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Abstract

As the volume of data associated with scientific research has exploded

over recent years, the use of digital infrastructures to support this re-

search and the data underpinning it has increased significantly. Physical

chemists have been making use of eScience infrastructures since their

conception, but in the last five years their usage has been even greater.

Whilst these infrastructures have not greatly affected the chemistry

itself, they have in some cases had a significant impact on how the re-

search is undertaken. The combination of the human effort of collabo-

ration to create open source software tools and semantic resources, the

increased availability of hardware for the laboratories, and the range

of data management tools available has made the life of a physical

chemist significantly easier. This review considers the different aspects

of eScience infrastructures and explores how they have improved the

way in which we can conduct physical chemistry research.
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1. INTRODUCTION

We are living in an increasingly digital era, where technology underpins almost every aspect

of our lives. It is unsurprising therefore that many jobs and research areas, including

the physical sciences, now heavily utilize, and in many cases, completely rely on digital

infrastructures. A key set of infrastructures that have made an immeasurable difference to

the ease and capability to conduct research in the physical sciences, are those of eScience

(1).

This review looks to explore how the technologies, methodologies, and collaborations

enabled by eScience have improved the way physical chemistry is conducted in the third

decade of the 21st Century. A brief history of eScience will be given, followed by a descrip-

tion of the current state of physical chemistry. We then describe the three main themes

that have emerged in the context of eScience infrastructures for physical chemistry: col-

laboration, data & data management; and the use of novel technical methodologies. The

article concludes with the authors’ perspective on how eScience infrastructures have shaped

and enhanced how physical chemistry is conducted in the 21st Century.

2. THE ESCIENCE STORY: SETTING THE SCENE

In 2020, eScience reached its 21st birthday, albeit after an indeterminate gestation period.

The term was introduced in the UK by John Taylor in 1999, and was used to title the large

UK programme launched in 2000, as related in the comprehensive Wikipedia article (2).

There are numerous descriptions of eScience or e-Science, of which the IGI-Global definition

(3) captures the components that contribute to effective eScience Infrastructures.

“. . . scientific research based on the collaboration within a number of scientific

areas, enabled by a next generation infrastructure, wherein people, computing

resources, data and instruments are brought together to bring a new quality to

the everyday work of researchers.

Related programmes, mainly in the US, were varyingly called cyber-science, or cyber-

infrastructure initiatives. The two features of eScience Infrastructures that have substan-

tially facilitated 21st century advances in chemistry and other sciences are data management

and networks. John Wilbanks sums up the importance of data management and networks

of people aptly in his article in The Fourth Paradigm (4):
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But there is precious little in terms of alternatives to the network approach. The

data deluge is real, and it’s not slowing down. We can measure more, faster,

than ever before. We can do so in massively parallel fashion. And our brain

capacity is pretty well frozen at one brain per person. We have to work together

if we’re going to keep up, and networks are the best collaborative tool we’ve ever

built as a culture. And that means we need to make our data approach just as

open as the protocols that connect computers and documents. It’s the only way

we can get the level of scale that we need.

The importance of collaboration, while long recognised, was to become a prominent

feature of eScience history. Early initiatives, such as Publication at Source (5) sought to

enable expeditious take-up of research findings by other workers, thus making it easier to

collaborate, record, and to carry out science in general.

As laboratories have become more automated, with data generated electronically via

laboratory instruments, the volume of data produced by scientific research has been in-

creasing exponentially over the years. Thus, there has been a need for both the appropriate

computing resources and the improved data management processes to handle this. One

of the early infrastructures employed by eScience to deal with substantial volumes of data

and large-scale collaboration was grid computing (6), which was employed by many early

eScience projects (7, 8, 9). However, as we have moved into the 21st Century, clouds and

cloud computing have become dominant. These two services offer similar affordances but

use different mechanisms. Khillar has written an article describing the difference between

the two concepts (10), in which he offers the following distinction: “In grid computing,

resources are distributed over grids, whereas in cloud computing, resources are managed

centrally.” However, ultimately the main purpose of these resources was to enable users to

store and process large volumes of data.

It became apparent that merely being able to store these large volumes of data was

not enough. In order to maximise its use, there was a clear need to develop mechanisms

for exchanging and managing the vast amounts of data and information. Early eScience

projects such as CombeChem (11, 12) looked at using Semantic Web technologies to describe

and link together diverse datasets in chemistry. If we fast forward to today, researchers are

still making use of these technologies for data representation, and are beginning to use

“sophisticated machine learning and other AI technologies both to automate parts of the

data pipeline and also to find new scientific discoveries in the deluge of experimental data.”

(13). However, there is still plenty of work to be done to facilitate capturing the provenance

and enabling discovery of physical chemical data.

There are many more aspects to eScience. However, surveying its evolution is outside

the main remit of this article, whose main purpose is to describe how eScience has improved

the way we are able to do physical chemistry, and to identify the main areas in which these

improvements have been made. Note that we will not attempt to cover the ways in which

increased computational power and the consequent increase in the range of applications of

computational chemistry have impacted on physical chemistry. We will also not cover in

detail the advances in Artificial Intelligence (AI) and more specifically Machine Learning

(ML) in physical chemistry, despite the major changes these may bring. Nevertheless, we

note that AI and ML succeed only when presented with large amounts of quality information

and as will become clear the eScience technologies have led to major improvements in the

quantity, quality and accessibility of such chemical data.

www.annualreviews.org • eScience Infrastructures 3



3. PHYSICAL CHEMISTRY & ESCIENCE IN THE THIRD DECADE

Physical Chemistry covers a very broad range of topics and approaches, spanning theoretical

and computational work by researchers who never enter a laboratory, through laboratory

bench scale experiments, to large laboratories and experiments conducted in or via large-

scale facilities. A characteristic of much of physical chemistry is data analysis – the lab-based

experimentalists will typically spend as much or more time in the analysis of their data as

collecting it (unless they are involved in building new instrumentation). Even those running

large-scale simulations will be involved in significant data analysis of the simulation results.

Historically data has been collected manually and on a relatively small scale, but with

increasingly large amounts of data being captured in digital form, there are challenges to

the management and analysis of such data. Large-scale experiments may produce so-called

‘Big Data’, where the sheer volume and complexity of the data causes challenges in storing,

transporting and extracting the data to analyse. Even small-scale data presents challenges

when attempting to compare, replicate, and reuse data from the wider scientific community.

It is well known that researchers are often reluctant to share their data with others, making

the vast majority of data inaccessible (14).

Over time, data can become lost or incompatible with the latest software. Even when

data is made available it is often incomplete, in a format that is unsuitable for reuse or

comparison with other data, and missing important contextual information, making it im-

possible to understand or use. Data is often separated from the processes and other tools

that were used to generate those results. Data is often collected without a specific plan as

to how it will be stored and managed at the end of the project, and little consideration is

given to how it could be of use to others outside of the research group. However, building

upon the work of others and implementing the advanced computing techniques to solve

scientific grand challenges requires both access to and utilisation of such data.

Therefore, in considering the impact of eScience infrastructures on Physical Chemistry

we need to consider several interrelated aspects:

• Collaboration & The Social Machine of Physical Chemistry: The Web, and

therefore eScience infrastructures, which are frequently built on web-based technolo-

gies, is more than just a technology, it is a socio-technical phenomenon (15). eScience

is a Social Machine that comprises data, computers, and people. It is the people who

have been driving both the development of the infrastructures and the adoption of

new infrastructures that help to enhance how we do physical chemistry.

• Smart Laboratories & Remote Experimentation: There has been a rise of the

use of Internet of Things (IoT) sensors, pervasive computing and smart instruments

in the laboratory that make conducting experiments, collecting data and monitoring

different aspects of the laboratory easier. Remote experimentation at facilities (e.g.

synchrotrons, high powered lasers, neutron facilities, telescopes), has a moderately

long history. Only a few members of a research group are required to be at a facility

with others staying ‘at home’ and accessing the facility remotely. Im some cases the

whole experiment may be conducted completely remotely, as is the case for some

astronomy research. Additionally, COVID-19 has brought considerations of remote

lab work much closer to most chemists. The need to reduce the number of people in

a laboratory and still provide adequate supervision, instruction and advice has led

many more bench scientists to investigate remote connections, video links, and other

aspects of computer aided research that are part of the eScience culture.
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• Data Collection, Storage & Curation: There are key aspects of data management

that have improved how we do physical chemistry, ranging from data collection and

generation techniques, to how we store the data and in what form, and how we curate

data to enhance its availability to other scientists. In a paper about curation in the

chemical sciences, we have argued that curation is most effective when carried out at

source, when the data is collected (16).

• Data Access & Sharing: Data management also entails consideration of how data

will be used and shared with other researchers, to which end platforms have been

created to facilitate the conduct of physical chemistry research. Some of these are

domain specific, and others are more general tools to store data and experimental

information (Electronic Lab Notebooks), to analyse data (Jupyter Notebooks (17))

and to publish results (LaTeX & Overleaf (18)).

• Knowledge Representation & Elicitation: The use of Semantic Web Technolo-

gies in Physical Chemistry research has vastly increased over the last few years, with

researchers developing new ways to represent and model the data.

• AI/ML: Artificial Intelligence and Machine Learning is increasingly being used in a

number of different areas in Physical Chemistry, using techniques such as supervised

learning to learn from data to make predictions, and unsupervised learning to analyse

data at a higher level and find new correlations.

Internet of Things:
A modular network

of physical objects
capable of

connecting and

exchanging data
over the Internet.

SPARQL (SPARQL
Protocol and RDF
Query Language): A

semantic query

language for
Resource

Description

Framework (RDF)
linked data.

SQL (Structured
Query Language): A
query language for

relational databases.

SEMANTIC WEB TECHNOLOGIES

The Semantic Web was conceptualised by Sir Tim Berners-Lee in the early 2000’s with the main goal

of providing a set of standards and technologies to provide machine readable and interoperable data with

context and meaning (19). The Semantic Web’s core technologies are Linked Data and Ontologies. Resource

Description Framework (RDF) (20) is the linked data model which enables data to be broken down and

represented as triples in a graph style model of the form subject → predicate → object. The predicate

denotes the relationship between the subject and the object (as shown in Figure 1), and can be used to

represent almost any dataset. However, RDF alone does not facilitate sufficient representation of the domain

knowledge required to provide context. Ontologies, written in the Web Ontology Language (OWL) (21)

enable concepts, relationships and hierarchies to be defined for the set of objects within a domain. Figure

2 shows a basic example of this with a model of a Paper, that has an author of Jane Smith. The Semantic

Web also has a query language (SPARQL) (22) which works similarly to SQL but facilitates querying and

traversing the graph structure of the data, enabling more complex queries to be performed.

Figure 1

Linked Data Model: Abstract Model

Figure 2

Linked Data Model: With Examples
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Figure 3 demonstrates where the different eScience infrastructures noted above sit within

the full research data life cycle. These different aspects will be discussed in further detail

below, illustrating and providing examples on how they have impacted the way in which

we do Physical Chemistry.

Figure 3

Demonstrating the usage of eScience infrastructures across the data lifecycle

4. COLLABORATION & THE SOCIAL MACHINE OF PHYSICAL
CHEMISTRY

Research in modern physical chemistry requires a wide range of cross-disciplinary skills. A

successful project often requires bringing together the expertise of chemists, data scientists,

computer scientists, and equipment manufacturers together. An example of this would be

bringing these interdisciplinary people together through workshops. Even a brief glance

at a modern chemical laboratory (and especially a physical chemistry one) will see the

importance of people, data and computers working together. These are elements of a social

machine as defined by Tim Berners-Lee (23). The blend of skills required by physical

chemistry researchers means they need not only chemical domain knowledge but at least a

strong acquaintance with data science skills.

If, at the beginning of the 21st Century, the fundamental elements of eScience and cy-

berinfrastructure were computationally intensive science, large datasets (later “Big Data”),

and networks, the indispensability of collaboration was at least tacitly recognised alongside

them. By this time, the Web was already well-established in the general scientific commu-

nity as a forum for communication and the sharing of data; schemes such as Publication

at Source (5) were demonstrating how methods, results, and associated research findings

could be exchanged more readily. It is apparent from the evidence submitted to the panel

reviewing the UK eScience programme in 2009 that collaborative research was a funda-

mental aspect, underpinned by powerful facilities and networked resources (1), although

physical chemistry was not mentioned explicitly in that evidence.

In a talk given in 2007, Gray asserted that science, as eScience, had moved into a new

pattern, relying on data exploration (24). He described this as the Fourth Paradigm, the

previous three being empirical and descriptive science, theoretical science, and - in the mid-

20th century - computational approaches. Gray’s ideas led to the publication in 2009 of

The Fourth Paradigm (4), a book that, in its coverage of the many facets of data-intensive

science, identifies the elements that each, in their own way, facilitate the collaborative

6 Kanza et al.



environments that are a key strand of eScience.

• Hunt et al [p.25] submit that “simple collaborative tools in the cloud can greatly

reduce the logistics required to publish a paper” (25);

• Goble and De Roure [p.137] argue the value of computational workflows for scientific

research and collaboration (26);

• Lynch [p.178] portrays the scientific record as “a vehicle for building up communities

and for a form of large-scale collaboration across space and time” (27);

• Fitzgerald et al [p.204] discuss data sharing, saying that its principles “are widely

acknowledged to be not only beneficial but crucial to information flows and the avail-

ability of data,” although go on to examine the potential barriers (28).

Jirotka et al examined the prospects for collaborative working to enhance inter- and

multi-disciplinary research (29), concluding that there was a need (in 2013) “to undertake

investigations in the complexities of e-Science collaboration and the design of collaborative

systems for e-Science.” Also in 2013, Bird and Frey reviewed the state of information and

data sharing in the chemical sciences (30). While we are now more likely to see references

to “digital chemistry”, it is notable that data sharing and data standards are still seen as

the basis for successful collaboration (31).

Many of these practices are exemplified by the evolution of digital chemistry at

Southampton, as described in (32). That paper considered three main themes: chemical in-

formation representation; changes in laboratory practice; and digital repositories. The first

theme essentially explored the integration of chemical information via the Semantic Web,

as described in Section 2 of this review. The work on Electronic Laboratory Notebooks

(ELNs) encompassed the capture, representation, and persistent recording of experiment

plans and results. Combining these aims with a focus on usability led to the LabTrove

ELN (33), which has been used by several research teams, one being Todd’s open notebook

consortium (34). A range of digital repository activities evolved from CombeChem (11),

of which the eCrystals Federation project (35) and the CrystalGrid Network (36) are the

most pertinent to physical chemistry. Southampton is the primary location for the National

Crystallography Service (NCS) (37).

Formal networks such as Artificial Intelligence and Augmented Intelligence for Auto-

mated Investigations for Scientific Discovery (AI3SD) have enhanced interdisciplinary col-

laboration by forming communities of researchers who bring their specialised knowledge to

bear on the challenges of scientific discovery (38).

Behaviours have generally evolved, leading to greater openness, not only in access to

data, but also in the conduct of science itself. Indeed, it is possible to trace a path from

eScience to Open Science (39, 32). However, replication and reproducibility remain as issues

with the potential to inhibit collaborative endeavours (40, 41).

5. SMART LABORATORIES & REMOTE EXPERIMENTATION

Computer control of equipment has long been a feature of physical chemistry laboratories.

Fully integrated laboratory monitoring, equipment control and data services have been

developed for larger scale facilities, and as mentioned above these may be available remotely.

Developing and maintaining similar environments for single labs has been a much greater

challenge and, in our experience, the seemingly endless changes in sensor connections, new

software, and new data formats, requires the lab systems to be recreated far too often. The
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rise of the Internet of Things has led to far greater modularity in the systems and the hope

that we can avoid the need to redevelop the underlying systems.

With growing modularity in software and hardware we are moving to much more inter-

operable and sustainable laboratory systems that enable other services to be supported on

top of the well-designed lab. For example, Knight et al discuss smart laboratories, partic-

ularly the use of IoT devices, specifically for controlling experiments using x-ray radiation

for imaging and spectroscopy (42) with a laboratory information architecture based on the

message passing MQTT protocol (43, 44, 45).

There are challenges of scale even in a single lab. The proliferation of digital instruments

and sensors has led to the majority of data being born digital, and many experiments

can produce such huge quantities of data that it cannot be managed through traditional

analytical techniques. The sheer power of computing that exists today means that certain

manipulations that were unfeasible previously are now routine. GPU hardware opens up

new possibilities for transforming observations into useful data. The challenge to curate the

diversity of data produced on this scale by many research groups and centres and to make

it findable and available are pushing the limits of current knowledge engineering.

Some examples of interesting projects where new technologies have been used to improve

the laboratory environment:

• Example of remote monitoring and smart labs where the modularity of IoT system

has greatly reduced the cost and expanded the potential uses of connected sensors

(46) with a comparison of bespoke systems with what consumer level IoT can deliver.

• In a more biology focussed laboratory, the BioTISCH project replaced traditional

workbench with glass covered tabletop system that presents information on the

benches surface and augments objects in the form of reagent sensors. Data can be

accessed from a database, calculations performed, prompts for actions, and steps in

the experiment can be recorded (47). Even wearable digitisation system are becom-

ing useable, and from the days of Google Glass, a head-mounted display for taking

pictures and recording comments, with a smart watch that records motion for activ-

ity detection, and an RFID reader for use with tagged containers proved very useful

(48). A related system is the Interactive tabletop system for biology lab eLabBench

(49) and the Labscape in cell biology (50) in which the system directs a workflow in

the lab based on a pre-defined plan and capture of the experiment keeping synchro-

nised with the experiments through a series of connected sensors in the lab including

infrared tags, barcodes and readers for tracking individual samples, tablets at each

bench, pipettes monitored by cameras.

• The Ami chemistry project (chemistry) (51) uses a variety of cameras coupled with

various other sensors to facilitate the monitoring and collection of experimental data

in order to determine the cause of unexpected results in chemistry experiments. The

monitoring of reaction conditions makes use of multi-angle video, movement sensors,

and RFID tags, so all equipment and materials used can be logged and a microphone

let researchers record observations.

Overall, these infrastructures make conducting scientific research in the physical chem-

istry domain easier. The trend to construct full Digital Twins of experiments (and not

just a computer interface to each piece of equipment) will provide a vast improvement to a

scientist’s capacity to control and optimize experiments (52).
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DIGITAL TWINS

A digital twin is a virtual computational model of a process, product, or service. The digital model can be

used to analyse and predict the behaviour of the physical system. They can be continually updated, used

in real time comparing the simulation with the physical process, obtaining data from, and sending data to,

the physical system. They can help to prevent or diagnose issues and inform potential interventions. Digital

Twins make use of data driven machine learning models as well as including science-based knowledge models

of the physical system (53, 54, 55).

6. DATA COLLECTION, STORAGE & CURATION

Effective management of data is vital to the future of chemistry and for addressing the

grand challenges to society. We not only need to effectively manage our own data so it is

available for our own use in the future but also to make that data findable and usable by the

wider scientific community; our data may be invaluable not only to physical chemistry but

other disciplines as well. As mentioned previously there are a variety of data management

challenges to address in order to preserve data for use in the future and make it accessible

and usable by others. These challenges are common across all fields of chemistry, and indeed

other sciences too. The development of effective eScience infrastructures is vital to assist

with these challenges and also to improve the ways we do science. Much can be learnt about

potential solutions and procedural requirements from other disciplines, especially those with

a long history of collaboration and shared infrastructures such as astronomy and genetics.

Tools for data management can be considered at two different levels; those designed

to assist in data management at a local or project level; and those that are designed to

facilitate the sharing, analysis, and reuse of data at a community level. At the project

level, initial concerns are data collection and local storage for the purposes of data analysis

and future publication. The gaps between project and community data are not entirely

separate, as inevitably access is required within a project to additional data for planning of

experiments or comparison of results. Although this data may be institutional data from

previous projects or experiments, in many cases external data is also required to build upon

the results of research conducted and published within the community.

In this section we will consider the tools that address data management at the project

level; and also the capabilities needed to take data into the next level and make it available

and usable for the wider community.

Within the laboratory there is a need to manage the planning and recording of ex-

periments, procedures and workflows, and manage the flow of information throughout the

laboratory. Laboratory Information Management Systems (LIMS) have been used success-

fully in analytical laboratories for nearly thirty years, enabling the automation of laboratory

tasks and facilitating the capture, storage and reporting of data and laboratory procedures

(56).

Although some researchers have had reservations about using them, Electronic Labora-

tory Notebooks (ELNs) provide significant advances for the capture and management of the

experiment records and associated data (57, 33). The capture and storage of experiments

in digital note-taking tools make it much easier to locate previous experiments based upon

factors such as date of experiment, materials used, sample numbers and so on. Not only do

www.annualreviews.org • eScience Infrastructures 9



they enable the long-term storage, enhanced access and searchability of such records, but

they also facilitate curation through both user-defined and automatic generation of meta-

data and provenance information to describe both the notes and the associated data. Many

ELNs provide valuable discipline specific tools and access to relevant databases that make

the day-to-day tasks of designing and managing experiments, and the associated analyses

and results much easier and more efficient for researchers. Where they are used consis-

tently within projects ELNs have become valuable tools not just for individuals but also

for groups by becoming central repositories for storing, sharing, and discussing all aspects

of the research (33). Additionally, the use of standard formats and templates can improve

quality and consistency in both executing and recording research (58).

For ‘in silico’ experimentation there are also interactive notebooks, such as Jupyter

notebooks (17), that enable a researcher to capture both context and executable code in a

single interactive document. A recent review of this type of software environment and how

it extends into collaborative systems can be found in (59). These tools have also proved

very effective for teaching programming.

These tools are effective at managing and utilising data at the level of an individual

project and often provide data sharing capabilities that enable them to be shared with

a wider audience, for example, for the purpose of collaboration or multi-site working. For

open notebook science, some ELNs (and other note-taking tools) even allow sharing of ‘live’

notebooks with the wider community as a whole, such as the Open Source Malaria Note-

books (60) and the Open Lab Notebook community (61), but with the addition of Semantic

Web technologies the records can be also be enriched with context and be made machine

readable to facilitate their discovery and broader use (57, 62). Sharing of data before pub-

lication is still rare, but it provides the opportunity for early feedback and validation of

methods and results.

Although there is still a reluctance amongst researchers to share data, even after publi-

cation, there are a number of drives under way to encourage and facilitate the practice for

the benefit of science. The Fair Guiding Principles (FAIR) were developed in response to

the recognition of an urgent need for infrastructure to support the reuse of scholarly data

(63). FAIR refers to the characteristics of Findability, Accessibility, Interoperability, and

Reusability that are required for computer systems to be able to automatically discover and

reuse data. Not only does data need to be made available but it needs to be meaningful

to machines. This requires a process of curation to ensure that the data is annotated with

metadata, structured appropriately, and provided with a globally unique and persistent

identifier, so that computer agents can identify the structure, intent and availability for

reuse (16).

Curation also captures provenance information which is essential for understanding the

source and quality of the data, and the process chain which may have transformed it.

Although in many cases curation is an activity that takes place after the data has been

published and as part of preservation in a repository, we have long advocated for active

curation throughout the experiment life-cycle, in particular so that meaningful context is

created at source by the researchers who best know the data (64). The process of curation

can be manual and burdensome, but is significantly assisted by digitised instruments and

tools such as ELNs, which support the process through automatic capture of metadata and

provenance, and by avoiding the use of proprietary formats.

There is also a drive to ensure that the shared data is reproducible. This requires

inclusion of important context information along with the data, such as methods, algorithms
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code, and workflows, as well as the use of standard formats to ensure the data is usable

and compatible with other datasets and software packages. Some authors advocate for the

packaging up of these resources for deposition in repositories using standard structures and

metadata to ensure that they are machine-readable and interoperable (65). The use of

Data Management Plans (DMP), increasingly required by funders, has encouraged projects

to consider the long-term fate of data, especially in terms of preservation and sharing

(66). Many funders and other organisations such as regional data centres, disciplinary

societies, and universities provide guidance or DMP templates, for example the Wellcome

Trust (67) provide guidance for an outputs management plan and there is a standard

template for ESRC-funded projects (68). The Digital Curation Centre (DCC) provides

numerous example plans from different disciplines (69) as well as an online DMP creation

tool (70) to help researchers create DMPs for their own projects. DMPs provide prompts

to encourage research groups to think and record information about the nature of the data

being collected, including issues around intellectual property, privacy and sensitive data;

how the data will be collected including volume, structure and format of data and how

these relate to commonly used formats within the field; metadata capture; data quality;

how data will be organised, managed and stored; and also how it will be shared, licensed

and cited; and ultimately how it will be preserved and disposed of. In addition, DMPs

may also ask the researchers to consider what existing data can be reused for the project

to avoid unnecessary duplication of effort and expenditure. Important technologies have

been developed to facilitate the sharing of data and reproducibility of results, including

repositories, providers of globally unique and persistent identifiers, tools for curation and

metadata for rich annotation, and handling access controls and licenses.

7. DATA ACCESS & SHARING

Once data has been prepared for preservation and sharing, the primary tools for access

and reuse are databases and repositories. These databases and repositories have become

essential resources for chemists, especially for the purposes of designing experiments and

comparing results. Traditionally the large-scale storage mechanisms for chemistry data

have been relational databases, such as MySQL, Oracle and DB2 which use Structured

Query Language (SQL) to enable users to programmatically define the structure of data,

to easily add and update data, and to perform advanced search queries and reporting of

the data. Although powerful, relational databases have difficulties with managing very

large datasets and provide limited ability to change the structure of the data over time.

NoSQL or non-relational databases in contrast are designed to work with large sets of

distributed data and provide better support for scaling. They enable the storage of greater

amounts of data and the design of the data structure permits flexibility over time to manage

future data expansion and changes in the way that data is captured or processed over time.

Traditional databases are focused on query-based retrieval but are relatively unsuitable for

data exploration, much more relevant to scientific studies today (71). There are a variety of

NoSQL databases available that manage different kinds of data types and structures that

are suitable for different purposes, some of which are suitable for managing certain types

of scientific data. Davoudian et al. provide an overview of different NoSQL database types

and their uses (72), and Williams and Tkachenko detail the use of NoSQL databases and

related technologies for the implementation of the Royal Society of Chemistry’s ChemSpider

repository and their data sharing hub (73).
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The kinds of data being shared in such repositories include structure-function rela-

tionships, optical properties, excited state information, quantum chemical calculations,

quantum mechanical properties, performance data, structures and properties, interaction

energies, benchmark classification, crystal structure predictions, and spectra. Specialist

repositories include the Biological Magnetic Resonance Data Bank (74), the Cambridge

Structural Database (CSD) (75), caNanoLab (76), ChemSpider (77), CompTox Chemicals

Dashboard (78), Crystallography Open Database (79), EMDataBank (80), Peptide Atlas

(81), Protein Data Bank (PDB) (82), and PubChem (83).

Computational Chemistry repositories include iBIOMES for managing of large

biomolecular simulation and computational chemistry data sets (84); the NIST Computa-

tional Chemistry Comparison and the Benchmark DataBase (CCCBDB) for experimental

and calculated thermochemical properties (85); Benchmark Energy and Geometry Database

(BEGDB) for calculations of molecular structures, energies and properties (86); and Quixote

for quantum chemistry results (87). Many repositories now go beyond simple search and

storage, providing tools for data creation and curation, data extraction, analysis and pub-

lication, for example ioChem-BD (88).

Materials is an area of chemistry where a lot of work has gone into the development

and consideration of the requirements of FAIR databases and repositories to provide re-

liable sources of data for the benefit of not only individual researchers within scientific

communities, but also for computational agents for applications such as machine learn-

ing. Examples include the Materials Ultimate Search Engine (MUSE) (89), the Materials

Project (90), Open Quantum Materials Database (OQMD) (91), the Novel Materials Dis-

covery (NOMAD) repository (92), Automatic Flow for materials discovery (AFLOW) (93),

the ioChem-BD platform (94), and the Computational Materials Repository (CMR) (95),

and Catalysis-Hub.org (96).

There are several chemistry examples of repositories used in combination with work-

flows and other scripts to combine and share data in a meaningful way. For example, the

BioCatNet (97) database supports the discovery of enzymes by linking sequence, structure,

and biochemical data from different repositories with experimental data, creating a much

more complete set of information for experimental use than was previously available. The

Molecular Sciences Software Institute’s (MolSSI) Quantum Chemistry Archive project (98)

makes use of a central server and Python infrastructure to create a community service for

the automatic computation, storage, and management of quantum chemistry computations

for machine learning.

The Materials Experiment and Analysis Database (MEAD) (99) automatically collects

raw data from instruments during materials synthesis and characterization experiments.

Nightly the data is analysed and distilled into property and performance metrics, which are

added to a searchable open-source repository.

Spectroscopy is a developing area in terms of infrastructure for managing new image

data and utilising existing data to support the rapid discovery of materials. For example, the

SMART workflow system (100) describes the automation of computational spectroscopy to

simplify data analysis and perform comparisons between theory and experiments, creating

a community hub for sharing and utilising data. Highlighting the value of community

adoption of standards, the Universal Spectroscopy and Imaging Data (USID) data model

and Pycroscopy (101) project has defined a model that can represent any kind of imaging

data from any instrument in a standard way, and facilitating access and curation for use

with a multitude of platforms.
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8. THE INFLUENCE OF OPEN SCIENCE

The Web has given unprecedented access to almost limitless amounts of information, gen-

erating ever higher expectations for easy access, as much for scientists as for anyone. Be-

haviours have shifted to recognise the need for openness in providing information as well as

in accessing it. For example, Coudert makes the case that computational chemistry depends

on open data, open input and output, and open software to achieve reproducible research

(102).

Open Access to publications tends now to be taken for granted, perhaps disregarding the

need for someone to pay the costs. Open Source software is now commonplace, recognising

that community development is the best antidote to the quirks that often limited the value

of ‘black box’ code. Sharing data for reuse and repurposing depends not only on maintaining

open repositories and databases, but crucially also on the adoption of open formats.

The equipment and instruments used by physical chemists now routinely preserve the

data they generate in an open format, a statement that would certainly not have been

true at the outset of eScience. For example, chemical substances are identified by an

International Chemical Identifier (InChI), which can be condensed to an InChIKey (103);

standard open formats are available for the data produced by spectrometers and ontologies

have been developed for representing physical and chemical properties and their units with

established formats (87, 104, 52, 105).

Complementing the software platforms, databases, and publishing tools, open-source

notebook tools have been created to aid scientists in different areas of physical chemistry

research, as described in Section 6. While there are potential issues with full openness, typ-

ically intellectual property, recognition, and long-term sustainability, the nature of physical

chemistry is such that these considerations are appreciably less likely to intrude than with

research into novel drugs, for example. Open Data platforms can be expensive to host and

to keep up to date and there are also costs involved in data valuation and curation (106),

but accessible data will drive new research.

9. KNOWLEDGE REPRESENTATION & ELICITATION

As the plethora of data associated with physical chemistry and other sciences research

increased, researchers looked for potential solutions to manage their data more effectively

to enhance their research (107), and they settled on the Semantic Web. In the first decade,

the use of Semantic Web technologies in scientific domains was mainly concentrated around

the life sciences (108). As the movement started to gain popularity and scientists realised

that better data management was required, more researchers in different scientific domains

started to look to Semantic Web technologies to aid with their research.

In 2014, Borkum et al’s paper (109) noted that the main use of Semantic Web tech-

nologies for physical chemistry was to provide controlled vocabularies and databases to

semantically represent information in three areas. These were controlled vocabularies for

the relevant quantities, units and symbols, and for classifying and labeling chemical sub-

stances and mixtures, and a database of chemical identifiers. However, many of the different

sub domains of physical chemistry were not making use of Semantic Web technologies until

recently. In the last five or so years, many more semantic resources have been created

and used to advance different aspects of physical chemistry, such as McCusker et al (104)

who created the NanoMine knowledge graph that contains integrated data from over 1,700

different polymer nanocomposite experiments; Farazi et al (52, 110) who created the On-
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toKin ontology that describes the required domain concepts for chemical kinetic reaction

mechanisms; and Phadungsukanan et al (105) who created a subdomain chemistry format,

based on the Chemical Markup Language (CML) to store computational chemistry data.

Prior to 2017 there were very limited mentions of quantum chemistry in the Semantic

Web sphere, though some work had been done to semantically represent quantum chemistry

calculations and data (87, 105). In the last four years there has been a surge of activity

in this area, with ontologies, and semantic platforms being created for use in quantum

chemistry (111, 112, 110). A notable contribution in this field is that of Krdzavac et

al (113), who created the OntoCompChem ontology to semantically represent quantum

chemical calculations. This has been used alongside knowledge graphs and software agents

to advance other areas of physical chemistry such as thermochemistry (113) and reaction

kinetics (110). Wang et al (114) created a computational chemistry data management

platform that uses ontology-based methods of thermophysical data integration (115) and

looks to ensure that researchers can share and reuse each other’s data in a consistent,

comparable, interoperable format.

Work has also been conducted in the materials space to create knowledge graphs and

ontologies for materials science (104, 116) to enable scientists working in this area to in-

tegrate their data and visualise their datasets in different ways. These technologies have

also been used in conjunction with machine learning technologies. Picklum and Beetz (117)

recently worked on knowledge-enabled machine learning in the materials sciences, using

modern machine learning techniques with machine-readable semantic datasets to exploit

the links between the different datasets and enable complex queries and reasoning to be

performed.

New ontologies have also been created to capture the data and semantics of chemical ki-

netic reaction mechanisms. A notable ontology in this area is OntoKin, developed by Farazi

et al (52), which was created to enable researchers to query, compare, and retrieve mech-

anisms via the Semantic Web. This ontology is used in a knowledge graph that addresses

inconsistency issues in chemical mechanisms (118).

The field of spectroscopy has also made recent headway in the use of Semantic Web

technologies. Whilst it is not a new realisation that the creation of metadata and ontologies

is important for the field of spectroscopy (119, 120), the actual development of ontologies

and models, particularly to support processing tabular and graphical resources in qualitative

spectroscopy, has occurred only in the last few years (121).

Overall, there has been considerable work in the last five years in many subdomains of

physical chemistry to create ontologies to ensure that data can be represented and inter-

linked in a consistent manner, in addition to creating various platforms to facilitate data

sharing and integration. This is as much a human endeavour as a technological one and is

both a digital and collaboration-based infrastructure of eScience.

10. PERSPECTIVE

eScience as a name has somewhat disappeared. Precisely because it has been so successful,

its achievements have become part of the expected scientific infrastructure, and physical

chemistry has certainly benefited from these advances. While the topics and fundamental

ideas involved in experimental physical chemistry research have not been altered in the last

two decades by advances in digital infrastructures, these advances and indeed the emergence

of the fourth industrial revolution (Industry 4.0) (122), have made a significant impact on
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how we are able to actually conduct physical chemistry research.

We are moving into an ever increasing digital era. There are now technologies and

infrastructures to support doing physical chemistry at every stage of the research lifecycle.

How we collect, curate, store and make our data available underpins every aspect of future

research based on that data, and managing our data well is essential for facilitating and

enhancing knowledge discovery and innovation.

The recently published book Data Science in Chemistry (123) provides an encyclopaedic

survey of the data science techniques and methodologies that can be applied to physical

chemistry, and indeed to all other branches of chemistry. It shows that Data Science has

permeated physical chemistry, making it easier for physical chemists to successfully apply

the range of AI/ML technologies that are now becoming available. It is also worth noting

that collaboration has played a key part in enabling all these infrastructures.

Creating open source software and databases, making open controlled vocabularies for

reuse, and providing algorithms and programming libraries, are all born out of collaboration.

This is reflected in the fact that these infrastructures and the advances in conducting science

that they afford would not be possible without human effort; the combined endeavours of

the open physical science community have done as much as the technology itself.

We are still very much in a liminal (transition) period, but changes are being driven by

both open science and compliance with the data management objectives of the Research

Councils. It is vital that data and methods of publications are available to anyone who

might desire them. The use of computational notebooks (such as Jupyter notebooks) for

data analysis in experimental and computational physical chemistry is one example that

facilitates efficient dissemination. The explanation, code and data can all be readily inte-

grated and shared for example via the version control of software sharing site Git/GitHub

(124) to facilitate collaboration and the use and reuse of software. Many journals now

require not only the data to be available alongside a paper but the software code as well,

though ensuring that these can be readily reused is still a problem with many publication

formats.

Git: A command line
based version control

system that manages

and stores revisions
of projects.

GitHub: An open

source project that
hosts Git

repositories and

provides a
web-based graphical

interface as an

alternative to the
command line.

We see eScience as very much an enabler and facilitator of open science both in terms

of development of the technology and the changes in viewpoint of human and computer

interactions – a true example of a successful social machine.

We would claim that many of the advances enabled by eScience led us to be able

to adapt to the COVID-19 situation far more rapidly and flexibly. For example, scientific

collaboration via video conferencing enabled global interdisciplinary teams to coordinate the

collaboration between physical chemists with medicinal chemists and other experts. The

exchange of even large amounts of data in computer readable form, using internationally

agreed standards has been enormously facilitated by the eScience infrastructures (even

if there is still some way to go in achieving the FAIR ideals). The remote operation of

experiments, and remote support for researchers, enabled many laboratories to continue to

run effectively even during lock-down conditions.

Ultimately, the process of “doing the science” is being made much easier. The new

infrastructures have brought more immediate computational power to the experimentalists,

enabling them to make the best of their data and provided a better working environment

for our researchers in physical chemistry
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