASopathies in patients presenting in infancy.4–6,9 This
is highlighted by the findings in this study, in which over
50% of patients had metabolic or syndromic disease. The pro-
portion of patients with syndromic disease in particular was
higher than previously reported in 328 patients with infantile
HCM in the Pediatric Cardiomyopathy Registry (PCMR)6; this
may reflect differences in systematic screening of children
with syndromes known to be associated with HCM, or more
comprehensive aetiological investigations in the expert cen-
tres recruiting to this study.

A major strength of this study is the high frequency of ge-
netic testing and diagnostic yield, with an identifiable under-
lying aetiology identified in the majority of the patients,
emphasizing the importance of systematic and comprehen-
sive aetiological investigations, including genetics, in infantile
HCM. Almost half the patients were classified as having
non-syndromic disease, and a disease-causing sarcomeric var-
iant was identified in 60% of those in whom genetic testing
was performed most commonly in MYBPC3 (n = 15) or
MYH7 (n = 14), supporting the notion that sarcomeric disease
can manifest at any age.23,24 The lack of significant differ-
ences between those with a sarcomeric variant and those
non-syndromic patients in whom genetic testing was not per-
formed suggests that a substantial proportion of these are
also likely to have variants in one or more cardiac sarcomere
protein genes.25,26 Variants in the RAS-MAPK pathway genes
were identified in three non-syndromic patients, in keeping
with previous reports that non-sarcomeric variants may con-
tribute to the disease phenotype in children with apparently
non-syndromic disease.8 Additionally, one patient with meta-
bolic disease had a co-existing pathogenic sarcomeric variant,
which emphasizes the importance of considering dual
pathology. Although case reports and small case series have
described severe early-onset disease associated with com-
pound or heterozygote sarcomeric gene variants,27,28 only
one patient had a compound heterozygote variant in MYBPC3
and two further patients had an additional VUS in a
cardiomyopathy-associated gene. It is possible that com-
pound heterozygosity or double homozygosity results in foe-
tal demise in most cases, but these findings suggest that the
majority of disease seen in infancy is caused by single patho-
genic sarcomeric variants. The presence of variants in
non-HCM genes, although unlikely to explain the HCM phe-
notype alone, could act as modifiers for other, as yet uniden-
tified, HCM disease-causing variants. Previous studies have
suggested that patients with de novo sarcomeric variants
are at higher risk of adverse outcomes, including mortality.
Data on inheritance pattern were not collected in this study,
but future studies systematically investigating the prevalence
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of de novo variants and role of genotype in long-term out-
comes for infantile HCM would be useful.

A family history of HCM was present in a higher proportion
of non-syndromic patients than expected (38%), one quarter
of patients with an IEM, and nearly 1 in 10 patients with a
RASopathy syndrome, highlighting the need for performing
family screening regardless of the aetiology.23,24

Phenotypic characteristics

A major finding of this study is the high frequency of associ-
ated complex medical needs, with over half having an addi-
tional co-morbidity. The most frequent co-morbidities were
cardiac or neurological, but this differed by underlying
aetiology. As expected, co-morbidities were most common
in those with syndromic disease, but were also present in
one-third of those classified with non-syndromic disease. It
is possible that a proportion of the so-called ‘non-syndromic’
patients had undiagnosed syndromic disease as genetic test-
ing was not universally performed. However, there was no
difference in the prevalence of co-morbidities between
those undergoing genetic testing or those identified to
have a disease-causing sarcomere variant suggesting that
co-morbidities are also common in non-syndromic infantile
HCM patients. It is noteworthy that one-third of patients with
an IEM had no additional co-morbidities; this could reflect
under-reporting of non-cardiac features by cardiologists, a
predominant cardiac phenotype in some IEM, or age-related
penetrance of non-cardiac manifestations.

Consistent with previous reports, the HCM phenotype var-
ied according to the underlying aetiology.5,6,10,13 Concentric
LV hypertrophy and biventricular hypertrophy were more
common in those with syndromic disease; co-existing RVOT
obstruction was seen predominantly in RASopathy patients,
and LVOT obstruction was rare in those with IEM. One-third
of patients had heart failure symptoms at presentation, and
12 (8%) had impaired LV systolic function, the majority of
which (n = 7) had an IEM. Outlook was poor for this subgroup
of patients, with 50% dying during follow-up, although the
majority from non-cardiac causes. The finding of impaired
systolic function should therefore prompt clinicians to look
for an underlying syndromic or metabolic aetiology.

Long-term outcomes

Diagnosis of HCM in infancy has been shown repeatedly to be
associated with poor short-term outcomes,10 and in keeping
with this, in our cohort, 1 year mortality was 14%. However,
survival rates varied significantly according to the underlying
aetiology, with non-syndromic patients having a much better
prognosis compared with IEM. The cause of death also dif-
fered by aetiology, with non-CV causes accounting for the

majority of deaths for IEM, whilst cardiac causes were more
common for non-syndromic HCM or RASopathies. One
strength of this study is the long-term follow-up of patients
(30% had over 10 years’ follow-up), allowing long-term trends
in survival to be investigated. For all aetiology groups, most
deaths occurred during infancy, with survival curves
plateauing in later follow-up, suggesting that, for those in-
fants who survive beyond 2 years, the prognosis is substan-
tially better. Previous long-term population studies have
described differences in the mode of death during follow-
up,9 with early deaths caused by heart failure and later
deaths resulting from ventricular arrhythmias. Whilst similar
trends were seen in this study, the majority of early deaths
were non-cardiac and 3 out of 11 arrhythmic deaths occurred
during infancy. This highlights both the importance of risk
stratification for SCD at all ages and the burden of non-CV
disease in infantile HCM.

The overall MACE rate (0.82/100 patient years) seen in
this cohort was lower than that reported in children
presenting above 1 year (approximately 1.2–1.4/100 patient
years).4,6,9,29 Importantly, over half of MACE were in patients
with syndromic disease, including IEM (e.g. Pompe’s and mi-
tochondrial) and RASopathies, the majority of which occurred
in infancy, challenging the concept that malignant arrhyth-
mias are rare in syndromic and metabolic HCM. It is beyond
the scope of this study to investigate risk stratification for
SCD in infant-onset disease, and further work to identify risk
factors specific to the infantile HCM population is required.

Heart failure symptoms,10,11,13 low birth weight,10 degree
of hypertrophy,5,9–11 impaired systolic function,9,11 ‘mixed’
phenotypes,10 and underlying aetiology9,11 have been de-
scribed as important clinical predictors of worse outcomes.
However, most studies to date have been limited by small pa-
tient numbers and a lack of detailed aetiological information,
with infantile disease treated as a homogenous group for the
purpose of analysis. In our cohort, all-cause mortality and CV
mortality or transplantation were associated not only with
the presence of symptoms and echocardiographic phenotypic
parameters but also with a diagnosis of IEM. This suggests
that underlying aetiology as well as phenotype is important
for prognosis and emphasizes the importance of a systematic
approach to making an accurate diagnosis in this group of
patients.

Limitations

This study is limited by inherent problems of retrospective
studies, in particular missing or incomplete data, particularly
in relation to genetic variant data. Variations in clinical as-
sessment and patient management are inevitable as patients
were recruited from multiple centres in different geographi-
cal locations. As genetic testing was performed at the partic-
ipating clinicians’ discretion and across different eras with
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different sized panels and gene sequencing techniques, it is
beyond the scope of this study to discuss the clinical yield
of genetic testing in infantile HCM. Although a high propor-
tion of patients with a RASopathy syndrome or IEM had a
disease-causing variant identified on genetic testing, it is
not known whether genetic testing results altered the final
diagnosis or confirmed previous clinical suspicions. Further
work to explore the age-related and gene-related penetrance
of sarcomeric disease in infant HCM is needed. Although the
mortality rate is unlikely to be affected by these missing data
due to nationally recorded death data in participating coun-
tries, other outcomes, such as arrhythmic events or surgical
interventions, could have been underestimated.

Conclusions

This large multicentre study of infantile HCM describes a
complex and varied cohort of patients with a diverse pheno-
typic spectrum, genetic substrate, clinical course, and out-
come. Prognosis depends on clinical presentation, disease
phenotype, and the underlying aetiology, which emphasizes
the importance of making an accurate diagnosis in these pa-
tients. Genetic testing identified a disease-causing variant in
up to 70% and should be considered for all patients with
infant-onset HCM. Arrhythmic events were rare but occurred
during infancy and in patients with syndromic disease,
highlighting the importance of a systematic approach to diag-
nosis, screening, and risk stratification even in very young pa-
tients with HCM.
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