Realizing optical persistent spin helix and stern-gerlach deflection in an anisotropic liquid crystal microcavity
Realizing optical persistent spin helix and stern-gerlach deflection in an anisotropic liquid crystal microcavity
Spin-orbit interactions which couple the spin of a particle with its momentum degrees of freedom lie at the center of spintronic applications. Of special interest in semiconductor physics are Rashba and Dresselhaus spin-orbit coupling. When equal in strength, the Rashba and Dresselhaus fields result in SU(2) spin rotation symmetry and emergence of the persistent spin helix only investigated for charge carriers in semiconductor quantum wells. Recently, a synthetic Rashba-Dresselhaus Hamiltonian was shown to describe cavity photons confined in a microcavity filled with optically anisotropic liquid crystal. In this Letter, we present a purely optical realization of two types of spin patterns corresponding to the persistent spin helix and the Stern-Gerlach experiment in such a cavity. We show how the symmetry of the Hamiltonian results in spatial oscillations of the spin orientation of photons traveling in the plane of the cavity.
Liquid crystal devices, Microcavity, Photonic spin-orbit coupling
190401
Król, Mateusz
604ee0ad-3fe7-4574-b54c-2212d4dc81e1
Rechcińska, Katarzyna
511b9baa-2e11-4256-92ce-c597dcab5c76
Sigurdsson, Helgi
c6380293-fe97-4fd0-a819-cf35721d4e5d
Oliwa, Przemysław
23cfbbc2-cbea-4fb0-a19c-10ebe80fd9a7
Mazur, Rafał
2d6cd46a-6f03-469b-a9bb-c24817302963
Morawiak, Przemysław
fa2666ff-60e8-4500-b0a2-9a9a1b66a756
Piecek, Wiktor
43c10475-275e-47e9-b0f0-a6df3d325ffb
Kula, Przemysław
7dc03912-1272-4b6b-a41d-6d8c7e15df6d
Lagoudakis, Pavlos G.
ea50c228-f006-4edf-8459-60015d961bbf
Matuszewski, Michał
530853fd-9fb2-4fd7-b3e9-b6cea41ef766
Bardyszewski, Witold
a38e710b-984a-421d-b1fb-799bd486e698
Piȩtka, Barbara
7fcdcba0-5b64-41ef-ad60-429855632a10
Szczytko, Jacek
14bed84c-2dcf-4e60-93cf-41e77f495422
1 November 2021
Król, Mateusz
604ee0ad-3fe7-4574-b54c-2212d4dc81e1
Rechcińska, Katarzyna
511b9baa-2e11-4256-92ce-c597dcab5c76
Sigurdsson, Helgi
c6380293-fe97-4fd0-a819-cf35721d4e5d
Oliwa, Przemysław
23cfbbc2-cbea-4fb0-a19c-10ebe80fd9a7
Mazur, Rafał
2d6cd46a-6f03-469b-a9bb-c24817302963
Morawiak, Przemysław
fa2666ff-60e8-4500-b0a2-9a9a1b66a756
Piecek, Wiktor
43c10475-275e-47e9-b0f0-a6df3d325ffb
Kula, Przemysław
7dc03912-1272-4b6b-a41d-6d8c7e15df6d
Lagoudakis, Pavlos G.
ea50c228-f006-4edf-8459-60015d961bbf
Matuszewski, Michał
530853fd-9fb2-4fd7-b3e9-b6cea41ef766
Bardyszewski, Witold
a38e710b-984a-421d-b1fb-799bd486e698
Piȩtka, Barbara
7fcdcba0-5b64-41ef-ad60-429855632a10
Szczytko, Jacek
14bed84c-2dcf-4e60-93cf-41e77f495422
Król, Mateusz, Rechcińska, Katarzyna, Sigurdsson, Helgi, Oliwa, Przemysław, Mazur, Rafał, Morawiak, Przemysław, Piecek, Wiktor, Kula, Przemysław, Lagoudakis, Pavlos G., Matuszewski, Michał, Bardyszewski, Witold, Piȩtka, Barbara and Szczytko, Jacek
(2021)
Realizing optical persistent spin helix and stern-gerlach deflection in an anisotropic liquid crystal microcavity.
Physical Review Letters, 127 (19), .
(doi:10.1103/PhysRevLett.127.190401).
Abstract
Spin-orbit interactions which couple the spin of a particle with its momentum degrees of freedom lie at the center of spintronic applications. Of special interest in semiconductor physics are Rashba and Dresselhaus spin-orbit coupling. When equal in strength, the Rashba and Dresselhaus fields result in SU(2) spin rotation symmetry and emergence of the persistent spin helix only investigated for charge carriers in semiconductor quantum wells. Recently, a synthetic Rashba-Dresselhaus Hamiltonian was shown to describe cavity photons confined in a microcavity filled with optically anisotropic liquid crystal. In this Letter, we present a purely optical realization of two types of spin patterns corresponding to the persistent spin helix and the Stern-Gerlach experiment in such a cavity. We show how the symmetry of the Hamiltonian results in spatial oscillations of the spin orientation of photons traveling in the plane of the cavity.
Text
PhysRevLett.127.190401
More information
Accepted/In Press date: 24 August 2021
Published date: 1 November 2021
Additional Information:
Funding Information:
This work was supported by the National Science Centre Grants No. 2019/35/B/ST3/04147 No. 2019/33/B/ST5/02658, No. 2018/31/N/ST3/03046, and No. 2017/27/B/ST3/00271. This project has received funding from the European Union’s Horizon 2020 research and innovation programme FET Open under grant agreement No. 964770 (TopoLight). H. S. and P. G. L. acknowledge the support of the UK’s Engineering and Physical Sciences Research Council (Grant No. EP/M025330/1 on Hybrid Polaritonics), the support of the RFBR Projects No. 20-52-12026 (jointly with DFG) and No. 20-02-00919, and the European Union’s Horizon 2020 program, through a FET Open research and innovation action under the Grant Agreement No. 899141 (PoLLoC). H. S. acknowledges the Icelandic Research Fund, Grant No. 217631-051.
Publisher Copyright:
© 2021 authors.
Keywords:
Liquid crystal devices, Microcavity, Photonic spin-orbit coupling
Identifiers
Local EPrints ID: 453675
URI: http://eprints.soton.ac.uk/id/eprint/453675
ISSN: 0031-9007
PURE UUID: e29c91c9-e35d-4cf0-bba7-4d3e692b9ee6
Catalogue record
Date deposited: 20 Jan 2022 17:45
Last modified: 05 Jun 2024 18:04
Export record
Altmetrics
Contributors
Author:
Mateusz Król
Author:
Katarzyna Rechcińska
Author:
Przemysław Oliwa
Author:
Rafał Mazur
Author:
Przemysław Morawiak
Author:
Wiktor Piecek
Author:
Przemysław Kula
Author:
Pavlos G. Lagoudakis
Author:
Michał Matuszewski
Author:
Witold Bardyszewski
Author:
Barbara Piȩtka
Author:
Jacek Szczytko
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics